กราฟบางชนิดที่มีการกำกับกลอย่างยวดยิ่ง

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Sciences Program in Mathematics

Copyright of Chulalongkorn University

Thesis Title

By

Field of Study
Thesis Advisor

SOME SUPER EDGE-MAGIC GRAPHS
Mr. Adthasit Sinna
Mathematics
Associate Professor Wanida Hemakul, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science
(Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

(Chariya Uiyyasathian, Ph.D.)

(Associate Professor Wanida Hemakul, Ph.D.)

สถาบันวิทยบริการ

อัตถสิทธิ์ สินนา : กราฟบางชนิดที่มีการกำกับกลอย่างยวดยิ่ง (SOME SUPER EDGE-MAGIC GRAPHS)
 อ. ที่ปรึกษา : รองศาสตราจารย์ ดร.วนิดา เหมะกุล, 72 หน้า

ให้ G เป็นกราฟที่มี p จุดยอดและ q เส้น จะได้ว่า G เป็นกราฟที่มีการกำกับกลอย่างยวดยิ่ง ถ้ามีฟังก์ชันหนึ่งต่อหนึ่งและทั่วถึง f จากเซตของจุดขอดและเซตของเส้นไปขังเซต $\{1,2, \ldots, p+q\}$ ซึ่งผลรวม $f(u)+f(v)+f(u v)$ เป็นค่าคงที่ สำหรับทุกๆเส้น $u v$ และ $f(V(G))=\{1,2,3, \ldots, p\}$ ให้ $\mu_{s}(G)$ แทนจำนวนจุดยอด n ที่น้อยที่สุด เมื่อเพิ่ม n จุดยอดเหล่านี้ให้กราฟ G แต่ไม่เพิ่มเส้นทำ ให้กราฟที่ได้มีการกำกับกลอย่างยวดยิ่งหรือในกรณีที่เป็นไปไม่ได้ $\mu_{s}(G)$ มีค่าเป็น $+\infty$ เราแสดงกราฟที่มีการกำกับกลอย่างยวดยิ่งบางชนิดและหาขอบเขตของ $\mu_{s}(G)$ สำหรับ กราฟ G บางชนิด ยิ่งกว่านั้นเราเสนอการสร้างกราฟที่มีการกำกับกลอย่างยวดขิ่งจากกราฟเดิม

ภาควิชา \qquad คณิตศาสตร์ \qquad สาขาวิชา \qquad คณิตศาสตร์ \qquad ลายมือชื่อนิสิต. \qquad consus ปีการศึกษา \qquad 2550. \qquad ลายมือชื่ออาจารย์ที่ปรึกษษา...ㄴ) Hemabucl C
\# \# 4872548323 : MAJOR MATHEMATICS
KEY WORDS : SUPER EDGE-MAGIC / SUPER EDGE-MAGIC DEFICIENCY

ADTHASIT SINNA : SOME SUPER EDGE-MAGIC GRAPHS.

THESIS ADVISOR : ASSOC.PROF.WANIDA HEMAKUL, Ph.D., 72pp.

A (p, q)-graph G is super edge-magic if there exists a bijective function f : $V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that $f(u)+f(v)+f(u v)$ is a constant for any $u v \in E(G)$ and $f(V(G))=\{1,2, \ldots, p\}$. The super edge-magic deficiency $\mu_{s}(G)$ of a graph G is the smallest nonnegative integer n with the property that the graph $G \cup n K_{1}$ is super edge-magic or $+\infty$ if there exists no such integer n.

We show some new super edge-magic graphs and investigate bounds for the super edge-magic deficiency of some graphs. Moreover, a new construction of super edge-magic graphs from the old ones is presented.

Department Mathematics 0 Student's Signature.
 Field of Studyol..Mathematies.. $/$ Advisor's Signature.. Academic Year2007......... σ. 9

ACKNOWLEDGEMENTS

First, I am indebted to Associate Professor Wanida Hemakul, Ph.D., my thesis advisor, for her suggestions and very useful helps. Next, I would like to thank Chariya Uiyyasathian, Ph.D. and Yotsanan Meemark, Ph.D., my thesis committee, for their suggestions.

Finally, I would like to express my gratitude to all of my friends and my beloved family for their encouragement thoughout my graduate study.

CONTENTS

page

ABSTRACT IN THAI iv
ABSTRACT IN ENGLIGH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES viii
CHAPTER
1 INTRODUCTION 1
1.1 Definitions 1
1.2 History and Overview 2
2 SUPER EDGE-MAGIC GRAPHS 7
2.1 Preliminary Tools 7
2.2 Super edge-magic labeling of the P-tree 8
2.3 Super edge-magic labeling of the product of caterpillar and path P_{2} 13
2.4 Super edge-magic labeling of the product of SF-graph and path P_{n} 30
3 CREATING NEW SUPER EDGE-MAGIC GRAPHS FROM OLD ONES 42
4 SUPER EDGE-MAGIC DEFICIENCY OF SOME GRAPHS 49
5 SUPER EDGE-MAGIC REDUNDENCY OF SOME GRAPHS 64
REFERENCES 68
APPENDIX 69
VITA 72

LIST OF FIGURES

1.1 Example of super edge-magic graphs 2
2.1 P-tree $P(r, s, t)$. 8
2.2 Example of P -trees. 8
2.3 A vertex labeling of P-tree $P(2 m-1, n, m)$. 10
2.4 A super edge-magic labeling of the Γ-tree $P(5,4,2)$ with magic constant 64 13
$2.5 \quad C P_{3,2,1,4,3}$ 13
2.6 A vertex labeling f of $C P_{2,2,1,2,1}$. 15
2.7 A vertex labeling g of $C P_{2,2,1,2,1}$ 15
$2.8 \quad A$ vertex labeling of $C P_{2,2,1,2,1} \times P_{2}$. 18
2.9 A super edge-magic labeling of $C P_{2,2,1,1,1,3,2} \times P_{2}$ with magic con- stant 105 22
2.10 A vertex labeling f gf $C P_{3,2,2,2,1}$. 24
2.11 A vertex tabeling g of $C P_{3,2,2,2,1} \ldots . . .$. 24
2.12 A vertex labeling of $C P_{3,2,2,2,1} \times P_{2}$. 25
2.13 A super edge-magic labeling of $C P_{2,1,2,2,1} \times P_{2}$ with magic constant
2. A vetex dabeling f of $C P_{2,2,1,0,2,2}$. 2.14 A vertex tabeling f of $\subset P_{2,2,1,0,2,2}$ ¢. 26 28
 28 29
2.17 A super edge-magic labeling of $C P_{3,2,1,0,2,3} \times P_{2}$ with magic constant 94. 30
2.18 SF-graph $S F_{4,2,0,2,1,0,0}$ 31
2.19 A vertex labeling f of $S F_{0,1,2,3,2}$. 32
2.20 A vertex labeling g of $S F_{0,1,2,3,2}$. 33
2.21 A vertex labeling of $S F_{0,1,2,3,2} \times P_{3}$ 36
2.22 A super edge-magic labeling of $S F_{0,1,2,2,1} \times P_{4}$ with magic constant 128. 41
3.1 The new graph, formed from a super edge-magic graph G withmagic constant 16 and path P_{9}, is super edge-magic with magicconstant 42.43
3.2 The new graph. formed from a super edge-magic graph G with magic constant 16 and path P_{8}, is super edge-magic with magic constant 39 14
3.3 The new graph, formed from a super edge-magic graph G with magic constant 16 and a star $K_{1 / 2}$ is super edge-magic with magic constant 30 45
3.4 The new graph, formed from a super edge-magic graph G_{1} with magic constant 16 and G_{2} with magic constant 33, is super edge- magic with magie constant 51 47
3.5 The new graph, formed from a super edge-magic graph G with magic constant 16 anda cyele C_{7}, is super edgemagic with magicconstant 87.6 .9 .9 .9.

4.3 A vertex labeling of $\left(3 K_{1} \vee C_{7}\right) \cup 15 K_{1}$. 53
4.4 A vertex labeling of $\left(m K_{1} \vee P_{n}\right) \cup s K_{1}$ when n is odd. 56
4.5 A vertex labeling of $\left(m K_{1} \vee P_{n}\right) \cup s K_{1}$ when n is even. 58
4.6 A vertex labeling of $\left(4 K_{1} \vee P_{7}\right) \cup 21 K_{1}$. 59
4.7 A vertex labeling of $\left(4 K_{1} \vee P_{6}\right) \cup 17 K_{1}$............. 59
4.8 A vertex labeling of $K_{m, n, 1} \cup s K_{1} \ldots . . . \operatorname{c.c.c.c}_{61}$

5.1 Path P_{3} is a super edge-magic subgraph of cycle C_{4} with magic constant 11.

CHAPTER I

INTRODUCTION

1.1 Definitions

In this thesis we consider finite undirected graphs without loops and multiple edges. $V(G)$ and $E(G)$ stand for the vertex set and edge set of a graph G, respectively. We denote by (p, q)-graph G a graph with p vertices and q edges.

Definition 1.1.1. A (p, q)-graph G is edge-magic if there exists a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ such that $f(u)+f(v)+f(u v)=c(f)$ is a constant for any edge $u v$ in G and f is called the edge-magic labeling of G and $c(f)$ is called the magic constant of f.

Definition 1.1.2. A (p, q) graph G is super edge-magic if there exists an edgemagic labeling f such that $f(V(G))=\{1,2, \ldots, p\}$.

Definition 1.1.3. The super edge-magic deficiency $\mu_{s}(G)$ of a graph G is the smallest nonnegative integer n with the property that the graph $G \cup n K_{1}$ is super edge-magic or $+\infty$ if there exists nossuch integer $n . / \frac{C}{6}$

Definition 1.1.4. Let G be a super edge-magic graph. The super edge-magic strength of $G, \operatorname{sm}(G)$ is defined as the minimum of all $c(f)$ where the minimum is taken over all super edge-magic labelings f of G. That is,

$$
s m(G)=\min \{c(f): f \text { is a super edge-magic labeling of } G\} .
$$

Figure 1.1: Example of super edge-magic graphs

1.2 History and Overview

The seminal paper in edge-magic labelings was published in 1970 by Kotzig and Rosa[8], who called these labelings: magic valuations; these were rediscovered σ ○ by Ringel and Llado, who coined one of the now popular terms for them: edgemagic labelings. More recently, they have also been referred to as edge-magic total labelings by Wallis. In 1998, Enamoto, Llado, Nakamigawa and Ringel[2] defined a super edge-magic labeling f of a graph G. Gallian[7] surveyed some of latest developments of super edge-magic graphs as shown in the following table:

Table 1: Summary of Super Edge-magic Labelings

Graph	Notes
C_{n}	iff n is odd[Enamoto et al]
caterpillars	[Enamoto et al]
trees	?[Enamoto et al]
$K_{m, n}$	iff $m=1$ or $n=1$ [Enamoto et al]
K_{n}	iff $n=1,2$ or 3 [Enamoto et al]
$n K_{2}$	if n is odd[Kotzig and Rosa]
$n G$	if G is a bipartite or tripartite super edge-magic graph and n is odd[Figuaroa-Centeno et al]
$K_{1, m} \cup K_{1, n}$	iff m is multiple of $n+1$ [Figuaroa et al],[Lee and Kong]
$P_{m} \cup K_{1, n}$	if $m \geq 4$ is even[Figuaroa-Centeno et al]
$2 P_{n}$	iff n is not 2 or 3[Figuaroa-Centeno et al]
$2 P_{4 n}$	for all n [Figuaroa et al]
$K_{1, m} \cup 2 n K_{1,2}$	for all m and n [Figuaroa-Centeno et al]
$C_{3} \cup C_{n}$	iff $n \geq 6$ is even[Figuaroa-Centeno et al]
$C_{4} \cup C_{n}$	iff $n \geq 5$ is odd[Figuaroa-Centeno et al]
$C_{5} \cup C_{n}$	iff $n \geq 5$ is even[Figuaroa-Centeno et al]
$\begin{aligned} & C_{m} \cup C_{n} \not \subset ? \\ & C_{4} \cup P_{n} \end{aligned}$	if $m \geq 6$ is even and n cis oodd and $\eta \geq \frac{m}{2}+2$ [Figuaroa-Centeno et al] iff $n \neq 3$ [Figuaroa-Centeno et al]
$C_{5} \cup P_{n}$	iff $n \neq 4$ [Figuaroa-Centeno et al]
$C_{m} \cup P_{n}$	if $m \geq 6$ is even and $n \geq \frac{m}{2}+2$ [Figuaroa-Centeno et al]
$P_{m} \cup P_{n}$	iff $(m, n) \neq(2,2)$ or (3,3)[Figuaroa-Centeno et al]

Table 1: Summary of Super Edge-magic Labelings

Graph	Notes
$K_{1,1} \cup K_{1, k} \cup K_{1, n}$	$k=1,2$ or n [Lee and Kong]
$K_{1,2} \cup K_{1, k} \cup K_{1, n}$	$k=2,3$ [Lee and Kong]
$K_{1,1} \cup K_{1,1} \cup K_{1, k} \cup K_{1, n}$	$k=2,3$ [Lee and Kong]
$K_{1, k} \cup K_{1,2} \cup K_{1,2} \cup K_{1, n}$	$k=1,2$ [Lee and Kong]
friendship graph of n triangles	iff $n=3,4,5$ or 7 [Slamin et al]
generalized Petersen graph $P(n, 2)$	if $n \geq 3$ and n is odd[Fukuchi]
$n P_{3}$	$n \geq 4$ and n is even[Baskoro and Ngurah]
P_{n}^{2}	[Figuaroa et al]
$P_{3} \cup k P_{2}$	for all k [Figuaroa et al]
$k\left(P_{2} \cup P_{n}\right)$	if k is odd and $n=3,4$
	[Figuaroa-Centeno et al]
fan F_{n}	iff $n \leq 6$ [Figuaroa-Centeno et al]
$k P_{2}$	iff k is odd[Figuaroa-Centeno et al]
tree with α-labeling	[Figuaroa-Centeno et al]
${ }_{2_{2 n+1}{ }_{2 n+1} \times P_{2} \text { ® }}^{6} \text { ถาบนวิทย }$	for all m [Figuaroa-Centeno et al] for all m, n [Figuaroa-Centeno et al]
	if G is super edge-magic 2-regular graph [Figuaroa-Centeno et al]
$C_{m} \odot \bar{K}_{n}$	$m \geq 3$ and $n \geq 1$
join of K_{1} with any subgraph of star	[Chen]
if G is k-regular super edge-magic graph	then $k \leq 3$ [Chen]
G is connected 3-regular graph on p vertices	iff $p \equiv 2(\bmod 4)$ [Chen]

Kotzig and Rosa[8] defined the edge-magic deficiency, $\mu(G)$, of a graph G as the smallest nonnegative integer n with the property that the graph $G \cup n K_{1}$ is edge-magic. In 1999, Figueroa-Centeno, Ichishima and Muntaner-Batle[5], [6] used the concept of edge-magic deficiency to define super edge-magic deficiency. They proved the following super edge-magic deficiency of graphs:

Table 2: Summary of Super Edge-magic Deficiency

Graph	Deficiency	Notes \quad
$n K_{2}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	n is odd n is even
C_{n}	0 1 $+\infty$	if $n \equiv 1,3(\bmod 4)$ if $n \equiv 0(\bmod 4)$ if $n \equiv 2(\bmod 4)$
K_{n}		$\begin{aligned} & n=1,2,3 \\ & n=4 \\ & n \geq 5 \end{aligned}$
$K_{m, n}$	$\leq(m-1)(n-1)$	for any positive integer m, n
$K_{2, n}$	$n-19196$	for any positive integer n
Forests $K_{1, m}{ }_{q}^{\mathrm{q}} \cup K_{1, n}$		otherwise
$P_{m} \cup P_{n}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	if $(m, n)=(2,2)$ or $(3,3)$ otherwise

Table 2: Summary of Super Edge-magic Deficiency

Graph	Deficiency	Notes
$P_{m} \cup K_{1, n}$	1	$m=2$ and n is odd or $m=3$ and $n \equiv 1,2(\bmod 3)$ 0
$2 C_{n}$	1	otherwise
$+\infty$	if n is even	
if n is odd		
$3 C_{n}$	0	if n is odd
1	$+\infty$	if $n=0(\bmod 4)$
$4 C_{n}$	1	for all integers $n \equiv 0(\bmod 4)$

In 2000, Avadayappan, Jeyanthi and Vasuki[1] defined the super edge-magic strength and proved the super edge-magic strength of path P_{n}, star $K_{1, n}$, the n bistar $B_{n, n}$ obtained from two disjoint copies of $K_{1, n}$ by joining the center vertices by an edge, odd cycle $C_{2 n+1}, P_{n}^{2}$ and the disjoint union of odd copies of P_{2}.

There are five chapters in this thesis. In chapter I, we introduce definitions that will be used in and the history and overview of super edge-magic graphs and the super edge magic deficiency.

In Chapter II, super edge-magic graphs and bounds for the super edgemagic strength of some graphs are shown.

In Chapter III, we show a construction of new super edge-magic graphs from the old ones.

In Chapter IV, we investigate bounds for the super edge-magic deficiency of some graphs.

In Chapter V, we introduce the super edge-magic redundency and find bounds for the super edge-magic redundency of some graphs.

CHAPTER II

SUPER EDGE-MAGIC GRAPHS

Our purpose in this chapter is to show some new super edge-magic graphs and investigate bounds for their super edge-magic strengths. We separate this chapter into four sections. The first section contains theorems and corollary which are used in this thesis. The second section shows a super edge-magic labeling of the P-tree. The third section shows a super edge-magic labeling of the product of the caterpillar and path P_{2}. The last section shows a super edge-magic labeling of the product of SF-graph and path P_{n}.

2.1 Preliminary Tools

Theorem 2.1.1. [3] $A(p, q)$-graph G is super edge-magic if and only if there exists a bijective function $f: V(G) \rightarrow\{1,2,3, \ldots, p\}$ such that the set

$$
S=\{f(u)+f(v): u v \in E(G)\}
$$

consists of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with magie constant $k=p+q+s$, where $S=\min (S)$ and

$$
S=\{k-(p+q), k-(p+q-1), \ldots, k-(p+1)\}
$$

Corollary 2.1.2. [3] If a (p, q)-graph G is a super edge-magic with a super edgemagic labeling f, then

$$
\sum_{v \in V(G)} f(v) \operatorname{deg} v=q s+\binom{q}{2}
$$

where s is defined as in theorem 2.1.1.

Theorem 2.1.3. [2] If $a(p, q)$-graph is super edge-magic, then $q \leq 2 p-3$.

2.2 Super edge-magic labeling of the P-tree

First, we introduce the definition of the P-tree.

Definition 2.2.1. Let r, s and t be positive integers. The P-tree $P(r, s, t)$ is a rooted tree with root z and $\operatorname{deg} z=r$ and $\operatorname{deg} c=s+1$ for every child c of z and

Example 2.2.2. P-tree $P(3,3,1)$ and P-tree $P(5,4,6)$ are shown below.

Figure 2.2: Example of P-trees.

Definition 2.2.3. Let G be a super edge-magic graph. The super edge-magic strength of $G, \operatorname{sm}(G)$ is defined as the minimum of all $c(f)$ where the minimum is taken over all super edge-magic labelings f of G. That is,

$$
\operatorname{sm}(G)=\min \{c(f): f \text { is a super edge-magic labeling of } G\} .
$$

Next, we show the specific P-tree is super edge-magic.

Theorem 2.2.4. The P-tree $P(2 m+1, n, m)$ is super edge-magic with $s m(P(2 m+1, n, m)) \leq 4 m n+2 n+9 m+6$ for any positive integers m, n.

Proof. Let $G \cong P(2 m+1, n, m)$ with

$$
\begin{aligned}
V(G)= & \{z\} \cup\left\{c_{i}: 1 \leq i \leq 2 m+1\right\} \cup\left\{w_{k}: 1 \leq k \leq m\right\} \\
& \cup\left\{x_{i j}: 1 \leq i \leq 2 m+1,1 \leq j \leq n\right\} \text { and } \\
E(G)= & \left\{z c_{i}: 1 \leq i \leq 2 m+1\right\} \cup\left\{c_{i} x_{i j}: 1 \leq i \leq 2 m+1,1 \leq j \leq n\right\} \\
& \cup\left\{x_{(m+1) 1} w_{k}: 1 \leq k \leq m\right\} .
\end{aligned}
$$

Note that, $|V(G)|=2 m n+n+3 m+2$.
Define a vertex labeling $f: V(G) \rightarrow\{1,2,3, \ldots, 2 m n+n+3 m+2\}$ by:

$$
f(u)= \begin{cases}i+j(2 m+1), & \text { if } u=x_{i j} ; \\ 2 m+2-\frac{i+1}{2}, & \text { if } u=c_{i}, i \text { is odd; } \\ 2 m+2-\frac{2 m+i+2}{2}, & \text { if } u=c_{i}, i \text { is even; } \\ 2 m n+n+3 m+2, & \text { if } u=z \\ 2 m n+n+3 m+2-k, & \text { if } u=w_{k}\end{cases}
$$

In order to show that f extends to a super edge-magic labeling of P -tree $P(2 m+1, n, m)$, it suffices to verify by Theorem 2.1.1:
a) $f(V(G))=\{1,2,3, \ldots, 2 m n+n+3 m+2\}$
b) $S=\{f(x)+f(y): x y \in E(G)\}$ consists of $2 m n+3 m+n+1$ consecutive integers.

To show that $f(V(G))=\{1,2,3, \ldots, 2 m n+n+3 m+2\}$, we consider the labels of vertices as follows:

Vertices $c_{2}, c_{4}, c_{6} \ldots, c_{2 m}$ are labeled by numbers $m, m-1, m-2, \ldots, 1$, respectively and $c_{1}, c_{3}, c_{5} \ldots, c_{2 m+1}$ are labeled by numbers $2 m+1,2 m, 2 m-1, \ldots, m+1$, respectively and $x_{11}, x_{21}, \ldots, x_{(2 m+1) 1}, x_{12}, x_{22}, \ldots, x_{(2 m+1) 2}, \ldots, x_{1 n}, x_{2 n}, \ldots, x_{(2 m+1) n}$ are labeled by numbers $2 m+2,2 m+3, \ldots, 4 m+2,4 m+3,4 m+4, \ldots, 6 m+3, \ldots, 2 m n+$ $n+1,2 m n+n+2, \ldots, 2 m n+n+2 m+1$, respectively and $z, w_{1}, w_{2}, \ldots, w_{m}$ are labeled by number $2 m n+n+3 m+2,2 m n+n+3 m+1,2 m n+n+3 m, \ldots, 2 m n+n+2 m+2$. Hence $f(V(G))=\{1,2,3, \ldots, 2 m n+n+3 m+2\}$.

To show that S consists of $2 m n+3 m+n+1$ consecutive integers, we consider $f(x)+f(y)$ for all edges $x y$ in G.

For edge $c_{i} x_{i j}$,
when i is odd, $f\left(c_{i}\right)+f\left(x_{i j}\right)=\left(2 m+2-\frac{i+1}{2}\right)+(i+j(2 m+1))$

$$
=j(2 m+1)+2 m+\frac{i-1}{2}+2,
$$

when i is even, $f\left(c_{i}\right)+f\left(x_{i j}\right)=\left(2 m+2-\frac{2 m+i+2}{2}\right)+(i+j(2 m+1))$

$$
=j(2 m+1)+m+\frac{i}{2}+1 .
$$

For edge $z c_{i}$,
when i is odd, $f(z)+f\left(c_{i}\right)=(2 m n+n+3 m+2)+\left(2 m+2-\frac{i+1}{2}\right)$

$$
6619=2 m n+n+5 m+4-\frac{2+1}{2}, \delta
$$

when i is even, $f(z)+f\left(c_{i}\right)=(2 m \vec{n}+n+3 m \mp 2)+2 m+2-\frac{2 m+i+2}{2}$

For edge $x_{(m+1) 1} w_{k}$,

$$
\begin{aligned}
f\left(x_{(m+1) 1}\right)+f\left(w_{k}\right) & =((m+1)+(2 m+1))+(2 m n+n+3 m+2-k) \\
& =2 m n+n+6 m+4-k .
\end{aligned}
$$

We note that

$$
\begin{aligned}
S= & \{f(x)+f(y): x y \in E(G)\} \\
= & \bigcup_{j=1}^{n}\left\{f\left(c_{i}\right)+f\left(x_{i j}\right): i \text { is odd }\right\} \cup \bigcup_{j=1}^{n}\left\{f\left(c_{i}\right)+f\left(x_{i j}\right): i \text { is even }\right\} \cup\left\{f(z)+f\left(c_{i}\right): i \text { is odd }\right\} \\
& \cup\left\{f(z)+f\left(c_{i}\right): i \text { is even }\right\} \cup\left\{f\left(w_{k}\right)+f\left(x_{m+1,1}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\bigcup_{j=1}^{n}\left\{f\left(c_{i}\right)+f\left(x_{i j}\right): i \text { is odd }\right\}= & \{4 m+3,4 m+4, \ldots, 5 m+3\} \cup\{6 m+4,6 m+5, \ldots, \\
& 7 m+4\} \cup \cdots \cup\{2 m n+n+2 m+2, \\
& 2 m n+n+2 m+3, \ldots, 2 m n+n+3 m+2\}, \\
\bigcup_{j=1}^{n}\left\{f\left(c_{i}\right)+f\left(x_{i j}\right): i \text { is even }\right\}= & \{3 m+3,3 m+4, \ldots, 4 m+2\} \cup\{5 m+4,5 m+5, \ldots, \\
\frac{2 m+3\} \cup \cdots \cup\{2 m n+n+m+2,}{} \quad & 2 m n+n+m+3, \ldots, 2 m n+n+2 m+1\},
\end{aligned}
$$

$$
\begin{aligned}
&\left\{f(z)+f\left(c_{i}\right): i \text { is odd }\right\}=\{2 m n+n+4 m+3,2 m n+n+4 m+4, \ldots \\
&2 m n+n+5 m+3\}
\end{aligned}
$$

$$
\left\{f(z)+f\left(c_{i}\right): i \text { is even }\right\}=\{2 m n+n+3 m+3,2 m n+n+3 m+4, \ldots
$$

$$
66 ワ 1-29 n+n+4 m+2\}, \square \delta
$$

$$
\begin{aligned}
\left\{\left\{f\left(w_{k}\right)+f\left(x_{(m+1) 1}\right)\right\}=\right. & \{2 m n+n+5 m \curvearrowleft 4,2 m n+n+5 m+5, \ldots, \\
& 2 m n+n+6 m+3\} .
\end{aligned}
$$

Then $S=\{3 m+3,3 m+4, \ldots, 2 m n+n+6 m+3\}$ is a set of $2 m n+n+3 m+1$ consecutive integers. Therefore, f extends to a super edge-magic labeling of G with magic constant $(2 m n+n+3 m+2)+(2 m n+n+3 m+1)+(3 m+3)=$ $4 m n+2 n+9 m+6$. Hence $s m(G) \leq 4 m n+2 n+9 m+6$.

Figure 2.4: A super edge-magic labeling of the P-tree $P(5,4,2)$ with magic constant 64

2.3 Super edge-magic labeling of the product of caterpillar

 and path P_{2}In this section, we show the super edge-magic labeling of the product of caterpillar and path P_{2}.

Definition 2.3.1. A caterpillar graph $C P_{n_{1}, n_{2}, \ldots, n_{ \pm}}$is a graph which the vertex-set is $\left\{c_{i}: 1 \leq i \leq t\right\} \cup\left\{x_{i j}: 1 \geq i \leq t, 1 \leq j \leq n_{i}\right\}$ and the edge-set is $\left\{c_{i+1} c_{i}: 1 \leq i \leq t-1\right\} \cup\left\{c_{i} x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$.

Figure 2.5: $C P_{3,2,1,4,3}$

Theorem 2.3.2. Let $C P_{n_{1}, n_{2}, \ldots, n_{t}}$ be a caterpillar with t is odd.
If $\sum_{\substack{k=1 \\ k \text { is odd }}}^{t} n_{k}=\sum_{\substack{k=2 \\ k \text { is even }}}^{t-1} n_{k}$, then the graph $C P_{n_{1}, n_{2}, \ldots, n_{t}} \times P_{2}$ is super edge-magic.
Proof. Let $G \cong C P_{n_{1}, n_{2}, \ldots, n_{t}}$ with
$V(G)=\left\{c_{i}: 1 \leq i \leq t\right\} \cup\left\{x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$ and $E(G)=\left\{c_{i+1} c_{i}: 1 \leq i \leq t-1\right\} \cup\left\{c_{i} x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$.

Let p be the number of vertices of G. Then $p=t+\sum_{k=1}^{t} n_{k}$.
First, define a vertex labeling $f: V(G) \rightarrow\left\{1,2, \ldots, t+\sum_{k=1}^{t} n_{k}\right\}$ by

Next, define a vertex labeling $g: V(G) \rightarrow\left\{1,2, \ldots, t+\sum_{k=1}^{t} n_{k}\right\}$ by

For instance, Figures 2.6 and 2.7 show vertex labelings f and g of $C P_{2,2,1,2,1}$.

Figure 2.6: A vertex labeling f of $C P_{2,2,1,2,1}$.

Figure 2.7: A vertex labeling g of $C P_{2,2,1,2,1}$.

In order to show that f and g extend to super edge-magic labelings of G, it suffices to verify by Theorem 2.1.1:
a) $f(V(G))=g(V(G))=\{1,2,3, \ldots . p\}$
b) $S_{f}=\{f(x)+f(y): x y \in E(G)\}$ and $S_{g}=\{g(x)+g(y): x y \in E(G)\}$ consist of $p-1$ consecutive integers.
Note that, $\frac{t+1}{2}+\sum_{\substack{k=2 \\ k \text { is even }}}^{t-1} n_{k}=\frac{t+1}{2}+\sum_{\substack{k=1 \\ k \text { is odd }}}^{t} n_{k}=\frac{p+1}{2}$.
To show that $f(V(G)=\{1,2,3, \ldots, p\}$, we consider the labels of vertices as follows:

Vertices $c_{1}, x_{21}, x_{22}, \ldots, x_{2 n_{1}}, c_{3}, x_{41}, \ldots, x_{4 n_{3}}, c_{5}, \ldots, c_{t}$ are labeled by numbers $1,2,3, \ldots$, $n_{1}+1, n_{1}+2, n_{1}+3, \ldots, n_{1}+n_{3}+3, n_{1}+n_{3}+4, \ldots, \sum_{\substack{k=2 \\ k \text { is even }}}^{t-1} n_{k}+\frac{t+1}{2}+1=\frac{p+1}{2}$, respectively and $x_{11}, x_{12}, \ldots, x_{1 n_{2}}, c_{2}, x_{31}, \ldots, x_{3 n_{3}}, c_{4}, \ldots, x_{(t-1) n_{t-1}}$ are labeled by numbers $\sum_{\substack{k=2 \\ k \text { is even }}}^{t-1} n_{k}+\frac{t+1}{2}+2=\frac{p+1}{2}+1, \frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+n_{2}+1, \frac{p+1}{2}+$ $n_{2}+2, \frac{p+1}{2}+n_{2}+3, \ldots, \frac{p+1}{2}+n_{2}+n_{4}+3, \frac{p+1}{2}+n_{2}+n_{4}+4, \ldots, p$, respectively. Hence $f(V(G))=\{1,2,3, \ldots, p\}$.

To show that S_{f} consists of $p-1$ consecutive integers, we consider $f(x)+f(y)$ for all edges $x y$ in G.

For edge $c_{i} x_{i j}$,
For edge $c_{i} x_{i j}$,
when $i=1, f\left(c_{1}\right)+f\left(x_{1 j}\right)=1+\left(\frac{q+1}{2}+j+\sum_{\substack{k=2 \\ k \text { is even }}}^{t-1} n_{k}\right)=\frac{\tilde{p}+1}{2}+j+1$,

$$
\begin{aligned}
f\left(c_{i}\right)+f\left(x_{i j}\right) & =\left(\frac{i+1}{2}+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-1} n_{k}\right)+\left(\frac{i+t}{2}+j+\sum_{\substack{k=2 \\
k \text { is even }}}^{t-1} n_{k}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-2} n_{k}\right) \\
& =\frac{p+1}{2}+i+\sum_{k=1}^{i-1} n_{k}+j,
\end{aligned}
$$

when $i=2$,

$$
\begin{aligned}
f\left(c_{2}\right)+f\left(x_{2 j}\right) & =\left(\frac{t+3}{2}+\sum_{\substack{k=2 \\
k \text { is even }}}^{t-1} n_{k}+n_{1}\right)+(j+1) \\
& =\frac{p+1}{2}+n_{1}+2+j
\end{aligned}
$$

when $i=4,6, \ldots, t-1$,

$$
\begin{aligned}
f\left(c_{i}\right)+f\left(x_{i j}\right) & \left.=\frac{i+t+1}{2}+\sum_{\substack{k=2 \\
k \text { is even }}}^{t-1} n_{k}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-1} n_{k}\right)+\left(\frac{i}{2}+j+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-2} n_{k}\right) \\
& =\frac{p+1}{2}+i+\sum_{k=1}^{i-1} n_{k}+j .
\end{aligned}
$$

Note that, $f\left(c_{i}\right)+f\left(x_{i(j+1)}\right)=f\left(c_{i}\right)+f\left(x_{i j}\right)+1$.
For edge $c_{i} c_{i+1}$,
when $i=1, f\left(c_{1}\right)+f\left(c_{2}\right)=1+\frac{t+3}{2}+\sum_{k=2}^{t-1} n_{k}+n_{1}=\frac{p+1}{2}+n_{1}+2$,
when $i=3,5, \ldots, t-2$,

$$
\begin{aligned}
f\left(c_{i}\right)+f\left(c_{i+1}\right) & =\left(\frac{i+1}{2}+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-1} n_{k}\right)+\left(\frac{i+t+2}{2}+\sum_{\substack{k=2 \\
k \text { is even }}}^{t-1} n_{k}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i} n_{k}\right) \\
& \frac{p+1}{2}+i+1+\sum_{k=1}^{i} n_{k},
\end{aligned}
$$

$$
\begin{aligned}
f\left(c_{i}\right)+f\left(c_{i+1}\right) & =\left(\frac{i+t+1}{22}+\sum_{\substack{k=2 \\
k}}^{t-1} n_{k}+\sum_{\substack{l=1 \\
l \text { is even }}}^{i-1} n_{l}\right)+\left(\frac{i+2}{2}+\sum_{\substack{k=2 \\
l \text { is odd }}}^{i} n_{k}\right) . \\
& =\frac{p+1}{2}+i+1+\sum_{k=1}^{i} n_{k} .
\end{aligned}
$$

Note that, $f\left(c_{i}\right)+f\left(c_{i+1}\right)=f\left(c_{i}\right)+f\left(x_{i n_{i}}\right)+1$
and $f\left(c_{(i+1)}\right)+f\left(x_{(i+1) 1}\right)=f\left(c_{i}\right)+f\left(c_{i+1}\right)+1$.
Hence $S_{f}=\left\{\frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+p\right\}$ is a set of $p-1$ consecutive integers.
From Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Similarly, we can show that $g(V(G))=\{1,2,3, \ldots, p\}$ and $S_{g}=\{g(x)+g(y)$: $x y \in E(G)\}=\left\{\frac{p+1}{2}+1, \frac{p+1}{2}+2, \ldots, \frac{p+1}{2}+p-1\right\}$ is a set of $p-1$ consecutive integers. From Theorem 2.1.1, g extends to a super edge-magic labeling of G.

We will construct a super edge-magic labeling of $C P_{n_{1}, n_{2}, \ldots, n_{t}} \times P_{2}$ as follows. Let $V\left(P_{2}\right)=\{1,2\}$ and $E\left(P_{2}\right)=\{12\}$ and $H=G \times P_{2}$. Then $V(H)=\left\{\left(c_{i}, k\right): 1 \leq i \leq t, k=1,2\right\} \cup\left\{\left(x_{i j}, k\right): 1 \leq i \leq t, 1 \leq j \leq n_{i}, k=1,2\right\}$. Define a vertex labeling $h: V(H) \rightarrow\{1,2, \ldots, 2 p\}$ by

$$
h(w)= \begin{cases}f\left(c_{i}\right), & \text { if } w=\left(c_{i}, 1\right) \\ \frac{f\left(x_{i j}\right),}{} & \text { if } w=\left(x_{i j}, 1\right) \\ p+g\left(c_{i}\right), & \text { if } w=\left(c_{i}, 2\right) \\ p+g\left(x_{i j}\right), & \text { if } w=\left(x_{i j}, 2\right)\end{cases}
$$

For instance, Figure 2.8 shows the vertex labeling h of $C P_{2,2,1,2,1} \times P_{2}$ constructed from f and g in Figure 2.6 and Figure 2.7.

Figure 2.8: A vertex labeling of $C P_{2,2,1,2,1} \times P_{2}$.

In order to show that h extends to a super edge-magic labeling of H, it suffices to verify by Theorem 2.1.1:
a) $h(V(H))=\{1,2,3, \ldots, 2 p\}$
b) $S=\{h(x)+h(y): x y \in E(H)\}$ consists of $3 p-2$ consecutive integers.

We note that

$$
h(V(H))=\{h(u, 1):(u, 1) \in V(H))\} \cup\{h(u, 2):(u, 2) \in V(H))\}
$$

and

$$
\begin{aligned}
\{h(u, 1):(u, 1) \in V(H))\} & =\{f(u): u \in V(G)\} \\
& =\{1,2, \ldots, p\} \\
\{h(u, 2):(u, 2) \in V(H))\} & =\{p+g(u): u \in V(G)\} \\
& =\{p+1, p+2, . ., 2 p\}
\end{aligned}
$$

Then $h(V(H))=\{1,2,3, \ldots, 2 p\}$.
To show that S consists of $3 p-2$ consecutive integers, we consider $h(u, 1)+$ $h(u, 2)$ for all edges $(u, 1)(u, 2)$, where $u \in V(G)$.

For edge $\left(c_{1}, 1\right)\left(c_{1}, 2\right)$,

$$
\begin{aligned}
h\left(c_{1}, 1\right)+h\left(c_{1}, 2\right) & =f\left(c_{1}\right)+p+g\left(c_{1}\right) \\
& =1+p+\left(\frac{t+1}{2}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t} n_{k}\right) \\
& =\frac{p+1}{2}+p+1 .
\end{aligned}
$$

For edge $\left(c_{i}, 1\right)\left(c_{i}, 2\right)$ when $\left.i=3,5, \ldots, t, \square\right\}$

$$
\begin{aligned}
h\left(e_{i}, 1\right)+h\left(c_{i}, 2\right) & =f\left(c_{i}\right)+p+g\left(c_{i}\right) \\
& =\left(\frac{i+1}{2}+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-1} n_{k}\right)+p+\left(\frac{i+t}{2}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t} n_{k}+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-1} n_{k}\right) \\
& =\frac{p+1}{2}+p+i+2 \sum_{\substack{k=2 \\
k \text { is even }}}^{i-1} n_{k} .
\end{aligned}
$$

For edge $\left(x_{2 j}, 1\right)\left(x_{2 j}, 2\right)$,

$$
\begin{aligned}
h\left(x_{2 j}, 1\right)+h\left(x_{2 j}, 2\right) & =f\left(x_{2 j}\right)+p+g\left(x_{2 j}\right) \\
& =(j+1)+p+\left(\frac{t+1}{2}+j+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t} n_{k}\right) \\
& =\frac{p+1}{2}+p+2 j+1 .
\end{aligned}
$$

For edge $\left(x_{i j}, 1\right)\left(x_{i j}, 2\right)$ when $i=4,6, \ldots, t-1$,

$$
\begin{aligned}
h\left(x_{i j}, 1\right)+h\left(x_{i j}, 2\right) & =f\left(x_{i j}\right)+p+g\left(x_{i j}\right) \\
& =\left(\frac{i}{2}+j+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-2} n_{k}\right)+p+\left(\frac{i+t-1}{2}+j+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t} n_{k}+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-2} n_{k}\right) \\
& =\frac{p+1}{2}+p+i-1+2 \sum_{\substack{k=2 \\
k \text { is even }}}^{i-2} n_{k}+2 j .
\end{aligned}
$$

Note that, for any i is odd,

$$
\begin{aligned}
& h\left(c_{i}, 1\right)+h\left(c_{i}, 2\right)=h\left(x_{(i+1) 1}, 1\right)+h\left(x_{(i+1) 1}, 2\right)-2, \\
& h\left(x_{(i-1) n_{i-1}}, 1\right)+h\left(x_{(i-1) n_{i-1}}, 2\right)=h\left(c_{i}, 1\right)+h\left(c_{i}, 2\right)-2, \\
& h\left(x_{(i+1) j}, 1\right)+h\left(x_{(i+1) j}, 2\right)=h\left(x_{(i+1)(j+1)}, 1\right)+h\left(x_{(i+1)(j+1)}, 2\right)-2 .
\end{aligned}
$$

For edge $\left(c_{i}, 1\right)\left(c_{i}, \underline{2}\right)$ when $i=2,4, \ldots, t-1$,

$$
\begin{aligned}
& h\left(c_{i}, 1\right)+h\left(c_{i}, 2\right)=f\left(c_{i}\right)+p+g\left(c_{i}\right) \\
& 66=\left(\frac{i+t+1}{2}+9 \sum_{\substack{k=2 \\
k \text { is even }}}^{t-1} n_{k}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-1} n_{k}\right) \mp p+\left(\frac{i}{2}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-1} n_{k}\right)
\end{aligned}
$$

For edge $\left(x_{1 j}, 1\right)\left(x_{1 j}, 2\right)$,

$$
\begin{aligned}
h\left(x_{1 j}, 1\right)+h\left(x_{1 j}, 2\right) & =f\left(x_{1 j}\right)+p+g\left(x_{1 j}\right) \\
& =\left(\frac{t+1}{2}+j+\sum_{\substack{k=2 \\
k \text { is even }}}^{t-1} n_{k}\right)+p+j \\
& =\frac{p+1}{2}+p+2 j .
\end{aligned}
$$

For edge $\left(x_{i j}, 1\right)\left(x_{i j}, 2\right)$ when $i=3,5, \ldots, t$,

$$
\begin{aligned}
h\left(x_{i j}, 1\right)+h\left(x_{i j}, 2\right) & =f\left(x_{i j}\right)+p+g\left(x_{i j}\right) \\
& =\left(\frac{i+t}{2}+j+\sum_{\substack{k=2 \\
k \text { is even } \\
k-1}} n_{k}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-2} n_{k}\right)+p+\left(\frac{i-1}{2}+j+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-2} n_{k}\right) \\
& =\frac{p+1}{2}+p+i+2 \sum_{\substack{k=1 \\
k \text { is odd }}}^{i-2} n_{k}+2 j-1 .
\end{aligned}
$$

Note that, for any i is even,

$$
\begin{aligned}
& h\left(c_{i}, 1\right)+h\left(c_{i}, 2\right)=h\left(x_{(i+1) 1}, 1\right)+h\left(x_{(i+1) 1}, 2\right)-2, \\
& h\left(x_{(i-1) n_{i-1}}, 1\right)+h\left(x_{(i-1) n_{i-1}}, 2\right)=h\left(c_{i}, 1\right)+h\left(c_{i}, 2\right)-2, \\
& h\left(x_{(i+1) j}, 1\right)+h\left(x_{(i+1) j}, 2\right)=h\left(x_{(i+1)(j+1)}, 1\right)+h\left(x_{(i+1)(j+1)}, 2\right)-2 .
\end{aligned}
$$

Thus

$$
\left.\left.\begin{array}{rl}
& \left\{h\left(c_{i}, 1\right)+h\left(c_{i}, 2\right): i=1,3, \ldots, t\right\} \cup \bigcup_{i=2}^{t-1}
\end{array} h\left(x_{i j}, 1\right)+h\left(x_{i j}, 2\right): j=1,2, \ldots, n_{i}\right\},\right\}
$$

and

$$
\begin{aligned}
& \left\{h\left(c_{i}, 1\right)+h\left(c_{i}, 2\right): i=2,4, . ., t-1\right\} \cup \bigcup_{i=1}^{t}\left\{h\left(x_{i j}, 1\right)+h\left(x_{i j}, 2\right): j=1,2, \ldots, n_{i}\right\} \\
= & \left\{\frac{p+1}{2}+p+\frac{p, \frac{p}{i}}{2}+p+4, \frac{p+1}{2}-p+6, \ldots \frac{p+1}{2}+2 p-1\right\} .
\end{aligned}
$$

Hence $\{h(u, 1)+h(u, 2):(u, 1)(u, 2) \in V(H)\}=\left\{\frac{p+1}{2}+p+1, \frac{p+1}{2}+p+2, \frac{p+1}{2}+\right.$ $\left.p+3, \ldots, \frac{p+1}{2}+2 p\right\}$

We note that

$$
\begin{aligned}
S= & \{h(u)+h(v): u v \in E(H)\} \\
= & \{h(u, 1)+h(v, 1):(u, 1)(v, 1) \in V(H)\} \cup\{h(u, 2)+h(v, 2):(u, 2)(v, 2) \in V(H)\} \cup \\
& \{h(u, 1)+h(u, 2):(u, 1)(u, 2) \in V(H)\}
\end{aligned}
$$

and

$$
\begin{aligned}
\{h(u, 1)+h(v, 1):(u, 1)(v, 1) \in V(H)\} & =\left\{f(u)+f(v): u v \in E\left(C P_{n_{1}, n_{2}, \ldots, n_{t}}\right)\right\} \\
& =\left\{\frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+p\right\} \\
\{h(u, 2)+h(v, 2):(u, 2)(v, 2) \in V(H)\} & =\left\{2 p+g(u)+g(v): u v \in E\left(C P_{n_{1}, n_{2}, \ldots, n_{t}}\right)\right\} \\
& =\left\{\frac{p+1}{2}+2 p+1, \frac{p+1}{2}+2 p+2, \ldots,\right. \\
& \left.\frac{p+1}{2}+3 p-1\right\}
\end{aligned}
$$

$$
\{h(u, 1)+h(u, 2):(u, 1)(u, 2) \in V(H)\}=\left\{\frac{p+1}{2}+p+1, \frac{p+1}{2}+p+2, \ldots\right.
$$

$$
\left.\frac{p+1}{2}+2 p\right\}
$$

Then $S=\left\{\frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+3 p-1\right\}$ is a set of $3 p-2$ consecutive integers.
From Theorem 2.1.1, h extends to a super edge-magic labeling of H.

Figure 2.9: A super edge-magic labeling of $C P_{2,2,1,1,1,3,2} \times P_{2}$ with magic constant 105.

Theorem 2.3.3. Let $C P_{n_{1}, n_{2}, \ldots, n_{t}}$ be a caterpillar with t is odd.
If $\sum_{\substack{k=1 \\ k \text { is odd }}}^{t} n_{k}=\sum_{\substack{k=2 \\ k \text { is even }}}^{t-1} n_{k}+2$, then the graph $C P_{n_{1}, n_{2}, \ldots, n_{t}} \times P_{2}$ is super edge-magic.
Proof. Let $G \cong C P_{n_{1}, n_{2}, \ldots, n_{t}}$ with
$V(G)=\left\{c_{i}: 1 \leq i \leq t\right\} \cup\left\{x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$ and $E(G)=\left\{c_{i+1} c_{i}: 1 \leq i \leq t-1\right\} \cup\left\{c_{i} x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$.

Let p be the number of vertices of G. Then $p=t+\sum_{k=1}^{t} n_{k}$.
First, define a vertex labeling $f: V(G) \rightarrow\left\{1,2, \ldots, t+\sum_{k=1}^{t} n_{k}\right\}$ by

Next, define a vertex labeling $g: V(G) \rightarrow\left\{1,2, \ldots, t+\sum_{k=1}^{t} n_{k}\right\}$ by

For instance, Figures 2.10 and 2.11 show vertex labelings f and g of $C P_{3,2,2,2,1}$.

Figure 2.11: A vertex labeling g of $C P_{3,2,2,2,1}$.

Similarly to Theorem 2.3.2, we can show that $f(V(G))=g(V(G))=\{1,2,3, \ldots, p\}$
and

$$
\begin{aligned}
& \{f(x)+f(y): x y \in E(G)\}=\left\{\frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+p\right\} \\
& \{g(x)+g(y): x y \in E(G)\}=\left\{\frac{p+1}{2}+1, \frac{p+1}{2}+2, \ldots, \frac{p+1}{2}+p-1\right\}
\end{aligned}
$$

are sets of $p-1$ consecutive integers. From Theorem 2.1.1, f and g extend to super edge-magic labelings of G.

Let $V\left(P_{2}\right)=\{1,2\}$ and $E\left(P_{2}\right)=\{12\}$ and $H=G \times P_{2}$. Thus
$V(H)=\left\{\left(c_{i}, k\right): 1 \leq i \leq t, k=1,2\right\} \cup\left\{\left(x_{i j}, k\right): 1 \leq i \leq t, 1 \leq j \leq n_{i}, k=1,2\right\}$.
Define a vertex labeling $h: V(H) \rightarrow\{1,2, \ldots, 2 p\}$ by

$$
h(w)= \begin{cases}\frac{f\left(c_{i}\right),}{} & \text { if } w=\left(c_{i}, 1\right) ; \\ f\left(x_{i j}\right), & \text { if } w=\left(x_{i j}, 1\right) ; \\ p+g\left(c_{i}\right), & \text { if } w=\left(c_{i}, 2\right) ; \\ p+g\left(x_{i j}\right), & \text { if } w=\left(x_{i j}, 2\right)\end{cases}
$$

For instance, Figure 2.12 shows the vertex labeling h of $C P_{3,2,2,2,1} \times P_{2}$ constructed from f and g in Figure 2.10 and Figure 2.11.

Figure 2.12: A vertex labeling of $C P_{3,2,2,2,1} \times P_{2}$.

Similar to Theorem 2.3.1, we can show that $h(V(H))=\{1,2,3, \ldots, 2 p\}$ and $\{h(x)+h(y): x y \in E(H)\}=\left\{\frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+3 p-1\right\}$ is a set of $3 p-2$ consecutive integers. From Theorem 2.1.1, h extends to a super edge-magic labeling of H.

Figure 2.13: A super edge-magic labeling of $C P_{2,1,2,2,1} \times P_{2}$ with magic constant 72.

Theorem 2.3.4. Let $C P_{n_{1}, n_{2}, \ldots, n_{t}}$ be a caterpillar with t is even.
If $\sum_{\substack{k=1 \\ k \text { is odd }}}^{t-1} n_{k} \overparen{\approx} \sum_{\substack{k=2 \\ k \text { is even }}}^{t} n_{k}+1$, then the graph $C \stackrel{\widetilde{P_{n}}, n_{2}, \ldots, n_{t}}{ } \times \widetilde{P}_{2}$ is super edge-magic.

$V(G) \xlongequal[q]{ }\left\{c_{i}: 1 \leq i \leq t\right\} \cup\left\{x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$ and
$E(G)=\left\{c_{i+1} c_{i}: 1 \leq i \leq t-1\right\} \cup\left\{c_{i} x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$.

Let p be the number of vertices of G. Then $p=t+\sum_{k=1}^{t} n_{k}$.
First, define a vertex labeling $f: V(G) \rightarrow\left\{1,2, \ldots, t+\sum_{k=1}^{t} n_{k}\right\}$ by

Next, define a vertex labeling $g: V(G) \rightarrow\left\{1,2, \ldots, t+\sum_{k=1}^{t} n_{k}\right\}$ by

For instance, Figures 2.14 and 2.15 show vertex labelings f and g of $C P_{2,2,1,0,2,2}$.

Wigure 2.14: A vertex labeling f of $C P_{2,2,1,0,2,2}$.

Figure 2.15: A vertex labeling g of $C P_{2,2,1,0,2,2}$.

Similar to Theorem 2.3.2, we can show that $f(V(G))=g(V(G))=\{1,2,3, \ldots, p\}$
and

$$
\begin{aligned}
& \{f(x)+f(y): x y \in E(G)\}=\left\{\frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+p\right\} \\
& \{g(x)+g(y): x y \in E(G)\}=\left\{\frac{p+1}{2}+1, \frac{p+1}{2}+2, \ldots, \frac{p+1}{2}+p-1\right\}
\end{aligned}
$$

are sets of $p-1$ consecutive integers. From Theorem 2.1.1, f and g extend to super edge-magic labelings of G.

Let $V\left(P_{2}\right)=\{1,2\}$ and $E\left(P_{2}\right)=\{12\}$ and $H=G \times P_{2}$. Thus
$V(H)=\left\{\left(c_{i}, k\right): 1 \leq i \leq t, k=1,2\right\} \cup\left\{\left(x_{i j}, k\right): 1 \leq i \leq t, 1 \leq j \leq n_{i}, k=1,2\right\}$.
Define a vertex labeling $h: V(H) \rightarrow\{1,2, \ldots, 2 p\}$ by

$$
h(w)= \begin{cases}f\left(c_{i}\right), & \text { if } w=\left(c_{i}, 1\right) \\ f\left(x_{i j}\right), & \text { if } w=\left(x_{i j}, 1\right) \\ p+g\left(c_{i}\right), & \text { if } w=\left(c_{i}, 2\right) \\ p+g\left(x_{i j}\right), & \text { if } w=\left(x_{i j}, 2\right)\end{cases}
$$

For instance, Figure 2.16 shows the vertex labeling h of $C P_{2,2,1,0,2,2} \times P_{2}$ constructed from f and g in Figure 2.14 and Figure 2.15.

Figure 2.16: A vertex labeling h of $C P_{2,2,1,0,2,2} \times P_{2}$.

Similar to Theorem 2.3.1, we can show that $h(V(H))=\{1,2,3, \ldots, 2 p\}$ and $\{h(x)+h(y): x y \in E(H)\}=\left\{\frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+3 p-1\right\}$ is a set of $3 p-2$ consecutive integers. From Theorem 2.1.1, h extends to a super edge-magic labeling of H.

Figure 2.17: A super edge-magic labeling of $C P_{3,2,1,0,2,3} \times P_{2}$ with magic constant 94.

2.4 Super edge-magic labeling of the product of SF-graph

 and path P_{n} eIn this section, we show the super edge-magic labeling of the product of specific
 Definition 2.4.1. A $S F$-graph $S F_{n_{1}, n_{2}, \ldots, n_{t}}$ is a graph which the vertex-set is $\left\{c_{i}: 1 \leq i \leq t\right\} \cup\left\{x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$ and the edge-set is $\left\{c_{i+1} c_{i}: 1 \leq i \leq t-1\right\} \cup\left\{c_{1} c_{t}\right\} \cup\left\{c_{i} x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$.

Figure 2.18: SF-graph $S F_{4,2,0,2,1,0,0}$
Theorem 2.4.2. Let G be the $S F_{0, n_{1}, n_{2}, \ldots, n_{t}}$ and t is even. If $\sum_{\substack{k=1 \\ k \text { is odd }}}^{t-1} n_{k}=\sum_{\substack{k=2 \\ k \text { is even }}}^{t} n_{k}$, then the graph $G \times P_{n}$ is super edge-magic for all $n \in \mathbb{N}$.

Proof. Let $G \cong S F_{0, n_{1}, n_{2}, \ldots, n_{t}}$ with
$V(G)=\left\{c_{i}: 0 \leq i \leq t\right\} \cup\left\{x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$ and
$E(G)=\left\{c_{i} c_{i+1}: 0 \leq i \leq t-1\right\} \cup\left\{c_{0} c_{t}\right\} \cup\left\{c_{i} x_{i j}: 1 \leq i \leq t, 1 \leq j \leq n_{i}\right\}$.

Let p be the number of vertices of G. Then $p=t+1+\sum_{k=1}^{t} n_{k}$.
First, define a vertex labeling $f: V(G) \rightarrow\left\{1,2, \ldots, t+1+\sum_{i=1}^{t} n_{i}\right\}$ by

For instance, Figure 2.19 shows vertex labeling f of $S F_{0,1,2,3,2}$.

Figure 2.19: A vertex labeling f of $S F_{0,1,2,3,2}$.

Next, define a vertex labeling $g: V(G) \rightarrow\left\{1,2, \ldots, t+1+\sum_{i=1}^{t} n_{i}\right\}$ by

For instance, Figure 2.20 shows vertex labeling g of $S F_{0,1,2,3,2}$.

Figure 2.20: A vertex labeling g of $S F_{0,1,2,3,2}$.

In order to show that f and g extend to super edge-magic labelings of G, it suffices to verify by Theorem 2.1.1:
a) $f(V(G))=g(V(G))=\{1,2,3, \ldots, p\}$
b) $S_{f}=\{f(x)+f(y): x y \in E(G)\}$ and $S_{g}=\{g(x)+g(y): x y \in E(G)\}$ consist of p consecutive integers.
Note that, $\sum_{\substack{k=1 \\ k \text { is odd }}}^{t-1} n_{k}+\frac{t}{2}+1=\sum_{\substack{k=2 \\ k \text { is even }}}^{t} n_{k}+\frac{t}{2}+1=\frac{p+1}{2}$.
To show that $f(V(G))=\{1,2, \ldots, p\}$, we consider the labels of vertices as follows:

Vertices $c_{0}, x_{11}, x_{12}, \ldots, x_{1 n_{1}}, c_{2}, x_{31}, \ldots, x_{3 n_{3}}, c_{4}, \ldots, c_{t}$ are labeled by the numbers $1,2,3, \ldots, n_{1}+1, n_{1}+2, n_{1}+3, \ldots, n_{1}+n_{3}+3, n_{1}+n_{3}+4, \ldots, \sum_{\substack{k=1 \\ k \text { is odd }}}^{t-1} n_{k}+\frac{t}{2}+1=\frac{p+1}{2}$, respectively, and $c_{1}, x_{21}, x_{22}, \ldots, x_{2 n_{2}}, c_{3}, x_{41}, \ldots, x_{4 n_{4}}, c_{5}, \ldots, x_{t n_{t}}$ are labeled by the numbers $\sum_{\substack{k=1 \\ k \text { is odd }}}^{t-1} n_{k}+\frac{t}{2}+2=\frac{p+1}{2}+1, \frac{p+1}{2}+2, \frac{p+1}{2}+3, \ldots, \frac{p+1}{2}+n_{2}+$ $1, \frac{p+1}{2}+n_{2}+2, \frac{p+1}{2}+n_{2}+3, \ldots, \frac{p+1}{2}+n_{2}+n_{4}+3, \frac{p+1}{2}+n_{2}+n_{4}+4, \ldots, p$, respectively. Hence $f(V(G))=\{1,2, \ldots, p\}$.

To show that S_{f} consists of p consecutive integers, we have

$$
\begin{aligned}
& 66 f\left(c_{0}\right)+f\left(e_{t}\right)=1+\left(\frac{t}{2}+1+\sum_{\substack{k=1 \\
k}}^{t-1} n_{k}\right) \\
& f\left(c_{0}\right)+f\left(c_{1}\right) \\
& =1+\left(\frac{t}{2}+2+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t-1} n_{k}\right) \\
& \\
& =\frac{p+1}{2}+2 .
\end{aligned}
$$

Similar to Theorem 2.3.2, we can verify that

$$
\begin{aligned}
f\left(c_{i}\right)+f\left(x_{i j}\right) & =f\left(c_{i}\right)+f\left(x_{i(j+1)}\right)-1 \\
f\left(c_{i}\right)+f\left(x_{i n_{i}}\right) & =f\left(c_{i}\right)+f\left(c_{i+1}\right)-1 \\
f\left(c_{i}\right)+f\left(c_{i+1}\right) & =f\left(c_{i}\right)+f\left(x_{(i+1) j}\right)-1
\end{aligned}
$$

Then $S_{f}=\left\{\frac{p+1}{2}+1, \frac{p+1}{2}+2, \ldots, \frac{p+1}{2}+p\right\}$ is a set of p consecutive integers. From Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Similarly, we can show that $g(V(G))=\{1,2,3, \ldots, p\}$ and $S_{g}=\{g(x)+g(y)$: $x y \in E(G)\}=\left\{\frac{p+1}{2}+1, \frac{p+1}{2}+2, \ldots, \frac{p+1}{2}+p\right\}$ is a set of p consecutive integers.

From Theorem 2.1.1, g extends to a super edge-magic labeling of G.
Note that, $S_{f}=S_{g}$.
We will construct a super edge-magic labeling of $S F_{0, n_{1}, n_{2}, \ldots, n_{t}} \times P_{n}$ as follows.
Let $V\left(P_{n}\right)=\{1,2, \ldots, n\}$ and $E\left(P_{n}\right)=\{12,23,34, \ldots,(n-1) n\}$ and $H \cong G \times P_{n}$. Then

$$
\begin{aligned}
V(H)= & \left\{\left(c_{i}, k\right): 1 \leq i \leq t, 1 \leq k \leq n\right\} \cup\left\{\left(x_{i j}, k\right): 1 \leq i \leq t, 1 \leq j \leq n_{i},\right. \\
& 1 \leq k \leq n\} .
\end{aligned}
$$

Define a vertex labeling $h: V(H) \rightarrow\{1,2, \ldots, n p\}$ by

$$
\text { 6 } 2 N h(w)=\left\{\begin{aligned}
&(k-1) p+f\left(c_{i}\right), \text { if } w=\left(c_{i}, k\right), k \text { is odd; } \\
&(k-1) p+f\left(x_{i j}\right), \text { if } w=\left(x_{i j}, k\right), k \text { is odd; } \\
& d 6 \\
&(k-1) p+g\left(c_{i}\right), \text { if } w=\left(c_{i}, k\right), k \text { is even; } \\
&(k-1) p+g\left(x_{i j}\right), \text { if } w=\left(x_{i j}, k\right), k \text { is even. }
\end{aligned}\right.
$$

For instance, Figure 2.21 shows the vertex labeling h of $S F_{0,1,2,3,2} \times P_{3}$ constructed from f and g in Figure 2.19 and Figure 2.20.

Figure 2.21: A vertex labeling of $S F_{0,1,2,3,2} \times P_{3}$.

In order to show that h extends to a super edge-magic labeling of H, it suffices to verify by Theorem 2.1.1:
a) $h(V(H))=\{1,2,3, \ldots, \bar{n} p\}$ \qquad
b) $S=\{h(x) b+h(y): x y \in E(H)\}$ consists of $2 n p-p$ consecutive integers.

$\left.h(V(H))=\bigcup_{k=1}\{h(u, k):(u, k) \in V(H))\right\}$

$$
\begin{aligned}
& =\{1,2, \ldots, p\} \cup\{p+1, p+2, \ldots, 2 p\} \cup\{(n-1) p+1,(n-1) p+2, \ldots, n p\} \\
& =\{1,2, \ldots, n p\} .
\end{aligned}
$$

To show that S consists of $2 n p-p$ consecutive integers, we consider $h(u, k)+$ $h(u, k+1)$ for all edges $(u, k)(u, k+1)$, where $u \in V(G)$ and $k=1,2, \ldots, n-1$.

For edge $\left(c_{0}, k\right)\left(c_{0}, k+1\right)$,

$$
\begin{aligned}
h\left(c_{0}, k\right)+h\left(c_{0}, k+1\right) & =(k-1) p+k p+f\left(c_{0}\right)+g\left(c_{0}\right) \\
& =(2 k-1) p+1+\left(\frac{t}{2}+1+\sum_{\substack{k=2 \\
k \text { is even }}}^{t} n_{k}\right) \\
& =(2 k-1) p+\frac{p+1}{2}+1 .
\end{aligned}
$$

For edge $\left(c_{i}, k\right)\left(c_{i}, k+1\right)$ when $i=2,4, \ldots, t$,

$$
\begin{aligned}
h\left(c_{i}, k\right)+h\left(c_{i}, k\right) & =(2 k-1) p+f\left(c_{i}\right)+g\left(c_{i}\right) \\
& =(2 k-1) p+\left(\frac{i}{2}+1+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-1} n_{k}\right)+\left(\frac{i+t}{2}+1 \sum_{\substack{k=2 \\
k \text { is even }}}^{t} n_{k}+\sum_{\substack{k=1 \\
k \text { is odd }}}^{i-1} n_{k}\right) \\
& =(2 k-1) p+\frac{p+1}{2}+i+1+2 \sum_{\substack{k=1 \\
k \text { is odd }}}^{i-1} n_{k} .
\end{aligned}
$$

For edge $\left(x_{1 j}, k\right)\left(x_{1 j}, k+1\right)$,

$$
\begin{aligned}
h\left(x_{1 j}, k\right)+h\left(x_{1 j}, k\right) & =(2 k-1) p+f\left(x_{1 j}\right)+g\left(x_{1 j}\right) \\
& =(2 k-1) p+(j+1)+\left(\frac{t}{2}+1+j+\sum_{\substack{k=2 \\
k \text { is even }}}^{t} n_{k}\right) \\
& =(2 k-1) p+\frac{p+1}{2}+2 j+1 .
\end{aligned}
$$

For edge $\left(x_{i j}, 1\right)\left(x_{i j}, 2\right)$ when $i=3,5, \ldots, t-1, \partial \prod ?$

$$
\begin{aligned}
9 h\left(x_{i j}, 1\right)+h\left(x_{i j}, 2\right) & =\left(2 k-\frac{1}{}\right) p+f\left(x_{i j}\right)+g\left(x_{i j}\right) \\
& =(2 k-1) p+\left(\frac{i+1}{2}+j+\sum_{\substack{k=1 \\
k \text { is odd } \\
i-2}} n_{k}\right) \\
& +\left(\frac{i+t-1}{2}+j+\sum_{\substack{k=2 \\
k \text { is even }}}^{t} n_{k}+\sum_{\substack{k=1 \\
k \text { is odd } \\
i-2}} n_{k}\right) \\
& =(2 k-1) p+\frac{p+1}{2}+i+2 \sum_{\substack{k=1 \\
k \text { is odd }}} n_{k}+2 j .
\end{aligned}
$$

Note that, for any i is even,

$$
\begin{aligned}
& h\left(c_{i}, k\right)+h\left(c_{i}, k+1\right)=h\left(x_{(i+1) 1}, k\right)+h\left(x_{(i+1) 1}, k+1\right)-2, \\
& h\left(x_{(i-1) n_{i-1}}, k\right)+h\left(x_{(i-1) n_{i-1}}, k+1\right)=h\left(c_{i}, k\right)+h\left(c_{i}, k+1\right)-2, \\
& h\left(x_{(i+1) j}, k\right)+h\left(x_{(i+1) j}, k+1\right)=h\left(x_{(i+1)(j+1)}, k\right)+h\left(x_{(i+1)(j+1)}, k+1\right)-2 .
\end{aligned}
$$

For edge $\left(c_{1}, k\right)\left(c_{1}, k+1\right)$,

$$
\begin{aligned}
h\left(c_{1}, k\right)+h\left(c_{1}, k+1\right) & =(2 k-1) p+f\left(c_{1}\right)+g\left(c_{1}\right) \\
& =(2 k-1) p+\left(\frac{t}{2}+2+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t-1} n_{k}\right)+1 \\
& =(2 k-1) p+\frac{p+1}{2}+2 .
\end{aligned}
$$

For edge $\left(c_{i}, k\right)\left(c_{i}, k+1\right)$ when $i=3,5, \ldots, t-1$,

$$
h\left(c_{i}, k\right)+h\left(c_{i}, k+1\right)=(2 k-1) p+f\left(c_{i}\right)+g\left(c_{i}\right)
$$

$$
=(2 k-1) p+\left(\frac{i+t+1}{2}+1+\sum_{\substack{k=1 \\ k \text { is odd }}}^{t-1} n_{k}+\sum_{\substack{k=2 \\ k \text { is even }}}^{i-1} n_{k}\right)
$$

$$
\begin{aligned}
& +\left(\frac{i+1}{2}+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-1} n_{k}\right) \\
& =(2 k-1) p+\frac{p+1}{2}+i+1+2 \sum_{k=2}^{i-1} n_{k} .
\end{aligned}
$$

For edge $\left(x_{2 j}, k\right)\left(x_{2 j}, k+1\right)$

$$
\begin{aligned}
\overparen{h\left(x_{1 j}, k\right)+h\left(x_{1 j}, k+1\right)} & =(2 k-1) p \nmid f\left(x_{2 j}\right)+g\left(x_{2 j}\right) \text { 回 } \\
& =(2 k-1) p+\left(\frac{t}{2}+2+j+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t-1} n_{k}\right)+(j+1) \\
& =(2 k-1) p+\frac{p+1}{2}+2 j+2 .
\end{aligned}
$$

For edge $\left(x_{i j}, k\right)\left(x_{i j}, k+1\right)$ when $i=4,6, \ldots, t$,

$$
\begin{aligned}
h\left(x_{i j}, k\right)+h\left(x_{i j}, k+1\right) & =(2 k-1) p+f\left(x_{i j}\right)+g\left(x_{i j}\right) \\
& =(2 k-1) p+\left(\frac{i+t}{2}+j+1+\sum_{\substack{k=1 \\
k \text { is odd }}}^{t-1} n_{k}+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-2} n_{k}\right) \\
& +\left(\frac{i}{2}+j+\sum_{\substack{k=2 \\
k \text { is even }}}^{i-2} n_{k}\right) \\
& =(2 k-1) p+\frac{p+1}{2}+i+2 \sum_{\substack{k=2 \\
k \text { is even }}}^{i-2} n_{k}+2 j .
\end{aligned}
$$

Note that, for any i is odd,

$$
\begin{aligned}
& h\left(c_{i}, k\right)+h\left(c_{i}, k+1\right)=h\left(x_{(i+1) 1}, k\right)+h\left(x_{(i+1) 1}, k+1\right)-2, \\
& h\left(x_{(i-1) n_{i-1}}, k\right)+h\left(x_{(i-1) n_{i-1}}, k+1\right)=h\left(c_{i}, k\right)+h\left(c_{i}, k+1\right)-2, \\
& h\left(x_{(i+1) j}, k\right)+h\left(x_{(i+1) j}, k+1\right)=h\left(x_{(i+1)(j+1)}, k\right)+h\left(x_{(i+1)(j+1)}, k+1\right)-2 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left\{h\left(c_{i}, k\right)+h\left(c_{i}, k+1\right): i \text { is even }\right\} \bigcup_{\substack{i=1 \\
i \text { is odd }}}^{t-1}\left\{h\left(x_{i j}, k\right)+h\left(x_{i j}, k+1\right): j=1,2, \ldots, n_{i}\right\} \\
= & \left\{\frac{p+1}{2}+(2 k-1) p+1, \frac{p+1}{2}+(2 k-1) p+3, \ldots, \frac{p+1}{2}+2 k p\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{h\left(c_{i}, k\right)+h\left(c_{i}, k+1\right): i \text { is odd }\right\} \text { U } \bigcup_{\substack{i=2 \\
\text { a }}}\left\{h\left(x_{i j}, k\right)+h\left(x_{i j}, k+1\right): j=1,2, \ldots, n_{i}\right\} \\
= & \left\{\frac{p+1}{2}+(2 k-1) p+2, \frac{p+1}{2}+(2 k-1) p+4, \ldots, \frac{p+1}{2}+2 k p-1\right\} .
\end{aligned}
$$

Hence $\{h(u, k)+h(u, k+1):(u, k)(u, k+1) \in V(H)\}=\left\{\frac{p+1}{2}+(2 k-1) p+1, \frac{p+1}{2}+\right.$ $\left.(2 k-1) p+2, \ldots, \frac{p+1}{2}+2 k p\right\}$

We note that

$$
\begin{aligned}
S= & \{h(u)+h(v): u v \in E(H)\} \\
= & \bigcup_{k=1}^{n}\{h(u, k)+h(v, k):(u, k)(v, k) \in V(H)\} \cup \\
& \bigcup_{k=1}^{n-1}\{h(u, k)+h(u, k+1):(u, k)(v, k+1) \in V(H)\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \bigcup_{k=1}^{n}\{h(u, k)+h(v, k):(u, k)(v, k) \in V(H)\} \\
= & \bigcup_{k=1}^{n}\left\{\frac{p+1}{2}+(2 k-2) p+1, \frac{p+1}{2}+(2 k-2) p+2, \ldots, \frac{p+1}{2}+(2 k-1) p\right\} \\
= & \left\{\frac{p+1}{2}+1, \frac{p+1}{2}+2, \ldots, \frac{p+1}{2}+p\right\} \cup \\
& \left\{\frac{p+1}{2}+2 p+1, \frac{p+1}{2}+2 p+2, \ldots, \frac{p+1}{2}+3 p\right\} \cup \cdots \cup \\
& \left\{\frac{p+1}{2}+(2 n-2) p+1, \frac{p+1}{2}+(2 n-2) p+2, \ldots, \frac{p+1}{2}+(2 n-1) p\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \bigcup_{k=1}^{n-1}\{h(u, k)+h(u, k+1):(u, k)(v, k+1) \in V(H)\} \\
= & \bigcup_{k=1}^{n-1}\left\{\frac{p+1}{2}+(2 k \varrho 1) p+1, \frac{p+1}{2}+(2 k=1) p+2, \ldots, \frac{p+1}{2}+2 k p\right\} \\
= & \left\{\frac{p+1}{2}+p+1, \frac{p+1}{2}+p+2, \ldots, \frac{p+1}{2}+2 p\right\} \cup \\
& \left\{\frac{p+1}{2}+3 p+1, \frac{p+1}{2}-3 p+2, \ldots, \frac{p+1}{2}+4 p\right\} \cup \cup 6 \\
& \left\{\frac{p+1}{2}+(2 n-3) p+1, \frac{p+1}{2}+(2 n-3) p+2, \ldots, \frac{p+1}{2}+(2 n-2) p\right\} .
\end{aligned}
$$

Then $S=\left\{\frac{p+1}{2}+1, \frac{p+1}{2}+2, \ldots, \frac{p+1}{2}+(2 n-1) p\right\}$ is a set of $2 n p-p$ consecutive integers. From Theorem 2.1.1, h extends to a super edge-magic labeling of H.

Figure 2.22: A super edge-magic labeling of $S F_{0,1,2,2,1} \times P_{4}$ with magic constant 128.

CHAPTER III

CREATING NEW SUPER EDGE-MAGIC GRAPHS FROM OLD ONES

Some algorithms to construct new super edge-magic graphs from the old ones done by Sudarsana, Baskoro, Ismaimuza and Assiyatun are given in Theorem 3.1, 3.3 and 3.5. Examples of these algorithms are shown in Example 3.2, 3.4 and 3.6. Then we give a generalization of these algorithms in Theorem 3.7.

Theorem 3.1. [9] Let $a(p, q)$-graph G be super edge-magic with magic constant k and $k \geq 2 p+2$. If n is odd and $n=6 p+5-2 k$ then the new graph, formed from G and path P_{n} by joining all vertices of P_{n} to a vertex x_{0} of G labeled by $k-2 p-1$, is super edge-magic with magic constant $k+3 n-1$.

Example 3.2. Let G be a graph in figure 3.1(left) which is super edge-magic with magic constant 16. Let x_{0} be the vertex labeled by 3 , the new graph, formed from G and path P_{9} by joining all vertices of P_{9} to vertex x_{0} of G, is super edge-magic with magic constant 42 as shown in figure 3.1 (right).

จุฬาลงกรณมหาวิทยาลัย

Figure 3.1: The new graph, formed from a super edge-magic graph G with magic constant 16 and path P_{9}, is super edge-magic with magic constant 42.

Theorem 3.3. [9] Let $a(p, q)$-graph G be super edge-magic with magic constant k and $k \geq 2 p+2$. If n is even and $n=6 p+4-2 k$ then the new graph, formed from G and path P_{n} by joining all vertices of P_{n} to a vertex x_{0} of G labeled by $k-2 p-1$, is super edge-magic with magic constant $k+3 n-1$.

Example 3.4. Let G be a graph in figure 3.2(left) which is super edge-magic with magic constant 16. Let x_{0} be the vertex labeled by 3, the new graph, formed from G and path P_{8} by joining all vertices of P_{8} to vertex x_{0} of G, is super edge-magic with magic constant 39 as shown in figure 3.2 (right). $\widetilde{\delta}$

Figure 3.2: The new graph, formed from a super edge-magic graph G with magic constant 16 and path P_{8}, is super edge-magic with magic constant 39 .

Theorem 3.5. [9] Let a (p, q)-graph G be super edge-magic with magic constant k and $k \geq 2 p+2$. If $n=3 p+2-k$ then the new graph, formed from G and star $K_{1, n}$ by joining all vertices of $K_{1, n}$ to a vertex x_{0} of G labeled by $k-2 p-1$, is super edge-magic with magic constant $k=k+3 n+2$.

Example 3.6. Let G be a graph in figure 3.3(left) which is super edge-magic with magic constant 16. Let x_{0} be the vertex labeled by 3 , the new graph, formed from G and star $K_{1,4}$ by joining all vertices of $K_{1,4}$ to vertex x_{0} of G, is super edge-magic with the magic constant 30 as shown in figure 3.3(right).

Figure 3.3: The new graph, formed from a super edge-magic graph G with magic constant 16 and a star $K_{1,4}$, is super edge-magic with magic constant 30 .

We present a generalization of the above algorithms to construct the super edge-magic graph from the old ones.

Theorem 3.7. Let G_{1} and G_{2} be super edge-magic $\left(p_{1}, q_{1}\right)$-graph and $\left(p_{2}, q_{2}\right)$ graph with magic constants k_{1} and k_{2}, respectively. If $k_{1} \geq 2 p_{1}+2$ and $k_{1}-3 p_{1}=$ $k_{2}-2 p_{2}-q_{2}$, then the new graph, formed from G_{1} and G_{2} by joining all vertices of G_{2} to a vertex x_{0} of G_{1} labeled by $k_{1}-2 p_{1}-1$, is super edge-magic with magic

Proof. Since G_{1} and G_{2} are super edge-magic, By Theorem 2.1.1, there exist super edge-magic labelings λ_{1} on G_{1} and λ_{2} on G_{2} such that
$\left\{\lambda_{1}(u)+\lambda_{1}(v): u v \in E\left(G_{1}\right)\right\}=\left\{k_{1}-\left(p_{1}+q_{1}\right), k_{1}-\left(p_{1}+q_{1}-1\right), \ldots, k_{1}-\left(p_{1}+1\right)\right\}$,
$\left\{\lambda_{2}(u)+\lambda_{2}(v): u v \in E\left(G_{2}\right)\right\}=\left\{k_{2}-\left(p_{2}+q_{2}\right), k_{2}-\left(p_{2}+q_{2}-1\right), \ldots, k_{2}-\left(p_{2}+1\right)\right\}$, respectively.

Let x_{0} be the vertex of G_{1} labeled by $k_{1}-2 p_{1}-1$ and G be the new graph , formed from G_{1} and G_{2} by joining all vertices of G_{2} to vertex x_{0}.

Define a vertex labeling $\lambda: V(G) \rightarrow\left\{1,2, \ldots, p_{1}+p_{2}\right\}$ by

$$
\lambda(u)= \begin{cases}\lambda_{1}(u), & \text { if } u \in V\left(G_{1}\right) ; \\ p_{1}+\lambda_{2}(u), & \text { if } u \in V\left(G_{2}\right) .\end{cases}
$$

Since $\{\lambda(u): u \in V(G)\}=\left\{\lambda(u): u \in V\left(G_{1}\right)\right\} \cup\left\{\lambda(u): u \in V\left(G_{2}\right)\right\}$
and $\left\{\lambda(u): u \in V\left(G_{1}\right)\right\}=\left\{\lambda_{1}(u): u \in V\left(G_{1}\right)\right\}=\left\{1,2, \ldots, p_{1}\right\}$
and $\left\{\lambda(u): u \in V\left(G_{2}\right)\right\}=\left\{p_{1}+\lambda_{2}(u): u \in V\left(G_{2}\right)\right\}=\left\{p_{1}+1, p_{1}+2, \ldots, p_{1}+p_{2}\right\}$, $\{\lambda(u): u \in V(G)\}=\left\{1,2, \ldots, p_{1}+p_{2}\right\}$.

Consider

$$
\begin{aligned}
\{\lambda(u)+\lambda(v): u v \in E(G)\}= & \left\{\lambda(u)+\lambda(v): u v \in E\left(G_{1}\right)\right\} \cup\left\{\lambda\left(x_{0}\right)+\lambda(v): v \in V\left(G_{2}\right)\right\} \\
& \cup\left\{\lambda(u)+\lambda(v): u v \in E\left(G_{2}\right)\right\} \\
= & \left\{\lambda_{1}(u)+\lambda_{1}(v): u v \in E\left(G_{1}\right)\right\} \cup\left\{\lambda_{1}\left(x_{0}\right)+\lambda_{2}(v): v \in V\left(G_{2}\right)\right\} \\
& \frac{\cup\left\{2 p_{1}+\lambda_{2}(u)+\lambda_{2}(v): u v \in E\left(G_{2}\right)\right\} .}{}
\end{aligned}
$$

Note that, for all $v \in V\left(G_{2}\right)$,
$\lambda_{1}\left(x_{0}\right)+\lambda_{2}(v)=\left(k_{1}-2 p_{1}-1\right)+\left(p_{1}+\lambda_{2}(v)\right)=k_{1}=p_{1}+\lambda_{2}(v)-1$.
Since $1 \leq \lambda_{2}(v) \leq p_{2}$ for all $v \in V\left(G_{2}\right)$,
$\left\{\lambda_{1}\left(x_{0}\right)+\lambda_{2}(v): v \in V\left(G_{2}\right)\right\}=\left\{k_{1}-p_{1}, k_{1}-p_{1}+1, \ldots, k_{1}-p_{1}+p_{2}-1\right\}$.
Since $k_{1}-3 p_{1}=k_{2}-2 p_{2}-q_{2}$, we have $2 p_{1}+k_{2}-\left(p_{2}+q_{2}\right)=k_{1}-p_{1}+p_{2}$,

$$
\begin{aligned}
& \left\{2 p_{1}+\lambda_{2}(u)+\lambda_{2}(v): u v \in E\left(G_{2}\right)\right\} \\
& =\left\{2 p_{1}+k_{2}-\left(p_{2}+q_{2}\right), 2 p_{1}+k_{2}-\left(p_{2}+q_{2}-1\right), \ldots, 2 p_{1}+k_{2}-\left(p_{2}+1\right)\right\} \\
& =\left\{k_{1}-p_{1}+p_{2}, k_{1}-p_{1}+p_{2}+1, \ldots, k_{1}-p_{1}+p_{2}+q_{2}-1\right\} .
\end{aligned}
$$

Hence $\{\lambda(u)+\lambda(v): u v \in E(G)\}=\left\{k_{1}-\left(p_{1}+q_{1}\right), k_{1}-\left(p_{1}+q_{1}-1\right), \ldots, k_{1}-\left(p_{1}+1\right)\right\}$ $\cup\left\{k_{1}-p_{1}, k_{1}-p_{1}+1, \ldots, k_{1}-p_{1}+p_{2}-1\right\} \cup\left\{k_{1}-p_{1}+p_{2}, k_{1}-p_{1}+p_{2}+1, \ldots, k_{1}-\right.$ $\left.p_{1}+p_{2}+q_{2}-1\right\}$ which is the set of $q_{1}+q_{2}+p_{2}$ consecutive integers. Then G is
super edge-magic with magic constant $\left(p_{1}+p_{2}\right)+\left(q_{1}+q_{2}+p_{2}\right)+\left(k_{1}-\left(p_{1}+q_{1}\right)\right)=$ $k_{1}+2 p_{2}+q_{2}$.

Example 3.8. Let G_{1} and G_{2} be graphs in figure 3.4(left) which are super edgemagic with magic constant 16 and 33 , respectively. Let x_{0} be the vertex labeled by 3 in G_{1}, the new graph, formed from G_{1} and G_{2} by joining all vertices of G_{2} to vertex x_{0} of G_{1}, is super edge-magic with magic constant 51 as shown in figure 3.4 (right).

$\begin{array}{ll}9 & 20 \quad 21\end{array}$
 ค

Figure 3.4: The new graph, formed from a super edge-magic graph G_{1} with magic constant 16 and G_{2} quith magic constant 33, is super edge-magic with magic constant 51.

Corollary 3.9. Let $a(p, q)$-graph G be a super edge-magic with magic constant k and $k \geq 2 p+2$. If n is odd and $n=6 p+3-2 k$ then the new graph, formed from G and cycle C_{n} by joining all vertices of C_{n} to a vertex x_{0} of G labeled by $k-2 p-1$, is super edge-magic with the magic constant $k+3 n$.

Proof. It is known that [2] every odd cycle C_{n} is super edge-magic with magic constant $\frac{5 n+3}{2}$. Let $p^{\prime}, q^{\prime}, k^{\prime}$ be number of vertices, number of edges and magic constant of C_{n}, respectively. Thus $k^{\prime}=\frac{5 n+3}{2}=\frac{5(6 p+3-2 k)+3}{2}=15 p+9-5 k$. Then $k^{\prime}-2 p^{\prime}-q^{\prime}=(15 p+9-5 k)-2(6 p+3-2 k)-(6 p+3-2 k)=k-3 p$. By Theorem 3.7, the new graph, formed from G and cycle C_{n} by joining all vertices of C_{n} to a vertex x_{0}, is super edge-magic with magic constant $k+2 p^{\prime}+q^{\prime}=k+3 n$.

Example 3.10. Let G be a graph in figure 3.5(left) is super edge-magic with magic constant 16. Let x_{0} be the vertex labeled by 3 , the new graph, formed from G and a cycle C_{7} by joining all vertices of C_{7} to vertex x_{0} of G, is super edge-magic with the magic constant 37 as shown in figure 3.5(right).

Figure 3.5: The new graph, formed from a super edge-magic graph G with magic constant 16 and a cycle C_{7}, is super edge-magic with magic constant 37 .

CHAPTER IV

SUPER EDGE-MAGIC DEFICIENCY OF SOME

GRAPHS

Our purpose in this chapter is to investigate bounds for the super edge-magic deficiency of some graphs.

Definition 4.1. The super edge-magic deficiency $\mu_{s}(G)$ of a graph G is the smallest nonnegative integer n with the property that the graph $G \cup n K_{1}$ is super edge-magic or $+\infty$ if there exists no such integer n.

Example 4.2. Since cycle C_{4} is not super edge-magic and $C_{4} \cup K_{1}$ is super edgemagic, then $\mu_{s}(G)=1$.

Figure 4.1: $C_{4} \cup K_{1}$ is super edge-magic with magic constant 14.

Figuaroa-Centeno, Ichishima and Muntaner-Batle showed the following theorem.

Theorem 4.3. [5] If G is a graph with even degree and q edges, where $\frac{q}{2}$ is odd, then $\mu_{s}(G)=+\infty$.

We investigate a lower bound for the super edge-magic deficiency of the join of cycle C_{n} and m isolated vertices.

Theorem 4.4. For all integers $m \geq 1$ and $n \geq 3$,

$$
\mu_{s}\left(m K_{1} \vee C_{n}\right) \geq \frac{(m-1)(n-2)+1}{2}
$$

Proof. Let G be the join of m copies of K_{1} and n-cycle C_{n} with $|V(G)|=m+n$ and $|E(G)|=n+m n$.

Thus

$$
\begin{aligned}
|E(G)| & =m n+n=m(n-2+2)+n=m(n-2)+2 m+n \\
& \geq(n-2)+2 m+n>2 m+2 n-3=2(m+n)-3=2|V(G)|-3
\end{aligned}
$$

By Theorem 2.1.3, G is not super edge-magic.
Let k be a positive integer such that $G \cup k K_{1}$ is super edge-magic.
By Theorem 2.1.3, $\left|E\left(G \cup k K_{1}\right)\right| \leq 2\left|V\left(G \cup k K_{1}\right)\right|-3$.
Thus $m n+n \leq 2(m+n+k)-3$, then $k \geq \frac{(m-1)(n-2)+1}{2}$.
Hence $\mu_{s}(G) \geq \frac{(m-1)(n-2)+1}{2}$.
We investigate an upper bound for the super edge-magic deficiency of the join of odd cycle G_{n} and m isolated vertices. 1 な?
Theorem 4.5. For all positive integers m, n and n is odd,
$\begin{gathered}\text { Q } \\ 9\end{gathered}$
$\mu_{s}\left(m K_{1} \vee C_{n}\right) \leq \frac{(2 m-1)(n-1)}{2}$.
Proof. Let $s=\frac{(2 m-1)(n-1)}{2}$ and $G \cong\left(m K_{1} \vee C_{n}\right) \cup s K_{1}$ be the graph with
$V(G)=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{y_{j}: 1 \leq j \leq m\right\} \cup\left\{w_{k}: 1 \leq k \leq s\right\}$ and
$E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{n} x_{1}\right\} \cup\left\{y_{j} x_{i}: 1 \leq j \leq m, 1 \leq i \leq n\right\}$.

Define a vertex labeling $f: V(G) \rightarrow\{1,2, \ldots, m+n+s\}$ by

$$
f(u)= \begin{cases}\frac{i+1}{2}, & \text { if } u=x_{i}, i \text { is odd; } \\ \frac{n+1+i}{2}, & \text { if } u=x_{i}, i \text { is even; } \\ \frac{3 n+1}{2}+(j-1) n, & \text { if } u=y_{j} .\end{cases}
$$

and

$$
\begin{aligned}
\left\{f\left(w_{k}\right): k=1,2, \ldots, s\right\}= & \left\{n+1, n+2, \ldots, \frac{3 n-1}{2}\right\} \cup\left\{\frac{3 n+3}{2}, \frac{3 n+5}{2}, \ldots, \frac{5 n-1}{2}\right\} \cup \\
& \left\{\frac{5 n+3}{2}, \frac{5 n+5}{2}, \ldots, \frac{7 n-1}{2}\right\} \cup\left\{\frac{7 n+3}{2}, \frac{7 n+5}{2}, \ldots, \frac{9 n-1}{2}\right\} \\
& \cup \cdots \cup\left\{\frac{2 m n-n+3}{2}, \frac{2 m n-n+5}{2}, \ldots, \frac{2 m n+n-1}{2}\right\} \\
= & \left\{n+1, n+2, \ldots, \frac{3 n-1}{2}\right\} \cup \bigcup_{a=2}^{m}\left(\bigcup_{b=2}^{n}\left\{\frac{(2 a-1) n+(2 b-1)}{2}\right\}\right) .
\end{aligned}
$$

Figure 4.2: A vertex labeling of $\left(m K_{1} \vee C_{n}\right) \cup s K_{1}$.

In order to show that f extends to a super edge-magic labeling of G, it suffices to verify by Theorem 2.1.1:
a) $f(V(G))=\{1,2,3, \ldots, m+n+s\}$
b) $S=\{f(x)+f(y): x y \in E(G)\}$ consists of $m n+n$ consecutive integers.

To show that $f(V(G))=\{1,2,3, \ldots, m+n+s\}$, we consider the labels of vertices as follows:

Vertices $x_{1}, x_{3}, x_{5} \ldots, x_{n}$ are labeled by numbers $1,2,3, \ldots, \frac{n+1}{2}$, respectively and $x_{2}, x_{4}, x_{6} \ldots, x_{n-1}$ are labeled by numbers $\frac{n+3}{2}, \frac{n+5}{2}, \frac{n+7}{2}, \ldots, n$, respectively and $y_{1}, y_{2}, y_{3}, \ldots, y_{m}$ are labeled by numbers $\frac{3 n+1}{2}, \frac{5 n+1}{2}, \frac{7 n+1}{2}, \ldots, \frac{2 m n+n+1}{2}$, respectively and $w_{1}, w_{2}, \ldots, w_{s}$ are labeled by remaining numbers. Hence $f(V(G))=\{1,2,3, \ldots, m+n+s\}$.

To show that S consists of $m n+n$ consecutive integers, we consider $f(x)+f(y)$ for all edges $x y$ in G.
For edge $x_{n} x_{1}, f\left(x_{n}\right)+f\left(x_{1}\right) \equiv \frac{n+1}{2}+1=\frac{n+3}{2}$.
For edge $x_{i} x_{i+1}: i=1,3,5, \ldots, n-2$,
$f\left(x_{i}\right)+f\left(x_{i+1}\right)=\frac{i+1}{2}+\frac{n+i+2}{2}=\frac{n+3+2 i}{2}$.
For edge $x_{i} x_{i+1}: i=2,4,6, \ldots, n-1$,
$f\left(x_{i}\right)+f\left(x_{i+1}\right)=\frac{\bar{n}+i+1}{2}+\frac{i+2}{2}=\frac{n+3+2 i}{2}$.
For edge $y_{j} x_{i}: i=1,3,5, \ldots, n, j=1,2, \ldots, m_{\curvearrowleft}$
$f\left(y_{j}\right)+f\left(x_{i}\right)=\frac{3 n+1}{2}+(j-1) n+\frac{9+1}{2}=\frac{(2 j+1) n+i+2}{2}$.
For edge $y_{j} x_{i}: i=2,4,6, \ldots, n-1 ; j=1,2, \ldots, m$,
$f\left(y_{j}\right)+f\left(x_{i}\right)=\frac{3 n+1}{2}+(j-1) n+\frac{n+1+i}{2}=\frac{(2 j+2) n+i+2}{2}$.
We note that

$$
\begin{aligned}
S= & \{f(x)+f(y): x y \in E(G)\} \\
= & \left\{f\left(x_{n}\right)+f\left(x_{1}\right)\right\} \cup\left\{f\left(x_{i}\right)+f\left(x_{i+1}\right): i=1,2, \ldots, n-1\right\} \cup \\
& \bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=1,3, \ldots, n\right\} \cup \bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=2,4, \ldots, n-1\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{f\left(x_{n}\right)+f\left(x_{1}\right)\right\}= & \left\{\frac{n+3}{2}\right\} \\
\left\{f\left(x_{i}\right)+f\left(x_{i+1}\right): i=1,2, \ldots, n-1\right\}= & \left\{\frac{n+5}{2}, \frac{n+7}{2}, \frac{n+9}{2}, \ldots, \frac{3 n+1}{2}\right\} \\
\bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=1,3, \ldots, n\right\}= & \left\{\frac{3 n+3}{2}, \frac{3 n+5}{2}, \ldots, \frac{4 n+2}{2}\right\} \cup \\
& \left\{\frac{5 n+3}{2}, \frac{5 n+5}{2}, \ldots, \frac{6 n+2}{2}\right\} \cup \cdots \cup \\
& \left\{\frac{2 m n+n+3}{2}, \frac{2 m n+n+5}{2}, \ldots, \frac{2 m n+2 n+2}{2}\right\} \\
\bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=2,4, \ldots, n-\frac{1}{1\}}=\right. & \left\{\frac{4 n+4}{2}, \frac{4 n+6}{2}, \ldots, \frac{5 n+1}{2}\right\} \cup \\
& \left\{\frac{6 n+4}{2}, \frac{6 n+6}{2}, \ldots, \frac{7 n+1}{2}\right\} \cup \cdots \cup \\
& \left\{\frac{2 m n+2 n+4}{2}, \frac{2 m n+2 n+6}{2}, \ldots, \frac{2 m n+3 n+1}{2}\right\} .
\end{aligned}
$$

Then $S=\left\{\frac{n+3}{2}, \frac{n+5}{2}, \frac{n+7}{2}, \ldots, \frac{2 m n+3 n+1}{2}\right\}$ is a set of $m n+n$ consecutive integers. By Theorem 2.1.1, f extends to a super edge-magic labeling of G.
Therefore $\mu_{s}\left(m K_{1} \vee C_{n}\right) \leq \frac{(2 m-1)(n-1)}{2}$ when n is odd.
Example 4.6. $6 \leq \mu_{s}\left(3 K_{1} \vee C_{7}\right) \leq 15$.

Figure 4.3: A vertex labeling of $\left(3 K_{1} \vee C_{7}\right) \cup 15 K_{1}$.

We investigate the super edge-magic deficiency of the join of specific even cycle C_{n} and m isolated vertices.

Theorem 4.7. For all positive integers m, n and $m, n \equiv 2(\bmod 4)$,

$$
\mu_{s}\left(m K_{1} \vee C_{n}\right)=+\infty
$$

Proof. Let $m=4 s+2$ and $n=4 t+2$ for some positive integers s, t.
Then

$$
\begin{aligned}
\left|E\left(m K_{1} \vee C_{n}\right)\right| & =m n+n \\
& =(4 s+2)(4 t+2)+(4 t+2) \\
& =4(4 s t+2 s+3 t)+6
\end{aligned}
$$

Since $m K_{1} \vee C_{n}$ is graph with even graph degree and $\frac{\left|E\left(m K_{1} \vee C_{n}\right)\right|}{2}=2(4 s t+$ $2 s+3 t)+3$ is odd, by Theorem 4.3, $\mu_{s}\left(m K_{1} \vee C_{n}\right)=+\infty$.

We investigate a lower bound for the super edge-magic deficiency of the join of path P_{n} and m isolated vertices.

Theorem 4.8. For all integers $m \geq 2$ and $n \geq 3$,

$$
66 \text { h }^{\mu_{s}\left(m K_{1} \vee P_{n}\right) \geq \frac{(m-1)(n-2)}{q^{2}} .}
$$

Proof. Let G be the join of m copies of K_{1} and path P_{n} with

Thus

$$
\begin{aligned}
|E(G)| & =m n+n-1=m(n-2+2)+n-1=m(n-2)+2 m+n-1 \\
& >(n-2)+2 m+n-1=2 m+2 n-3=2(m+n)-3=2|V(G)|-3 .
\end{aligned}
$$

By Theorem 2.1.3, G is not super edge-magic.
Let k be a positive integer such that $G \cup k K_{1}$ is super edge-magic.

By Theorem 2.1.3, $\left|E\left(G \cup k K_{1}\right)\right| \leq 2\left|V\left(G \cup k K_{1}\right)\right|-3$.
Thus $m n+n-1 \leq 2(m+n+k)-3$, then $k \geq \frac{(m-1)(n-2)}{2}$.
Hence $\mu_{s}(G) \geq \frac{(m-1)(n-2)}{2}$.
We investigate an upper bound for the super edge-magic deficiency of the join of path P_{n} and m isolated vertices.

Theorem 4.9. For all positive integers m, n

$$
\mu_{s}\left(m K_{1} \vee P_{n}\right) \leq \begin{cases}\frac{(2 m-1)(n-1)}{2}, & \text { if } n \text { is odd } \\ \frac{(2 m-1)(n-1)-1}{2}, & \text { if } n \text { is even. }\end{cases}
$$

Proof. Let

$$
s= \begin{cases}\frac{(2 m-1)(n-1)}{2}, & \text { if } n \text { is odd } \\ \frac{(2 m-1)(n-1)-1}{2}, & \text { if } n \text { is even. }\end{cases}
$$

and $G \cong\left(m K_{1} \vee P_{n}\right) \cup s K_{1}$ be the graph with
$V(G)=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{y_{j}: 1 \leq j \leq m\right\} \cup\left\{w_{k}: 1 \leq k \leq s\right\}$ and $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{1} x_{n}: 1\right\} \cup\left\{y_{j} x_{i}: 1 \leq j \leq m, 1 \leq i \leq n\right\}$.

Case 1. n is odd.
Define a vertex labeling $f: V(G) \rightarrow\{1,2, \ldots m+n+s\}$ by

$$
f(u)= \begin{cases}\frac{i+1}{2}, & \text { if } u=x_{i}, i \text { is odd; } \\ \frac{n+1+i}{2}, & \text { if } u=x_{i}, i \text { is even; } \\ \frac{3 n+1}{2}+(j-1) n, & \text { if } u=y_{j} .\end{cases}
$$

and

$$
\begin{aligned}
\left\{f\left(w_{k}\right): k=1,2, \ldots, s\right\}= & \left\{n+1, n+2, \ldots, \frac{3 n-1}{2}\right\} \cup\left\{\frac{3 n+3}{2}, \frac{3 n+5}{2}, \ldots, \frac{5 n-1}{2}\right\} \cup \\
& \left\{\frac{5 n+3}{2}, \frac{5 n+5}{2}, \ldots, \frac{7 n-1}{2}\right\} \cup\left\{\frac{7 n+3}{2}, \frac{7 n+5}{2}, \ldots, \frac{9 n-1}{2}\right\} \\
& \cup \cdots \cup\left\{\frac{2 m n-n+3}{2}, \frac{2 m n-n+5}{2}, \ldots, \frac{2 m n+n-1}{2}\right\} \\
= & \left\{n+1, n+2, \ldots, \frac{3 n-1}{2}\right\} \cup \bigcup_{a=2}^{m}\left(\bigcup_{b=2}^{n}\left\{\frac{(2 a-1) n+(2 b-1)}{2}\right\}\right) .
\end{aligned}
$$

$$
\text { Figure 4.4: A vertex labeling of }\left(m K_{1} \vee P_{n}\right) \cup s K_{1} \text { when } n \text { is odd. }
$$

In order to show that f extends to a super edge-magic labeling of G, it suffices to verify by Theorem 2.1.1:
a) $f(V(G))=\{1,2,3, \ldots, m+n+s\}$
b) $S=\{f(x)+f(y): x y \in E(G)\}$ consists of $m n+n-1$ consecutive integers.

It can be verified that $f(V(G))=\{1,2,3, \ldots, m+n+s\}$.

To show that S consists of $m n+n-1$ consecutive integers, we consider $f(x)+f(y)$ for all edges $x y$ in G.

For edge $x_{i} x_{i+1}: i=1,3,5, \ldots, n-2$,
$f\left(x_{i}\right)+f\left(x_{i+1}\right)=\frac{i+1}{2}+\frac{n+i+2}{2}=\frac{n+3+2 i}{2}$.
For edge $x_{i} x_{i+1}: i=2,4,6, \ldots, n-1$,
$f\left(x_{i}\right)+f\left(x_{i+1}\right)=\frac{n+i+1}{2}+\frac{i+2}{2}=\frac{n+3+2 i}{2}$.
For edge $y_{j} x_{i}: i=1,3,5, \ldots, n, \quad j=1,2, \ldots, m$,
$f\left(y_{j}\right)+f\left(x_{i}\right)=\frac{3 n+1}{2}+(j-1) n+\frac{i+1}{2}=\frac{(2 j+1) n+i+2}{2}$.
For edge $y_{j} x_{i}: i=2,4,6, \ldots, n-1, j=1,2, \ldots, m$,
$f\left(y_{j}\right)+f\left(x_{i}\right)=\frac{3 n+1}{2}+(j-1) n+\frac{n+1+i}{2}=\frac{(2 j+2) n+i+2}{2}$.
We note that

$$
\begin{aligned}
S= & \{f(x)+f(y): x y \in G\} \\
= & \left\{f\left(x_{i}\right)+f\left(x_{i+1}\right): i=1,2, \ldots, n-1\right\} \cup \bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=1,3, \ldots, n\right\} \cup \\
& \bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=2,4, \ldots, n-1\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{f\left(x_{i}\right)+f\left(x_{i+1}\right): i=1,2, \ldots, n=1\right\}= & \left\{\frac{n+5}{2}, \frac{n+7}{2}, \ldots, \frac{3 n+1}{2}\right\} \\
\bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=1,3, \ldots, n\right\}= & \left\{\frac{3 n+3}{2}, \frac{3 n+5}{2}, \ldots, \frac{4 n+2}{2}\right\} \cup \\
& \left\{\frac{5 n+3}{2}, \frac{5 n+5}{2}, \ldots, \frac{6 n+2}{2}\right\} \cup \cdots \cup \\
& \left\{\frac{2 m n+n+3}{2}, \frac{2 m n+n+5}{2}, \ldots, \frac{2 m n+2 n+2}{2}\right\} \\
\bigcup_{j=1}^{m}\left\{f\left(y_{j}\right)+f\left(x_{i}\right): i=2,4, \ldots, n-1\right\}= & \left\{\frac{4 n+4}{2}, \frac{4 n+6}{2}, \ldots, \frac{5 n+1}{2}\right\} \cup \\
& \left\{\frac{6 n+4}{2}, \frac{6 n+6}{2}, \ldots, \frac{7 n+1}{2}\right\} \cup \cdots \cup \\
& \left\{\frac{2 m n+2 n+4}{2}, \frac{2 m n+2 n+6}{2}, \ldots, \frac{2 m n+3 n+1}{2}\right\} .
\end{aligned}
$$

Then $S=\left\{\frac{n+5}{2}, \frac{n+7}{2}, \frac{n+9}{2}, \ldots \frac{2 m n+3 n+1}{2}\right\}$ is a set of $m n+n-1$ consecutive integers. By Theorem 2.1.1, f extends to a super edge-magic labeling of G. Therefore $\mu_{s}\left(m K_{1} \vee P_{n}\right) \leq \frac{(2 m-1)(n-1)}{2}$ when n is odd.
Case 2. n is even.
Define a vertex labeling $g: V(G) \rightarrow\{1,2, \ldots m+n+s\}$ by

and

Figure 4.5: A vertex labeling of $\left(m K_{1} \vee P_{n}\right) \cup s K_{1}$ when n is even.
Similarly, we can verify that $g(V(G))=\{1,2,3, \ldots, m+n+s\}$ and $\{g(x)+g(y): x y \in G\}=\left\{\frac{n+4}{2}, \frac{n+6}{2}, \frac{n+8}{2}, \ldots, \frac{2 m n+3 n}{2}\right\}$ is a set of
$m n+n-1$ consecutive integers. By Theorem 2.1.1, g extends to a super edgemagic labeling of G. Therefore $\mu_{s}\left(m K_{1} \vee P_{n}\right) \leq \frac{(2 m-1)(n-1)-1}{2}$ when n is even.

Example 4.10. $8 \leq \mu_{s}\left(4 K_{1} \vee P_{7}\right) \leq 21$.

Figure 4.6: A vertex labeling of $\left(4 K_{1} \vee P_{7}\right) \cup 21 K_{1}$.

Example 4.11. $6 \leq \mu_{s}\left(4 K_{1} \vee P_{6}\right) \leq 17$.

We investigate a lower bound and an upper bound for the super edge-magic deficiency of a specific tripartite graph.

Theorem 4.12. For all integers m, n and $m, n \geq 2$,

$$
\mu_{s}\left(K_{m, n, 1}\right) \geq \frac{(m-1)(n-1)}{2}
$$

Proof. Let G be the tripartite graph $K_{m, n, 1}$ with

$$
|V(G)|=m+n+1 \text { and }|E(G)|=m n+m+n
$$

Thus

$$
\begin{aligned}
|E(G)| & =m n+m+n=[(m-1)(n-1)+m+n-1]+m+n \\
& =(m-1)(n-1)+2 m+2 n-1>2 m+2 n-1=2(m+n+1)-3 \\
& =2|V(G)|-3 .
\end{aligned}
$$

By Theorem 2.1.3, G is not super edge-magic.
Let k be a positive integer such that $G \cup k K_{1}$ is super edge-magic.
By Theorem 2.1.3, $\left|E\left(G \cup k K_{1}\right)\right| \leq 2\left|V\left(G \cup k K_{1}\right)\right|-3$.
Thus $m n+m+n \leq 2(m+n+1+k)-3$, then $k \geq \frac{(m-1)(n-1)}{2}$.
Hence $\mu_{s}(G) \geq \frac{(m-1)(n-1)}{2}$.
Theorem 4.13. For all positive integers m, n and $m \geq n$,

$$
\mu_{s}\left(K_{m, n, 1}\right) \leq m(n-1) \text {. }
$$

Proof. Let $s=m(n-1)$ and $G \cong K_{m, n, 1} \cup s K_{1}$ be the graph with
$V(G)=\left\{x_{i}: 1 \leq i \leq m\right\} \cup\left\{y_{j}: 1 \leq j \leq n\right\} \cup\{z\} \cup\left\{w_{k}: 1 \leq k \leq s\right\}$ and
$E(G) \neq\left\{x_{i} y_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{z x_{i}: 1 \leq i \leq m\right\} \cup\left\{z y_{j}: 1 \leq j \leq n\right\}$.

Define a vertex labeling $f: V(G) \rightarrow\{1,2, \ldots m n+n+1\}$ by

$$
f(u)= \begin{cases}i+1, & \text { if } u=x_{i} ; \\ (m+1) j+1, & \text { if } u=y_{j} \\ 1, & \text { if } u=z\end{cases}
$$

and
$\left\{f\left(w_{k}\right): k=1,2, \ldots, s\right\}=\{m+3, m+4, \ldots, 2 m+2\} \cup\{2 m+4,2 m+5, \ldots, 3 m+3\}$

Figure 4.8: A vertex labeling of $K_{m, n, 1} \cup s K_{1}$.

In order to show that f extends to a super edge-magic labeling of G, it suffices to verify by Theorem 2.1.1:
a) $f(V(G))=\{1,2,3, \ldots, m n+n+1\}$
b) $S=\{f(x)+f(y): x y \in E(G)\}$ consists of $m n+n+m$ consecutive integers.

To show that $f(V(G))=\{1,2,3, \ldots, m n+n+1\}$, we consider the labels of vertices as follows:

Vertex z is labeled by numbers 1 and $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ are labeled by numbers $2,3,4, \ldots, m+1$, respectively and $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$ are labeled by numbers $m+$ $2,2 m+3,3 m+4, \ldots, m n+n+1$, respectively and $w_{1}, w_{2}, \ldots, w_{s}$ are labeled by remaining numbers. Hence $f(V(G))=\{1,2,3, \ldots, m n+n+1\}$.

To show that S consists of $m n+n+m$ consecutive integers, we consider $f(x)+f(y)$ for all edges $x y$ in G.

For edge $z x_{i}: i=1,2,3, \ldots, m$,
$f(z)+f\left(x_{i}\right)=1+(i+1)=i \neq 2$.
For edge $z y_{j}: i=1,2,3, \ldots, n$,
$f(z)+f\left(y_{j}\right)=1+(m+1) j+1=(m+1) j+2$.
For edge $x_{i} y_{j}: i=1,2,3, \ldots, m, \quad j=1,2, \ldots, n$,
$f\left(x_{i}\right)+f\left(y_{j}\right)=(i+1)+(m+1) j+1=(m+1) j+i+2$.

$$
\begin{aligned}
S S= & \{f(x)+f(y): x y \in E(G)\} \\
= & \left\{f(z)+f\left(x_{i}\right): i=1,2, \ldots, m\right\} \cup\left\{f(z)+f\left(y_{j}\right): j=1,2, \ldots, m\right\} \cup \\
& \bigcup_{j=1}^{n}\left\{f\left(x_{i}\right)+f\left(y_{j}\right): i=1,2, \ldots, m\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{f(z)+f\left(x_{i}\right)\right\} & =\{3,4,5, \ldots, m+2\} \\
\left\{f(z)+f\left(y_{j}\right): i=1,2, \ldots, m\right\} & =\{m+3,2 m+4,3 m+5, \ldots, m n+n+2\} \\
\bigcup_{j=1}^{n}\left\{f\left(x_{i}\right)+f\left(y_{j}\right): i=1,2, \ldots, m\right\} & =\{m+4, m+5, \ldots, 2 m+3\} \cup
\end{aligned}
$$

$$
\begin{aligned}
& \{2 m+5,2 m+6, \ldots, 3 m+4\} \cup \cdots \cup \\
& \{m n+n+3, m n+n+4, \ldots, m n+n+m+2\} .
\end{aligned}
$$

Then $S=\{3,4,5, \ldots, m n+n+m+2\}$ is a set of $m n+n+m$ consecutive integers.
By Theorem 2.1.1, f extends to a super edge-magic labeling of G.
Therefore $\mu_{s}\left(K_{m, n, 1}\right) \leq m(n-1)$.

Example 4.14. $1 \leq \mu_{s}\left(K_{3,2,1}\right) \leq 3$.

CHAPTER V

SUPER EDGE-MAGIC REDUNDENCY OF SOME

GRAPHS

In contrast with the super edge-magic deficiency of a graph, we define the super edge-magic redundency of a graph as follows.

Definition 5.1. The super edge-magic redundency of a graph $G, \eta_{s}(G)$, is the smallest number of edges which are removed from the graph G and the remaining graph is super edge-magic.

Example 5.2. Since cycle C_{4} is not super edge-magic, $\eta_{s}(G) \geq 1$. Deleting one edge from C_{4}, the resulting graph is path P_{3} which is super edge-magic. Then $\eta_{s}(G)=1$.

Figure ${ }^{9}$.1: Path P_{3} is a super edge-magic subgraph of cycle C_{4} with magic constant 11.

Theorem 5.3. Let G be a (p, q)-graph. If G contains a super edge-magic spanning subgraph ($p, 2 p-3$)-graph, then $\eta_{s}(G)=q-2 p+3$.

Proof. Let H be the super edge-magic spanning subgraph with p vertices and $2 p-3$ edges. Since $E(H)=2 p-3$, by Theorem 2.1.3, there is no super edgemagic subgraph in G which contains H. Hence $\eta_{s}(G)=q-2 p+3$.

Corollary 5.4. Let G be a (p, q)-graph. If G contains the square of path P_{p}, then $\eta_{s}(G)=q-2 p+3$.

Proof. Since $\left|E\left(P_{p}^{2}\right)\right|=(p-1)+(p-2)=2 p-3$, by Theorem 5.3, $\eta_{s}(G)=$ $q-2 p+3$.

Theorem 5.5. Let G be a (p, q)-graph. If G has a Hamiltonian path, then $\eta_{s}(G) \leqslant q-p+1$.

Proof. Let P be Hamiltonian path of G. Since P is a path of p vertices and a path is always super edge-magic, P is super edge-magic subgraph of G. Hence $\eta_{s}(G) \leqslant q-p+1$.

Theorem 5.6. Let G be a (p, q)-graph. If G is Hamiltonian and p is odd, then $\eta_{s}(G) \leqslant q-p$.

Proof. Since a Hamiltonian cycle in G is a cycle of length p, it is a super edgemagic subgraph of G. Thus $\eta_{s}(G) \leqslant q-p$.

Theorem 5.7. [4] If G is a super edge-magic bipartite or tripartite graph and m

Theorem 5.8. If a (p, q)-graph G is bipartite or tripartite graph and $\eta_{s}(G)=k$ for some positive integer k, then $\eta_{s}(m G) \leq m k$ for m is odd.

Proof. Since $\eta_{s}(G)=k, G$ contains a super edge-magic spanning subgraph H with p vertices and $q-k$ edges. Since G is bipartite(or tripartite), H is also bipartite(or tripartite). From Theorem 5.7, mH is super edge-magic. Thus the
graph $m H$ is a super edge-magic subgraph of $m G$. Hence
$\eta_{s}(m G) \leq|E(m G)|-|E(m H)|=m q-m(q-k)=m k$.
Theorem 5.9. [2] A wheel W_{n} is not super edge-magic.
Theorem 5.10. $\eta_{s}\left(W_{n}\right)=1$ when $1 \leq n \leq 6$.
Proof. By Theorem 5.9, $\eta_{s}\left(W_{n}\right) \geq 1$. By Table $1, F_{n} \cong K_{1} \vee P_{n}$ is super edgemagic when $1 \leq n \leq 6$ and F_{n} is a subgraph of W_{n}, thus $\eta_{s}\left(W_{n}\right)=1$.

Theorem 5.11. [5] The disjoint union of stars $K_{1, m}$ and $K_{1, n}$ is super edge-magic if and only if m is multiple of $n+1$ or n is multiple of $m+1$.

Lemma 5.12. The disjoint union of stars $K_{1, m}$ and $K_{1, n}$ and an isolated vertex K_{1} is super edge-magic.

Proof. Let $G \cong K_{1, m} \cup K_{1, n} \cup K_{1}$ with $V\left(G=\left\{v_{i}: i=1,2, \ldots, m+n+3\right\}\right)$ and $E(G)=\left\{v_{2} v_{i}: i=3,4,5, \ldots, m+2\right\} \cup\left\{v_{1} v_{i}: i=m+4, m+5, m+6, \ldots, m+n+3\right\}$

Define a vertex labeling $f: V(G) \rightarrow\{1,2, \ldots, m+n+3\}$ by $f\left(v_{i}\right)=i$.
It can be verified that $f(V(G))=\{1,2, \ldots, m+n+3\}$.
For edge $v_{2} v_{i}, i=3,4, \ldots, m+2$,
$f\left(v_{2}\right)+f\left(v_{i}\right)=2+i$.
For edge $v_{1} v_{i}, i=m+4, m+5, \ldots, m+n+3, \stackrel{2}{6}$
$f\left(v_{2}\right)+f\left(v_{i}\right)=1+i$.
Then $\{f(x)+f(y): x y \in E(G)\}=\{5,6, \ldots, m+4\} \cup\{m+5, m+6 ? \ldots, m+n+4\}$
is a set of $m+n$ consecutive integers. From Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Theorem 5.13.

$\eta_{s}\left(K_{1, m} \cup K_{1, n}\right)= \begin{cases}0, & \text { either } m \text { is a multiple of } n+1 \text { or } n \text { is multiple of } m+1 ; \\ 1, & \text { otherwise. }\end{cases}$

Proof. Let G be the disjoint union of stars $K_{1, m}$ and $K_{1, n}$.
If m is a multiple of $n+1$ or n is a multiple of $m+1$, by Theorem $5.11, G$ is super edge-magic. Thus $\eta_{s}(G)=0$.

If m is not a multiple of $n+1$ and n is not a multiple of $m+1$, by Theorem 5.11, G is not super edge-magic. Deleting one leaf from G, the resulting graph is the disjoint union of two star and K_{1}. By Lemma 5.12, the resulting graph is super edge-magic. Hence $\eta_{s}(G)=1$.

REFERENCES

[1] Avadayappan, S., Jeyanthi, P., Vasuki, R.: Super magic strength of a graph, Indian J. Pure Appl Math. 32, 1621-1630(2001).
[2] Enamoto, H., Llado, A., Nakamigawa, T., Ringel, G.: Super edge-magic graphs, SUT J. Math. 34, 105-109(1998).
[3] Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231, 153-168(2001).
[4] Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: On edgemagic labelings of certain disjoint unions of graphs, Australas. J. Combin. 32, 225-242(2005).
[5] Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: Some new results on the super edge-magic deficiency of graphs, J. Combin. Math. Combin. Comput. 55, 17-31(2005).
[6] Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: On the super edge-magic deficiency of graphs, Ars Combin. 78, 33-45(2006).
[7] Gallian, J.: A dynamic suyvey of graph labeling, The Electronic Journal of Combinatorics 5, 67-79(2007)
[8] Kotzig, A., Rosa, A.: Magic valuation of finite graphs, Canad. Math. Bull. 13, 451-461(1970).
[9] Sudarsana, I. W., Baskoro, E. T., Ismaimuza, D., Assiyatun, H.: Creating new super edge-magic total labeling from old ones, The Proceedings of the Second International Workshop on Graph Labeling (IWOGL), 77-84(2004).
สถาบันวิทยบริการ

APPENDIX

Definition 1. A graph G consists of a finite nonempty set $V(G)$ of elements, called vertices, and the set $E(G)$ of 2-elment subsets of $V(G)$, called edges. We call $V(G)$ as the vertex-set of G and $E(G)$ as the edge-set of G. If $\{x, y\}$ is an edge in a graph G, then an edge $\{x, y\}$ joins x and y, or x and y are adjacent and are neighbors, or an edge $\{x, y\}$ is incident with x (or y). We usually write $\{x, y\}$ as $x y$.

Definition 2. A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A spanning subgraph of a graph G is a subgraph with vertex set $V(G)$.

Definition 3. A u, v-path in a graph G is a finite sequence of distinct vertices and edges of the form $u=v_{i_{0}, 2}, e_{i_{1}}, v_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}, v_{i_{n}}=v$ where $e_{i_{1}}=v_{i_{0}} v_{i_{1}}, e_{i_{2}}=$ $v_{i_{1}} v_{i_{2}}, \ldots e_{i_{n}}=v_{i_{n-1}} v_{i_{n}}$.

The length of a path is its number of edges.
Definition 4. A graph G is connected if every pair of vertices is joined by a path and disconnected otherwise.

Definition 5. The degree of a vertex v in a graph G, denoted by $\operatorname{deg} v$, is the number of edges incident with v.

Definition 6. Let G_{1} and G_{2} be graphs with disjoint vertex-sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge-sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, respectively. The join of G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is a graph with the vertex-set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edgeset $E\left(G_{1}\right) \cup E\left(G_{2}\right)$ and all edges joining vertices in $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.

Definition 7. A path P_{n} is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list.

Definition 8. A cycle C_{n} is a graph with an equal number of vertices and edges whose vertices can be place around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle.

Definition 9. The square of path P_{n}^{2} with n vertices, $n \geq 3$, is a graph which is obtained from P_{n} by adding edges that join all vertices u and v if there exists a u, v-path of length 2 in P_{n}.

Definition 10. A complete graph K_{n} is a graph of n vertices which any two distinct vertices are adjacent.

Definition 11. The wheel $W_{n}, n \geq 3$, is the graph $K_{1} \vee C_{n}$.

Definition 12. The fan F_{n} is the graph $K_{1} \vee P_{n}$.

Definition 13. The friendship graph of n triangles, $n \geq 3$, is the graph obtained by taking n copies of the cycle C_{3} with a vertex in common.

Definition 14. Let G_{1} and G_{2} be graphs with disjoint vertex-sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge-sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ respectively. The product of G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, is a graph with the vertex-set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and specified by putting $\left(u_{1}, u_{2}\right)$ adjacent to $\left(v_{1}, v_{2}\right)$ if either $u_{1} \equiv v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$.

- o e o e o
 Definition 15. A tree is a connected graph with n vertices and $n-1$ edges.

Definition 16. A rooted tree is a tree with one vertex z chosen as root. For each vertex v, let $P(v)$ be the unique z, r-path. The parent of v is its neighbor on $P(v)$; its children are its other neighbors.

Definition 17. Let $G_{1}, G_{2}, \ldots, G_{m}$ be graphs with disjoint vertex-sets $V\left(G_{1}\right), V\left(G_{2}\right)$, $\ldots, V\left(G_{m}\right)$ and the edge-sets $E\left(G_{1}\right), E\left(G_{2}\right), \ldots, E\left(G_{m}\right)$ respectively. The disjoint
union of $G_{1}, G_{2}, \ldots, G_{m}$ denoted by $G_{1} \cup G_{2} \cup \ldots \cup G_{m}$, is a graph with the vertexset $V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup \ldots \cup V\left(G_{m}\right)$ and the edge-set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \ldots \cup E\left(G_{m}\right)$

If $G_{1}=G_{2}=\cdots=G_{m}=G$ then $G_{1}, G_{2}, \ldots, G_{m}$ is denoted by $m G$ and is called the disjoint union of m copies of G.

Definition 18. The corona product $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} defined as the graph obtained by taking one copy of G_{1} (which has p_{1} vertices) and p_{1} copies of G_{2}, and then joining the i-th vertex of G_{1} to every vertex of i-copy of G_{2}.

Definition 19. An independent set or partite set in a graph is a set of pairwise nonadjacent vertices.

Definition 20. A complete bipartite graph $K_{m, n}$ is a graph of $m+n$ vertices which is the union of two disjoint partite sets and two vertices are adjacent if and only if they are in the different partite sets.

Definition 21. A complete tripartite graph $K_{m, n, k}$ is a graph of $m+n+k$ vertices which is the union of three disjoint partite sets and two vertices are adjacent if and only if they are in the different partite sets.

Definition 22. A Hamiltonian graph is a graph with a spanning cycle.

Definition 23. A Hamiltonian path is a spanning path. จุหาลงกรณ์มหาวิทยาลัย

VITA

Mr. Adthasit Sinna was born on June 3, 1983 in Nakhonratchasima, Thailand.
He got a Bachelor of Science in Mathematics with the first class honors from Mahidol University in 2005.

