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CHAPTER I

INTRODUCTION

1.1 Motivation

One fundamental purpose of automatic control design is to regulate system outputs within the vicin-

ity of their corresponding set points under the presence of plausible disturbances. There are a variety

of disturbance sources in control systems including varying operating environments, measurement

noises, inaccuracy in mathematical modelling, etc. Thus, practical controller design methods are usu-

ally required to compensate for the effect of these disturbances. However, disturbance characteristics

with which a controller can effectively handle depend critically on a disturbance model used in a

controller design process. Many available control design methods characterize disturbances as step

signal or random noise. Nevertheless, these two disturbance models are somewhat unrealistic. For ex-

ample, the rate of change of the step signal at the step time is infinite, and the magnitude of a random

noise, at some points of time, can be extremely large even if its variance is finite. These unrealistic

characteristics give rise to some conservatism in controller design paradigms.

To measure the performance of a control system in suppressing the effect of disturbances, it is

desirable to indicate the worst-case effect that disturbances can induce. Specifically, the magnitude of

this effect is usually represented by the size of output. This leads to the very definition of the worst-

case norm, or in short, the WCN; this is the worst-case magnitude of outputs that can be generated

when inputs are subjected to certain conditions by which an admissible input collection is character-

ized. Generally, the WCN may entail several measures of output magnitude and several types of input

collection. In this work we consider only the supremum norm of the output, and only the collection

that consists of all inputs with bounded magnitudes and limited rates of change. Figure 1.1 illustrates

an example in the input collection where the magnitude bound isM , while the rate limit is D.

0

t

−M

−D

+D

+M

w(t)

0

Figure 1.1: Disturbances whose magnitudes are bounded by M and rates are limited by D.
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In many industrial processes, it is fairly practical and realistic to model disturbances as signals

with bounded magnitudes and limited rate of change since these disturbances usually involves masses

or inertias that cannot change instantly. An example of systems having this type of disturbances is a

distillation column. One of the disturbances is the deviation of the input feed rate which varies over

the time and is limited by the pipe dimension causing a certain bounding condition on its magnitude.

In addition, its rate of change is confined by the mass of raw material fed into the column, and by the

power of the feed pump. Another disturbance is the deviation of the feed composition which relies

on the foregoing chemical reactor, introducing a bounding condition on its magnitude. Similarly,

its rate of change is not arbitrary, but is restricted by the rate of change of the raw-material flow

rate. Hence, it usually takes some time for the feed composition to change its value. In addition to

the disturbance input, actual mathematical models usually incorporate model uncertainty as they can

never model physical systems exactly. Uncertainty in the distillation column arises when we use a

linear model to approximate the highly nonlinear dynamics of the distillation column. Since the linear

model is usually obtained at a specific equilibrium point, slight shifts in operating conditions during

the distillation process can cause a significant difference between actual nonlinear dynamics and its

linear model. Generally, this error in modelling, though not known precisely, can be bound in some

manner.

Another example of uncertain mechanical systems subject disturbances with bounded magni-

tudes and rates of change is a vehicle suspension system. The source of disturbance is the roughness

of the road surface in contact with the wheels. The deviation of the road surface from the level can

be reasonably modelled to have bounded magnitude and limited rate of change. This is because ex-

cessive or sharp deviations of the surface may not be encountered in regular road conditions. The

suspension system also involves uncertainty as masses of passengers and loads vary from one situa-

tion to another. In this case, the passenger and load masses cannot exceed the maximum allowable

load that the vehicle can carry, which suggests the bound on this uncertainty. To comprehensively

analyze the closed-loop regulatory performance of a control system, the WCN should be obtained

over the set of all possible plant uncertainty. Specifically, an effort should be made to compute the

WCN of uncertain systems instead of just nominal systems.

1.2 Literature Review

1.2.1 The WCN of Finite-Dimensional Convolution Systems

The concept of using system norms as performance measures indicating gain of control systems was

pioneered by Zames [1], Narendra and Goldwyn [2], and Sandberg [3], for example. It is a well-

known fact that a relaxed version of the WCN, by omitting the rate limit D, is a product of M

and L1-norm. Dahleh and Diaz-Bobillo [4] provide comprehensive exposition on L1 theory. The

development of the WCN itself can be traced back to Birch and Jackson [5] who studied the problem

of computing the worst-case peak magnitude of a convolution system by constructing the worst-case

input. Nevertheless, the conditions that Birch and Jackson derived and claimed to be necessary and
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sufficient appear to be only necessary. It can be shown, for some cases, that there is an input other than

the worst-case input which satisfies Birch and Jackson’s conditions. It is as far as their main result

for second-order systems that Birch and Jackson’s conditions assume both necessity and sufficiency.

Furthermore, their procedure to construct the worst-case input is based on graphical analysis without

the mathematical justification.

Thereafter, Chang [6, 7] have investigated the equivalent problem of transferring the output to

the desired target in minimum time. He has derived necessary conditions for the worst-case input

of finite-dimensional convolution systems by applying the optimal-control framework for the first

time. He also remarked that although the methods to construct the worst-case input for second-order

or third-order systems could be easily determined but that for higher-order systems would require a

tedious calculation.

Shortly afterward, Horowitz [8] has proposed a set of rules that can be used in constructing

the worst-case input of certain systems. He has justified the existence and uniqueness of a solution;

hence, this implicitly implies sufficiency of his rules. However, he has not extended the results to

general systems. Later, Bongiorno Jr. [9] has considered the problem in MIMO case and first given

sufficient conditions for the worst-case input in general. Nevertheless, an approach to construct such

input has not been clearly mentioned.

Apart from these research works, Boyd and Barratt [10] pointed out that the norm-computation

problem can be simply formulated as a free-terminal-time optimal control problem with control and

state variable constraints. They also suggested that the problem would be solved by conventional

numerical methods in optimal control [11–13]. Nevertheless, the solution of the formulated optimal

control problem is not trivial. In fact, it is still questionable whether these methods are practical and

effective for computation. More specifically, optimal control problems with constraints on control and

state variables usually yield a set of necessary conditions constituting nonlinear two-point boundary

value problems (TPBVPs). The nonlinearity of the problems depend upon the techniques that are

adopted not only to convert the inequality into equality constraints, but also to augment Hamiltonian

functions with these constraints.

One of such traditional techniques incorporates the penalty functions of fictitious state variables

in terms of Heaviside step functions that are active whenever the constraints are violated [14–16].

However, this technique appears to be a conceptual tool for deriving necessary conditions of the

problem rather than an effective computational tool. In fact, possible methods [17] to solve for the

worst-case input are seemingly impractical in that they suffer from intractable computational errors

due to numerical integration of Heaviside functions. Also, they require some ad hoc initial guesses

on optimal trajectories which cause certain difficulties in applying the method to general cases.

Another relevant literature presented by Saridis and Rekasius [18] incorporated the same input

collection with a performance measure called the worst-case error. They exploited an optimal control

formulation which resulted in a nonlinear TPBVP, yet without any use of a Heaviside function. This

yielded smoother responses for integration. They also developed the combined numerical-analytical

method to construct the worst-case input. Nevertheless, the convergence of such method is not guar-
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anteed. Furthermore, Lane [19] obtained a set of necessary and sufficient conditions for the worst-case

input of convolution systems and the rules to construct it. The proofs of necessity and sufficiency,

in some extent, resemble [7] and [9] with some additional argument of dynamic programming. He

has also implemented a FORTRAN code to compute the WCN, yet his method is rather tedious and

needs to determine an involved auxiliary function. Another recent work is by Reinelt [20]. His neces-

sary conditions descended from Birch and Jackson’s conditions [5]. Furthermore, Reinelt’s necessary

conditions are limited to the case that the rate limit of an input must be somewhat faster than the

natural frequency of a convolution system. Besides, his numerical computation is only a discrete

approximation in which none of his necessary conditions were exercised.

The most recent results by Khaisongkram and Banjerdpongchai [21, 22] employed an optimal

control formulation. Necessary conditions acquired by the Pontryagin’s Maximum Principle were

analyzed in a straightforward manner to determine the practical characterization of the worst-case

input. Such characterization serves as a means to derive the systematic method that constructs the

worst-case input. The optimal control formulation and solution in [22] is actually the refinement of

that in [21] with additional knowledge of computable upper bounds on errors in computing the WCN.

Although there have been many significant attempts so far in computing the WCN of convo-

lution systems subject to inputs with bounded magnitude and rate, a few research studies consider

the same norm on uncertain systems. Reinelt [23] considered the WCN of uncertain linear sys-

tems, and formulated the computational problem as a general quadratic programming. Nevertheless,

there are certain drawbacks in Reinelt’s formulation. First, the formulation was based on his former

work [20], and incomplete in some aspects mentioned previously. Second, he did not focus on how

to solve the formulated problem. In fact, the general quadratic programming is a significant problem

in mathematical programming, and is still under extensive ongoing investigations. Combining with

his discrete-approximation approach, his proposition may not work for general convolution systems.

However, with further substantial improvement, his discretizing approach presented in [20,23] can be

promising. In fact, formulating WCN computational problem via this approach results in a bilinear

programming, which can be converted to a convex maximization problem with polytopic constraints.

This means some advanced knowledge in convex maximization should be taken into account. The

following section is devoted to review the literature in such area.

1.2.2 Maximization of Convex Functions

Due to the standard nature of linearly-constrained convex maximization problem that its solution lies

in one of the vertices (extreme points) of a polyhedron generated by the constraints, the most obvious

algorithm successively searches along adjacent vertices and ranks the objective value to obtain the

optimal solution. Murty [24] seems to first present this extreme-point ranking approach in 1968.

A large portion of research studies on minimizing a concave function have been involved with

branch-and-bound (BB) algorithm and some cutting plane methods. The BB algorithm is first pro-

posed by Falk [25] in 1973, to solve for a linear max-min problem, which is equivalent to a bilinear

programming. This algorithm has been continually modified afterward. One major application of BB
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algorithm is to utilize it with a cutting plane method. A popular approach of cutting plane method

with BB technique is the conical algorithm presented buy Tuy [26] in 1964. He first introduced the

concept of convexity cuts that can be used to eliminate parts of feasible region from consideration.

However, his method still suffers from no guarantee on finite convergence [27], which later led to a

number of modified versions since then [28–32].

In 1976, Konno [33] studied the problem of maximization of a convex quadratic function over a

polyhedron, and in 1980, his research was restricted to the case of maximizing over a hypercube [34].

He is the first person who proposed the equivalence between convex quadratic programming and

bilinear programming, so that a cutting plane algorithm for bilinear programming can be exploited

to find a solution. This cutting plane algorithm is equipped with enumerated elements to guarantee

finite convergence.

As a number of engineering problems (including robust control analysis and design) have fallen

into a category of concave minimization (or equivalently, convex maximization), this type of op-

timization gains increasing attention. Similar to Konno’s direction, some works confine concave

objective functions to concave quadratic objective functions; others extend alternatively to indefinite

quadratic objective functions. General polytopic constraints are also simplified as box constraints.

Examples of box-constrained indefinite quadratic programming can be seen in [35–39]. Note that

most recent works attempt to tackle general quadratic programming because of its challenging in-

tractability. In fact, Pardalos and Vavasis demonstrated that this problem is NP-hard even with

solely one negative eigenvalue [40].

Several of previous works rely on BB mechanism as a local search, while some means were

proposed to choose a good initial searching point which tends to yield a global optimal solution.

Particularly, in 1998, An and Tao [36] have employed a BB scheme with relaxed box constraints

using ellipsoidal estimation. The approach successfully deleted much of feasible region from further

consideration. Furthermore, in 2004, Angelis et al. [38] have proposed a novel algorithm to minimize

a general quadratic function subject to simple box constraints. Their method consists of two phases.

In the first phase, the algorithm finds a promising starting point by approximating the hypercube,

induced by the box constraints, with a Euclidean ball. In the second phase, the algorithm employs (as

usual) a local BB search to locate the exact solution of the problem on one of the hypercube vertex.

When the WCN computational problem is cast as a convex maximization via a discretizing

approach, one would expect that high discretizing rate would yield high computational accuracy. Ap-

parently, this high rate implies a large-scale optimization problem. Nevertheless, despite an extensive

studies on convex maximization, none of this has focus on a large-scale problem, e.g., a problem with

dimension up to thousands or greater. In fact, some research works deal with problem dimension

of around ten with the main attempts to generalize their methods [32, 41–43]; some others intend to

tackle more specialized problem [44–46]. However, they can still handle a problem with dimension

up to only fifty.
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1.3 Objectives

The objective of this dissertation are to analyze and compute the WCN of finite-dimensional convo-

lution systems in the presence of dynamic uncertainty and subject to disturbances. In particular, the

uncertainty is bounded and the disturbance magnitude and rate are also bounded. It is also aimed

to establish an effective algorithm (in terms of computational time and accuracy) to compute such

WCN, and to develop a ready-to-use computer program for the algorithm. It should be emphasized

that there has been no algorithm to compute this WCN so far.

1.4 Scope

1. Develop an algorithm for computing the WCN of finite-dimensional convolution systems with

time-varying uncertainty and subject to inputs with magnitude bound and rate limit.

2. Implement a computer program based on the aforementioned algorithm.

3. Test the computer program with selected numerical examples.

1.5 Methodology

1. Collect and study literature on the WCN of linear systems under inputs with magnitude bound

and rate limit as well as other related performance indices. In addition, some literature was

reviewed on basic optimal control, optimal control with singularity, optimal control with state-

variable constraint, numerical algorithm in optimal control, the Generalized Karush-Kuhn-

Tucker Theorem, and the application of Pontryagin’s Maximum Principle.

2. Refine the theoretical results in [47], and consequently modify the computational algorithm

therein, which is used for computing the WCN of finite-dimensional convolution systems. This

are carried out to improve its computational efficiency and accuracy. Specifically, the suffi-

ciency of the necessary conditions confirms that the computed input is the worst-case input;

the computational error can be predicted; the truncation error can be specified as a criterion

to select suitable truncating terminal time; the satisfactory computational speed and accuracy

were exhibited via numerical examples.

3. Formulate the problem of computing the WCN of linear systems under inputs with magnitude

bound and rate limit when the systems contain dynamic uncertainty. To do so, the impulse

response of the linear system is sampled and the problem is cast as a finite-dimensional convex

maximization problem. Analyze the upper bound and lower bound of the objective function of

such maximization. Consider how these analytical knowledge can be applied to solve for the

exact optimum of the objective function, and design convex maximization solvers which are

efficient in terms of computation time.
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4. Study literature on bilinear programming, general convex maximization, convex maximization

(or concave minimization) with box constraints, convex quadratic maximization, BB techniques

and cutting-plane method for concave minimization.

5. Develop computer programs. Validate such programs via some testing such as obtaining the

errors between the computed values and the corresponding exact values. Observe the compu-

tational time as well as accuracy.

6. Select an appropriate system with uncertainty and disturbances subject to bounded magnitude

and limited rate of change. Design a controller that minimizes the WCN of this process and

apply the controller to the system simulator using MATLAB/Simulink. Analyze and evaluate

the control performance.

1.6 Contributions

1. Mathematical foundation of the WCN of uncertain finite-dimensional convolution systems un-

der inputs with bounded magnitude and limited rate.

2. Novel computational tools with the corresponding computer programs for computing such

WCN.

3. An example of real application of the WCN as a performance index in control system design.

1.7 Dissertation Outline

In this dissertation, we consider finite-dimensional linear time-invariant systems or simply convolu-

tion systems. The systems are causal and of single input and single output. The WCN is defined in

some particular manner based on specific classes of input and impulse response. The dissertation is

organized as follows:

In the next chapter, the WCN of linear systems without uncertainty is considered. The WCN

is mathematically defined and simplified. Some properties of the WCN are analyzed. The WCN

computational problem is cast as a fixed-terminal time optimal control problem with only the terminal

cost. Then, the Pontryagin’s Maximum Principle and the Generalized Karush-Kuhn-Tucker Theorem

are applied to derive the necessary conditions which characterize the worst-case input.

In Chapter 3, a computational algorithm is developed based on the derived conditions in the

previous chapter. This algorithm, named as Successive Pang Interval Search (SPIS), attempts to

construct the worst-case input by determining where is it the input has its rate at the limit D. The

construction proceed along the time axis throughout a finite time horizon, and the WCN is simply

the convolution integral of the worst-case input and the impulse response of the system. The compu-

tational errors are analyzed, and finally the WCN obtained from SPIS is verified with second-order

systems whose analytical solutions of the WCN are available.
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In Chapter 4, we turn our attention to the WCN when the linear system is subjected to specific

form of uncertainty. Some properties of the WCN are presented in parallel to the case of no uncer-

tainty. The problem is formulated via a discrete-time approach, resulting in an NP-hard bilinear

programming problem such that the efficient algorithm does not exist to solve for a global solution.

A convex maximization amounts to the originally formulated problem has also been formulated. A

new practical upper bound and tight lower bound are introduced for later use.

In Chapter 5, an overview of the BB algorithm is described. Exploiting the known upper/lower

bounds, we use this algorithm to solve for the exact WCN. A promising branching technique is

proposed. The algorithm is later validated with the exhaustive search. Nevertheless, the BB algorithm

is not as effective because it consumes significant computation time, so we invent a new algorithm

called Hierarchical Branch-and-Bound (HBB) algorithm to compute the WCN. This algorithm is

based on the BB computation. HBB can solve for WCN of some problems that satisfying certain

assumptions. A heuristic selection of algorithm parameters is given, and the algorithm is respectively

validated with the BB algorithm.

In Chapter 6, a numerical example is presented to illustrate the application of the WCN as a

control design criterion. An example is an active vehicle suspension control system. The standard de-

sign criteria are considered. A search algorithm called moving boundary process (MBP) is employed

to seek for an appropriate controller parameters, and a simulation is carried out in comparison with

passive suspension control.

In the last chapter, the main contribution of each chapter is summarized and the important

achievement of the dissertation is given. The suggestions for possible improvements, which required

further studies, are summarized as well.



CHAPTER II

ANALYSIS OF THE WCN OF LINEAR SYSTEMS

2.1 Analytical Preliminaries

For all t, let w(t) be a real-valued continuous function, and its derivative ẇ(t) be piecewise continu-

ous. The input setW is characterized by a magnitude bound and a rate limit as

W � {w(t) : w(t) = 0, ∀t ≤ 0; |w(t)| ≤M, |ẇ(t)| ≤ D, ∀t > 0} (2.1)

where 0 < M < ∞ and 0 < D < ∞. This input set is illustrated in Figure 1.1. To deal with

definiteness, we assume that the derivative ẇ(t) at each point of discontinuity takes the value of the

left-sided neighborhood. In other words, this means

ẇ(t) = lim
τ→t−

ẇ(τ),

for all t at which ẇ(t) is discontinuous. This assumption seems not to be numerically necessary for

computing the WCN in that the differences of two inputs at finite instants will surely have no effect

on the output of finite-dimensional convolution systems. However, it will benefit mathematical rigor

in developing definitions and theorems in later sections.

Note that the definition of the input set in (2.1), along with the continuity of w(t), implies

the causal continuity associated with the zero initial condition, w(0) = 0, for all admissible inputs.

Although this condition is not commonly seen in previous works, it does make sense because the

concept of imposing a rate limit, in addition to a magnitude bound, originates from the physical

requirement of input continuity at t > 0. Thus, assumingw(t) to be continuous at t = 0 is reasonable.

Later on, we will show that this assumption is not only reasonable, but also beneficial.

Let H0 be a shorthand notation for a set of single-input single-output (SISO), strictly proper,

finite-dimensional, causal, linear time-invariant systems. It is interesting to note that most SISO linear

time-invariant systems are in H0. Also remark that H0 is actually a vector space, on which a norm

can be defined. Let h(t) be an impulse response of a convolution system in H0. Let the system output

be denoted by z(t). For the convolution system, we have

z(t) = h(t) ∗ w(t) =
∫ t

0
h(t− τ)w(τ)dτ.

Accordingly, the worst-case magnitude of z(t) at each t, denoted by ξ(t) : [0,∞) �→ [0,∞), is

defined as

ξ(t) � max
w∈W

|z(t)| = max
w∈W

|h(t) ∗ w(t)|. (2.2)

Following the maximum value theorem [48], W is compact, hence, z(t) attains its maximum on

W at each t. Let the element in W that causes the worst-case magnitude ξ(t) be referred to as
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the worst-case input with a notation ŵ(t). With respect to the underlying input set W , the WCN

‖ · ‖wc : H0 �→ [0,∞] is defined as the worst-case peak magnitude expressing in terms of ξ(t) as

follows:

‖h‖wc � sup
t≥0

ξ(t). (2.3)

It is easy to show that this norm is well defined on H0 and that it satisfies all properties of norm except

that we allow the norm to assume the value +∞. This relaxation permits us to extend the definition

of the WCN to unstable systems.

Be reminded that the term h(t) ∗ w(t) is linear in w(t) and the bounding conditions on w(t)

are symmetrically defined, i.e., for all t > 0

−M ≤ w(t) ≤M,
−D ≤ ẇ(t) ≤ D.

Hence, −ŵ(t) is also the worst-case input apart from ŵ(t). Based on this fact, the definition of the

worst-case output magnitude in (2.2) can be simplified by omitting the absolute-value operator. We

obtain an equivalent definition as

ξ(t) = max
w∈W

z(t) = max
w∈W

[h(t) ∗ w(t)]. (2.4)

The WCN in (2.3) can be further simplified by the standard fact that the worst-case magnitude is a

monotonic function of time. This was first established by Lane [19] and also reported by Reinelt [20].

However, to make the dissertation self-contained, we provide a concise presentation here.

2.1.1 Monotonicity and the WCN Approximation

To show that ξ(t) is actually a nondecreasing function of time, let t1 < t2, and assume that ŵ1(t)

yields ξ(t1), i.e., ξ(t1) = h(t1) ∗ ŵ1(t1). Define w2(t) by shifting w1(t) with	t = t2 − t1. That is

w2(t) �
{

0, 0 ≤ t ≤ t,
ŵ1(t−	t), 	t ≤ t ≤ t2.

By a simple change of an integration variable, it follows that

h(t2) ∗ w2(t2) = h(t1) ∗ ŵ1(t1) = ξ(t1).

Now, assume that ŵ2(t) yields ξ(t2). Evidently, by definition (2.4), we have

ξ(t2) = h(t2) ∗ ŵ2(t2) ≥ h(t2) ∗ w2(t2) = ξ(t1).

As mentioned earlier, the causal continuity plays an important role in the previous argument. If there

is no such a condition, ŵ1(0) may not equal zero, resulting in a discontinuity of w2(t) at t = 	t.
Consequently, w2(t) is excluded from W , and then ξ(t2) may not have any explicit relation with

ξ(t1).

The assumption on causal continuity is beneficial in making the definition (2.3) equivalent to

‖h‖wc = lim
t→∞ ξ(t). (2.5)



11

This implies that we can approximate ‖h‖wc by ξ(T ) with arbitrary degree of accuracy by taking

T sufficiently large. How we can determine a suitable choice of T will be explained in details in

Section 3.1.2.

2.1.2 Finiteness

It is worth noting that in order for the WCN to be useful in performance analysis, it must first be

finite. Lane [19] fully verified that the necessary and sufficient condition on finiteness of its WCN is

that a convolution system is BIBO stable.

The sufficiency follows from the well-known fact that an upper bound of the WCN isM‖h(t)‖1
where ‖h(t)‖1 denotes the L1-norm of a convolution system [19, 21]. Hence, if the system is BIBO

stable, its L1-norm is finite and so is the WCN.

To make this dissertation self-contained, we establish an alternative proof of necessity as fol-

lows. Here, the idea used in establishing the finiteness of the WCN is motivated by [10]. Suppose

that the WCN of h(t) is finite. Let us consider a simple lag 1/(2s+ 1), and implicitly define h1(t) as

follows:

H1(s) � H(s)
(

1
2s+ 1

)

where H1(s) andH(s) stand for the Laplace transforms of h1(t) and h(t), respectively. It is obvious

that the system with an impulse response h1(t) is in H0. Since the lag is stable and has no unstable

zero, h(t) is BIBO stable if and only if h1(t) is. Hence, we have to show that h1(t) is BIBO stable.

Let v(t) be an input of h1(t). As illustrated in Figure 2.1, the signal w(t), which is an input of

h(t), can now be regarded as an output of the lag, and is induced by v(t), i.e.,w(t) = (1/2)e−t/2∗v(t)
where (1/2)e−t/2 is an impulse response of 1/(2s+ 1). Consider an input set

V � {v(t) : |v(t)| ≤ min{M,D}} , (2.6)

which includes all bounded input v(t). It is easy to verify that ‖(1/2)e−t/2‖1 = 1. Thus, we have

|w(t)| ≤ ‖(1/2)e−t/2‖1|v(t)| = min{M,D} ≤M. (2.7)

Furthermore, since an ordinary differential equation that relates w(t) to v(t) is 2ẇ(t) +w(t) = v(t),

we can show that

|ẇ(t)| = 1
2
|v(t)− w(t)| ≤ 1

2
(|v(t)|+ |w(t)|) ≤ 1

2
(2 min{M,D}) ≤ D. (2.8)

Note that we have made use of (2.7), and the definition (2.6).

The inequalities (2.7) and (2.8) conclude that any v(t) ∈ V yields a signal w(t) which lies in

W . Moreover, the output z(t) must be bounded since we have assumed the finiteness of the WCN

of h(t). Shortly speaking, any v(t) ∈ V will result in a bounded output z(t), which implies that

‖h1(t)‖1 is finite, or equivalently, h1(t) is BIBO stable.



12

1

2s + 1

w(t)

h1(t)

z(t)v(t)
h(t)

Figure 2.1: The cascaded system h1(t) containing a fictitious time lag and h(t), as a subsystem. The input

w(t) is shown to have its magnitude bounded by M and its rate bounded by D when the fictitious input v(t) is

bounded by min{M,D}. The output signal of both systems is z(t), which is bounded when v(t) is bounded

and h1(t) is BIBO stable.

2.2 Problem Formulation

Recall that (A,B,C) is a minimal realization of a convolution system h(t). Assume further that h(t)

is strictly proper, and x(t) ∈ Rn is a state vector of its state space representation. To compute the

worst-case magnitude, we define an auxiliary state variable xn+1(t) ∈ R and a control signal u(t) as

follows.
xn+1(t) � w(t),

u(t) � ẇ(t).

The fixed-terminal-time optimal control problem can be posed as

max
u

Cx(T )

s.t. ẋ(t) = Ax(t) +Bxn+1(t), x(0) = 0,
ẋn+1(t) = u(t), xn+1(0) = 0,
−M ≤ xn+1(t) ≤M, 0 ≤ t ≤ T,
−D ≤ u(t) ≤ D, 0 ≤ t ≤ T.

Notice that the initial time is 0, the terminal time is T , the objective cost is z(T ) = Cx(T ), and

the initial condition of xn+1(0) is 0. To define the Hamiltonian function, the inequality constraint is

rewritten as

x2
n+1(t) ≤M2. (2.9)

The Hamiltonian function is defined in terms of system dynamics and the inequality constraint on

xn+1(t) as

H(x, xn+1, u, p, pn+1, μ) � pT (Ax+Bxn+1) + pn+1u+ μ(M2 − x2
n+1) (2.10)

where p(t) ∈ Rn, pn+1(t) ∈ R, and μ(t) ∈ R are Lagrange multipliers corresponding to ẋ(t),

ẋn+1(t), and the constraint (2.9), respectively. For simplicity, the argument t is omitted in (2.10). By

the Generalized Karush-Kuhn-Tucker Theorem [49], the variable μ(t) is nonnegative and vanishes

whenever the constraint (2.9) is inactive, i.e., |x2
n+1(t)| < M . The adjoint equations are obtained as

ṗ(t) = −AT p(t), (2.11)

ṗn+1(t) = −BT p(t) + 2μ(t)xn+1(t) (2.12)
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with the following transversality conditions:

p(T ) = CT , (2.13)

pn+1(T ) = 0. (2.14)

The response of p(t) can be readily obtained from the differential equation (2.11) and the final con-

dition (2.13):

p(t) = eA
T (T−t)CT . (2.15)

Then, substituting p(t) into (2.12) gives

ṗn+1(t) = −BT eA
T (T−t)CT + 2μ(t)xn+1(t)

= −h(T − t) + 2μ(t)xn+1(t). (2.16)

Note here that we consider the scalar case only, i.e., hT (T − t) = h(T − t). Integrating both sides

of (2.16) from t1 to t2, we obtain

pn+1(t2)− pn+1(t1) = [s(T − t2)− s(T − t1)] + 2
∫ t2

t1

μ(t)xn+1(t)dt (2.17)

where s(t) is the step response corresponding to h(t). For later reference, it is noted here that the

Weierstrass-Erdmann corner condition [16, 17], which requires the continuity of H and all Lagrange

multipliers, implies that pn+1(t) must be continuous everywhere.

By the Pontryagin’s Maximum Principle [13], the optimal control signal u(t) is chosen to

maximize the Hamiltonian function in (2.10), i.e., the control signal should have the same sign as

pn+1(t), with the greatest attainable magnitude. This gives the following optimal control law

û(t) = Dsgn[pn+1(t)]. (2.18)

By the definition (2.10), the singular control may occur when pn+1(t) = 0. This, however, does not

violate the law (2.18). To verify this claim, suppose pn+1(t) = 0 everywhere in finite time intervals

referred to as I. Hence, by (2.16), we have

h(T − t) = 2μ(t)xn+1(t). (2.19)

Since h(T − t) is a smooth function, μ(t) must be nonzero almost everywhere in I. This suggests

that the constraint (2.9) should be active, i.e., |xn+1(t)| = M , everywhere in I. Hence, u(t) = 0 =

sgn[pn+1(t)] everywhere in I. It can be seen that the optimal control profile is simply bang-off-bang.

As û(t) becomes zero in the off time interval, we have |xn+1(t)| = M .

2.3 Characterization of the Worst-Case Input

In this section, we will give a few theorems representing necessary conditions of the worst-case input

characteristics. As discussed previously, the rate of change of the worst-case input is either zero or

±D. While the rate of change is zero, we have shown that the worst-case-input magnitude is ±M .
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Pang Bang Pang Bang Pang

0

t

+M

−M

w(t)

+D

−D

Figure 2.2: An input having a pang-bang profile. The input comprises only pang and bang intervals over the

time horizon. In the bang intervals, the input rest at its boundary ±M , whereas in the pang intervals the input

has its rate at the limit ±D.

Thus, we can summarize that, at any instant of time, the worst-case input has either the magnitude or

the rate of change equal to its limit. This characteristic of input was named by Chang [6] as pang-

bang. He classified time intervals of the worst-case input into two types alternating each other along

the time axis. The bang interval is a time interval in which the magnitude of the worst-case input is at

its limit, while the pang interval is a time interval in which the rate of change of the worst-case input

is at its limit. An example of a pang-bang signal is illustrated in Figure 2.2. The precise definitions

of such intervals are given as follows.

Let x̂n+1(t) be the optimal trajectory generated by the optimal control û(t) in (2.18). The

notations of the worst-case input are restored as ŵ(t) = x̂n+1(t) and ˙̂w(t) = û(t).

Definition 2.1 The pang interval of ŵ(t) denoted by IP is the time interval (t0, tf ] in which | ˙̂w(t)| =
D everywhere, and there is no other time interval (t̂0, t̂f ] with the same property and (t0, tf ] �

(t̂0, t̂f ]1.

Definition 2.2 The bang interval of ŵ(t) denoted by IB is the time interval (t0, tf ] in which |ŵ(t)| =
M everywhere, and there is no other time interval (t̂0, t̂f ] with the same property and (t0, tf ] �

(t̂0, t̂f ].

Pang intervals and bang intervals are enumerated as IP,k and IB,k, respectively, using subscript

k starting from zero. In addition, let us denote the initial time and the terminal time of the kth interval

by t0,k and tf,k. Note that since the worst-case input is assumed to start from zero, the first interval is

a pang interval which is the only closed pang interval, i.e., IP,1 = [t0,1, tf,1].

We define pang and bang intervals to be half-open half-closed so as to conform with the as-

sumption on definiteness mentioned in Section 2.1. Specifically, since the derivative of w(t) ∈ W at

an instant of discontinuity takes the same value as its left limit, this instant should belong to the left-

1B � A ⇐⇒ B ⊆ A but B �= A
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sided interval, i.e., the foregoing interval. Hence, a pang or bang interval should include the terminal

time instant but exclude the initial time instant.

2.3.1 Necessary Conditions of the Worst-Case Input

By the results in the preceding section, we may state the following theorems which characterize the

necessary conditions of the worst-case input in pang and bang intervals. The early version of the

necessary conditions in Theorems 2.1–2.3 first appeared in [5]. Similar theorems with some differ-

ences in notation and presentation style can be found in [6, 7]. Even so, the performance objective

considered by Chang is the minimum terminal time not the maximum output magnitude. The similar

necessary conditions but for the problem of maximizing the output magnitude of MIMO time-varying

systems are given in [9]. Note that although these conditions were already obtained, we decided to

give alternative proofs to make the presentation self-contained, and in particular, to reveal how these

theorems can be immediately derived from the implications of the optimal control formulation. The

alternative proofs are rather concise compared to the former versions. To begin with, a boundary

condition for pang interval is examined. Then, the conditions on the signs of the worst-case-input

magnitude and rate of change are derived.

Theorem 2.1 (the boundary condition) In IP,k for k �= 1, the backward step response at t0,k and

tf,k are equal, that is,

s(T − tf,k) = s(T − t0,k).
However, if k = 1, we have

s(T − tf,1) = s(T )− pn+1(0).

Proof: Recall that a pang interval is an interval where the constraint (2.9) is inactive, and hence

μ(t) = 0. From (2.17), we have, at t2 = tf,k and t1 = t0,k, the relation

pn+1(tf,k)− pn+1(t0,k) = s(T − tf,k)− s(T − t0,k). (2.20)

Furthermore, recall also that a pang interval is connected to bang intervals where pn+1(t) = 0,

and although this pang interval is the last interval, we still have pn+1(T ) = 0 as stated in (2.14).

Hence, with the fact that pn+1(t) must be continuous everywhere, it can be deduced that pn+1(tf,k) =

pn+1(t0,k) = 0 in IP,k. By substituting this into (2.20), the proof is complete.

For the case that k = 1, the proof can be established similarly except that pn+1(t0,1) is not

necessarily zero. Recalling that t0,1 = 0, from (2.17), we have, at t2 = tf,1 and t1 = 0,

0− pn+1(0) = s(T − tf,1)− s(T − 0),

which leads to the desired result. �

Figure 2.3 displays an example of the worst-case input satisfying the boundary condition in

each pang interval. In particular, there are three pang intervals in this figure: (t0,1, tf,1], (t0,2, tf,2],

and (t0,3, tf,3]. The boundary conditions are fulfilled since s(T − t0,1) = s(T − tf,1), s(T − t0,2) =

s(T − tf,2), and s(T − t0,3) = s(T − tf,3).
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t0,1

t

+M

−M

+D

−D

t0,2 t0,3tf,2 tf,3

s(T − t)

ŵ(t)

tf,1

Figure 2.3: The boundary condition of the worst-case input.

Theorem 2.2 (the derivative condition) In IP,k, the rate of change of ŵ(t) is determined by

˙̂w(t) =

{
Dsgn[s(T − t)− s(T − t0,k)], k �= 1,
Dsgn[s(T − t)− s(T ) + pn+1(0)], k = 1.

Proof: Consider the kth pang interval. With the same reasoning as in Theorem 2.1, the relation (2.17)

at t1 = t0,k and t2 = t ∈ (t0,k, tf,k] is reduced to

pn+1(t)− pn+1(t0,k) = s(T − t)− s(T − t0,k). (2.21)

For k �= 1, we have pn+1(t0,k) = 0; hence, from (2.21), it follows that

pn+1(t) = s(T − t)− s(T − t0,k).

On the other hand, if k = 1, we have t0,1 = 0 and that

pn+1(t) = s(T − t)− s(T ) + pn+1(0).

Substituting the value of pn+1(t) into (2.18) and restoring the notation u(t) = ˙̂w(t) will finish the

proof. �

The graphical meaning of this theorem is illustrated in Figure 2.4 for the same example of the

worst-case input as in the previous theorem. Notice the theoretical relation between the input slope

and the step response s(T − t). For example, between t0,1 and tf,1, we can see that s(T − t) >

s(T − t0,1); hence, ˙̂w(t) = +D. More complicate situation occurs during t0,2 and tf,2. We have
˙̂w(t) = +D when s(T − t) > s(T − t0,2), while ˙̂w(t) = −D when s(T − t) < s(T − t0,2).
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tf,1

t

+M

−M

+D

−D

t0,1 t0,2 t0,3tf,2 tf,3

s(T − t)

ŵ(t)

Figure 2.4: The derivative condition of the worst-case input.

Remark 2.1 By means of Theorem 2.1, the rate of change of ŵ(t) in IP,k can also be written as

˙̂w(t) = Dsgn[s(T − t)− s(T − tf,k)]

for all k.

Theorem 2.3 (the magnitude condition) In IB, the magnitude of ŵ(t) is determined by

ŵ(t) = Msgn[h(T − t)].

Proof: As mentioned in Section 2.2, the Lagrange multiplier μ(t) in this interval cannot be zero, and

thus, must take only positive value. Recalling that ŵ(t) = xn+1(t), the relation (2.19) then implies

that

sgn[ŵ(t)] = sgn
[
h(T − t)

2μ(t)

]
= sgn[h(T − t)].

Since the magnitude of ŵ(t) in this interval should be at its limit M , we can see that ŵ(t) =

Msgn[h(T − t)]. �

The same example of the worst-case input is shown in Figure 2.5 to demonstrate the magnitude

condition. For the sake of consistency, we still employ the step response in this figure, instead of the

impulse response. Note that since h(T − t) = −ds(T − t)/dt, the sign of h(T − t) is opposite to that

of the slope of s(T − t).
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ŵ(t) t

+M

−M

+D

−D

s(T − t)

tf,1 tf,2t0,1 t0,2

Figure 2.5: The magnitude condition of the worst-case input.

2.3.2 Sufficiency of the Necessary Conditions

Bongiorno Jr. has shown in [9] that the necessary conditions proposed by Chang in [7] are also suffi-

cient conditions for an admissible input to be the worst-case input. The class of systems considered

by Bongiorno consists of MIMO time-varying systems represented by state transfer matrices. Here,

we will modify Bongiorno’s proof in our particular time-invariant version by showing that any ad-

missible input satisfying Theorems 2.1–2.3 is the worst-case input, i.e., maximizes the objective cost

z(T ) = Cx(T ). Suppose ŵ(t) is an admissible input satisfying such theorems, and let x̂(t) be its

corresponding state trajectory. We have to show that

C[x̂(T )− x(T )] ≥ 0,

for all x(t) corresponding to w ∈ W . This is equivalent to verifying that

∫ T

0
h(T − t)[ŵ(t)− w(t)]dt ≥ 0. (2.22)

Therefore, we will decompose the left-handed side of (2.22) in each IP,k and IB,k of ŵ(t).

Bang-Interval Analysis

In the bang interval IB,k, the magnitude of ŵ(t) is determined by Theorem 2.3. Thus, we have the

integrand

h(T − t)[ŵ(t)− w(t)] = M |h(T − t)| − h(T − t)w(t) ≥ 0, ∀t ∈ IB,k.
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This simply yields the relation ∫ tf,k

t0,k

h(T − t)[ŵ(t)− w(t)]dt ≥ 0.

Pang-Interval Analysis

In the pang interval IP,k, the integral∫ tf,k

t0,k

h(T − t)[ŵ(t)− w(t)]dt

can be integrated by part as

−[s(T − t)− s(T − tf,k)][ŵ(t)−w(t)]
∣∣∣∣
tf,k

t0,k

+
∫ tf,k

t0,k

[s(T − t)− s(T − tf,k)][ ˙̂w(t)− ẇ(t)]dt. (2.23)

Note that
∫
h(T−t)dt = −s(T−t)+cwhere c can be any constant. Here, we choose c = s(T−tf,k).

The integration (2.23) can be rewritten as

[s(T − t0,k)−s(T − tf,k)][ŵ(t0,k)−w(t0,k)]+
∫ tf,k

t0,k

[s(T − t)−s(T − tf,k)][ ˙̂w(t)− ẇ(t)]dt. (2.24)

Since the boundary condition in each pang interval is given by Theorem 2.1. The first term of (2.24)

vanishes since s(T − t0,k) = s(T − tf,k) for all k �= 1. For the case k = 1, we have ŵ(t0,1) =

ŵ(0) = w(0) = w(t0,1) = 0; hence the first term of (2.24) also vanishes. Thus, the integration (2.24)

is reduced to ∫ tf,k

t0,k

[s(T − t)− s(T − tf,k)][ ˙̂w(t)− ẇ(t)]dt.

Since the rate of change of ŵ(t) is determined by Theorem 2.2, we have the integrand:

[s(T − t)− s(T − tf,k)][ ˙̂w(t)− ẇ(t)] = D|s(T − t)− s(T − tf,k)|
−[s(T − t)− s(T − tf,k)]ẇ(t)

≥ 0.

Hence, it is easy to see that∫ tf,k

t0,k

h(T − t)[ŵ(t)− w(t)]dt =
∫ tf,k

t0,k

[s(T − t)− s(T − tf,k)][ ˙̂w(t)− ẇ(t)]dt ≥ 0.

2.3.3 Uniqueness of the Worst-Case Input

The proof that the worst-case input satisfying the necessary and sufficient conditions is unique, is first

presented in [9]. Actually, there is a condition that must be satisfied in order for the worst-case input

to be unique. Our formulated problem satisfies such condition since there is a constraint on initial

condition of admissible inputs, that is, w(0) = 0. This fact will be brought up later in the proof.

So as to verify the uniqueness, we assume that there is another worst-case input w̃(t) which

satisfies Theorems 2.1–2.3, and its corresponding state trajectory is x̃(T ). We have already shown
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that a combination of these theorems is equivalent to saying that w̃(t) induces the worst-case output.

Thus, it can be easily seen that

Cx̂(T ) = Cx̃(T ),

or similarly, ∫ T

0
h(T − t)[ŵ(t)− w̃(t)]dt = 0.

By analyzing this integral separately in each interval: IB,k and IP,k of ŵ(t), and using the same

argument as in Section 2.3.2, we can say that

ŵ(t) = w̃(t), in IB,k,
˙̂w(t) = ˙̃w(t), in IP,k.

Equivalently, it can be shown that

ŵ(t) = w̃(t), in IB,k, (2.25)

ŵ(t) = w̃(t) + ck, in IP,k (2.26)

where ck is a constant. Condition (2.25) suggests that the magnitude of w̃(t) is the same as that of

ŵ(t) in the bang interval. In addition, from (2.26) and owing to the continuity of admissible inputs,

and to the fact that a pang interval is connected to at least one bang interval, we have ck = 0. Thus, the

magnitude of w̃(t) is also the same as that of ŵ(t) in the pang interval. This concludes that w̃ = ŵ.

The above argument is invalid if there is no bang interval of ŵ(t), that is, ŵ(t) consists of only

one pang interval. Therefore, in this case, we recall the fact that every admissible input starts from

zero; hence,

0 = ŵ(0) = w̃(0) + ck = 0 + ck.

This means ck = 0, and we still have ŵ = w̃.

2.3.4 Pang-bang Characteristics

While deriving the necessary and sufficient conditions for the worst-case input, we have assumed

that the input considered is a member of the admissible input setW . Nevertheless, the facts that an

input be worst-case, and that it be admissible at the first place are totally different. To construct the

worst-case input in practice, additional constraints which representW should be posed. We will refer

to these constraints as the admissibility constraints.

Recall that the worst-case input ŵ(t) satisfies pang-bang characteristic, namely, its magnitude

in bang intervals is determined through Theorem 2.3, and its derivative in pang intervals is obtained

through Theorem 2.2. Nevertheless, there has been no guarantee so far, during the construction

process, that the magnitude of ŵ(t) in pang intervals would also satisfy the magnitude bound. This

leads to the requirement of the admissibility constraints. In the later section, it will be shown that

this constraint plays an important role in searching for positions of pang intervals of the worst-case
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input. In order to state such constraint, it is convenient to define certain shorthand notations which

will facilitate further discussion.

As mentioned previously, it can be seen that a pang interval is composed of one or several

segment(s) with the slope of either +D or −D. We will denote each of these segments as a pang

subinterval. As a consequence, a pang interval can then be classified into two types according to the

number of pang subintervals inside it. The detailed definitions are as follows.

Definition 2.3 A pang subinterval inside a pang interval IP is the time interval I in which ẇ(t) =
+D everywhere or ẇ(t) = −D everywhere, and there is no other time interval Ĩ with the same

property and I � Ĩ.

Recall that the assumption regarding the values of input derivative at the instants of disconti-

nuity (see Section 2.1), suggests that these values should equal the left-sided limit. Hence, a pang

subinterval itself (which does not start at zero) is half-open half-closed, akin to a pang interval.

Definition 2.4 An odd pang interval of ŵ(t) is a pang interval inside which the number of pang

subinterval(s) is odd, while an even pang interval of ŵ(t) is a pang interval inside which the number

of pang subintervals is even.

Definition 2.5 Let the time instants t1,k, . . . , tm,k be all possible instants within IP,k such that t0,k <

t1,k < · · · < tm,k < tf,k, and

pn+1(t1,k) = pn+1(t2,k) = · · · = pn+1(tm,k) = 0.

We will refer to these instants as switching instants.

Between adjacent switching instants, the multiplier pn+1 has different sign, hence the name

switching instants. For consistency, sometimes we will refer to the subscript f as m + 1. Note that

m + 1 is odd in an odd pang interval and it is even in an even pang interval. Immediately, a brief

lemma analogous to Theorem 2.1 is obtained as follows.

Lemma 2.1 At the switching instants t1,k, . . . , tm,k in IP,k,

s(T − t1,k) = · · · = s(T − tm,k) = s(T − tf,k).

Moreover, if k �= 1, the backward step responses at these instants are equal to s(T − t0,k).

Proof: Consider the condition (2.17) in pang interval when t1 = ti,k, t2 = tj,k where i, j = 1, . . . ,m.

Since pn+1(ti,k) = pn+1(tj,k) = 0, it is straightforward that

s(T − ti,k) = s(T − tj,k).

Next, consider again the condition (2.17) in IP,k when t1 = tf,k and t2 = ti,k, where i = 1, . . . ,m.

As discussed in Theorem 2.1, pn+1(tf) is 0 for every IP,k even though it is the last interval. Since

pn+1(ti,k) = 0 for i = 1, . . . ,m by its definition, we have s(T − ti,k) = s(T − tf,k). In addition, if
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k �= 1, through Theorem 2.1, we also have s(T − ti,k) = s(T − t0,k) �

For each IP,k, let the length of each pang subinterval, i.e., ti,k − ti−1,k, be denoted by Δti,k
for i = 1, . . . ,m+ 1. Another useful terms can be defined as follows.

Definition 2.6 In IP,k, the cumulative polar-summation of pang subinterval’s length, or in short, the

cumulative summation θ1,k, . . . , θm+1,k is defined as

θi,k �
i∑

j=1

(−1)j+1Δtj,k, i = 1, . . . ,m+ 1.

Recall that θm+1,k can also be regarded as θf,k. The term polar-summation signifies that the

sign (pole) of Δtj,k in the definition of θi,k alternates at each j.

Now, we are ready to state the conditions on the admissibility constraints. Although the admis-

sibility constraints are developed for construction of the worst-case input, the nature of the constraints

themselves can be applied to the class of all pang-bang signals inW .

Theorem 2.4 (admissibility constraints) For k �= 1, consider IP,k. Suppose that |ŵ(tf,k)| = M ,

i.e., IP,k terminates when the worst-case-input magnitude is at its limit2. The following conditions

must hold:

(i) At each switching instant,

0 ≤ θi,k ≤ 2M
D

, i = 1, . . . ,m. (2.27)

(ii) At the terminal time tf,k,

θf,k =

⎧⎨
⎩

2M
D , if IP,k is odd,

0, if IP,k is even.
(2.28)

Otherwise, in IP,1, the following conditions must hold:

(iii) At each switching instant,

−M
D
≤ θi,1 ≤ M

D
, i = 1, . . . ,m. (2.29)

(iv) At the terminal time tf,1,

θf,1 = ±M
D
. (2.30)

2This assumption holds for every pang interval (except when IP,k is the last interval of the worst-case input) because a

pang interval, which is not the last interval, must be followed by a bang interval.
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Proof: (i) From Theorem 2.2 when k �= 1, we have ˙̂w(t) = Dsgn[s(T − t)− s(T − t0,k)]. Thus, the

worst-case input at each switching instant ti,k can be straightforwardly computed as

ŵ(ti,k) =
∫ ti,k

t0,k

˙̂w(t)dt+ ŵ(t0,k)

=
∫ ti,k

t0,k

Dsgn[s(T − t)− s(T − t0,k)]dt+ ŵ(t0,k)

= D

∫ ti,k

t0,k

sgn[s(T − t)− s(T − t0,k)]dt+ ŵ(t0,k)

= D
i∑

j=1

αj,kΔtj,k + ŵ(t0,k) (2.31)

where αj,k is the sign of s(T − t)− s(T − t0,k) in the pang subinterval (tj,k, tj−1,k].

If ŵ(t0,k) = −M , then ˙̂w(t) should equalD in the first pang subinterval of IP,k; otherwise, the

input ŵ(t) would have gone below −M in this pang subinterval, excluded itself from the collection

W . Hence, from Theorem 2.2, the sign of s(T − t)− s(T − t0,k) should be positive, in the first pang

subinterval, to match that of ˙̂w(t). This implies that α1,k = 1. Furthermore, in later pang subintervals,

s(T − t) crosses over the level of s(T − t0,k) at each switching instant tj,k, causing αj,k to alternate

along IP,k. For this reason, the relation (2.31) becomes

ŵ(ti,k) = Dθi,k −M. (2.32)

Since |ŵ(ti,k)| is bounded by M , we have

−M ≤ Dθi,k −M ≤M,

which simply yields the condition (2.27).

If ŵ(t0,k) = +M , it can be shown in similar manner that α1,k = −1, and the sequels will

alternate their signs. In this particular case, the relation (2.31) can be expressed as

ŵ(ti,k) = −Dθi,k +M. (2.33)

Then, the bounding condition on ŵ(ti,k) is imparted to θi,k, which results in (2.27) as well.

(ii) The terminal condition (2.28) in a pang interval IP,k can be derived in a straightforward

fashion. Suppose IP,k is odd and ŵ(t0,k) = −M . This means ŵ(tf,k) = −ŵ(t0,k) = M because the

number of pang subintervals is odd. By replacing the subscript i by f in (2.32), we have

ŵ(tf,k) = Dθf,k −M = M,

and the condition (2.28) can be immediately obtained. If ŵ(t0,k) = M , we alternatively applied (2.33)

in this case, and get

ŵ(tf,k) = −Dθf,k +M = −M,

which yields the same result.
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The terminal condition of θf,k where IP,k is even can be deduced simply with the equivalent

manner, i.e., with the fact that ŵ(tf,k) = ŵ(t0,k), so the proof is left to the reader.

(iii) From Theorem 2.2 when k = 1, the derivative ˙̂w(t) is equal to Dsgn[s(T − t) − s(T ) +

pn+1(0)]. Recall that the initial condition ŵ(t0,k) = ŵ(0) = 0 holds for any input inW . Thus, the

worst-case input at each switching instant ti,1 is as follows:

ŵ(ti,1) =
∫ ti,1

0

˙̂w(t)dt

=
∫ ti,1

0
Dsgn[s(T − t)− s(T ) + pn+1(0)]dt

= D

∫ ti,1

0
sgn[s(T − t)− s(T ) + pn+1(0)]dt

= D

i∑
j=1

αj,1Δtj,1 (2.34)

where αj,1 is the sign of s(T − t)− s(T )+pn+1(0) in the pang subinterval (t1,1, t0,1]. Here, α1,1 can

be either plus or minus, depending on the starting direction of ŵ(t). Hence, from (2.34), the linear

relation between ŵ(ti,1) and θi,1 is of the form

ŵ(ti,1) = ±Dθi,1. (2.35)

Therefore, with a little algebras, the magnitude bound on ŵ(t) is conveyed to θi as in (2.29).

(iv) The terminal condition (2.30) in the first pang interval immediately follows from the pre-

vious result. From (2.35), replacing the subscript i with f , we have

±Dθf,1 = ŵ(tf,1) = ±M,

which gives (2.30). �

It is important to note that the admissibility constraints together with Theorem 2.1–2.3 provide

only necessary conditions for an interval to be a pang interval of the worst-case input. There may

be some interval which is not a pang interval of the worst-case input yet satisfies Theorem 2.1–2.3

and Theorem 2.4. Henceforth, we refer to any time interval fulfilling these theorems as a plausible

pang interval of the worst-case input. In addition, if a plausible pang interval is not actually a pang

interval of the worst-case input, then it is called a spurious pang interval. In accordance with these

nomenclatures, a pang interval of the worst-case input may sometimes be mentioned as an actual

pang interval of the worst-case input.

For better insight, an example when a spurious pang interval coincides with an actual pang

intervals are given. Consider Figure 2.6 where s(T − t) is assumed to be nonincreasing before t1 and

nondecreasing after t7. Given that t4 − t1 = 2M/D and t7 − t3 = t3 − t2, it can be readily verified

that both ĪP,k and IP,k satisfy Theorem 2.1–2.3 and Theorem 2.4. Nonetheless, we will show that

ĪP,k is a spurious pang interval of the worst-case input. First, recall that since the terminal time of

ĪP,k is t4, the connected bang interval, says ĪB,k, has the initial time equal t4. Second, wherever the
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t6

s̃(T − t)

t

t1 t2 t3

IP,k

t4 t5

ĪP,k ĪB,k

t7

Figure 2.6: The spurious pang interval ĪP,k precedes the actual pang interval IP,k. If SPIS proceeds to

identify ĪP,k to be a pang interval, SPIS will be stuck at t4 because the succeeding bang interval that has t4 as

an initial time cannot be constructed. In this case, SPIS will note down this spurious pang interval and move

on to discover IP,k instead.

next pang interval IP,k+1 is, its initial time, which is the terminal time of ĪB,k, must be located after

t5. This is because t6 − t4 is too narrow to contain a pang interval.

In short, we are pointing out that the bang interval ĪB,k starts before t5 and ends after t5.

However, Theorem 2.3 specifies that the sign of h(T − t) must be the same along the entire bang

interval. In contrast, at t5 the slope of s(T − t) changes its sign, and h(T − t) does either. Thus, ĪB,k
is invalid, which consequently concludes that ĪP,k is a spurious pang interval. In this example, IP,k
is the actual pang interval. As mentioned before, the admissibility constraints will used in the process

of constructing the worst-case input. Accordingly, the possible existence of a spurious pang interval

must be carefully taken into account.

2.4 Summary

We have proposed analysis of the WCN of finite-dimensional convolution systems where the WCN

is defined as the maximum of output magnitude produced by any admissible inputs with magnitude

bound and rate limit. Once the formulation of the WCN is simplified, we employ the optimal control

scheme to derive the necessary and sufficient conditions of the worst-case input. Then, the admissibil-

ity constraints are developed. The worst-case input characterization together with this admissibility

constraints will become handy in the next chapter to construct the worst-case input and compute the

WCN, respectively.



CHAPTER III

COMPUTATION OF THE WCN OF LINEAR SYSTEMS

3.1 Construction of the Worst-Case Input

We start with the main result of this Chapter–the practical method for obtaining the worst-case input,

and respectively, the WCN. Although a few methods have already been proposed, yet only the result

by Lane [19] can be considered as workable. He listed the necessary and sufficient conditions, and

stipulated a few rules that lead to the construction of the worst-case input. Still, his method includes

the complicate use of an auxiliary graphical element called a switching function, which makes the

procedure rather involved. Our work is different from the algorithm in [19] in that we have made no

use of this switching function.

The classical method developed by Birch and Jackson [5] is a graphical procedure that starts

from the first trial of a candidate for the worst-case input. Then, some adjustments on this candidate

are made by means of graphical inspection of the considered step response. A series of trials followed

by adjustments may arise until the worst-case input is obtained. However, the flaw in their necessary

and sufficient conditions, and the deficiency in establishing the systematic procedure (as described in

Section 1.2.1) prevent possible extension of the work to general cases.

3.1.1 Successive Pang Interval Search

The algorithm presented in this dissertation is partially based on that of Birch and Jackson’s. The

existence and uniqueness of the solution to the problem of determining the worst-case input (discussed

in Section 2.1) guarantees that our algorithm in pursuit of the worst-case input will eventually succeed.

In other words, the convergence of the algorithm is guaranteed. In order to determine the shape of the

worst-case input for a finite dimensional convolution system we need to examine graphically the step

response of such system via Theorems 2.1–2.4. Since the computation is implemented on a digital

computer, to treat this problem numerically, the step response and also the impulse response must

be sampled at an adequate rate 1/τs. It will be discussed later how this sampling rate affects the

computational accuracy of the WCN. Given the appropriate terminal time T , we choose τs so that T

is a multiple of which. The standard fact is that ns = (T/τs) + 1 is the amount of sampling instants.

Let τ1, τ2, . . . , τns stand for these instants for which τ1 < τ2 < · · · < τns . It is clear that we have

τ1 = 0 and τns = T .

For fixed iwhere 1 ≤ i < ns, consider t ∈ [τi, τi+1]. Let s̃(T−t) be a piecewise-linear estimate

of the backward step response s(T − t) of a finite-dimensional convolution system. Precisely, it is
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defined as follows:

s̃(T ) � s(T ),

s̃(T − t) � s(T − τi) +
(
t− τi
τs

)
Δs(T − τi), τi < t ≤ τi+1, i = 1, . . . , ns − 1. (3.1)

where Δs(T −τi) = s(T −τi+1)−s(T −τi) for i = 1, . . . , ns−1. Roughly speaking, this definition

simply says that s̃(T − τi) = s(T − τi) for i = 1, . . . , ns, while s̃(T − t) between contiguous

sampling instants is obtained via interpolation. It should be noted that the scope of this dissertation is

confined to solely finite-dimensional convolution systems, which involve smooth impulse responses,

and hence, step responses. According to this fact, s(T − t) cannot be static over a finite period, which

means that it is numerically improbable for s̃(T − t) to be equal at two adjacent sampling instants.

Therefore, we will assume that s̃(T − τi) �= s̃(T − τi+1) for all i = 1, . . . , ns − 1. We now consider

the extrema of s̃(T − t).

Definition 3.1 Let the peak times of s̃(T − t) be denoted by τp1 , τp2 , . . . , τpnp where np is the total

number of peak times and pi ∈ {1, 2, . . . , ns}. The peak times are defined as all possible time instants

with the property such that τp1 < τp2 < · · · < τpnp , and

τp1 = 0, τpnp = T,

s̃(T − τpi) > max{s̃(T − τpi−1), s̃(T − τpi+1)}, or

s̃(T − τpi) < min{s̃(T − τpi−1), s̃(T − τpi+1)}, i = 2, . . . , np − 1.

In other words, the peak time are the time instants where s̃(T − t) is at its zenith or nadir,

including zero and T . Notice that although the above inequalities are strict, this definition is still valid.

This is because the aforementioned assumption suggests that there is no adjacent pair of sampling

instants that achieve the same value of s̃(T − t). Assume as well that τs is sufficiently small so that

there is more than one sampling instant between adjacent peak times, i.e., pi − pi−1 > 2. In terms of

the peak times, we can divide the whole time interval [0, T ] into np − 1 disjoint segments as follows:

π1 � {t : 0 ≤ t ≤ τp2},
πi � {t : τpi < t ≤ τpi+1}, i = 2, . . . , np − 1.

An example of s̃(T − t) partitioned into segments with respect to its peak times is delineated in

figure 3.1. Let the current time tc be the time instant of the present consideration, and similarly let

πc stand for the current segment which is the segment containing tc. Moreover, let the former time

be denoted by tc− , and be defined as the past time instant before we move to tc. Note in advance that

most of the time, but not at all times, tc (or tc−) equals one of the sampling instants τi. Up to this

point, we are now ready to outline our algorithm. The reader may, at the same time, consider a flow

chart in figure 3.2 for better understanding. Some substantial steps will later be explained in details.

Step 0 (data structuring) Compute the suitable terminal time T via simple bisection algorithm.

Sample the step response s(T − t) to get s̃(T − t) with the sampling period τs. Obtain all peak

times of s̃(T − t) by direct comparison among s̃(T − τi) for i = 1, . . . , ns, along the time axis.
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t

τp3 τp5 τp6τp1 = 0 τp2 τp4 τp7 = T

π5 π6π1 π2 π3 π4

s̃(T − t)

Figure 3.1: The segments π1, . . . , π6 of s̃(T − t) partitioned by the corresponding peak times τp1 , . . . , τp7 .

Step 1 (initialization) Obtain all plausible first pang intervals II of the worst-case input1. Then,

obtain all plausible last pang intervals IL of the worst-case input. These are carried out with

respect to the admissibility constraints in Theorem 2.4. Let II denote the collection of the

former intervals, and IL denote the collection of the latter.

Enumerate the members of II, and begin with the first element of II (denoted by I1
I in fig-

ure 3.2). Suppose that the terminal time tf,1 of I1
I falls into a segment πf . Set tc to be tf,1, and

set πc to be πf . Now we can start the search for the next pang interval.

Step 2 (trial experiment) If πc is the last segment πnp−1, we have proceeded to the last interval of

the worst-case input which is, in this situation, a bang interval occupying (tc, T ]. Go to Step

5 to determine the shape of the worst-case input in each interval, and to compute the worst-

case output eventually. Otherwise, if πc is the segment to which any initial time of IL ∈ IL

(denoted by t0,L in figure 3.2) belongs, then check whether or not tc is less than t0,L. When this

condition is fulfilled, the interval IL, among other members of IL, is the actual pang interval

of the worst-case input. Also, go to Step 5 to finalize the worst-case input construction.

If the above cases do not apply, check whether tc is a peak time. If so, go to Step 4, otherwise,

proceed with the search by collecting a piece of information at tc. This information is needed

in examining a plausible location of the next pang interval. In so doing, we conduct a quick

experiment: presuming that tc is an initial time of a pang interval, and computing the cumulative

summation at this position. It is not unusual that this trial cumulative summation does not meet

the admissibility constraints (conditions (i) and (ii) in Theorem 2.4). In fact, to meet the exact

time instant which is the initial time of the next pang interval is nearly impossible.

After getting the experiment result, compare it with the former result at tc− , if there is any.

1Recall that the first interval must be a pang interval since admissible inputs should start from w(0) = 0. In addition,

II and IP,1 are of the same meaning, but we use II here for consistency with IL that denotes a plausible last pang interval.
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This tells us whether or not we have crossed an initial time t0,k of a plausible pang interval

IP,k, while moving from tc− to tc. If so, get to Step 3 to determine the precise location of

this recently-discovered plausible pang interval. If there is no such crossing, store the current

experiment result for future comparison; update tc to be the next sampling instant2. Also,

update tc− and repeat this step over again.

Step 3 (precise location) If we have crossed an initial time t0,k of a plausible pang interval IP,k,
the algorithm enters this step to precisely locate IP,k. In particular, we have to determine the

initial time t0,k, the terminal time tf,k, and all the switching instants ti,k of IP,k. Recall that the

current time tc is situated in the current segment πc. As a result of the experiment in Step 2,

additional useful data that we gain are as follows: the segment πf into which tf,k falls, the time

instants closely around t0,k, and those around tf,k. With these data, we can adopt the standard

bisection algorithm to find a more precise location of IP,k.
Before moving back to Step 2, store the current time for future purpose. This stored time

instant is called the restarting instant which is represented by trst in figure 3.2. If one or more

restarting instants already exist then we append the new restarting instant to the set of the old

ones. Then, similar to Step 1, update the current segment by setting πc = πf . Set tc to be the

terminal time tf,k.

Step 4 (search correction) When the algorithm enters this step, it implies that one or more previously-

discovered plausible pang intervals are spurious. Thus, delete the latest location of the plausible

pang interval, return to the latest restarting instant, and go back over to Step 2.

However, if the latest plausible pang interval is in II, nothing is left when this interval is deleted,

and there is no more restarting instant. In this case, we move to the next element of II, and

update πc and tc in accordance with the routine in the Step 1. Then, go over to Step 2.

Step 5 (finalization) Entering this step, the algorithm has successfully determined the pattern of

pang and bang intervals. The final task of constructing the worst-case input is to determine its

magnitudes in bang intervals and its rates of change in pang intervals. This is readily done by

following Theorems 2.2–2.3, and hence the construction of the worst-case input ŵ(t) is fin-

ished. The WCN (the worst-case output) can be simply calculated by numerical integration of

the convolution h(t) ∗ ŵ(t), and the algorithm terminates. Note that such numerical integration

is performed at τ1, . . . , τns plus the corner of ŵ(t), i.e., the points of discontinuity of ˙̂w(t).

In brief, the first step initializes the algorithm, and then the search for locations of pang interval

is accomplished in Step 2. The locations of pang intervals are accurately determined in Step 3. The

algorithm may terminate after Step 1 or Step 3. The correction for any spurious pang interval is

carried out in Step 4. As we finish locating all the actual pang intervals, the bang intervals are just the

other intervals in between them. The algorithm then finalizes the computation in Step 5.

2Perhaps, this should be called the nearest sampling instant ahead since tc itself may not be the sampling instant.
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Figure 3.2: The flow chart of the successive pang interval search (SPIS) algorithm.
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Apparently, this algorithm moves from one sampling instant to another to locate the positions of

pang intervals of the worst-case input. Owing to this distinct feature, we will refer to this algorithm as

the Successive Pang-Interval Search algorithm or briefly as SPIS. The following subsections furnish

the detailed descriptions in some steps. We attempt to arrange these details not in chronological order

but according to their priority. This would assist the reader to gradually form a clear insight into the

main idea of our algorithm.

3.1.2 Suitable Terminal Time

The choice of the terminal time T can be selected in terms of the truncation difference defined as the

difference between ‖h‖wc and ξ(T ). However, this difference cannot exactly be determined because,

in most cases, we cannot obtain the exact value of ‖h‖wc. Thus, it needs to utilize the upper bound

of ‖h‖wc − ξ(T ) instead. Note that we need not to write |‖h‖wc − ξ(T )| since ‖h‖wc − ξ(T ) is

positive. From (2.4) and (2.5), it is easy to see that ‖h‖wc − ξ(T ) can be bounded by M
∫∞
T |h(t)|dt

(see Appendix A). Still, this quantity cannot be efficiently computed in practice due to the need for

improper numerical integration.

To determine a computable bound of ‖h‖wc − ξ(T ), assume that the convolution system h(t)

has finite dimension equal n with the minimal realization (A,B,C). Since the left-shifted impulse

response h(t + T ) = CeAteATB can be viewed as an auxiliary impulse response hT (t) with a new

realization (A, eATB,C), a bound of ‖h‖wc − ξ(T ) is derived as follows [50].

‖h‖wc − ξ(T ) ≤M
∫ ∞

T
|h(t)|dt = M

∫ ∞

0
|hT (t)|dt ≤ 2M

n∑
i=1

σi(T ) (3.2)

where n is the system order, and σi(T ) is the Hankel singular value of hT (t). Since the Hankel

singular values of hT (t) are the square roots of the eigenvalues of the product of the observability

and controllability gramians of (A, eATB,C), this bound can be readily calculated by solving two

Lyapunov equations together with eigenvalue computation. For convenience, let us denote the bound

on the truncation difference ‖h‖wc − ξ(T ) as

e(T ) � 2M
n∑
i=1

σi(T ). (3.3)

Since e(T ) is computed in terms of σ(T ), the bound e(T ) itself depends upon the truncating time

instant T , which gives rise to the need for the argument T .

In real application, we want to specify e(T ) that yields an adequately large terminal time T .

This task can be eased off by using the standard fact that, for each i, the Hankel singular value σi(T )

of hT (t) does not increase as T increases. Equivalently, the bound (3.2) is the nonincreasing function

of T . Thus, general exact line search methods, such as bisection algorithm, suffice to accomplish this

task.

Here, our bisection algorithm on continuous-time systems is based on the scheme, first pro-

posed by Balakrishnan and Boyd [51], that finds the smallest discrete instant which yields the spec-
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ified value of the bound for l1-norm of the tail of the impulse response of the discrete-time finite-

dimensional convolution system with the desired degree of accuracy.

Suppose that we need to keep ‖h‖wc − ξ(T ) below the value ε1. It suffices to find T that gives

e(T ) ≤ ε1.

To start our bisection algorithm, we need to specify valid upper and lower limits of T . Let these

limits be denoted by Tup and Tlow, respectively. In other words, we must have e(Tup) < ε1 and

e(Tlow) > ε1. Since T may take any positive value, Tlow must be set to zero. For Tup, we start from

any specific time instant and increase it twice until e(Tup) < ε1. The detailed algorithm is as follows:

begin

Tup := 1;

while e(Tup) ≥ ε1 do

Tup ← 2Tup;

end;

end.

One may use this Tup as the terminal time since it holds already that

‖h‖wc − ξ(Tup) < e(Tup) < ε1

However, it is preferable to find a good estimate of the minimum T such that e(T ) ≤ ε1. This is

because unnecessarily large T requires more sampling instants so as to retain the same sampling

precision, which may consequently increase the overall computation time. This leads to the bisection

algorithm which iterates to find Tup and Tlow satisfying the following termination criteria:

e(Tlow)− e(Tup) < ε2

where ε2 is sufficiently less than ε1. In this work, we use ε2 = 10−5ε1. Using Tup and Tlow obtained

previously, we now describe our bisection algorithm:

begin

while e(Tlow)− e(Tup) ≥ ε2 do

T ← (Tup + Tlow)/2;

if e(T ) < ε1 then

Tup ← T ;

else

Tlow ← T ;

end;

end;

T ← Tup;

end.

Before terminating the algorithm, despite insignificant difference, we set T to be Tup instead

of the usual average of Tup and Tlow since e(Tup) < ε1 while e([Tup + Tlow]/2) may not.
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3.1.3 Detection of Crossing the Initial Time of a Plausible Pang Interval

The major idea of SPIS is contained in Step 2: moving from one point to another while gathering some

information through an experiment, and using this information to roughly determine the location of

plausible pang intervals. In this section, we consider any plausible pang interval except the first and

the last one. It is noted that this step shares some similar concepts as the adjustment step of Birch

and Jackson’s procedure when it is facing the difficulty [5]. The trial experiment can be described as

follows.

Suppose that the current segment and the current time are πc and tc �= 0, respectively. The

experiment attacks a simple question: is the current time tc likely to be an initial time of a plausible

pang interval? To test this presumption, we project a reference level, with the magnitude of s̃(T − tc),
outward from zero along the time axis. Then, all segments in which s̃(T − t) crosses over this

reference level are determined. Let these segments be referred to as the cutting segments and be

denoted by π′1, . . . , π′nc
where nc is the total number of crossings. Let Π′ be the set containing all

cutting segments at the current time. Then, the following time instants at which s̃(T − t) passes over

the reference line are defined.

Definition 3.2 The cutting instants, with respect to tc, are all time instants t′i such that tc < t′1 <
· · · < t′nc

, and

s̃(T − t′i) = s̃(T − tc), i = 1, . . . , nc

Since s̃(T − t) is monotonic in each segment, it is obvious that there is only one cutting instant

in each segment. For consistency, we may refer to tc as the zeroth cutting instant t′0 and πc as

the zeroth cutting segment π′0. Furthermore, it is numerically reasonable to assume that all cutting

instants do not exactly coincide with any peak times. Figure 3.3 shows how the cutting instants and

the corresponding cutting segments at tc are determined by the reference level s̃(T − tc). To obtain

the cutting instants in practice, we compare s̃(T − t) with s̃(T − tc) at each sampling instant and pick

out only τi such that τi > tc and

s̃(T − τi) < s(T − tc) < s̃(T − τi+1).

Then, the corresponding cutting instant t′i can be acquired via simple interpolation:

t′i = τi + τs

[
s(T − tc)− s(T − τi)
s(T − τi+1)− s(T − τi)

]
.

Before we state the main theorem, let investigate some attributes of cutting segments and cutting

instants while moving from one point to another. For ease of subsequent exposition, the cutting

segments are divided into two classes by the following definition.

Definition 3.3 With respect to the current segment πc, an odd segment is any cutting segment π′i of

which i is an odd number. Similarly, an even segment is any cutting segment π′i of which i is an even

number.
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Figure 3.3: The cutting instants t′0, . . . , t
′
3 and the cutting segments π′

0, . . . , π
′
3 of s̃(T − t) obtained at tc.

Apparently, an odd segment alternates with an even one. In addition, it is observed that s̃(T−t)
is monotonic in each segment. Thus, we prefer to distinguish between segments with upward direction

and downward direction.

Definition 3.4 A segment πi is called an up segment if s̃(T − t) is monotonically increasing on it,

that is,

s̃(T − t2) > s̃(T − t1), ∀t1, t2 ∈ πi, t1 < t2.

A segment πi is called a down segment if s̃(T − t) is monotonically decreasing on it, that is,

s̃(T − t2) < s̃(T − t1), ∀t1, t2 ∈ πi, t1 < t2.

Recall that s̃(T − t) is not equal at any contiguous sampling instants. Thus, we can use the

strict inequalities in this definition because there is no such case that s̃(T − t) takes the same value in

the same segment. Notice that an up segment also alternates with a down segment. Hence, we arrive

at this straightforward proposition.

Proposition 3.1 The direction of an even segment is the same as that of the current segment, but the

direction of an odd segment is opposite.

Consider the former time instant tc− . Let the cutting segments at tc− be represented by π′′j , and

the cutting instants by t′′j for j = 0, . . . , nc− . Likewise, let Π′′ signify the set of all cutting segments

obtained at tc− . If a common element between Π′ and Π′′ exists, then there is a simple relationship

between the cutting instants, obtained at tc and at tc− , on this element. However, the condition under

which such relationship can take place may be relaxed from the sole equality of π′i and π′′j . This

relaxed condition is a kind of equivalence relation defined as follows.
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Figure 3.4: The cutting instants t′0, . . . , t
′
6 and the cutting segments π′

0, . . . , π
′
6 of s̃(T−t) obtained at tc(= t′0),

and the cutting instants t′′0 , . . . , t
′′
6 and the cutting segments π′′

0 , . . . , π
′′
6 of s̃(T − t) obtained at tc−(= t′′0).

Definition 3.5 Segments π′i ∈ Π′ and π′′j ∈ Π′′ are said to be equivalent, or π′i ≡ π′′j , if there is no

element of Π′ or Π′′ situated between π′i and π′′j , or situated at π′i or π′′j (except π′i and π′′j themselves).

In addition, we will refer to a duplet (π′i, π
′′
j ) ∈ Π′ ×Π′′ as an equivalent pair.

Apparently, the equality π′i = π′′j is a special case of π′i ≡ π′′j . The meaning of this equivalence

is that if there is any segment between π′i and π′′j on which s̃(T −t) does not cross the levels s̃(T −t′0)
and s̃(T − t′′0), then we may ignore it from our consideration. For more insight, let us consider

figure 3.4 which shows the cutting instants and cutting segments obtained at tc (= t′0) and tc− (= t′′0).
In this figure, π′0 = π′′0 = πc, and we have four equivalent pairs:

(π′3, π
′′
1) where π′3 = π′′1 ,

(π′4, π
′′
2) where π′4 �= π′′2 ,

(π′5, π
′′
3) where π′5 �= π′′3 ,

(π′6, π
′′
6) where π′6 = π′′6 .

Notice that, in this example, there are some π′i that are not equivalent to any element in Π′′, namely,

π′1, π′2, and conversely, there are also some π′′j that are not equivalent to any element in Π′, namely,

π′′4 , π′′5 . We found that an equivalent pair (π′i, π
′′
j ) possesses certain properties the same as which

two equal cutting segments possess. Before we proceed to see this, let assume here that πc is an up

segment. This causes no loss of generality since if πc is a down segment of s̃(T − t), then it is an up

segment of −s̃(T − t). Thus, since all cutting instants obtained with−s̃(T − t) are the same as those

with s̃(T − t), the structure of the proof when πc is a down segment is analogous. The following

lemma exhibits a few properties of an equivalent pair.

Lemma 3.1 Suppose that π′0 = π′′0 = πc
3, and π′i ≡ π′′j but π′i �= π′′j . Then the following are

equivalent:

3To see the nature of this assumption, refer to the main algorithm, SPIS. If we are directed to Step 2 after finishing from

Step 2 itself (to repeat the step), in this case, tc and tc− are still in the same segment, i.e., π′
0 = π′′

0 = πc. However, if

we enter Step 2 after finishing from Steps 1, 3, or 4, such time instants may not fall into the same segment. Nevertheless,
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(i) π′i precedes π′′j , i.e., ∀t1 ∈ π′i, ∀t2 ∈ π′′j , t1 < t2.

(ii) π′i and π′′j are odd segments.

For the case that π′i = π′′j , π
′
i is an odd segment if and only if π′′j is. Moreover, the following conditions

hold:

(iii) If i, j are odd, then t′i < t′′j .

(iv) If i, j are even, then t′i > t′′j .

Proof: See the Appendix B.

As an example, consider again the equivalent pairs in figure 3.4. It is seen that, as 2 and 4 are

even numbers, we have π′′2 precedes π′4, and hence, t′′2 < t′4. In addition, as 3 and 5 are odd numbers,

we have π′5 precedes π′′3 , and hence t′5 < t′′3 . The immediate consequence of Lemma 3.1 is that a

cutting segment in Π′ can be equivalent to at most only one cutting segment in Π′′ and vice versa.

This is presented as follows.

Corollary 3.1 (uniqueness of equivalence) Suppose that π′0 = π′′0 = πc. The equivalent pair

(π′i1 , π
′′
j1

) is unique. That is, if ∃π′i1 ∈ Π′, ∃π′′j1 ∈ Π′′ such that π′i1 ≡ π′′j1 , then ∀π′i2 ∈ Π′, π′i2 �≡ π′′j1
if π′i2 �= π′i1 , and similarly, ∀π′′j2 ∈ Π′′, π′′j2 �≡ π′i1 if π′′j2 �= π′′j1 .

Proof: See the Appendix B.

Informally, Corollary 3.1 tells that the equivalence relation is one-to-one. Thus, let us match

element of Π′ with element of Π′′, only those possible, in terms of this relation. Assume also that

this matching starts from (π′0, π′′0) and proceeds until it reaches a specific equivalent pair (π′a, π′′b ).
Let a set Φab ⊂ Π′ × Π′′ contain those matched pairs. Arrange elements of Φab with the direction

outwards from zero. Again, we make use of an example in figure 3.4. We will include the equivalent

pair (π′6, π′′6) and all equivalent pairs before it, that is, a = b = 6. In this case,

Φ66 = {(π′0, π′′0), (π′3, π
′′
1), (π′4, π

′′
2), (π′5, π

′′
3), (π′6, π

′′
6)}. (3.4)

We have already remarked that some cutting segments in Π′ may not match with those in Π′′, and

vice versa. For instance, such segments are π′1 and π′2 in Π′ and π′′3 and π′′4 in Π′′. Intuitively, if there

is any cutting segment left between two contiguous pairs (π′i, π
′′
j ) and (π′k, π

′′
l ), then it should belong

to Π′ only, or to Π′′ only, but not both. As in figure 3.4, π′1 and π′2 both are in Π′ and are the only

segments between the equivalent pairs (π′0, π′′0) and (π′3, π′′1). This claim is verified in the following

lemma.

it does not matter that tc and tc− be in the same segment in these cases because if we have just moved from Steps 1, 3, or

4, it means we are about to draw the first trial of the next plausible pang interval, and neither cutting instants nor cutting

segments at tc− play any role.
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Lemma 3.2 Suppose that π′0 = π′′0 = πc, and ∃π′a ∈ Π′, ∃π′′b ∈ Π′′ such that π′a ≡ π′′b . Assume that

(π′i, π
′′
j ) and (π′k, π

′′
l ) are two contiguous equivalent pairs in Φab such that (π′k, π

′′
l ) precedes (π′i, π

′′
j ),

that is, ∀t1 ∈ π′k ∪ π′′l , ∀t2 ∈ π′i ∪ π′′j , t1 < t2. Then,

(i) i, j are odd if and only if k, l are even.

(ii) if i, j are even (k, l are odd), then i = k + 1.

(iii) if i, j are odd (k, l are even), then j = l + 1.

Proof: See the Appendix B.

A specific implication of this lemma appears explicitly in (3.4). It is easy to show that the

members of Φ66 satisfy Lemma 3.2. Refer back to the beginning of this subsection that tc is presumed

to be an initial time of a plausible pang interval. As a result, the cutting instants t′i are consistently

presumed to be switching instants. By this idea, it needs to examine whether each cutting instant

satisfies condition (i) in Theorem 2.4. Hence, by imitating θi,k in the previous section, we will define

another decisive quantity as follows. At each t′i for i = 1, . . . , nc, the trial cumulative summation θ′i
is

θ′i �
i∑

m=1

(−1)m+1Δt′m, i = 1, . . . , nc

where Δt′m = t′m−t′m−1. By means of condition (i) in Theorem 2.4, we can rule out some implausible

cutting instants which yield unacceptable θ′i. In particular, if at any t′i, we have θ′i > 2M/D or θ′i < 0,

then we can drop the cutting instants from i + 1 onwards4. Let θ′′j stand for the trial cumulative

summation acquired at cutting instants t′′j corresponding to the former time instant tc− . We are now

in the position to state the main results of this section.

Proposition 3.2 (monotonicity) Suppose that π′0 = π′′0 = πc, and π′a ≡ π′′b . Then,

θ′a < θ′′b . (3.5)

Proof: See the Appendix B.

Roughly speaking, this proposition says that the trial cumulative summation is a decreasing

function of searching steps. In other words, as we progress forwards from one time instant to another,

the cumulative summation acquired at each cutting segment is decreasing. The particular example in

figure 3.4 will deepen the reader’s understanding. Consider the case that a = b = 6. By examining

the position of each cutting instants, it is easy to see that θ′6 < θ′′6 . Proposition 3.2 also yields

another beneficial result. Consider θ′ı̂ or θ′′ĵ which π′ı̂ ∈ Π′ only or π′′ĵ ∈ Π′′ only. These trial

cumulative summations can be bounded by either of those corresponding to the near by π′i, π
′′
j where

(π′i, π
′′
j ) ∈ Φab.

4We cannot drop out t′i because there may be the case that θ′
i ≈ 2M/D but θ′

i > 2M/D, or the case that θ′
i ≈ 0 but

θ′
i < 0.
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Corollary 3.2 Suppose that π′0 = π′′0 = πc. Let (π′i, π
′′
j ) and (π′k, π

′′
l ) be two contiguous equivalent

pairs in Φab such that (π′k, π
′′
l ) precedes (π′i, π

′′
j ). Then,

(i) if i, j are even (k, l are odd), then

θ′′ĵ > θ′i, ĵ = l + 1, . . . , j. (3.6)

(ii) if i, j are odd (k, l are even), then

θ′ı̂ < θ′′j , ı̂ = k + 1, . . . , i. (3.7)

Proof: See the Appendix B.

As we have formed a hypothesis that tc be an initial time of a plausible pang interval, it follows

that we must find a suitable terminal time which satisfies the admissibility constraints. Here, we

will employ the trial cumulative summation in testing whether any cutting instant is eligible to be

a terminal time of such pang interval. The following main theorem furnishes conditions for the

experiment to examine whether tc can actually be associated with the initial time of a plausible pang

interval. If so, it follows where it is roughly the terminal time.

Theorem 3.1 There exists a plausible kth pang interval, (t0,k, tf,k], for which tc− ≤ t0,k ≤ tc, if the

following conditions hold:

(i) There exists the instants t′a, t′′b (a, b �= 0) falling in the same segment:

π′a = π′′b , (3.8)

(ii) The cutting instants through t′a and through t′′b must yield plausible trial cumulative summa-

tions:
0 ≤ θ′i ≤ 2M

D , i = 1, . . . , a− 1,

0 ≤ θ′′j ≤ 2M
D , j = 1, . . . , b− 1.

(3.9)

(iii) There is a sign change in terms of the trial cumulative summations while moving from tc− to

tc;
sgn

[
θ′a − 2M

D

]
= −sgn

[
θ′′b − 2M

D

]
, if a, b are odd,

sgnθ′a = −sgnθ′′b , if a, b are even.
(3.10)

Furthermore, we have

t′a ≤ tf,k ≤ t′′b if a, b are odd,

t′′b ≤ tf,k ≤ t′a if a, b are even.
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Proof: We have to show that there is a time interval (t0,k, tf,k] for which tc− ≤ t0,k ≤ tc that satisfies

Theorem 2.4. Consider any t∗0 in [t′′0, t′0] (= [tc− , tc]). Let t∗ν for ν = 1, . . . , d be cutting instants

obtained when the initial time is at t∗0. Note that t∗d is the last most cutting instant, which belongs to

π′a (= π′′b ). Let the cutting segments π∗ν ∈ Π∗ and the trial cumulative summation θ∗ν be corresponding

to t∗ν for ν = 1, . . . , d.

First we have to determine a suitable choice of t∗0 for the cases that a, b are odd and that a, b are

even. Suppose that a, b are odd numbers. Since t′′0 ≤ t∗0 ≤ t′0, and π′′0 = π′0 = π∗0 , by Proposition 3.2,

we have

θ′a ≤ θ∗d ≤ θ′′b . (3.11)

Then, define a function θ(t) : [t′′0, t′0] → [θ′′b , θ
′
a]5 to be θ∗d when treating t as t∗0. Since s̃(T − t) is

continuous on [t′′0, t′0], the function θ(t) is also continuous on [t′′0, t′0]. In addition, it is obvious that

θ(t′′0) = θ′′b and θ(t′0) = θ′a. Hence, the function θ(t) maps [t′′0, t′0] onto [θ′′b , θ
′
a].

Furthermore, by condition (iii) when a, b are odd, and by Proposition 3.2, it is readily seen that

θ′a <
2M
D

< θ′′b . (3.12)

According to (3.11), (3.12), and that θ(t) is onto, there must exist t ∈ [t′′0, t′0] where θ(t) = 2M/D.

Let this t be our choice of t∗0. For the case that a, b are even, define the same function θ(t) and follow

similar reasoning. By condition (iii) when a, b are even, and by Proposition 3.2, the inequalities (3.12)

is changed to

θ′a < 0 < θ′′b . (3.13)

This also yields a good candidate of t∗0.
Now we claim that this t∗0 is an initial time of a plausible pang interval IP,k where (t∗ν−1, t

∗
ν ] can

be compared to a pang subinterval of IP,k. By Lemma 3.1, if a, b are odd, then so is d. This suggests

that IP,k is odd. As mentioned previously, t∗0 is chosen so that θ∗d = 2M/D. Letting m = d − 1,

tf,k = t∗d, and θf,k = θ∗d, condition (ii) of Theorem 2.4 (condition on the cumulative summation at

the terminal time of IP,k; see Section 2.3) is partially fulfilled. Another part is that when a, b are

even. Then, d and IP,k are even. Since θ∗d = 0 in this case, by letting θf,k = θ∗d, condition (ii) of

Theorem 2.4 is now fulfilled.

Recall that t∗d is attained in π′d (= π′′a = π′′b ). Since t′′0 ≤ t∗0 ≤ t′0, we have s̃(T − t′′0) ≤
s̃(T − t∗0) ≤ s̃(T − t′0), or equivalently s̃(T − t′′b ) ≤ s̃(T − t∗d) ≤ s̃(T − t′a). Because s̃(T − t) is

monotonic in each segment, t∗d should lie between t′a and t′′b . If a, b, d are odd, then, by Lemma 3.1,

t′a ≤ tf,k ≤ t′′b . In contrast, if a, b, d are even, then t′′b ≤ tf,k ≤ t′a. These verify (3.11).

The rest is to establish the satisfaction of condition (i) of Theorem 2.4, which is the cumulative

summation at each switching instant. Let define each switching instants tν,k to be the cutting instant

t∗ν , and let θν,k = θ∗ν for ν = 1, . . . , d. To show that such condition is satisfied, we need to verify that

0 ≤ θ∗ν ≤
2M
D

, ν = 1, . . . , d. (3.14)

5By Proposition 3.2, θ(t) is a decreasing function on [t′′0 , t′0].
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This is primarily concerned with the previous proposition and corollary. Within this proof, the left

inequality of (3.14) will be mentioned as the first inequality, while the right inequality of (3.14) will

be mentioned as the second inequality. For each π∗ν , there are four possible cases:

1. ∃π′i ∈ Π′, ∃π′′j ∈ Π′′, π∗ν ≡ π′i and π∗ν ≡ π′′j .

2. ∃π′i ∈ Π′, π∗ν ≡ π′i but ∀π′′j ∈ Π′′, π∗ν �≡ π′′j .

3. ∃π′′j ∈ Π′′, π∗ν ≡ π′′j but ∀π′i ∈ Π′, π∗ν �≡ π′i.

4. ∀π′i ∈ Π′, ∀π′′j ∈ Π′′, π∗ν �≡ π′i and π∗ν �≡ π′′j
For the first case, referring to (3.14), the first inequality can be simply derived via Proposition 3.2 by

considering t∗0 as the former time and t′0 as the current time, given that θ′i satisfies (3.9):

θ∗ν > θ′i > 0.

The second inequality is derived via the same proposition by considering t′′0 as the former time and t∗0
as the current time, given that θ′′j satisfies (3.9):

θ∗ν < θ′′j <
2M
D

.

For the second case, the first inequality is obtained with the same fashion as in the first case.

However, the second inequality is obtained via Corollary 3.2. Treating t′′0 as the former time and t∗0 as

the current time, let us consider the nearest equivalent pair that follows π∗ν , says (π∗ν̂ , π
′′
j ). Recall that

Lemma 3.2 states that, between two contiguous pairs, there can exist either members of Π∗ only or

members of Π′′ only. In this case π∗ν is the member of Π∗, hence statement (iii) of Lemma 3.2 applies

here, and we have ν̂ and j being odd numbers. Therefore, by statement (ii) in Corollary 3.2, we have

θ∗ν < θ′′j <
2M
D

,

given that θ′′j satisfies (3.9).

The third case is rather similar to the second case. We can derive the second inequality by

means of Proposition 3.2, considering t′′0 as the former time and t∗0 as the current time. The first

inequality is derived via Lemma 3.2 and statement (i) in Corollary 3.2. Note that in this case, ν̂ must

be an even number.

For the last case, both first and second inequalities must be obtained through Lemma 3.2 and

statement (i) in Corollary 3.2. Hence, for any t∗0 ∈ [t′′0, t′0], the corresponding θ∗ν satisfies (3.14), and

as a consequence, condition (i) of Theorem 2.4 is fulfilled. �

As we have developed a means to detect roughly a plausible location of a pang interval, the sub-

sequent task is to determine the accurate location of such plausible pang interval, which is discussed

in the following section.
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3.1.4 Precise Location of Pang Intervals and Restarting Instants

Proposition 3.2 in the previous section states that as we move along each sampling instant in πc,

the trial cumulative summation attained in certain cutting segment is decreasing. This monotonicity

allows us to apply the basic bisection method to gain the precise initial time t0,k of the discovered

plausible pang interval IP,k. Suppose that t′′0 and t′0 are given which yield the cutting instants t′a ∈ π′a
and t′′b ∈ π′′b satisfying Theorem 3.1. Following the idea of the proof of Theorem 3.1, we define

a decreasing continuous function θ(t) : [t′′0, t′0] → [θ′′b , θ
′
a] to be the trial cumulative summation

obtained in π′a (= π′′b ) when treating t as the current time. In particular, θ(t) decreases from θ(t′′0)
(= θ′′b ) down to θ(t′0) (= θ′a).

Let tup be the time for which θ(tup) gives an upper bound of θ(t0,k), whereas tlow be the time

for which θ(tlow) gives a lower bound. Specifically, this implies

θ(tlow) < θ(t0,k) < θ(tup).

Consider condition (iii) in Theorem 3.1. For simplicity let a constant ρ be defined as

ρ �
{

2M
D , if a, b are odd,

0, if a, b are even.

In addition, let ε be some sufficiently small positive number representing the tolerance of the bisection

method. The termination criterion is then

θ(tup)− θ(tlow) < 2ε.

The bisection method to compute t0,k is described as follows:

begin

tup := t′′0;
tlow := t′0;
while θ(tup)− θ(tlow) ≥ 2ε do

tmid ← (tup + tlow)/2;

if θ(tmid) > ρ then

tup ← tmid;

else

tlow ← tmid;

end;

end;

t0,k ← (tup + tlow)/2;

end.

This method yields t0,k with an error less than ε. The terminal time tf,k and the switching

instants ti,k of IP,k are obtained automatically as the cutting instant in π′a and all other cutting instants

before this, respectively, when t0,k is treated as the current time.

Another topic to discuss in this section is the restarting instant, trst. Generally, when the

plausible pang interval IP,k is found, the search proceeds to determine the next plausible pang interval
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IP,k+1 by beginning at tf,k. However, there exists the case which IP,k is a spurious pang interval of

the worst-case input. In this case, IP,k must be deleted from our consideration. Thereafter, we have to

go back over to the Step 2 of SPIS, make use of the time instant very close to t0,k, and move on again

with the search to locate the new IP,k. Thus, after finishing the bisection method, it is necessary to

store the time instant situated very close to t0,k. In addition, this time instant should be situated after

t0,k so as to exclude t0,k itself from the new search. Hence, we choose trst to be tlow obtained just

before the bisection method terminates.

As mentioned in Section 2.3.4, the admissibility constraints in Theorem 2.4 yield only the nec-

essary characteristics of the pang interval. Since the experiment makes use of Theorem 2.4, any pang

interval determined through the experiment is only a plausible pang interval. In fact, we should expect

that the experiment sometimes returns spurious pang intervals. It is not until we completely construct

the worst-case input along the entire interval [0, T ) that all plausible pang intervals which are located

and still remain in the final pattern of the worst-case input become the actual pang intervals.

3.1.5 The First and the Last Intervals

In Theorem 3.1, some conditions have been proposed which determine roughly where plausible pang

intervals are located. Nevertheless, we have made two assumptions: tc− �= 0 and that the pang

interval being located terminates when the worst-case input is at its boundary6. In other words, the

first and the second assumptions exclude, from our consideration, the case of locating the first and the

last pang intervals, respectively. Therefore, we need to address the special experiments for these two

cases as well.

The First Interval

Since the first interval of the worst-case input is a pang interval, the terms first interval and first pang

interval will be used interchangeably. The concept of the experiment in this case is similar to that

stated in Section 3.1.3 with a few changes of variables. While the normal version of the successive

search is done along time axis, the special version for IP,1 is carried out along the transverse axis.

Particularly, a problem of determining the first pang interval arises because we do not know in advance

the initial value pn+1(0) (see Theorem 2.2 for the case that k = 1), or equivalently, we do not know

the terminal time tf,1 used in computing the step response s(T − tf,1) (see Remark 2.1).

In stead of moving along the time axis to seek for tf,1, it appears to be less time consuming to

seek for s(T − tf,1) directly, and then tf,1 may be determined as a consequence. This is due to the

fact that s(T − t) is not necessarily a one-to-one correspondence. Recall that we have approximated

s(T − t) by s̃(T − t). Let the variable of the transverse axis be denoted by β representing the

6This assumption is made while stating the admissibility constraints in Theorem 2.4. It allows us to test the trial

cumulative summation at the terminal instant of a plausible pang interval (see condition (iii) of Theorem 3.1).
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Figure 3.5: The cutting instants t′0, . . . , t
′
4 and the cutting segments π′

0, . . . , π
′
4 of s̃(T − t) obtained when

pn+1(0) = βc.

magnitude of s̃(T − t). The range of this search is the set B � {β : βmin ≤ β ≤ βmax} where

βmin = min
0≤t≤T

s̃(T − t),
βmax = max

0≤t≤T
s̃(T − t).

The searching steps are obtained by uniformly sampling B using sufficiently small distance between

two samples. Let all the sampled points be β1, . . . , βnb
arranged in order of magnitude. Here, nb is

the total number of the searching steps.

We start the search from βmin. For consistency, let βc be the current searching point and βc−

be the former searching point. In the same fashion as the normal experiment, the reference level

with the magnitude of βc is projected and the cutting instants and the corresponding cutting segments

are obtained. Figure 3.5 depicts how we can obtain these instants and intervals. Imitating some

notations from Section 3.1.3, the theorem for detecting the crossing of a plausible first pang interval

is as follows.

Theorem 3.2 There exists the plausible first pang interval, [0, tf,1], for which βc− ≤ s(T−tf,1) ≤ βc,

if the following conditions hold:

(i) There exists the instants t′a, t′′b (a, b �= 0) falling in the same segment:

π′a = π′′b ,

(ii) The cutting instants through t′a and through t′′b must yield plausible trial cumulative summa-

tions:
−M
D ≤ θ′i ≤ M

D , i = 1, . . . , a− 1,

−M
D ≤ θ′′j ≤ M

D , j = 1, . . . , b− 1.
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(iii) There is a sign change in terms of the trial cumulative summations while moving from βc− to

βc;
sgn

[
θ′a − M

D

]
= −sgn

[
θ′′b − M

D

]
, if a, b are odd,

sgn
[
θ′a + M

D

]
= −sgn

[
θ′′b + M

D

]
, if a, b are even.

Furthermore, we have

t′a ≤ tf,1 ≤ t′′b if a, b are odd,

t′′b ≤ tf,1 ≤ t′a if a, b are even.

The proof of this theorem is omitted since it follows that in Section 3.1.3 analogously, except

that conditions (iii) and (iv) of Theorem 2.4 must be adopted instead of condition (i) and (ii). Note

that there may be several plausible first pang intervals of IP,1. We use each of these ones after another

to start the search for subsequent plausible pang intervals until SPIS finishes.

The Last Interval

The special experiment for the last interval, IL, is rather different. The first important fact to be noted

is that IL can be either bang or pang interval. The case is trivial when IL is a bang interval. If

SPIS proceeds to determine a pang interval If,k whose terminal time tf,k falls into the last segment

πnp−1, then the last interval (tf,k, T ] ⊂ πnp−1 is simply the bang interval. This is because s̃(T − t)
is monotonic in every segment, hence the sign of h(T − t) is the same on this last interval, satisfying

the magnitude condition in Theorem 2.3.

Because the case of the last interval being a bang interval is obvious and automatic, we focus

our attention on determining all plausible last pang intervals. Let extend the use of the subscript L

to anything connected with the last interval. Accordingly, let denote the last pang interval by IP,L.

Since there is no terminal condition of the worst-case input, i.e., ŵ(T ) is not constrained, IP,L may

not terminate when the worst-case input is at its boundary. This invalidates the condition (ii) in

Theorem 2.4, and thus, leaves only the extension of condition (i) to the terminal time:

0 ≤ θi,L ≤ 2M
D

, i = 1, . . . , nc,

0 ≤ θf,L ≤ 2M
D

(3.15)

where nc is the total number of the switching instants in IP,L. From Theorem 2.1 and Lemma 2.1,

we have

s̃(T − t0,L) = s̃(T − t1,L) = · · · = s̃(T − tf,L) = s̃(0).

Note that s̃(0) and s(0) are equal. Let us draw a reference level with the magnitude of s̃(0) along

[0, T ], and denote the cutting instants similarly as the normal experiment. However, the definition of

the trial cumulative summation is modified so that the summation starts from any particular cutting

instant, says t′ı̂, as follows:

θ′ı̂,i �
i∑

m=ı̂

(−1)m+1Δt′m, i = ı̂+ 1, . . . , nc, ı̂ = 1, . . . , nc − 1.
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From (3.15), we easily arrive at the following theorem on the experiment for a plausible last pang

interval.

Theorem 3.3 The time interval (t0,L, T ] is the plausible last pang interval, if t0,L is one of the cutting

instants, and the following condition holds:

0 ≤ θ′ı̂,i ≤
2M
D

, i = ı̂+ 1, . . . , nc

where ı̂ is the index of the cutting instant t′ı̂ with which t0,L coincides.

Suppose we have recently determined the precise location of a plausible pang interval IP,k.
If the terminal time tf,k and the initial time t0,L of a plausible last pang interval IL coexist in the

same segment, and if tf,k < t0,L, then h(T − t) has the same sign on (tf,k, t0,L], which suggests that

(tf,k, t0,L] is the bang interval IB,k, and IP,k+1 = IL is the last pang interval.

3.2 Computational Accuracy

To present the computational accuracy of SPIS, it is necessary to consider another computational

method of the WCN for comparison. We choose a natural discretization approach that transforms

the worst-case-norm computation into a large-scale finite-dimensional linear programming (LP). Al-

though this approach for the worst-case-norm problem is not new, there are only a few related lit-

erature [20, 22], and no original reference contains a complete and explicit exposition on this topic.

Perhaps, this is because the formulation technique based on a classical Euler finite-difference is ob-

vious. In addition, the number of the design variables of the LP problem grows exponentially as

better accuracy is imposed [22], causing an adverse effect for the computation. We sometimes refer

to this approach as a discrete-time approach and refer to our proposed approach as a continuous-time

approach. In the following subsection, we explain the discrete-time approach

3.2.1 Discrete-Time Formulation

We observe that even for the continuous-time approach, SPIS still requires discretization of time

responses. This fact motivates us to consider the formulation in discrete-time domain. Let h[k] be

the discrete equivalent of h(t) obtained by passing h(t) into a sampler with a sampling period of τs,

i.e., t = kτs. Here, we use the same sampling period as that of the continuous-time approach for

consistency. The worst-case magnitude of output in (2.4) is modified as

ξ[k] � τs max
w∈W
{h[k] ∗ w[k]}, (3.16)

Recall that the discrete convolution is given by
∑k

i=0 h[k− i]w[i]. The presence of τs in (3.16) results

from approximation of the integral by the corresponding Riemann sum. It is noted that, for t = kτs,

an estimate of ξ(t) (the Riemann sum of convolution integral over [0, t]) is not equal to ξ[k], but

ξ[k − 1] instead. The WCN in (2.5) is approximated as

‖h‖wc ≈ lim
k→∞

ξ[k]. (3.17)
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The bounding conditions (2.1) are inherited into the discrete-time domain as follows. For all k ≥ 0,

−M ≤ w[k] ≤M,

−τsD ≤ w[k + 1]− w[k] ≤ τsD
where w[k] = 0, ∀k ≤ 0. Notice that the initial condition w[0] = 0 is still assumed for the validity

of definition (3.17).

Choose the terminal time T to equal that of the continuous-time approach. Let N + 1 be the

number of sampling points for whichN is computed asN = T/τs orN = ns− 1. To estimate ξ(T ),

we must compute ξ[N−1]. Let c and q be vectors in RN representing the time series of h[N − 1− k]
and w[k], respectively. That is, for k = 0, 1, . . . , N − 1

ck+1 = h[N − 1− k],
qk+1 = w[k].

The computation of the WCN can be cast as a linear programming problem.

max
q∈RN

τsc
T q

s.t. q1 = 0
−M ≤ qk ≤M, k = 2, . . . , N,
qk+1 − qk ≤ τsD, k = 1, . . . , N − 1,
qk+1 − qk ≥ −τsD, k = 1, . . . , N − 1.

(3.18)

It is easy to see that the constraint matrix of this problem is highly sparse with a banded structure

of 4 × 1 blocks, consisting of two diagonal blocks and the other two bidiagonal blocks. Thus, the

number of nonzero elements in such matrix increases only linearly with N . Intuitively, the solution

of ξ[N − 1] should become closer to the WCN as N becomes larger. This increases the size of

linear programming (3.18). However, the known sparsity and structure of (3.18) will potentially help

alleviate the difficulty of this large-scale problem.

In computing the WCN with digital computers, some approximation errors arise inevitably in

both continuous-time and discrete-time approaches. Lane [19] discussed some types of computational

errors, namely, a truncation error, an integration error, and an input error. In this dissertation, we used

the truncation-error bound which is more practical and easily computable than that given in [19].

Furthermore, the integration error and the input error in [19] are combined together as a discretization

error. Next, we present computable bounds of such errors in the continuous-time and discrete-time

approaches.

3.2.2 Truncation Error

With reference to Section 2.1.1 and 3.1.2, a terminal time T in the process to compute ξ(T ) or

ξ[N − 1] is selected by taking into account the difference between ‖h‖wc and ξ(T ). This difference

called truncation error is an error that arises when truncating the tail of the impulse response h(t).

Remark that in Section 3.1.2, we have shown that truncation error can be bounded by the efficiently

computable quantity e(T ) = 2M
∑n

i=1 σi(T ) where σi(T ) is the Hankel singular value of hT (t).

This will be later exploited to obtain a suitable terminal time T which yields a truncation error less

than the prescribed value.
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3.2.3 Discretization Error

Besides the truncation error, discretizing s(T − t) or h(T − t) causes an additional approximation

error, called discretization error. For the continuous-time approach, the experiment in Step 2 of

SPIS needs to discretize the step response s(T − t). Furthermore, to calculate the worst-case output

magnitude in Step 5, it is required to perform a numerical integration between the worst-case input

and h(T − t), which gives rise to the discretization error.

The impulse response h(T − t) sampled in Step 5 of SPIS yields the sample-and-hold impulse

response hd(T − t) where hd(T − t) = h[N−k], for kτs ≤ t < (k + 1)τs, and T = Nτs. Since pang

intervals can be precisely determined in Step 3 of SPIS, we assume that the error between the exact

worst-case input and the computed input is insignificant. For notation simplicity, let ŵ(t) denote the

worst-case input corresponding to ξ(T ), and ξd(T ) represent hd(t) ∗ ŵ(t). The discretization error

for the continuous-time case is defined as |ξ(T )− ξd(T )|.

Theorem 3.4 The discretization error |ξ(T )− ξd(T )| is bounded by

|ξ(T )− ξd(T )| ≤ τsM‖h[k]− h[k − 1]‖1. (3.19)

Due to space limit, see the proof of Theorem 3.4 in [22]. Due to a demand of good precision,

N becomes larger, and τs becomes smaller. This causes h[k]−h[k−1] to approach τsḣ(kτs). Hence,

according to the bound (3.19), the discretization error diminishes at least quadratically with τs.

For the discrete-time approach, the discretization error is defined as |ξ(T )− ξ[N − 1]|.

Theorem 3.5 The discretization error |ξ(T )− ξ[N − 1]| is bounded by

|ξ(T )− ξ[N − 1]| ≤ τsM‖h[k]− h[k − 1]‖1 + τsD‖h(t)‖1. (3.20)

See the proof of Theorem 3.5 in [22]. It is observed that, the first term of (3.20) decreases by

the rate of τ2
s . However, the second term of (3.20) decreases by the rate of τs. This suggests that the

discretization error in the discrete-time case diminishes at least linearly with τs.

Remark here that error bounds (3.19) and (3.20) are meaningful for certain ranges ofD. For in-

stance, ifD becomes extremely large so that τsD > M , the second term of (3.20) exceedsM‖h(t)‖1,
which is an upper bound of the WCN. Furthermore, to make all the bounds on the discretization errors

computable, we employ the same technique as that in (3.2). Let σdk be the Hankel singular value of

the discrete impulse response h[k]− h[k − 1], and let σck be the Hankel singular value of h(t). The

computable bounds on discretization errors for the continuous-time and the discrete-time approaches

become

2τs

(
M

n∑
k=1

σdk

)
, and (3.21)

2τs

(
M

n∑
k=1

σdk +D
n∑
k=1

σck

)
, (3.22)
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respectively. Note that the realization of h[k]−h[k− 1] can be readily obtained as follows. LetH(z)

be a transfer function corresponding to h[k] with a minimal realization (Ad, Bd, Cd). Immediately,

the transfer function of h[k]− h[k − 1] is (1− z−1)H(z) with the following realization:⎛
⎝ Ad 0 Bd

Cd 0 0
Cd −1 0

⎞
⎠ .

Comparing the bounds (3.21) and (3.22), it is obvious that the discretization-error bound for the

continuous-time approach is less than that of the discrete-time approach provided that h(t) is not

identically zero. This suggests that our proposed algorithm (SPIS) is likely to yield better accuracy

than the discretization-based method.

3.3 Numerical Examples

To further elaborate the idea of how much computational errors arise in the continuous-time and the

discrete-time computational approach, a few numerical examples are given. We consider a second-

order convolution system h(t) whose Laplace transform is

H(s) =
ω2

n

s2 + 2ζωns+ ω2
n

. (3.23)

A closed-form solution of the WCN of this class of linear systems appears in Appendix C. The natural

frequency is fixed at ωn = 10 rad/sec and the value damping ratio ζ is divided into three intervals,

namely,

Case 1 Overdamped system: ζ > 1,

Case 2 Underdamped system: ζc < ζ < 1,

Case 3 Lightly-damped system: 0 < ζ < ζc

where ζc =
√

1− (πD/2Mωn)2. We choose ζ = 2 in the first case. Then, we choose M and D to

be 1 and 5, respectively, to make ζc a real number. In this example, ζc = 0.6190. Consequently, we

can choose ζ = 0.8 in the second case and ζ = 0.2 in the third case.

Let us now consider the WCN of the system (3.23) in three distinct cases. For the first case,

‖h‖wc = M . This is actually the product of the L1-norm of h(t), which is equal to 1, andM . For the

second and the third cases, the WCNs are

‖h‖wc = M +
D coth

(
π
2 cotφ

)
ωne(π−φ) cotφ

,

‖h‖wc = M +
D
[
sin(ψ + φ)− e−σTc sin(ωdTc + ψ + φ)

]
ωde(ψ−φ) cotφ(eπ cotφ − 1)

,

respectively. Here, cotφ = ζ/
√

1− ζ2, Tc = 2M/D, σ = ζωn, ωd = ωn

√
1− ζ2, and

ψ = tan−1

(
sin(ωdTc)

eσTc − cos(ωdTc)

)
.



49

The WCNs of all cases are computed and then compared to those obtained via the continuous-time

and discrete-time approaches. In particular, two main computer programs for computing the WCNs

via the continuous-time and the discrete-time approaches are developed.

We implement all computations using MATLAB 6.5 on a 2.8 GHz Pentium IV PC with 512 MB

of RAM.

The discrete-time approach employs linprog.m as linear programming solver and makes

use of matrix sparsity. In each case, the terminal time T is chosen so that the truncation-error bound

e(T ) equals 0.1%. The number of sampling intervalsN (or ns−1) is selected to be 1,000 in all cases.

The sampling period τs for each case is computed accordingly.

The worst-case inputs for all cases are exhibited in Figure 3.6, and the corresponding worst-

case outputs are demonstrated in Figure 3.7. We note that, for the simplicity of illustrations, it is

desirable to display all input responses (or all output responses) in the same axis with the same

terminal time. Hence, we set T = 2.5 in all cases and obtain these inputs and outputs just for the

plotting purpose. For the first case, the impulse response of the overdamped system is nonnegative,

so the worst-case input is equal to the positive boundary. However, having the requirement that the

worst-case input starts from zero, it takes 0.2 second (equal to M/D) to change from zero to the

upper limit with the rate D.

For Cases 2 and 3, the patterns of the worst-case inputs look more complicated. The worst-case

input characteristics attempt to match the step responses with respect to Theorems 2.1–2.3. In Case 2,

the worst-case input fluctuates between upper and lower limits. However, in Case 3, in order to follow

the rapid response of the system, the worst-case input cannot completely change from one boundary to

another. Instead, it oscillates and adheres to the upper limit. This is because the impulse response lies

mostly on the positive side. For both cases, we observe that the oscillation period of the worst-case

input, around the middle of the time interval [0, T ], is equal to 2π/ωd, where ωd = ωn

√
1− ζ2 is the

damped natural natural frequency. In particular, these oscillation periods are 1.0472 and 0.6413 for

Cases 2 and 3, respectively. The worst-case outputs reach the maximum at the terminal instant. The

magnitude of the worst-case output at T is the WCN with some errors as described in the previous

section.

The resulting WCNs and errors are summarized in Table 3.1. To see the differences between the

results obtained by the continuous-time and the discrete-time approaches, the WCNs are displayed

to the eighth digit. The actual errors between the computed norms and the exact values, and the

corresponding error bounds are obtained by means of Theorems 3.4–3.5. Note that the error bounds

are composed of the truncation-error bound and the discretization-error bound.

We can see that, in all cases, the WCNs obtained via continuous-time and discrete-time ap-

proach are virtually equal. The actual errors are less than the derived error bounds. However, in Case

3, the error bounds of both continuous-time and discrete-time approaches are significantly conserva-

tive. Since the truncation errors are kept within 0.1%, the conservatism seems to emerge from the

discretization-error bounds. The reason is that the L1-norm of the linear system in Case 3 is relatively

large, and hence, increases the bound in (3.20).
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Table 3.1: Comparison between the exact WCNs, the WCNs computed via continuous-time and discrete-time

approaches, the actual computational errors, and their bounds.

Case Exact Continuous-time approach Discrete-time approach

norm norm actual error norm actual error

error (%) bound (%) error (%) bound (%)

1 1.0000 0.99862042 0.1380 1.4368 0.99862043 0.1380 2.8935

2 1.0180 1.01598373 0.2035 1.2043 1.01598381 0.2035 1.9089

3 2.1230 2.12221375 0.0383 9.3009 2.12227713 0.0353 13.975

As far as the effectiveness is concerned, it can be seen that, in Cases 1 and 2, the actual errors of

the continuous-time and discrete-time approaches are identically equal up to the forth digit. In Case 3,

the actual error of the continuous-time approach is slightly greater than that of the discrete-time ap-

proach. This implies that the accuracy of the continuous-time approach is almost indistinguishable to

that of the discrete-time approach. However, the average computation times of the computer program

for SPIS are rather shorter than that of the discrete-time approach. To show this, we varyN from 103

to 104, compute the WCN via the two approaches, and measure the computation time for each N .

The results on computation time are shown in Figure 3.8(a)–3.8(c).

It should be remarked that computer programs of both approaches can be further optimized to

obtain better performance, that is, decreasing time in computing the WCN. In fact, certain program-

ming techniques can be employed to improve performance of computer programs in exchange with

complexity of their codes. For examples, certain for loops can be vectorized; or some commands

which are flexible but time-consuming can be changed to MEX-files; the banded structure of the

linear programming in (3.18) can be fully exploited.

3.4 Summary

The main contribution in this chapter is the computational algorithm, SPIS, which is a direct result of

the characterization of the worst-case input. Owing to the existence and uniqueness of the worst-case

input, the SPIS algorithm is guaranteed to converge and is valid for any finite-dimensional convolution

systems. Moreover, we have provided computable bounds on solution errors generated by SPIS. The

effectiveness of SPIS is verified by comparing the algorithm with the straightforward discrete-time

approach. Numerical examples reveal that the precisions of two approaches are comparable, but the

computation time of SPIS is significantly shorter than that of the discrete-time approach.
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Figure 3.6: The worst-case inputs associated with the WCN computational problem of the second order

systems; (—) Case 1, (– –) Case 2, and (· · · ) Case 3.
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Figure 3.8: Comparison of the computation times used by SPIS and the discrete-time approach to solve the

WCN computations for the second order systems: (a) Case 1, (b) Case 2, and (c) Case 3.



CHAPTER IV

ANALYSIS OF THE WCN OF UNCERTAIN LINEAR SYSTEMS

4.1 Analytical Preliminaries

In the past chapters, disturbances are characterized with bounding constraints not only on magnitudes

but also rates of change to reduce conservatism by furnish with more realism in modelling such

disturbances. In addition to disturbances, mathematical descriptions of real systems usually involve

approximation. The differences between the actual system and the approximate model are referred to

as model uncertainty. In many practical situations, it is beneficial to incorporate model uncertainty

in control system analysis and design. In this chapter, we analyze performance of uncertain linear

systems subject to disturbances with magnitude and rate bounds. The definition of the WCN is still

the maximum magnitude of an output of a linear system, which is now subjected to specific form of

uncertainty.

The assumptions on input signalw(t) and the definition ofW hold the same as in Chapter 2. Let

hu(t) and hl(t) be the impulse responses of some convolution systems in H0 such that hl(t) ≤ hu(t)
for all t. Uncertain systems are characterized by a set H containing systems with impulse responses

h(t) ∈ H0 satisfying

hl(t) ≤ h(t) ≤ hu(t), ∀t ≥ 0. (4.1)

For convenience, we will refer to a pair (hu(t), hl(t)) as an impulse envelope that defines the uncertain

systems. We say that uncertain systems are stable if all impulse responses h(t) ∈ H are stable.

Figure 4.1 depicts an example of the set H.

Then, the worst-case magnitude of the output attained at a given t overW and ∈ H, is redefined

as

ξ(t) � sup
w∈W

sup
h∈H

|z(t)| = sup
w∈W

sup
h∈H

|h(t) ∗ w(t)|. (4.2)

Let the worst-case input and the worst-case impulse response associated with ξ(t) are represented

by ŵ(t) and ĥ(t), respectively. The WCN ‖ · ‖wc : H �→ [0,∞] is the worst-case peak magnitude

redefined in terms of ξ(t) as

‖h‖wc � sup
t≥0

ξ(t). (4.3)

This norm is well defined on H and the norm can take the value +∞ 1. As the bounds of the input

are symmetric (2.1), we can remove an absolute-value operator in the definition (4.2) as

ξ(t) = max
w∈W

sup
h∈H

z(t) = max
w∈W

sup
h∈H

[h(t) ∗ w(t)]. (4.4)

1Like the case of linear systems with no uncertainty, this occurs when H contains unstable impulse response(s). This is

shown in the later section.
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hu(t)

hl(t)

t

h(t) ∈ H

Figure 4.1: An uncertain system represented by a set H shown as a band of impulse response associated with

the impulse envelope (hu(t), hl(t)).

In the same fashion as in Section 2.1.1, this worst-case peak magnitude can be shown to be monotonic

in time, which later simplify the expression of the WCN in (4.3).

4.1.1 Monotonicity and the WCN Approximation

Suppose t1 < t2. We will show that ξ(t1) ≤ ξ(t2). Let ξ(t1) = ĥ1(t1) ∗ ŵ1(t1), and let w2(t) be a

time shift of w1(t) with an amount of	t = t2 − t1. Specifically, we have

w2(t) �
{

0, 0 ≤ t ≤ 	t,
ŵ1(t−	t), 	t ≤ t ≤ t2.

Due to the causal continuity, w2(t) is well-defined so that it is contained in W . In addition, define

h2(t) to equal ĥ1(t) as

h2(t) �
{
ĥ1(t), 0 ≤ t ≤ t1,
hu(t), t1 ≤ t ≤ t2.

Obviously, h2(t) ∈ H. Note that for each t ∈ [t1, t2], the response h2(t) can take any value in

between hl(t) and hu(t). Here, we choose hu(t), ∀t ∈ [t1, t2]. It is straightforward that

h2(t2) ∗ w2(t2) = ĥ1(t1) ∗ ŵ1(t1) = ξ(t1).

Next, suppose that ŵ2(t) is associated with ξ(t2). Through definition (4.4), it can be seen that

ξ(t2) = ĥ(t2) ∗ ŵ2(t2) ≥ h(t2) ∗ w2(t2) = ξ(t1).

This infers that ξ(t) is a nondecreasing function of time, and it attains the maximum when t ap-

proaches infinity, that is,

‖h‖wc = lim
t→∞ ξ(t). (4.5)

Similar to the case with no uncertainty, we can then approximate ‖h‖wc with ξ(T ) for proper choice

of T terminal time. The bisection algorithm given in Section 3.1.2 can readily be employed here with

some modification of the computable bound on the truncation difference defined in (3.3). To obtain a
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computable bound on the truncation error, i.e., the difference ‖h‖wc−ξ(T ), we first note that a bound

(which is not computable) on this difference takes the form (see Appendix A)

M max
h∈H

∫ ∞

T
|h(t)|dt (4.6)

when computing the WCN of linear uncertain systems. To find the computable error bound, we first

relax (4.6) to eliminate the maximization over H. This is done as follows:

M max
h∈H

∫ ∞

T
|h(t)|dt ≤ M

∫ ∞

T
max{|hu(t)|, |hl(t)|}dt

≤ M

∫ ∞

T
|hu(t)|+ |hl(t)|dt

= M

(∫ ∞

T
|hu(t)|dt+

∫ ∞

T
|hl(t)|dt

)

= M

(∫ ∞

0
|hu(t+ T )|dt+

∫ ∞

0
|hl(t+ T )|dt

)
. (4.7)

Suppose the realizations of hu(t) and hl(t) are (Au, Bu, Cu) and (Al, Bl, Cl), respectively. Then, let

hu,T (t) and hl,T (t) be the auxiliary impulse responses with the realizations (Au, eAuTBu, Cu) and

(Al, eAlTBl, Cl), respectively. It is easy to see that

hu,T (t) = hu(t+ T )

hl,T (t) = hl(t+ T ).

From (4.7), we have

M max
h∈H

∫ ∞

T
|h(t)|dt ≤ M

(∫ ∞

0
|hu,T (t)|dt+

∫ ∞

0
|hl,T (t)|dt

)

≤ 2M

(
nu∑
i=1

σu,i(T ) +
nl∑
i=1

σl,i(T )

)
. (4.8)

where nu, nl are the orders of the systems hu(t), hl(t), respectively, and σu,i(T ), σu,i(T ) are the

ith Hankel singular values of hu,T (t), hl,T (t), respectively. The reader is referred to [50] for the

derivation of the last inequality of (4.8). With the inequality (4.8), we redefine the computable bound

on truncation error of the WCN computation for uncertain linear systems associated with the impulse

envelope (hu(t), hl(t)) as

e(T ) � 2M

(
nu∑
i=1

σu,i(T ) +
nl∑
i=1

σl,i(T )

)
. (4.9)

The bisection algorithm can now be used to find T that yields an acceptable amount of the truncation

error, ‖h‖wc − ξ(T ). For the ease of later discussion, when the term WCN is used, it may refer to the

worst-case magnitude ξ(T ) with a sufficiently large T , which makes ξ(T ) the precise approximation

the WCN.
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4.1.2 Finiteness

The condition for the WCN to be finite, in the case when the linear systems are subjected to uncer-

tainty, can be derived through that given in Section 2.1.2. The finiteness condition for that case is that

the linear system is BIBO stable. For this case, one can speculate that the WCN is finite when both

hu(t) and hl(t) are BIBO stable.

For the necessity, if either hu(t) or hl(t) is not BIBO stable, then selecting the unstable one to

construct a system h̃(t) whose uncertain set, H̃, consists of such a system alone. From 2.1.2, we have

‖h̃(t)‖wc =∞ be cause h̃(t) is unstable. Since H̃ ⊂ H, from (4.3), we can deduce that

‖h‖wc ≥ ‖h̃(t)‖wc =∞,

saying that ‖h‖wc is not finite.

To show the sufficiency, we introduce a convenient measure here. Let ‖h(t)‖wc,1 stands for the

worst-case L1-norm defined as

‖h(t)‖wc,1 = sup
h∈H

∫ ∞

0
|h(t)|dt. (4.10)

It is easy to see that M‖h(t)‖wc,1 is an upper bound of the WCN. This readily follows from the fact

the the WCN of a nominal system is bounded from above by M‖h(t)‖1.
Suppose now that both hu(t) and hl(t) are BIBO stable, that is, their L1-norms are finite. Note

that, in this case, H can be shown to be a compact set. Thus, from (4.10) and the maximum value

theorem [48], we have

‖h(t)‖wc,1 = sup
h∈H

∫ ∞

0
|h(t)|dt = max

h∈H

∫ ∞

0
|h(t)|dt. (4.11)

For each element h(t) ∈ H, we have∫ ∞

0
|h(t)|dt ≤

∫ ∞

0
max{|hu(t)|, |hl(t)|}dt (4.12)

≤
∫ ∞

0
|hu(t)|+ |hl(t)|dt (4.13)

=
∫ ∞

0
|hu(t)|dt+

∫ ∞

0
|hl(t)|dt (4.14)

< ∞. (4.15)

This suggests that

max
h∈H

∫ ∞

0
|h(t)|dt <∞

From (4.11), we can conclude that

‖h‖wc ≤ ‖h(t)‖wc,1 <∞.

Therefore, the necessary and sufficient condition for the finiteness of the WCN of an uncertain system

is that the corresponding impulse envelope is BIBO stable.
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4.2 Problem Formulation

From the previous section, we know that when uncertain systems are not BIBO stable, the WCN will

reach∞. Hence, in order to compute the WCN, we should check first whether or not the system is

BIBO stable. If not, the WCN is said to be equal to∞, thereby leaving us to compute the WCN of

stable systems only. Henceforth, uncertain systems are always assumed to be stable. Generally, W
is a compact set, but H is compact only for stable systems, which, in this case, are so; thus, from the

maximum value theorem [48], we can see that (4.4) gives

ξ(t) = max
w∈W

max
h∈H

[h(t) ∗ w(t)].

Our problem of obtaining the WCN turns to be the problem of computing ξ(T ) for sufficiently large

T , that is to solve for

ξ(T ) = max
w∈W

max
h∈H

[h(T ) ∗ w(T )]. (4.16)

In this section, the problem of computing the WCN of uncertain linear systems under disturbances

with magnitude and rate bounds is cast as a bilinear programming via a basic discretization of signals.

Let T be a given terminal time where the impulse response is truncated. Let us discretize w(t) and

h(t) with a sampling period τs to obtain w[i] and h[i], which means t = iτs. Let the total number of

sampling interval be given and denoted by N . This means the number of sampling instants is N + 1,

and we have i = 0 when t = 0 and i = N when t = T . Furthermore, the sampling period can be

calculated as τs = T/N .

The magnitude and rate constraints of disturbance inputs are converted to discrete signals as

follows. For all 0 ≤ i ≤ N ,

−M ≤ w[i] ≤M, (4.17)

−τsD ≤ w[i+ 1]− w[i] ≤ τsD (4.18)

where w[i] = 0, ∀i ≤ 0. Note that the forward difference has been applied to the constraint on rate

limit. Next, let us discretize hu(t) and hl(t) with the same sampling period as above to obtain u[i]

and l[i]. The bounding condition on the impulse response in (4.1) is obtained as

hl[i] ≤ h[i] ≤ hu[i], i ≥ 0.

The convolution integral
∫ T
0 h(T − t)w(t)dt in (4.16) can be approximated using trapezoidal rule as

τs

(
1
2
h[N ]w[0] +

1
2
h[0]w[N ] +

N−1∑
i=1

h[N − i]w[i]

)
. (4.19)

Since w[0] = 0, the convolution approximation (4.19) is reduced to

τs

(
1
2
h[0]w[N ] +

N−1∑
i=1

h[N − i]w[i]

)
(4.20)
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Furthermore, applying the condition w[0] = 0 to −τsD ≤ w[1]− w[0] ≤ τsD results in

−τsD ≤ w[1] ≤ τsD. (4.21)

From (4.20) and (4.21), the term ξ(T ) in (4.16) can be approximated tightly, asN increases, with the

solution of

max τs

(
1
2
h[0]w[N ] +

N−1∑
i=1

h[N − i]w[i]

)

s.t. −M ≤ w[i] ≤M, i = 1, . . . , N,
−τsD ≤ w[1] ≤ τsD,
−τsD ≤ w[i+ 1]− w[i] ≤ τsD, i = 1, . . . , N − 1,
hl[i] ≤ h[i] ≤ hu[i], i = 0, . . . , N − 1.

(4.22)

For simplicity, the following vectors are introduced in the subsequent discussion.

xi = w[i], i = 1, . . . , N,

yi = h[N − i], i = 1, . . . , N − 1, yN = 1
2h[0],

ui = hu[N − i], i = 1, . . . , N − 1, uN = 1
2hu[0],

li = hl[N − i], i = 1, . . . , N − 1, lN = 1
2hl[0].

Note that the respective transformations of h[i], hu[i], hl[i] to yi, ui, li may be different according to

the technique in estimating the convolution integral
∫ T
0 h(T − t)w(t)dt. The problem (4.22) can then

be rewritten as
max τsx

T y
s.t. −M ≤ xi ≤M, i = 1, . . . , N,

−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1,
li ≤ yi ≤ ui, i = 1, . . . , N.

(4.23)

The optimization (4.23) is the inner product maximization over a polytope, which is a type of bilinear

programming problem [52]. For the bilinear programming, the optimizing objective is linear on the

space of either x or y, but is not linear in the space of (x, y). For later use, let us denote the optimal

value of (4.23) by p∗, and let the set S contains all the points (x, y) ∈ R2N feasible to the constraints

of the problem. Also, let the optimal solution of (4.23) be denoted by (x̂, ŷ).

Next, we will show that (4.23) is equivalent to a convex maximization. First, we notice that

the constraints of (4.23) are disjoint, i.e., there exists no constraint that relates x and y. This is due

to the fact that we initially deal with the constraints on disturbance input and uncertainty separately.

Consequently, we can decompose the constraints of (4.23) into two parts: the part that is associated

with x only, and the other part that is associated with y only. To see this, let us define X to be a set

that contains every point x ∈ RN that satisfies the constraints

−M ≤ xi ≤M, i = 1, . . . , N,
−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1.

(4.24)

Similarly, define Y to be a set containing every point y ∈ RN that satisfies the constraint

li ≤ yi ≤ ui, i = 1, . . . , N. (4.25)
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By representing the constraints of (4.23) in terms of X and Y , this maximization becomes

max
x∈X ,y∈Y

τsx
T y. (4.26)

As the constraints of (4.26) are disjoint, they can be handled separately in the sense that we can

maximize over the space of x first, for each y, then later maximize over the space of y. This means

that (4.26) can be expressed as

max
x∈X ,y∈Y

τsx
T y = max

y∈Y
max
x∈X

τsx
T y. (4.27)

For convenience, we define a function g(y) : Y → R as follows

g(y) � max
x∈X

τsx
T y. (4.28)

This allows us to rewrite (4.27) as

max
y∈Y

g(y). (4.29)

Recall that (x̂, ŷ) solves (4.23), and hence, solves (4.26) as well. Then, (4.29) is equivalent to (4.23)

in the sense that ŷ is a solution of (4.29), and

x̂ = argmax
x∈X

τsx
T ŷ.

We restore the representation of the constraint of (4.29) to the inequality form to obtain

max g(y)
s.t. li ≤ yi ≤ ui, i = 1, . . . , N.

(4.30)

We can say that (4.30) is a convex maximization problem if we can verify that g(y) is a convex

function. The following proposition gives such verification.

Proposition 4.1 The function g(y) : Y → R defined as in (4.28) is a convex function.

Proof. To show that g(y) is convex, we first establish the following inequality. Let y1, y2 ∈ Y . For

any λ ∈ [0, 1], and any x ∈ X , we have

τsx
T (λy1 + (1− λ)y2) = τs(λxT y1 + (1− λ)xT y2),

≤ max
x∈X

τsλx
T y1 + max

x∈X
τs(1− λ)xT y2,

= λmax
x∈X

τsx
T y1 + (1− λ) max

x∈X
τsx

T y2,

= λg(y1) + (1− λ)g(y2).

Since the above inequality holds for any x ∈ X , from (4.28), we must have

g(λy1 + (1− λ)y2) = max
x∈X

τsx
T (λy1 + (1− λ)y2),

≤ λg(y1) + (1− λ)g(y2),
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which concludes the proof. �

Specifically, the problem (4.30) is referred to as a convex maximization problem over a poly-

tope, or more precisely, a hyperrectangle. This problem needs to be solved in order to determine the

WCN of uncertain systems. It is well-known that local solutions of this type of problem are at the

vertices of the hyperrectangle. In other words, this means the optimal solution of (4.30), i.e., ŷ, will

have its elements at their limits. This fact can reduced (4.30) to an equivalent problem

max g(y)
s.t. yi ∈ {li, ui}, i = 1, . . . , N.

(4.31)

This falls into the class of nonconvex NP-hard problems, which can be shown to be equivalent

to NP-hard combinatorial optimization or NP-hard integer programming [52]. For a problem

like (4.31), although the local solutions are known to be at the hyperrectangle vertices, the number

of these solutions grows exponentially with problem dimension. In addition, a condition to examine

whether or not a local solution of the problem is globally optimal does not even exist. Thus, comput-

ing the WCN of uncertain systems by solving (4.31) is no longer a trivial task like when there is no

uncertainty. To say this clearer, we do not claim that the computation of the WCN is complicate. In

fact, computational scheme to obtain the WCN is straightforward as we only need to go through all

possible combinations of yi’s. That is not simple is to obtain this WCN efficiently as the exhaustive

scheme is extremely time-consuming. Before we proceed with the WCN computation, it is preferable

to first establish the means to acquire the upper and lower bounds of the WCN. This is discussed in

the following section.

4.3 Upper and Lower Bounds of the WCN

We now turn to describe the upper and lower bounds of p∗. In general, there are several upper and

lower bounds of the WCN, but our proposed upper and lower bounds are tight in some sense. In

particular, the bounds possess certain property that will be proved useful in solving for the exact

WCN. Such a property is that the two bounds converge to each other as more elements of y are given.

In fact, these bounds equal if the whole vector y are given. We will call the upper and lower bounds

that satisfy this property as the valid bounds.

4.3.1 Upper Bound

To derive an upper bound of (4.31), we start by going back to the original and equivalent prob-

lem (4.23). The idea to establish a valid upper bound is to somehow relax the bilinear programming.

The relaxation should not be done with the objective function, i.e., finding another function that

bounds the objective. This is because even if y are given, the bounding function can still differ from

the actual objective function. In stead, the relaxation should be introduced to the constraints of (4.23)

in suitable manner. Particularly, we want to find a set described in terms of (x, y) that tightly encloses
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S in such a away that this set resembles S better when more elements of y are known. We find that

such a set can be a tight convex hull of S.

To realize this idea, the problem (4.23) is approximated to a sparse LP problem via a convex-

hull based technique. This approximation, given in [53], is motivated by the polyhedral method2

proposed by Yajima and Fujie [55]. Their method was designed for nonconvex quadratic program-

ming with box constraints. First, x and y are shifted so as to have S contained in the positive orthant

of the new coordinate. That is,
x̃ = x+M1,
ỹ = y − l (4.32)

where 1 is a column vector in RN with all elements equal one. The reason for this translation is that

all the variables are made positive which will be useful in the subsequent formulation. Subsequently,

the problem (4.23) can be expressed as

max τs(x̃T ỹ + lT x̃−M1T ỹ −M1T l)
s.t. 0 ≤ x̃i ≤ 2M, i = 1, . . . , N,

M − τsD ≤ x̃1 ≤M + τsD,
−τsD ≤ x̃i+1 − x̃i ≤ τsD, i = 1, . . . , N − 1,
0 ≤ ỹi ≤ ui − li, i = 1, . . . , N.

(4.33)

Let us denote the feasible set of (4.23) in the new coordinate (x̃, ỹ) as S̃ , which is a translation of S.

By defining a new vector z̃ as

z̃i � x̃iỹi, i = 1, . . . , N, (4.34)

the problem (4.23) can be equivalently rewritten as

max τs(1T z̃ + lT x̃−M1T ỹ −M1T l)
s.t. 0 ≤ x̃i ≤ 2M, i = 1, . . . , N,

M − τsD ≤ x̃1 ≤M + τsD,
−τsD ≤ x̃i+1 − x̃i ≤ τsD, i = 1, . . . , N − 1,
0 ≤ ỹi ≤ ui − li, i = 1, . . . , N,
z̃i = x̃iỹi, i = 1, . . . , N.

(4.35)

Let the set S̃ contain every feasible point (x̃, ỹ, z̃) ∈ R3N . Note that the projection of this set onto

the space of (x̃, ỹ) is S̃. Although the objective of (4.35) is linear, the last constraint in (4.35) is not.

A theorem on the upper bound of p∗ can be stated as follows.

Theorem 4.1 Let p̄∗ denote the optimal value of the following sparse LP:

max τs(1T z̃ + lT x̃−M1T ỹ −M1T l)
s.t. 0 ≤ x̃i ≤ 2M, i = 1, . . . , N,

M − τsD ≤ x̃1 ≤M + τsD,

−τsD ≤ x̃i+1 − x̃i ≤ τsD, i = 1, . . . , N − 1,
0 ≤ ỹi ≤ ui − li, i = 1, . . . , N,
z̃i ≤ (ui − li)x̃i, i = 1, . . . , N,
z̃i ≤ 2Mỹi, i = 1, . . . , N.

(4.36)

2This method is closely related to the original linearization method introduced by Padberg [54] to solve the concave

quadratic 0-1 programming.
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Then, we have p̄∗ ≥ p∗.
Proof: Let S̃r denote the set consists of all feasible points (x̃, ỹ, z̃) ∈ R3N of (4.36). We simply

claim that S̃ ⊆ S̃r. To show this, we notice that the only difference between the constraints of (4.35)

and (4.36) is the one(s) associated with variable z̃. Thus, we will focus solely on these constraints.

Considering the augmented triplet (x̃, ỹ, z̃) ∈ S̃, which means that (x̃, ỹ, z̃) satisfies the last constraint

of (4.35), or specifically, the relation (4.34). Due to the magnitude constraints of x̃i and ỹi, it is easy

to derive the linear necessary conditions:

z̃i ≤ (ui − li)x̃i, i = 1, . . . , N,
z̃i ≤ 2Mỹi, i = 1, . . . , N,

(4.37)

which can be viewed as the relaxation of (4.34). By this argument, we must have (x̃, ỹ, z̃) ∈ S̃r,

which consequently implies our claim.

As S̃ is contained in S̃r and the problems (4.35), (4.36) share the same objective function,

we conclude that p̄∗ bounds the optimal value of (4.35) from above. Since (4.35) and (4.23) are

equivalent, their optimal values are identical. Hence, it follows that p̄∗ ≥ p∗. �
Geometrically, the relaxation of (4.34) in this theorem can be view as constructing a convex

hull3 of a surface z̃i = x̃iỹi. This convex hull is characterized by the following linear inequalities:

z̃i ≤ (ui − li)x̃i, i = 1, . . . , N,
z̃i ≤ 2Mỹi, i = 1, . . . , N,
z̃i ≥ 0, i = 1, . . . , N,
z̃i ≥ (ui − li)(x̃i − 2M) + 2Mỹi, i = 1, . . . , N.

(4.38)

However, because the coefficient of z̃i in the objective function of (4.35) is positive, we only need

to bound z̃i from above, and hence, the last two constraints in (4.38) can be dropped, leaving only

those in (4.37). Figure 4.2 depicts the geometric interpretation of the relaxation. In this figure, we use

2M = ui − li = 1. It can be seen that the relaxed constraints (4.38) outline the tightest tetrahedron

enclosing the surface z̃i = x̃iỹi.

We are now ready to explain the reason for imposing positiveness for x̃ and ỹ by the transla-

tion (4.32). Intuitively, if they were allowed to assume negative values, the surface z̃i = x̃iỹi would

extend to the negative side of z̃i which subsequently amplifies the size and shape of the tetrahedron,

and therefore, introduce more conservatism to the relaxation.

Computing the upper bound of the WCN in practice by solving an LP (4.36) can be really

efficient if its sparsity pattern is exploited in the LP solver. At the present time, there are several

LP solvers, but they do not take full advantage of the special structure for our problem. Thus, it is

necessary to develop the specialized LP solver which will substantially expedite the computation.

This LP solver is introduced in later section.

4.3.2 Lower Bound

The choice of the lower bound of p∗ is obvious, as one may pick any pair (x, y) ∈ S and compute

τsx
T y. Our procedure to obtain a relatively good lower bound is as follows. Let (x̃∗, ỹ∗, z̃∗) ∈ S̃r be

3The convex hull of a set A is the intersection of all convex sets containing A, i.e., the smallest convex set enclosing A.
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Figure 4.2: Geometric interpretation of the linear relaxation in the tetrahedral method.

the optimal solution of (4.36).

1. Restore x̃∗, ỹ∗ to the original coordinate so as to get x∗, y∗. Since (x̃∗, ỹ∗) satisfies the con-

straints of (4.36), it is obvious that (x∗, y∗) ∈ S.

2. The product τsx∗T y∗ may be immediately used as a lower bound of the maximization (4.23).

Nevertheless, we can improve the candidate (x∗, y∗) so that it yield a tighter lower bound. This

is done by applying a simple algorithm suggested in [52] with a starting point equal to (x∗, y∗).
We briefly describe the algorithm as follows:

Algorithm 4.1

begin

round y∗i to either ui or li;

denote the result as ŷ∗;
solve the problem:

max τsŷ
∗Tx

s.t. −M ≤ xi ≤M, i = 1, . . . , N,
−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1.

denote the solution as x̂∗;
solve the problem:

max τsx̂
∗T y

s.t. li ≤ yi ≤ ui, i = 1, . . . , N ;
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denote the solution as ŷ∗;
while |(x̂∗T ŷ∗)/(x∗T y∗)− 1| > ε1 do

y∗ ← ŷ∗; x∗ ← x̂∗;
solve the problem:

max τsŷ
∗Tx

s.t. −M ≤ xi ≤M, i = 1, . . . , N,
−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1.

denote the solution as x̂∗;
solve the problem:

max τsx̂
∗T y

s.t. li ≤ yi ≤ ui, i = 1, . . . , N ;

denote the solution as ŷ∗;
end;

end.

This procedure iteratively solves two LP problems reduced from (4.23). In particular, the bilinear

programming with either x or y is fixed results in LP problems. As the LPs are alternately solved, the

objective will be increased until it reaches a local optimal solution of (4.23). This local optimum from

Algorithm 4.1 can be shown to satisfy the KKT condition [52]. Theoretically, Algorithm 4.1 stops

when (x̂∗, ŷ∗) reaches a KKT point, which is actually a stationary point. Thus, ε1 should represent the

bound on computational error arising in solving the two LPs. Next, we give a theorem on the lower

bound of p∗.

Theorem 4.2 The lower bound of p∗ is p∗ = τsx̂
∗T ŷ∗ where x̂∗ and ŷ∗ are obtained from Algo-

rithm 4.1.

Proof: It already mentioned that a pair (x∗, y∗) obtained by translating the solution of (4.36) is in S.

The rounding of y∗ to get ŷ∗ does also keep (x∗, ŷ∗) inside S as it does not violate the constraints

of (4.23). In addition, it is easy to see that Algorithm 4.1 itself restrains (x̂∗, ŷ∗) ∈ S every time a

relevant LP problem is solved. Hence, as (x∗, y∗) is input into Algorithm 4.1, the resulting (x̂∗, ŷ∗)
should still be in S. This suggests that τsx̂∗T ŷ∗ ≤ p∗. �

4.4 Bounds of the WCN Given Elements of y

When some elements of y are given, the problem dimensions of (4.23), and thus, (4.31) are reduced.

This information on y assists in sharpening the upper and lower bounds. Let i1, i2, . . . , iNf
be indices

of elements of y which are given, and let these indices be in ascending order:

i1 < i2 < · · · < iNf
.
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In addition, let iNf+1, iNf+2, . . . , iN be indices of elements of y which are not given, and also let

these indices be in ascending order:

iNf+1 < iNf+2 < · · · < iN .

Furthermore, define index sets Ωf and Ω′
f in parallel as

Ωf = {i1, . . . , iNf
},

Ω′
f = {iNf+1, . . . , iN}.

The f subscript here signifies the word fixed where it is used with quantities pertaining to the fixed

or given elements of y. Next, we define a constant vector a to contain the known elements of y as

follows:

aj � yij , j = 1, . . . , Nf .

Consider a vector space generated by the standard basis {ei} where i’s are indices of elements of y

that are not given, i.e., i ∈ Ω′
f ; then, let yr ∈ R(N−Nf) be the projection of y onto this space, i.e.,

yr,j � yij , j = Nf + 1, . . . , N.

Here, the subscript r signifies the word reduced, meaning that it is a new optimization variable reduced

from y. To make later mathematical representations convenient, we define in addition matrices Df ∈
RNf×N and D′

f ∈ R(N−Nf )×N as follows. Let Df be a sparse matrix where its jth row containing

only zero elements except the ij th element that equals 1 (where ij ∈ Ωf ). Similarly, let D′
f be a

sparse matrix where its jth row containing only zero elements except the iNf+j th element that equals

1 (where iNf+j ∈ Ω′
f ). The upper and lower bounds for this particular case can be now described.

4.4.1 Upper Bound

We change x and y to a new coordinate as in (4.32), obtaining x̃ and ỹ. In the same manner, we define

the translation of a and yr as follows:

ãj � ỹij , j = 1, . . . , Nf ,

ỹr,j � ỹij , j = Nf + 1, . . . , N.

Consequently, the maximization (4.33) can be expressed as

max τs(ỹTr D′
f x̃+ (ãTDf + lT )x̃−M1T ỹr −M1T (ã+ l))

s.t. 0 ≤ x̃i ≤ 2M, i = 1, . . . , N,
M − τsD ≤ x̃1 ≤M + τsD,
−τsD ≤ x̃i+1 − x̃i ≤ τsD, i = 1, . . . , N − 1,
0 ≤ ỹr,j ≤ uij − lij , j = Nf + 1, . . . , N.

(4.39)

Then, define z̃ ∈ R(N−Nf) in parallel with (4.34) as

z̃j � x̃ij ỹij , j = Nf + 1, . . . , N,

= x̃ij ỹr,j , j = Nf + 1, . . . , N.
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With this newly defined variable, it can be shown that (4.39) is equivalent to

max τs(1T z̃ + (ãTDf + lT )x̃−M1T ỹr −M1T (ã+ l))
s.t. 0 ≤ x̃i ≤ 2M, i = 1, . . . , N,

M − τsD ≤ x̃1 ≤M + τsD,
−τsD ≤ x̃i+1 − x̃i ≤ τsD, i = 1, . . . , N − 1,
0 ≤ ỹr,j ≤ uij − lij , j = Nf + 1, . . . , N,
z̃j = x̃ij ỹr,j , j = Nf + 1, . . . , N.

(4.40)

Let the set S̃f consist of every feasible point (x̃, ỹr, z̃) ∈ R3N−2Nf . Suppose also that (4.40) has its

optimal value represented by p∗f . Then, an upper bound on p∗f can be given as below.

Theorem 4.3 Let p̄∗f denote the optimal value of the following sparse LP:

max τs(1T z̃ + (ãTDf + lT )x̃−M1T ỹr −M1T (ã+ l))
s.t. 0 ≤ x̃i ≤ 2M, i = 1, . . . , N,

M − τsD ≤ x̃1 ≤M + τsD,

−τsD ≤ x̃i+1 − x̃i ≤ τsD, i = 1, . . . , N − 1,
0 ≤ ỹr,j ≤ uij − lij , j = Nf + 1, . . . , N,
z̃i ≤ (uij − lij )x̃ij , j = Nf + 1, . . . , N
z̃i ≤ 2Mỹr,j , j = Nf + 1, . . . , N.

(4.41)

Then, we have p̄∗f ≥ p∗f .

Proof: Let S̃fr denote the feasible set of (4.41) containing all feasible points (x̃, ỹr, z̃) ∈ R3N−2Nf .

The problem (4.41) is obtained from (4.40) by convex-hull relaxation. With similar arguments as in

Theorem 4.1, we then have S̃f ⊆ S̃fr. Thus, it can be concluded that p̄∗f ≥ p∗f . �
Note that the specialized LP solver for (4.41) can be introduced based on that for (4.36). The

knowledge on the optimal solution of (4.41) can yield a smart starting point to obtain the lower bounds

on p∗f , i.e., the optimal value of (4.23) and (4.31) when some yi are given.

4.4.2 Lower Bound

The choice of the good lower bound of p∗f can be described as follows. Let (x̃∗, ỹ∗r , z̃∗) ∈ S̃fr be the

optimal solution of (4.41).

1. Restore x̃∗, ỹ∗r to the original coordinate so as to get x∗, y∗r .

2. The product τsx∗T y∗r can be improved to give a tighter lower bound. This is done by applying

an algorithm akin to Algorithm 4.1 as below:

Algorithm 4.2

begin

round y∗r,j to either uij or lij ;

denote the result as ŷ∗r ;
solve the problem:
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max τs
(
ŷ∗Tr D′

fx+ aTDfx
)

s.t. −M ≤ xi ≤M, i = 1, . . . , N,
−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1.

denote the solution as x̂∗;
solve the problem:

max τs
(
(x̂∗D′

f)
T yr + aTDf x̂

∗)
s.t. lij ≤ yr,j ≤ uij , j = Nf + 1, . . . , N ;

denote the solution as ŷ∗r ;
while |(x̂∗T ŷ∗)/(x∗T y∗)− 1| > ε1 do

y∗ ← ŷ∗; x∗ ← x̂∗;
solve the problem:

max τs
(
ŷ∗Tr D′

fx+ aTDfx
)

s.t. −M ≤ xi ≤M, i = 1, . . . , N,
−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1.

denote the solution as x̂∗;
solve the problem:

max τs
(
(x̂∗D′

f)
T yr + aTDf x̂

∗)
s.t. lij ≤ yr,j ≤ uij , j = Nf + 1, . . . , N ;

denote the solution as ŷ∗;
end;

end.

This procedure iteratively solves two LP problems reduced from (4.23) when yij are fixed for j =

1, . . . , Nf . This algorithm terminates when it finds (x̂∗, ŷ∗r ) which is a KKT point. A theorem on the

lower bound of p∗f can be given in accordance with Theorem 4.2 as follows.

Theorem 4.4 The lower bound of p∗f is p∗
f

= τsx̂
∗T ŷ∗r where x̂∗ and ŷ∗r are obtained from Algo-

rithm 4.2.

4.5 LP Solvers via the Interior-Point Method

We employ the basic primal interior-point method with centering steps solved by the Newton’s

method, which is a powerful yet simple method for unconstrained optimization. Here, we discuss

how to implement the LP solvers focusing on the procedures to determine the Hessian and to solve

for the Newton system. These procedures yield the Newton step in each Newton iteration and take up

most operations of the overall computation. Note that a procedure to determine the gradient for the

Newton system is straightforward and uses fewer flops, so we do not present it here.
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Recall that the upper bounds of the WCN via the convex-hull based technique is obtained by

solving the LP problem (4.36). To begin with the interior-point method, we rearrange this LP problem

into the inequality form:
max cT ζ

s.t Aζ � b (4.42)

where ζ is the optimization variable, and cT ζ is the linear objective. The number of rows of A is

equal to m, which is the number of the inequality constraints.

For the interior-point method, the optimal solution of (4.42) is approximated by solving an

unconstrained (concave) logarithmic-barrier maximization with an objective function:

φ(ζ) = γcT ζ +
m∑
i=1

log(bi − aTi ζ)

where bi is the ith element of b, ai is the ith row of A, and γ is the parameter which adjusts the

approximation accuracy. The Hessian of this objective function can be expressed as

∇2φ(ζ) = ATΛA. (4.43)

The diagonal matrix Λ has each of its diagonal entry specified by 1/d2
i for i = 1, . . . ,m where d =

Aζ − b, and ζ is updated in each Newton iteration. The reader is referred to [56] for comprehensive

details.

Let the optimization variable of the LP problem (4.36) be arranged as

ζ =

⎡
⎣x̃ỹ
z̃

⎤
⎦ .

where x̃, ỹ and z̃ are all in RN . The LP parameters A and b are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
−I 0 0
Θ 0 0
−Θ 0 0

0 I 0
0 −I 0

−U 0 I
0 −2MI I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
M1
v1

v2

u− l
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where U is a diagonal matrix whose diagonal elements are from u− l, and v1, v2 are vectors with all

elements equal τsD1 except the first element, which is equal to τsD+M for v1 and equal to τsD−M
for v2, respectively. Here, A contains 12N − 2 nonzero elements.

To evaluate (4.43), we decompose Λ according to the partitions of A as

Λ = diag {Λ1,Λ2, . . . ,Λ8}

so that the Hessian can be written as

∇2φ(ζ) =
[
Q11 Q12

Q21 Q22

]
.
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where

Q11 = Λ1 + Λ2 + ΘT (Λ3 + Λ4)Θ + UΛ7U,

Q12 = QT21 = [0 − UΛ7] ,

Q22 =
[

Λ5 + Λ6 + 4M2Λ8 −2MΛ8

−2MΛ8 Λ7 + Λ8

]
.

Since the product UΛ7U gives a diagonal matrix, the efficient way to form Q11 is introduced as

follows. Let λi ∈ RN stand for the vector that forms the diagonal elements of Λi for i = 1, . . . , 4 and

i = 7. With some algebra, we can show that Q11 is a tridiagonal matrix with the diagonal elements

given by

U2λ7 +
4∑
i=1

λi +
[
λ̂3

0

]
+
[
λ̂4

0

]
,

and both super- and subdiagonal elements given by −(λ̂3 + λ̂4). Here, the vector λ̂i ∈ RN−1 is ob-

tained by removing the first element of λi, that is, λ̂i,k = λi,k+1 for k = 1, . . . , N − 1. Computations

of Q12, Q21 and Q22 are straightforward, so the details are omitted. The cost of forming ∇2φ(ζ) is

equal to 32N flops.

To solve for the Newton step, we introduce the most efficient way in terms of computational

cost as follows. First, denote the Newton system to be solved as ∇2φ(ζ)Δζ = −g where Δζ is the

Newton step, and g = ∇φ(ζ) is the gradient. Then, partition this Newton system according to the

partitions of the Hessian as [
Q11 Q12

Q21 Q22

] [
Δζ1
Δζ2

]
= −

[
g1
g2

]
.

To find Δζ1, Δζ2, the following procedure is executed:

1. Find the inverse of Q22;

2. Compute Q12Q
−1
22 Q21 and Q12Q

−1
22 g2;

3. Obtain Q̂ = Q11 −Q12Q
−1
22 Q21 and ĝ = g1 −Q12Q

−1
22 g2;

4. Solve for Δζ1 from Q̂Δζ1 = −ĝ;

5. Compute Δζ2 = Q−1
22 (Q21Δζ1 − g2).

Note that the inverse of Q22 can be computed very efficiently and note also that the linear equation

in the forth step is of a tridiagonal form since Q̂ is tridiagonal (because Q11 is). For these particular

structures of Qij , this procedure costs 31N flops. In summary, the cost for determining the Hessian

and solving for the Newton step for the LP (4.36) is 63N flops.

4.6 Numerical Examples

For some insight, brief numerical examples of upper and lower bounds of the WCN are given. We

make use of three uncertain linear systems. Their impulse envelopes are illustrated in Figures 4.3(a)–

4.3(c). For each WCN computation, we set M = 1, D = 1.2 and T = 10. Note that the same
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Figure 4.3: The impulse response envelopes (hu(t), hl(t)), which bound from above and below, all admissible

impulse responses of the uncertain systems: (a) system 1, (b) system 2, and (c) system 3.

terminal time is used in all computations for convenience. We compute the WCN of each system

when the problem dimension N varies from 10 to 100. The upper bounds of the WCNs are com-

puted by solving the related LP problems obtained from (4.36), while the lower bounds are computed

via Algorithm 4.1. As N increases, the sampling rate used in formulating the WCN computation

increases, so we can expect the bounds to get more precise. The results are plotted in Figure 4.4(a)–

4.4(c). The upper and lower bounds in three cases converge to certain limits except the lower bound

in the case of system 1 that exhibits some fluctuation. With N = 100, the differences between the

two bounds of system 1–3 are 17.75%, 9.44% and 5.82%, respectively. Note that all percentages are

computed relative to the upper bounds.

4.7 Summary

In this chapter, the computational problem of the WCN of uncertain linear systems is analyzed. Some

properties and problem simplifications are first presented. Then, the problem is cast as a convex max-
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Figure 4.4: The upper bounds and lower bounds of the WCNs when the problem dimension varies from 10 to

100: (a) system 1, (b) system 2, and (c) system 3.

imization problem over a hyperrectangle. The upper bounds are computed via the linear relaxation of

the original problem, while lower bounds are obtained by alternately solving two simple LP problems.

The upper and lower bounds with the knowledge of some elements of y are presented afterward. The

chapter ends with the specialized LP solver which is used to compute the upper bound of the WCN.



CHAPTER V

COMPUTATION OF THE WCN OF UNCERTAIN LINEAR

SYSTEMS

In the preceding chapter, the WCN computation for uncertain linear system appears to be a convex

maximization (4.31). This class of maximization is actually known to be nonconvex. In fact, a max-

imization of convex (quadratic) function with box-constraints in finite-dimensional space is shown

to be an NP-hard [57] problem. In addition, the number of local solutions, which lie on vertices of

the polytope, increases with problem dimension at exponential rate. For clarity, we need to elaborate

that a large number of local solutions would not have caused any difficulty if there was a condition to

examine whether or not a local solution is globally optimal as in the case of linear programming (LP).

Unfortunately, this kind of condition does not exist for the polytopic-constrained convex maximiza-

tion, which causes the major difficulty. Thus, a global optimization for this problem must employ a

scheme of comparing objective functions at local solutions, i.e., vertices of the polytope. Due to the

nature ofNP-hard problems, a thorough comparison of all local solutions at the vertices is impracti-

cal. Hence, a partial comparison using known analytical knowledge to reduce the enumeration.

A common optimization method to tackle this difficult problem is a branch-and-bound (BB)

algorithm. It is well-known that effective bounds of the exact WCN critically imply the algorithm

efficiency. In the preceding Chapter, we already give the novel upper and lower bounds of the WCN,

and in this chapter an effective branching technique is designed. A computer program for this BB al-

gorithm is developed to compute the WCN. Note that the computation time consumed by this method

can be very long in some circumstances due to comparison of local solutions [58]. Hence, later in

this chapter, we construct a new optimization scheme based on BB algorithm to accelerate the WCN

computation.

5.1 The Standard BB Algorithm

BB algorithms have been proposed for solving a wide range of global optimizations including those

emerging from control engineering problems [58–60]. BB algorithm are generally used to estimate

the global optimum by iteratively tightening the upper and lower bounds of the optimal value. Specif-

ically, the algorithms proceed until the gap between two bounds is reducing to an acceptable mag-

nitude. However, it is interesting to note that, in our problem (4.31), this gap can be made exactly

zero. This is because all considered points in (4.31) constitute a discrete feasible set, and thus, we

only need to carry out the BB algorithm over just a finite number of candidates. For this reason, the

algorithm can proceed through these finite candidate until it finds the optimizer, and at that instance,

the upper and lower bounds are identical and equal to the exact solution, which is here the WCN.
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Figure 5.1: Branching a three-dimensional cube Binit into two-dimensional sub-cubes B′0 and B′′0 whose

vertices make up those of Binit.

The BB scheme for (4.31) can be described as follows. Let Binit be the hyperrectangle gener-

ated by the constraints of the problem (4.31). Let Γ0 be an initial set of a hyperrectangle in consider-

ation, that is, Γ0 lists only Binit. First, upper and lower bounds, U0 and L0, of p∗ are computed over

Binit. It is noted that the difference of these bounds, over a hyperrectangle B, must approaches zero

as B shrinks to a point. After that, we choose the appropriate ith element of y to be fixed, and the

branching process is carried out by fixing yi = li and then yi = ui. This branching can be viewed

as splitting Binit into two sub-hyperrectangles with lower dimension. The sub-hyperrectangles have

no common vertices, and their vertices constitute those of Binit. Let these sub-hyperrectangles be

denoted by B′0 and B′′0 , respectively. Figure 5.1 displays this branching step. The current list Γ1 is

then updated to be {B′0,B′′0} as Binit is already removed.

Then, the bounding process of the first iteration is started by computing upper and lower bounds

UB′
0
, UB′′

0
, LB′

0
, and LB′′

0
of g(y) over these sub-hyperrectangles. The bounds U1 and L1 for the first

step are subsequently obtained as

U1 = max{UB′
0
, UB′′

0
},

L1 = max{LB′
0
, LB′′

0
}.

Since p∗ is in either B′0 or B′′0 , we can say that either UB′
0

or UB′′
0

is greater than p∗, and hence,

U1 ≥ p∗. In addition, since both LB′
0

and LB′′
0

are lower than p∗, we have L1 ≤ p∗. Subsequently,

we pick the hyperrectangle B̂1 associated with the upper bound that gives U1. The reason behind

this choice is that it seems to be the most promising hyperrectangle. The process then continues by

branching B̂1 with respect to another proper element of y.

In general, for the kth iteration, let Γk be the list of all hyperrectangles Bi, Uk be the upper

bound, and Lk be the lower bound. We select the hyperrectangle B̂k associated with Uk and branch it

to get B′k and B′′k . Update the list Γk by deleting B̂k, adding its two children, and obtain Γk+1. Then,

compute the upper and lower bounds UBi , LBi of each hyperrectangle, and obtain Uk+1 and Lk+1

from

Uk+1 = max
Bi∈Γk+1

UBi ,

Lk+1 = max
Bi∈Γk+1

LBi .
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Next, we will show that Uk+1 and Lk+1 are still the upper and the lower bounds of p∗, respectively.

Suppose p∗ lies in some vertices of hyperrectangle Bi in the list. Then, we have

Uk+1 ≥ UBi ≥ p∗.
Furthermore, let Bj be the hyperrectangle associated with Lk+1, i.e., LBj = Lk+1. Note that Bj may

or may not be the same hyperrectangle as Bi. Considering ŷ ∈ Bj , it now follows that

Lk+1 = LBj ≤ g(ŷ) ≤ p∗.
Afterward, the bounds are compared and if they satisfy the stopping criterion,

Uk+1 − Lk+1 < ε, (5.1)

the algorithm terminates. It is noted that, theoretically, Uk and Lk approach each other at the optimal

value, that is, the algorithm can proceed until Uk = Lk = p∗. Nevertheless, to save the computation

time, it may be preferable to stop earlier when we reach the acceptable accuracy, i.e., when Uk and

Lk are apart at an acceptable distance of ε > 0.

The process of the BB algorithm can be plotted as a binary tree diagram. We may regard a

hyperrectangle Bi ∈ Γk in the diagram as a node described by its bounds, UBi and LBi . Starting from

the initial node associated with Binit, the branching process splits and removes it. Then, the children

nodes are bounded, one of them is selected to be branched, and the algorithm moves on from one

iteration to another. As two children nodes are introduced when its parent node is deleted, we simply

see that the total number of nodes increases by one at each iteration; in other words, the number of

nodes at the kth iteration should equal k + 1 (as at the zeroth iteration, there is one initial node).

However, at the end of the kth iteration, after the bounding step and before starting the (k + 1)th

branching step, we can eliminate nodes (hyperrectangles in the list Γk+1) if their upper bounds UBi
are less than Lk+1. This is because the values of g(y), ∀y ∈ Bi are lower than Lk+1, and hence, they

are even lower than p∗. This general practice is usually referred to as pruning. The total number of

nodes can be reduced from k + 1 this way, and we shall call the nodes that are left unpruned as the

active nodes. The flow chart describing BB algorithm is given in Figure 5.2. It is important to note

that the convergence of this method is trivial since the worst case is guaranteed to be an exhaustive

search as the number of iterations cannot exceed 2N .

5.1.1 Branching Strategies

This section is devoted to describe branching techniques. As a result of solving (4.36), we then have

a means to choose which component of y should be branched, i.e., fixed at either ui or li, and the

bounds in each case are calculated. Let us define a useful term to ease up the following discussion.

Definition 5.1 A component yi of y is more plausible than yj if it is relatively closer to its bounds

than yj . In other words, yi is more plausible if it is relatively far from the midpoint of [li, ui] than yj
from the midpoint of [lj , uj ]. Mathematically, this means

1
(ui − li)

(
yi − (li + ui)

2

)
≥ 1

(uj − lj)
(
yj − (lj + uj)

2

)
.
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Conversely, a component yi of y is more implausible if it is less plausible. A component yi of y is

called the most plausible component if it is more plausible than any others.

These definitions are given according to their natures, i.e., if yi is relatively closer to either ui

or li then it is likely to believe that the ith component of the optimal y should lie on such boundary.

In our work, we consider two main branching strategies:

1. branch along the most plausible component,

2. branch along the most implausible component.

Presumably, one may speculate that the first approach should yield better convergence for our problem

as it choose to branch the best component first. In contrast to our perception, we have investigated

empirically that this choice of branching strategy gives slower convergent rate than branching along

the most implausible component first.

An explanation for this phenomenon is based on our observation that if we choose to branch

along the most plausible component, the implausible components would be left to branch later. Since

they are implausible components, they have a tendency to take many iterations to conclude if the path

we branch is correct or not. Hence, if it is spurious, we might have to start over and many iterations

would require again and again. On the other hand, if we choose the second strategy, the plausible

components would be left to branch later. These components require only a few iterations to check

whether or not the path we branch is correct. If we make wrong decision, then it would require only

some additional iterations to get to the optimal solution. Even though the probability for making

wrong decisions in the beginning branching in the second strategy is higher than that of the first one,

the number of iterations required to start over is greater. Therefore, it is wise to clarify the ambiguous

components first. Similarly, in later iterations, when the dimension is reduced, we pick the component

ȳi that is the farthest from its bounds among the other components. Note that in this case, we have to

retrace to determine which component of y is associated with ȳi.
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Figure 5.2: Flow chart of the BB algorithm.
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5.2 Numerical Examples

Three examples of uncertain linear systems in the former chapter are used. Recall that Figures 4.3(a)–

4.3(c) display envelopes of the impulse responses for these systems. To validate the algorithm, we

use the standard exhaustive search to seek for the benchmark solution. Recall that the global optimal

solution of (4.31) is already known to be at one of the vertices of the feasible polytope; hence, the

exhaustive search is carried out in a straightforward way as follows:

1. Enumerate all the vertices of the feasible hyperrectangle in y space. This is to obtain all possible

combinations of y when yi is fixed at either ui or li.

2. Consider these combinations one by one and evaluate g(y) at each combination, i.e., each

vertex, and store the values.

3. Compare these values to obtain the maximum which is the WCN.

Since this search entirely examines all possible local solutions, the global solution is assured to be

correct. Suppose that the BB method identifies a vertex as the one corresponding to the global solu-

tion. If such vertex is the same as that identified by the exhaustive search, this simply judges that the

BB algorithm functions properly.

The input bounds M and D are set to 1 and 1.2, respectively. The terminal time is fixed

at T = 10. The problem dimension is the number of the sampling instants minus one. During the

validation, the problem dimension varies from 10 to 20 as the exhaustive search is not effective beyond

this range1. The executions were performed on 2.8 GHz Pentium 4 PC with 512 MB of RAM. After

the validation, the BB algorithm yields identical solutions as those by the exhaustive search. To see the

computational efficiency, Table 5.1 displays the times consumed by the standard BB algorithm against

the exhaustive search. For all three systems, the computation time used by the exhaustive search

increases approximately by twice as much when N increases by one. This is evidently because when

the problem dimension is increased by one, the number of possible combinations of yi’s doubles2,

and hence, the number of elements of the feasible set of (4.31) increases accordingly. This means we

have twice more local solutions to search through, which should double the computation time.

For the BB computations of system 1, the trend of computation times exhibit some fluctuation.

However, the overall trend appears to gradually incline. There is a big contrast of the computation

time when N = 18 which equal 13.9 seconds where it drops significantly down below those of the

other neighboring cases (39.1 and 40.7 seconds). It is found that the number of iterations taken to

finish the BB computation forN = 18 is 28 while it takes 77 and 78 iterations for the case ofN = 17

and 19, respectively. This explains the relatively short computation time. This drop in computation

time when problem dimension increases, however, is possible since the rate of convergence of the BB

algorithm cannot be theoretically determined in general. For the case of system 2 and 3, the trends

1The exhaustive search can take a week for the problem dimensions greater than 24, on current machines.
2The number of all combinations of yi’s is 2N when N is the problem dimension. It is obvious that 2N+1 is twice as

much as 2N .
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of the BB computation times seem to rise in a step change manner with a bit variation. Remark the

steep rise in BB computation times of system 3 whenN change from 17 to 18 (the computation times

increase from 8.4 to 21.6 seconds). Similar to the case of system 1, the significant increase in the

number of iterations accounts for this sharp change in this case, but there is no nice specific reason

behind this.

Table 5.1: Comparison between the computation times of the BB algorithm and the exhaustive search for the

computations of the WCNs of three uncertain systems: system 1, 2, and 3, when N varies from 10 to 20. The

abbreviations s, m, and h signify the time units second, minute, and hour, respectively.

System 1 System 2 System 3

N BB Exh. BB Exh. BB Exh.

algo. search algo. search algo. search

10 2.7 s 53.4 s 6.1 s 51.5 s 8.6 s 57.9 s

11 13.5 s 1.8 m 9.5 s 1.7 m 8.7 s 1.9 m

12 14.2 s 3.7 m 5.5 s 3.4 m 7.3 s 3.7 m

13 17.0 s 7.7 m 9.9 s 7.1 m 9.1 s 7.8 m

14 35.5 s 15.7 m 9.3 s 14.4 m 7.9 s 15.7 m

15 21.1 s 31.7 m 9.7 s 29.0 m 7.8 s 31.7 m

16 53.5 s 1.1 h 8.9 s 59.5 m 9.1 s 1.1 h

17 39.1 s 2.2 h 12.7 s 2.1 h 8.4 s 2.2 h

18 13.9 s 4.5 h 17.7 s 4.1 h 21.6 s 4.0 h

19 40.7 s 9.2 h 17.2 s 8.6 h 26.2 s 8.4 h

20 1.5 m 17.2 h 19.7 s 16.3 h 28.4 s 17.0 h

At each iteration, the number of active nodes and the convergence of the upper and lower

bounds in WCN computation of system 1 via BB algorithm is depicted in Figure 5.3(a)–5.3(f), for

N = 10, 15, and 20. For systems 2 and 3 these are shown in Figure 5.4 and 5.5, respectively. From

each of the figures related to the number of active nodes, it can be seen that this number rises up,

reaching its zenith at around half way of the total number of iterations used. Without pruning, the

number of nodes branched by the algorithm should increase by one at each iteration. It can be seen

in these figures that the BB algorithm also starts with this rate of node branching. Later, however, the

pruning process begins to take effect and decelerates the rate. After the algorithm processes through

the peak, the number of nodes drops down because the computed upper and lower bounds, Uk and

Lk, are getting more and more accurate, and then, more nodes are being pruned as k increases. In

these particular examples, only one node is left when the algorithm terminates. It should be noted

that the BB algorithm can terminate even though more than one nodes are left behind, provided

that (5.1) is satisfied. From Figure 5.3–5.5, we see that the lower bound is relatively tighter than the

upper bound because the lower bound reaches the optimal value (the WCN) much earlier, waiting

for the upper bound and confirm the optimality. Another point to note is that it is still reasonable
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to work with for N = 20 on current processing units, and that, with this choice of N , the error of

discretizing the original problem (4.16) is still acceptable [22]. Even though the computations with

selected dimensions are reasonably in order of seconds, the computation time will take a few hours

for the WCN problem of system 1 with dimension over 40 because the number of local solutions

grows exponentially.

To show the effect of discretization, the WCNs of three linear uncertain systems are plotted in

Figure 5.6. The WCN of all systems tend to converge to certain limits as the sampling instants are

increased. Furthermore, to add more insight into the solutions of the BB computation, we execute the

WCN computation of system 1 with dimension of 50 and plot the all signals belonging to the worst-

case scenario with the terminal time T = 10. These signals are displayed in Figure 5.7, which are

the worst-case input, the worst-case impulse response, and the worst-case output, respectively. The

magnitude of the worst-case output at t = T should represent the WCN, which is here equal 5.194.

Notice also that the worst-case impulse response stays at hu(t) for 1.2 second and moves down to

hl(t) at the next sampling instant. This agrees with the zero-crossing instant of the worst-case input

at t= 8.8 as this equals T − 1.2.

We see that the BB algorithm consumed less computation time as compared to an exhaustive

search, and hence, make the WCN computation realizable (as the exhaustive will take a lifetime to

compute a problem with dimension greater than just 50, using present processing units). However,

the computation speed of the BB algorithm is still considered as impractical if we have to apply it to

the controller design phase which needs to solve for WCN repeatedly. Thus, a specialized technique

is required to accelerate the BB algorithm for faster WCN computation.
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Figure 5.3: For WCN computation of system 1 using standard BB algorithm, the number of active nodes at

each iteration: (a) N = 10, (c) N = 15, and (e) N = 20, and the convergence of upper and lower bounds: (b)

N = 10, (d) N = 15, (f) N = 20.
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Figure 5.4: For WCN computation of system 2 using standard BB algorithm, the number of active nodes at

each iteration: (a) N = 10, (c) N = 15, and (e) N = 20, and the convergence of upper and lower bounds: (b)

N = 10, (d) N = 15, (f) N = 20.
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Figure 5.5: For WCN computation of system 3 using standard BB algorithm, the number of active nodes at

each iteration: (a) N = 10, (c) N = 15, and (e) N = 20, and the convergence of upper and lower bounds: (b)

N = 10, (d) N = 15, (f) N = 20.
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10 to 20.

5.3 Solution of Discretized Problems with Increasing Sampling Rates

Our idea to speed up the BB algorithm originates from the fact that the formulation of WCN compu-

tation involves discretization of signals, and with growing sampling rates the solutions become more

accurate. Therefore, to avoid solving a high dimension problem in one shot, it is desirable to solve

a problem with low dimension first, and then exploit its solution in solving a problem with higher

dimension. This section is devoted to develop a groundwork for this idea by first establishing a rela-

tionship between solutions of two problems which the discretizing rate of one problem is twice that

of the other.

Recall that, in setting up (4.31), the original problem (4.16) is discretized with the sampling

period τ . Henceforth, let us assume that the number of sampling intervals takes the form Nj =

N12j−1, whereby the considered sampling period is of the form

τs,j � T/(N12j−1) (5.2)

for natural number j. Let Pj stands for the problem (4.23) associated with τs,j , i.e.,

Pj

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max τs,jx
T y

s.t. −M ≤ xi ≤M, i = 1, . . . , N,
−τs,jD ≤ x1 ≤ τs,jD,
−τs,jD ≤ xi+1 − xi ≤ τs,jD, i = 1, . . . , N − 1,
li ≤ yi ≤ ui, i = 1, . . . , N.

Let the discretized bounds on impulse response corresponding to Pj be denoted by u(j) and l(j). Also,

let us denote the optimal solution of Pj as x̂(j) and ŷ(j), and the optimal value of Pj as p∗j .
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Figure 5.7: The input, impulse response, and output in the worst-case scenario of the WCN computation of

system 1 with the dimension of 50. The estimated WCN should equal the magnitude of the worst-case output

at t = 10 second.

In order to discuss the solutions of a series of Pj we need to make x̂(j) (and also ŷ(j)) com-

parable for any two values of j. In so doing, let us resolve the worst-case discretized input ŵ(j)[i],

and the worst-case discretized impulse response ĥ(j)[i] from x̂(j) and ŷ(j), respectively using the 1st

order hold. Recall that the discretization is conducted with the sampling period of τs,j . Furthermore,

let us perform linear interpolations of these time series to obtain continuous-time signals ŵ(j)(t) and

ĥ(j)(t), respectively. These signals are defined on (−∞, T ]. Intuitively, when j increases, τs,j be-

comes smaller and the optimal value of Pj should approach the WCN of the system. The ŵ(j)(t)

should also converge to certain limit as j increases unless there are multiple accumulation points. In

this dissertation, we assume that the selected WCN computational problems conform such behavior.

In particular, let us pose the following assumption.

Assumption 5.1 Let us consider the WCN computational problem of which the sequence {ŵ(j)(t)}
is a Cauchy sequence in L∞. This is equivalent to saying that there exist a convergent positive-valued

sequence {αj} such that ∥∥∥ŵ(j+1)(t)− ŵ(j)(t)
∥∥∥
∞
≤ αj , j = 1, . . .

where ‖ · ‖∞ signifies the supremum norm of function.

If this assumption holds, we can say that ŵ(j+1)(t) is getting closer pointwise to ŵ(j)(t) as j

rises. Actually, for all the WCN computational problems we have tried so far, we observed that this

assumption holds. However, a rigorous proof has never been established so far to show that it holds in
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general. Assumption 5.1 leads to a beneficial idea of how we may predetermine the solution of Pj+1

with the solution of Pj . This is because ŵ(j+1)(t) should locate in the vicinity of ŵ(j)(t). Specifically,

if the sequence {αj} exists and is known, then we can deduce a lemma.

Lemma 5.1 For any t, if ŵ(j)(t) > αj , then we have

ŵ(j+1)(t) > 0.

In addition, if ŵ(j)(t) < −αj , then we have

ŵ(j+1)(t) < 0.

Proof. For any t, it is obvious that ∣∣∣ŵ(j+1)(t)− ŵ(j)(t)
∣∣∣ ≤ αj ,

which means

ŵ(j)(t)− αj ≤ ŵ(j+1)(t) ≤ ŵ(j)(t) + αj .

The results immediately follow. �

To see how this helps accelerate the BB computation in solving Pj+1, we have to state the

following lemma and corollary.

Lemma 5.2 Consider problem (4.23) when x is given. An optimal solution ŷ has its elements ob-

tained as

ŷi =

⎧⎪⎨
⎪⎩

ui, xi > 0,
0, xi = 0,
li, xi < 0.

(5.3)

Proof. Let us consider any feasible y, i.e.,

li ≤ yi ≤ ui.

The proof is straightforward as follows. If xi > 0, we have

xi(ŷi − yi) = xi(ui − yi) ≥ 0.

Similarly, if xi < 0, we infer

xi(ŷi − yi) = xi(li − yi) ≥ 0.

This leads to
N∑
i=1

xi(ŷi − yi) ≥ 0

as the terms xi(ŷi − yi) vanishes if xi = 0. Consequently, this suggests that

N∑
i=1

xi(ŷi − yi) = xT (ŷ − y) = xT ŷ − xT y ≥ 0



86

As τs is positive, we have τsxT ŷ ≥ τsxT y, which completes the proof. �

An immediate remark should be mentioned here, as we can see from Lemma 5.2 that ŷi can be

inferred directly from xi only (involving no other elements of x). Hence, Lemma 5.2 can be restated

regardless of temporal variable.

Corollary 5.1 Consider the problem of seeking an optimal solution ŷ of (4.23) when some element

of x is given, says only i in some index set Ω. Then, yi for i ∈ Ω can be readily obtained as in (5.3).

Let x̂(j) be the discretization of ŵ(j)(t) with the sampling period associated with Pj+1, i.e., τs,j+1.

Combining Lemma 5.1 and Corollary 5.1, an important proposition can be stated as follows.

Proposition 5.1 If x̂(j)
i > αj , then we have

ŷ
(j+1)
i = u

(j)
i .

On the other hand, if x̂(j)
i < −αj , then

ŷ
(j+1)
i = l

(j)
i .

Proof. Let t = iτs,j+1. Given ŵ(j)(t) > αj , it is clear that x̂(j)
i > αj . From Lemma 5.1, we must have

ŵ(j+1)(t) > 0, which means x̂(j+1). By means of Corollary 5.1, it can be seen that ŷ(j+1)
i = u

(j)
i .

For the case that ŵ(j)(t) < −αj , the proposition can be verified in the same fashion. �

Proposition 5.1 says that the worst-case input obtained via solving Pj yields a guideline to

determine a solution of Pj+1, that is, ŷ(j+1). So as to formalize our discussion and bypass all the

interpolated quantities, a theorem that furnishes a clear relation between elements of ŷ(j+1) and x̂(j)

must be presented. Firstly, a lemma that matches the placements of elements in x̂(j) with those in

x̂(j)
i , with respect to sampling instants is given.

Lemma 5.3 If i is even, then x̂(j)
i coincides with x̂(j)

i/2, that is, they locate at the same sampling instant

along the time axis. Moreover, we have

x̂(j)
i =

⎧⎨
⎩

x̂
(j)
(i+1)/2, if i is odd,

1
2

(
x̂

(j)
i/2 + x̂

(j)
i/2+1

)
, if i is even.

Proof. Recall that x̂(j) ∈ R1+N12j−1
is associated with τs,j , and x̂(j) ∈ RN12j are associated with

τs,j+1. Next, let ı̂ and ı̃ be indices into elements of x̂(j) and x̂j , respectively. Suppose also that ı̃ is

odd. If x̂(j)
ı̂ is sampled at the same instant as x̂jı̃ , then (̂ı− 1)τs,j = (̃ı− 1)τs,j+1, which implies that

ı̂ =
1
2
(̃ı+ 1)



87

This is because τs,j = 2τs,j+1. Hence, x̂(j)
(ı̃+1)/2 and x̂(j)

ı̃ are both sampled at ı̃τs,j+1. In addition, as

x̂(j) is discretized from ŵ(j)(t) which is interpolated from points of x̂(j), we have x̂(j)
(ı̃+1)/2 = x̂(j)

ı̃ if

i is odd. The proof follows by replacing the index ı̃ with i. In the case that i is even, we can infer

x̂(j)
i =

1
2

(
x̂(j)
i−1 + x̂(j)

i+1

)
. (5.4)

As i− 1 and i+ 1 are odd, we have

x̂(j)
i−1 = x̂

(j)
i/2,

x̂(j)
i+1 = x̂

(j)
i/2+1.

Substituting these into (5.4) completes the proof. �

The main theorem that provides the explicit relationship between x̂(j) and ŷ(j+1) can now be

given.

Theorem 5.1 Given a solution x̂(j) pertaining to Pj , we can draw its relationship to a solution ŷ(j+1)

of Pj+1 as follows:

(i) If x̂(j)
i > αj , then ŷ(j+1)

2i−1 = u
(j+1)
2i−1 ;

(ii) If x̂(j)
i < −αj , then ŷ(j+1)

2i−1 = l
(j+1)
2i−1 ;

(iii) If (x̂(j)
i + x̂

(j)
i+1)/2 > αj , then ŷ(j+1)

2i = u
(j+1)
2i ;

(iv) If (x̂(j)
i + x̂

(j)
i+1)/2 < −αj , then ŷ(j+1)

2i = l
(j+1)
2i ;

Proof. From Proposition 5.1, we have

x̂(j)
ı̂ > αj −→ ŷ

(j+1)
ı̂ = u

(j+1)
ı̂ ,

x̂(j)
ı̂ < −αj −→ ŷ

(j+1)
ı̂ = l

(j+1)
ı̂ .

If ı̂ is odd, write ı̂ = 2i− 1, and from Lemma 5.3, it is obvious that

x̂
(j)
i > αj −→ ŷ

(j+1)
2i−1 = u

(j+1)
2i−1 ,

x̂
(j)
i < −αj −→ ŷ

(j+1)
2i−1 = l

(j+1)
2i−1 .

Hence, (i) and (ii) follow. On the other hand, if ı̂ is even, write ı̂ = 2i. From Lemma 5.3, we have

1
2
(x̂(j)
i + x̂

(j)
i+1) > αj −→ ŷ

(j+1)
2i = u

(j+1)
2i ,

1
2
(x̂(j)
i + x̂

(j)
i+1) < −αj −→ ŷ

(j+1)
2i = l

(j+1)
2i .

Then, (iii) and (iv) follow. �
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Figure 5.8: The top subplot displays locations of x̂(j)
i (marked with circle) along the graph of ŵ(j)(t), while

the middle subplot displays the locations of x̂(j)
i where the circle markers represent the points with |x̂(j)

i | > αj

and the plus markers represent those with |x̂(j)
i | < αj . The bottom subplot displays ŷ(j+1)

i at the same instants

where |x̂(j)
i | > αj . Some points lie along hu(t) and others along hl(t), depending on the sign of x̂(j)

i .

Following this theorem, one can determine parts of ŷ(j+1) using elements of x̂(j) before even

solving Pj+1. Shortly speaking, the more elements of x̂(j) satisfy |x̂(j)
i | < αj , the more dimensions

can be disregarded. Figure 5.8 illustrates an example of the process to obtain elements of y(j+1)

partially by considering the magnitudes and signs of x̂(j)’s, which is an interpolation of x̂(j). Most

of the time, this prediction reduce the problem dimension significantly. Our next task is to study how

much this technique would accelerate the BB computation.

5.4 Upper Bound on {αj}

The discussion in the previous section is based on the assumption that the sequence {αj} exists and

is known to us. However, even though {αj} may exist, we have not had any method sofar to obtain

the sequence in practise. One possible issue to handle this is by estimating an upper bound of αj .
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Based on our observation, αj should be related in a complex manner to τs,j and other problem

parameters, namely, M, D, hu(t) and hl(t). As a consequence, the workable upper bound of αj

should also account for these dependencies. Our hypothesis is that the upper bound for αj should

be around Dτs,j/2. The reason behind this assumption can be roughly described as follows. Let

ŵ(t) denote the actually worst-case input, which is a solution to (4.16). Intuitively, ŵ(j)(t) should

locate somewhere in the vicinity of ŵ(t), and should get closer to line up with it as j becomes larger.

Seeing from this view, we may think of ŵ(j)(t) as an estimate of the interpolated signal obtained by

discretizing ŵ(t) with τs,j . Now let us consider x̂(j) and x̂(j+1) in RN12j . As Pj+1 employs higher

precision, we are convinced to trust the accuracy of x̂(j+1) (and this makes more sense when j is

large). Thus, it is preferable to use x̂(j+1) as a standard and compared x̂(j) with it along the time axis.

Notice that each point of x̂(j+1) can change its value at every τs,j+1 second, but x̂(j) can do so at

every τs,j second, which is slower. Suppose that x̂(j+1)
i starts to change it value at a certain sampling

instant between two adjacent elements of x̂(j), for example, when i is even (see Lemma 5.3 for an

idea). Then, x̂(j) has to wait for τs,j+1 to follow. According to the problem (4.23), two contiguous

elements of x̂(j+1) may not be farther than Dτs,j+1. This means that the change in magnitude of

x̂
(j+1)
i cannot be greater thanDτs,j+1, which consequently implies that the value of x̂(j+1) can differ

from x̂(j) for at most Dτs,j+1 = Dτs,j/2. This explain why the upper bound for αi should be around

Dτs,j/2. Figure 5.9 gives a pictorial perspective of our speculation where ŵ(j)(t) leads ŵ(j+1)(t)

by an amount of Dτs,j/2 in magnitude after 2 second. In this example, the points of x̂(j) locates at

the sampling instants t = 1, 3, 5, 7 (depicted as cross marks), whereas the points of x̂(j+1) locates at

t = 1, 2, . . . , 7 (depicted as circle marks). Here τs,j = 2, and hence, τs,j+1 = 1. The input ŵ(j+1)(t)

starts to rise at t = 2 while ŵ(j)(t) has to wait until t = 3 to start changing its value in order to catch

up with ŵ(j+1)(t). Both signals climb up at the same rate D. Within this time horizon, it is clear

that the maximum difference of the worst-case inputs, that is, ‖ŵ(j+1)(t) − ŵ(j)(t)‖∞, is equal to

Dτs,j/2.

It should be note that the aforementioned surmise is loosely based on some assumptions that

may not be true in general, so we would want to add up the discarded parts. Specifically, the upper

bound should equalDτs,j/2 multiplied by a scaling factor greater than one. Let ᾱj denotes the upper

bound of αj . Our discussion above culminates in the following assumption.

Assumption 5.2 Assume that for each j, αj is bounded by

ᾱj = β

(
Dτs,j

2

)
= β

(
TD

N12j

)
.

where 1 ≤ β ≤ 2 depending on the respective WCN computational problems.

The sequence {ᾱj} as a whole will be referred to as the ambiguity magnitude threshold with

an acronym: AMT. The upper bound ᾱj at the jth iteration will also be conveniently mentioned

as the AMT with specific j. The proposed name is intended to carry a meaning of a threshold for

x̂
(j)
i whereby we can sort out the elements of ŷ(j+1) which cannot be predetermined (the ambiguous
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Figure 5.9: Comparison between the worst-case inputs ŵ(j)(t) and ŵ(j+1)(t). The cross marks represent

points of x̂(j), while the circle marks represent those of x̂(j+1).

elements). Note that, from Assumption (5.2), the first AMT, which is used in the first outer iteration,

has the form

ᾱ1 = β

(
TD

2N1

)
. (5.5)

According to Assumption 5.2, Theorem 5.1 can be restated here in terms of ᾱj as follows.

Proposition 5.2 Assume that ᾱj > αj for every j. Let x̂(j) be the solution of Pj , a solution ŷ(j+1) of

Pj+1 can be predetermined as

(i) If x̂(j)
i > ᾱj , then ŷ(j+1)

2i−1 = u
(j+1)
2i−1 ;

(ii) If x̂(j)
i < −ᾱj , then ŷ(j+1)

2i−1 = l
(j+1)
2i−1 ;

(iii) If (x̂(j)
i + x̂

(j)
i+1)/2 > ᾱj , then ŷ(j+1)

2i = u
(j+1)
2i ;

(iv) If (x̂(j)
i + x̂

(j)
i+1)/2 < −ᾱj , then ŷ(j+1)

2i = l
(j+1)
2i ;

Proof. The proof follows directly from Theorem 5.1 and Assumption 5.2 that ᾱj ≥ αj . �

Remark that the parameter β in Assumption 5.2 represents neglected effects of other vari-

ables including the difference between the elements of u(j), l(j) and the corresponding elements of

u(j+1), l(j+1). In general, to guarantee that Assumption 5.2 is sound and Proposition 5.2 is practical,

we want to make the AMT large to make sure that it really bounds αj from above for each j. Nonethe-

less, the drawback of β being large is that AMT can be more conservative. From Proposition 5.2, this

leads to fewer elements of ŷ(j+1) being determined and more are left unambiguous, so the problem

dimension of Pj+1 has not been much reduced. This would more or less impede the attempt to ac-

celerate the BB computation. The suitable choice of β depends on parameters of individual WCN

computational problem.
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To support our choice of AMT in Assumption 5.2, we have set up a special experiment that

obtain α1 from a random collection of WCN computational problems. In particular, there are 1,000

problems randomly formulated. Our constructed sets of problem parameters are the combinations of

1. five different problem dimensions, i.e., N1 ∈ {8, 9, 10, 11, 12};

2. four different derivative bounds that characterizedW , i.e.,

D ∈ {0.4, 0.8, 1.5, 2.5};

3. fifty random choices of uncertain systems each described by a randomly-specified stable im-

pulse envelope (hu(t), hl(t)).

In every problem, we set M = 1. For each problem with the assigned value of N1, we solve P1 and

P2, i.e., the WCN computational problems when τs = T/N1 and = T/(2N1), respectively. Then

ŵ(1)(t) and ŵ(2)(t) are compared, and the following quantity is computed

β̂ =
2

Dτs,1

∥∥∥ŵ(2)(t)− ŵ(1)(t)
∥∥∥
∞
.

This signifies the maximum deviation of the worst-case inputs of two problems normalized byDτs,1/2.

The shorthand notation β̂ has been purposefully used here to serve as an analogue of the factor β ap-

pears in Assumption 5.2. If the assumption holds for a particular WCN computational problem, then

2‖ŵ(2)(t) − ŵ(1)(t)‖∞/(Dτs,1) should be bounded from above by β. Hence, β̂ can be regarded as

empirical counterpart of β experimentally obtained from these 1,000 problems. After solving all the

random problems and record β̂, a histogram is plotted to show the range and the distribution of β̂ as

depicted in Figure 5.10.

In almost every case of our particular WCN problems, the computed values of β̂ vary between

1 and 2, which supports Assumption 5.2. Specifically, there are 98.3% of all test problems that

Assumption 5.2 holds for β = 2, and this percentage reduces to 91.5% if β = 1. We plot only

those problems that yield β̂ within the interval [0, 2]. Note that not all the problems give β̂ ≤ 2. In

fact, there are 17 problems that yield β̂ > 2 (β̂ ranges from 2.13 to 11). We have examine further

the problems of which β̂ is greater than two (17 out of 1,000 problems), and learn some evidence

that provides a good explanation for this instance. It is found that, in each of the 17 problems, there

are two or more local solutions which are apart from each other to some degree, but whose optimal

objective functions are nearly equal. From those 17 problems, these differences are less than 1%.

This is almost like the case where there are multiple limit points of a sequence {ŵ(j)(t)}. Since the

optimal objective functions associated with these limit points are about the same, at one sampling rate

ŵ(j)(t) may be close to one limit point; at another sampling rate it may be close to another limit point,

and hence, Assumption 5.2 (and probably Assumption 5.1) does not hold for this specific problem.

Nevertheless, this rare phenomenon is not so adverse; despite the two limit points being different,

fortunately, their optimal objective functions are close. Thus, if enforcing Assumption 5.2 in addition

to Assumption 5.1 causes the sequence {ŵ(j)(t)} to converge to a local limit point different from the

global one, we can still hope that the optimal objective function corresponding to this local solution
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Figure 5.10: Distribution of β̂, which is computed as 2‖ŵ(2)(t) − ŵ(1)(t)‖∞/(Dτs,1), among totally 1,000

test problems.

is very close to that of the global solution, i.e., p∗j , and it can be used as a good estimate of the true

WCN. In the following section, we firmly introduce the algorithm to expedite our BB process. In

Section 5.5.1, we will discuss how to choose proper β.

5.5 Hierarchical Branch-and-Bound Algorithm

In this section, we will formulate a hierarchical optimization, which consists of a proposed accel-

erating technique that invokes a BB algorithm as its subroutine. For convenience, we will call this

accelerating technique as Reduction of AMT or RAMT and call the whole algorithm as Hierarchical

Branch-and-Bound algorithm, or shortly, HBB algorithm. The technique name originates from an

idea of accelerating the BB algorithm via reducing AMT by half, performing the BB computation,

and exploiting the known solution of the former problem in solving the latter problem. Actually, this

is the reason behind the definitions of problem dimension Nj = N12j−1 and of the sampling period

τs,j = T/(N12j−1) as in (5.2). Let us refer to the iterations of the HBB algorithm as outer iterations

and to the iterations of the standard BB algorithm as inner iterations. Furthermore, let us denote the

reduced dimension problem corresponding to Pj as P′
j . At the end of j iteration, the termination cri-

terion for HBB is computed from the relative difference between the optimal values of Pj and Pj+1,

that is, ∣∣∣∣∣p
∗
j+1 − p∗j
p∗j

∣∣∣∣∣ .
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We update the AMT in every iteration by dividing it by 2. This is the direct result of Assumption (5.2).

The procedure of HBB is illustrated in Figure 5.11, and is described as follows.

begin

P′
1← P1;

solve P′
1 to get (x̂(1), ŷ(1)) and p∗1;

obtain ᾱ1;

use x̂(1) and ᾱ1 to fix elements of ŷ(2) and obtain P′
2;

solve P′
2 via BB algorithm to get (x̂(2), ŷ(2)) and p∗2;

d1 = |(p∗2 − p∗1)/p∗1|;
ᾱ2 = ᾱ1/2;

j ← 2;

while dj > ε do

use x̂(j) and ᾱj to fix elements of ŷ(j+1) and obtain P′
j+1;

solve P′
j+1 via BB algorithm to get (x̂(j+1), ŷ(j+1)) and p∗j+1;

dj = |(p∗j+1 − p∗j )/p∗j |;
ᾱj+1 = ᾱj/2;

j ← j + 1;

end

end

In each outer iteration, the BB algorithm is executed. The computation period is saved due to

the fact that the dimension of P′
j has been reduced. For better understanding, suppose that the compu-

tation of the BB algorithm takes exponential time3. Specifically, suppose that this computation time

is O(2N ) where N is the problem dimension. Roughly speaking, the HBB algorithm can be viewed

as an attempt to avoid solving one large-scale problem by solving other smaller-scale problems. Let

say that it divides a problem with dimension N into two problems with lower dimensions N1, N2.

Assuming4 that N1 +N2 = N and N1 ≥ N2, the sum of computation times of the two subproblems

should be bounded by O(2N1) +O(2N2). Due to the fact that

2N1 + 2N2 ≤ 2N1+1 ≤ 2N ,

we should expect the computation time consumed by HBB to be much faster than the standard BB

algorithm (and we will see later in this chapter that it is very much faster). However, up to this point,

HBB is still not complete as the way to acquire ᾱ1 is not given. This will be the topic of the next

section. After that, we present the experiment to verify the accelerated computation and investigate

3The computation time of the BB algorithm is unpredictable, but the worst-case is guarantee to be exponential time.

The time consumed by each WCN computational problem depends critically on problem parameters.
4The first assumption actually depends on several factors. However, in real WCN computations, we have observed

that, when HBB algorithm divides a large-scale problem into small-scale problems, the sum of dimensions of these divided

problems is much less than that of the original large-scale problem.
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Use ŷ(k−1) to get P′

k

Nk+1 = 2Nk

k = k + 1

Figure 5.11: Flowchart of HBB algorithm.

its efficiency.

5.5.1 Initiation of HBB

To start HBB, we need to determine ᾱ1, which is given in (5.5). Hence, our task is actually to

find appropriate β and N1. To have HBB function properly, it is necessary that ᾱ1 is less than M .

Otherwise, after the first outer iteration we will not be able to determine any element of ŷ(2) via

Theorem 5.2 because |x̂(1)| is always less than ᾱ1, which is greater than M . In practise, not only

we need ᾱ1 < M , but we also prefer to have ᾱ1 less than M to some extent, which will allow more

elements of ŷ(2) to be predetermined, making P′
2 to be of lower dimension. This specification induces

the following constraint on ᾱ1:

ᾱ1 ≤
(

γ

γ + 1

)
M (5.6)

where γ is any positive number. Note that γ/(γ + 1) is a scaling factor that ranges from zero to

one. We particularly introduce this form of scaling factor because the bounding constraint on ᾱ1 can

be conveniently adjusted; that is, if we prefer to gradually raise ᾱ1 towards M , we can specify γ as

an increasing sequence of positive integer: 1, 2, 3, . . . and so on. This constraint on the first AMT
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as in (5.6) directly suggests another equivalent constraint on N1. By combining (5.5) and (5.6), we

obtain

N1 ≥ β
(
γ + 1
γ

)(
TD

2M

)
. (5.7)

This relationship reveals the explicit trade-off between three free parameters, namely, N1, β and γ.

Firstly, as our primary goal is to speed-up the BB computation, we prefer N1 to be as small

as possible. Secondly, we prefer to have Assumption 5.2 valid for a particular WCN computational

problem. This is related to the requirement of β being large. However, this conflicts with the first

objective as it can be seen from (5.7) that larger β gives rise to larger N1. Another point to discuss

is the choice of γ. This parameter directly effects the dimensions of P1 (equals N1) and P′
2. If γ

is large, from (5.7), N1 can be made small but ᾱ1 will be large so that fewer elements of ŷ(2) can

be predetermined leaving P′
2 to be of high dimension. On the contrary, as mentioned earlier, if γ

is small, the dimension of P′
2 could be made smaller, but this would require N1 be somewhat large.

These specifications on N1, β and γ can be summarized in order of their priorities as follows:

1. N1 is relatively small;

2. γ should not be too large or small;

3. β is close to 2.

With the relation (5.7) available as a guideline, we can choose the proper parameters in accordance

with the WCN computational problem. In this work, we give a simple heuristic way to specify these

parameters for user convenience. After several executions of the random problems used in Section 5.4,

it is observed that the computation times for solving the problems with dimensions less than 20 are

within a minute or two on 2.8 GHz Pentium IV PC with 512 MB of RAM, which are acceptable to

work with. Hence, we prefer to makeN1 less than 20, if possible. However, ifN1 can be made lower,

we will either increase β or decrease γ. Let �·� stands for rounding to the nearest integer larger than

itself. With reference to (5.7), the parameter selection is established in five cases as follows

1. TD
2M > 20; in this case, N1 must be greater than 20. To keep N1 small for the sake of compu-

tation time, we need to set β = 1, and γ to be extremely large. From (5.7), this causes N1 to

approach TD/2M . As N1 has to be an integer, we select

N1 =
⌈
TD

2M

⌉
+ 1.

Then, from (5.5), we have ᾱ1 = TD/2N1. Note that we need not to obtain γ numerically as it

no longer plays any role since ᾱ1 has been determined already. It should be noted that because

γ is large, then perhaps only elements of ŷ(2) that are associated with elements of x̂(1) on the

boundary, may be determined.

2. 15 < TD
2M ≤ 20; in this case, N1 can be made lower than or equal to 20. Thus, this leaves some

margin for reducing γ, but this may causeN1 to exceed 20 for certain values of TD/2M . Here,
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we set γ = 10 and still β = 1. Thus, ᾱ1 can be obtained from (5.5) where N1 is calculated as

N1 =
⌈

11
20

(
TD

M

)⌉
.

In this case N1 range from 17 to 22.

3. 10 < TD
2M ≤ 15; N1 is moderate in this case, so we can both raise β and reduce γ a bit. The

parameters are chosen as β = 1.2 and γ = 9 so that ᾱ1 can be obtained from (5.5) where

N1 =
⌈

2
3

(
TD

M

)⌉
.

In this case N1 range from 14 to 20.

4. 5 < TD
2M ≤ 10; in this case N1 can be made small, which gives more room for increasing β

while decreasing γ. Here, we set β = 1.5 and γ = 5. Then, ᾱ1 is determined from (5.5) where

N1 =
⌈

9
10

(
TD

M

)⌉
.

In this case N1 range from 9 to 18.

5. TD
2M ≤ 5; for this last caseN1 can be made very small so we decrease γ down to 3 while raising

β up to 2. Then, ᾱ1 is obtained from (5.5) where

N1 =
⌈

4
3

(
TD

M

)⌉
.

In this case N1 is at most 14.

It is remarked that this is only a guideline for parameter selection. In Cases 3 and 4, users may reduce

β so as to decrease N1 further. However, as mentioned in Section 5.4, it should be kept in mind

that the optimized value may not be the actual global optimum if the chosen value of β does not

make WCN computational problem comply with Assumption 5.2. What we can say is that, from the

Figure 5.10, the coverage of the WCN computational problems given by Assumption 5.2 with β = 2

is 98.3% while the coverage given with β = 1 is 91.5%.

5.6 Numerical Examples

The three examples of uncertain linear systems employed in Section 5.1 are considered again. Their

impulse envelopes are depicted in Figures 4.3(a)–4.3(c). We exploit the standard BB algorithm devel-

oped in Section 5.1 to seek for the benchmark solution in order to validate HBB algorithm. Suppose

that HBB algorithm returns a vertex as the one corresponding to the global solution. If such vertex

is the same as that given by the standard BB algorithm, this evidently implies that HBB algorithm

functions correctly.

In particular, a validating experiment has been set up as follows. The bounds on input resemble

those in Section 5.2, that is, M = 1 and D = 1.2. The tested WCN computational problems are

obtained from combinations of these circumstances:
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• Both BB and HBB algorithms are used to solve the problems.

• WCNs are computed for system 1, 2, and 3.

• Problem dimensions N are selected from {18, 20, 22, 24, 26}.
This makes up 30 tested problems. The reason for choosing N to be even because we aim to run

HBB algorithm for at least two outer iterations; otherwise, if there is only one outer iteration, HBB

algorithm would function exactly like a standard BB computation. Hence, at least we need to have

N = 2N1, which makes N even. For N = 18, . . . , 26, we start with N1 = 9, . . . , 13, respectively.

For such cases, HBB algorithm takes only two outer iterations. For N = 48, we start with N = 12,

and then, HBB algorithm takes three outer iterations, that is, 48 = 12× 2(3−1). It is important to note

that for N beyond 52, the standard BB computation will suffer from data storage problem. This is

because the number of active nodes is getting larger plus that one node requires a space of 8N bytes

of storage. So, we choose N to be at most 48 in this experiment.

The computation times are recorded, and the solutions of HBB algorithm are checked with

those of the BB algorithm. We find that HBB algorithm issues the solutions similar to those given by

standard BB computation, and hence, it is justified. Let us consider especially the case whenN = 48.

Table 5.2 displays the computation times consumed by each method when applied to three uncertain

systems. For the BB computation, Figures 5.12(a)–5.12(f) illustrate the convergence of the upper and

lower bounds and the number of active nodes for the WCN computations of system 1 to system 3.

Notice how large the number of iteration and the total number of active nodes for the BB computation

of the WCN of system 1. This gives rise to its strongly impractical computation time as in Table 5.2.

The convergence of the two bound for the case of system 1 is magnified within the range of 1,000

iteration, and revealed in Figure 5.13 in order to clarify the magnitudes of these bounds during the

beginning of the algorithm.

Table 5.2: Comparison between the computation times of the BB algorithm and HBB algorithm used in

computing the WCN of the three uncertain systems when N = 48.

Methods System 1 System 2 System 3

BB algorithm 5 days 7.2 mins 7.4 mins

HBB algorithm 17.8 secs 10.1 secs 10.0 secs

It can be seen from Table 5.2 that HBB algorithm greatly saves CPU times in computing the

WCN of all example systems. The computation time of 5 days for system 1 is reduced to just 17

seconds. To reveal the effectiveness of HBB algorithm, we perform a very high-dimensional WCN

computation, i.e., N = 1280, starting with N1 = 10, for system 1. The computation takes 1 minute

48 seconds and the WCN is computed to be 5.192. The results are shown in Figure 5.14(a)–5.14(d).

The trend of the WCN in Figure 5.14(a) explicitly converges to 5.192. The termination criteria shown

in Figure 5.14(b) decreases in linear rate. The worst-case signals should be compared to Figure 5.7

as when N = 50.
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5.7 Summary

In this chapter, we apply the BB method, which is a global optimization approach, to compute the

WCN of uncertain linear systems. Our branching strategy proceeds along the most implausible com-

ponent first, which is more likely to give fast convergent rate. In numerical examples, the BB algo-

rithm efficiently yields global solutions for the WCN problems with dimensions up to 20. Moreover,

these solutions are consistent with the WCN given by the exhaustive search. For the systems satis-

fying certain assumptions, the acceleration of the BB method is proposed. Specifically, we invent

a double-level optimization, called HBB algorithm, which contains the BB computation as an inner

loop. The parameter selection is determined heuristically and the numerical examples are given to

exhibit the great improvement and advantage of the WCN computation through HBB algorithm over

the standard BB algorithm.
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Figure 5.12: For WCN computation with N = 48, the number of active nodes at each iteration: (a) system 1,

(c) system 2, and (e) system 3, and the convergence of upper and lower bounds: (b) system 1, (d) system 2, (f)

system 3. For the case of system 1, the number iteration is excessively high; the relevant computation time is

about 5 days while the other two cases take only about 7 minutes.
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Figure 5.14: Computation of the WCN of system 1 via HBB algorithm whenN = 1280: (a) the values of the

WCN converges to certain limit, (b) the value of |(p∗j+1 − p∗j )/p∗j | at jth iteration, (c) the cumulative number

of inner iterations (BB iterations) at each outer iteration (HBB iteration), and (d) the input, impulse response,

and output in the worst-case scenario.



CHAPTER VI

APPLICATION TO ACTIVE SUSPENSION SYSTEM

The research on vehicle suspension control has been studied by system engineers and researchers

for a few decades to achieve smooth suspension performance. The early approach employed by

several forerunners is the passive suspension control for which the suspension spring and damper

are carefully designed to serve passenger comfort Nonetheless, the absence of energy supplied to

suspension system has become the major drawback of the passive suspension technique, hence, the

demand for the active counterpart. The active suspension control, a modification of the common

passive suspension control system by augmenting a force actuator, exerts additional control effort to

the system which has brought in an improvement to counteract road roughness.

In a vehicle active suspension system, changes in road condition disturb vehicle travel, and

thus, regulatory control is required to suppress vertical acceleration for riding comfort, while the

relative movement between suspension structures is maintained at a safe distance to avoid structural

damage [61–63]. Typically, the disturbance generated by road roughness is observed as a finite energy

signal comes in ripples modelled as multiple pulses or salient portions of a sinusoidal curve [63–66].

However, in this dissertation, a harsher terrain is of interest which is modelled as a finite power signal

with bounded magnitude and rate. In such circumstance, the road surface deviates over the time from

the flat reference level. In addition to this disturbance, our suspension system is also incorporate a

load mass uncertainty due to unknown-yet-limited passengers’ weights in various situations. This

uncertain load mass often causes significant difficulty in suspension control [66].

In this chapter, we consider the WCNs, which are the maximum magnitude of vehicle chassis

acceleration and suspension deflection when the suspension system is subjected to road disturbances

and uncertainty in total vehicle mass. It indicates the performance of control system in rejecting

disturbances. Recall that the WCN generally represents the worst-case performance for which the

lower the value implies the better performance. Thus, it is usually desirable to keep the WCN at

minimal. As the dynamic model of the active suspension system considered here is linear time-

invariant (LTI), we are dealing with the WCN of LTI systems driven by disturbances with bounded

magnitudes and rates. The main contribution of this chapter is the application of the WCN to the

active suspension control system whose disturbance and uncertainty follow the performance analysis

framework. Specifically, a PID controller design method is employed in a multi-objective design

problem based on the WCN.

In Section 6.1, the dynamics of active suspension system and characteristics of road distur-

bances are described. The control design specifications are given in Section 6.2. In Section 6.3, a

ready-to-use search algorithm is employed to design a multi-objective PID controller for the active

suspension system. Lastly, the concluding remarks are given in Section 6.4.
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Figure 6.1: The schematic diagram of a vehicle active suspension system.

6.1 Dynamic Model of Active Suspension Systems

A simplified version of four-wheel vehicle suspension system, which is known as a quarter-car model,

is displayed in Figure 6.1 where solely one-dimensional movement is considered as that one wheel

is assumed to serve a quarter of a vehicle [61, 67]. In this picture, ks is the passive spring, and bs

is the damper representing a shock absorber. The spring kt stands for the tire compressibility. The

unsprung massmus denotes the mass of one wheel, while the total chassis mass (including load mass)

are divided by four to obtain the sprung mass ms. Part of the sprung mass is the load mass ml that

is assumed to vary from 10 to 200 kg, that is, the total load mass range from 40 to 800 kg per a full

vehicle.

In the same figure, u stands for the actuator force supplied to the system. The displacements

xus and xs are associated with the unsprung and sprung masses, respectively. The vehicle velocity

is denoted as v. Later in this section, this velocity will be used to elaborate the profile of road

disturbance. The parameters of the active suspension system are obtained from [67] and are given

below:

The spring coefficient: ks = 130, 000 N/m,

The damper coefficient: bs = 9, 800 N·s/m,

The spring coefficient: kt = 1, 000, 000 N/m,

The unsprung mass: mus = 20 kg,

The sprung mass: ms = ml + 375 kg,

The load mass: 10 ≤ ml ≤ 200 kg.

The deflections xs, xus are measured from their static positions. In addition, the contact of the tire

with the road surface is assumed to remain at all times. The dynamic equation of the active suspension
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is then of the form:

ẋ(t) = Ax(t) +B

[
u(t)
w(t)

]
,

y(t) = Cx(t)

where A, B, and C are respectively given by

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

− ks

ms
− bs
ms

ks

ms

bs
ms

0 0 0 1
ks

mus

bs
mus

−ks + kt

mus
− bs
mus

⎤
⎥⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0
1
ms

0 0
kt

mus
− 1
mus

⎤
⎥⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

1 0 0 0

− ks

ms
− bs
ms

ks

ms

bs
ms

1 0 −1 0

⎤
⎥⎥⎦ .

The state vector x = [xs, ẋs, xus, ẋus]T , and the performance output vector y = [xs, ẍs, xs−xus]T .

The physical meanings of these output elements are as follows:

xs: chassis (passenger) travel,

ẍs: chassis (passenger) acceleration,

xs − xus: suspension deflection.

It is assumed that only the first output element, the chassis displacement, is available for measurement

to compensate the system dynamics. As mentioned earlier, the characteristics of the road roughness

is modelled as a signal with bounded magnitude and rate. Consider earlier works, it is reasonable to

assume that the deviation of road surface does not exceed 10 cm, and its rate of change is within 1

m [64, 65]. For better insight, let the vehicle travel forwards with the velocity around v = 30 km/h.

This means that the road disturbance would displace from zero to its peak at 10 cm in at least about 83

cm of horizontal distance. This suggests that the maximum slope of the road surface is approximately

tan−1(0.1/0.83) = 7 degree for this assumption of v.

From the above discussion, the set of all admissible disturbance inputs, representing road

roughness, denoted byW which is expressed as

W � {w(t) : |w(t)| ≤ 0.1, |ẇ(t)| ≤ 1, ∀t ≥ 0} (6.1)

where w(t) = 0, ∀t < 0.

6.2 Control Design Specifications

The control design specifications for active suspension system are listed as follows.
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I In general, the control design aims to simultaneously minimize chassis acceleration and sus-

pension deflection for passenger comfort. However, it is a standard fact that small transfer

functions of both outputs cannot be achieved at the same time [68]. This brings about the trade-

off between both performance objectives. In this work, a specification is added to reduce the

passenger travel; hence, in brief, it is desirable to keep all performance outputs relatively small.

II As mentioned previously, the suspension deflection is subjected to a hard constraint to avoid

suspension bottoming which may lead to serious vehicle damage. The limit is selected to be 8

cm according to [66]. Thus, we have

|xs(t)− xus(t)| < 0.08, ∀t ≥ 0. (6.2)

III As opposed to passive suspension, active suspension needs to take into account the maximum

control effort which can be produced by the force actuator. The maximum control signal is

assumed to be around 5 kN, which consequently places a hard constraint on control input as

|u(t)| < 5, 000, ∀t ≥ 0. (6.3)

This practical saturation limit usually degrades the plausible regulatory performance that would be

achieved theoretically. Here, the WCN can be applied to control signal to address its limit. However,

for the sake of practicality, instead of computing the WCN of the control signal, we compute the

worst-case magnitude ξ(T ) as defined in (4.2) at T = 5. Even though the road roughness keep

fluctuating around the nominal level, we may assume that it should end at some finite time on actual

road surface. If the vehicle takes the same speed as earlier, i.e., v = 50 km/h, the period of 5

second implies the rough surface of the distance around 70 meters. It should be noted that using

T = 5 will not affect the computations of WCN of other signals as time constants of the suspension

systems linked with these signals are relatively small, i.e., all less than 1 second. An attempt to

attain a compromise between these performance specifications for the uncertain active suspension

system bring forth to a multi-objective robust controller design problem. The analysis of the worst-

case performance of uncertain linear systems in the next section would yield a means for possible

resolution.

6.3 PID Controller Design Procedure

A basic PID controller is used here to manifest an application of the WCN in controller design. The

block diagram of a classical PID control scheme is depicted in Figure 6.2. The active suspension

system transfer function matrix is represented by G(s,ml) where the second argument indicates the

dependency of the transfer function matrix on the uncertain passenger’s load mass. The PID controller

has a conventional parallel form with approximate derivative for practical implementation. Its transfer

function is as follows.

K

(
1 +

1
τIs

+
τDs

ετDs+ 1

)
. (6.4)
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The controller parameters to be designed are

K: the proportional gain,

τI : the reset time,

τD: the derivative time.

The approximation factor ε for the derivative action is fixed at 0.1. Let the controller of the form (6.4)

be parameterized with (K, τI , τD). Suppose that H(s,ml) stands for a SISO closed-loop system,

fromw(t) to either u(t) or any of performance outputs, evaluated at a fixed load massml. Let h(t,ml)

is the corresponding impulse response of H(s,ml) at each ml. To compute the WCN as described in

the foregoing chapter, the impulse envelope is first determined. Theoretically, the formulas for hu(t)

and hl(t) at each t are given by

hu(t) = max
10≤ml≤200

h(t,ml),

hl(t) = min
10≤ml≤200

h(t,ml)
(6.5)

In this work, h(t,ml) is evaluated at selected values of load mass, namely, ml = 10, 100, 150, and

200 kg. Then, the impulse response bounds at any time instant t are simply estimated as

hu(t) = max{h(t, 10), h(t, 100), h(t, 150), h(t, 200)},
hl(t) = min{h(t, 10), h(t, 100), h(t, 150), h(t, 200)}.

It should be noted that more samples of ml can be taken to compute impulse responses, yet the

estimations of hu(t) and hl(t) are improved only marginally. For the WCN computation, we choose

N = 384 because it is high enough to yield acceptable accuracy while the computation still consumes

reasonable time. The WCN is computed using HBB as described in Section 5.5. A procedure to

design the PID controller for the suspension system consists of three steps:

• Obtain a rough initial guess through Ziegler-Nichols (Z-N) open-loop test.

• Tune the controller roughly via trial-and-error method.

• Fine tune using a numerical search algorithm called the moving boundary process or MBP [69].

The MBP can be used in nonlinear feasibility problem. We must first supply a good initial point to

start this algorithm, and it will proceed by generating a series of trial points that may eventually be

feasible. If the process is trapped by local minimum, a new starting point needs to be supplied. The

algorithm, however, is not guaranteed to find the feasible point.

To begin PID controller design, the Ziegler-Nichols open-loop test is conducted by inject-

ing a unit-step control force u(t) into G(s,ml) and obtain the DC-gain of 1, the deadtime of 0.01

second, and the time constant of 0.03 second. These gives the following controller parameters:

(3.6, 0.02, 0.005). Nonetheless, this is not an appropriate choice as it causes violation in suspen-

sion deflection constraint (6.2). This problem is resolved by increasing τD and τI to 1 second, and

then raiseK significantly to 2000. To start the MBP, we roughly search for a suitable initial point via
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PID

xs(t)
−1

e(t) u(t)

w(t)

G(s, ml) ẍs(t)

xs(t)− xus(t)

Figure 6.2: The block diagram of classical PID control for an active suspension system.

trial-and-error method by observing the WCN of closed-loop mappings associated with the perfor-

mance outputs and adjust the PID parameters. It is found that both passenger travel and suspension

deflection exhibit similar trends against the changing controller parameters, while the passenger ac-

celeration take the inverse tendency. Furthermore, adjusting τD seems not much influence any control

performance except that of the suspension deflection. Hence, we try to tune K and τI first to achieve

a relatively good performance with control effort kept under its bound. Then, we adjust τD to correct

the suspension deflection. Note that it makes sense to raise bothK and τI to have better performance

while keeping the control effort minimum. During the tuning process, we also pay some attention to

transient behaviors, e.g., settling time and rise time, as they help improve overall performance, but are

not explicitly related to the WCN. As a result, we come up with a good starting point (3000, 30, 1).

Then, we input it in to the MBP. The search algorithm returns the PID parameters (4465, 32, 0.8).

Table 6.1 compares the performances between two suspension control systems with the PID parame-

ters obtained from the Z-N tuning method against that obtained from the MBP. These performances

are the WCNs of closed-loop mappings from w(t) to each of y(t) and to u(t). It can be seen that the

Z-N tuning method yields the closed-loop system that violates the design specification of the suspen-

sion deflection (6.2). On the other hand, the MBP yields the closed-loop system thats satisfies all the

design specifications with overall performances better than that via the Z-N tuning method.

Table 6.1: The WCNs of the PID-control active suspension systems when the PID parameters are obtained

from the Z-N tuning method and the MBP.

Design Control Chassis Chassis Suspension

Method force acceleration travel deflection

(kN) (m/s2) (cm) (cm)

Z-N 0.09 72.9 17.9 9.4

MBP 4.30 75.6 14.9 6.7

According to the PID parameters given by the MBP, a simulation is conducted for the closed-

loop active suspension system in comparison with a basic passive suspension system, of which control

force is absent. The testing road disturbance inW is randomly selected as depicted in Figure 6.3. We
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Figure 6.3: Disturbance representing road roughness profile used in simulation of suspension systems.

intend to have w(t) vanish after three second so as to observe the settling behaviors of the closed-loop

responses. In Figure 6.4(a) to 6.4(c), responses of chassis acceleration and suspension deflection are

shown for two load masses, namely, ml = 10 kg and 200 kg. It can be seen from the figure that

suspension deflections of all load masses lie within ±8 cm, satisfying (6.2). The control efforts also

conform with the bound (6.3) as depicted in Figure 6.5(a) to 6.5(c). The overall responses by the

active suspension control reveal superior performance than that of the passive counterpart.

6.4 Summary

A PID controller design for active suspension system is presented based on the WCN of uncertain LTI

systems under disturbances with magnitude and rate bounds. The design procedure comprises the ini-

tial use of the Z-N tuning rule, the trial-and-error method for rough tuning, and the fine tuning using

MBP. The designed controller enhances the passengers’ comfort under road roughness disturbances

and provides robustness against load mass uncertainty in active suspension system. The simulation

results confirm that the performances satisfy the multi-objective design specifications with the ro-

bustness against uncertain load mass. When the disturbance model is closely matched the actual road

condition, the closed-loop performance becomes realistic, and hence, the control design becomes

effective.
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Figure 6.4: Comparison of vehicle chassis accelerations and suspension travels between passive systems

(dotted line), and PID-control active systems (solid line): (a) ml = 10 kg, (b) ml = 100 kg, (c) ml = 150 kg,

(d) ml = 200 kg.



110

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec.)

C
on

tr
ol

 fo
rc

e 
(k

N
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec.)

C
on

tr
ol

 fo
rc

e 
(k

N
)

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec.)

C
on

tr
ol

 fo
rc

e 
(k

N
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec.)

C
on

tr
ol

 fo
rc

e 
(k

N
)

(c) (d)

Figure 6.5: Control forces, provided by the PID controller withK = 3794, τI = 46 and τD = 1.62, acting on

the active suspension control systems: (a) ml = 10 kg, (b) ml = 100 kg, (c) ml = 150 kg, (d) ml = 200 kg.

The force magnitudes are always maintained within the allowable limit of ±5 kN.



CHAPTER VII

CONCLUSIONS

7.1 Summary

In this dissertation, the WCN computational problem is discussed in twofold: when a linear system

of interest includes and does not include uncertainty. The latter case is considered first in Chapter 2

and 3, and the former case which is of major concern is considered in Chapter 4 and 5. When there is

no uncertainty the WCN computational problem is formulated as an optimal control problem and the

algorithm SPIS is introduced to compute the WCN. The algorithm is validated with the second-order

systems whose WCNs are known analytically. The accuracy of SPIS is also compared with another

standard computational method via discrete-time formulation. The validation results are positive.

In the presence of uncertainty, the optimal control formulation does not appear to be promis-

ing for WCN computation; hence, the discrete-time formulation is applied instead. The result is an

NP-hard problem with requiring function comparison at local solutions whose number grows ex-

ponentially with problem dimension. The upper and lower bounds of the WCN are presented and

are applied to the standard BB algorithm, which is later validated with the exhaustive search. The

results show that the BB computation functions correctly, but its execution speed is still impractical

for problem with high dimension. For such reason,the algorithm HBB is developed based on the BB

algorithm to accelerate the computation. HBB is in turn validated with the BB algorithm, resulting

as positive. The major achievement of this dissertation is the development of HBB itself. In this

Section 5.6, it is revealed that HBB remarkably reduces the computation time of five days to less than

half a minute. This makes the WCN computation of high-dimensional problem practical, thereby

control design problem based on the WCN objectives/constraints can be realized. The example of

PID controller tuning is illustrated in Chapter 6. The closed-loop responses of the PID control ac-

tive suspension system designed based on the WCN performance specifications are compared with

the (open loop) responses of the passive suspension system. The former control system gives per-

formances better than the latter, which proves the benefit of the WCN application in control system

design.

7.2 Further Improvements

There are several improvements that can be introduced to increase the efficiency of HBB in terms of

computation time and accuracy. These improvements are listed as follows:

1. In the discrete-time formulation, the method used in estimating the convolution integral∫ T

0
h(T − t)w(t)dt
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can be replaced with other technique that yields higher estimation accuracy. The simple one is

the Simpson’s rule whose estimation error is bounded by O(τ5
s φ

(4)) where

φ(t) = h(T − t) ∗ w(t).

In this case, w(3)(t) and w(4)(t) need to be defined properly for the inputs inW . However, this

may add only marginal improvement to the accuracy.

2. The upper bound of the WCN in Theorem 4.1 can be refined by adding other necessary condi-

tions. From (4.23), we have the following constraints on adjacent components of xi

xi+1 − xi ≤ τ D,

xi − xi+1 ≤ τ D,

for k = 1, . . . , N − 1. Combining these inequalities, It is obvious to see that, for any i and j

x̃i − x̃i+j ≤ jτD
x̃i − x̃i−j ≤ jτD.

By multiplying both sides of both equations with ỹi and re-arrange them, we obtain

x̃iỹi ≤ x̃i+j ỹi + jτD
x̃iỹi ≤ x̃i−j ỹi + jτD,

which consequently leads to

x̃kỹk ≤ (uk − lk)x̃k+m +mτD
x̃kỹk ≤ (uk − lk)x̃k−m +mτD.

Hence, the constraints on z̃i are derived as

z̃i ≤ (ui − li)x̃i+j + jτD
z̃i ≤ (ui − li)x̃i−j + jτD,

for each i and for a positive index j which is less than 2M/D. Let ĵ be the greatest integer less

than or equal to 2M/D. The refined upper bound is the optimal value of the following LP:

max τ(1T z̃ + lT x̃−M1T ỹ −M1T l)
s.t. 0 ≤ x̃i ≤ 2M, i = 1, . . . , N,

M − τD ≤ x̃1 ≤M + τD,
x̃i+1 − x̃i ≤ τD, i = 1, . . . , N − 1,
x̃i − x̃i+1 ≤ τD, i = 1, . . . , N − 1,
0 ≤ ỹi ≤ ui − li, i = 1, . . . , N,
z̃i ≤ (ui − li)x̃i, i = 1, . . . , N,
z̃i ≤ 2Mỹi, i = 1, . . . , N,
z̃i ≤ (ui − li)x̃i+j + jτD, i = 1, . . . , N, j = 1, . . . , ĵ
z̃i ≤ (ui − li)x̃i−j + jτD, i = 1, . . . , N, j = 1, . . . , ĵ

(7.1)

The total number of constraints in this LP is counted to be (2ĵ+ 8)N constraints. Even though

the refined upper bound is tighter, the computation time of this LP may be unnecessarily lengthy

compared to the LP in Theorem 4.1.
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3. In solving for the upper or lower bound of WCN, the LP solver, i.e., the interior point method,

can be modified. In particular, the solver of the unconstrained logarithmic-barrier optimiza-

tion may be changed from the standard Newton’s method to other Quasi-Newton methods that

reduce computational burden in each iteration by estimating the Hessian matrix instead of ob-

taining the exact one.

4. By taking hu(t) and hl(t) into account during the theoretical setup for the HBB algorithm, we

may be able to improve the accuracy of ᾱj , i.e., the AMT at the jth iteration. Specifically, the

quantities u(j), l(j), u(j+1), and l(j+1) should be exploited in Assumption 5.1 and 5.2. In fact, it

is preferable to construct a primary assumption on hu(t) and hl(t) that implies Assumption 5.1

and 5.2. As a result, Assumption 5.1 and 5.2 can then be restated as propositions or theorems

based on such a primary assumption.

5. To start the HBB algorithm, a more systematic way to choose N1, β and γ can be constructed

so that each term will be adjusted in order of their priority with respect to the size of TD/2M .

7.3 Possible Extensions

1. MIMO systems: The concept of the WCN can be applied to multiple-input multiple-output

(MIMO) strictly proper, finite-dimensional, causal, uncertain linear time-invariant systems with

proper definition of the WCN. We will briefly reveal that the WCN of MIMO systems can be

obtained from the WCN of SISO systems. Let h(t) ∈ Rm×p be the impulse response matrix

associated with a MIMO uncertain linear system with an input vector w(t) ∈ Rp, and output

vector z(t) ∈ Rm. Each element of w(t), denoted by wj(t) for j = 1, . . . , p, is assumed to fall

in the input setWj defined as

Wj � {wj(t) : wj(t) = 0, ∀t ≤ 0; |wj(t)| ≤Mj , |ẇj(t)| ≤ Dj , ∀t > 0}

where Mj , Dj are finite positive numbers. Let hij(t) represent the element of h(t) in the ith

row and the jth column. Furthermore, assume that hij(t) be in the set Hij defined as

Hij � {hij(t) : hij(t) ≤ hij(t) ≤ hij(t), ∀t}

where hij(t) ≤ hij(t), and hij(t), hij(t) ∈ H0. The WCN of MIMO systems is defined as

the maximum of the worst-case peak magnitude among the elements of z(t), denoted by zi(t).

This suggests that

‖h‖wc � max
1≤i≤m

sup
t≥0

sup
wj∈Wj

sup
hij∈Hij

|zi(t)|

= max
1≤i≤m

sup
t≥0

sup
wj∈Wj

sup
hij∈Hij

∣∣∣∣∣∣
p∑
j=1

[hij(t) ∗ wj(t)]
∣∣∣∣∣∣ .



114

If hij(t) and hij(t) are stable for every (i, j), it can be shown that

‖h‖wc = max
1≤i≤m

lim
t→∞ max

wj∈Wj

max
hij∈Hij

∣∣∣∣∣∣
p∑
j=1

[hij(t) ∗ wj(t)]
∣∣∣∣∣∣

≤ max
1≤i≤m

lim
t→∞ max

wj∈Wj

max
hij∈Hij

p∑
j=1

|hij(t) ∗ wj(t)|

= max
1≤i≤m

p∑
j=1

{
lim
t→∞ max

wj∈Wj

max
hij∈Hij

|hij(t) ∗ wj(t)|
}

= max
1≤i≤m

p∑
j=1

‖hij‖wc.

This concludes that

‖h‖wc ≤ max
1≤i≤m

p∑
j=1

‖hij‖wc. (7.2)

However, if we consider ŵj(t) and ĥij(t), which are the worst-case input and the worst-case

impulse response associated with the worst-case magnitude ξij(t) at t, it can bee seen that

lim
t→∞ ĥij(t) ∗ ŵj(t) = ‖hij‖wc (7.3)

for each (i, j). Since ŵj(t) ∈ Wj and ĥij(t) ∈ Hij , (7.3) suggests that

max
1≤i≤m

p∑
j=1

‖hij‖wc = max
1≤i≤m

p∑
j=1

{
lim
t→∞ ĥij(t) ∗ ŵj(t)

}

≤ max
1≤i≤m

p∑
j=1

{
lim
t→∞ max

wj∈Wj

max
hij∈Hij

[hij(t) ∗ wj(t)]
}

= max
1≤i≤m

lim
t→∞ max

wj∈Wj

max
hij∈Hij

p∑
j=1

[hij(t) ∗ wj(t)]

≤ max
1≤i≤m

lim
t→∞ max

wj∈Wj

max
hij∈Hij

∣∣∣∣∣∣
p∑
j=1

[hij(t) ∗ wj(t)]
∣∣∣∣∣∣

= ‖h‖wc. (7.4)

From (7.2) and (7.4), it follows that

‖h‖wc = max
1≤i≤m

p∑
j=1

‖hij‖wc. (7.5)

Hence, the WCN of MIMO systems, ‖h‖wc, can then be computed from that of the SISO

systems, ‖hij‖wc. The alogirthm to obtain the WCN of SISO uncertain linear systems is already

given in this dissertation.
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2. Delayed systems: The WCN can also be extended to delayed systems, which is a type of

infinite dimensional systems. For time delay systems, the WCN can be computed directly from

that of of the delay-free systems. Let h(t) be the strictly proper, causal, uncertain linear time-

invariant systems. Suppose that it is contained in H with the impulse envelope of (hu(t), hl(t)).

Let hd(t) be be defined in terms of h(t) with the time delay of τd, that is,

hd(t) = h(t− τd)
It can be easily seen that the uncertain delayed system hd(t) can be represented by the set Hd,

which contains all systems hd(t) such that

hl(t− τd) ≤ hd(t) ≤ hu(t− τd), ∀t.
The impulse envelope (hu(t − τd), hl(t− τd)) can be directly processed through the discrete-

time formulation as described in Section 4.2, and the WCN can be computed accordingly.

3. Biproper systems: When an uncertain linear system of interest is proper but not strictly proper,

the computation of the WCN becomes slightly different. The impulse response of biproper

systems comprises two parts: the strictly proper part, and the feedthrough term. Specifically,

let the impulse response of the biproper system be denoted by hb(t). We can always express

this response as

hb(t) = h(t) + dδ(t) (7.6)

where h(t) is an impulse response of an uncertain strictly proper system whose WCN can be

computed, δ(t) is the Dirac delta function, and d is the feedthrough constant. The uncertain

impulse response h(t) is assumed to be in a set H, and the constant d is assumed to be unknown

but lie in an interval [dmin, dmax]. The convolution integral hb(T ) ∗ w(T ) can be expressed as

hb(T ) ∗ w(T ) =
∫ T

0
hb(T − t)w(t)dt

=
∫ T

0
h(T − t)w(t)dt+ d

∫ T

0
δ(T − t)w(t)dt

= h(T ) ∗ w(T ) + dw(T ).

With this expression, the discretized problem can be formulated to compute ξ(T ) as follows:

max τs(xT y) + dxN
s.t. −M ≤ xi ≤M, i = 1, . . . , N,

−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1,
li ≤ yi ≤ ui, i = 1, . . . , N,
dmin ≤ d ≤ dmax.

where the vector quantities are defined from the discretized variables as

xi = w[i], i = 1, . . . , N,

yi = h[N − i], i = 1, . . . , N − 1, yN = 1
2h[0],

ui = hu[N − i], i = 1, . . . , N − 1, uN = 1
2hu[0],

li = hl[N − i], i = 1, . . . , N − 1, lN = 1
2hl[0].
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4. Asymmetric magnitude bound: In this dissertation, the disturbance magnitude is assumed to

be within the symmetric range [−M,+M ]. To generalize the WCN, we consider the situation

when the upper bound and the lower bound of the input magnitude are not symmetric, that is,

M1 ≤ w(t) ≤M2, ∀t

where M1 ≤ M2, but M1,M2 can have the same sign, and |M1| may not equal |M2|. In this

case, the absolute value operator in the worst-case magnitude definition (4.2) cannot be omitted,

and hence, we have

ξ(T ) = max
w∈W

max
h∈H

|h(T ) ∗ w(T )|.
Since the input bound is not symmetric, this maximization must be calculated on both negative

and positive sides. This means that

ξ(T ) = max
{

max
w∈W

max
h∈H

[h(T ) ∗ w(T )],max
w∈W

max
h∈H

−[h(T ) ∗ w(T )]
}
.

Thus, to compute ξ(T ), we need to solve two maximization problems where the objective

functions have the opposite signs, but the feasible sets are the same. Therefore, it suffices to

discuss only

max
w∈W

max
h∈H

[h(T ) ∗ w(T )], (7.7)

while the other maximization can be obtained in a parallel way by adding the minus sign to the

objective function of (7.7). The maximization of the convolution integral
∫ T
0 h(T − t)w(t)dt

in (7.7) can be written as

max τsx
T y

s.t. M1 ≤ xi ≤M2, i = 1, . . . , N,
−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1,
li ≤ yi ≤ ui, i = 1, . . . , N

where the vector quantities are defined from the discretized variables as

xi = w[i], i = 1, . . . , N,

yi = h[N − i], i = 1, . . . , N − 1, yN = 1
2h[0],

ui = hu[N − i], i = 1, . . . , N − 1, uN = 1
2hu[0],

li = hl[N − i], i = 1, . . . , N − 1, lN = 1
2hl[0].

The convex maximization problem (4.31) can be formulated in the similar fashion. However,

to compute the upper bound of the WCN, the change of coordinate of x in (4.32) should be

modified as

x̃ = x−M21.

The computation of upper and lower bounds can then be proceeded as mentioned in Chapter 4.
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5. Nonzero input initial condition: When computing the WCN, the uncertain linear system is

assumed to be at rest, that is, all initial conditions are zero. In addition, the disturbance is

assumed to start from zero, i.e., w(0) = 0. In many practical situations, we may want to com-

pute the WCN when disturbances start from nonzero initial conditions. Before we proceed,

an additional assumption regarding the WCN computation should be made. Given the conti-

nuity of the disturbance signal, nonzero initial condition implies that w(t) cannot equal zero

all the time before t = 0. Nevertheless, we assume that the information on disturbance input

is available from t = 0 onwards, and the convolution h(T ) ∗ w(T ) starts from t = 0, i.e.,

h(T )∗w(T ) =
∫ T
0 h(T − t)w(t)dt, which means that the contribution from part of w(t) where

t < 0 is omitted. To compute the WCN in this case, we rewrite the convolution integral as

h(T ) ∗ w(T ) =
∫ T

0
h(T − t)w(t)dt

=
∫ T

0
h(T − t)w̃(t)dt+

∫ T

0
h(T − t)w0dt

= h(T ) ∗ w̃(T ) +
∫ T

0
h(t)w0dt

= h(T ) ∗ w̃(T ) + w0s(T )

where w̃(t) = w(t) − w0, w0 = w(0), and s(t) =
∫ t
0 h(τ)dτ is the step response of the

system. The temporary input w̃ has the zero initial condition, i.e., w̃(0) = 0, but the bound on

magnitude of w̃(t) becomes asymmetric

−M − w0 ≤ w̃(t) ≤M − w0, ∀t.
Following the argument in the previous topic, the worst-case magnitude can be obtained as

ξ(T ) = max
{

max
w∈W

max
h∈H

ψ(T ),max
w∈W

max
h∈H

−ψ(T )
}

where ψ(t) = |h(t)∗ w̃(t)+w0s(t)|. Consider only the maximization on the positive side, that

is, maxw∈W maxh∈H ψ(T ). This maximization problem can be formulated as

max τs(x+ w01)T y
s.t. −M − w0 ≤ xi ≤M − w0, i = 1, . . . , N,

−τsD ≤ x1 ≤ τsD,
−τsD ≤ xi+1 − xi ≤ τsD, i = 1, . . . , N − 1,
li ≤ yi ≤ ui, i = 1, . . . , N

where the vector quantities are defined from the discretized variables as

xi = w̃[i], i = 1, . . . , N,

yi = h[N − i], i = 1, . . . , N − 1, yN = 1
2h[0],

ui = hu[N − i], i = 1, . . . , N − 1, uN = 1
2hu[0],

li = hl[N − i], i = 1, . . . , N − 1, lN = 1
2hl[0].

The convex maximization problem (4.31) can be formulated in the same manner, and the upper

bound of the WCN can be calculated with the coordinate shift of x in (4.32) being modified as

x̃ = x+ (M + w0)1.
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6. Other control design methods: There are several systems which are subjected to the distur-

bance and uncertainty with the forms considered in this dissertation. Control problems can be

set up for these systems to investigate control performances that can be improved when the

WCN specifications are employed. Furthermore, more rigorous control design techniques can

be applied to these control problems instead of the PID controller tuning proposed in Chapter 6

for more systematic ways to solve for the controllers.
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APPENDIX A

A Bound on Truncation Error

We will derive the result of the more general case first, i.e., the case of uncertain systems. Then,

the case of no uncertainty can be obtained by specializing this result. Assume that h(t) is a stable

uncertain system associated with H. We will show that maxh∈H

∫∞
T |h(τ)|dτ is a bound on the

truncation error for the estimation of ‖h‖wc by ξ(T ) where T is the terminal time. Specifically, we

need to show that

|‖h‖wc − ξ(T )| ≤M max
h∈H

∫ ∞

T
|h(τ)|dτ. (A.1)

To see this, let us consider any w(t) ∈ W, h(t) ∈ H, and t > T . We have

h(t) ∗ w(t) =
∫ t

0
h(τ)w(t− τ)dτ

≤ max
w∈W

max
h∈H

(∫ T

0
h(τ)w(t− τ)dτ +

∫ t

T
h(τ)w(t− τ)dτ

)

≤ max
w∈W

max
h∈H

∫ T

0
h(τ)w(t− τ)dτ + max

w∈W
max
h∈H

∫ t

T
h(τ)w(t− τ)dτ

≤ ξ(T ) +M max
h∈H

∫ t

T
|h(τ)|dτ (A.2)

Recall that ξ(t) = maxw∈W maxh∈H

∫ t
0 h(τ)w(t − τ)dτ . Since the inequality (A.2) holds for any

w(t) ∈ W and h(t) ∈ H, we have

ξ(t) = max
w∈W

max
h∈H

h(t) ∗ w(t) ≤ ξ(T ) +M max
h∈H

∫ t

T
|h(τ)|dτ.

By limiting t to infinity on both sides of this equation, it is readily seen that

‖h‖wc ≤ ξ(T ) +M max
h∈H

∫ ∞

T
|h(τ)|dτ

‖h‖wc − ξ(T ) ≤ M max
h∈H

∫ ∞

T
|h(τ)|dτ. (A.3)

From the monotonicity of ξ(T ) in Section 4.1.1 and the definition of ‖h‖wc in (4.3), we have ‖h‖wc ≥
ξ(T ), and hence, |‖h‖wc − ξ(T )| = ‖h‖wc − ξ(T ). Thus, the statement (A.1) is verified.

The result for linear systems h(t) without uncertainty can be obtained by thinking of the char-

acterizing set H as containing only a single system h(t). This suggests that

max
h∈H

∫ ∞

T
|h(τ)|dτ =

∫ ∞

T
|h(τ)|dτ,

and (A.3) becomes

‖h‖wc − ξ(T ) ≤M
∫ ∞

T
|h(τ)|dτ.
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It should be noted that this bound on truncation error cannot be conveniently exploited to determine

a suitable terminal time T because it needs computation of the integration with unbounded limit. Al-

though the integration can be obtained analytically given the closed form of h(t), this method is time

consuming, and hence, not practical to use with arbitrary choice of h(t). For this reason, a computable

bound on truncation error for linear systems without uncertainty is given in Section (3.1.2), and that

for uncertain linear systems is given in Section (4.1.1).



APPENDIX B

Proofs Relating to the Successive Pang Interval Search (SPIS)

Proof of Lemma 3.1: Consider the first case that π′i ≡ π′′j but π′i �= π′′j . To verify this, we will show

that (i) implies (ii), and the negation of (i) implies the negation of (ii).

(i)→(ii) Since πc is an up segment, then s̃(T − t′0) > s̃(T − t′′0). Suppose that the segment π′i
precedes π′′j . If π′i is an even segment, then from Proposition 3.1, π′i is an up segment. This means

s̃(T − t) crosses over s̃(T − t′0) upwards. Since s̃(T − t′0) and s̃(T − t′′0) do not cut through any

segment between π′i and π′′j , such segment must be located above s̃(T − t′0) and s̃(T − t′′0). Thus,

s̃(T − t) cannot cross s̃(T − t′′0) in π′′j unless it crosses s̃(T − t′0) first, but this is impossible since

s̃(T−t′0) does not cut through segments between π′i and π′′j . Therefore, π′i cannot be an even segment.

For this reason, π′i must be an odd segment which is, in this particular case, a down segment.

Then, s̃(T − t) crosses over s̃(T − t′0) downwards and stay below s̃(T − t′0) and above s̃(T − t′′0)
along every segment between π′i and π′′j . Therefore, if s̃(T − t) is about to pass s̃(T − t′′0), it must

pass downwards. Thus, π′′j is an odd segment too.

(ii)→(i) Next, suppose contrarily that π′′j precedes π′i. From Proposition 3.1, if π′′j is an odd

segment, then is a down segment. This means s̃(T − t) passes over s̃(T − t′′0) downwards and stay

below s̃(T − t′′0). Therefore, if s̃(T − t) is about to cross s̃(T − t′0) in π′i, it must first cross s̃(T − t′′0),
but this violates the assumption that π′i ≡ π′′j . Hence, π′′j cannot be an odd segment. Now suppose

that π′′j is an even segment, then it is an up segment. This implies that s̃(T − t) passes over s̃(T − t′′0)
upwards and stays below and s̃(T − t′0). For this reason, if s̃(T − t) is about to cross over s̃(T − t′0),
it must cross upwards. Hence, π′i is also an even segment.

Now consider the case that π′i = π′′j . This means that π′i and π′′j are of the same direction. Since

we are given that π′0 = π′′0 , from Proposition 3.1, π′i is an odd segment if and only if π′′j is.

Subsequently, we will establish (iii) and (iv). For the case that π′i ≡ π′′j but π′i �= π′′j , if π′i, π
′′
j

are odd segments, then π′i precedes π′′j , which means t′i < t′′j . In contrast, If π′i, π
′′
j are even segments,

then π′′j precedes π′i, and t′i > t′′j . For the case that π′i = π′′j , because π′0 (= π′′0 ) is assumed to be an

up segment, if both π′i, π
′′
j are odd segments, then both are down segments. In addition, recall that

s̃(T − t′0) > s̃(T − t′′0). This implies that s̃(T − t′i) > s̃(T − t′′j ), and t′i < t′′j by the definition

of down segments. On the other hand, if both π′i, π
′′
j are even segments, then both are up segments,

which means s̃(T − t′i) > s̃(T − t′′j ) and t′i > t′′j . �

Proof of Corollary 3.1: Suppose that ∃π′i1 ∈ Π′, ∃π′′j1 ∈ Π′′ such that π′i1 ≡ π′′j1 . First, we will show

that ∀π′i2 ∈ Π′, π′i2 �≡ π′′j1 if π′i2 �= π′i1 . To see this, assume contrarily that ∃π′i2 ∈ Π′ such that

π′i2 �= π′i1 and π′i2 ≡ π′′j1 . Then, there are four presumable cases:

1. π′i2 = π′′j1 = π′i1 ,



128

2. π′i2 �= π′′j1 = π′i1 ,

3. π′i2 = π′′j1 �= π′i1 ,

4. π′i2 �= π′′j1 �= π′i1 .

The first case contradicts the assumption that π′i2 �= π′i1 . For the second case, since π′′j1 = π′i1
and π′i1 �= π′i2 , then by Definition 3.5, π′i2 cannot also be equivalent to π′′j1 since π′i1 is situated at

π′′j1 already. This contradicts the assumption that π′i2 ≡ π′′j1 . Contradiction of the third case can

be inferred in the same manner as the second case. For the last case, we make use of the preceding

lemma. Note that π′i2 cannot lie between π′i1 and π′′j1 since it would invalidate the equivalence between

π′i1 and π′′j1 . Therefore, π′i1 and π′i2 must be located on the different sides with respect to π′′j1 . Now,

assume that π′i1 precedes π′′j1 , which in turn precedes π′i2 . From Lemma 3.1, it can be concluded that

π′′j1 is an odd segment since π′i1 precedes π′′j1 . However, it can be concluded as well that π′′j1 is an even

segment since π′′j1 precedes π′i2 , hence, a contradiction. The same contradiction arises if we assume

that π′i2 precedes π′′j1 , which in turn precedes π′ii .
It can be proved using the same argument that ∀π′′j2 ∈ Π′′, π′′j2 �≡ π′i1 if π′′j2 �= π′′j1 . Finally, we

conclude that the equivalent pair (π′i1 , π
′′
j1

) is unique. �

Proof of Lemma 3.2: As we have obtained a set of unique equivalent pairs Φab, consider one of those

pairs, which are not the first member of Φab, denoted by (π′i, π
′′
j ). From Lemma 3.1, the segments

π′i, π
′′
j must be either odd or even segments at the same time. This applies to the segments π′k, π

′′
l as

well. The claim (i) will be verified by contradiction.

(i) First, we examine the case that i, j are odd. Assume contrarily that k, l are odd too. We will

show that there exists an equivalent pair, in Φab, between (π′i, π
′′
j ) and (π′k, π

′′
l ), which contradicts the

assumption that these pairs are contiguous in Φab. Since the only case that πc is an up segment is

considered, π′i, π
′′
j , π

′
k, π

′′
l are all down segments, by Proposition 3.1. Furthermore, from Lemma 3.1,

π′k precedes π′′l and π′i precedes π′′j . Thus, if we want to consider any segment between (π′i, π
′′
j ) and

(π′k, π
′′
l ), it suffices to consider only between π′′l and π′i.
The response s̃(T−t) crosses over s̃(T−t′′0) in π′′l downwards, and then crosses over s̃(T−t′0)

in π′i, downwards again. Since s̃(T − t′′0) < s̃(T − t′0) (because πc is an up segment), this obviously

implies that the response s̃(T − t) after π′′l must cross over s̃(T − t′′0) upwards, and s̃(T − t′0) before it

can cross s̃(T − t′0) downwards in π′i. This suggests that there exist segments π′′jν ∈ Π′′ and π′iμ ∈ Π′

inside which s̃(T − t) crosses upwards over s̃(T − t′′0) and s̃(T − t′0), respectively.

Now, moving backwards from π′i one segment at a time to π′k, we may find a finite sequence

of {π′iμ} in which s̃(T − t) crosses over s̃(T − t′′0) upwards. Then, following the same procedure,

yet with forward direction, from π′′l to π′′j , we obtain another finite sequence {π′′jν}. Start from

{π′′j1} and {π′i1}, recalling that {π′i1} is enumerated backwards. If there is any element in {π′iμ}, say

{π′i2}, which is located between {π′′j1} and {π′i1}, then we pick up that segment and drop out {π′i1}.
Similarly, if such element is in {π′′iν}, say {π′′j2}, then we pick up this element and drop out {π′′j1}.
Continuing this process, we can always find an adjacent pair (π′iμ , π

′′
jν

), between which there is no
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other element in either {π′iμ} or {π′′jν}. Since both π′iμ and π′′jν are up segment, by Definition 3.5,

π′iμ ≡ π′′jν , and both are situated between (π′k, π
′′
l ) and (π′i, π

′′
j ), hence, a contradiction.

For the case that i, j are even, we assume contrarily that k, l are also even. The concept is

analogous to the case that i, j are odd, so the proof is left to the reader.

(ii) If π′i, π
′′
j are even, then π′k, π

′′
l are odd, hence, down segments. By lemma 3.1, we can see

that s̃(T −t) passes downwards over s̃(T −t′0) and then s̃(T −t′′0). Recall that s̃(T −t′′0) < s̃(T −t′0).
Therefore, in order for s̃(T − t) to cross over s̃(T − t′0) upwards in π′k+1, it must first cross over

s̃(T − t′′0) upwards in some preceding segments. Let π′′l be the latest one of such segments. This

means there is no cutting segment in Π′ or Π′′ located between π′′j and π′k+1 (except themselves),

which implies that π′k+1 ≡ π′′j . Since this is the first equivalent pair next to (π′k, π
′′
l ), we conclude

that i = k + 1.

(iii) The third claim can be verified with the same manner. If π′i, π
′′
j are odd, then π′k, π

′′
l are

even and are up segments. Hence, s̃(T − t) passes over s̃(T − t′′0) upwards and then s̃(T − t′0) by

Lemma 3.1. Before s̃(T−t) can cross over s̃(T−t′′0) downwards in π′′l+1, it must cross over s̃(T−t′0)
downwards in any nearest foregoing segment, say π′i. This leads to a conclusion that π′i ≡ π′′j where

j = l + 1. �

Proof of Proposition 3.2: Assume that (π′i, π
′′
j ) and (π′k, π

′′
l ) are any two contiguous equivalent pairs

in Φab such that (π′k, π
′′
l ) precedes (π′i, π

′′
j ). For simplicity of discussion, let O′

ab and E ′ab be sets of

odd and even indices to the first member of each pair in Φab. Also, define O′′
ab and E ′′ab similarly, but

with respect to the second member. By means of these sets, we can decompose θ′a and θ′′b as follows.

θ′a =
∑
i∈O′

ab

i∑
m=k+1

(−1)m+1Δt′m −
∑
i∈E ′

ab

i∑
m=k+1

(−1)m+1Δt′m,

θ′′b =
∑
j∈O′′

ab

j∑
m=l+1

(−1)m+1Δt′′m −
∑
j∈E ′′

ab

j∑
m=l+1

(−1)m+1Δt′′m.

Using Lemma 3.2, these equations are simplified as follows.

θ′a = −
∑
i∈E ′

ab

Δt′i +
∑
i∈O′

ab

i∑
m=k+1

(−1)m+1Δt′m, (B.1)

θ′′b =
∑
j∈O′′

ab

Δt′′j −
∑
j∈E ′′

ab

j∑
m=l+1

(−1)m+1Δt′′m. (B.2)

Consider
∑i

m=k+1(−1)m+1Δt′m where i ∈ O′
ab. As discussed in Lemma 3.2, we can show that

i∑
m=k+1

(−1)m+1Δt′m ≤
i∑

m=k+1

Δt′m = t′i − t′k < t′′j − t′′l = t′′j − t′′j−1 = Δt′′j .
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The last inequality holds due to statements (iii) and (iv) in Lemma 3.1 and statement (iii) in Lemma 3.2.

In an analogous fashion, let consider j ∈ E ′′ab. We can show that

j∑
m=l+1

(−1)m+1Δt′′m ≤
j∑

m=l+1

Δt′′m = t′′j − t′′l < t′i − t′k = t′i − t′i−1 = Δt′i, (B.4)

which also makes use of statements (iii) and (iv) in Lemma 3.1 and statement (ii) in Lemma 3.2. Sub-

stitute (B.3) and (B.4) in (B.1) and compare the result with (B.2). This straightforwardly yields (3.5).

�

Proof of Corollary 3.2: By Proposition 3.2, we obtain the following fact.

θ′k < θ′′l . (B.5)

The proof of the previous proposition will be imitated in each case.

(i) Let l + 1 ≤ ĵ ≤ j. By statement (i) in Lemma 3.2, if i, j are even, then k, l are odd. By

statements (iii) and (iv) in Lemma 3.1 and statement (ii) in Lemma 3.2, we can show that

ĵ∑
m=l+1

(−1)m+1Δt′′m ≤
ĵ∑

m=l+1

Δt′′m ≤
j∑

m=l+1

Δt′′m = t′′j − t′′l < t′i − t′k = t′i − t′i−1 = Δt′i. (B.6)

Since l + 1 are even, from (B.5) and (B.6) we have immediately

θ′′ĵ = θ′′l −
ĵ∑

m=l+1

(−1)m+1Δt′′m > θ′k −Δt′i = θ′i−1 −Δt′i = θ′i. (B.7)

This proves (3.6).

(ii) With similar fashion, let k + 1 ≤ ı̂ ≤ i. By statement (i) in Lemma 3.2, if i, j are odd,

then k, l are even. By statements (iii) and (iv) in Lemma 3.1 and statement (iii) in Lemma 3.2, we can

show that

ı̂∑
m=k+1

(−1)m+1Δt′m ≤
ı̂∑

m=k+1

Δt′m ≤
i∑

m=k+1

Δt′m = t′i− t′k < t′′j − t′′l = t′′j − t′′j−1 = Δt′′j . (B.8)

Since k + 1 are odd, from (B.5) and (B.8) we have

θ′ı̂ = θ′k +
ı̂∑

m=k+1

(−1)m+1Δt′m < θ′′l + Δt′′j = θ′′j−1 + Δt′′j = θ′′j . (B.9)

This verifies (3.7). �



APPENDIX C

Closed-Form Solutions for the WCN of Second-Order Linear Systems

From the earlier works, there has not been any closed-form formulas of the WCN. To the best

of our knowledge, Lane [19] partially gave a result regarding the closed-form solution of the WCN.

He considered the time responses in terms of a specific exponentially-decaying sinusoidal function

and gave the analytical solutions of ξ(t) for fixed t. However, his solutions appear in the form of a

finite summation of integral, which is not an explicit formula of the WCN.

In this chapter, we consider the WCN of second-order convolution systems which are divided

into overdamped, underdamped, and critically-damped and lightly-damped systems. The character-

istics of the worst-case input follow the previous development in Section 2.3. Then we derive the

worst-case inputs and obtain explicit expressions for the WCN.

Bounds on the WCN

Let us introduce an upper bound and a lower bound of ξ(t), which is defined in (2.2). An upper bound

of ξ(t) denoted by ξ(t) is of the form

ξ(t) = max
w∈W

[h(t) ∗ w(t)] (C.1)

where W is a set similar to W but extends to the input with single discontinuity at t = 0. Since

W ⊂ W , it is obvious that ξ(t) ≤ ξ(t) for any t. In addition, let w(t) be the worst-case input inW
that yields ξ(t). On the other hand, a simple lower bound ξ(t) can be readily obtained as

ξ(t) = h(t) ∗ w(t) (C.2)

where w(t) is defined as

w(t) �

⎧⎪⎪⎨
⎪⎪⎩

0, t < 0,
D
Mw(MD )t, 0 ≤ t < M

D ,

w(t), t ≥ M
D .

(C.3)

To see that this is a valid lower bound, we will show that w(t) lies in W . In the definition (C.3),

(D/M)w(M/D)t is the linear function starting from zero when t = 0 and converging to w(M/D)

as t approaches M/D. This implies that w(0) = 0, and the left and right limits of w(t) at t = M/D

match. Thus, w(t) is continuous for all t. In addition, for 0 ≤ t < M/D, if w(M/D) > 0, then

w(t) > 0 and

w(t) =
D

M
w

(
M

D

)
t ≤ w

(
M

D

)
≤M.

If w(M/D) ≤ 0, then w(t) ≤ 0 and

w(t) =
D

M
w

(
D

M

)
t ≥ w

(
M

D

)
≥ −M.
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Thus, |w(t)| ≤ M for t ≥ 0. Furthermore, since the rate of change of w(t) for 0 ≤ t < M/D is

(D/M)w(M/D), we have

|ẇ(t)| =
∣∣∣∣DMw

(
D

M

)∣∣∣∣ ≤ D.
Thus, |ẇ(t)| ≤ D for t ≥ 0. Therefore, it can be concluded that w(t) ∈ W . By the definition of ξ(t)

in (2.2), we have ξ(t) ≥ ξ(t) for all t.

These upper and lower bounds are useful because they converge to the same value when t→∞
if h(t) is BIBO stable. To show this, consider the difference ξ(t)− ξ(t). From (C.1), (C.2), and (C.3)

it can be shown that, for t ≥M/D,

ξ(t)− ξ(t) = h(t) ∗ [w(t)− w(t)]

=
∫ t

0
h(t− τ)[w(τ)− w(τ)]dτ.

Since the difference between w(τ) and w(τ) is not greater than M , we have

ξ(t)− ξ(t) ≤ M

∫ M
D

0
|h(t− τ)|dτ

= M

∫ t

t−M
D

|h(τ)|dτ.

It is obvious that the integral in the last term vanishes as t → ∞, provided that
∫∞
0 |h(τ)|dτ < ∞.

Hence,

lim
t→∞ ξ(t) = lim

t→∞ ξ(t). (C.4)

Since we have

ξ(t) ≤ ξ(t) ≤ ξ(t),
from (2.5) and (C.4), it can be shown that

‖h‖wc = lim
t→∞ ξ(t) = lim

t→∞ ξ(t). (C.5)

At this point, we explain why we need the input continuity at t = 0 in our problem formulation.

Recall that without the initial condition, the relation (2.5) would not hold, and this would consequently

invalidate (C.5).

Characteristics of the Worst-Case Input for Second-Order Linear Systems

The relation (C.5) is quite useful since it allows us to deal with the characterization of the worst-case

input w(t) instead of ŵ(t). Obviously, the expression of w(t) is analytically simpler to construct

for a second-order convolution system. Henceforth, let the definitions and theorems in Chapter 2 be

applied to w(t) instead of ŵ(t) for the ease of discussion.

Next, we derive the characteristics of the worst-case input w(t) for the second-order convo-

lution systems by applying Theorem 2.1–2.3. Consider the second-order system in (3.23), which

is

H(s) =
ω2

n

s2 + 2ζωns+ ω2
n
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where ωn is the natural frequency and ζ is the damping ratio. Note that the second-order system

in this form has a unit dc-gain. For the system with different gain, its WCN can be computed with

scaling. Next, we categorize the system with respect to ωn and ζ. Let Tc equal 2M/D. If ωn ≤ π/Tc,
the system (3.23) can be divided into three common cases as follows:

1. Underdamped case: 0 < ζ < 1,

2. Critically-damped case: ζ = 1,

3. Overdamped case: ζ > 1,

If ωn > π/Tc, define ζc =
√

1− (π/Tcωn)2. The system (3.23) can be divided into three cases as

follows:

1. Lightly-damped case: 0 < ζ ≤ ζc
2. Underdamped case: ζc < ζ < 1,

3. Critically-damped and overdamped case: ζ ≥ 1,

The second and third cases are the standard classifications, while the first case is purposefully distin-

guished from the second case. The reason behind this will become clear later.

We would like to point out the approach presented in [19] could not render the formulas of the

WCN. In the former work, the step response under consideration has the form 1− e−t sin(ωt+π/2),

for some ω. This step response cannot be realized by any second-order linear system. In addition,

there was no formulas explicitly given for the WCN.

Lightly-damped Systems

For better understanding, we discuss the lightly-damped case first, and then, move to the underdamped

case. The class of lightly-damped systems considered here consists of systems whose damping ratio

is less than ζc. When ζ is relatively small, the impulse response h(t) oscillates more rapidly, which

makes it harder for an input to match the oscillatory pattern of h(t). Thus, we must sort out the case

when ζ is very small from the typical underdamped case.

We will give the worst-case input w(t), and then explain how it satisfies Theorem 2.1–2.3.

Here, we present w(t) when the final time T falls into certain time instant which is defined as

Tn =
nπ − φ
ωd

, n = 1, 2, . . .

where ωd = ωn

√
1− ζ2 is the damped natural frequency, and φ = tan−1

(√
1− ζ2/ζ

)
. Note that

the step response corresponding to the lightly-damped system (and the underdamped system) takes

the form

s(t) = 1− αe−σt sin(ωdt+ φ). (C.6)

It is obvious to see that

s(Tn) = 1, n = 1, 2, . . .
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Figure 1: The worst-case input of a lightly-damped second-order system, i.e., ωd ≤ πD/2M .

As an example, the input w(t) is displayed in Figure 1, when the final time is T equals T7. Notice

that

s(T ) = s(T − t1) = . . . = s(T − t6) = 1.

In this Figure, the input w(t) has two intervals, starting with a pang interval [0, t6] and ending with a

bang interval (t6, T ]. If we reverse the direction of the time axis using τ = T − t, and also enumerate

backward, e.g., so that τ1 = t6. It is obvious that in general the initial instant τ ′i and the terminal

instant τ ′′i of each sloping segment are

τ ′i =
iπ − φ
ωd

, i = 1, . . . , n− 1

τ ′′i =
(i+ 1)π − φ

ωd
, i = 1, . . . , n− 1.

(C.7)

This is because s(τ ′i) = s(τ ′′i ) = 1 for i = 1, . . . , n− 1.

At this point, we elaborate how w(t) as shown in Figure 1 complies with the worst-case input

characteristics. The boundary condition in Theorem 2.1 is satisfied since s(T ) = s(T − t6). The

derivative condition in Theorem 2.2 is also satisfied because the sign of ẇ(t) is identical to the sign of

s(T−t)−1 in each sloping segment. Lastly, the magnitude ofw(t) in the bang interval (t6, T ] satisfies

Theorem 2.3 since its sign is opposite to that of the slope of s(T − t). Note that ds(T − t)/dt =

−h(T − t).
The reason for distinguishing the lightly-damped case from the underdamped case becomes

clear as we observe that the input pattern in Figure 1 is no longer valid if the damped natural frequency
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ωd is so small. If the oscillating period, 2π/ωd, is large, then the sloping segments of w(t) cannot be

contained in the envelope ±M . In particular, the system is considered to be lightly-damped if π/ωd

is less than or equal to Tc, which is equivalent to saying that ζ ≤ ζc.

Underdamped Systems

As mentioned earlier, for the underdamped case that ζc < ζ < 1, the damped natural frequency ωd

of the system is small enough (or ζ is large enough), so that the input with the rate of change equal

to D can catch up with the system response. From the definition of Tn in the previous section, let

us consider an example of response depicted in Figure 2. With T = T5, we find the corresponding

worst-case input w(t). As shown in Figure 2, w(t) stays at the magnitude boundaries for some times.

There are five bang intervals alternating with four pang intervals. The length of each pang interval is

equal to Tc, which is the time required for w(t) to move from one boundary to the other.

In general, the initial and terminal times of each pang interval can be obtained as follows.

Reverse the time axis of s(T − t) using τ = T − t, and then consider s(τ) instead. Let τ ′ and

τ ′′ where τ ′′ > τ ′ be time instants representing the two ends of the pang interval. This means that

the distance between the two ends is Tc, i.e., τ ′′ − τ ′ = Tc, and also s(τ ′) = s(τ ′′), following

Theorem 2.1. From (C.6), we simply obtain

sin(ωdτ
′ + φ) = e−σTc sin(ωd(τ ′ + Tc) + φ). (C.8)

It is straightforward to show that

tan(ωdτ
′ + φ) =

(
sin(ωdTc)

eσTc − cos(ωdTc)

)
.

Let the right-hand side of (C.8) be denoted by ψ. We have

τ ′i =
1
ωd

(iπ + ψ − φ), i = 1, . . . , n− 1

τ ′′i = τ ′i + Tc.

(C.9)

These can be readily converted to get t′1, . . . , t′n and t′′1, . . . , t′′n by setting t = T − τ and varying i

accordingly, but we will not display the results here since (C.9) can be used directly to compute the

WCN of the system in the next section.

Since the initial and terminal times of each pang interval is computed under the assumption

that s(τ ′i) = s(τ ′′i ), the boundary condition in Theorem 2.1 is automatically satisfied. The derivative

and magnitude conditions in Theorem 2.2–2.3 are clearly satisfied from Figure 2. Before we proceed,

it is interesting to note that, for any h(t), the worst-case input w(t) that solves (C.1) is unique [9].

Overdamped and Critically-damped Systems

We combine the overdamped and critically-damped cases since their step responses share common

attribute, that is, s(t) is non-negative for all time. This is because h(t) is a non-negative function of
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Figure 2: The worst-case input of an underdamped second-order system, i.e., ωd > πD/2M .

time. In particular, for an overdamped system,

h(t) =
ωn(e−σ2t − e−σ1t)

2
√

1− ζ2

where σ1 = σ + ωn/
√

1− ζ2, σ2 = σ − ωn/
√

1− ζ2, and σ = ζωn. In addition, for the critically-

damped system,

h(t) = ω2
nte

−ωnt.

This means s(T − t) must be non-negative, so the input w(t) satisfying Theorem 2.1–2.3 contains

only one bang interval [0, T ]. That is

w(t) = M, ∀t ≥ 0

In fact, we do not have to consider Theorem 2.1–2.2 since there is no pang interval in w(t). It is

straightforward to see that since h(t) does not change its sign along the entire interval [0, T ], so does

w(t). Hence, we get w(t) = M accordingly.

Formulas for the WCN

We now turn to present formulas for the WCN of the second-order systems which are divided into

three cases.
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Lightly-damped Systems

We will begin with computing ξ(Tn) for given n. Then, the WCN can be obtained via (C.5) as

‖h‖wc = lim
n→∞ ξ(Tn). (C.10)

From the definition (C.1), we have

ξ(Tn) =
∫ Tn

0
h(Tn − t)w(t)dt.

This can be integrated by part as

ξ(Tn) = −[s(Tn − t)− 1]w(t)

∣∣∣∣∣
Tn

0

+
∫ Tn

0
[s(Tn − t)− 1]ẇ(t)dt (C.11)

From Figure 1, we can see that w(Tn) = M since the input always terminates in the bang interval. In

addition, recall that s(0) = 0 and s(Tn) = 1. As a result, from (C.11), we have

ξ(Tn) = M +
∫ Tn

0
[s(Tn − t)− 1]ẇ(t)dt.

By ẇ(t) given in Figure 1 and by change of variable, τ = Tn − t, this can be expressed as

ξ(Tn) = M −D
n−1∑
i=1

(−1)i
∫ τ ′′i

τ ′i
[s(τ)− 1]dτ. (C.12)

From the step response in (C.6), we obtain ξ(Tn) as

M +
D√

1− ζ2

n−1∑
i=1

(−1)i
∫ τ ′′i

τ ′i
e−στ sin(ωdτ + φ)dτ.

Using the initial and final time of each sloping segment given in (C.7), we can show that

ξ(Tn) = M +
D√

1− ζ2

(
n−1∑
i=1

(−1)ie−
iπ−φ
tanφ

∫ π/ωd

0
e−στ sin(ωdτ + iπ)dτ

)
,

= M +
DL√
1− ζ2

n−1∑
i=1

e−
iπ−φ
tanφ (C.13)

where L =
∫ π/ωd

0 e−στ sin(ωdτ)dτ , which is equal to√
1− ζ2

ωn
(e−

π
tanφ + 1).

Computing the geometric series in (C.13), we have

ξ(Tn) = M +
DL√
1− ζ2

e
− π−φ

tanφ

(
1− e−nπ cotφ

1− e−π cotφ

)

In accordance with (C.10), by limiting n→∞, the WCN of the lightly-damped second-order system

is obtained as

‖h‖wc = M +
D coth

(
π
2 cotφ

)
ωne(π−φ) cotφ

where coth(·) stands for the hyperbolic cotangent function. Note that in this case the WCN is greater

than M . In addition, it can be checked that as ζ approaches 0 (as when the system becomes nearly

unstable and h(t) turns purely oscillating), the WCN approaches∞.
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Underdamped Systems

The procedure in obtaining the WCN for this case is similar to that of the former case. We can start

at (C.12) using τ ′i , τ
′′
i provided in (C.9). As a consequence, ξ(Tn) is computed as

ξ(Tn) = M +
DL√
1− ζ2

n∑
i=1

e
− iπ+ψ−φ

tanφ . (C.14)

where L =
∫ Tc
0 e−στ sin(ωdτ + ψ)dτ , which equals

1
ωn

[
sin(ψ + φ)− e−σTc sin(ωdTc + ψ + φ)

]
.

By evaluating the geometric series in (C.14) and limiting n → ∞, the WCN of the underdamped

second-order system is as follows:

‖h‖wc = M +
D
[
sin(ψ + φ)− e−σTc sin(ωdTc + ψ + φ)

]
ωde(ψ−φ) cotφ(eπ cotφ − 1)

.

When ζ approaches 1, the WCN becomes M as the second term vanishes. On the other hand, when

ζ approaches ζc, the WCN exactly approaches that of the lightly-damped case when ζ = ζc.

Overdamped and Critically-damped Systems

For the overdamped and critically-damped cases, w(t) = M for all t ≥ 0. Since h(t) is non-negative,

the WCN of the system is then obtained as a product of M and its L1-norm. That is

‖h‖wc = M

∫ ∞

0
|h(t)|dt.

From the time responses of the second-order systems, we have∫ ∞

0
|h(t)|dt = 1.

As a result, ‖h‖wc = M .
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