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CHAPTER 1

INTRODUCTION

1.1 Definitions

In this thesis we consider finite undirected graphs without loops and multi-
ple edges. V(G) and E(G) stand for the vertex set and edge set of a graph G,

respectively. We denote by (p, ¢)-graph G a graph with p vertices and ¢ edges.

Definition 1.1.1. A (p, g)-graph G is edge-magic if there exists a bijective func-
tion f: V(G)UE(G) — {1, 2, 3,..., p+q} such that f(u)+ f(v)+ f(uv) = c(f)
is a constant for any edge wv in G and f is called the edge-magic labeling of G

and c(f) is called the magic constant of f.

Definition 1.1.2. A (p, ¢q) graph G is super edge-magic if there exists an edge-

magic labeling f such that f(V(G))={1, 2,..., p}.

Definition 1.1.3. The super edge-magic deficiency ps(G) of a graph G is the
smallest nonnegative integer n with the property that the graph G UnKj; is super

edge-magic or 400 if there exists no such integer n.

Definition 1.1.4. Let GG be a super edge-magic graph. The super edge-magic
strength of G, sm(G) is defined as the minimum of all ¢(f) where the minimum

is taken over all super edge-magic labelings f of GG. That is,

sm(G) = min{c(f) : f is a super edge-magic labeling of G'}.
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Figure 1.1: Example of super edge-magic graphs

1.2 History and Overview

The seminal paper in edge-magic labelings was published in 1970 by Kotzig
and Rosal[8], who called these labelings: magic valuations; these were rediscovered
by Ringel and Llado; who coined one of the now popular terms for them: edge-
magic labelings. More recently, they have also been referred to as edge-magic
total labelings by Wallis. In 1998, Enamoto, Llado, Nakamigawa and Ringel[2]
defined a super edge-magic labeling f of a graph G. Gallian[7] surveyed some of

latest developments of super edge-magic graphs as shown in the following table:



Table 1: Summary of Super Edge-magic Labelings

Graph Notes

Cy, iff n is odd[Enamoto et al]

caterpillars [Enamoto et al]

trees ?[Enamoto et al]

Kopn iff m =1 or n = 1[Enamoto et al

K, iff n = 1,2 or 3[Enamoto et all

nks if nis odd[Kotzig and Rosal

nG if G is a bipartite or tripartite super edge-magic graph
and n is odd|Figuaroa-Centeno et al]

Ky, UKy, iff m is multiple of n + 1[Figuaroa et al],[Lee and Kong]

P,UK, if m > 4 is even[Figuaroa-Centeno et al]

2P, iff n is not 2 or 3[Figuaroa-Centeno et all

2Py, for all n[Figuaroa et al]

Ky, U2nK, 5 | for all m and n[Figuaroa-Centeno et al]

C;UC, iff n > 6 is even[Figuaroa-Centeno et al]

c,ucQC, iff n >5 is odd[Figuaroa-Centeno et al]

C; UG, iff n'>5 is even[Figuaroa-Centeno et al]

Cyud, if 7 > 6 is_even and nis odd and n >3+ 2[Figuaroa-Centeno et al]

CyUPp, iff n # 3[Figuaroa-Centeno et al]

C;UP, iff n # 4[Figuaroa-Centeno et all

C,UP, if m > 6 is even and n > % + 2[Figuaroa-Centeno et al

P,UP, iff (m,n) # (2,2) or (3, 3)[Figuaroa-Centeno et al]




Table 1: Summary of Super Edge-magic Labelings

Graph

Notes

Ki UK UKy,

Kio UK UK,

Kiz6UK UK s UKy,
KUK 2 UK 2 UKy,
friendship graph of n triangles
generalized Petersen graph P(n,2)
nPs

P

Py UEP,

k(P,U P,)

fan F,,

kP,

tree with a-labeling
Popp1 X Py

Comy1 X P,

G oKy

Cn®K,
join of K; with any subgraph of star

if G is k-regular super edge-magic graph

G is connected 3-regular graph on p vertices

k =1,2 or n[Lee and Kong]

k = 2,3|Lee and Kong]

k = 2,3[Lee and Kong]

k= 1,2[Lee and Kong]

iff n=3,4,5 or 7[Slamin et all

if n > 3 and n is odd[Fukuchi]

n > 4 and n is even[Baskoro and Ngurah]
[Figuaroa et al]

for all k[Figuaroa et al]

if k£ is odd and n = 3,4
[Figuaroa-Centeno et all

iff n < 6[Figuaroa-Centeno et al]
iff & is odd[Figuaroa-Centeno et al]
[Figuaroa-Centeno et all

for all m[Figuaroa-Centeno et al]
for all m, n[Figuaroa-Centeno et all
if G is super edge-magic 2-regular graph
[Figuaroa-Centeno et all
m>3andn>1

[Chen]

then k& < 3[Chen]

iff p =2 (mod 4)[Chen]




Kotzig and Rosa[8] defined the edge-magic deficiency, u(G), of a graph G
as the smallest nonnegative integer n with the property that the graph G Unk;
is edge-magic. In 1999, Figueroa-Centeno, Ichishima and Muntaner-Batle[5], [6]
used the concept of edge-magic deficiency to define super edge-magic deficiency.

They proved the following super edge-magic deficiency of graphs:

Table 2: Summary of Super Edge-magic Deficiency

Graph Deficiency Notes
nk, 0 n is odd
1 n 1S even
Cy, 0 ifn=1,3 (mod 4)
1 if n=0 (mod 4)
+0o0 if n =2 (mod 4)
K, 0 =UI8
1 n=4
400 n>>5
Kpn < (m—1)(n —1) | for any positive integer m,n
K, n—1 for any positive integer n
Forests finite
KUK, |0 either m is multiple of n + 1 or n is multiple of m + 1
1 otherwise
P,UP, 1 if (m,n) = (2,2) or (3,3)
0 otherwise




Table 2: Summary of Super Edge-magic Deficiency

Graph Deficiency | Notes
P,UK, |1 m =2 and n is odd or m =3 and n = 1,2 (mod 3)
0 otherwise
20, 1 if n is even
+o00 if n is odd
3C, 0 if n is odd
1 ifn=0 (mod 4)
+00 if n=2 (mod 4)
4C, 1 for all integers n = 0 (mod 4)

In 2000, Avadayappan, Jeyanthi and Vasuki[l] defined the super edge-magic
strength and proved the super edge-magic strength of path P, star K ,, the n-
bistar B,,,, obtained from two disjoint copies of K ,, by joining the center vertices
by an edge, odd cycle Cy,.1, P and the disjoint union of odd copies of P,.

There are five chapters in this thesis. In chapter I, we introduce definitions
that will be used in and the history and overview of super edge-magic graphs and
the super edge magic deficiency.

In Chapter I, super edge-magic graphs-and bounds for the super edge-
magic strength of some graphs are shown.

In Chapter IlI, we show a construction of new super edge-magic graphs
from the old ones.

In Chapter IV, we investigate bounds for the super edge-magic deficiency
of some graphs.

In Chapter V, we introduce the super edge-magic redundency and find

bounds for the super edge-magic redundency of some graphs.



CHAPTER 11

SUPER EDGE-MAGIC GRAPHS

Our purpose in this chapter is to show some new super edge-magic graphs and
investigate bounds for their super edge-magic strengths. We separate this chapter
into four sections. The first section contains theorems and corollary which are
used in this thesis. The second section shows a super edge-magic labeling of the
P-tree. The third section shows a super edge-magic labeling of the product of the
caterpillar and path P,. The last section shows a super edge-magic labeling of the

product of SF-graph and path P,.

2.1 Preliminary Tools

Theorem 2.1.1. (3] A (p, ¢)-graph G is super edge-magic if and only if there

exists a bijective function f:V(G) — {1, 2, 3,..., p} such that the set
S={fw)+ f(v) :wve E(G)}

consists of q consecutive integers. In such a case, f extends to a super edge-magic

labeling ‘of G with magic constant k'=p+q + s, where s = min(S) and

S={k—(p+q), k—(p+q—1), ..., k= (p+1)}
Corollary 2.1.2. [3] If a (p, q)-graph G is a super edge-magic with a super edge-
magic labeling f, then

S° f(v)deg v =gs+ (g)

veV(G)

where s is defined as in theorem 2.1.1.



Theorem 2.1.3. [2] If a (p, q)-graph is super edge-magic, then q¢ < 2p — 3.

2.2 Super edge-magic labeling of the P-tree

First, we introduce the definition of the P-tree.

Definition 2.2.1. Let r, s and ¢ be positive integers. The P-tree P(r,s,t) is a
rooted tree with root z and deg z = r and deg ¢ = s+ 1 for every child ¢ of z and

one grandchild of z has degree ¢ + 1.

<] (-] o o
‘|l' ——
o’ | =" tedges
L
agppp- Masage Sodeos o a9 0p o
&\ # /7 =5 edges
i ¥ ¥
. |
. 4 N, l -
e BTN redges
5[
Z

Figure 2.1: P-tree P(r,s,1).

Example 2.2.2. P-tree P(3,3,1) and P-tree P(5,4,6) are shown below.

KL
Qi \|F
i VANl § S VA 2
R . E_ 'g.’ AE ;'E, E
-3 =y W-;’:#"
P(3,3,1) P(5,4,6)

Figure 2.2:

Example of P-trees.



Definition 2.2.3. Let GG be a super edge-magic graph. The super edge-magic
strength of G, sm(G) is defined as the minimum of all ¢(f) where the minimum

is taken over all super edge-magic labelings f of G. That is,
sm(G) = min{c(f) : f is a super edge-magic labeling of G'}.
Next, we show the specific P-tree is super edge-magic.

Theorem 2.2.4. The P-tree P(2m+ 1,n,m) is super edge-magic with

sm(P(2m + 1,n,m)) < 4mn+ 2n + 9m + 6 for any positive integers m, n.

Proof. Let G =2 P(2m + 1, n, m) with
V(GQ)={z}U{c :1<i<2m+1jU{wp:1 <k <m}

U{z;; 11 <i<2m+1,1<j<n}and
EG)={2¢:1<i<2m+4+1}U{cz;:1<i<2m+1,1<j<n}

UA{z@mypwe : 1T <k <m}.



Note that, |V(G)| = 2mn + n + 3m + 2.

Define a vertex labeling f : V(G) — {1, 2, 3,...,2mn + n + 3m + 2} by:

(

i+ji(2m+1), if u = x;;;
2m+2— %, if u=¢;,1is odd;
f(u):<2m+2—%, if u = ¢;,1is even;
2mn +n + 3m + 2, if u=z;
\2mn—|—n—|—3m+2—k, if u = wy.

b
+
Zmn3m 2mneen+ dm=1 IR A2

2mntn+3m+1
J“ O\ f'? B a

-

wﬂ ?rn+4 2mn+n+rrH~1
3\
\oa'm

-_ll

M43 4mdd  Bm+s DI

e R P=2 / Bm42 8m+3  2mnkn+2m
x\\‘x._ [ 4m+1.:,__‘ Q 90
‘V!TJ I . e \‘-':- -~
<.~ f o= }} 1
2rm+2 dm+3 Gmed 2nmEnt . P
. I e | _Bm+3 8med  Zmnene2mel
. '\-._\ _-' /___,‘ -\ “.;.- Q\_ {3 I?.._. fﬁ
N 1 / P L W
'l-"-"'m+ , / 2 ~ 3 .'
-\--.-\"""—\-..\_\_\_‘ 3 I."I o _____---'b m+1
T ™ |'I o = e
e AN brE L7
—S-JANE L %
H%mnﬂﬁﬂmé

Figure 2.3:" A vertex labeling of P-tree P(2m + 1,n,m)-

10

In order to show that f extends to a super edge-magic labeling of P-tree

P(2m + 1,n,m), it suffices to verify by Theorem 2.1.1:

a) f(V(GQ)) =11, 2, 3,...,2mn+n+ 3m + 2}

b) S = {f(z) + f(y) : zy € E(G)} consists of 2mn + 3m + n + 1 consecutive

integers.
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To show that f(V(G)) = {1, 2, 3,...,2mn + n + 3m + 2}, we consider the
labels of vertices as follows:
Vertices ¢, ¢y, Cg..., Com are labeled by numbers m,m —1,m — 2, ..., 1, respectively
and ¢y, cs3,Cs5..., Come1 are labeled by numbers 2m + 1,2m,2m — 1,....m + 1, re-
spectively and @11, 21, ..., T(@m+1)15 £125 T22, -y T(2m+1)25 > L1ns L2ns o5 T(2m41)n L€
labeled by numbers 2m+2,2m+3, ..., 4m+2,4m+3,4m+4,...,6m+3, ..., 2mn+
n+1,2mn+n+2, ..., 2mn+n+2m-+1, respectively and z, wy, wo, ..., w,, are labeled
by number 2mn+n+3m+2,2mn+n+3m+1, 2mn+n+3m, ..., 2mn+n—+2m+2.
Hence f(V(G)) ={1, 2, 3,...,2mn + n+ 3m + 2}.

To show that S consists of 2mn + 3m + n+ 1 consecutive integers, we consider
f(z) + f(y) for all edges zy in G.
For edge c;x;;,
when ¢ is odd, f(c;) + f(zi;) = @m+2 =21 + (1 +j(2m + 1))

=ji2m+1)+2m+ 5 + 2,
when ¢ is even, f(¢;) + f(2iy) = (2m + 2 — Z2552) + (i+ j(2m + 1))
=j2m+1)+m+Li+1.
For edge z¢;,
when ¢ is odd, f(z) + f(e) = (2mn +n+3m +2) + (2m +2 — 54)
=2mn+n+>5m+4 — %,
when i is even, f(2) + f(¢;) = (2mn + n+3m +2) + 2m + 2 — 2nEH2
=2mn'+n + bm+ 4 — 2mEE2

For edge x(my1)y1wy,
f(@myn) + flwg) =(m+1)+2m+1))+ 2mn+n+3m+2—k)

=2mn+n+6m+4— k.
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We note that

S={f(x)+ f(y) -2y € E(G)}

= U{f(cz) + f(xi;) i is odd} U U{f(cz) + f(xi;) s is even} U {f(2) + f(¢;) : ¢ is odd}
U{f(2) + f(c:) i is even} U {f(wk) + f(Tms11)}
and

J{f(e) + flaiy) : i is odd} ={4m + 3, 4m +4, .. 5m + 3} U {6m + 4,6m + 5, ...,

j=1
Tm+4}U---U{2mn+n+2m+ 2,

2mn+n+2m+3,...,2mn +n + 3m + 2},

U{f(cz) + f(xi;) siis even} ={3m +3,3m + 4, ..., 4m + 2} U {dm +4,5m +5, ...,
j=1

6m+3tU---U{2mn+n+m+2,
2mn+n+m+3,....2mn+n+ 2m + 1},
{f(z) + f(c)riisodd} ={2mn+n+4dm+3,2mn +n+4m +4, ...,
2mn +n 4+ 5m + 3},
{f(z)+ f(¢;) - i is even} ={2mn +n+ 3m+ 3,2mn+n+3m +4, ...,
2mn +n + 4m+ 2},
{f(wr) + f (@engn)F={2mn + n 4+ SmA44,2mn +n+5m+ 5, ...,

2mn +n + 6m + 3}.

Then S = {3m+3,3m+4,...,2mn+n+ 6m+ 3} is a set of 2mn +n+3m + 1
consecutive integers. Therefore, f extends to a super edge-magic labeling of G
with magic constant (2mn +n+3m+2)+ 2mn+n+3m+1)+ 3m +3) =

4mn + 2n + 9m + 6. Hence sm(G) < 4mn + 2n + 9m + 6. O
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Figure 2.4: A super edge-magic labeling of the P-tree P(5,4,2) with magic con-

stant 64

2.3 Super edge-magic labeling of the product of caterpillar

and path &

In this section, we show the super edge-magic labeling of the product of cater-

pillar and path P.

Definition 2.3.1. A caterpillar graph C' P, n,...n, is a graph which the vertex-set
is {c;11 <@ <tjU{x;:1<i<t1<7<n;} and the edge-set is

{CH_lC,J]_SZSt—l}U{CzJ}U1§Z§t,1§j§nz}

Figure 2.5: CP591.43
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Theorem 2.3.2. Let CP,, n,...n, be a caterpillar with t is odd.

t t—1
If Z ng = Z ng, then the graph CP,, n,...n, X P2 is super edge-magic.
k Izcs: zl)dd k z’lg:ezven

Proof. Let G =2 CP,, n,....n, With
V(G)=Ac:1<i<t}U{r;:1<i<t1<j<n;}and
¥

X1 X2 ¥y My X X Hgq Xga X Xiegyt K12 M1
0§ Bl B .ija ol {?«?”5 € ¢
W | ., \ % N Y f
| ~

. c c i
c, / | 3 s \ 5\ Ci3
O£ [ 0404 \@, 68 ¢ 69
X21 Xg2  ¥ong %41 %2 Xen, 81 %62 eng N1 %2 My

t

Let p be the number of vertices of G. Then p =1 + Z N
k=1

t
First, define a vertex labeling f : V(G) — {1,2,...,t + an} by
k=1

.

1, if w=cy;
i—1
%+ E Nk, if w=c¢;,71s odd and 7 > 3;
k=2
k is even
t—1 =1
s 4 E ng + E ng,  if w=¢;,1 is even;
k=2 k=1
k is even k is odd
flw) =7+ 1 if w=u19,1<j<ny;
1—2
%—l—j—l— E Nk, if w=x;,iis even,1 < j < n;,i >4
k=2
k is even
t—1
t+1 . . o . .
T+]+ E ng, lfw—l'lj71§]§nl,
k=2
k is even
t—1 1—2
S+ E ng + E ng, ifw=um;,iisodd, 1 <j<n;i>3;
k=2 k=1
\ k is even k is odd
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t
Next, define a vertex labeling g : V/(G) — {1,2,...,t + an} by
k=1

( t
k=1
k is odd
t i—1
%‘f‘ E ny + g N, if w=c¢;,1is odd and i > 3;
k=1 k=2
k is odd k is even
i—1
3+ E M, if w=c¢;,iis even;
k=1
k is odd
t
t+1 . \ N ) ‘
T+]+ § T, lfw—$2j71§j§n2’
=1
k is odd
t i—2
Z+g_1+j+ E ny + E ng, if w=ux;,iiseven,1 < j <n;i>4;
KiFEl k=2
k is odd k is even
1=2
it Y ifw= a5, is 0dd,1 < j < n,i > 3.
k=1
\ k is odd

For instance, Figures 2.6 and 2.7 show vertex labelings f and g of CPs2121.

4 3 5 6
a o & 9
1 : 4 N/
[ T Q
10 12 ;
B 9 1'.1 13

Figure 2.6: A vertex labeling f.of CPy21.91.

Figure 2.7: A vertex labeling g of CPy2191.
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In order to show that f and g extend to super edge-magic labelings of G, it
suffices to verify by Theorem 2.1.1:
a) f(V(G)) = g(V(G)) ={1,2,3, ...p}
b) Sy ={f(x)+ f(y) : xy € E(G)} and Sy = {g(x) + g(y) : xy € E(G)} consist

of p — 1 consecutive integers.
t—1

Note that, &2+ > nj =

k=2
k is even k is odd

To show that f(V(G) = {1,2,3,...,p}, we consider the labels of vertices as

A A p+1
5 .

follows:

Vertices 1, Ta1, T99, ..os Topnygs C3, L4l , ooy Tdng Cs, -, ¢ ar€ labeled by numbers 1, 2, 3, ...

ni+1n+2,m1 43, angdns+3, mEns A, > nk—{—%%—l:p;l,re-
k=2
spectively and z11, 212, ---s T1iny, C2: T531 4 wevs T3, 0456..1?,3?;_1)% , are labeled by num-
t—1
bers kz:; n;;%%%—? = p;1+1,p;1+2,p;1—|—3,.. ]%1%— o+1, 1%1“—
k is cven
n2—|—2,]%1+n2+3,.. }%1+n2+n4+3 %1+n2+n4—|—4 ., P, respectively.

Hence f(V(G)) ={1,2,3,....p}.

To show that Sy consists of p— 1 consecutive integers, we consider f(z)+ f(y)
for all edges zy in G.
For edge c;x;;,

when i = 1, f(e1) + f(21;) =1+ t+1+j+ Z ) —+j+l

k 1s even

when @ = 3,4,.. 4,

. 1—1 t—1 i—2
t+1 1+t
kR ki k5 odd
i—1
+1
p2 —|—Z—|—an+j,
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when i = 2,

t+3
flea) + flway) =(—— ’; g +n1) + (7 + 1)
kis_even
p+1

==t m 2+,

when ¢ = 4,6, ...t — 1,

. t—1 1—1 . 1—2
1+t+1 1 .
fle) + flay) =(~grm S et Yoo+ (+i+ > m)
k=2 =, k=2
k is even k is odd k is even
1—1
+ 1
= 5 + 4 an Nk

Note that, f(c;) + f(@i41)) = f(ci) +f (z35) + L.

For edge c;cii1,
t—1

) ! +1
when i = 1, fle) + f(@) = 1+ 524 57 gt = 2=+ m +2,
kiI;:e%en
when ¢ = 3,5,...,t — 2,
Fle) + Fenm(EE L S g (2 o 5™ L S
C; C; — n — n n
+1 5 k 5 k k
k=2 k=2 k=1
k is even k is even k is odd
p—l—l
i +1+an,
k=1
when i = 2,4, ..., t—1,
et~ 4 S 32 (2 S
i i+1 ) 4 k ~ l 2 2 k).
k is even [ is odd k is even

p+1
5 +1 +1+;nk

Note that, f(c;) + f(cit1) = f(ci) + f(in,) + 1
and f(cuy1)) + (@) = fle) + fleigr) + 1.
Hence Sy = {1%1 +2, }%1 +3,... p“ + p} is a set of p — 1 consecutive integers.

From Theorem 2.1.1, f extends to a super edge-magic labeling of G.
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Similarly, we can show that g(V(G)) = {1,2,3,....,p} and S, = {g(z) + g(y)
vy € BE(G)} ={t +1, e 42 . B4 p—1}is aset of p— 1 consecutive
integers. From Theorem 2.1.1, g extends to a super edge-magic labeling of G.

We will construct a super edge-magic labeling of CP,, ,,

,,,,, ne X Py as follows.
Let V(P;) = {1,2} and E(P;) = {12} and H = G x P;. Then

V(H)={(c;,k): 1 <i<t,k=12}U{(m,k): 1 <i<t,1<j<mk=12}

Define a vertex labeling h: V(H) —{1,2,...,;2p} by

(
flei), if w=(c;, 1);

f(@5)s if w=(x;5,1);
h(w)

p+gle), ifw=(¢,?2);

\p + g(zy;), it w = (z45,2).
For instance, Figure 2.8 shows the vertex labeling i of C'P, 5191 X P constructed

from f and g in Figure 2.6 and Figure 2.7.

2 3 =
: 2
1- 1 104_‘.- - 4 ..g:l, ‘{
5 1 L3
| 21 24,25
bod WITli23)\d s
i 16 18 |
. , 19

Figure 2.8: A vertex labeling of CPs2121 X Ps.

In order to show that h extends to a super edge-magic labeling of H, it suffices
to verify by Theorem 2.1.1:

a) h(V(H)) = {1,2,3, ..., 2p}

b) S = {h(z) + h(y) : xy € E(H)} consists of 3p — 2 consecutive integers.
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We note that

hV(H))={h(u,1): (u,1) e V(H))}U{h(u,2): (u,2) € V(H))}

and

{hu, 1) : (u, 1) € VI(H))} ={f(u) - u € V(G)}
={1,2,...,p}
{h(u,2):(w,2) € V(H))} ={p+g(u) : u € V(G)}

={p+1,p+2,.,2p}

Then h(V(H)) = {1,2,3,....,2p}.
To show that S consists of 3p — 2 consecutive integers, we consider h(u,1) +
h(u,?2) for all edges (u,1)(u,2), where u € V(G).

For edge (¢1,1)(c1,2),

h(ci, 1) +hler,2) = fla) +p+ g(er)

bt

=1+p+(T+ ny)
k=1
k is odd
+1
P L p+
2
For edge (¢;,1)(¢;,2) when 7=3;5,.... ¢,
h’<ci7 1) =+ h(ci7 2) N f(@) +p =+ g(cl)
1—1 t 1—1
14+ 1 1+
=(——+ ) +p+ (- + ot Y m)
k=2 k=1 =
k is even k is odd k is even
i—1
_p+l .
== tp+it?2 > g

k=2
k is even
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For edge (g, 1)(xq;,2),
h(zo5,1) + h(225,2) = f(25) + p + g(225)

—G+n+p+ (g > m)

2
=1
k is odd
4 1 .
— s p+2i+l
For edge (x;;,1)(x;;,2) when ¢ = 4,6, ...t — 1,
hwij, 1) + h(zi5,2) = [(@ig) +p+ g(i5)
1—2 Z+
(2+g+ ; M)+ p Ly Z g+ Z )
k is even k 1s odd k 1s even
i—2
p+1
S ti—1+42 g ng + 2.
k is even

Note that, for any 7 is odd,

h(ci, 1) + h(ci, 2) = Mo, 1+ M@aen; 2) — 2,

M@(i-1yns_15 1) + M@ 1yn,_y - 2) = Blei, 1)+ h(c;, 2) — 2,

W@ 15, 1) + (@055 2) = M@ G+, L) + (@@ G4, 2) — 2.

For edge (¢;,1)(¢i2) when ¢ = 2,4,...,t — 1,

h(ci, 1) + h(ci,2) = flei) +p+ g(ci)

. t—1 i—1 . i—1
1 +Ht+1 i
=5 D AR A R+ (5 )
k= k=1 k=1
k is even k is odd k is odd
i—1
p+1
S Aptii2 kz: N
k is odd

For edge (x1;,1)(x1;,2),

h(l‘lj, ].) + h($1j, 2) = f(l’lj) +p+ g(.le)

t+1 t—1 .
=(T+J+ ng) +p+J
k=2

k is even

+1 .
:pT—f‘p—f—Q].
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For edge (x;;,1)(x;;,2) when ¢ = 3,5,...,t,

h(wij, 1) + h(zij, 2) = f(2i5) +p + g(z)

1—2 1—2
1+t 1
= (5 +i+ Z g + ; M +p+(7+j+ ; )
k 1s even k is odd k is odd
1—2
p+1
Sttt ; ny, +2j — 1.
k is odd

Note that, for any ¢ is even,

hleis 1) + hlei, 2) = haaioe D) 4 hla . 2) =2,

R(zi—1yn;_1» 1) + (B 1yns 152) = (e, 1) + h(c, 2) — 2,

h(z (1), 1) + M@, 2) = (@11 G4), 1) + (@6 G41),2) — 2.

Thus

t—1
{h(ci, 1)+ n(ci,2) i =1,3, 13U | {hl@i, 1) + hlei,2) 15 = 1,2, ...,n4}
.i:2
+1 +1 +1 +1
P 4p+ L +p 8 p s, o 2}
2 2 2
and
{h(ci, 1) + h(c;,2) i =2,4,.,t—1} U U {h(zi;,1) + h(x;;,2) 1 7 =1,2,...,n;}
’LlSOdd
+1 pHA +1
{—+ 2t p v, g e = ey - 1),

. _ 1 1 1
Hence {h(u, 1) + h(w,2) : (u,1)(u,2) € V(H)} = {% +p+1, ’% +p+2, % +
p+3,...,&21+2p}

We note that

S ={h(u) + h(v) :uv e E(H)}
={h(u,1) 4+ h(v,1) : (u,1)(v,1) € V(H)} U {h(u,2) + h(v,2) : (u,2)(v,2) € V(H)}U

(h(u, 1) + h(w,2) : (u,1)(u,2) € V(H)}
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{h(u,1) + h(v,1) : (u,1)(v,1) € V(H)} ={f(u) + f(v) : wv € E(CPp ny...0.) }

p+1 p+1 p+1
:{—5—+2,—5—+&”w—5—+p}

{A(u,2) + h(v,2) = (u,2)(v,2) € V(H)} ={2p+ g(u) + g(v) : wv € E(CFy ns,..n,)}

p+1

+1
:{p_2 L T2,

el
pT—F?)p—l}

p+1 p+1

{h(u,1) + h(u,2) : (u, (u,2) € V(H)} :{T +p+1,—+p+2, ..,

2

+ 1

Then S = {& 42, 24 3" 2l 35 11 s a set of 3p— 2 consecutive integers.
2 2 2

From Theorem 2.1.1; h extends to a super edge-magic labeling of H. O

105.




Theorem 2.3.3. Let CP,, pn,...n,

t—1

k=2
k is even

Proof. Let G = CP,, n,....n, With

V(G) =

23

be a caterpillar with t is odd.

Z ni + 2, then the graph CP,, p,. . n, X P is super edge-magic.

G:1<i<ttu{z;;:1<:1<t,1<j5<n;}and
J J

Let p be the number of vertices of (. Then p

o
Q
\\ / \ \

\ A

\ | s\ A
W/ C, A Gy W\
[ e = .3?:) =) \c"}
c, ; %

7 A 75N

6L d [ o Do

X21 %oz "2:\2 *41/ %42 Xany

%51

1. k{"‘:{ Hl::l) xgh :'Cfu x}qa 3'(;_1 >'-r52 (i’ni_ XqHH E[;-]I-:-?J::-HHH
Q : 2 o " @ @

c Gy
g% 3
-;_," i Ci.

& -0 o &--0
%62 X6ng *u %2 Y,

First, define a vertex labeling f: V(G) — {1,2,...,t + an} by

t+1
++ E ng,

k 15 odd
z+t + E Nk + E ng,
k 15 odd k 1s e\en
7 §
2 + ng,
=1
k 1s odd
J;
t
1+t—1 .
- tJ+ E Nk,
k=1
k 1s odd
z+t1+ + 2: ny + 2: g,
k 1s odd k 1s even

S+ Z o8

\ k 1s odd

if w=c¢;,71s odd and 7 > 3;

if w = ¢;,1 is even;

fw=uazy;,1<j<ng

if w=1x95,1<j < ny;

if w=ua,iiseven,1 < j < n;i >4

if w=x;,1is odd, 1 < j < n,i> 3.
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Next, define a vertex labeling g : V/(G) — {1,2,...,t + an} by
k=1

(

1 if w=cy;

Y

k is even
-1 i—1
sl 4 g N + E N, -~ if w=c;,iis even;
k=2 k=1

k is even k is odd

gw)=<J+1 if w=1m9;,1 < j < ny;

=2 ==
\ k is even k- is odd

i—1
%—i— g Nk, if w=c¢;,71is odd and i > 3;
k=2

%‘l‘j"{' Z N, ifw:xlj,lﬁjﬁnl;

24

f4j+ Z N if w=a;;,iis even,1 < j <mny,i>4;

B > met Y om, fw=ay,iisodd, 1< <ngi>3.

For instance, Figures 2.10 and 2.11 show vertex labelings f and g of CP55991.

.
~0<

11 14
8 9 10 12 13 15

Figure 2.11: A vertex labeling g of CP52991.

Similarly to Theorem 2.3.2, we can show that f(V(G)) = ¢(V(G)) ={1,2,3, ...

P}
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and

p+1 p+1 p+1

{f(x)+ fy) : zy € E(G)} :{T+2, 5 +3, ..., 5 +p}
{0(2) + g(y) : 7y € E(G)} :{]%1 w1, 1‘%1 ‘o 1‘%1 bp—1)

are sets of p — 1 consecutive integers. From Theorem 2.1.1, f and g extend to
super edge-magic labelings of G.

Let V(P) = {1,2} and E(P) = {12} and H = G x P5. Thus

V(H)={(c;,k): 1 <i <t k=12t U{(z45.k): 1 <i<t,1<j<m,k=12}
Define a vertex labeling h : V(H) — {1,2,...,2p} by

(
f(e), if w=(¢;,1);

f(xij), lf w = ('rij7 1),

p+g(cl)a lfw: (6172)a

For instance, Figure 2.12 shows the vertex labeling h of C'P; 5 9 21 X P constructed

from f and g in Figure 2.10 and Figure 2.11.

10 11 13 14

Dl A 12 15
Led VL A T TN
12 3 % [ &
! 2021
| _1?!-1.3 ,
16 vl L
| 26 |/\| 29 .
23 24 45 = & 30

Figure 2.12: A vertex labeling of CPs9921 X Ps.



26

Similar to Theorem 2.3.1, we can show that h(V(H)) = {1,2,3,...,2p} and
{h(z) + h(y) : 2y € E(H)} = {81 +2, 2L + 3., 221 4 3p — 1} is a set of
3p — 2 consecutive integers. From Theorem 2.1.1, h extends to a super edge-magic

labeling of H. O

Figure 2.13: A super edge-magic labeling of C'Py ;991 X P, with magic constant

72.

Theorem 2.3.4. Let CPyy p,...m, be a caterpillar with t is even.

t—1 t
If Z ng = Z ni + 1, then the graph CP,, .. n, X P is super edge-magic.
k=1

= k=2

k is odd k is even
Proof. Let G = CP,, ns....n, With
V(G)={c:1<i<t}U{z;;: 1 <i<t,1<j<mn}and

E(G):{CZ_HCZ1§Z§t—1}U{Cll‘”1§Z§t,1§]§nl}
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Wi W N Sho s O el = Mo L
1, %1z % a1 ¥a2 1 ! 1 X1z Xetin
Q &9 b %_‘;. 83 F_L} 5,3(5_'/“5 &y Lj(f. b1
Y I‘-. Il' \ '-.I‘ .I' \ * Iu' \ .I'
\ | \ | 4 A\ i \\ / 4
W) G N [ 4 Y f c Y, 1
15 £5 o) 0 g gf ............. o 0
¢, A\ C3 7\ & A Gy 7 \
: .'-'I. Il| /.J ' II' ¢ -'lr. III g ;'.IJ III:
¢ 60 00 @00 ¢ &---0
21 %2z ¥, %1 Xz Xang g1 Y52 eng i Yz i,

t
Let p be the number of vertices of G. Then p =t + Z N-

k=1

t
First, define a vertex labeling f: V(G) — {1,2,....t + an} by
k=1

( t—1
t+1
B D
=1
k is odd
t—1 i—2
% + E i 4 E ng,
k=1 =2
k is odd k is even
i—1
iy E n
2 k>
k=1
k is odd
Js
t—1
1+t—1 4
o TIF E M,
he=I1l
k is odd
t—1 1—2
+t—1 .
HEL G Y et Y
k=1 k=2
{c is odd k _is even

-2
Sk o D g
k=1

\ k is odd

if w

if w

if w

if w

if w

if w

ifw

C1;

¢i,t is odd and ¢ > 3;

c;, 1 1S even;

15,1 <7 < ny;

Xoj, 1 < 7 < ng;

= x;;,1 1s even, 1 < 7 < n;, 1 > 4

:mij,iis Odd,l S]STLZ,ZZ?)
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t
Next, define a vertex labeling g : V/(G) — {1,2,...,t + an} by
k=1

(

1,
i—1
i+1
B
k=2
k is even
t i—1
z+t2+1 + E e + E s
k=2 k=1
k is even k is odd
_J7+1
glw)=q7 T4
1—2
'L’ .
2 TJ+ E Tk
k=2
k is even
t
t+1 -
> tI+ _S_ Tk
k=2
k is even
t i—2
t
1—5 +7+ _;_ n + g N,
k=2 hi==a
\ k is even k is odd

if w=c¢y;

if w=c¢;,71is odd and 7 > 3;

if w = c¢;,11s even;

if w=1m9;,1 < j < ny;

if w=wx;;,1is even, 1 < j < n;,1 >4

ifw=ux1;1<j<nyg;

if w=ua;,7is odd,1 < j < n;,i>3.

For instance, Figures 2.14 and 2.15 show vertex labelings f and g of C'Ps21,0.2,2.

SQ 1

14 15

o
@~

15
13 14

Figure 2.15: A vertex labeling g of C'P 210,22

Similar to Theorem 2.3.2, we can show that f(V(G)) = g(V(G)) ={1,2,3, ...

P}
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and

@)+ fy) oy e BG)y =(PF L yo 2EL 5 2EL,

2 2 g
p+1 p+1 p+1
{9(z) +g(y) : vy € E(G)} :{T+ L 5= 42 =5 +p - 1}

are sets of p — 1 consecutive integers. From Theorem 2.1.1, f and g extend to
super edge-magic labelings of G.

Let V(P) = {1,2} and E(P) = {12} and H = G x P5. Thus

V(H)={(c;,k): 1 <i<t;bk =12 U{(z5,k) : 1 <i<t,1<j<m,k=12}

Define a vertex labeling h : V(H) — {1,2,...,2p} by

4

fle), if w = (¢;,1);
f(fl'ij), lf w = (Iij, 1),

p+g(cl)a it w= (6172)7

77777

10 11 1 15
OIINZ 128 | B| M\ F
T b ) Js. %
I~ s Dl ss e
) K .
47 | A8 ‘ 2215,
1680 Ny 19 § | B0
| 28\ |27 30
23 54 6 28 29

77777
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Similar to Theorem 2.3.1, we can show that h(V(H)) = {1,2,3,...,2p} and
{h(z) + h(y) : 2y € B(H)} = {& +2, B2 43, 2L 4 3p — 1} is a set of

3p — 2 consecutive integers. From Theorem 2.1.1, h extends to a super edge-magic

labeling of H. O
15
110012 5 16
10]7978 13 1g . 791697\
g0 T g1 T [08]
83 g7 811 76 | 13jR2 9
12 fa 16482 | b (T 1gh 5654 52
EL3| 5‘1 60 | 7 58

1 _ |5 .
o705 6307 |19 20| 547| 55 | SF' 2304 |25
| ! , 3?’3
4443 R 3385 -
50-48f 45 13" 29 21 31 4{,391

26 27 5g o 2 33

77777

94.

2.4 Super edge-magic labeling of the product of SF-graph

and path B,

In this section, we show the super edge-magic labeling of the product of specific

SF-graph and path P,.

Definition 2.4.1. A SF-graph SF,, n,..n, 15 a graph which the vertex-set is
{ei:1<i<t}U{m;:1<i<t1<j<n;}and the edge-set is

{cinc 1 <i<t—1}U{aa}U{gr; 1 <i<t1<j<mn}



t
Theorem 2.4.2. Let sl \ vd tis even. If Z ng = Z
kb odd k 15 oven

then the graph G x

)(t ; =) X >

ANTANAIDNA B

31
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t
Let p be the number of vertices of G. Then p=t+1+ Z Ng.
k=1

t
First, define a vertex labeling f: V(G) — {1,2,....,t + 1 + an} by
i=1

(
L, if w = cp;
i—2
Bl Yo, ifw=i;,0is 0dd, 1 < j <niyi > 3;
k=
k is odd
1—1
;T 1+ Z Nk, if w=¢;,71is even and 7 > 2;
K45 odd
t—1
k 1s:0dd
t—1
k 1s:odd
! i—1
Bl N et Y m, fw=ciisodd,i > 3;
k=1 k=2
k is odd k is even
t—1 i—2
H7t+j+1+ Z g+ Z Ny, ifw:xij,iiseven,lgjgni,@'zzl,
k=1 (=2
\ k is odd k is even

For instance, Figure 2.19 shows vertex labeling f of SFy1.232.

13 12

Figure 2.19: A vertex labeling f of SFj123.2.

s Ly<y
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t
Next, define a vertex labeling ¢ : V(G) — {1,2,...,t + 1+ an} by
i=1

L, it w = ¢y;
1—2
%"‘j"‘ Z N, if w=x;,7is even,1 < j < n;,i >4
k=2
k is even
i—1
%"" Z N, if w=¢;,71s odd and 7 > 3;
k=2
k is even
",
w) = .
g( ) %_I_l_‘_ Z N, lfw:CO;
k=2
k is even
t
k=2
k is even
¢—1
%‘Fl"‘ Z Ny + Z N, if w=c¢;,11is even,i > 2;
k=2 L
k is even k is odd
t 1—2
UL b1+ Y met o om, fw=ay,iis0dd, 1< <ngyi > 3.
=2 =
L k is even k is odd

For instance, Figure 2.20 shows vertex labeling g of SF( ;23 .

I ]

£ ¥ C
vl 10 1112

Figure 2.20: A vertex labeling g of SFj123.2.
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In order to show that f and g extend to super edge-magic labelings of G, it
suffices to verify by Theorem 2.1.1:
a) f(V(G)) = g(V(G)) ={1,2,3, ....p}
b) Sy ={f(x)+ f(y) : xy € E(G)} and Sy = {g(x) + g(y) : xy € E(G)} consist

of p consecutive integers.

t—1 ; t " P+ 1
Note that —+1= 4+ =+ 1=—.
ote that, §7 mit 5+ ;2 A 5+ ;
k is odd k is even

To show that f(V(G))={1,2,...;p}, we consider the labels of vertices as fol-
lows:

Vertices ¢y, T11, %12, <oy T1py s €2, T81, ooy T3nys Ca, ..., ¢ are labeled by the numbers

t—1
t +1
1,2,3, ..,na+ 1, m 200 43,4 nyFng+ 3,y Fng+4, ., Y nk+§+1:pT7
k is odd
respectively, and ¢y, @a1, T2, ..., T2y, €34 Ta1, ooy Tapy, Cs, ..., Ty, are labeled by the
t—1
t p+1 p+1 p+1 p+1
b -+ 2 = 1 2 3y, ——
numerskz_;nk+2+ 2+,2+,2+,,2+n2+
. k is odd . 5 .
-~ - - -
1,pT+ng+2,pT+n2+3,...,pT-I-ng+n4+3,pT+n2+n4+4,...,p,

respectively. Henee f(V(G)) ={1,2,...,p}.

To show that Sy consists of p consecutive integers, we have

t—1
t
flco) 4 fled =4+ (511 ; )
k is odd
p+1
o
5 yi
y t—1
fleo)+ fle) =1+ (5 +2+ ]; )
k is odd
1
P

2
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Similar to Theorem 2.3.2, we can verify that

flei) + f(zij) = flci) + f(mig) — 1
flei) + f(zin,) = flei) + fleipa) — 1
flei) + fleiyr) = fla) + f(@yn);) — 1.

Then Sy = {p—;l +1, p—;l + B NS ’%1 + p} is a set of p consecutive integers. From
Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Similarly, we can show that ¢(V(G)) = {1,2,3,....p} and S, = {g(z) + g(y) :
vy € B(G)} = {82 +1, 2L +2 . EE 4 p} is a set of p consecutive integers.
From Theorem 2.1.1, g extends to a super edge-magic labeling of G.

Note that, Sy = 5.

We will construct a super edge-magic labeling of SF{ ,,, n,...n, X P, as follows.

Let V(P,) ={1,2,...,n} and E(P,) = {12,23,34, ..., (n — 1)n} and

H =G x P,. Then

V(H)={(c;,k): 1 <i<t,1 <k <nfU{(z5,k):1<i<t1<j<mn,,
1 <k<n}.

Define a vertex labeling h: V(H) — {1,2,...,np} by

(

(k—Vp+ fla),  if w=(c;k), kis odd;
(b=Dp+if(zi;); ifw=(zy,k),kis odd;

(k—Dp+g(c;), ifw= (¢, k), kiseven;

(k—1)p+g(xi;), if w=(x;,k),kis even.
\
For instance, Figure 2.21 shows the vertex labeling i of SFp 1232 X P3 constructed

from f and g in Figure 2.19 and Figure 2.20.
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Figure 2.21: A vertex labeling of SFy1232 X Ps.

In order to show that A extends to a super edge-magic labeling of H, it suffices
to verify by Theorem 2.1.1:
a) h(V(H)) ={1,2,3,...,np}
b) S = {h(x)+ h(y) : xy € E(H)} consists of 2np — p consecutive integers.

To show h(V(H)) ={1,2,3,....,np}, we have
WV (H)) = J{h(u,k) : (u, k) € V(H))}

={1,2,...,np}.

To show that S consists of 2np — p consecutive integers, we consider h(u, k) +

h(u,k + 1) for all edges (u, k)(u, k + 1), where v € V(G) and k =1,2,...,n — 1.
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For edge (co, k)(co, k + 1),
h(co, k) + h(co, k +1) = (k = 1)p+ kp + f(co) + g(co)
:(2/€—1)p—|—1+(%+1—|— ]:22 n)

k is even

1
:(2k—1)p+%+1.

For edge (¢, k)(ci, k 4+ 1) when i = 2,4, ... ¢,

h(ci, k) + h(ci k) = (2b= L)p + f(ci) + g(ci)

. i—1 . t i—1

) 141
:(2k—1)p+(§—|—1—|— E nk)+(T+1 E ng + E nk)

k=1 k=2 k=1
k is odd k is even k is odd
i—1

e Y

=@ Sp+ it l42 Y e

k=1
k is odd

For edge (x4, k)(z15,k +1),

h(w1j, k) + h(w1y, k) =2k — 1)p + f(21)) + g(z1;)

t
0
=@k-Dp+(+D+G+1+i+ > )
k=2

k is even

+1 .
= (2k—Dp+ = +2j+1.

For edge (xi;y1)(x;,2) when ¢='3,5,..5¢ —1,

Wi, 1)+ R4, 2) = (2k = D)p A+ f(245) + g(55)

1+ 1 )
k is odd
i+t—1 : —
it Y et D, )
k=2 k=1
k is even k is odd

1—2
+1 .
:(Qk—l)p+pT+l+2 E n + 27.

k=1
k is odd



Note that, for any i is even,

h(ci, k) + h(ci, k + 1) = h(x iy, k) + (@i, b+ 1) — 2,

h(z(i—tyn, 1 k) + M@y, 1,k +1) = h(ci, k) + h(ci, k+1) — 2,

h(z sy, k) + h(zisnyj, b+ 1) = M@, k) + M@y, B+ 1) — 2.
For edge (¢1, k)(c1, k+ 1),

h(ci, k) + h(c,k+1) = 2k =1)p+ f(c1) + g(c1)
— (2k — 1)p+ (= +2+ Z )
=2k —1)p+ PN + 2.
For edge (¢;, k)(¢;, k + 1) when i = 3,5, ...,t — 1,

h(ci k) + hlci, k + 1) = (2k = Dp + () + g(ci)

t+1
= @R PR 1 Z -+ Z )

k 1s odd k 1s even
1—1
z—l—l
== Z nk
k=
klseven
i—1
+1
= @k—Up+T—+it1+2 Y me
k=2
k _is even

For edge (wq;, k) (2o, k +1),

b1y, k) + b(x1y, bk +1).=(2k = 1)p + f(225) + 9(x25)
t—1

+2454 Y m)+(i+1)

k=1
k is odd

=2k —1)p+ (%

+1 .
= (2k— p+ o= +2j + 2

38



For edge (x;;, k)(xj, k+ 1) when i = 4,6, ..., t,

h(wij, k) + h(xiy, k+1) = (2k — )p + f(zi;) + g(wi;)

t—1 i—2

1+t
(2k—1)p+(7+3+1+ Z g + ]; )
k is odd k is even
i =2
+(G+it Do )
k is oven
p+1 i—2
=@k -Tp+——Fi+2 ; ng + 27.
k is even

Note that, for any 7 is odd,

h(ci, k) + h(ci, k + 1) = Wiy, k) + M@, £+ 1) — 2,

h(Z -1y, 1, k) + M(xiiyng kK + 1) = h(e, k) + h(e, k+1) — 2,

(i), k) + (@b +1) = Meaaygi, k) + (@ g, b+ 1) = 2.
Thus

=T

{h(ci, k) + h(ci,k+ 1) :iis even} U U {h(zij, k) + h(zi, k+1):5=1,2,...

p=il
i is odd

1 1
—{——I—(2k‘—1)p+1 1%+(2k—1) +3,. %+2k )

and

t
{h(ci, k) + hlci k+ 1) viisodd} U () Ay k) + h(zy k+ 1)1 j =12, ..

=2
1 |
—{—+(2k—1) 19, ]%+<2k—1) +, 5 p; +2kp — 1Y,

39

Hence {h(u, k)+h(u,k+1) : (u,k)(u,k+1) € V(H)} = {E+(2k—1)p+1, 22 +

(2k — 1)p +2,..., 221 + 2kp}
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We note that

S ={h(u) +h(v) :uv e E(H)}

— U{h(u, k) + h(v, k) : (u,k)(v, k) € V(H)}U

k=1
n—1
J{h(u, k) + hlu k4 1) : (u, k)(v, k+1) € V(H)}
k=1
and
AR, k) + h(v, k) (u, k) (v, k) € V(H)}
k=1
"ptl p+1 p+1
=U{?+(2k—2) U= 4 (Qk=2p+2,... —— + (2~ )p}
k=1
p+1 p+1 p+1
={——+1,—+2 .
{ 5+ 57 T2 T + p}U
1 1
{—+2 +1, %+2 + 2, ]%—F:Sp}U“'U
+1 +1
{T+(2n—2)p+1,2—2———+(2n—2)p+2,...,p—+(2n—1)p}
and

n—1

J{h(u, k) + hlu b+ 1) ¢ (u, k) (v, k+1) € V(H)}

k=1
+1 +1
—U{ + (2% S4)p 41 7’7+(2k—1) +2,, B 4 ok
"y +1 41
4P L 4P+ 2 P 42U
4T +a

{—+3 —I—l,pT-i—?)p—i-Q,...,pT+4p}U---U

+1 +1
{T+(2n—3)p+1,p?—|—(2n—3)p+2,...,p—+(2n—2)p}.

Then S = {22 +1, 222 +2 . 2L 4 (2n — 1)p} is a set of 2np — p consecutive

integers. From Theorem 2.1.1, h extends to a super edge-magic labeling of H. [
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Figure 2.22: A super edge-magic labeling of SFj 221 X P, with magic constant

128.



CHAPTER III
CREATING NEW SUPER EDGE-MAGIC GRAPHS

FROM OLD ONES

Some algorithms to construct new super edge-magic graphs from the old ones
done by Sudarsana, Baskoro, [smaimuza and Assiyatun are given in Theorem 3.1,
3.3 and 3.5. Examples of these algorithms are shown in Example 3.2, 3.4 and 3.6.

Then we give a generalization of these algorithms in Theorem 3.7.

Theorem 3.1. [9] Let a (p, q)-graph G be super edge-magic with magic constant
k and k > 2p+ 2. If n is odd and n = 6p + 5 — 2k then the new graph, formed
from G and path P, by joining all vertices of P, to a vertexr xy of G labeled by

k —2p — 1, is super edge-magic with magic constant k+ 3n — 1.

Example 3.2. Let G be a graph in figure 3.1(left) which is super edge-magic with
magic constant 16. Let x( be the vertex labeled by 3, the new graph, formed from
G and path Py by joining all vertices of P to vertex xg-of G, is super edge-magic

with magic constant 42 as shown in figure 3.1(right).
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2 - =) f;'_’]“] 5

°| /" AN N
8 7 a/faﬁ$1aﬁf9gm\a\

it D——u—é O
?2312 22 132D ‘1'9' 18 1D1?'151611

Figure 3.1: The new graph, formed from a super edge-magic graph GG with magic

constant 16 and path Py, is super edge-magic with magic constant 42.

Theorem 3.3. [9] Let a (p, q)-graph G be super edge-magic with magic constant
k and k > 2p+ 2. If n is even and n = 6p + 4 — 2k then the new graph, formed
from G and path P, by joining all vertices of P, to a vertex xy of G labeled by

k —2p — 1, is super edge-magic with magic constant k + 3n — 1.

Example 3.4. Let G be a graph in figure 3.2(left) which is super edge-magic with
magic constant 16. Let x( be the vertex labeled by 3, the new graph, formed from
G and path P by joining all vertices of Py to vertex zy of GG, is super edge-magic

with magic constant 39 as shown in figure 3.2(right).
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.-'/ il III I| b - \M.
25/ ox /38 2'! EI‘( E@QE“Q@
-_‘/"'I : o /F »'Jr (5|| I|I '\. * \ \\'-.
A YR — T =0 00
7 Pl ml@n 018 g 17 1316 515 44

Figure 3.2: The new graph, formed from a super edge-magic graph GG with magic

constant 16 and path P, is super edge-magic with magic constant 39.

Theorem 3.5. (9] Let a (p, q)-graph G be super edge-magic with magic constant

k and k > 2p+2. If n =3p+ 2 — k then the new graph, formed from G and star

K, by joining all vertices of K, to a vertex xy of G labeled by k —2p — 1, is

super edge-magic with magic constant k = k + 3n + 2.

Example 3.6. Let G be a graph in figure 3.3(left) which is super edge-magic

with magic constant 16. Let xq be the vertex labeled by 3, the new graph, formed

from G and a star K 4 by joining all vertices of K4 to vertex zg of G, is super

edge-magic with the magic constant 30 as shown- in figure 3.3(right).
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na 4 »e
2 g—23 o 23 9 1
2z /26
3/
5 4 e =
L & 1L..: 11 & 1 5@ 55 :’:* 53 06
II. | .
G: g r-'| 9 | | I".
3 Fi | | ",I h.¥ =
50———O0——06 19 18|17 6
1 f \

Figure 3.3: The new graph, formed from a super edge-magic graph G with magic

constant 16 and a star K 4, is super edge-magic with magic constant 30.

We present a generalization of the above algorithms to construct the super

edge-magic graph from the old ones.

Theorem 3.7. Let Gy and Gy be super edge-magic (p1, q1)-graph and (p2, ¢2)-
graph with magic constants ki and ko, respectively. If ki > 2p1 +2 and k1 — 3p1 =
ky — 2py — qo, then the new graph, formed from G, and Gy by joining all vertices
of Gy to a verter xy of Gy labeled by k1 — 2p; — 1, is super edge-magic with magic

constant ky +2ps + qo.

Proof. Since (G; and G5 are super edge-magic, By Theorem 2.1.1, there exist super
edge-magic labelings A\ on G7 and Xy on (G5 such that

M) +M) ruw € E(G)} ={ki—(p1+a), ki—(p1+a—1),.... ki—(p1+1)},
{Xo(u) +A2(v) s uv € E(G2)} = {ka— (p2+@2), k2= (P2t a2 —1),..., k2 — (p2+1)},
respectively.

Let x¢ be the vertex of GGy labeled by k1 — 2p; — 1 and G be the new graph |,

formed from (G; and G, by joining all vertices of G5 to vertex zg.
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Define a vertex labeling A : V(G)— {1, 2,..., p1 + p2} by

A1 (u), if u e V(Gy);
p1 + )\Q(U), ifué€ V(GQ)
Since {A(u) :u € V(G)} = { M) :u e V(G)}U{\u) :ue V(Gs)}
and {\(u) :u € V(G1)} ={Mu):ue V(G)} ={1,2,...,p1}
and {\u) :u € V(Go)} =4p1 +a(u) :u € V(Gs)} ={p1+1,p1 +2,....,01 + pa},

(W) :u € V(G)} =412, s pr + pa).

Consider

{Mu) + A(v) :uwv € B(G)} ={A(u) + A(v) : uwv € E(G1)} U{A(xg) + A(v) : v € V(G2)}
U{AXu) + A(v) : wv € E(Gs)}
={ A1 (u) + M (v) cuv € E(G1)} U{ A (z0) + A2(v) s v € V(G2)}

U{2p1 + Xs(u) + A2 (v) : uv € E(G3)}.

Note that, for all v € V(G3),

A (o) + Ao(v) = (k1 = 2p1 — 1) + (p1 + A2(v)) = k1 —p1 + Xo(v) — L.

Since 1 < \y(v) < ps for all v € V(Gs) ,

{M(zo) + Xe(v) v € V(Ga)} ={k1 — p1, ki —pr+ 1, k1 — p1 +p2 — 1}

Since k?l — 3]?1 = k’g — 2p2 — (2, WE have 2]?1 + kQ — (pg —+ QQ) = ]{?1 — D1 —f-pg,
{2p1 + Xo(u) + Aa(v) :uv € E(Gs)}
={2p1+ ke — (P24 @), 201+ ks — (P2 + 2 —1),....2p1 + ko — (p2 + 1)}
={ki—p1+pki—pr+p+1,.. . ki —pi+p+q—1}
Hence {A(u)+A(v) : uwv € E(G)} = {ki—(p1+q1), ki—(p1+au—1),... . ki—(p1+1)}

U{ki—prki—pi+1,. ki —pid+pe =1 U ki —pi+po, ki —pi+pe+ 1, k —

p1+ p2 + g2 — 1} which is the set of ¢; + g2 + p2 consecutive integers. Then G is
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super edge-magic with magic constant (p; +p2)+ (g1 +q2+p2) + (k1 — (p1+q¢1)) =

k1 +2ps + qo. O

Example 3.8. Let G; and G5 be graphs in figure 3.4(left) which are super edge-
magic with magic constant 16 and 33, respectively. Let zy be the vertex labeled
by 3 in Gy, the new graph, formed from G; and G5 by joining all vertices of Go

to vertex xy of (1, is super edge-magic with magic constant 51 as shown in figure

3.4(right).
s 4 ap
2 5 45 ® 46 o 1
.'ff
< g ;
G-1 = % HK4T
3/
5O 2 ; / - -
x’:y// ; | '|| Q\‘EEE\\\ -

9858~ f:%rf;'.*" 3639\, 333534
G50 41 26 022 4*3*"”\{}:3{63\)} q?%ﬁ

: 0270 14
3 443 & S—é“o—c% 7 19 8 17 9 15

15 16 18
G2 4’ 64 8—8
19 20 21
Figure 3.4: The new graph, formed from a super edge-magic graph G; with magic
constant. 16 ‘and G, with magic constant 33, is super edge-magic with magic

constant bH1.

Corollary 3.9. Let a (p, q)-graph G be a super edge-magic with magic constant
k and k > 2p+ 2. If n is odd and n = 6p + 3 — 2k then the new graph, formed
from G and cycle C,, by joining all vertices of C,, to a vertex xy of G labeled by

k —2p — 1, 1s super edge-magic with the magic constant k + 3n.
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Proof. Tt is known that [2] every odd cycle C,, is super edge-magic with magic
constant 5”T+3 Let p/, ¢/, k' be number of vertices, number of edges and magic

constant of C,, respectively. Thus k' = 5"; 3 — 5(6p +3; 2k)+3 15p 4+ 9 — 5k. Then

K —2p'—q = (15p+9—5k) —2(6p+3 —2k) — (6p+3—2k) = k—3p. By Theorem
3.7, the new graph, formed from G and cycle C), by joining all vertices of C,, to a

vertex xo, is super edge-magic with magic constant k + 2p’ + ¢’ = k + 3n. O

Example 3.10. Let G be a graph in figure 3.5(left) is super edge-magic with
magic constant 16. Let zy be the vertex labeled by 3, the new graph, formed
from G and a cycle €7 by joining all vertices of C7 to vertex zy of G, is super

edge-magic with the magic constant 37 as shown in figure 3.5(right).

31 4 37
20 O—10 1
30 33
r . 3 o~
10 444 50258 28 96
O———fr—- .—{:n 1 I
T / AT
) [
G: 55 12 ,‘-'-II.--
5 I"'_E,_:_:.___—(ﬁe _,-) 23 / '_\--:n I| -.' :

ot /26T 26 \ 2
J1ad18l3z7l16115) 4\
(118 1129 13 J10

20

Figure 3.5: The new graph, formed from a super edge-magic graph G with magic

constant 16 and a cycle C%, is super edge-magic with magic constant 37.



CHAPTER IV
SUPER EDGE-MAGIC DEFICIENCY OF SOME

GRAPHS

Our purpose in this chapter is to investigate bounds for the super edge-magic

deficiency of some graphs.

Definition 4.1. The super edge-magic deficiency ps(G) of a graph G is the small-
est nonnegative integer n with the property that the graph G U nKj is super

edge-magic or +oo if there exists no such integer n.

Example 4.2. Since cycle Cy is not super edge-magic and Cy U K is super edge-

magic, then ps(G) = 1.

1 ? 8 ©5

|:12
9 6
40 03

=]

Figure 4.1: Cy U K is super edge-magic with magic constant 14.

Figuaroa-Centeno, Ichishima and Muntaner-Batle showed the following theo-

rem.

Theorem 4.3. [5] If G is a graph with even degree and q edges, where § is odd,

then us(G) = +o0.
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We investigate a lower bound for the super edge-magic deficiency of the join

of cycle C,, and m isolated vertices.

Theorem 4.4. For all integers m > 1 and n > 3,

(m—l)(n—2)+1'

Proof. Let G be the join of m copies of K; and n-cycle C,, with
|[V(G)| = m 4+ n and |B(G)| = n + mn.

Thus

|E(G)|=mn+n=mm—-2+2)+n=m(n—2)+2m+n

>(n—2)+2m+n>2m+2n—-3=2(m+n)—3=2|V(G)| - 3.

By Theorem 2.1.3, G is not super edge-magic.
Let k be a positive integer such that G U kK, is super edge-magic.

By Theorem 2.1.3, |E(G U kK3)| < 2]V(GUEK,)| — 3.
—1)(m=—2 1
Thusmn+n§2(m+n+k‘)—3,thenk‘2(m )(g )+ )

(m—1)(n-2)+1
Hence ps(G) > 5 :

O

We investigate an upper bound for the super edge-magic deficiency of the join

of odd cycle €}, and m isolated vertices.

Theorem 4.5. For all positive-integers m;n-and. n. s odd,

(2m —1)(n — 1)'

Proof. Let s = W and G = (mK, V C,) U sK; be the graph with
V(G)={z;:1<i<n}U{y;: 1 <j<m}U{w,:1<k<s}and

EG)={zizi1:1<i<n—-1}U{z,21}U{y;z; : 1 <j<m,1<i<n}
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Define a vertex labeling f : V(G) — {1,2,...,m +n+ s} by

s
1
Z; , if u = x;,7 is odd;
7/l
fu)y= %, if u=w;,1 is even,
3n+ 1 ] .
77 +(—Dn, ifu=y,.

and

3n—1 n+3 3n+5H 5n—1U

{f(wk):k:1,2,..,,3}:{7}/4_1,”_’_2,.”7 2 }U{ 2 7 9 2 }
(T W1, {7n—i—3 5 9l
2 - 2 : 2 AR 2
2mn —n+3 2mn—n—|—5 Imn+n—1
U---U
{ 2 %) 2 3 5 2 }
3n—1, " 2a—1)n+(20—1)
={n + 1, n + 2. 5 }UU(U{ : n.
a=2 b=2
et Qinti gintd DZP-'m.m!
2 leeraze o ]
D2 O?”.' 3 Dﬁn +5 o DM
: 1 e 14
CE}'.V!—l : .
2 (:I:I:-'n;] O..r;_] I {:I:I?Jm.';n 1

= =

Figure 4.2: A vertex labeling of (mK; V C,,) U sKj.
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In order to show that f extends to a super edge-magic labeling of G, it suffices
to verify by Theorem 2.1.1:
a) f(V(G)) =41, 2, 3,...,m+n+s}
b) S ={f(z)+ f(y) : zy € E(G)} consists of mn + n consecutive integers.

To show that f(V(G)) = {1, 2, 3,....,m + n+ s}, we consider the labels of
vertices as follows:
Vertices x1,x3,x5...,x, are labeled by numbers 1,2, 3, ..., ”TH, respectively and
To, X4, Tg..., Tn_1 are labeled by numbers

n+3 n+5 n47
4

are labeled by numbers

3n+1l 5n+l Tntl 2mn+n+1
2

s a1 of &% , respectively and wyq, wa, ..., w;

are labeled by remaining numbers. Hence f(V(G)) = {1, 2, 3,...,m+n + s}.
To show that S consists of mn+mn consecutive integers, we consider f(x)+ f(y)

for all edges zy in G.

n—+1 n-+3
+1= .

For edge l‘nxly f(xn) + f(xl) = 2

For edge x;z;11 2= 1,3,5,...,n— 2,

t+1 madaF2 w3+ 2

f(z:) + f(zi) = + = :
g 2 2

For edge x;x;11 1 =2,4,6,...,n — 1,

n+it+l i+2 n+342i

f(@:) + f(wipa) = 5 + 5 5
For edge y;z; i = 1,3,5,...,n,-7 =1,2,...,m,
flus) + s EETL G VIR L PR ?
For edge yz; i =2,4,6,...,n—1, 7=1,2 ..m,
on + 1 n+A1i (25 +2)n +ik2

Fla) + Fa) = LGS i

We note that

2 - 2

S={f(z)+ f(y) : zy € E(G)}
={f(xn) + flz1)} U{f(zs) + f(@ig1) i =1,2,...,n — 1}U
U{f(yj) + f(z):i=1,3,...,n}U U{f(;/j) tf(m):i=2,4,...,n—1}

s oy e Ty Tespectively and Yy, Yo, Y3, -
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and

n+3

{fwn) + fla ={2
5 7 9 3 1
{f<xl)+f(xl+l)7’:17277n_1}:{n+ 7n+ 7n+ PRRRS nE }
2 2 2 2
" . n+3 3n+5H 4n + 2
UF @) + fa) ri=1,3,...n} ={ s g Y
j=1
Sn+3 bn+5H 6m + 2
{ g JU---U
{an-i-n—l-?) 2mn+n+95 2mn+2n+2}
5 , 5 S aees 5

dn+4 4n+6 5+ 1

U y) + fla) vi= 204, n— 1} ={ T SR ¥
j=1
6n+4 6n+6 m+1
{ 5Ty g JU---uU
2mn+2n+4 2mn+2n+6 2mn +3n +1
{ , - }.
2 2 2
3 5 7 2 3 1
ThenS:{n+ 7n+ ’n+ ,...,M}isasetofmn+nconsecutive
2 2 2 2
integers. By Theorem 2.1.1, f extends to a super edge-magic labeling of G.
2m —1)(n—1)

Therefore ps(mKy VvV C,,) < when n 1s odd. O

Example 4.6. 6 < u,(3K, Vv Cr) < 15.

R @ o bl D 19
e @ 13 © 20
& 10 @ BF a 21

D15 O z
218 o
@ 17 O 2

Figure 4.3: A vertex labeling of (3K, V C7) U 15K].
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We investigate the super edge-magic deficiency of the join of specific even cycle

C,, and m isolated vertices.
Theorem 4.7. For all positive integers m,n and m,n =2 (mod 4),
ps(mKy vV Cy) = 400.

Proof. Let m = 4s + 2 and n = 4t + 2 for some positive integers s, t.

Then

|[E(mK VvV C,)| =mn+n
= (45 + 2)(4t + 2) + (4t + 2)
= 4(4st + 2s + 3t) + 6.

2
2s + 3t) 4+ 3 is odd, by Theorem 4.3, us(mK; vV C,) = +o0. O

Since mK; V C, is graph with even graph degree and = 2(4st +

We investigate a lower bound for the super edge-magic deficiency of the join

of path P, and m isolated vertices.

Theorem 4.8. For all integers m > 2 andn > 3,

fs(mKy vV P,) > (m — 1)2(n — 2).

Proof. Let G be the join of m copies of K; and path P, with
V(G| =m+nand |E(G)|=mn+n — 1.

Thus

|IE(G)l]=mn4+n—1=mn—-2+2)+n—1=mn—-2)+2m+n—1
>Mn—2)+2m+n—1=2m+2n—-3=2(m+n)—3=2|V(G)| - 3.

By Theorem 2.1.3, GG is not super edge-magic.

Let k£ be a positive integer such that G U kK, is super edge-magic.
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By Theorem 2.1.3, |E(G U kK;)| < 2|V(G U kK;)| — 3.

Thus mn +n —1 < 2(m +n+ k) — 3, then k > - D=2
Hence ju,(G) > "1™ 1)2("_ 2) -

We investigate an upper bound for the super edge-magic deficiency of the join

of path P, and m isolated vertices.

Theorem 4.9. For all positive integers m,n

271 i) if n is odd;
J(mKqV E,) < 2 7 ’
VEIEN b D=1 .
s
5 , if n is even.
Proof. Let
2m—1 -1
(2m 2)(” ) if  is odd:
5 —=
ke 1)(2n ) 1, if n is even.

and G = (mK; V P,) U sK; be the graph with
V(G ={z;:1<i<n}U{y;: 1 <j<m}U{fwp:1<k<s}and

EG)={zixi1:1<i<n—1}U{zx, : 1} U{y;z;: 1 < j<m,1<i<n}

Sy

O,
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Case 1. n is odd.

Define a vertex labeling f : V(G) — {1,2,...m +n + s} by

i+ 1
HQ_ , if u=x;,7 is odd,;
1
flu) = n+2—|—z’ if u=x;,1 is even;
3n + 1 , .
| =8 +(j = Dn, if u=y;.

and

3n—1 n+3 3n+5H bn —1

{flwy) : k=1,2,....s}={n+1,n+2, .., 2 Fu{ 5Ty g U
{5n+3 5n+5 } {7n+3 ™m—+5 9n—1}

IR Y\ 2 T 9

U.'.U{an—n+372mn—n—|—57.”’2mn+n—1}

2 2
2b—1
:{n+1,n—|—2,.. }UU U{ ( )}).
a=2 b=2

- & BT e

B O @it 03
'4.lr-+5 fllr"* 5 T

Lo @ @
Q ! e .2 :
i
{:}3”- 1
2 1 : i
F Lmrtdn=1
D art=1 D (1 il D
z Z :

Figure 4.4: A vertex labeling of (mK; V B,) U sK; when n is odd.
In order to show that f extends to a super edge-magic labeling of G, it suffices
to verify by Theorem 2.1.1:
a) f(V(G)) =41, 2, 3,...,m+n+s}
b) S ={f(z)+ f(y) : zy € E(G)} consists of mn 4+ n — 1 consecutive integers.

It can be verified that f(V(G)) = {1, 2, 3,...,m+n+ s}.
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To show that S consists of mn + n — 1 consecutive integers, we consider

)+ f(y) for all edges zy in G.

For edge x;x;1 1 v =1,3,5,...,n — 2,

f(xg) + f(wig1) =

i+1+n+i+2_n+3+22'
2 2 N 2 '

For edge x;z;11 2 =2,4,6,...,n— 1,

n+i+1 14+2 n+3+2

f(zs) + f(wi41) = kN 1y

2 2 2

For edge y;z; i =1,3,5,...,n, j=1,2,...m,

fyy) + fxi) =

dn+1 : 141 2+ 1)n+1+2
5 +(—Dn+ 3 :<‘7 )2 :

For edge y;x; i = 2,4,6,...,n—1, g=12,.. m,

fyi) + flwi) =

3nd1 n4+1+i (2j+2)n—+i+?2
S M f DR & )2 '

We note that

S={f(x) + f(y) - zy € G}

57

={f (@) + f(wip1) 11 =12 on = U J{f(yy) + f(z:) 10 =1,3,...,n}U

Jj=1

U{f(yj) T f(z):i=24,..,n—1}

and

{f(‘rl) + f(xi-i-l) L= 1727 ey T ]'} :{ 9 ) 2 PRy 92 }
" ! 3In+3Bn+5 Cdn+2
U{f(y]) +.f(ml) : Z - 1737"'7n} :{ 2 b 2 bR 2 }U
j=1
n+3 dn+5 6n + 2
J---u
{ 2 72 7779 }
{2mn+n+3 2mn+n+95 2mn +2n+ 2
2 ) 2 JRRRS]
" . dn+4 dn+6  Sn+1
) + fla) ri =24, n — 1} ={ 55—}

J=1

n+5 n+7 n+1

6n+4 6n-+6 T+ 1
5 5 T g

{

}U---U

2mn +2n+4 2mn+2n+6 2mn+3n+1

2

}

{ 2 ? 2 )

2

}.
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ThenS:{n—2k5’n—2{—77n—21—9"”2mn—|—23n~|—1

utive integers. By Theorem 2.1.1, f extends to a super edge-magic labeling of G.
(2m —1)(n —1)
2

} is a set of mn +mn — 1 consec-

when n is odd.

Therefore ps(mK; V B,) <
Case 2. n is even.

Define a vertex labeling g : V(G) — {1,2,...m +n + s} by

;

e if u = x;,4 is odd;

g(w)= ki if u=ax;,1 is even;

\%ﬁ—i-(j—l)n, if u=y,.

and
3n—1 3 2 3 4 5n — 2
fo(we) k=12, .8} =ln+ Lt 2., Som)Ug ”2* , ”; e
on'+ 2. 5n+4 n — 2 m+2 Tn+4 In—2
U
{ QAP /- - DI W2 } { 2 7 2 7 T2 }
2mn —n-+2 2mn—n+4 2mn +n — 2
J---u
{ 2 ’ 2 ’ ’ 2 }
3n—2 " (2a — )n+ (20— 2)
={n+1,n+2.., = Yo lJdU 5 1.
a=2 b=2
I:_._,‘I.m."'? c,ﬁn.-.i-'.?. el O.‘!m!!;]l X
D"t::i-i D'.'lr.'ﬁq . o Ty =k 4
. 2 2
I:'_):“!'z f_}$ _________ ( :I‘I-'n.r.';.l.'— ]

Figure 4.5: A vertex labeling of (mK; V P,) U sK; when n is even.

Similarly, we can verify that ¢(V(G)) = {1, 2, 3,...,m+n+ s} and

n+4 n+6 n+8 2mn + 3n
{9(x) +g(y) -2y € G} =1 R T B

} is a set of
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mn + n — 1 consecutive integers. By Theorem 2.1.1, g extends to a super edge-
2m—-1)(n—-1)—1
2

even. O

magic labeling of G. Therefore pus(mk; vV P,) < when n is

Example 4.10. 8 < uy(4K; V Pr) < 21.

De @ 12 D &2
D s o3 B2xn 6
D 1w 014 @n 6=
@ 15 On O
O 1s Oz On
5 B @u @13

Figure 4.6: A vertex labeling of (4K V P;) U21K;.

Example 4.11. 6 < py (4K V Fy) < 17.

@)1 e Dz
@i O On
O s O
i3 s Dz
Oa D O

2 ®

Figure 4.7: A vertex labeling of (4K V Ps) U 17K].

We investigate a lower bound and an upper bound for the super edge-magic

deficiency of a specific tripartite graph.
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Theorem 4.12. For all integers m,n and m,n > 2,

(m=1)(n—1)
2

MS(Km,n,l) Z

Proof. Let G be the tripartite graph K, ,, 1 with
V(G)|=m+n+1and |[E(G)| = mn+m+ n.

Thus

|IE(G)|=mn+m4+n=[(m—1)(n—1)+m+n—1+m+n
=m—-Dm—-1D+2m+2n—-1>2m+2n—1=2(m+n+1)—3

= 2V(G)| — 3.

By Theorem 2.1.3, G is not super edge-magic.
Let k£ be a positive integer such that G U kK is super edge-magic.

By Theorem 2.1.3, |[E(G U kKy)| < 2|V(G U kK;)| — 3.

—1)(n—-1
Thusmn+m+n§2(m+n+1+k)—3,thenkz(m )(n )

(m— 1)(n—1)
> .

Hence pus(G) >
Theorem 4.13. For all positive integers m,n and m > n,
,us(Km,n,l) S m(n -~ 1)

Proof. Let s =m(n —1) and G = K, ,1 U sK; be the graph with
V(G)=Ax;:1<i<m}U{y; -1 <j<n}U{z}U{ws:1<k<s}and

EG)={ry;:1<i<m,1<j<n}U{zz;:1<i<m}U{zy;:1<j<n}
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Define a vertex la {1, m + 1} by

+2}u{2m+4,2m+5,...,3m + 3}

mn—n+m-+2,...,mn+n}
iy
]

W Aa

MANEUIALT 0 e

c” @ mst o0 Dess R n-m+2

Figure 4.8: A vertex labeling of K,, 1 U sKj.
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In order to show that f extends to a super edge-magic labeling of G, it suffices
to verify by Theorem 2.1.1:
a) f(V(G)) =41, 2, 3,...,mn+n+1}
b) S ={f(z)+ f(y) : zy € E(G)} consists of mn + n + m consecutive integers.
To show that f(V(G)) = {1, 2, 3,...,mn+n+ 1}, we consider the labels of
vertices as follows:
Vertex z is labeled by numbers 1 and #q, 25, 23, ..., 2, are labeled by numbers
2,3,4,....,m + 1, respectively and vy, vys,¥s3,...,y, are labeled by numbers m +
2,2m + 3,3m + 4,...,mn +n + 1, respectively and wy,ws, ..., ws are labeled by
remaining numbers. Hence f(V/(G)) ={1, 2, 3,....,mn+n+ 1}.
To show that S consists of mn + n + m consecutive integers, we consider
f(z) + f(y) for all edges zy in G.
For edge zx; v =1,2,3,...,m,
fR)+flz)=1+(G+1)=i+2.
For edge zy; v =1,2,3,...,n,
fE)+ fly)=1+m+1)j+1=(m+1)j+2.
For edge z;y; v =1,2,3,...,m, 7=1,2,...,n,
fl) + fly;) =G+ +(m+1)j+1=m+1)j+i+2

We note that
S={f(@)+ fly) vy € E(G)}
={f(z)+ flz;):i=1,2,..myU{f(2)+ fly;) : j=1,2,...,m}U

U{f(xi) + f(y) i=1,2,....,m}
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and
{f(z) + f(z:)} ={3,4,5,...,m + 2}
{fz)+ fly;) :i=1,2,...,m} ={m+3,2m+4,3m+5,...,mn+n+ 2}
U{f(xz) + fly;):i=1,2,...m} ={m+4,m+5,..,2m+ 3}U
j=1

{2m+5.2m+6,...3m+4}U---U

{mn+n+3mn+n+4, .. .mn+n+m-+2}

Then S = {3,4,5,...,mn-+n+m+2} is a set of mn+n+m consecutive integers.
By Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Therefore pus(Kpmn1) <m(n—1). O

Example 4.14. 1 < pg(K321) < 3.

Figure 4.9+ A vertex labeling of K341 U3Kj.



CHAPTER V
SUPER EDGE-MAGIC REDUNDENCY OF SOME

GRAPHS

In contrast with the super edge-magic deficiency of a graph, we define the

super edge-magic redundency of a graph as follows.

Definition 5.1. The super edge-magic redundency of a graph G, ns(G), is the
smallest number of edges which are removed from the graph G and the remaining

graph is super edge-magic.

Example 5.2. Since cyele () is not super edge-magic, ns,(G) > 1. Deleting one

edge from (Y4, the resulting graph is path P; which is super edge-magic. Then

ns(G) = 1.

u—f{ 1® 4
o | =
o0——0 3 LLTE

Figure'5.1: Path P; is a super edge-magic subgraph of cycle C; with magic con-

stant 11.

Theorem 5.3. Let G be a (p, q)-graph. If G contains a super edge-magic spanning

subgraph (p, 2p — 3)-graph, then ns(G) = q — 2p + 3.
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Proof. Let H be the super edge-magic spanning subgraph with p vertices and
2p — 3 edges. Since E(H) = 2p — 3, by Theorem 2.1.3, there is no super edge-

magic subgraph in G’ which contains H. Hence 7,(G) = g — 2p + 3. O

Corollary 5.4. Let G be a (p, q)-graph. If G contains the square of path P,, then

ns(G) =q—2p+ 3.

Proof. Since |E(P?)| = (p — 1)+ (p —2) = 2p — 3, by Theorem 5.3, n,(G) =

q— 2p+ 3. [

Theorem 5.5. Let G be a (p, q)-graph. If G has a Hamiltonian path, then

Proof. Let P be Hamiltonian path of G. Since P is a path of p vertices and a
path is always super edge-magic, P is super edge-magic subgraph of G. Hence

WS(G)Sq—erl- O

Theorem 5.6. Let G be a (p, q)-graph. If G is Hamiltonian and p is odd,

then ny(G) < q = p-

Proof. Since a Hamiltonian cycle in G is a cycle of length p, it is a super edge-

magic subgraph of G. Thus 74(G) < ¢ — p. O

Theorem 5.7. [4] If G is a super edge-magic bipartite or tripartite graph and m

is odd, then mG is super edge-magic.

Theorem 5.8. If a (p,q)-graph G is bipartite or tripartite graph and ns(G) = k

for some positive integer k, then ns(mG) < mk for m is odd.

Proof. Since ny,(G) = k, G contains a super edge-magic spanning subgraph H
with p vertices and ¢ — k edges. Since G is bipartite(or tripartite), H is also

bipartite(or tripartite). From Theorem 5.7, mH is super edge-magic. Thus the
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graph mH is a super edge-magic subgraph of mG. Hence

ns(mG) < |[E(mG)| — |[E(mH)| = mqg—m(q — k) = mk. O
Theorem 5.9. [2] A wheel W, is not super edge-magic.
Theorem 5.10. ny(W,,) =1 when 1 <n <6.

Proof. By Theorem 5.9, n,(W,) > 1. By Table 1, F,, = K; V P, is super edge-

magic when 1 < n <6 and F}, is a subgraph of W,,, thus ns(W,,) = 1. O

Theorem 5.11. [5] The disjoint union of stars K, ,, and K1, is super edge-magic

of and only if m is multiple of n + 1 or n is multiple of m + 1.

Lemma 5.12. The disjoint union of stars K, ,, and K, and an isolated vertex

K, is super edge-magic.

Proof. Let G =2 Ky, UKy, UKy with V(G ={v;:i=1,2,....m+n+3}) and
E(G) ={vov; :i=3,4,5,...om+2}U{vv; : i = m+4,m+5 m+6,....m+n+3}
Define a vertex labeling f: V(G) — {1,2,...;m +n + 3} by f(v;) = 1.
It can be verified that f(V(G)) ={1,2,....m +n+3}.
For edge vov;, © = 3,4, ...,m + 2,
f(v2) + f(vi) =2+
For edge viv, t = m+4, m~+5,...om+n+ 3,
fv2) + flvi) =1+
Then{f(x)+ f(y) : zy € E(G)} = {5,6,...om+4}U{m=+5m+6,...,m+n+4}
is a set of m + n consecutive integers. From Theorem 2.1.1, f extends to a super
edge-magic labeling of G. (|
Theorem 5.13.

0, either m is a multiple of n+ 1 or n is multiple of m + 1;

ns(Kl,mUKl,n) =

1, otherwise.
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Proof. Let G be the disjoint union of stars K ,,, and K.

If m is a multiple of n+1 or n is a multiple of m+ 1, by Theorem 5.11, G is super
edge-magic. Thus 7,(G) = 0.

If m is not a multiple of n+ 1 and n is not a multiple of m + 1, by Theorem 5.11,
G is not super edge-magic. Deleting one leaf from G, the resulting graph is the
disjoint union of two star and K;. By Lemma 5.12, the resulting graph is super

edge-magic. Hence n,(G) = 1. O



1]

2]

REFERENCES

Avadayappan, S., Jeyanthi, P., Vasuki, R.: Super magic strength of a graph,
Indian J. Pure Appl Math. 32, 1621-1630(2001).

Enamoto, H., Llado, A., Nakamigawa, T., Ringel, G.: Super edge-magic
graphs, SUT J. Math. 34, 105-109(1998).

Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: The place of
super edge-magic labelings among other classes of labelings, Discrete Math.
231, 153-168(2001).

Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: On edge-
magic labelings of certain disjoint unions of graphs, Australas. J. Combin.
32, 225-242(2005).

Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: Some new
results on the super edge-magic deficiency of graphs, J. Combin. Math.
Combin. Comput. 55, 17-31(2005).

Figueroa-Centeno, R. M., Ichishima, R., Muntaner-Batle, F.A.: On the
super edge-magic deficiency of graphs, Ars Combin. 78, 33-45(2006).

Gallian, J.: A dynamic suyvey of graph labeling, The FElectronic Journal of
Combinatorics 5, 67-79(2007)

Kotzig, A., Rosa, A.: Magic valuation of finite graphs, Canad. Math. Bull.
13, 451-461(1970).

Sudarsana, I. W., Baskoro, E. T., Ismaimuza, D., Assiyatun, H.: Creating
new super edge-magic total labeling from old ones, The Proceedings of the
Second International Workshop on Graph Labeling (IWOGL), 77-84(2004).



APPENDIX

Definition 1. A graph G consists of a finite nonempty set V(G) of elements,
called vertices, and the set E(G) of 2-elment subsets of V(G), called edges. We
call V(@) as the vertex-set of G and E(G) as the edge-set of G. If {z,y} is an
edge in a graph G, then an edge {z,y} joins z and y , or x and y are adjacent and
are neighbors, or an edge {x,y} is incident with x(or y). We usually write {x,y}

as xy.

Definition 2. A subgraph of a graph G is a graph H such that V(H) C V(G)
and E(H) C E(G). A spanning subgraph of a graph G is a subgraph with vertex
set V(QG).

Definition 3. A wu,v-path in a graph G is a finite sequence of distinct vertices
and edges of the form w = v, €;,. v, €5y, ... €;,,0;, = v Where e;, = v;,0;,, €5, =
Vi Vigs - - €5, = U4, Vg, -

The length of a path is its number of edges.

Definition 4. A graph G is connected if every pair of vertices is joined by a path

and disconnected otherwise.

Definition 5. The degree of a vertex v in a graph G, denoted by deg v, is the

number of edges incident with v.

Definition 6. Let G; and Gy be graphs with disjoint vertex-sets V' (G;) and
V(Gs) and edge-sets E(G1) and E(Gs), respectively. The join of G; and G,
denoted by G V Go, is a graph with the vertex-set V(G1) UV (Gs) and the edge-

set E(G1) U E(G2) and all edges joining vertices in V(G;) and V(Gy).

Definition 7. A path P, is a simple graph whose vertices can be ordered so that

two vertices are adjacent if and only if they are consecutive in the list.
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Definition 8. A cycle C, is a graph with an equal number of vertices and edges
whose vertices can be place around a circle so that two vertices are adjacent if

and only if they appear consecutively along the circle.

Definition 9. The square of path P? with n vertices, n > 3, is a graph which is
obtained from P, by adding edges that join all vertices u and v if there exists a

u, v-path of length 2 in F,.

Definition 10. A complete graph K, is a graph of n vertices which any two

distinct vertices are adjacent.
Definition 11. The wheel W, n > 3, is the graph K; V C,,.
Definition 12. The fan F), is the graph K; V P,.

Definition 13. The friendship graph of n triangles, n > 3, is the graph obtained

by taking n copies of the cycle C5 with a vertex in common.

Definition 14. Let GGy and G, be graphs with disjoint vertex-sets V(G7) and
V(Gs) and edge-sets E(G;) and E(Gs) respectively. The product of G; and G,
denoted by G x G, is a graph with the vertex-set V (G;) x V(G2) and specified by
putting (uq, uz) adjacent to (vq,vs) if either u; = vy and ugvy € E(Gy) or us = vy

and ujv; € E(Gy).
Definition 15. A tree is a connected graph with n vertices and n — 1 edges.

Definition 16. A rooted tree is a tree with one vertex z chosen as root. For each
vertex v, let P(v) be the unique z, r-path. The parent of v is its neighbor on P(v);

its children are its other neighbors.

Definition 17. Let G, Ga, . . ., G, be graphs with disjoint vertex-sets V(G1), V(Gs),

.., V(G,,) and the edge-sets E(G1), E(Gs), ..., E(Gy,) respectively. The disjoint
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union of Gy, G, ..., G, denoted by G{UGyU. .. UG,,, is a graph with the vertex-
set V(G1)UV(Gy)U...UV(G,,) and the edge-set E(G1)U E(Gy)U...UE(G,,)
It G, =Gy =--- =G, =G then G1,Gs,...,G,, is denoted by mG and is

called the disjoint union of m copies of G.

Definition 18. The corona product Gy ® G4 of two graphs (G; and G5 defined as
the graph obtained by taking one copy of G| (which has p; vertices) and p; copies

of Gy, and then joining the i-th vertex of G to every vertex of i-copy of Gs.

Definition 19. An independent set or partite set in a graph is a set of pairwise

nonadjacent vertices.

Definition 20. A complete bipartite graph K, , is a graph of m+n vertices which
is the union of two disjoint partite sets and two vertices are adjacent if and only

if they are in the different partite sets.

Definition 21. A complete tripartite graph K,, , i is a graph of m+n+k vertices
which is the union of three disjoint partite sets and two vertices are adjacent if

and only if they are in the different partite sets.
Definition 22. A Hamiltonian graph is a graph with a spanning cycle.

Definition 23. A Hamiltonian path is a spanning path.
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