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CHAPTER I

INTRODUCTION

1.1 Definitions

In this thesis we consider finite undirected graphs without loops and multi-

ple edges. V (G) and E(G) stand for the vertex set and edge set of a graph G,

respectively. We denote by (p, q)-graph G a graph with p vertices and q edges.

Definition 1.1.1. A (p, q)-graph G is edge-magic if there exists a bijective func-

tion f : V (G)∪E(G) → {1, 2, 3, . . . , p+q} such that f(u)+f(v)+f(uv) = c(f)

is a constant for any edge uv in G and f is called the edge-magic labeling of G

and c(f) is called the magic constant of f .

Definition 1.1.2. A (p, q) graph G is super edge-magic if there exists an edge-

magic labeling f such that f(V (G)) = {1, 2, . . . , p}.

Definition 1.1.3. The super edge-magic deficiency µs(G) of a graph G is the

smallest nonnegative integer n with the property that the graph G∪nK1 is super

edge-magic or +∞ if there exists no such integer n.

Definition 1.1.4. Let G be a super edge-magic graph. The super edge-magic

strength of G, sm(G) is defined as the minimum of all c(f) where the minimum

is taken over all super edge-magic labelings f of G. That is,

sm(G) = min{c(f) : f is a super edge-magic labeling of G}.
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Figure 1.1: Example of super edge-magic graphs

1.2 History and Overview

The seminal paper in edge-magic labelings was published in 1970 by Kotzig

and Rosa[8], who called these labelings: magic valuations; these were rediscovered

by Ringel and Llado, who coined one of the now popular terms for them: edge-

magic labelings. More recently, they have also been referred to as edge-magic

total labelings by Wallis. In 1998, Enamoto, Llado, Nakamigawa and Ringel[2]

defined a super edge-magic labeling f of a graph G. Gallian[7] surveyed some of

latest developments of super edge-magic graphs as shown in the following table:
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Table 1: Summary of Super Edge-magic Labelings

Graph Notes

Cn iff n is odd[Enamoto et al]

caterpillars [Enamoto et al]

trees ?[Enamoto et al]

Km,n iff m = 1 or n = 1[Enamoto et al]

Kn iff n = 1, 2 or 3[Enamoto et al]

nK2 if n is odd[Kotzig and Rosa]

nG if G is a bipartite or tripartite super edge-magic graph

and n is odd[Figuaroa-Centeno et al]

K1,m ∪ K1,n iff m is multiple of n + 1[Figuaroa et al],[Lee and Kong]

Pm ∪ K1,n if m ≥ 4 is even[Figuaroa-Centeno et al]

2Pn iff n is not 2 or 3[Figuaroa-Centeno et al]

2P4n for all n[Figuaroa et al]

K1,m ∪ 2nK1,2 for all m and n[Figuaroa-Centeno et al]

C3 ∪ Cn iff n ≥ 6 is even[Figuaroa-Centeno et al]

C4 ∪ Cn iff n ≥ 5 is odd[Figuaroa-Centeno et al]

C5 ∪ Cn iff n ≥ 5 is even[Figuaroa-Centeno et al]

Cm ∪ Cn if m ≥ 6 is even and n is odd and n ≥ m
2

+ 2[Figuaroa-Centeno et al]

C4 ∪ Pn iff n 6= 3[Figuaroa-Centeno et al]

C5 ∪ Pn iff n 6= 4[Figuaroa-Centeno et al]

Cm ∪ Pn if m ≥ 6 is even and n ≥ m
2

+ 2[Figuaroa-Centeno et al]

Pm ∪ Pn iff (m,n) 6= (2, 2) or (3, 3)[Figuaroa-Centeno et al]
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Table 1: Summary of Super Edge-magic Labelings

Graph Notes

K1,1 ∪ K1,k ∪ K1,n k = 1, 2 or n[Lee and Kong]

K1,2 ∪ K1,k ∪ K1,n k = 2, 3[Lee and Kong]

K1,1 ∪ K1,1 ∪ K1,k ∪ K1,n k = 2, 3[Lee and Kong]

K1,k ∪ K1,2 ∪ K1,2 ∪ K1,n k = 1, 2[Lee and Kong]

friendship graph of n triangles iff n=3,4,5 or 7[Slamin et al]

generalized Petersen graph P (n, 2) if n ≥ 3 and n is odd[Fukuchi]

nP3 n ≥ 4 and n is even[Baskoro and Ngurah]

P 2
n [Figuaroa et al]

P3 ∪ kP2 for all k[Figuaroa et al]

k(P2 ∪ Pn) if k is odd and n = 3, 4

[Figuaroa-Centeno et al]

fan Fn iff n ≤ 6[Figuaroa-Centeno et al]

kP2 iff k is odd[Figuaroa-Centeno et al]

tree with α-labeling [Figuaroa-Centeno et al]

P2m+1 × P2 for all m[Figuaroa-Centeno et al]

C2m+1 × Pn for all m,n[Figuaroa-Centeno et al]

G ¯ Kn if G is super edge-magic 2-regular graph

[Figuaroa-Centeno et al]

Cm ¯ Kn m ≥ 3 and n ≥ 1

join of K1 with any subgraph of star [Chen]

if G is k-regular super edge-magic graph then k ≤ 3[Chen]

G is connected 3-regular graph on p vertices iff p ≡ 2 (mod 4)[Chen]
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Kotzig and Rosa[8] defined the edge-magic deficiency, µ(G), of a graph G

as the smallest nonnegative integer n with the property that the graph G ∪ nK1

is edge-magic. In 1999, Figueroa-Centeno, Ichishima and Muntaner-Batle[5], [6]

used the concept of edge-magic deficiency to define super edge-magic deficiency.

They proved the following super edge-magic deficiency of graphs:

Table 2: Summary of Super Edge-magic Deficiency

Graph Deficiency Notes

nK2 0 n is odd

1 n is even

Cn 0 if n ≡ 1, 3 (mod 4)

1 if n ≡ 0 (mod 4)

+∞ if n ≡ 2 (mod 4)

Kn 0 n = 1, 2, 3

1 n = 4

+∞ n ≥ 5

Km,n ≤ (m − 1)(n − 1) for any positive integer m,n

K2,n n − 1 for any positive integer n

Forests finite

K1,m ∪ K1,n 0 either m is multiple of n + 1 or n is multiple of m + 1

1 otherwise

Pm ∪ Pn 1 if (m,n) = (2, 2) or (3, 3)

0 otherwise
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Table 2: Summary of Super Edge-magic Deficiency

Graph Deficiency Notes

Pm ∪ K1,n 1 m = 2 and n is odd or m = 3 and n ≡ 1, 2 (mod 3)

0 otherwise

2Cn 1 if n is even

+∞ if n is odd

3Cn 0 if n is odd

1 if n ≡ 0 (mod 4)

+∞ if n ≡ 2 (mod 4)

4Cn 1 for all integers n ≡ 0 (mod 4)

In 2000, Avadayappan, Jeyanthi and Vasuki[1] defined the super edge-magic

strength and proved the super edge-magic strength of path Pn, star K1,n, the n-

bistar Bn,n obtained from two disjoint copies of K1,n by joining the center vertices

by an edge, odd cycle C2n+1, P 2
n and the disjoint union of odd copies of P2.

There are five chapters in this thesis. In chapter I, we introduce definitions

that will be used in and the history and overview of super edge-magic graphs and

the super edge magic deficiency.

In Chapter II, super edge-magic graphs and bounds for the super edge-

magic strength of some graphs are shown.

In Chapter III, we show a construction of new super edge-magic graphs

from the old ones.

In Chapter IV, we investigate bounds for the super edge-magic deficiency

of some graphs.

In Chapter V, we introduce the super edge-magic redundency and find

bounds for the super edge-magic redundency of some graphs.



CHAPTER II

SUPER EDGE-MAGIC GRAPHS

Our purpose in this chapter is to show some new super edge-magic graphs and

investigate bounds for their super edge-magic strengths. We separate this chapter

into four sections. The first section contains theorems and corollary which are

used in this thesis. The second section shows a super edge-magic labeling of the

P-tree. The third section shows a super edge-magic labeling of the product of the

caterpillar and path P2. The last section shows a super edge-magic labeling of the

product of SF-graph and path Pn.

2.1 Preliminary Tools

Theorem 2.1.1. [3] A (p, q)-graph G is super edge-magic if and only if there

exists a bijective function f : V (G) → {1, 2, 3, . . . , p} such that the set

S = {f(u) + f(v) : uv ∈ E(G)}

consists of q consecutive integers. In such a case, f extends to a super edge-magic

labeling of G with magic constant k = p + q + s, where s = min(S) and

S = {k − (p + q), k − (p + q − 1), . . . , k − (p + 1)}

Corollary 2.1.2. [3] If a (p, q)-graph G is a super edge-magic with a super edge-

magic labeling f , then

∑

v∈V (G)

f(v)deg v = qs +

(

q

2

)

where s is defined as in theorem 2.1.1.
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Theorem 2.1.3. [2] If a (p, q)-graph is super edge-magic, then q ≤ 2p − 3.

2.2 Super edge-magic labeling of the P-tree

First, we introduce the definition of the P-tree.

Definition 2.2.1. Let r, s and t be positive integers. The P-tree P (r, s, t) is a

rooted tree with root z and deg z = r and deg c = s + 1 for every child c of z and

one grandchild of z has degree t + 1.

Figure 2.1: P-tree P (r, s, t).

Example 2.2.2. P-tree P (3, 3, 1) and P-tree P (5, 4, 6) are shown below.

Figure 2.2: Example of P-trees.
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Definition 2.2.3. Let G be a super edge-magic graph. The super edge-magic

strength of G, sm(G) is defined as the minimum of all c(f) where the minimum

is taken over all super edge-magic labelings f of G. That is,

sm(G) = min{c(f) : f is a super edge-magic labeling of G}.

Next, we show the specific P-tree is super edge-magic.

Theorem 2.2.4. The P-tree P (2m + 1, n,m) is super edge-magic with

sm(P (2m + 1, n,m)) ≤ 4mn + 2n + 9m + 6 for any positive integers m, n.

Proof. Let G ∼= P (2m + 1, n,m) with

V (G) = {z} ∪ {ci : 1 ≤ i ≤ 2m + 1} ∪ {wk : 1 ≤ k ≤ m}

∪ {xij : 1 ≤ i ≤ 2m + 1, 1 ≤ j ≤ n} and

E(G) = {zci : 1 ≤ i ≤ 2m + 1} ∪ {cixij : 1 ≤ i ≤ 2m + 1, 1 ≤ j ≤ n}

∪ {x(m+1)1wk : 1 ≤ k ≤ m}.



10

Note that, |V (G)| = 2mn + n + 3m + 2.

Define a vertex labeling f : V (G) → {1, 2, 3, . . . , 2mn + n + 3m + 2} by:

f(u) =



































































i + j(2m + 1), if u = xij;

2m + 2 − i+1
2

, if u = ci, i is odd;

2m + 2 − 2m+i+2
2

, if u = ci, i is even;

2mn + n + 3m + 2, if u = z;

2mn + n + 3m + 2 − k, if u = wk.

Figure 2.3: A vertex labeling of P-tree P (2m + 1, n,m).

In order to show that f extends to a super edge-magic labeling of P-tree

P (2m + 1, n,m), it suffices to verify by Theorem 2.1.1:

a) f(V (G)) = {1, 2, 3, . . . , 2mn + n + 3m + 2}

b) S = {f(x) + f(y) : xy ∈ E(G)} consists of 2mn + 3m + n + 1 consecutive

integers.



11

To show that f(V (G)) = {1, 2, 3, . . . , 2mn + n + 3m + 2}, we consider the

labels of vertices as follows:

Vertices c2, c4, c6..., c2m are labeled by numbers m,m− 1,m− 2, ..., 1, respectively

and c1, c3, c5..., c2m+1 are labeled by numbers 2m + 1, 2m, 2m − 1, ...,m + 1, re-

spectively and x11, x21, ..., x(2m+1)1, x12, x22, ..., x(2m+1)2, ..., x1n, x2n, ..., x(2m+1)n are

labeled by numbers 2m+2, 2m+3, ..., 4m+2, 4m+3, 4m+4, ..., 6m+3, ..., 2mn+

n+1, 2mn+n+2, ..., 2mn+n+2m+1, respectively and z, w1, w2, ..., wm are labeled

by number 2mn+n+3m+2, 2mn+n+3m+1, 2mn+n+3m, ..., 2mn+n+2m+2.

Hence f(V (G)) = {1, 2, 3, . . . , 2mn + n + 3m + 2}.

To show that S consists of 2mn+3m+n+1 consecutive integers, we consider

f(x) + f(y) for all edges xy in G.

For edge cixij,

when i is odd, f(ci) + f(xij) = (2m + 2 − i+1
2

) + (i + j(2m + 1))

= j(2m + 1) + 2m + i−1
2

+ 2,

when i is even, f(ci) + f(xij) = (2m + 2 − 2m+i+2
2

) + (i + j(2m + 1))

= j(2m + 1) + m + i
2

+ 1.

For edge zci,

when i is odd, f(z) + f(ci) = (2mn + n + 3m + 2) + (2m + 2 − i+1
2

)

= 2mn + n + 5m + 4 − i+1
2

,

when i is even, f(z) + f(ci) = (2mn + n + 3m + 2) + 2m + 2 − 2m+i+2
2

= 2mn + n + 5m + 4 − 2m+i+2
2

.

For edge x(m+1)1wk,

f(x(m+1)1) + f(wk) = ((m + 1) + (2m + 1)) + (2mn + n + 3m + 2 − k)

= 2mn + n + 6m + 4 − k.
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We note that

S ={f(x) + f(y) : xy ∈ E(G)}

=
n

⋃

j=1

{f(ci) + f(xij) : i is odd} ∪
n

⋃

j=1

{f(ci) + f(xij) : i is even} ∪ {f(z) + f(ci) : i is odd}

∪ {f(z) + f(ci) : i is even} ∪ {f(wk) + f(xm+1,1)}

and

n
⋃

j=1

{f(ci) + f(xij) : i is odd} ={4m + 3, 4m + 4, .., 5m + 3} ∪ {6m + 4, 6m + 5, ...,

7m + 4} ∪ · · · ∪ {2mn + n + 2m + 2,

2mn + n + 2m + 3, ..., 2mn + n + 3m + 2},

n
⋃

j=1

{f(ci) + f(xij) : i is even} ={3m + 3, 3m + 4, ..., 4m + 2} ∪ {5m + 4, 5m + 5, ...,

6m + 3} ∪ · · · ∪ {2mn + n + m + 2,

2mn + n + m + 3, ..., 2mn + n + 2m + 1},

{f(z) + f(ci) : i is odd} ={2mn + n + 4m + 3, 2mn + n + 4m + 4, ...,

2mn + n + 5m + 3},

{f(z) + f(ci) : i is even} ={2mn + n + 3m + 3, 2mn + n + 3m + 4, ...,

2mn + n + 4m + 2},

{f(wk) + f(x(m+1)1)} ={2mn + n + 5m + 4, 2mn + n + 5m + 5, ...,

2mn + n + 6m + 3}.

Then S = {3m + 3, 3m + 4, . . . , 2mn + n + 6m + 3} is a set of 2mn + n + 3m + 1

consecutive integers. Therefore, f extends to a super edge-magic labeling of G

with magic constant (2mn + n + 3m + 2) + (2mn + n + 3m + 1) + (3m + 3) =

4mn + 2n + 9m + 6. Hence sm(G) ≤ 4mn + 2n + 9m + 6.
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Figure 2.4: A super edge-magic labeling of the P-tree P (5, 4, 2) with magic con-

stant 64

2.3 Super edge-magic labeling of the product of caterpillar

and path P2

In this section, we show the super edge-magic labeling of the product of cater-

pillar and path P2.

Definition 2.3.1. A caterpillar graph CPn1,n2,...,nt
is a graph which the vertex-set

is {ci : 1 ≤ i ≤ t} ∪ {xij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni} and the edge-set is

{ci+1ci : 1 ≤ i ≤ t − 1} ∪ {cixij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni}.

Figure 2.5: CP3,2,1,4,3



14

Theorem 2.3.2. Let CPn1,n2,...,nt
be a caterpillar with t is odd.

If
t

∑

k=1
k is odd

nk =
t−1
∑

k=2
k is even

nk, then the graph CPn1,n2,...,nt
× P2 is super edge-magic.

Proof. Let G ∼= CPn1,n2,...,nt
with

V (G) = {ci : 1 ≤ i ≤ t} ∪ {xij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni} and

E(G) = {ci+1ci : 1 ≤ i ≤ t − 1} ∪ {cixij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni}.

Let p be the number of vertices of G. Then p = t +
t

∑

k=1

nk.

First, define a vertex labeling f : V (G) → {1, 2, ..., t +
t

∑

k=1

nk} by

f(w) =











































































































































1, if w = c1;

i+1
2

+
i−1
∑

k=2
k is even

nk, if w = ci, i is odd and i ≥ 3;

i+t+1
2

+
t−1
∑

k=2
k is even

nk +
i−1
∑

k=1
k is odd

nk, if w = ci, i is even;

j + 1, if w = x2j, 1 ≤ j ≤ n2;

i
2

+ j +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4;

t+1
2

+ j +
t−1
∑

k=2
k is even

nk, if w = x1j, 1 ≤ j ≤ n1;

i+t
2

+ j +
t−1
∑

k=2
k is even

nk +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3;
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Next, define a vertex labeling g : V (G) → {1, 2, ..., t +
t

∑

k=1

nk} by

g(w) =















































































































































t+1
2

+
t

∑

k=1
k is odd

nk, if w = c1;

i+t
2

+
t

∑

k=1
k is odd

nk +
i−1
∑

k=2
k is even

nk, if w = ci, i is odd and i ≥ 3;

i
2

+
i−1
∑

k=1
k is odd

nk, if w = ci, i is even;

j, if w = x1j, 1 ≤ j ≤ n1;

t+1
2

+ j +
t

∑

k=1
k is odd

nk, if w = x2j, 1 ≤ j ≤ n2;

i+t−1
2

+ j +
t

∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4;

i−1
2

+ j +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3.

For instance, Figures 2.6 and 2.7 show vertex labelings f and g of CP2,2,1,2,1.

Figure 2.6: A vertex labeling f of CP2,2,1,2,1.

Figure 2.7: A vertex labeling g of CP2,2,1,2,1.
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In order to show that f and g extend to super edge-magic labelings of G, it

suffices to verify by Theorem 2.1.1:

a) f(V (G)) = g(V (G)) = {1, 2, 3, ....p}

b) Sf = {f(x) + f(y) : xy ∈ E(G)} and Sg = {g(x) + g(y) : xy ∈ E(G)} consist

of p − 1 consecutive integers.

Note that, t+1
2

+
t−1
∑

k=2
k is even

nk =
t + 1

2
+

t
∑

k=1
k is odd

nk =
p + 1

2
.

To show that f(V (G) = {1, 2, 3, ..., p}, we consider the labels of vertices as

follows:

Vertices c1, x21, x22, ..., x2n1
, c3, x41, ..., x4n3

, c5, ..., ct are labeled by numbers 1, 2, 3, ...,

n1+1, n1+2, n1+3, ..., n1+n3+3, n1+n3+4, ...,
t−1
∑

k=2
k is even

nk +
t + 1

2
+1 =

p + 1

2
, re-

spectively and x11, x12, ..., x1n2
, c2, x31, ..., x3n3

, c4, ..., x(t−1)nt−1
are labeled by num-

bers
t−1
∑

k=2
k is even

nk+
t + 1

2
+2 =

p + 1

2
+1,

p + 1

2
+2,

p + 1

2
+3, ...,

p + 1

2
+n2+1,

p + 1

2
+

n2 +2,
p + 1

2
+n2 +3, ...,

p + 1

2
+n2 +n4 +3,

p + 1

2
+n2 +n4 +4, ..., p, respectively.

Hence f(V (G)) = {1, 2, 3, ..., p}.

To show that Sf consists of p−1 consecutive integers, we consider f(x)+f(y)

for all edges xy in G.

For edge cixij,

when i = 1, f(c1) + f(x1j) = 1 + ( t+1
2

+ j +
t−1
∑

k=2
k is even

nk) =
p + 1

2
+ j + 1,

when i = 3, 4, ..., t,

f(ci) + f(xij) =(
i + 1

2
+

i−1
∑

k=2
k is even

nk) + (
i + t

2
+ j +

t−1
∑

k=2
k is even

nk +
i−2
∑

k=1
k is odd

nk)

=
p + 1

2
+ i +

i−1
∑

k=1

nk + j,



17

when i = 2,

f(c2) + f(x2j) =(
t + 3

2
+

t−1
∑

k=2
k is even

nk + n1) + (j + 1)

=
p + 1

2
+ n1 + 2 + j,

when i = 4, 6, ..., t − 1,

f(ci) + f(xij) =(
i + t + 1

2
+

t−1
∑

k=2
k is even

nk +
i−1
∑

k=1
k is odd

nk) + (
i

2
+ j +

i−2
∑

k=2
k is even

nk)

=
p + 1

2
+ i +

i−1
∑

k=1

nk + j.

Note that, f(ci) + f(xi(j+1)) = f(ci) + f(xij) + 1.

For edge cici+1,

when i = 1, f(c1) + f(c2) = 1 + t+3
2

+
t−1
∑

k=2
k is even

nk + n1 =
p + 1

2
+ n1 + 2,

when i = 3, 5, ..., t − 2,

f(ci) + f(ci+1) =(
i + 1

2
+

i−1
∑

k=2
k is even

nk) + (
i + t + 2

2
+

t−1
∑

k=2
k is even

nk +
i

∑

k=1
k is odd

nk)

=
p + 1

2
+ i + 1 +

i
∑

k=1

nk,

when i = 2, 4, ..., t − 1,

f(ci) + f(ci+1) =(
i + t + 1

2
+

t−1
∑

k=2
k is even

nk +
i−1
∑

l=1
l is odd

nl) + (
i + 2

2
+

i
∑

k=2
k is even

nk).

=
p + 1

2
+ i + 1 +

i
∑

k=1

nk.

Note that, f(ci) + f(ci+1) = f(ci) + f(xini
) + 1

and f(c(i+1)) + f(x(i+1)1) = f(ci) + f(ci+1) + 1.

Hence Sf = {p+1
2

+ 2, p+1
2

+ 3, ..., p+1
2

+ p} is a set of p − 1 consecutive integers.

From Theorem 2.1.1, f extends to a super edge-magic labeling of G.
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Similarly, we can show that g(V (G)) = {1, 2, 3, ...., p} and Sg = {g(x) + g(y) :

xy ∈ E(G)} = {p+1
2

+ 1, p+1
2

+ 2, ..., p+1
2

+ p − 1} is a set of p − 1 consecutive

integers. From Theorem 2.1.1, g extends to a super edge-magic labeling of G.

We will construct a super edge-magic labeling of CPn1,n2,...,nt
× P2 as follows.

Let V (P2) = {1, 2} and E(P2) = {12} and H = G × P2. Then

V (H) = {(ci, k) : 1 ≤ i ≤ t, k = 1, 2} ∪ {(xij, k) : 1 ≤ i ≤ t, 1 ≤ j ≤ ni, k = 1, 2}.

Define a vertex labeling h : V (H) → {1, 2, ..., 2p} by

h(w) =



















































f(ci), if w = (ci, 1);

f(xij), if w = (xij, 1);

p + g(ci), if w = (ci, 2);

p + g(xij), if w = (xij, 2).

For instance, Figure 2.8 shows the vertex labeling h of CP2,2,1,2,1 ×P2 constructed

from f and g in Figure 2.6 and Figure 2.7.

Figure 2.8: A vertex labeling of CP2,2,1,2,1 × P2.

In order to show that h extends to a super edge-magic labeling of H, it suffices

to verify by Theorem 2.1.1:

a) h(V (H)) = {1, 2, 3, ...., 2p}

b) S = {h(x) + h(y) : xy ∈ E(H)} consists of 3p − 2 consecutive integers.
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We note that

h(V (H)) = {h(u, 1) : (u, 1) ∈ V (H))} ∪ {h(u, 2) : (u, 2) ∈ V (H))}

and

{h(u, 1) : (u, 1) ∈ V (H))} ={f(u) : u ∈ V (G)}

={1, 2, ..., p}

{h(u, 2) : (u, 2) ∈ V (H))} ={p + g(u) : u ∈ V (G)}

={p + 1, p + 2, .., 2p}.

Then h(V (H)) = {1, 2, 3, ...., 2p}.

To show that S consists of 3p − 2 consecutive integers, we consider h(u, 1) +

h(u, 2) for all edges (u, 1)(u, 2), where u ∈ V (G).

For edge (c1, 1)(c1, 2),

h(c1, 1) + h(c1, 2) = f(c1) + p + g(c1)

= 1 + p + (
t + 1

2
+

t
∑

k=1
k is odd

nk)

=
p + 1

2
+ p + 1.

For edge (ci, 1)(ci, 2) when i = 3, 5, ..., t,

h(ci, 1) + h(ci, 2) = f(ci) + p + g(ci)

= (
i + 1

2
+

i−1
∑

k=2
k is even

nk) + p + (
i + t

2
+

t
∑

k=1
k is odd

nk +
i−1
∑

k=2
k is even

nk)

=
p + 1

2
+ p + i + 2

i−1
∑

k=2
k is even

nk.
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For edge (x2j, 1)(x2j, 2),

h(x2j, 1) + h(x2j, 2) = f(x2j) + p + g(x2j)

= (j + 1) + p + (
t + 1

2
+ j +

t
∑

k=1
k is odd

nk)

=
p + 1

2
+ p + 2j + 1.

For edge (xij, 1)(xij, 2) when i = 4, 6, ..., t − 1,

h(xij, 1) + h(xij, 2) = f(xij) + p + g(xij)

= (
i

2
+ j +

i−2
∑

k=2
k is even

nk) + p + (
i + t − 1

2
+ j +

t
∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk)

=
p + 1

2
+ p + i − 1 + 2

i−2
∑

k=2
k is even

nk + 2j.

Note that, for any i is odd,

h(ci, 1) + h(ci, 2) = h(x(i+1)1, 1) + h(x(i+1)1, 2) − 2,

h(x(i−1)ni−1
, 1) + h(x(i−1)ni−1

, 2) = h(ci, 1) + h(ci, 2) − 2,

h(x(i+1)j, 1) + h(x(i+1)j, 2) = h(x(i+1)(j+1), 1) + h(x(i+1)(j+1), 2) − 2.

For edge (ci, 1)(ci, 2) when i = 2, 4, ..., t − 1,

h(ci, 1) + h(ci, 2) = f(ci) + p + g(ci)

= (
i + t + 1

2
+

t−1
∑

k=2
k is even

nk +
i−1
∑

k=1
k is odd

nk) + p + (
i

2
+

i−1
∑

k=1
k is odd

nk)

=
p + 1

2
+ p + i + 2

i−1
∑

k=1
k is odd

nk.

For edge (x1j, 1)(x1j, 2),

h(x1j, 1) + h(x1j, 2) = f(x1j) + p + g(x1j)

= (
t + 1

2
+ j +

t−1
∑

k=2
k is even

nk) + p + j

=
p + 1

2
+ p + 2j.
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For edge (xij, 1)(xij, 2) when i = 3, 5, ..., t,

h(xij, 1) + h(xij, 2) = f(xij) + p + g(xij)

= (
i + t

2
+ j +

t−1
∑

k=2
k is even

nk +
i−2
∑

k=1
k is odd

nk) + p + (
i − 1

2
+ j +

i−2
∑

k=1
k is odd

nk)

=
p + 1

2
+ p + i + 2

i−2
∑

k=1
k is odd

nk + 2j − 1.

Note that, for any i is even,

h(ci, 1) + h(ci, 2) = h(x(i+1)1, 1) + h(x(i+1)1, 2) − 2,

h(x(i−1)ni−1
, 1) + h(x(i−1)ni−1

, 2) = h(ci, 1) + h(ci, 2) − 2,

h(x(i+1)j, 1) + h(x(i+1)j, 2) = h(x(i+1)(j+1), 1) + h(x(i+1)(j+1), 2) − 2.

Thus

{h(ci, 1) + h(ci, 2) : i = 1, 3, .., t} ∪
t−1
⋃

i=2
i is even

{h(xij, 1) + h(xij, 2) : j = 1, 2, ..., ni}

={
p + 1

2
+ p + 1,

p + 1

2
+ p + 3,

p + 1

2
+ p + 5, ...,

p + 1

2
+ 2p}

and

{h(ci, 1) + h(ci, 2) : i = 2, 4, .., t − 1} ∪
t

⋃

i=1
i is odd

{h(xij, 1) + h(xij, 2) : j = 1, 2, ..., ni}

={
p + 1

2
+ p + 2,

p + 1

2
+ p + 4,

p + 1

2
+ p + 6, ...,

p + 1

2
+ 2p − 1}.

Hence {h(u, 1) + h(u, 2) : (u, 1)(u, 2) ∈ V (H)} = {p+1
2

+ p + 1, p+1
2

+ p + 2, p+1
2

+

p + 3, ..., p+1
2

+ 2p}

We note that

S ={h(u) + h(v) : uv ∈ E(H)}

={h(u, 1) + h(v, 1) : (u, 1)(v, 1) ∈ V (H)} ∪ {h(u, 2) + h(v, 2) : (u, 2)(v, 2) ∈ V (H)}∪

{h(u, 1) + h(u, 2) : (u, 1)(u, 2) ∈ V (H)}
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and

{h(u, 1) + h(v, 1) : (u, 1)(v, 1) ∈ V (H)} ={f(u) + f(v) : uv ∈ E(CPn1,n2,...,nt
)}

={
p + 1

2
+ 2,

p + 1

2
+ 3, ...,

p + 1

2
+ p}

{h(u, 2) + h(v, 2) : (u, 2)(v, 2) ∈ V (H)} ={2p + g(u) + g(v) : uv ∈ E(CPn1,n2,...,nt
)}

={
p + 1

2
+ 2p + 1,

p + 1

2
+ 2p + 2, ...,

p + 1

2
+ 3p − 1}

{h(u, 1) + h(u, 2) : (u, 1)(u, 2) ∈ V (H)} ={
p + 1

2
+ p + 1,

p + 1

2
+ p + 2, ...,

p + 1

2
+ 2p}.

Then S = {p+1
2

+2, p+1
2

+3, ..., p+1
2

+3p−1} is a set of 3p−2 consecutive integers.

From Theorem 2.1.1, h extends to a super edge-magic labeling of H.

Figure 2.9: A super edge-magic labeling of CP2,2,1,1,1,3,2 ×P2 with magic constant

105.
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Theorem 2.3.3. Let CPn1,n2,...,nt
be a caterpillar with t is odd.

If
t

∑

k=1
k is odd

nk =
t−1
∑

k=2
k is even

nk +2, then the graph CPn1,n2,...,nt
×P2 is super edge-magic.

Proof. Let G ∼= CPn1,n2,...,nt
with

V (G) = {ci : 1 ≤ i ≤ t} ∪ {xij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni} and

E(G) = {ci+1ci : 1 ≤ i ≤ t − 1} ∪ {cixij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni}.

Let p be the number of vertices of G. Then p = t +
t

∑

k=1

nk.

First, define a vertex labeling f : V (G) → {1, 2, ..., t +
t

∑

k=1

nk} by

f(w) =















































































































































t+1
2

+
t

∑

k=1
k is odd

nk, if w = c1;

i+t
2

+
t

∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk, if w = ci, i is odd and i ≥ 3;

i
2

+
i−1
∑

k=1
k is odd

nk, if w = ci, i is even;

j, if w = x1j, 1 ≤ j ≤ n1;

i+t−1
2

+ j +
t

∑

k=1
k is odd

nk, if w = x2j, 1 ≤ j ≤ n2;

i+t−1
2

+ j +
t

∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4;

i−1
2

+ j +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3.
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Next, define a vertex labeling g : V (G) → {1, 2, ..., t +
t

∑

k=1

nk} by

g(w) =











































































































































1, if w = c1;

i+1
2

+
i−1
∑

k=2
k is even

nk, if w = ci, i is odd and i ≥ 3;

i+t+1
2

+
t−1
∑

k=2
k is even

nk +
i−1
∑

k=1
k is odd

nk, if w = ci, i is even;

j + 1, if w = x2j, 1 ≤ j ≤ n2;

i
2

+ j +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4;

t+1
2

+ j +
t−1
∑

k=2
k is even

nk, if w = x1j, 1 ≤ j ≤ n1;

i+t
2

+ j +
t−1
∑

k=2
k is even

nk +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3.

For instance, Figures 2.10 and 2.11 show vertex labelings f and g of CP3,2,2,2,1.

Figure 2.10: A vertex labeling f of CP3,2,2,2,1.

Figure 2.11: A vertex labeling g of CP3,2,2,2,1.

Similarly to Theorem 2.3.2, we can show that f(V (G)) = g(V (G)) = {1, 2, 3, ..., p}
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and

{f(x) + f(y) : xy ∈ E(G)} ={
p + 1

2
+ 2,

p + 1

2
+ 3, ...,

p + 1

2
+ p}

{g(x) + g(y) : xy ∈ E(G)} ={
p + 1

2
+ 1,

p + 1

2
+ 2, ...,

p + 1

2
+ p − 1}

are sets of p − 1 consecutive integers. From Theorem 2.1.1, f and g extend to

super edge-magic labelings of G.

Let V (P2) = {1, 2} and E(P2) = {12} and H = G × P2. Thus

V (H) = {(ci, k) : 1 ≤ i ≤ t, k = 1, 2} ∪ {(xij, k) : 1 ≤ i ≤ t, 1 ≤ j ≤ ni, k = 1, 2}.

Define a vertex labeling h : V (H) → {1, 2, ..., 2p} by

h(w) =



















































f(ci), if w = (ci, 1);

f(xij), if w = (xij, 1);

p + g(ci), if w = (ci, 2);

p + g(xij), if w = (xij, 2).

For instance, Figure 2.12 shows the vertex labeling h of CP3,2,2,2,1×P2 constructed

from f and g in Figure 2.10 and Figure 2.11.

Figure 2.12: A vertex labeling of CP3,2,2,2,1 × P2.
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Similar to Theorem 2.3.1, we can show that h(V (H)) = {1, 2, 3, ..., 2p} and

{h(x) + h(y) : xy ∈ E(H)} = {p+1
2

+ 2, p+1
2

+ 3, ..., p+1
2

+ 3p − 1} is a set of

3p−2 consecutive integers. From Theorem 2.1.1, h extends to a super edge-magic

labeling of H.

Figure 2.13: A super edge-magic labeling of CP2,1,2,2,1 × P2 with magic constant

72.

Theorem 2.3.4. Let CPn1,n2,...,nt
be a caterpillar with t is even.

If
t−1
∑

k=1
k is odd

nk =
t

∑

k=2
k is even

nk +1, then the graph CPn1,n2,...,nt
×P2 is super edge-magic.

Proof. Let G ∼= CPn1,n2,...,nt
with

V (G) = {ci : 1 ≤ i ≤ t} ∪ {xij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni} and

E(G) = {ci+1ci : 1 ≤ i ≤ t − 1} ∪ {cixij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni}.
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Let p be the number of vertices of G. Then p = t +
t

∑

k=1

nk.

First, define a vertex labeling f : V (G) → {1, 2, ..., t +
t

∑

k=1

nk} by

f(w) =















































































































































t+1
2

+
t−1
∑

k=1
k is odd

nk, if w = c1;

i+t
2

+
t−1
∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk, if w = ci, i is odd and i ≥ 3;

i
2

+
i−1
∑

k=1
k is odd

nk, if w = ci, i is even;

j, if w = x1j, 1 ≤ j ≤ n1;

i+t−1
2

+ j +
t−1
∑

k=1
k is odd

nk, if w = x2j, 1 ≤ j ≤ n2;

i+t−1
2

+ j +
t−1
∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4;

i−1
2

+ j +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3.
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Next, define a vertex labeling g : V (G) → {1, 2, ..., t +
t

∑

k=1

nk} by

g(w) =











































































































































1, if w = c1;

i+1
2

+
i−1
∑

k=2
k is even

nk, if w = ci, i is odd and i ≥ 3;

i+t+1
2

+
t

∑

k=2
k is even

nk +
i−1
∑

k=1
k is odd

nk, if w = ci, i is even;

j + 1, if w = x2j, 1 ≤ j ≤ n2;

i
2

+ j +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4;

t+1
2

+ j +
t

∑

k=2
k is even

nk, if w = x1j, 1 ≤ j ≤ n1;

i+t
2

+ j +
t

∑

k=2
k is even

nk +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3.

For instance, Figures 2.14 and 2.15 show vertex labelings f and g of CP2,2,1,0,2,2.

Figure 2.14: A vertex labeling f of CP2,2,1,0,2,2.

Figure 2.15: A vertex labeling g of CP2,2,1,0,2,2.

Similar to Theorem 2.3.2, we can show that f(V (G)) = g(V (G)) = {1, 2, 3, ..., p}
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and

{f(x) + f(y) : xy ∈ E(G)} ={
p + 1

2
+ 2,

p + 1

2
+ 3, ...,

p + 1

2
+ p}

{g(x) + g(y) : xy ∈ E(G)} ={
p + 1

2
+ 1,

p + 1

2
+ 2, ...,

p + 1

2
+ p − 1}

are sets of p − 1 consecutive integers. From Theorem 2.1.1, f and g extend to

super edge-magic labelings of G.

Let V (P2) = {1, 2} and E(P2) = {12} and H = G × P2. Thus

V (H) = {(ci, k) : 1 ≤ i ≤ t, k = 1, 2} ∪ {(xij, k) : 1 ≤ i ≤ t, 1 ≤ j ≤ ni, k = 1, 2}.

Define a vertex labeling h : V (H) → {1, 2, ..., 2p} by

h(w) =



















































f(ci), if w = (ci, 1);

f(xij), if w = (xij, 1);

p + g(ci), if w = (ci, 2);

p + g(xij), if w = (xij, 2).

For instance, Figure 2.16 shows the vertex labeling h of CP2,2,1,0,2,2×P2 constructed

from f and g in Figure 2.14 and Figure 2.15.

Figure 2.16: A vertex labeling h of CP2,2,1,0,2,2 × P2.
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Similar to Theorem 2.3.1, we can show that h(V (H)) = {1, 2, 3, ..., 2p} and

{h(x) + h(y) : xy ∈ E(H)} = {p+1
2

+ 2, p+1
2

+ 3, ..., p+1
2

+ 3p − 1} is a set of

3p−2 consecutive integers. From Theorem 2.1.1, h extends to a super edge-magic

labeling of H.

Figure 2.17: A super edge-magic labeling of CP3,2,1,0,2,3 ×P2 with magic constant

94.

2.4 Super edge-magic labeling of the product of SF-graph

and path Pn

In this section, we show the super edge-magic labeling of the product of specific

SF-graph and path Pn.

Definition 2.4.1. A SF-graph SFn1,n2,...,nt
is a graph which the vertex-set is

{ci : 1 ≤ i ≤ t} ∪ {xij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni} and the edge-set is

{ci+1ci : 1 ≤ i ≤ t − 1} ∪ {c1ct} ∪ {cixij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni}.
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Figure 2.18: SF-graph SF4,2,0,2,1,0,0

Theorem 2.4.2. Let G be the SF0,n1,n2,...,nt
and t is even. If

t−1
∑

k=1
k is odd

nk =
t

∑

k=2
k is even

nk,

then the graph G × Pn is super edge-magic for all n ∈ N.

Proof. Let G ∼= SF0,n1,n2,...,nt
with

V (G) = {ci : 0 ≤ i ≤ t} ∪ {xij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni} and

E(G) = {cici+1 : 0 ≤ i ≤ t − 1} ∪ {c0ct} ∪ {cixij : 1 ≤ i ≤ t, 1 ≤ j ≤ ni}.
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Let p be the number of vertices of G. Then p = t + 1 +
t

∑

k=1

nk.

First, define a vertex labeling f : V (G) → {1, 2, ..., t + 1 +
t

∑

i=1

ni} by

f(w) =



































































































































































1, if w = c0;

j + 1, if w = x1j, 1 ≤ j ≤ n1;

i+1
2

+ j +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3;

i
2

+ 1 +
i−1
∑

k=1
k is odd

nk, if w = ci, i is even and i ≥ 2;

t
2

+ 2 +
t−1
∑

k=1
k is odd

nk, if w = c1;

t
2

+ 2 + j +
t−1
∑

k=1
k is odd

nk if w = x2j, 1 ≤ j ≤ n2;

i+t+1
2

+ 1 +
t−1
∑

k=1
k is odd

nk +
i−1
∑

k=2
k is even

nk, if w = ci, i is odd, i ≥ 3;

i+t
2

+ j + 1 +
t−1
∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4.

For instance, Figure 2.19 shows vertex labeling f of SF0,1,2,3,2.

Figure 2.19: A vertex labeling f of SF0,1,2,3,2.
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Next, define a vertex labeling g : V (G) → {1, 2, ..., t + 1 +
t

∑

i=1

ni} by

g(w) =



































































































































































1, if w = c1;

j + 1, if w = x2j, 1 ≤ j ≤ n2;

i
2

+ j +
i−2
∑

k=2
k is even

nk, if w = xij, i is even, 1 ≤ j ≤ ni, i ≥ 4;

i+1
2

+
i−1
∑

k=2
k is even

nk, if w = ci, i is odd and i ≥ 3;

t
2

+ 1 +
t

∑

k=2
k is even

nk, if w = c0;

t
2

+ 1 + j +
t

∑

k=2
k is even

nk if w = x1j, 1 ≤ j ≤ n1;

i+t
2

+ 1 +
t

∑

k=2
k is even

nk +
i−1
∑

k=1
k is odd

nk, if w = ci, i is even, i ≥ 2;

i+t−1
2

+ j + 1 +
t

∑

k=2
k is even

nk +
i−2
∑

k=1
k is odd

nk, if w = xij, i is odd, 1 ≤ j ≤ ni, i ≥ 3.

For instance, Figure 2.20 shows vertex labeling g of SF0,1,2,3,2.

Figure 2.20: A vertex labeling g of SF0,1,2,3,2.
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In order to show that f and g extend to super edge-magic labelings of G, it

suffices to verify by Theorem 2.1.1:

a) f(V (G)) = g(V (G)) = {1, 2, 3, ..., p}

b) Sf = {f(x) + f(y) : xy ∈ E(G)} and Sg = {g(x) + g(y) : xy ∈ E(G)} consist

of p consecutive integers.

Note that,
t−1
∑

k=1
k is odd

nk +
t

2
+ 1 =

t
∑

k=2
k is even

nk +
t

2
+ 1 =

p + 1

2
.

To show that f(V (G)) = {1, 2, ..., p}, we consider the labels of vertices as fol-

lows:

Vertices c0, x11, x12, ..., x1n1
, c2, x31, ..., x3n3

, c4, ..., ct are labeled by the numbers

1, 2, 3, ..., n1+1, n1+2, n1+3, ..., n1+n3+3, n1+n3+4, ...,
t−1
∑

k=1
k is odd

nk+
t

2
+1 =

p + 1

2
,

respectively, and c1, x21, x22, ..., x2n2
, c3, x41, ..., x4n4

, c5, ..., xtnt
are labeled by the

numbers
t−1
∑

k=1
k is odd

nk +
t

2
+ 2 =

p + 1

2
+ 1,

p + 1

2
+ 2,

p + 1

2
+ 3, ...,

p + 1

2
+ n2 +

1,
p + 1

2
+ n2 + 2,

p + 1

2
+ n2 + 3, ...,

p + 1

2
+ n2 + n4 + 3,

p + 1

2
+ n2 + n4 + 4, ..., p,

respectively. Hence f(V (G)) = {1, 2, ..., p}.

To show that Sf consists of p consecutive integers, we have

f(c0) + f(ct) = 1 + (
t

2
+ 1 +

t−1
∑

k=1
k is odd

nk)

=
p + 1

2
+ 1

f(c0) + f(c1) = 1 + (
t

2
+ 2 +

t−1
∑

k=1
k is odd

nk)

=
p + 1

2
+ 2.
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Similar to Theorem 2.3.2, we can verify that

f(ci) + f(xij) = f(ci) + f(xi(j+1)) − 1

f(ci) + f(xini
) = f(ci) + f(ci+1) − 1

f(ci) + f(ci+1) = f(ci) + f(x(i+1)j) − 1.

Then Sf = {p+1
2

+ 1, p+1
2

+ 2, . . . , p+1
2

+ p} is a set of p consecutive integers. From

Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Similarly, we can show that g(V (G)) = {1, 2, 3, ...., p} and Sg = {g(x) + g(y) :

xy ∈ E(G)} = {p+1
2

+ 1, p+1
2

+ 2, ..., p+1
2

+ p} is a set of p consecutive integers.

From Theorem 2.1.1, g extends to a super edge-magic labeling of G.

Note that, Sf = Sg.

We will construct a super edge-magic labeling of SF0,n1,n2,...,nt
× Pn as follows.

Let V (Pn) = {1, 2, ..., n} and E(Pn) = {12, 23, 34, ..., (n − 1)n} and

H ∼= G × Pn. Then

V (H) = {(ci, k) : 1 ≤ i ≤ t, 1 ≤ k ≤ n} ∪ {(xij, k) : 1 ≤ i ≤ t, 1 ≤ j ≤ ni,

1 ≤ k ≤ n}.

Define a vertex labeling h : V (H) → {1, 2, . . . , np} by

h(w) =



















































(k − 1)p + f(ci), if w = (ci, k), k is odd;

(k − 1)p + f(xij), if w = (xij, k), k is odd;

(k − 1)p + g(ci), if w = (ci, k), k is even;

(k − 1)p + g(xij), if w = (xij, k), k is even.

For instance, Figure 2.21 shows the vertex labeling h of SF0,1,2,3,2×P3 constructed

from f and g in Figure 2.19 and Figure 2.20.
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Figure 2.21: A vertex labeling of SF0,1,2,3,2 × P3.

In order to show that h extends to a super edge-magic labeling of H, it suffices

to verify by Theorem 2.1.1:

a) h(V (H)) = {1, 2, 3, ...., np}

b) S = {h(x) + h(y) : xy ∈ E(H)} consists of 2np − p consecutive integers.

To show h(V (H)) = {1, 2, 3, ...., np}, we have

h(V (H)) =
n

⋃

k=1

{h(u, k) : (u, k) ∈ V (H))}

={1, 2, ..., p} ∪ {p + 1, p + 2, ..., 2p} ∪ {(n − 1)p + 1, (n − 1)p + 2, ..., np}

={1, 2, ..., np}.

To show that S consists of 2np− p consecutive integers, we consider h(u, k) +

h(u, k + 1) for all edges (u, k)(u, k + 1), where u ∈ V (G) and k = 1, 2, ..., n − 1.
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For edge (c0, k)(c0, k + 1),

h(c0, k) + h(c0, k + 1) = (k − 1)p + kp + f(c0) + g(c0)

= (2k − 1)p + 1 + (
t

2
+ 1 +

t
∑

k=2
k is even

nk)

= (2k − 1)p +
p + 1

2
+ 1.

For edge (ci, k)(ci, k + 1) when i = 2, 4, ..., t,

h(ci, k) + h(ci, k) = (2k − 1)p + f(ci) + g(ci)

= (2k − 1)p + (
i

2
+ 1 +

i−1
∑

k=1
k is odd

nk) + (
i + t

2
+ 1

t
∑

k=2
k is even

nk +
i−1
∑

k=1
k is odd

nk)

= (2k − 1)p +
p + 1

2
+ i + 1 + 2

i−1
∑

k=1
k is odd

nk.

For edge (x1j, k)(x1j, k + 1),

h(x1j, k) + h(x1j, k) = (2k − 1)p + f(x1j) + g(x1j)

= (2k − 1)p + (j + 1) + (
t

2
+ 1 + j +

t
∑

k=2
k is even

nk)

= (2k − 1)p +
p + 1

2
+ 2j + 1.

For edge (xij, 1)(xij, 2) when i = 3, 5, ..., t − 1,

h(xij, 1) + h(xij, 2) = (2k − 1)p + f(xij) + g(xij)

= (2k − 1)p + (
i + 1

2
+ j +

i−2
∑

k=1
k is odd

nk)

+ (
i + t − 1

2
+ j +

t
∑

k=2
k is even

nk +
i−2
∑

k=1
k is odd

nk)

= (2k − 1)p +
p + 1

2
+ i + 2

i−2
∑

k=1
k is odd

nk + 2j.
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Note that, for any i is even,

h(ci, k) + h(ci, k + 1) = h(x(i+1)1, k) + h(x(i+1)1, k + 1) − 2,

h(x(i−1)ni−1
, k) + h(x(i−1)ni−1

, k + 1) = h(ci, k) + h(ci, k + 1) − 2,

h(x(i+1)j, k) + h(x(i+1)j, k + 1) = h(x(i+1)(j+1), k) + h(x(i+1)(j+1), k + 1) − 2.

For edge (c1, k)(c1, k + 1),

h(c1, k) + h(c1, k + 1) = (2k − 1)p + f(c1) + g(c1)

= (2k − 1)p + (
t

2
+ 2 +

t−1
∑

k=1
k is odd

nk) + 1

= (2k − 1)p +
p + 1

2
+ 2.

For edge (ci, k)(ci, k + 1) when i = 3, 5, ..., t − 1,

h(ci, k) + h(ci, k + 1) = (2k − 1)p + f(ci) + g(ci)

= (2k − 1)p + (
i + t + 1

2
+ 1 +

t−1
∑

k=1
k is odd

nk +
i−1
∑

k=2
k is even

nk)

+ (
i + 1

2
+

i−1
∑

k=2
k is even

nk)

= (2k − 1)p +
p + 1

2
+ i + 1 + 2

i−1
∑

k=2
k is even

nk.

For edge (x2j, k)(x2j, k + 1),

h(x1j, k) + h(x1j, k + 1) = (2k − 1)p + f(x2j) + g(x2j)

= (2k − 1)p + (
t

2
+ 2 + j +

t−1
∑

k=1
k is odd

nk) + (j + 1)

= (2k − 1)p +
p + 1

2
+ 2j + 2.
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For edge (xij, k)(xij, k + 1) when i = 4, 6, ..., t,

h(xij, k) + h(xij, k + 1) = (2k − 1)p + f(xij) + g(xij)

= (2k − 1)p + (
i + t

2
+ j + 1 +

t−1
∑

k=1
k is odd

nk +
i−2
∑

k=2
k is even

nk)

+ (
i

2
+ j +

i−2
∑

k=2
k is even

nk)

= (2k − 1)p +
p + 1

2
+ i + 2

i−2
∑

k=2
k is even

nk + 2j.

Note that, for any i is odd,

h(ci, k) + h(ci, k + 1) = h(x(i+1)1, k) + h(x(i+1)1, k + 1) − 2,

h(x(i−1)ni−1
, k) + h(x(i−1)ni−1

, k + 1) = h(ci, k) + h(ci, k + 1) − 2,

h(x(i+1)j, k) + h(x(i+1)j, k + 1) = h(x(i+1)(j+1), k) + h(x(i+1)(j+1), k + 1) − 2.

Thus

{h(ci, k) + h(ci, k + 1) : i is even} ∪
t−1
⋃

i=1
i is odd

{h(xij, k) + h(xij, k + 1) : j = 1, 2, ..., ni}

={
p + 1

2
+ (2k − 1)p + 1,

p + 1

2
+ (2k − 1)p + 3, ...,

p + 1

2
+ 2kp}

and

{h(ci, k) + h(ci, k + 1) : i is odd} ∪
t

⋃

i=2
i is even

{h(xij, k) + h(xij, k + 1) : j = 1, 2, ..., ni}

={
p + 1

2
+ (2k − 1)p + 2,

p + 1

2
+ (2k − 1)p + 4, ...,

p + 1

2
+ 2kp − 1}.

Hence {h(u, k)+h(u, k+1) : (u, k)(u, k+1) ∈ V (H)} = {p+1
2

+(2k−1)p+1, p+1
2

+

(2k − 1)p + 2, ..., p+1
2

+ 2kp}
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We note that

S ={h(u) + h(v) : uv ∈ E(H)}

=
n

⋃

k=1

{h(u, k) + h(v, k) : (u, k)(v, k) ∈ V (H)}∪

n−1
⋃

k=1

{h(u, k) + h(u, k + 1) : (u, k)(v, k + 1) ∈ V (H)}

and

n
⋃

k=1

{h(u, k) + h(v, k) : (u, k)(v, k) ∈ V (H)}

=
n

⋃

k=1

{
p + 1

2
+ (2k − 2)p + 1,

p + 1

2
+ (2k − 2)p + 2, ...,

p + 1

2
+ (2k − 1)p}

={
p + 1

2
+ 1,

p + 1

2
+ 2, ...,

p + 1

2
+ p}∪

{
p + 1

2
+ 2p + 1,

p + 1

2
+ 2p + 2, ...,

p + 1

2
+ 3p} ∪ · · · ∪

{
p + 1

2
+ (2n − 2)p + 1,

p + 1

2
+ (2n − 2)p + 2, ...,

p + 1

2
+ (2n − 1)p}

and

n−1
⋃

k=1

{h(u, k) + h(u, k + 1) : (u, k)(v, k + 1) ∈ V (H)}

=
n−1
⋃

k=1

{
p + 1

2
+ (2k − 1)p + 1,

p + 1

2
+ (2k − 1)p + 2, ...,

p + 1

2
+ 2kp}

={
p + 1

2
+ p + 1,

p + 1

2
+ p + 2, ...,

p + 1

2
+ 2p}∪

{
p + 1

2
+ 3p + 1,

p + 1

2
+ 3p + 2, ...,

p + 1

2
+ 4p} ∪ · · · ∪

{
p + 1

2
+ (2n − 3)p + 1,

p + 1

2
+ (2n − 3)p + 2, ...,

p + 1

2
+ (2n − 2)p}.

Then S = {p+1
2

+ 1, p+1
2

+ 2, ..., p+1
2

+ (2n − 1)p} is a set of 2np − p consecutive

integers. From Theorem 2.1.1, h extends to a super edge-magic labeling of H.
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Figure 2.22: A super edge-magic labeling of SF0,1,2,2,1 × P4 with magic constant

128.



CHAPTER III

CREATING NEW SUPER EDGE-MAGIC GRAPHS

FROM OLD ONES

Some algorithms to construct new super edge-magic graphs from the old ones

done by Sudarsana, Baskoro, Ismaimuza and Assiyatun are given in Theorem 3.1,

3.3 and 3.5. Examples of these algorithms are shown in Example 3.2, 3.4 and 3.6.

Then we give a generalization of these algorithms in Theorem 3.7.

Theorem 3.1. [9] Let a (p, q)-graph G be super edge-magic with magic constant

k and k ≥ 2p + 2. If n is odd and n = 6p + 5 − 2k then the new graph, formed

from G and path Pn by joining all vertices of Pn to a vertex x0 of G labeled by

k − 2p − 1, is super edge-magic with magic constant k + 3n − 1.

Example 3.2. Let G be a graph in figure 3.1(left) which is super edge-magic with

magic constant 16. Let x0 be the vertex labeled by 3, the new graph, formed from

G and path P9 by joining all vertices of P9 to vertex x0 of G, is super edge-magic

with magic constant 42 as shown in figure 3.1(right).



43

Figure 3.1: The new graph, formed from a super edge-magic graph G with magic

constant 16 and path P9, is super edge-magic with magic constant 42.

Theorem 3.3. [9] Let a (p, q)-graph G be super edge-magic with magic constant

k and k ≥ 2p + 2. If n is even and n = 6p + 4 − 2k then the new graph, formed

from G and path Pn by joining all vertices of Pn to a vertex x0 of G labeled by

k − 2p − 1, is super edge-magic with magic constant k + 3n − 1.

Example 3.4. Let G be a graph in figure 3.2(left) which is super edge-magic with

magic constant 16. Let x0 be the vertex labeled by 3, the new graph, formed from

G and path P8 by joining all vertices of P8 to vertex x0 of G, is super edge-magic

with magic constant 39 as shown in figure 3.2(right).
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Figure 3.2: The new graph, formed from a super edge-magic graph G with magic

constant 16 and path P8, is super edge-magic with magic constant 39.

Theorem 3.5. [9] Let a (p, q)-graph G be super edge-magic with magic constant

k and k ≥ 2p + 2. If n = 3p + 2− k then the new graph, formed from G and star

K1,n by joining all vertices of K1,n to a vertex x0 of G labeled by k − 2p − 1, is

super edge-magic with magic constant k = k + 3n + 2.

Example 3.6. Let G be a graph in figure 3.3(left) which is super edge-magic

with magic constant 16. Let x0 be the vertex labeled by 3, the new graph, formed

from G and a star K1,4 by joining all vertices of K1,4 to vertex x0 of G, is super

edge-magic with the magic constant 30 as shown in figure 3.3(right).
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Figure 3.3: The new graph, formed from a super edge-magic graph G with magic

constant 16 and a star K1,4, is super edge-magic with magic constant 30.

We present a generalization of the above algorithms to construct the super

edge-magic graph from the old ones.

Theorem 3.7. Let G1 and G2 be super edge-magic (p1, q1)-graph and (p2, q2)-

graph with magic constants k1 and k2, respectively. If k1 ≥ 2p1 +2 and k1 −3p1 =

k2 − 2p2 − q2, then the new graph, formed from G1 and G2 by joining all vertices

of G2 to a vertex x0 of G1 labeled by k1 − 2p1 − 1, is super edge-magic with magic

constant k1 + 2p2 + q2.

Proof. Since G1 and G2 are super edge-magic, By Theorem 2.1.1, there exist super

edge-magic labelings λ1 on G1 and λ2 on G2 such that

{λ1(u)+λ1(v) : uv ∈ E(G1)} = {k1−(p1+q1), k1−(p1+q1−1),. . . , k1−(p1+1)},

{λ2(u)+λ2(v) : uv ∈ E(G2)} = {k2−(p2+q2), k2−(p2+q2−1),. . . , k2−(p2+1)},

respectively.

Let x0 be the vertex of G1 labeled by k1 − 2p1 − 1 and G be the new graph ,

formed from G1 and G2 by joining all vertices of G2 to vertex x0.
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Define a vertex labeling λ : V (G)→ {1, 2,. . ., p1 + p2} by

λ(u) =















λ1(u), if u ∈ V (G1);

p1 + λ2(u), if u ∈ V (G2).

Since {λ(u) : u ∈ V (G)} = {λ(u) : u ∈ V (G1)} ∪ {λ(u) : u ∈ V (G2)}

and {λ(u) : u ∈ V (G1)} = {λ1(u) : u ∈ V (G1)} = {1, 2, ..., p1}

and {λ(u) : u ∈ V (G2)} = {p1 + λ2(u) : u ∈ V (G2)} = {p1 + 1, p1 + 2, ..., p1 + p2},

{λ(u) : u ∈ V (G)} = {1, 2, ..., p1 + p2}.

Consider

{λ(u) + λ(v) : uv ∈ E(G)} ={λ(u) + λ(v) : uv ∈ E(G1)} ∪ {λ(x0) + λ(v) : v ∈ V (G2)}

∪ {λ(u) + λ(v) : uv ∈ E(G2)}

={λ1(u) + λ1(v) : uv ∈ E(G1)} ∪ {λ1(x0) + λ2(v) : v ∈ V (G2)}

∪ {2p1 + λ2(u) + λ2(v) : uv ∈ E(G2)}.

Note that, for all v ∈ V (G2),

λ1(x0) + λ2(v) = (k1 − 2p1 − 1) + (p1 + λ2(v)) = k1 − p1 + λ2(v) − 1.

Since 1 ≤ λ2(v) ≤ p2 for all v ∈ V (G2) ,

{λ1(x0) + λ2(v) : v ∈ V (G2)} = {k1 − p1, k1 − p1 + 1, . . . , k1 − p1 + p2 − 1}.

Since k1 − 3p1 = k2 − 2p2 − q2, we have 2p1 + k2 − (p2 + q2) = k1 − p1 + p2,

{2p1 + λ2(u) + λ2(v) : uv ∈ E(G2)}

={2p1 + k2 − (p2 + q2), 2p1 + k2 − (p2 + q2 − 1), . . . , 2p1 + k2 − (p2 + 1)}

={k1 − p1 + p2, k1 − p1 + p2 + 1, . . . , k1 − p1 + p2 + q2 − 1}.

Hence {λ(u)+λ(v) : uv ∈ E(G)} = {k1−(p1+q1), k1−(p1+q1−1), . . . , k1−(p1+1)}

∪{k1−p1, k1−p1 +1, . . . , k1−p1 +p2−1}∪{k1−p1 +p2, k1−p1 +p2 +1, . . . , k1−

p1 + p2 + q2 − 1} which is the set of q1 + q2 + p2 consecutive integers. Then G is
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super edge-magic with magic constant (p1 +p2)+(q1 +q2 +p2)+(k1− (p1 +q1)) =

k1 + 2p2 + q2.

Example 3.8. Let G1 and G2 be graphs in figure 3.4(left) which are super edge-

magic with magic constant 16 and 33, respectively. Let x0 be the vertex labeled

by 3 in G1, the new graph, formed from G1 and G2 by joining all vertices of G2

to vertex x0 of G1, is super edge-magic with magic constant 51 as shown in figure

3.4(right).

Figure 3.4: The new graph, formed from a super edge-magic graph G1 with magic

constant 16 and G2 with magic constant 33, is super edge-magic with magic

constant 51.

Corollary 3.9. Let a (p, q)-graph G be a super edge-magic with magic constant

k and k ≥ 2p + 2. If n is odd and n = 6p + 3 − 2k then the new graph, formed

from G and cycle Cn by joining all vertices of Cn to a vertex x0 of G labeled by

k − 2p − 1, is super edge-magic with the magic constant k + 3n.
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Proof. It is known that [2] every odd cycle Cn is super edge-magic with magic

constant 5n+3
2

. Let p′, q′, k′ be number of vertices, number of edges and magic

constant of Cn, respectively. Thus k′ = 5n+3
2

= 5(6p+3−2k)+3
2

= 15p + 9− 5k. Then

k′−2p′−q′ = (15p+9−5k)−2(6p+3−2k)−(6p+3−2k) = k−3p. By Theorem

3.7, the new graph, formed from G and cycle Cn by joining all vertices of Cn to a

vertex x0, is super edge-magic with magic constant k + 2p′ + q′ = k + 3n.

Example 3.10. Let G be a graph in figure 3.5(left) is super edge-magic with

magic constant 16. Let x0 be the vertex labeled by 3, the new graph, formed

from G and a cycle C7 by joining all vertices of C7 to vertex x0 of G, is super

edge-magic with the magic constant 37 as shown in figure 3.5(right).

Figure 3.5: The new graph, formed from a super edge-magic graph G with magic

constant 16 and a cycle C7, is super edge-magic with magic constant 37.



CHAPTER IV

SUPER EDGE-MAGIC DEFICIENCY OF SOME

GRAPHS

Our purpose in this chapter is to investigate bounds for the super edge-magic

deficiency of some graphs.

Definition 4.1. The super edge-magic deficiency µs(G) of a graph G is the small-

est nonnegative integer n with the property that the graph G ∪ nK1 is super

edge-magic or +∞ if there exists no such integer n.

Example 4.2. Since cycle C4 is not super edge-magic and C4 ∪K1 is super edge-

magic, then µs(G) = 1.

Figure 4.1: C4 ∪ K1 is super edge-magic with magic constant 14.

Figuaroa-Centeno, Ichishima and Muntaner-Batle showed the following theo-

rem.

Theorem 4.3. [5] If G is a graph with even degree and q edges, where q

2
is odd,

then µs(G) = +∞.
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We investigate a lower bound for the super edge-magic deficiency of the join

of cycle Cn and m isolated vertices.

Theorem 4.4. For all integers m ≥ 1 and n ≥ 3,

µs(mK1 ∨ Cn) ≥
(m − 1)(n − 2) + 1

2
.

Proof. Let G be the join of m copies of K1 and n-cycle Cn with

|V (G)| = m + n and |E(G)| = n + mn.

Thus

|E(G)| = mn + n = m(n − 2 + 2) + n = m(n − 2) + 2m + n

≥ (n − 2) + 2m + n > 2m + 2n − 3 = 2(m + n) − 3 = 2|V (G)| − 3.

By Theorem 2.1.3, G is not super edge-magic.

Let k be a positive integer such that G ∪ kK1 is super edge-magic.

By Theorem 2.1.3, |E(G ∪ kK1)| ≤ 2|V (G ∪ kK1)| − 3.

Thus mn + n ≤ 2(m + n + k) − 3, then k ≥
(m − 1)(n − 2) + 1

2
.

Hence µs(G) ≥
(m − 1)(n − 2) + 1

2
.

We investigate an upper bound for the super edge-magic deficiency of the join

of odd cycle Cn and m isolated vertices.

Theorem 4.5. For all positive integers m,n and n is odd,

µs(mK1 ∨ Cn) ≤
(2m − 1)(n − 1)

2
.

Proof. Let s = (2m−1)(n−1)
2

and G ∼= (mK1 ∨ Cn) ∪ sK1 be the graph with

V (G) = {xi : 1 ≤ i ≤ n} ∪ {yj : 1 ≤ j ≤ m} ∪ {wk : 1 ≤ k ≤ s} and

E(G) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xnx1} ∪ {yjxi : 1 ≤ j ≤ m, 1 ≤ i ≤ n}.
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Define a vertex labeling f : V (G) → {1, 2, . . . ,m + n + s} by

f(u) =































i + 1

2
, if u = xi, i is odd;

n + 1 + i

2
, if u = xi, i is even;

3n + 1

2
+ (j − 1)n, if u = yj.

and

{f(wk) : k = 1, 2, ..., s} ={n + 1, n + 2, ...,
3n − 1

2
} ∪ {

3n + 3

2
,
3n + 5

2
, . . . ,

5n − 1

2
}∪

{
5n + 3

2
,
5n + 5

2
, . . . ,

7n − 1

2
} ∪ {

7n + 3

2
,
7n + 5

2
, . . . ,

9n − 1

2
}

∪ · · · ∪ {
2mn − n + 3

2
,
2mn − n + 5

2
, . . . ,

2mn + n − 1

2
}

={n + 1, n + 2, ...,
3n − 1

2
} ∪

m
⋃

a=2

(
n

⋃

b=2

{
(2a − 1)n + (2b − 1)

2
}).

Figure 4.2: A vertex labeling of (mK1 ∨ Cn) ∪ sK1.
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In order to show that f extends to a super edge-magic labeling of G, it suffices

to verify by Theorem 2.1.1:

a) f(V (G)) = {1, 2, 3, . . . ,m + n + s}

b) S = {f(x) + f(y) : xy ∈ E(G)} consists of mn + n consecutive integers.

To show that f(V (G)) = {1, 2, 3, . . . ,m + n + s}, we consider the labels of

vertices as follows:

Vertices x1, x3, x5..., xn are labeled by numbers 1, 2, 3, ..., n+1
2

, respectively and

x2, x4, x6..., xn−1 are labeled by numbers n+3
2

, n+5
2

, n+7
2

, ..., n, respectively and y1, y2, y3, ..., ym

are labeled by numbers 3n+1
2

, 5n+1
2

, 7n+1
2

, ..., 2mn+n+1
2

, respectively and w1, w2, ..., ws

are labeled by remaining numbers. Hence f(V (G)) = {1, 2, 3, . . . ,m + n + s}.

To show that S consists of mn+n consecutive integers, we consider f(x)+f(y)

for all edges xy in G.

For edge xnx1, f(xn) + f(x1) =
n + 1

2
+ 1 =

n + 3

2
.

For edge xixi+1 :i = 1, 3, 5, . . . , n − 2,

f(xi) + f(xi+1) =
i + 1

2
+

n + i + 2

2
=

n + 3 + 2i

2
.

For edge xixi+1 :i = 2, 4, 6, . . . , n − 1,

f(xi) + f(xi+1) =
n + i + 1

2
+

i + 2

2
=

n + 3 + 2i

2
.

For edge yjxi :i = 1, 3, 5, . . . , n, j = 1, 2, ...,m,

f(yj) + f(xi) =
3n + 1

2
+ (j − 1)n +

i + 1

2
=

(2j + 1)n + i + 2

2
.

For edge yjxi :i = 2, 4, 6, . . . , n − 1, j = 1, 2, ...,m,

f(yj) + f(xi) =
3n + 1

2
+ (j − 1)n +

n + 1 + i

2
=

(2j + 2)n + i + 2

2
.

We note that

S ={f(x) + f(y) : xy ∈ E(G)}

={f(xn) + f(x1)} ∪ {f(xi) + f(xi+1) : i = 1, 2, ..., n − 1}∪

m
⋃

j=1

{f(yj) + f(xi) : i = 1, 3, ..., n} ∪
m
⋃

j=1

{f(yj) + f(xi) : i = 2, 4, ..., n − 1}
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and

{f(xn) + f(x1)} ={
n + 3

2
}

{f(xi) + f(xi+1) : i = 1, 2, ..., n − 1} ={
n + 5

2
,
n + 7

2
,
n + 9

2
, ...,

3n + 1

2
}

m
⋃

j=1

{f(yj) + f(xi) : i = 1, 3, ..., n} ={
3n + 3

2
,
3n + 5

2
, ...,

4n + 2

2
}∪

{
5n + 3

2
,
5n + 5

2
, ...,

6n + 2

2
} ∪ · · · ∪

{
2mn + n + 3

2
,
2mn + n + 5

2
, ...,

2mn + 2n + 2

2
}

m
⋃

j=1

{f(yj) + f(xi) : i = 2, 4, ..., n − 1} ={
4n + 4

2
,
4n + 6

2
, ...,

5n + 1

2
}∪

{
6n + 4

2
,
6n + 6

2
, ...,

7n + 1

2
} ∪ · · · ∪

{
2mn + 2n + 4

2
,
2mn + 2n + 6

2
, ...,

2mn + 3n + 1

2
}.

Then S = {
n + 3

2
,
n + 5

2
,
n + 7

2
, . . . ,

2mn + 3n + 1

2
} is a set of mn+n consecutive

integers. By Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Therefore µs(mK1 ∨ Cn) ≤
(2m − 1)(n − 1)

2
when n is odd.

Example 4.6. 6 ≤ µs(3K1 ∨ C7) ≤ 15.

Figure 4.3: A vertex labeling of (3K1 ∨ C7) ∪ 15K1.
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We investigate the super edge-magic deficiency of the join of specific even cycle

Cn and m isolated vertices.

Theorem 4.7. For all positive integers m,n and m,n ≡ 2 (mod 4),

µs(mK1 ∨ Cn) = +∞.

Proof. Let m = 4s + 2 and n = 4t + 2 for some positive integers s, t.

Then

|E(mK1 ∨ Cn)| = mn + n

= (4s + 2)(4t + 2) + (4t + 2)

= 4(4st + 2s + 3t) + 6.

Since mK1 ∨ Cn is graph with even graph degree and
|E(mK1 ∨ Cn)|

2
= 2(4st +

2s + 3t) + 3 is odd, by Theorem 4.3, µs(mK1 ∨ Cn) = +∞.

We investigate a lower bound for the super edge-magic deficiency of the join

of path Pn and m isolated vertices.

Theorem 4.8. For all integers m ≥ 2 and n ≥ 3,

µs(mK1 ∨ Pn) ≥
(m − 1)(n − 2)

2
.

Proof. Let G be the join of m copies of K1 and path Pn with

|V (G)| = m + n and |E(G)| = mn + n − 1.

Thus

|E(G)| = mn + n − 1 = m(n − 2 + 2) + n − 1 = m(n − 2) + 2m + n − 1

> (n − 2) + 2m + n − 1 = 2m + 2n − 3 = 2(m + n) − 3 = 2|V (G)| − 3.

By Theorem 2.1.3, G is not super edge-magic.

Let k be a positive integer such that G ∪ kK1 is super edge-magic.
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By Theorem 2.1.3, |E(G ∪ kK1)| ≤ 2|V (G ∪ kK1)| − 3.

Thus mn + n − 1 ≤ 2(m + n + k) − 3, then k ≥
(m − 1)(n − 2)

2
.

Hence µs(G) ≥
(m − 1)(n − 2)

2
.

We investigate an upper bound for the super edge-magic deficiency of the join

of path Pn and m isolated vertices.

Theorem 4.9. For all positive integers m,n

µs(mK1 ∨ Pn) ≤















(2m − 1)(n − 1)

2
, if n is odd;

(2m − 1)(n − 1) − 1

2
, if n is even.

Proof. Let

s =















(2m − 1)(n − 1)

2
, if n is odd;

(2m − 1)(n − 1) − 1

2
, if n is even.

and G ∼= (mK1 ∨ Pn) ∪ sK1 be the graph with

V (G) = {xi : 1 ≤ i ≤ n} ∪ {yj : 1 ≤ j ≤ m} ∪ {wk : 1 ≤ k ≤ s} and

E(G) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {x1xn : 1} ∪ {yjxi : 1 ≤ j ≤ m, 1 ≤ i ≤ n}.
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Case 1. n is odd.

Define a vertex labeling f : V (G) → {1, 2, . . . m + n + s} by

f(u) =































i + 1

2
, if u = xi, i is odd;

n + 1 + i

2
, if u = xi, i is even;

3n + 1

2
+ (j − 1)n, if u = yj.

and

{f(wk) : k = 1, 2, ..., s} ={n + 1, n + 2, ...,
3n − 1

2
} ∪ {

3n + 3

2
,
3n + 5

2
, . . . ,

5n − 1

2
}∪

{
5n + 3

2
,
5n + 5

2
, . . . ,

7n − 1

2
} ∪ {

7n + 3

2
,
7n + 5

2
, . . . ,

9n − 1

2
}

∪ · · · ∪ {
2mn − n + 3

2
,
2mn − n + 5

2
, . . . ,

2mn + n − 1

2
}

={n + 1, n + 2, ...,
3n − 1

2
} ∪

m
⋃

a=2

(
n

⋃

b=2

{
(2a − 1)n + (2b − 1)

2
}).

Figure 4.4: A vertex labeling of (mK1 ∨ Pn) ∪ sK1 when n is odd.

In order to show that f extends to a super edge-magic labeling of G, it suffices

to verify by Theorem 2.1.1:

a) f(V (G)) = {1, 2, 3, . . . ,m + n + s}

b) S = {f(x) + f(y) : xy ∈ E(G)} consists of mn + n − 1 consecutive integers.

It can be verified that f(V (G)) = {1, 2, 3, . . . ,m + n + s}.



57

To show that S consists of mn + n − 1 consecutive integers, we consider

f(x) + f(y) for all edges xy in G.

For edge xixi+1 :i = 1, 3, 5, . . . , n − 2,

f(xi) + f(xi+1) =
i + 1

2
+

n + i + 2

2
=

n + 3 + 2i

2
.

For edge xixi+1 :i = 2, 4, 6, . . . , n − 1,

f(xi) + f(xi+1) =
n + i + 1

2
+

i + 2

2
=

n + 3 + 2i

2
.

For edge yjxi :i = 1, 3, 5, . . . , n, j = 1, 2, ...,m,

f(yj) + f(xi) =
3n + 1

2
+ (j − 1)n +

i + 1

2
=

(2j + 1)n + i + 2

2
.

For edge yjxi :i = 2, 4, 6, . . . , n − 1, j = 1, 2, ...,m,

f(yj) + f(xi) =
3n + 1

2
+ (j − 1)n +

n + 1 + i

2
=

(2j + 2)n + i + 2

2
.

We note that

S ={f(x) + f(y) : xy ∈ G}

={f(xi) + f(xi+1) : i = 1, 2, ..., n − 1} ∪
m
⋃

j=1

{f(yj) + f(xi) : i = 1, 3, ..., n}∪

m
⋃

j=1

{f(yj) + f(xi) : i = 2, 4, ..., n − 1}

and

{f(xi) + f(xi+1) : i = 1, 2, ..., n − 1} ={
n + 5

2
,
n + 7

2
, ...,

3n + 1

2
}

m
⋃

j=1

{f(yj) + f(xi) : i = 1, 3, ..., n} ={
3n + 3

2
,
3n + 5

2
, ...,

4n + 2

2
}∪

{
5n + 3

2
,
5n + 5

2
, ...,

6n + 2

2
} ∪ · · · ∪

{
2mn + n + 3

2
,
2mn + n + 5

2
, ...,

2mn + 2n + 2

2
}

m
⋃

j=1

{f(yj) + f(xi) : i = 2, 4, ..., n − 1} ={
4n + 4

2
,
4n + 6

2
, ...,

5n + 1

2
}∪

{
6n + 4

2
,
6n + 6

2
, ...,

7n + 1

2
} ∪ · · · ∪

{
2mn + 2n + 4

2
,
2mn + 2n + 6

2
, ...,

2mn + 3n + 1

2
}.
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Then S = {
n + 5

2
,
n + 7

2
,
n + 9

2
, . . .

2mn + 3n + 1

2
} is a set of mn + n− 1 consec-

utive integers. By Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Therefore µs(mK1 ∨ Pn) ≤
(2m − 1)(n − 1)

2
when n is odd.

Case 2. n is even.

Define a vertex labeling g : V (G) → {1, 2, . . . m + n + s} by

g(u) =































i+1
2

, if u = xi, i is odd;

n+i
2

, if u = xi, i is even;

3n
2

+ (j − 1)n, if u = yj.

and

{g(wk) : k = 1, 2, ..., s} ={n + 1, n + 2, ...,
3n − 1

2
} ∪ {

3n + 2

2
,
3n + 4

2
, . . . ,

5n − 2

2
}∪

{
5n + 2

2
,
5n + 4

2
, . . . ,

7n − 2

2
} ∪ {

7n + 2

2
,
7n + 4

2
, . . . ,

9n − 2

2
}

∪ · · · ∪ {
2mn − n + 2

2
,
2mn − n + 4

2
, . . . ,

2mn + n − 2

2
}

={n + 1, n + 2, ...,
3n − 2

2
} ∪

m
⋃

a=2

(
n

⋃

b=2

{
(2a − 1)n + (2b − 2)

2
}).

Figure 4.5: A vertex labeling of (mK1 ∨ Pn) ∪ sK1 when n is even.

Similarly, we can verify that g(V (G)) = {1, 2, 3, . . . ,m + n + s} and

{g(x) + g(y) : xy ∈ G} = {
n + 4

2
,
n + 6

2
,
n + 8

2
, . . . ,

2mn + 3n

2
} is a set of
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mn + n − 1 consecutive integers. By Theorem 2.1.1, g extends to a super edge-

magic labeling of G. Therefore µs(mK1 ∨ Pn) ≤
(2m − 1)(n − 1) − 1

2
when n is

even.

Example 4.10. 8 ≤ µs(4K1 ∨ P7) ≤ 21.

Figure 4.6: A vertex labeling of (4K1 ∨ P7) ∪ 21K1.

Example 4.11. 6 ≤ µs(4K1 ∨ P6) ≤ 17.

Figure 4.7: A vertex labeling of (4K1 ∨ P6) ∪ 17K1.

We investigate a lower bound and an upper bound for the super edge-magic

deficiency of a specific tripartite graph.
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Theorem 4.12. For all integers m,n and m,n ≥ 2,

µs(Km,n,1) ≥
(m − 1)(n − 1)

2
.

Proof. Let G be the tripartite graph Km,n,1 with

|V (G)| = m + n + 1 and |E(G)| = mn + m + n.

Thus

|E(G)| = mn + m + n = [(m − 1)(n − 1) + m + n − 1] + m + n

= (m − 1)(n − 1) + 2m + 2n − 1 > 2m + 2n − 1 = 2(m + n + 1) − 3

= 2|V (G)| − 3.

By Theorem 2.1.3, G is not super edge-magic.

Let k be a positive integer such that G ∪ kK1 is super edge-magic.

By Theorem 2.1.3, |E(G ∪ kK1)| ≤ 2|V (G ∪ kK1)| − 3.

Thus mn + m + n ≤ 2(m + n + 1 + k) − 3, then k ≥
(m − 1)(n − 1)

2
.

Hence µs(G) ≥
(m − 1)(n − 1)

2
.

Theorem 4.13. For all positive integers m,n and m ≥ n,

µs(Km,n,1) ≤ m(n − 1).

Proof. Let s = m(n − 1) and G ∼= Km,n,1 ∪ sK1 be the graph with

V (G) = {xi : 1 ≤ i ≤ m} ∪ {yj : 1 ≤ j ≤ n} ∪ {z} ∪ {wk : 1 ≤ k ≤ s} and

E(G) = {xiyj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {zxi : 1 ≤ i ≤ m} ∪ {zyj : 1 ≤ j ≤ n}.
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Define a vertex labeling f : V (G) → {1, 2, . . . mn + n + 1} by

f(u) =































i + 1, if u = xi;

(m + 1)j + 1, if u = yj;

1, if u = z.

and

{f(wk) : k = 1, 2, ..., s} ={m + 3,m + 4, ..., 2m + 2} ∪ {2m + 4, 2m + 5, . . . , 3m + 3}

∪ · · · ∪ {mn − n + m + 1,mn − n + m + 2, . . . ,mn + n}

=
n−1
⋃

a=1

(
m
⋃

b=1

{am + (a + 1) + b}).

Figure 4.8: A vertex labeling of Km,n,1 ∪ sK1.



62

In order to show that f extends to a super edge-magic labeling of G, it suffices

to verify by Theorem 2.1.1:

a) f(V (G)) = {1, 2, 3, . . . ,mn + n + 1}

b) S = {f(x) + f(y) : xy ∈ E(G)} consists of mn + n + m consecutive integers.

To show that f(V (G)) = {1, 2, 3, . . . ,mn + n + 1}, we consider the labels of

vertices as follows:

Vertex z is labeled by numbers 1 and x1, x2, x3, ..., xm are labeled by numbers

2, 3, 4, ...,m + 1, respectively and y1, y2, y3, ..., yn are labeled by numbers m +

2, 2m + 3, 3m + 4, ...,mn + n + 1, respectively and w1, w2, ..., ws are labeled by

remaining numbers. Hence f(V (G)) = {1, 2, 3, . . . ,mn + n + 1}.

To show that S consists of mn + n + m consecutive integers, we consider

f(x) + f(y) for all edges xy in G.

For edge zxi :i = 1, 2, 3, . . . ,m,

f(z) + f(xi) = 1 + (i + 1) = i + 2.

For edge zyj :i = 1, 2, 3, . . . , n,

f(z) + f(yj) = 1 + (m + 1)j + 1 = (m + 1)j + 2.

For edge xiyj :i = 1, 2, 3, . . . ,m, j = 1, 2, ..., n,

f(xi) + f(yj) = (i + 1) + (m + 1)j + 1 = (m + 1)j + i + 2.

We note that

S ={f(x) + f(y) : xy ∈ E(G)}

={f(z) + f(xi) : i = 1, 2, ...,m} ∪ {f(z) + f(yj) : j = 1, 2, ...,m}∪

n
⋃

j=1

{f(xi) + f(yj) : i = 1, 2, ...,m}
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and

{f(z) + f(xi)} ={3, 4, 5, ...,m + 2}

{f(z) + f(yj) : i = 1, 2, ...,m} ={m + 3, 2m + 4, 3m + 5, ...,mn + n + 2}

n
⋃

j=1

{f(xi) + f(yj) : i = 1, 2, ...,m} ={m + 4,m + 5, ..., 2m + 3}∪

{2m + 5, 2m + 6, ..., 3m + 4} ∪ · · · ∪

{mn + n + 3,mn + n + 4, ...,mn + n + m + 2}.

Then S = {3, 4, 5, . . . ,mn+n+m+2} is a set of mn+n+m consecutive integers.

By Theorem 2.1.1, f extends to a super edge-magic labeling of G.

Therefore µs(Km,n,1) ≤ m(n − 1).

Example 4.14. 1 ≤ µs(K3,2,1) ≤ 3.

Figure 4.9: A vertex labeling of K3,2,1 ∪ 3K1.



CHAPTER V

SUPER EDGE-MAGIC REDUNDENCY OF SOME

GRAPHS

In contrast with the super edge-magic deficiency of a graph, we define the

super edge-magic redundency of a graph as follows.

Definition 5.1. The super edge-magic redundency of a graph G, ηs(G), is the

smallest number of edges which are removed from the graph G and the remaining

graph is super edge-magic.

Example 5.2. Since cycle C4 is not super edge-magic, ηs(G) ≥ 1. Deleting one

edge from C4, the resulting graph is path P3 which is super edge-magic. Then

ηs(G) = 1.

Figure 5.1: Path P3 is a super edge-magic subgraph of cycle C4 with magic con-

stant 11.

Theorem 5.3. Let G be a (p, q)-graph. If G contains a super edge-magic spanning

subgraph (p, 2p − 3)-graph, then ηs(G) = q − 2p + 3.
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Proof. Let H be the super edge-magic spanning subgraph with p vertices and

2p − 3 edges. Since E(H) = 2p − 3, by Theorem 2.1.3, there is no super edge-

magic subgraph in G which contains H. Hence ηs(G) = q − 2p + 3.

Corollary 5.4. Let G be a (p, q)-graph. If G contains the square of path Pp, then

ηs(G) = q − 2p + 3.

Proof. Since |E(P 2
p )| = (p − 1) + (p − 2) = 2p − 3, by Theorem 5.3, ηs(G) =

q − 2p + 3.

Theorem 5.5. Let G be a (p, q)-graph. If G has a Hamiltonian path, then

ηs(G) 6 q − p + 1.

Proof. Let P be Hamiltonian path of G. Since P is a path of p vertices and a

path is always super edge-magic, P is super edge-magic subgraph of G. Hence

ηs(G) 6 q − p + 1.

Theorem 5.6. Let G be a (p, q)-graph. If G is Hamiltonian and p is odd,

then ηs(G) 6 q − p.

Proof. Since a Hamiltonian cycle in G is a cycle of length p, it is a super edge-

magic subgraph of G. Thus ηs(G) 6 q − p.

Theorem 5.7. [4] If G is a super edge-magic bipartite or tripartite graph and m

is odd, then mG is super edge-magic.

Theorem 5.8. If a (p,q)-graph G is bipartite or tripartite graph and ηs(G) = k

for some positive integer k, then ηs(mG) ≤ mk for m is odd.

Proof. Since ηs(G) = k, G contains a super edge-magic spanning subgraph H

with p vertices and q − k edges. Since G is bipartite(or tripartite), H is also

bipartite(or tripartite). From Theorem 5.7, mH is super edge-magic. Thus the
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graph mH is a super edge-magic subgraph of mG. Hence

ηs(mG) ≤ |E(mG)| − |E(mH)| = mq − m(q − k) = mk.

Theorem 5.9. [2] A wheel Wn is not super edge-magic.

Theorem 5.10. ηs(Wn) = 1 when 1 ≤ n ≤ 6.

Proof. By Theorem 5.9, ηs(Wn) ≥ 1. By Table 1, Fn
∼= K1 ∨ Pn is super edge-

magic when 1 ≤ n ≤ 6 and Fn is a subgraph of Wn, thus ηs(Wn) = 1.

Theorem 5.11. [5] The disjoint union of stars K1,m and K1,n is super edge-magic

if and only if m is multiple of n + 1 or n is multiple of m + 1.

Lemma 5.12. The disjoint union of stars K1,m and K1,n and an isolated vertex

K1 is super edge-magic.

Proof. Let G ∼= K1,m ∪ K1,n ∪ K1 with V (G = {vi : i = 1, 2, ...,m + n + 3}) and

E(G) = {v2vi : i = 3, 4, 5, ...,m+2}∪{v1vi : i = m+4,m+5,m+6, ...,m+n+3}

Define a vertex labeling f : V (G) → {1, 2, ...,m + n + 3} by f(vi) = i.

It can be verified that f(V (G)) = {1, 2, ...,m + n + 3}.

For edge v2vi, i = 3, 4, ...,m + 2,

f(v2) + f(vi) = 2 + i.

For edge v1vi, i = m + 4,m + 5, ...,m + n + 3,

f(v2) + f(vi) = 1 + i.

Then {f(x)+ f(y) : xy ∈ E(G)} = {5, 6, ...,m+4}∪{m+5,m+6, ...,m+n+4}

is a set of m + n consecutive integers. From Theorem 2.1.1, f extends to a super

edge-magic labeling of G.

Theorem 5.13.

ηs(K1,m∪K1,n) =















0, either m is a multiple of n + 1 or n is multiple of m + 1;

1, otherwise.
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Proof. Let G be the disjoint union of stars K1,m and K1,n.

If m is a multiple of n+1 or n is a multiple of m+1, by Theorem 5.11, G is super

edge-magic. Thus ηs(G) = 0.

If m is not a multiple of n + 1 and n is not a multiple of m + 1, by Theorem 5.11,

G is not super edge-magic. Deleting one leaf from G, the resulting graph is the

disjoint union of two star and K1. By Lemma 5.12, the resulting graph is super

edge-magic. Hence ηs(G) = 1.
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APPENDIX

Definition 1. A graph G consists of a finite nonempty set V (G) of elements,

called vertices, and the set E(G) of 2-elment subsets of V (G), called edges. We

call V (G) as the vertex-set of G and E(G) as the edge-set of G. If {x, y} is an

edge in a graph G, then an edge {x, y} joins x and y , or x and y are adjacent and

are neighbors, or an edge {x, y} is incident with x(or y). We usually write {x, y}

as xy.

Definition 2. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G)

and E(H) ⊆ E(G). A spanning subgraph of a graph G is a subgraph with vertex

set V (G).

Definition 3. A u, v-path in a graph G is a finite sequence of distinct vertices

and edges of the form u = vi0 , ei1 , vi1 , ei2 , . . . ein , vin = v where ei1 = vi0vi1 , ei2 =

vi1vi2 , . . . ein = vin−1
vin .

The length of a path is its number of edges.

Definition 4. A graph G is connected if every pair of vertices is joined by a path

and disconnected otherwise.

Definition 5. The degree of a vertex v in a graph G, denoted by deg v, is the

number of edges incident with v.

Definition 6. Let G1 and G2 be graphs with disjoint vertex-sets V (G1) and

V (G2) and edge-sets E(G1) and E(G2), respectively. The join of G1 and G2,

denoted by G1 ∨G2, is a graph with the vertex-set V (G1) ∪ V (G2) and the edge-

set E(G1) ∪ E(G2) and all edges joining vertices in V (G1) and V (G2).

Definition 7. A path Pn is a simple graph whose vertices can be ordered so that

two vertices are adjacent if and only if they are consecutive in the list.



70

Definition 8. A cycle Cn is a graph with an equal number of vertices and edges

whose vertices can be place around a circle so that two vertices are adjacent if

and only if they appear consecutively along the circle.

Definition 9. The square of path P 2
n with n vertices, n ≥ 3, is a graph which is

obtained from Pn by adding edges that join all vertices u and v if there exists a

u, v-path of length 2 in Pn.

Definition 10. A complete graph Kn is a graph of n vertices which any two

distinct vertices are adjacent.

Definition 11. The wheel Wn, n ≥ 3, is the graph K1 ∨ Cn.

Definition 12. The fan Fn is the graph K1 ∨ Pn.

Definition 13. The friendship graph of n triangles, n ≥ 3, is the graph obtained

by taking n copies of the cycle C3 with a vertex in common.

Definition 14. Let G1 and G2 be graphs with disjoint vertex-sets V (G1) and

V (G2) and edge-sets E(G1) and E(G2) respectively. The product of G1 and G2,

denoted by G1×G2, is a graph with the vertex-set V (G1)×V (G2) and specified by

putting (u1, u2) adjacent to (v1, v2) if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2

and u1v1 ∈ E(G1).

Definition 15. A tree is a connected graph with n vertices and n − 1 edges.

Definition 16. A rooted tree is a tree with one vertex z chosen as root. For each

vertex v, let P (v) be the unique z, r-path. The parent of v is its neighbor on P (v);

its children are its other neighbors.

Definition 17. Let G1, G2, . . . , Gm be graphs with disjoint vertex-sets V (G1), V (G2),

. . . , V (Gm) and the edge-sets E(G1), E(G2), . . . , E(Gm) respectively. The disjoint
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union of G1, G2, . . . , Gm denoted by G1∪G2∪ . . .∪Gm, is a graph with the vertex-

set V (G1)∪ V (G2)∪ . . .∪ V (Gm) and the edge-set E(G1)∪E(G2)∪ . . .∪E(Gm)

If G1 = G2 = · · · = Gm = G then G1, G2, . . . , Gm is denoted by mG and is

called the disjoint union of m copies of G.

Definition 18. The corona product G1 ¯G2 of two graphs G1 and G2 defined as

the graph obtained by taking one copy of G1(which has p1 vertices) and p1 copies

of G2, and then joining the i-th vertex of G1 to every vertex of i-copy of G2.

Definition 19. An independent set or partite set in a graph is a set of pairwise

nonadjacent vertices.

Definition 20. A complete bipartite graph Km,n is a graph of m+n vertices which

is the union of two disjoint partite sets and two vertices are adjacent if and only

if they are in the different partite sets.

Definition 21. A complete tripartite graph Km,n,k is a graph of m+n+k vertices

which is the union of three disjoint partite sets and two vertices are adjacent if

and only if they are in the different partite sets.

Definition 22. A Hamiltonian graph is a graph with a spanning cycle.

Definition 23. A Hamiltonian path is a spanning path.
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