> สมาชิกปกติของกึ่งกรุปการแปลงที่รักษาอันดับ

> วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549

ISBN 974-14-2061-7
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

REGULAR ELEMENTS OF ORDER-PRESERVING

TRANSFORMATION SEMIGROUPS

Thesis Title

By
Field of Study
Thesis Advisor

REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS

Miss Winita Mora
Mathematics
Professor Yupaporn Kemprasit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

.......... Udomkowainl Chairman
(Asscociate Professor Patanee Udomkavanich, Ph.D.)

(Professor Yupaporn Kemprasit, Ph.D.)

Amorr.... Wasanawichit a.... Membere
..... Sureeporn chaopraknoi
(Sureeporn Chaopraknoi, Ph.D.)

วินิตา โมรา : สมาชิกปกติของกึ่งกรุปการแปลงที่รักษาอันดับ (REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS) อ. ที่ปรึกษา: ศาสตราจารย์ ดร. ยุพาภรณ์ เข็มประสิทธิ์, 33 หน้า. ISBN 974-14-2061-7.

เราเรียกสมาชิก x ของกึ่งกรุป S ว่า เป็นสมาชิกปกติ ถ้ามีสมาชิก $y \in S$ ซึ่ง $x=x y x$ และเรียก S ว่าเป็นกึ่งกรุปปปกติ ถ้าทุกสมาชิกของ S เป็นสมาชิกปกติ เรากล่าวว่าการส่ง α จากเซตอันดับบางส่วน X ไปขังเซตอันดับบางส่วน Y เป็นการส่งที่ รักษาอันดับ ถ้า

$$
\text { สำหรับ } x, x^{\prime} \in X \text { ใด ๆ } x \leq x^{\prime} \text { ใน } X \Rightarrow x \alpha \leq x^{\prime} \alpha \text { ใน } Y
$$

สำหรับเซตอันดับบางส่วน X ให้ $O T(X)$ เป็นกึ่งกรุปการแปลงที่รักษาอันดับของ X ภายใต้การ ประกอบ ให้ \mathbb{Z} และ \mathbb{R} เป็นเซตอันดับทุกส่วนของจำนวนเต็มและเซตของจำนวนจริง ตามลำดับ ภายใต้อันดับธรรมชาติ เป็นที่รู้กันแล้วว่า $O T(X)$ เป็นกึ่งกรุปปกติสิาหรับทุกเซตย่อยไม่ว่าง X ของ \mathbb{Z} และสำหรับช่วง X ใน $\mathbb{R}, O T(X)$ เป็นกึ่งกรุปปกติ ก็ต่อเมื่อ X เป็นช่วงปิดที่มี ขอบเขต ชิ่งไปกว่านั้น สำหรับช่วง X ในสสลด์อยย F ของ \mathbb{R} ซึ่ง $|X|>1, O T(X)$ เป็นกึ่งกรุป ปกติ ก็ต่อเมื่อ $F=\mathbb{R}$ และ X เป็นช่วงปิดที่มีขอบเขต

ในการวิจัยนี้ เราให้เง่อนไขที่จําเป็นและเพียงพอสำหรับสมาชิกของ $O T(X)$ ที่จะเป็น สมาชิกปกติเมื่อ X เป็นเซตอันดับทุกส่วนใดๆ เราได้ประยุกต์ความรู้มี้มาพิสูจน์ผลที่ทราบกันแล้ว ข้างต้นต้วย

สำหรับเซตอันดับทุกส่วน (X, \leq) ใด ๆ เซตอันดับบางส่วนแบบพจนานุกรม ของ X คือ เซตอันดับทุกส่วน ($X \times X, \leq_{d}$) โดย \leq_{d} นิยามบน $X \times X$ โดย

$$
\text { बी ด }\left(a_{1}, b_{1}\right) \leq_{d}\left(a_{2}, b_{2}\right) \& \Leftrightarrow(\mathrm{i}) a_{1}<a_{2} \text { หรือ }
$$

$$
\text { (ii) } a_{1}=a_{2} \text { และ } b_{1} \leq b_{2}
$$

เราประยุกต์การให้ลักษณะของสมาชิกปกติมาศึกษาว่าเมื่อใด $O T\left(X \times X, \leq_{\mathrm{d}}\right)$) เป็นกึ่งกรุปปกติ เมื่อ X เป็นเซตย่อยไม่ว่างของ \mathbb{Z} ช่วงใน \mathbb{R} หรือ ช่วงในฟิลด์ย์อย F ของ \mathbb{R}

ภาควิชา ...คณิตศาสตร์...
สาขาวิชา ...คณิตศาสตร์...
ปีการศึกษา \qquad

ลายมือชื่อนิสิต........ว่นกำ โ.....สรา

\# \# 4772474423 : MAJOR MATHEMATICS
KEY WORDS : REGULAR ELEMENTS / REGULAR SEMIGROUPS / ORDERPRESERVING TRANSFORMATION SEMIGROUPS

WINITA MORA : REGULAR ELEMENTS OF ORDER-PRESERVING

TRANSFORMATION SEMIGROUPS. THESIS ADVISOR : PROFESSOR
YUPAPORN KEMPRASIT, Ph.D., 33 pp. ISBN 974-14-2061-7.
An element x of a semigroup S is called regular if there is an element $y \in S$ such that $x=x y x$ and S is said to be a regular semigroup if every element of S is regular.

A mapping α from a partially ordered set X into a partially ordered set Y is said to be order-preserving if

$$
\text { for any } x, x^{\prime} \in X, x \leq x^{\prime} \text { in } X \Rightarrow x \alpha \leq x^{\prime} \alpha \text { in } Y .
$$

The semigroup, under composition, of all order-preserving transformations of a partially ordered set X is denoted by $O T(X)$. Let \mathbb{Z} and \mathbb{R} be the chain of integers and the chain of real numbers, respectively, under the natural order. It is known that $O T(X)$ is regular for every nonempty subset X of \mathbb{Z} and for an interval X in $\mathbb{R}, O T(X)$ is regular if and only if X is closed and bounded Moreover, for a nontrivial interval X in a subfield F of $\mathbb{R}, O T(X)$ is regular if and only if $F=\mathbb{R}$ and X is closed and bounded.

In this research, we provide necessary and sufficient conditions for the elements of $O T(X)$ to be regular when X is any chain. It is then applied to prove the above known results.

For a chain X, the dictionary partially ordered set of X is the chain $\left(X \times X, \leq_{d}\right)$ where \leq_{d} is defined by

$$
\left(a_{1}, b_{1}\right) \leq_{d}\left(a_{2}, b_{2}\right) \Leftrightarrow(\mathrm{i}) a_{1}<a_{2} \text { or }
$$

ค9 9

The characterization of regular elements is applied to determine when $O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup where X is a nonempty subset of \mathbb{Z}, an interval in \mathbb{R} or an interval in a subfield F of \mathbb{R}.

DepartmentMathematics....
Field of StudyMathematics.... Academic Year \qquad 2006. \qquad

Student's Signature. Winita Mora......................
Advisor's Signature....Uupap.oxn... K.emprasit

ACKNOWLEDGEMENTS

I am indebted to Professor Dr.Yupaporn Kemprasit, my thesis supervisor, for her kind and helpful advice in preparing and writing my thesis. I am also grateful to my thesis committee and all the lecturers during my study.

I acknowledge the 2-year support of the Ministry Development Staff Project Scholarship during my master program study.

Finally, I wish to express my gratitude to my beloved mother for her encouragement throughout my study.

สถาบันวิทยบริการ

CONTENTS

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
INTRODUCTION 1
CHAPTERS
I PRELIMINARIES 3
II REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON CHAINS 6
2.1 REGULAR ELEMENTS 6
2.2 REGULAR SEMIGROUPS 13
III REGULAR ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON DICTIONARY PARTIALLY
ORDERED SETS OF CHAINS 22
3.1 CHAINS OF INTEGERS 22
3.2 INTERVALS IN \mathbb{R} 25
3.3 INTERVALS IN SUBFIELDS OF \mathbb{R} 30
 32 33

INTRODUCTION

Let X be a partially ordered set and $O T(X)$ the semigroup, under composition, of all order-preserving transformations $\alpha: X \rightarrow X$.

It is known from [3, page 203] that $O T(X)$ is a regular semigroup if X is a finite chain. Kemprasit and Changphas [5] extended this result to any chain which is order-isomorphic to a chain X where $X \subseteq \mathbb{Z}$, the set of integers with their natural order. Equivalently, $O T(X)$ is regular for every nonempty subset of \mathbb{Z} with the usual order. Note that if the partially ordered sets X and Y are order-isomorphic, then the semigroups $O T(X)$ and $O T(Y)$ are isomorphic. It is also proved in [5] that for an interval X in \mathbb{R}, the set of real numbers with usual order, $O T(X)$ is a regular semigroup if and onty if X is closed and bounded. Rungrattrakoon and Kemprasit [9] extended this fact by showing that for a nontrivial interval X in a subfield F of $\mathbb{R}, O T(X)$ is regular if and only if $F=\mathbb{R}$ and X is closed and bounded. Then it follows as a consequence that for a nontrivial interval X in \mathbb{Q}, the set of rational number, $O T(X)$ is not a regular semigroup. In fact, the above result in [9] is a consequence of the main theorem in [7].

The regularity of semigroupsof order-preserving partial transformations have been also studied. See [1], [2] and [5] for examples.

A standard isomorphism is provided in [8, page 222-223] as follows: For partially ordered sets X and $Y, O T(X) \cong O T(Y)$ if and only if X and Y are order-isomorphic or anti-order-isomorphic. In [6], the authors generalized full order-preserving transformation semigroups by using sandwich multiplication and investigated their regularity and also provided some isomorphism theorems.

For a chain X, let \leq_{d} denote the dictionary partial order on $X \times X$.
In this research, we extend the above results in [5] and [9]. The regular elements
of $O T(X)$ are characterized when X is any chain. Then it is applied to prove those results and to determine the regularity of $O T\left(X \times X, \leq_{d}\right)$ when X is one of the following chains : chains of integers, intervals in \mathbb{R} and intervals in a subfield of \mathbb{R}.

Chapter I provides basic definitions and known results which will be used in this research. Also, see [3] and [4] for more details.

In Chapter II, the regular elements of $O T(X)$ are characterized when X is any chain. Then this characterization is applied to prove the above known results of the regularity of $O T(X)$ where X is a nonempty subset of \mathbb{Z}, an interval in \mathbb{R} or an interval in a subfield of \mathbb{R}.

In Chapter III, the regularity of $O T\left(X \times X, \leq_{d}\right)$ is characterized by using the main result in Chapter II, when X is one of the following chains : chains of integers, intervals in \mathbb{R} and intervals in a subfield of \mathbb{R}.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

PRELIMINARIES

For a set X, let $|X|$ denote the cardinality of X. The identity mapping on a nonempty set A is denoted by 1_{A}. The set of positive integers, the set of integers, the set of rational numbers and the set of real numbers are denoted by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R}, respectively. Note that they are chains with the natural order.

The following property of real numbers will be used. If X is an interval in \mathbb{R} and A, B are nonempty subsets of \mathbb{R} such that

$$
X=A \dot{\cup} B \text { and } a<b \text { for all } a \in A \text { and } b \in B
$$

then $\sup (A)=\inf (B)$.
An element a of a semigroup S is called regular if $a=a b a$ for some $b \in S$, and S is called a regular semigroup if every element of S is regular. The set of all regular elements of a semigroup S will be denoted by $\operatorname{Reg} S$, that is,
$\overline{\operatorname{Reg}} S=\{a \in S \mid a=a b a$ for some $b \in S\}$.
The domain and the range of any mapping α will be denoted by $\operatorname{dom} \alpha$ and ran α, respectively. For an element x in the domain of a mapping α, the image of α at x is written by $x \alpha$.

Denote by $T(X)$ the full transformation semigroup on a nonempty set X, that is, the ${ }^{\text {semigroup, }}$ under composition, of all mappings $\alpha: X \rightarrow X$. It is wellknown that $T(X)$ is a regular semigroup ([3], page 4 or [4], page 63).

Let X and Y be partially ordered sets. A mapping φ from X into Y is said to be order-preserving if

$$
\text { for any } x, x^{\prime} \in X, \quad x \leq x^{\prime} \text { in } X \Rightarrow x \varphi \leq x^{\prime} \varphi \text { in } Y .
$$

A bijection $\varphi: X \rightarrow Y$ is called an order-isomorphism if φ and φ^{-1} are orderpreserving. It is clear that if both X and Y are chains and $\varphi: X \rightarrow Y$ is an order-preserving bijection, then φ is an order-isomorphism from X onto Y. We say that X and Y are order-isomorphic if there is an order-isomorphism from X onto Y.

For a partially ordered set X, let

$$
O T(X)=\{\alpha \in T(X) \mid \alpha \text { is order-preserving }\} .
$$

It is clear that $O T(X)$ is a subsemigroup of $T(X)$ containing 1_{X} and all constant mappings. The semigroup $O T(X)$ is called the full order-preserving transformation semigroup on X

Proposition 1.1. Let X and Y be partially ordered sets. If $\varphi: X \rightarrow Y$ is an order-isomorphism, then
(i) $\varphi^{-1}(O T(X)) \varphi \subseteq O T(Y)$ and $\varphi(O T(Y)) \varphi^{-1} \subseteq O T(X)$.
(ii) $O T(X) \cong O T(Y)$ through the mapping $\alpha \mapsto \varphi^{-1} \alpha \varphi$.

Proof. (i) is clearly obtained since $\varphi: X \rightarrow Y$ and $\varphi^{-1}: Y \rightarrow X$ are orderpreserving.
(ii) Define $\theta: O T(X) \rightarrow O T(Y)$ by

$$
\alpha \theta=\varphi^{-1} \alpha \varphi \text { for all } \alpha \in O T(X) .
$$

If $\alpha, \beta \in O T(X)$, then
Hence θ is a homomorphism. If $\alpha, \beta \in O T(X)$ are such that $\alpha \theta=\beta \theta$, then

$$
\alpha=\varphi\left(\varphi^{-1} \alpha \varphi\right) \varphi^{-1}=\varphi(\alpha \theta) \varphi^{-1}=\varphi(\beta \theta) \varphi^{-1}=\varphi\left(\varphi^{-1} \beta \varphi\right) \varphi^{-1}=\beta .
$$

Thus θ is 1-1. If $\lambda \in O T(Y)$, then by (i), $\varphi \lambda \varphi^{-1} \in O T(X)$ and thus

$$
\left(\varphi \lambda \varphi^{-1}\right) \theta=\varphi^{-1}\left(\varphi \lambda \varphi^{-1}\right) \varphi=\lambda .
$$

This proves that θ is an isomorphism from $O T(X)$ onto $O T(Y)$.

The following result is a direct consequence of Proposition 1.1.

Corollary 1.2. Let X and Y be partially ordered sets. If X and Y are orderisomorphic, then $O T(X)$ is regular if and only if $O T(Y)$ is regular.

Intervals in a chain are defined naturally as follows : A nonempty subset Y of a chain X is called an interval in X if for $a, b, x \in X, a, b \in Y$ and $a \leq x \leq b$ imply that $x \in Y$. We say that an interval Y in X is a nontrivial interval if Y contains more than one element. Since every subfield F of \mathbb{R} contains \mathbb{Q}, it follows that every nontrivial interval X of F is infinite.

The following results about the semigroup $O T(X)$ are known.

Theorem 1.3 ([5]). For any nonempty subset X of $\mathbb{Z}, O T(X)$ is a regular semigroup.

Theorem 1.4 ([5]). For an interval X in $\mathbb{R}, O T(X)$ is a regular semigroup if and only if X is closed and bounded.

Theorem 1.5 ([9]). If X is a nontrivial interval in a subfield F of \mathbb{R}, then $O T(X)$ is regular if and only if $F=\mathbb{R}$ and X is closed and bounded.

Corollary 1.6. For every nontrivial interval X in $\mathbb{Q}, O T(X)$ is not regular.

For a chain X, the dictionary partially ordered set of X is defined to be the chain $\left(X \times X, \leq_{d}\right)$ where \leq_{d} is defined on $X \times X$ by $? \widetilde{\delta}$

$$
999 \cap\left(a_{1}, b_{1}\right) \leq_{d}\left(a_{2}^{\sigma}, b_{2}\right) \Leftrightarrow \text { (i) } a_{10} \leq a_{2} \text { or } a_{\text {(ii) }} a_{1}=a_{2} \text { and } b_{1} \leq b_{2} .
$$

CHAPTER II

REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON CHAINS

The regular elements of $O T(X)$ are characterized in this chapter where X is any chain. Then by this characterization, necessary and sufficient conditions are given for certain chains X so that $O T(X)$ is a regular semigroup.

2.1 Regular Elements

We recall the following result from [5].
Lemma 2.1.1 ([5]). Let X be a chain. If $\alpha \in O T(X)$ and $a, b \in \operatorname{ran} \alpha$ with $a<b$, then $x<y$ for all $x \in a \alpha^{-1}$ and $y \in b \alpha^{-1}$.

Also, the following lemma is needed.
Lemma 2.1.2. If X is a nonempty set and $\alpha, \beta \in T(X)$ are such that $\alpha=\alpha \beta \alpha$, then $X \beta \alpha=(\operatorname{ran} \alpha) \beta \alpha$ and $x \beta \alpha=x$ for all $x \in \operatorname{ran} \alpha$.
Proof. If $x \in X$, then $x \alpha=x \alpha \beta \alpha \neq(x \alpha) \beta \alpha$. This implies that $x \beta \alpha=x$ for all $x \in \operatorname{ran} \alpha$. Since $\operatorname{ran} \alpha=X \alpha=(X \alpha) \beta \alpha=(\operatorname{ran} \alpha) \beta \alpha \subseteq X \beta \alpha \subseteq X \alpha=\operatorname{ran} \alpha$, we

To obtain the main theorem, some necessary conditions for the regular elements of $O T(X)$, where X is any chain, are given as its lemmas.

Lemma 2.1.3. Let X be a chain and $\alpha \in O T(X)$. If α is a regular element of $O T(X)$ and $\operatorname{ran} \alpha$ has an upper bound in X, then $\max (\operatorname{ran} \alpha)$ exists.

Proof. Let $\beta \in O T(X)$ be such that $\alpha=\alpha \beta \alpha$, and let $u \in X$ be an upper bound of $\operatorname{ran} \alpha$. Suppose that $\operatorname{ran} \alpha$ has no maximum element in X. Then

$$
\begin{equation*}
x<u \text { for all } x \in \operatorname{ran} \alpha . \tag{1}
\end{equation*}
$$

From Lemma 2.1.2,

$$
\begin{align*}
X \beta \alpha & =(\operatorname{ran} \alpha) \beta \alpha, \tag{2}\\
x \beta \alpha & =x \text { for all } x \in \operatorname{ran} \alpha . \tag{3}
\end{align*}
$$

From (2), there exists an element $a \in \operatorname{ran} \alpha$ such that $u \beta \alpha=a \beta \alpha$. By (3), $a \beta \alpha=a$. Hence $a<u$ by (1) and $u \beta \alpha=a$. Since $a \in \operatorname{ran} \alpha$ and $\max (\operatorname{ran} \alpha)$ does not exist, there exists an element $b \in \operatorname{ran} \alpha$ such that $a<b<u$. Then $b \beta \alpha=b$ by (3). Hence $a=a \beta \alpha \leq b \beta \alpha=b \leq u \beta \alpha=a$ which implies that $a=b$, a contradiction. This proves that $\max (\operatorname{ran} \alpha)$ exists.

The dual of Lemma 2.1.3 is the following lemma.

Lemma 2.1.4. Let X be a chain and $\alpha \in O T(X)$. If α is regular in $O T(X)$ and $\operatorname{ran} \alpha$ has a lower bound in X, then $\min (\operatorname{ran} \alpha)$ exists.

Lemma 2.1.5. Lèt X be a chain and $\alpha \in O T(X)$. If α is regular in $O T(X)$ and $a \in X \backslash \operatorname{ran} \alpha$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$, then $\max (\{x \in \operatorname{ran} \alpha \mid x<a\})$ or $\min (\{x \in \operatorname{ran} \alpha \mid a<x\})$ exists.

Proof. Let $\beta \in O T(X)$ be such that $\alpha=\alpha \beta \alpha$. If follows from the assumption that

$$
\begin{array}{r}
\{x \in \operatorname{ran} \alpha \mid x<a\} \neq \varnothing,\{x \in \operatorname{ran} \alpha \mid a<x\} \neq \varnothing, C \\
\operatorname{ran} \alpha=\{x \in \operatorname{ran} \alpha \mid x<a\} \cup \dot{\circ}\{x \in \operatorname{ran} \alpha \mid a<x\} . \tag{1}
\end{array}
$$

By Lemma 2.1.2,

$$
\begin{align*}
X \beta \alpha & =(\operatorname{ran} \alpha) \beta \alpha \tag{2}\\
x \beta \alpha & =x \quad \text { for all } x \in \operatorname{ran} \alpha \tag{3}
\end{align*}
$$

By (2), $a \beta \alpha=e \beta \alpha$ for some $e \in \operatorname{ran} \alpha$, and hence $a \beta \alpha=e \beta \alpha=e$ by (3). From (1), either $e<a$ or $a<e$. Suppose that neither $\max (\{x \in \operatorname{ran} \alpha \mid x<a\})$ nor $\min (\{x \in \operatorname{ran} \alpha \mid a<x\})$ exists.

Case 1: $e<a$. Since $\max (\{x \in \operatorname{ran} \alpha \mid x<a\})$ does not exist, $e<p<a$ for some $p \in \operatorname{ran} \alpha$. $\mathrm{By}(3), p \alpha \beta=p$. Then $e=e \beta \alpha \leq p \beta \alpha=p \leq a \beta \alpha=e$, so $e=p$, a contradiction.

Case 2: $a<e$. Since $\min (\{x \in \operatorname{ran} \alpha \mid a<x\})$ does not exist, there is an element $q \in \operatorname{ran} \alpha$ such that $a<q<e$. Then we have $q \beta \alpha=q$ by (3) and thus $e=a \beta \alpha \leq q \beta \alpha=q \leq e \beta \alpha=e$. Hence $e=q$, a contradiction.

Hence the lemma is proved.

Theorem 2.1.6. Let X be a chain and $\alpha \in O T(X)$. Then α is regular in $O T(X)$ if and only if the following three conditions hold.
(i) If $\operatorname{ran} \alpha$ has an upper bound in X, then $\max (\operatorname{ran} \alpha)$ exists.
(ii) If $\operatorname{ran} \alpha$ has a lower bound in X, then $\min (\operatorname{ran} \alpha)$ exists.
(iii) If $a \in X \backslash \operatorname{ran} \alpha$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$, then $\max (\{x \in \operatorname{ran} \alpha \mid x<a\})$ or $\min (\{x \in \operatorname{ran} \alpha \mid a<x\})$ exists.

Proof. If α is regular in $O T(X)$, then (i), (ii) and (iii) hold by Lemma 2.1.3, Lemma 2.1.4 and Lemma 2.1.5, respectively.

For the converse, assume that (i), (ii) and (iii) hold. If ran α has an upper bound, let $u=\max (\operatorname{ran} \alpha)$. If $\operatorname{ran} \alpha$ has a lower bound, det $l=\min (\operatorname{ran} \alpha)$. If $x \in X \backslash \operatorname{ran} \alpha$ is neither an upper6ound nor a Fower bound of $\operatorname{ran} \alpha$, let

$$
m_{x}= \begin{cases}\max (\{t \in \operatorname{ran} \alpha \mid t<x\}) & \text { if } \max (\{t \in \operatorname{ran} \alpha \mid t<x\}) \text { exists }, \\ \min (\{t \in \operatorname{ran} \alpha \mid x<t\}) & \text { otherwise }\end{cases}
$$

that is,

$$
m_{x}= \begin{cases}\max (\{t \in \operatorname{ran} \alpha \mid t<x\}) & \text { if } \max (\{t \in \operatorname{ran} \alpha \mid t<x\}) \text { exists, } \\ \min (\{t \in \operatorname{ran} \alpha \mid x<t\}) & \text { if } \max (\{t \in \operatorname{ran} \alpha \mid t<x\}) \text { does not exists } \\ & \text { and } \min (\{t \in \operatorname{ran} \alpha \mid x<t\}) \text { exists. }\end{cases}
$$

For each $x \in \operatorname{ran} \alpha$, choose an element $x^{\prime} \in x \alpha^{-1}$. Then $x^{\prime} \alpha=x$ for all $x \in \operatorname{ran} \alpha$. Thus $(x \alpha)^{\prime} \alpha=x \alpha$ for all $x \in X$. Define $\beta: X \rightarrow X$ by

$$
x \beta= \begin{cases}x^{\prime} & \text { if } x \in \operatorname{ran} \alpha, \\ u^{\prime} & \text { if } x \in X>\operatorname{ran} \alpha \text { and } x \text { is an upper bound of } \operatorname{ran} \alpha, \\ l^{\prime} & \text { if } x \in X>\operatorname{ran} \alpha \text { and } x \text { is a lower bound of } \operatorname{ran} \alpha, \\ m_{x}^{\prime} & \text { if } x \in X>\operatorname{ran} \alpha \text { and } x \text { is neither an upper bound nor } \\ & \text { a lower bound of } \operatorname{ran} \alpha .\end{cases}
$$

for every $x \in X$. Then $\beta \in \bar{T}(X)$ and for $x \in X, x \alpha \in \operatorname{ran} \alpha$ and thus

$$
x \alpha \beta \alpha=(x \alpha) \beta \alpha=(x \alpha)^{\prime} \alpha=x \alpha .
$$

Hence $\alpha=\alpha \beta \alpha$. It remains to show that β is order-preserving. Let $x, y \in X$ be such that $x<y$.

Case 1: $1: y \in \operatorname{ran} \alpha$. Byl Demma 2.1.1, $s \in t$ for all $s \in x \alpha^{-1}$ and $t \in y \alpha^{-1}$. But $x^{\prime} \in x \alpha^{-1}$ and $y^{\prime} \in y \alpha^{-1}$, so $x<y^{\prime}$. Hence $x \beta=x^{\prime}<y^{\prime}=y \beta$.
Case 2: $x \in \operatorname{ran} \alpha, y \in X \backslash$ ran α and y is an upper bound of ran α. Since $x \leq u$, by Lemma 2.1.1, $x^{\prime} \leq u^{\prime}$, so $x \beta \leq y \beta$.

Case 3: $x \in X \backslash \operatorname{ran} \alpha, x$ is a lower bound of $\operatorname{ran} \alpha$ and $y \in \operatorname{ran} \alpha$. Then $l \leq y$, so by Lemma 2.1.1, $l^{\prime} \leq y^{\prime}$. Hence $x \beta \leq y \beta$.

Case $4: x, y \in X \backslash \operatorname{ran} \alpha$ and x and y are upper bounds of $\operatorname{ran} \alpha$. Then
$x \beta=u^{\prime}=y \beta$.

Case 5: $x, y \in X \backslash \operatorname{ran} \alpha$ and x and y are lower bounds of $\operatorname{ran} \alpha$. Then $x \beta=$ $l^{\prime}=y \beta$.

Case 6: $6, y \in X \backslash \operatorname{ran} \alpha, x$ is a lower bound of $\operatorname{ran} \alpha$ and y is an upper bound of $\operatorname{ran} \alpha$. Since $l \leq u$, by Lemma 2.1.1, $l^{\prime} \leq u^{\prime}$, so $x \beta \leq y \beta$.

Case 7: $7 \in \operatorname{ran} \alpha, y \in X \backslash \operatorname{ran} \alpha$ and y is not an upper bound of $\operatorname{ran} \alpha$. Then $y \in X \backslash \operatorname{ran} \alpha$ and y is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$.

Subcase $7.1: \max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ exists. Then

$$
m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid t<y\}) .
$$

But $x \in \operatorname{ran} \alpha$ and $x<y$, so $x \leq m_{y}$. Hence $x^{\prime} \leq m_{y}{ }^{\prime}$ by Lemma 2.1.1. Thus $x \beta \leq y \beta$.

Subcase 7.2 : $\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ does not exist. Then

$$
m_{y}=\min (\{t \in \operatorname{ran} \alpha \mid y<t\})
$$

Thus $x<y<m_{y}$. Hence $x \beta=x^{\prime}<m_{y}{ }^{\prime}=y \beta$, as before.

Case 8: $x \in X \backslash \operatorname{ran} \alpha, x$ is not a lower bound of $\operatorname{ran} \alpha$ and $y \in \operatorname{ran} \alpha$. Then $x \in X \backslash \operatorname{ran} \alpha$ and x is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$.
$x \beta=m_{x}^{\prime}<y^{\prime}=y \beta$.

Subcase 8.2 $: \max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ does not exist. Then $m_{x}=$ $\min (\{t \in \operatorname{ran} \alpha \mid x<t\})$. Since $y \in \operatorname{ran} \alpha$ and $x<y$, it follows that $m_{x} \leq y$. Hence $x \beta=m_{x}{ }^{\prime} \leq y^{\prime}=y \beta$, as before.

Case 9: $9, y \in X \backslash \operatorname{ran} \alpha, x$ is a lower bound of $\operatorname{ran} \alpha$ and y is neither an upper
bound nor a lower bound of $\operatorname{ran} \alpha$.
Subcase 9.1 : $\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ exists. Then $l \leq m_{y}$, so $x \beta=l^{\prime} \leq m_{y}{ }^{\prime}=y \beta$.

Subcase 9.2 $: \max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ does not exist. Then $m_{y}=$ $\min (\{t \in \operatorname{ran} \alpha \mid y<t\})$, so $l<y<m_{y}$. Hence $x \beta=l^{\prime}<m_{y}{ }^{\prime}=y \beta$.

Case $10: x, y \in X \backslash \operatorname{ran} \alpha, x$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$ and y is an upper bound of $\operatorname{ran} \alpha$.

Subcase 10.1: $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ exists. Then $m_{x}<x<u$, so $x \beta=m_{x}{ }^{\prime}<u^{\prime}=y \beta$.

Subcase 10.2 : $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ does not exist. Then $m_{x}=\min (\{t \in \operatorname{ran} \alpha \mid x<t\})$, so $m_{x} \leq u$. Hence $x \beta=m_{x}{ }^{\prime} \leq u^{\prime}=y \beta$.

Case $11: x, y \in X \backslash \operatorname{ran} \alpha$ and x and y are neither upper bounds nor lower bounds of ran α.

Subcase 11.1 $: \max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ and $\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ exist. Then

$$
m_{x}=\max (\{t \in \operatorname{ran} \alpha \mid t<x\}) \text { and } m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid t<y\}) .
$$

Since $x<y$, it follows that $\{t \in \operatorname{ran} \alpha \mid t<x\} \subseteq\{t \in \operatorname{ran} \alpha \mid t<y\}$ which implies

Subcase 11.2: $\max (\{t \in \operatorname{ran} \alpha \downarrow t<x\})$ exists and $\max (\{t \in \operatorname{ran} \alpha \mid$ $t<y\}$) does notcexist. Then

$$
m_{x}=\max (\{t \in \operatorname{ran} \alpha \mid t<x\}) \text { and } m_{y}=\min (\{t \in \operatorname{ran} \alpha \mid y<t\})
$$

Then $m_{x}<x<y<m_{y}$, so $x \beta=m_{x}{ }^{\prime}<m_{y}{ }^{\prime}=y \beta$.
Subcase 11.3 $: \max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ does not exist and $\max (\{t \in$ $\operatorname{ran} \alpha \mid t<y\})$ exists. Then

$$
m_{x}=\min (\{t \in \operatorname{ran} \alpha \mid x<t\}) \text { and } m_{y}=\max (\{t \in \operatorname{ran} \alpha \mid t<y\}) .
$$

If $\{t \in \operatorname{ran} \alpha \mid x<t<y\}=\varnothing$, then $\{t \in \operatorname{ran} \alpha \mid t<y\}=\{t \in \operatorname{ran} \alpha \mid t<x\}$ which is impossible since $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ does not exist but $\max (\{t \in$ $\operatorname{ran} \alpha \mid t<y\})$ exists. Then there exists an element $c \in \operatorname{ran} \alpha$ such that $x<c<y$. Consequently, $m_{x} \leq c \leq m_{y}$ which implies that $x \beta=m_{x}{ }^{\prime} \leq m_{y}{ }^{\prime}=y \beta$.

Subcase 11.4 : $\max (\{t \in \operatorname{ran} \alpha \mid t<x\})$ and $\max (\{t \in \operatorname{ran} \alpha \mid t<y\})$ do not exist. Then

$$
m_{x}=\min (\{t \in \operatorname{ran} \alpha \mid x<t\}) \text { and } m_{y}=\min (\{t \in \operatorname{ran} \alpha \mid y<t\})
$$

Since $x<y,\{t \in \operatorname{ran} \alpha \mid x<t\} \supseteq\{t \in \operatorname{ran} \alpha \mid y<t\}$. Then $m_{x} \leq m_{y}$, so $x \beta=m_{x}{ }^{\prime} \leq m_{y}{ }^{\prime}=y \beta$.

Hence $\beta \in O T(X)$, and the proof is complete.

The following lemma shows that if X is an interval in \mathbb{R}, then every $\alpha \in O T(X)$ satisfies (iii) of Theorem 2.1.6

Lemma 2.1.7. Let X be an interval in \mathbb{R} and $\alpha \in O T(X)$. If $a \in X \backslash \operatorname{ran} \alpha$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$, then either $\max (\{x \in \operatorname{ran} \alpha \mid$ $x<a\})$ or $\min (\{x \in \operatorname{ran} \alpha \mid a<x\})$ exists.

Proof. By assumption, we have that

$$
\begin{align*}
& \{x \in \operatorname{ran} \alpha \mid x<a\} \alpha^{-1} \neq \varnothing,\{x \in \operatorname{ran} \alpha \mid a<x\} \alpha^{-1} \neq \varnothing \tag{1}\\
& \quad X=\{x \in \operatorname{ran} \alpha \mid x<a\} \alpha^{-1} \dot{\cup}\{x \in \operatorname{ran} \alpha \mid a<x\} \alpha^{-1} \tag{2}
\end{align*}
$$

By Lemma 2.1.1,

$$
\begin{equation*}
\text { for all } s \in\{x \in \operatorname{ran} \alpha \mid x<a\} \alpha^{-1} \text { and } t \in\{x \in \operatorname{ran} \alpha \mid a<x\} \alpha^{-1}, s<t . \tag{3}
\end{equation*}
$$

Since X is an interval in $\mathbb{R},(1)$, (2) and (3) yield the fact that

$$
\sup \left(\{x \in \operatorname{ran} \alpha \mid x<a\} \alpha^{-1}\right)=\inf \left(\{x \in \operatorname{ran} \alpha \mid a<x\} \alpha^{-1}\right) \text {, say } e .
$$

Then either $e=\max \left(\{x \in \operatorname{ran} \alpha \mid x<a\} \alpha^{-1}\right)$ or $e=\min \left(\{x \in \operatorname{ran} \alpha \mid a<x\} \alpha^{-1}\right)$.
Since α is order-preserving, we have

$$
\begin{aligned}
& e=\max \left(\{x \in \operatorname{ran} \alpha \mid x<a\} \alpha^{-1}\right) \Rightarrow e \alpha=\max (\{x \in \operatorname{ran} \alpha \mid x<a\}), \\
& e=\min \left(\{x \in \operatorname{ran} \alpha \mid a<x\} \alpha^{-1}\right) \Rightarrow e \alpha=\min (\{x \in \operatorname{ran} \alpha \mid a<x\}) .
\end{aligned}
$$

Hence the lemma is proved.

The following corollary is obtained directly from Theorem 2.1.6 and Lemma 2.1.7.

Corollary 2.1.8. Let X be an interval in \mathbb{R} and $\alpha \in O T(X)$. Then α is a regular element of $O T(X)$ if and only if the following two conditions hold.
(i) If $\operatorname{ran} \alpha$ has an upper bound in X, then $\max (\operatorname{ran} \alpha)$ exists.
(ii) If $\operatorname{ran} \alpha$ has a lower bound in X, then $\min (\operatorname{ran} \alpha)$ exists.

2.2 Regular Semigroups

Throughout this section, the partial order on a nonempty subset of real numbers always means the natural order. \qquad -
We shall apply Theorem 2.1.6 to prove Theorem 1.3 and Theorem 1.4 given in [5]. In addition, the regularity of $O T(X)$ for some other chains X in \mathbb{R} are

Theorem 2.2.1. If X is a nonempty subset of \mathbb{Z}, then $O T(X)$ is a regular semigroup.

Proof. Let A be a nonempty subset of X. By the property of subsets of \mathbb{Z}, we have that if A is bounded above in X, then $\max (A)$ exists. Also, if A is bounded below in X, then $\min (A)$ exists.

If $c \in X \backslash A$ is neither an upper bound nor a lower bound of A, then $\{x \in A \mid x<c\} \neq \varnothing$ and $\{x \in A \mid c<x\} \neq \varnothing$, so both $\max (\{x \in A \mid x<c\})$ and $\min (\{x \in A \mid c<x\})$ exist.

This shows that for every $\alpha \in O T(X), \operatorname{ran} \alpha$ satisfies (i), (ii) and (iii) of Theorem 2.1.6. By Theorem 2.1.6, every $\alpha \in O T(X)$ is regular in $O T(X)$. Hence $O T(X)$ is a regular semigroup.

Lemma 2.2.2. If X is $\mathbb{R},[a, \infty)$ or (a, ∞) where $a \in \mathbb{R}$, then $O T(X)$ is not a regular semigroup.

Proof. Let $c \in X$ and define $\alpha: X \rightarrow \mathbb{R}$ by

$$
x \alpha= \begin{cases}\frac{c+\frac{x-c}{x-c+1}}{x} & \text { if } x \geq c \\ c & \text { if } x<c\end{cases}
$$

Then $x \alpha=c$ for all $x \in X$ with $x \leq c, \alpha$ is continuous on X and the derivative of α at $x>c$ is $\frac{1}{(x-c+1)^{2}}>0$. These imply that α is a nondecreasing function on X. Also, $\operatorname{ran} \alpha=[c, c+1) \subseteq X$, so $\alpha \in O T(X)$. Since $\operatorname{ran} \alpha$ is bounded in X and $\max (\operatorname{ran} \alpha)$ does not exist, by Theorem 2.1.6, α is not a regular element of $O T(X)$. Hence $O T(X)$ is not a regular semigroup.

Lemma 2.2.3. If X is $(-\infty, a]$ or $(-\infty, a)$, then $O T(X)$ is not a regular semigroup.

Then $x \alpha=c$ for all $x \geq c, \alpha$ is continuous on X and the derivative of α at $x<c$ is $\frac{1}{(x-c+1)^{2}}>0$. Hence α is a nondecreasing function on X. We also have that
$\operatorname{ran} \alpha=(c-1, c] \subseteq X$. Then $\alpha \in O T(X), \operatorname{ran} \alpha$ is bounded in X and $\min (\operatorname{ran} \alpha)$ does not exist. By Theorem 2.1.6, α is not a regular element of $O T(X)$, hence $O T(X)$ is not a regular semigroup.

Lemma 2.2.4. If X is $[a, b),(a, b]$ or (a, b) where $a, b \in \mathbb{R}$ and $a<b$, then the semigroup $O T(X)$ is not regular.

Proof. Define $\alpha: X \rightarrow \mathbb{R}$ by

$$
x \alpha=\frac{1}{4}(x-a)+\frac{a+b}{2} \text { for all } x \in X
$$

Then the derivative of α at $x \in X$ is $\frac{1}{4}$. Hence α is a nondecreasing function. Also,

$$
\operatorname{ran} \alpha=X \alpha= \begin{cases}\left\{\frac{a+b}{\left(\frac{a+3 b}{4}\right)}\right. & \text { if } X=[a, b), \\ \left(\frac{a+b}{2}, \frac{a+3 b}{4}\right] & \text { if } X=(a, b], \\ \left(\frac{a+b}{2}, \frac{a+3 b}{4}\right) & \text { if } X=(a, b), \\ a<\frac{a+b}{2}<\frac{a+3 b}{4}<b .\end{cases}
$$

Then we deduce that $\alpha \in O T(X)$. Since ran α is both bounded above and bounded below in $X, \max (\operatorname{ran} \alpha)$ does not exist if $X=[a, b)$ or $X=(a, b)$ and $\min (\operatorname{ran} \alpha)$ does not exist if $X=\left(a_{2} b\right)$ or $X=(a, b]$, it follows from Theorem 2.1.6, α is not a regular element of $O T(X)$. Hence $O T(X)$ is not a regular semigroup.
Lemma 2.2.5. For $a, b \in \mathbb{R}$ with $\vec{a} \leq b, O T([a, b])$ is a regular Semigroup.

Proof. Q To show that every element of $O T([a, b])$ is regular, let $\alpha \in O T([a, b])$.
Since α is order-preserving on $[a, b]$, we have that $a \alpha=\min (\operatorname{ran} \alpha)$ and $b \alpha=$ $\max (\operatorname{ran} \alpha)$. By Corollary 2.1.8, α is a regular element of $O T([a, b])$.

From Lemma 2.2.2, Lemma 2.2.3, Lemma 2.2.4 and Lemma 2.2.5, the following theorem is obtained.

Theorem 2.2.6. For an interval X in $\mathbb{R}, O T(X)$ is a regular semigroup if and only if X is closed and bounded.

Note that if X is a trivial interval, that is, $|X|=1$, then $|O T(X)|=1$, so $O T(X)$ is a regular semigroup.

Theorem 2.2.7. If X is a nontrivial interval of a proper subfield F of \mathbb{R}, then $O T(X)$ is not a regular semigroup.

Proof. We first note that $\mathbb{Q} \subseteq F \subsetneq \mathbb{R}$. Then there is an irrational number $c \in \mathbb{R} \backslash F$. Let $a, b \in X$ be such that $a<b$. Thus $a-c<b-c$, so $a-c<d<b-c$ for some $d \in \mathbb{Q}$. Hence $a<c+d<b$. Since $c \in \mathbb{R} \backslash F$ and $d \in \mathbb{Q} \subseteq F$, it follows that $c+d \in \mathbb{R} \backslash F$ and $c+d$ is an irrational number. Let $e=c+d$. Consequently,

$$
\begin{equation*}
X=((-\infty, a) \cap X) \cup([a, e) \cap X) \cup((e, \infty) \cap X) \tag{1}
\end{equation*}
$$

Define $\mu: \mathbb{R} \rightarrow F$ by

$$
x \mu=\left\{\begin{array}{cll}
x & \text { if } & x \in(-\infty, a) \tag{2}\\
\frac{a+x}{2} & \text { if } & x \in[a, e) \\
x & \text { if } & x \in(e, \infty)
\end{array}\right.
$$

Then $a \mu=a<e, \alpha$ is continuous on $(-\infty, e)$ and the derivative of μ at $x \in(a, e)$ is $\frac{1}{2}$. Consequently, μ is an order-preserving function on \mathbb{R}. Let $\alpha=\left.\mu\right|_{X}: X \rightarrow F$. Then α is order-preserving. We claim that

$$
\begin{equation*}
616 \cap([a, e) \cap X) \alpha \stackrel{e}{=}\left(a, \frac{a \neq \mathrm{e}}{2}\right) \cap X . \approx \tag{3}
\end{equation*}
$$

Let $x \in d a, e) \cap X$. Then $a \leq x<\sigma<b$ and $x \in X \in F$, so
$q \quad Q_{a+x}$
$a \leq \frac{a+x}{2}=x \alpha<\frac{a+e}{2}<\frac{a+b}{2}<b$ and $\frac{a+x}{2} \in F$.
This implies that $x \alpha \in\left[a, \frac{a+e}{2}\right) \cap X$ since X is an interval in F and $a, b \in X$ with $a<b$. For the reverse inclusion, let $y \in\left[a, \frac{a+e}{2}\right) \cap X$. Then $a \leq y<\frac{a+e}{2}$ and $y \in X \subseteq F$. Hence

$$
a \leq 2 y-a<e<b \text { and } 2 y-a \in F .
$$

Then $2 y-a \in[a, e) \cap X$ since $a, b \in X$ and X is an interval in F and $(2 y-a) \alpha=$ $\frac{a+(2 y-a)}{2}=y$. Therefore (3) holds. From (1), (2) and (3), we have

$$
\begin{align*}
\operatorname{ran} \alpha=X \alpha & =((-\infty, a) \cap X) \cup\left(\left[a, \frac{a+e}{2}\right) \cap X\right) \cup((e, \infty) \cap X) \\
& =\left(\left(-\infty, \frac{a+e}{2}\right) \cap X\right) \cup((e, \infty) \cap X) \subseteq X \tag{4}
\end{align*}
$$

Hence $\alpha \in O T(X)$. Let $q \in \mathbb{Q}$ be such that $\frac{a+e}{2}<q<e$. But

$$
a<\frac{a+e}{2}<q<e<b
$$

$q \in \mathbb{Q} \subseteq F, a, b \in X$ and X is an interval in F, thus by (4), $q \in X \backslash \operatorname{ran} \alpha$, $\{x \in \operatorname{ran} \alpha \mid x<q\}=\left(-\infty, \frac{a+e}{2}\right) \cap X$ and $\{x \in \operatorname{ran} \alpha \mid q<x\}=(e, \infty) \cap X$. If $\max \left(\left(-\infty, \frac{a+e}{2}\right) \cap X\right)$ exists, say m, then

$$
a \leq m<\frac{a+e}{2}<b \text { and } m \in X
$$

Let $p \in \mathbb{Q}$ be such that $m<p<\frac{a+e}{2}$. Then $p \in F$ and $a<p<b$ which imply that $m<p \in\left(-\infty, \frac{a+e}{2}\right) \cap X$, a contradiction. Then $\max \left(\left(-\infty, \frac{a+e}{2}\right) \cap X\right)$ does not exist. We can show similarly that $\min ((e, \infty) \cap X)$ does not exist. By Theorem 2.1.6, α is not a regular element of $O T(X)$. This proves that $O T(X)$ is not a regular semigroup, as desired.

The following corollary is a direct consequence of Theorem 2.2.7.
Corollary 2.2.8. If X is a nontrivial interval in \mathbb{Q}, then $\mathcal{O} T(X)$ is not a regular semigroup.
Example 2.2.9. Under the usual order, $X=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ is order-isomorphic to $\{-1,-2,-3, \ldots\}$ through $\frac{1}{n} \mapsto-n$ for $n \in \mathbb{N}$. Then $O T(X) \cong O T(\{-1,-2,-3, \ldots\})$ by Proposition 1.1. Since $O T(\{-1,-2,-3, \ldots\})$ is a regular semigroup by Theorem 2.2.1, it follows that $O T(X)$ is a regular semigroup.

It is natural to ask that whether $O T(X \cup\{0\})$ is a regular semigroup. Note that 1 and 0 are the maximum element and the minimum element of $X \cup\{0\}$,
respectively. Since an infinite subset of \mathbb{Z} cannot have both a maximum element and a minimum element, it follows that $X \cup\{0\}$ is not order-isomorphic to any chain of integers. However, we can show by Theorem 2.1.6 that $O T(X \cup\{0\})$ is a regular semigroup. To prove this, let $\alpha \in O T(X \cup\{0\})$. Then $1 \alpha=\max (\operatorname{ran} \alpha)$ and $0 \alpha=\min (\operatorname{ran} \alpha)$. Let $m \in \mathbb{N} \backslash\{1\}$ be such that $\frac{1}{m} \notin \operatorname{ran} \alpha,\{x \in \operatorname{ran} \alpha \mid x<$ $\left.\frac{1}{m}\right\} \neq \varnothing$ and $\left\{x \in \operatorname{ran} \alpha \left\lvert\, \frac{1}{m}<x\right.\right\} \neq \varnothing$. Since

$$
\begin{aligned}
& \varnothing \neq\left\{x \in \operatorname{ran} \alpha \left\lvert\, x<\frac{1}{m}\right.\right\} \subseteq\left\{\frac{1}{m+1}, \frac{1}{m+2}, \ldots\right\} \cup\{0\} \\
& \varnothing \neq\left\{x \in \operatorname{ran} \alpha \left\lvert\, \frac{1}{m}<x\right.\right\} \subseteq\left\{1, \frac{1}{2}, \ldots, \frac{1}{m-1}\right\}
\end{aligned}
$$

it follows clearly both $\max \left(\left\{x \in \operatorname{ran} \alpha \left\lvert\, x<\frac{1}{m}\right.\right\}\right)$ and $\min \left(\left\{x \in \operatorname{ran} \alpha \left\lvert\, \frac{1}{m}<x\right.\right\}\right)$ exist. Hence by Theorem 2.1.6, α is a regular element of $O T(X \cup\{0\})$.

Example 2.2.10. Let $X=[0,1) \cup(2,3]$ with the natural order. Then $O T(X)$ is not regular. To prove this, define $\alpha \in O T([0,1))$ be as in Lemma 2.2.4. Then $\operatorname{ran} \alpha=\left[\frac{0+1}{2}, \frac{0+3}{4}\right)=\left[\frac{1}{2}, \frac{3}{4}\right)$. Define $\bar{\alpha}: X \rightarrow \mathbb{R}$ by

Thus, $\bar{\alpha} \in O T(X)$ and $\operatorname{ran} \bar{\alpha}=\operatorname{ran} \alpha \cup(2,3]=\left[\frac{1}{2}, \frac{3}{4}\right) \cup(2,3]$. Since $\frac{4}{5} \in X \backslash \operatorname{ran} \bar{\alpha}$,

$$
6 \text { 6) }\left\{x \in \underset{\operatorname{ran} \alpha}{\alpha} \left\lvert\, x<\frac{4}{5}\right.\right\}=\left[\frac{1}{2}, \frac{3}{4}\right)
$$

it follows that neither $\max \left(\left\{x \in \operatorname{ran} \bar{\alpha} \left\lvert\, x<\frac{4}{5}\right.\right\}\right)$ nor $\min \left(\left\{x \in \operatorname{ran} \bar{\alpha} \left\lvert\, \frac{4}{5}<x\right.\right\}\right)$ exists. By Theorem 2.1.6, $\bar{\alpha}$ is not a regular element of $O T(X)$.

A natural question arises. If $X=[0,1) \cup[2,3]$ or $[0,1] \cup(2,3]$, is $O T(X)$ a regular semigroup? The following theorem gives a general result. This result indicates that this semigroup $O T(X)$ is a regular semigroup.

Theorem 2.2.11. Let $X=I_{1} \cup I_{2} \cup \ldots \cup I_{n}$ where $n>1$,
I_{i} is an interval in \mathbb{R} for all $i \in\{1,2, \ldots, n\}$,
for $i \in\{1,2, \cdots, n-1\}, x<y$ for all $x \in I_{i}$ and $y \in I_{i+1}$,
$I_{i} \cup I_{i+1}$ is not an interval in \mathbb{R},
then $O T(X)$ is regular if and only if the following three conditions hold.
(i) $\min \left(I_{1}\right)$ exists.
(ii) $\max \left(I_{n}\right)$ exists.
(iii) For each $i \in\{1,2, \ldots, n-1\}$, $\max \left(I_{i}\right)$ or $\min \left(I_{i+1}\right)$ exists.

Proof. We shall show by contrapositive that if $O T(X)$ is regular, then (i), (ii) and (iii) hold. Assume that at least one of (i), (ii) and (iii) is not true.

Case $1: \min \left(I_{1}\right)$ does not exist. By the proofs of Lemma 2.2.3 and Lemma 2.2.4, there exists an element $\alpha \in O T\left(\overline{\left.I_{1}\right) \text { such that }}\right.$

$$
\begin{equation*}
\operatorname{ran} \alpha \text { has a lower bound in } I_{1} \text { and } \min (\operatorname{ran} \alpha) \text { does not exist. } \tag{2}
\end{equation*}
$$

Define $\bar{\alpha}: X \rightarrow X$ by

Since $\alpha \in O T\left(I_{1}\right)$, by (1), $\bar{\alpha} \in O T(X)$. Also, $\operatorname{ran} \bar{\alpha}=\operatorname{ran} \alpha \cup I_{2} \cup \ldots \cup I_{n}$. By (1) and (2) $\operatorname{ran} \bar{\alpha}$ has a lower bound and $\min (\operatorname{ran} \bar{\alpha})$ does not exist. By Theorem

Case 2 : $\max \left(I_{n}\right)$ does not exist. By the proofs of Lemma 2.2.2 and Lemma 2.2.4, there is anelement $\beta \in O T\left(I_{n}\right)$ such that 9 ? $\operatorname{ran} \beta$ has an upper bound in I_{n} and $\max (\operatorname{ran} \beta)$ does not exist.

Define $\bar{\beta}: X \rightarrow X$ by

$$
x \bar{\beta}= \begin{cases}x & \text { if } x \in I_{1} \cup \ldots \cup I_{n-1} \\ x \beta & \text { if } x \in I_{n}\end{cases}
$$

Since $\beta \in O T\left(I_{n}\right)$, by (1), $\bar{\beta} \in O T(X)$. We also have $\operatorname{ran} \bar{\beta}=I_{1} \cup \ldots \cup I_{n-1} \cup \operatorname{ran} \beta$. It follows from (1) and (3) that $\operatorname{ran} \bar{\beta}$ has an upper bound and $\max (\operatorname{ran} \bar{\beta})$ does not exist. By Theorem 2.1.6, $\bar{\beta}$ is not regular in $O T(X)$.

Case 3: $\min \left(I_{1}\right)$ exists, $\max \left(I_{n}\right)$ exists and there exists $j \in\{1,2, \ldots, n-1\}$ such that neither $\max \left(I_{j}\right)$ nor $\min \left(I_{j+1}\right)$ exists. By the proof of Lemma 2.3.4, there are elements $\gamma_{1} \in O T\left(I_{j}\right)$ and $\gamma_{2} \in O T\left(I_{j+1}\right)$ such that
$\operatorname{ran} \gamma_{1}$ has an upper bound in I_{j} and $\max \left(\operatorname{ran} \gamma_{1}\right)$ does not exist.
and
ran γ_{2} has a lower bound in I_{j+1} and $\min \left(\operatorname{ran} \gamma_{2}\right)$ does not exist.
Define $\bar{\gamma}: X \rightarrow X$ by

$$
x \bar{\gamma}= \begin{cases}x \gamma_{1} & \text { if } x \in I_{j} \\ x \gamma_{2} & \text { if } x \in I_{j+1} \\ x & \text { if } x \in X \backslash\left(I_{j} \cup I_{j+1}\right) .\end{cases}
$$

Since $\gamma_{1} \in O T\left(I_{j}\right)$ and $\gamma_{2} \in O T\left(I_{j+1}\right)$, it follows from (1) that $\bar{\gamma} \in O T(X)$. Moreover,

$$
\operatorname{ran} \bar{\gamma} \neq I_{1} \cup \ldots I_{j-1} \cup \operatorname{ran} \gamma_{1} \cup \operatorname{ran} \gamma_{2} \cup I_{j+2} \cup \ldots \cup I_{n} .
$$

Let $a \in I_{j}$ be an upper bound of $\underset{\operatorname{ran}}{\gamma_{1}}$, By (4), $a \in I_{1} \backslash \operatorname{ran} \gamma_{1}$. Then $a \in X \backslash \operatorname{ran} \bar{\gamma}$,

$$
\begin{equation*}
\operatorname{ran} \bar{\gamma}=\{x \in \operatorname{ran} \bar{\gamma} \nmid x<a\} \dot{\cup}\{x \in \operatorname{ran} \bar{\gamma} \mid a<x\} \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& \{x \in \operatorname{ran} \bar{\gamma} \mid a<x\}=\operatorname{ran} \gamma_{2} \cup I_{j+2} \cup \ldots I_{n} . \tag{7}
\end{align*}
$$

By (1), (4) and (6), $\max \{x \in \operatorname{ran} \bar{\gamma} \mid x<a\}$ does not exist. Also, by (1), (5) and (7), $\min \{x \in \operatorname{ran} \bar{\gamma} \mid a<x\}$ does not exist. Hence by Theorem 2.1.6, $\bar{\gamma}$ is not regular in $O T(X)$.

For the converse, assume that (i), (ii) and (iii) hold. Note that by (1),
$\min (X)=\min \left(I_{1}\right)$ and $\max (X)=\max \left(I_{n}\right)$. Let $\alpha \in O T(X)$. Since α is order-preserving, $\min (\operatorname{ran} \alpha)=(\min (X)) \alpha$ and $\max (\operatorname{ran} \alpha)=(\max (X)) \alpha$. Let $c \in X \backslash \operatorname{ran} \alpha$ be such that $\{x \in \operatorname{ran} \alpha \mid x<c\} \neq \varnothing$ and $\{x \in \operatorname{ran} \alpha \mid c<x\} \neq \varnothing$. Then

$$
\begin{equation*}
X=\{x \in \operatorname{ran} \alpha \mid x<c\} \alpha^{-1} \dot{\cup}\{x \in \operatorname{ran} \alpha \mid c<x\} \alpha^{-1} \tag{8}
\end{equation*}
$$

and by Lemma 2.2.1,

$$
\begin{equation*}
\text { for all } s \in\{x \in \operatorname{ran} \alpha \mid x<c\} \alpha^{-1} \text { and } t \in\{x \in \operatorname{ran} \alpha \mid c<x\} \alpha^{-1}, s<t \tag{9}
\end{equation*}
$$

From (9) and (10), we have that
either $\quad\{x \in \operatorname{ran} \alpha \mid x<c\} \alpha^{-1}=I_{1} \cup I_{2} \ldots \cup I_{k}$ and

$$
\{x \in \operatorname{ran} \alpha \mid c<x\} \alpha^{-1}=I_{k+1} \cup \ldots \cup I_{n} \text { for some } k \in\{1,2, \ldots, n-1\}
$$

or \quad there exists $k \in\{1,2, \ldots, n\}$ such that $I_{k}=A \dot{\cup} B, A$ and B are nonempty interval, $a<b$ for all $a \in A$ and $b \in B$,
$\{x \in \operatorname{ran} \alpha \mid x<c\} \alpha^{-1}=I_{1} \cup I_{2} \ldots \cup I_{k-1} \cup A$ and
$\{x \in \operatorname{ran} \alpha \mid c<x\} \alpha^{-1}=B \cup I_{k+1} \cup \ldots \cup I_{n}$.
By this fact, the assumption and the property of interval in \mathbb{R}, either $\max (\{x \in$ $\left.\operatorname{ran} \alpha \mid x<c\} \alpha^{-1}\right)$ or $\min \left(\{x \in \operatorname{ran} \alpha \mid c<x\} \alpha^{-1}\right)$ exists. Since $\{x \in \operatorname{ran} \alpha \mid x<$ $c\}=\left(\{x \in \operatorname{ran} \alpha \mid x<c\} \alpha^{-1}\right) \alpha$ and $\{x \in \operatorname{ran} \alpha \mid c<x\}=(\{x \in \operatorname{ran} \alpha \mid c<$ $\left.x\} \alpha^{-1}\right) \alpha$ and α is order-preserving, it follows that either $\max (\{x \in \operatorname{ran} \alpha \mid x<c\})$ or $\min (\{x \in \operatorname{ran} \alpha \mid c<x\})$ exists.

From obove Theorem, we can determine the regularity of $O T(X)$ for various kinds of $X \subseteq \mathbb{R}$, for examples, $O T([0,1) \cup[2,3) \cup[4,5])$ is a regular semigroup and $O T((0,1) \cup[2,3) \cup[4,5])$ is not a regular semigroup. $Q\}$

CHAPTER III

REGULAR ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON DICTIONARIES PARTIALLY ORDERED SETS OF CHAINS

In this chapter, we characterize the regularity of $O T\left(X \times X, \leq_{d}\right)$ when X is one of the following chains : chains of integers, intervals in \mathbb{R} and intervals in a subfield of \mathbb{R}. Theorem 2.1.6 is a main tool for these characterizations.

3.1 Chains of integers

The following lemma gives an important necessary condition for $O T\left(X \times X, \leq_{d}\right)$ to be regular when X is any chain.

Lemma 3.1.1. Let X be a chain. If $O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup, then X has a maximum and a minimum.

Proof. Suppose that $O T\left(X \times X, \leq_{d}\right)$ is regular. If $|X|=1$, then we are done. Next, assume that $|X|>1$. Let $u, v \in X$ be such that $u<v$. Define $\alpha: X \times X \rightarrow X \times X$ by

$(\{x\} \times X) \alpha=\{(u, x)\} \quad$ for all $x \in X$
and so

$$
\begin{equation*}
\operatorname{ran} \alpha=\{u\} \times X \tag{2}
\end{equation*}
$$

We have that for $x, y \in X$,

$$
\begin{equation*}
x \leq y \Rightarrow(u, x) \leq_{d}(u, y) \tag{3}
\end{equation*}
$$

Then (1) and (3) give the fact that α is order-preserving on ($X \times X, \leq_{d}$). Hence $\alpha \in O T\left(X \times X, \leq_{d}\right)$. Since $O T\left(X \times X, \leq_{d}\right)$ is regular, we have that $\alpha=\alpha \beta \alpha$ for some $\beta \in O T\left(X \times X, \leq_{d}\right)$. By Lemma 2.1.2, $\left.(\beta \alpha)\right|_{\operatorname{ran} \alpha}$ is the identity map on $\operatorname{ran} \alpha$ which implies from (2) that

$$
\begin{equation*}
(u, x) \beta \alpha=(u, x) \quad \text { for all } x \in X \tag{4}
\end{equation*}
$$

Since $u<v$, it follows that

$$
(u, x)<_{d}(v, v) \text { for all } x \in X .
$$

Thus $(u, x) \beta \alpha \leq_{d}(v, v) \beta \alpha$ for all $x \in X$. This implies by (4) that

$$
\begin{equation*}
(u, x) \leq_{d}(v, v) \beta \alpha \text { for all } x \in X . \tag{5}
\end{equation*}
$$

Since $(v, v) \beta \alpha \in \operatorname{ran} \alpha$, by $(2),(v, v) \beta \alpha=(u, f)$ for some $f \in X$. Hence from (5), $(u, x) \leq_{d}(u, f)$ for all $x \in X$
which implies that $x \leq f$ for all $x \in X$. This shows that f is the maximum of X. To show that X also has a minimum, let $\gamma: X \times X \rightarrow X \times X$ be defined by

$$
\begin{equation*}
(x, y) \gamma=(v, x) \text { for all } x, y \in X . \tag{6}
\end{equation*}
$$

Then

$$
(\{x\} \times X) \gamma=\{(v, x)\} \quad \text { for all } x \in X
$$

we deduce from (6) and (8) that $\gamma \in O T\left(X \times X, \leq_{d}\right)$. Since $O T\left(X \times X, \leq_{d}\right)$ is regular, we have that $\gamma=\gamma \lambda \gamma$ for some $\lambda \in O T\left(X \times X, \leq_{d}\right)$. By Lemma 2.1.2, $\left.(\lambda \gamma)\right|_{\operatorname{ran} \gamma}=\left.1\right|_{\mathrm{ran} \gamma}$, so by (7), we have

$$
\begin{equation*}
(v, x) \lambda \gamma=(v, x) \quad \text { for all } x \in X \tag{9}
\end{equation*}
$$

Since $u<v$, it follows that

$$
(u, u)<_{d}(v, x) \text { for all } x \in X
$$

and so $(u, u) \lambda \gamma \leq_{d}(v, x) \lambda \gamma$ for all $x \in X$. This implies by (9) that

$$
\begin{equation*}
(u, u) \lambda \gamma \leq_{d}(v, x) \quad \text { for all } x \in X \tag{10}
\end{equation*}
$$

But $(u, u) \lambda \gamma \in \operatorname{ran} \gamma$, so $(u, u) \lambda \gamma=(v, e)$ for some $e \in X$ by (7). Hence from (10),

$$
(v, e) \leq_{d}(v, x) \text { for all } x \in X
$$

which implies that $e \leq x$ for all $x \in X$. Hence e is the minimum of X.
Hence X has a maximum and a minimum, and the proof is complete.
Theorem 3.1.2. For $\varnothing \neq X \subseteq \mathbb{Z}, O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup if and only if X is finite.

Proof. If $O T\left(X \times X, \leq_{d}\right)$ is regular, then by Lemma 3.1.1, $\max (X)$ and $\min (X)$ exist. But X is a nonempty subset of \mathbb{Z}, so we have that X must be finite.

Conversely, if X is a finite set, then $\left(X \times X, \leq_{d}\right)$ is a finite chain. It follows that $\left(X \times X, \leq_{d}\right)$ is order-isomorphic to a (finite) chain of integers. Hence by Theorem 2.2.1, $O T\left(X \times X, \leq_{d}\right)$ is regular.

Remark 3.1.3. By Theorem 2.2.1 and Theorem 3.1.2, $O T(\mathbb{Z})$ is regular and $O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$ is not regular, respectively, In addition, $O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$ contains an infinitely many nonregular element. To see this, let $c \in \mathbb{Z}$ and define α_{c} :

From the proof of Lemma 3.1.1, $\alpha_{c} \in O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$ and $\operatorname{ran}\left(\alpha_{c}\right)=\{c\} \times \mathbb{Z}$. Since

$$
(c, x){<_{d}}_{d}(c+1,0) \quad \text { for all } x \in \mathbb{Z}
$$

we deduce that $(c+1,0)$ is an upper bound of $\operatorname{ran}\left(\alpha_{c}\right)$. But $\{c\} \times \mathbb{Z}$ has no maximum, so by Theorem 2.1.6, α_{c} is not a regular element of $O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$.

Hence

$$
\left\{\alpha_{c} \mid c \in \mathbb{Z}\right\} \subseteq O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right) \backslash \operatorname{Reg}\left(O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)\right)
$$

If $c_{1} \neq c_{2}$ in \mathbb{Z}, then $\operatorname{ran}\left(\alpha_{c_{1}}\right)=\left\{c_{1}\right\} \times \mathbb{Z} \neq\left\{c_{2}\right\} \times \mathbb{Z}=\operatorname{ran}\left(\alpha_{c_{2}}\right)$ which implies that $\alpha_{c_{1}} \neq \alpha_{c_{2}}$. Hence $\left\{\alpha_{c} \mid c \in \mathbb{Z}\right\}$ is an infinite subset of $O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$ $\backslash \operatorname{Reg}\left(O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)\right)$. Therefore, we deduce that $O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$ contains an infinitely many nonregular elements. Since every constant map in $O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$ is a regular element, it follows that $O T\left(\mathbb{Z} \times \mathbb{Z}, \leq_{d}\right)$ also contains an infinitely many regular elements.

From the above proof, we can show similarly by Theorem 2.1.6 that if X is an infinite subset of \mathbb{Z}, then $O T\left(X \times X, \leq_{d}\right)$ contains an infinitely many nonregular elements and an infinitely many regular elements.

3.2 Intervals in \mathbb{R}

We shall show that for an interval X in $\mathbb{R}, O T\left(X \times X, \leq_{d}\right)$ is regular if and only if X is closed and bounded.

Lemma 3.2.1. Let $a, b \in \mathbb{R}$ be such that $a<b$. If A and B are nonempty subsets of $[a, b] \times[a, b]$ such that

$$
\begin{equation*}
[a, b] \times[a, b]=A \dot{\cup} B \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for all }(x, y)^{\circ} \in A^{\widehat{2}} \text { and } /\left(x^{\prime}, y^{\prime}\right) \in \widehat{B},(x, y)<\widetilde{d}\left(x^{\prime}, y^{\prime}\right) \text {, } \tag{2}
\end{equation*}
$$

then $\sup (A)=\inf (B)$, hence either $\sup (A)=\max (A)$ or $\inf (B)=\min (B)$.
Proof. Since $(a, a)=\min \left([a, b] \times[a, b], \leq_{d}\right)$ and $(b, b)=\max \left([a, b] \times[a, b], \leq_{d}\right)$, we have $(a, a) \in A$ and $(b, b) \in B$. Let

$$
\begin{align*}
A_{1} & =\{x \in[a, b] \mid(x, a) \in A\}, \\
B_{1} & =\{x \in[a, b] \mid(x, a) \in B\} . \tag{3}
\end{align*}
$$

By (1),

$$
\begin{aligned}
{[a, b] \times\{a\} } & =(A \dot{\cup} B) \cap([a, b] \times\{a\}) \\
& =(A \cap([a, b] \times\{a\})) \dot{\cup}(B \cap([a, b] \times\{a\})) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
[a, b]=A_{1} \dot{\cup} B_{1} . \tag{4}
\end{equation*}
$$

If $x \in A_{1}$ and $y \in B_{1}$, then by (3), $(x, a) \in A$ and $(y, a) \in B$. Hence $(x, a)<_{d}(y, a)$ by (2) which implies that $x<y$. Therefore we have that

$$
\begin{equation*}
\text { for all } x \in A_{1} \text { and } y \in B_{1}, \quad x<y \text {. } \tag{5}
\end{equation*}
$$

Since $(a, a) \in A$, we have by (3) that $a \in A_{1}$.
Case $1: B_{1}=\varnothing$. By $(3),(b, a) \notin B$. Then $(b, a) \in A$ by (1). By the definition of \leq_{d}, we have

$$
\text { for all }(x, y) \in[a, b) \times[a, b],(x, y)<_{d}(b, a) \notin B
$$

This fact, (1) and (2) imply that $B \subseteq\{b\} \times(a, b]$. Let

$$
A_{2}=\{y \in[a, b] \mid(b, y) \in A\} \text { and } B_{2}=\{y \in[a, b] \mid(b, y) \in B\}
$$

Then $a \in A_{2}$ and $b \in B_{2}$ since $(b, a) \in A$ and $(b, b) \in A$. From (1) and (2), we respectively have

These imply that $\sup \left(A_{2}\right)=\inf \left(B_{2}\right)$, say c. Since $B \subseteq\{b\} \times(a, b]$, it follows from (2) that either $B=\{b\} \times(c, b]$ or $B=\{b\} \times[c, b]$. Then we deduce from (1) that

$$
\begin{aligned}
& B=\{b\} \times(c, d] \Rightarrow A=([a, b) \times[a, b]) \cup(\{b\} \times[a, c]), \\
& B=\{b\} \times[c, d] \Rightarrow A=([a, b) \times[a, b]) \cup(\{b\} \times[a, c)) .
\end{aligned}
$$

Consequently, $\max (A)=(b, c)=\inf (B)$.

Case 2: $B_{1} \neq \varnothing$. Then $b \in B_{1}$ by (4) and (5). It follows that $\sup \left(A_{1}\right)=\inf \left(B_{1}\right)$, say e. Let

$$
\begin{equation*}
A_{3}=\{y \in[a, b] \mid(e, y) \in A\} \text { and } B_{3}=\{y \in[a, b] \mid(e, y) \in B\} . \tag{6}
\end{equation*}
$$

By (1) and (2), we have respectively that

$$
\begin{equation*}
[a, b]=A_{3} \cup B_{3} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for all } x \in A_{3} \text { and } y \in B_{3}, x<y \text {. } \tag{8}
\end{equation*}
$$

Subcase 2.1: $A_{3}=\varnothing$. By (6) and (7), we have $(e, a) \notin A$ and $(e, a) \in B$. Since $(a, a) \in A$, we have $a<e$. By the definition of \leq_{d}, (1) and (2), we have

$$
A=[a, e) \times[a, b] \text { and } B=[e, b] \times[a, b],
$$

and thus $\min (B)=(e, a)$ which is an upper bound of A. If $(u, v)<_{d}(e, a)$, then $u<e$. But $u<e$ implies that $(u, v)<_{d}\left(\frac{u+e}{2}, v\right)$ and both belong to $[a, e) \times[a, b]$, so (u, v) is not an upper bound of A. This shows that $\sup (A)=(e, a)$. Hence $\sup (A)=(e, a)=\inf (B)$.

Subcase 2.2 : $B_{3}=\varnothing$. Then by (6) and $(7),(e, b) \notin B$ and $(e, b) \in A$. Thus by (1) and (2),

$$
6 \text { 6 } A=[a, e] \times[a, b] \text { and } B=(e, b] \times[a, b] \text {. }
$$

Hence $\max (A)=(e, b)$ and we can show similarly that $\inf (B)=(e, b)$.
Subcase 2.3: $A_{3} \neq \varnothing$ and $B_{3} \neq \varnothing$. From (7) and (8), we have $\sup \left(A_{3}\right)=$ $\inf \left(B_{3}\right)$, say f.

If $f \in A_{3}$, then $(e, f) \in A$ and $(e, f) \notin B$ by (6) and (7), so from (1) and (2), we have

$$
\begin{aligned}
A & =([a, e) \times[a, b]) \cup(\{e\} \times[a, f]), \\
B & =((e, b] \times[a, b]) \cup(\{e\} \times(f, b])
\end{aligned}
$$

which implies that $\max (A)=(e, f)$. We can see that (e, f) is a lower bound of B. If $(u, v)>_{d}(e, f)$, then $u>e$ or $u=e$ and $v>f$. Hence

$$
\begin{aligned}
u>e \Rightarrow & (u, v),\left(\frac{u+e}{2}, v\right) \in(e, b] \times[a, b] \subseteq B \\
& \text { and }\left(\frac{u+e}{2}, v\right)<_{d}(u, v), \\
u=e \text { and } v>f \Rightarrow & (u, v),\left(u, \frac{v+f}{2}\right) \in\{e\} \times(f, b] \subseteq B \\
& \text { and }\left(u, \frac{v+f}{2}\right)<_{d}(u, v) .
\end{aligned}
$$

Consequently, $\inf (B)=(e, f)$. Hence $\sup (A)=(e, f)=\inf (B)$.

$$
\begin{aligned}
& \text { If } f \in B_{3} \text {, then }(e, f) \in B \text { and }(e, f) \notin A \text {, by }(6) \text { and }(7) \text {, so } \\
& \qquad \begin{array}{c}
A=([a, e) \times[a, b]) \cup(\{e\} \times[a, f)), \\
B=([e, b] \times[a, b]) \cup(\{e\} \times[f, b])
\end{array}
\end{aligned}
$$

by (1) and (2). Thus $\min (B)=(e, f)$. We can show similarly that $\sup (A)=(e, f)$.
Hence $\sup (A)=(e, f)=\inf (B)$.
Therefore the proof is complete.
Theorem 3.2.2. For an interval X in $\mathbb{R}, O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup if and only if X is closed and bounded.

Proof. Assume that the semigroup $O T\left(X \times X, \leq_{d}\right)$ is regular. By Lemma 3.1.1, X has a maximum and a minimum, say a and b, respectively. Hence $X=[a, b]$.

For the converse, assume that $X /=[a, b]$ where $a, b \in \mathbb{R}$ and $a<b$. We shall prove that $O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup by Theorem 2.1.6 and Lemma 3.2.1 Let $\alpha \in O T(X \times X, \leq d)$. Since α is order-preserving, $(a, a)=\min (X \times$ $\left.X, \leq_{d}\right)$ and $(b, b)=\max \left(X \times X, \leq_{d}\right)$, it following that $(a, a) \alpha=\min (\operatorname{ran} \alpha)$ and $(b, b) \alpha=\max (\operatorname{ran} \alpha)$. Next, let $(e, f) \in(X \times X) \backslash \operatorname{ran} \alpha$ be such that

$$
A=\left\{(x, y) \in \operatorname{ran} \alpha \mid(x, y)<_{d}(e, f)\right\} \neq \varnothing
$$

and

$$
B=\left\{(x, y) \in \operatorname{ran} \alpha \mid(e, f)<_{d}(x, y)\right\} \neq \varnothing .
$$

This implies that

$$
\begin{array}{r}
A \alpha^{-1} \neq \varnothing, B \alpha^{-1} \neq \varnothing \\
{[a, b] \times[a, b]=A \alpha^{-1} \dot{\cup} B \alpha^{-1}}
\end{array}
$$

and by Lemma 2.1.1,

$$
\text { for all } x \in A \alpha^{-1} \text { and } y \in B \alpha^{-1}, x<y
$$

From these facts and Lemma 3.2.1, $\sup \left(A \alpha^{-1}\right)=\inf \left(B \alpha^{-1}\right)$. If $\sup \left(A \alpha^{-1}\right)=$ $\max \left(A \alpha^{-1}\right)$, then $\left(\max \left(A \alpha^{-1}\right)\right) \alpha=\max (A)$ since α is order-preserving. Also, if $\inf \left(B \alpha^{-1}\right)=\min \left(B \alpha^{-1}\right)$, then $\left(\min \left(B \alpha^{-1}\right)\right) \alpha=\min (B)$. Hence by Theorem 2.1.6, α is a regular element of $O T\left(X \times X, \leq_{d}\right)$, as desired.

As a direct consequence of Theorem 2.2.6 and Theorem 3.2.2, we have
Corollary 3.2.3. Let X be an interval in \mathbb{R}. Then the following statements are equivalent.
(i) $O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup.
(ii) $O T(X)$ is a regular semigroup.
(iii) X is closed and bounded.

Remark 3.2.4. We define \leq_{d} on $[a, b] \times\{1,2, \ldots, n\}$, where $a<b$ in \mathbb{R} and $n \in \mathbb{N}$, as before, that is,

Then $\left([a, b] \times\{1,2, \ldots, n\}, \leq_{d}\right)$ is a chain. It can be easily seen that

$$
\left([a, b] \times\{1,2, \ldots, n\}, \leq_{d}\right) \text { and }\left(\bigcup_{i=0}^{n-1}[a, b]+2 i(b-a), \leq\right)
$$

are order-isomorphic through the map $(x, k) \mapsto x+2(k-1)(b-a)$ where \leq is the natural order of real numbers. For an example,

$$
\left([1,2] \times\{1,2,3,4\}, \leq_{d}\right) \cong([1,2] \cup[3,4] \cup[5,6] \cup[7,8], \leq)
$$

By Theorem 2.2.6, $O T\left(\bigcup_{i=0}^{n-1}[a, b]+2 i(b-a), \leq\right)$ is regular. Hence $O T([a, b] \times$ $\left.\{1,2, \ldots, n\}, \leq_{d}\right)$ is a regular semigroup.

3.3 Intervals in Subfields of \mathbb{R}

We shall show in this section that if X is a nontrivial interval in a subfield F of \mathbb{R}, then $O T\left(X \times X, \leq_{d}\right)$ is regular only the case that $F=\mathbb{R}$ and X is closed and bounded.

Lemma 3.3.1. If X is a nontrivial interval in a proper subfield F of \mathbb{R}, then $O T\left(X \times X, \leq_{d}\right)$ is not a regular semigroup.

Proof. Let $a, b \in X$ be such that $a<b$. Then there is an irrational number $e \in \mathbb{R} \backslash F$ such that $a<e<b$ (see the proof of Theorem 2.2.7). Thus

$$
X=((-\infty, a) \cap X) \cup([a, e) \cap X) \cup((e, \infty) \cap X)
$$

Hence

$$
X \times X=(((-\infty, a) \cap X) \times X) \cup(([a, e) \cap X) \times X) \cup(((e, \infty) \cap X) \times X)
$$

Define $\alpha: X \times X \xrightarrow{\longrightarrow} \times X$ by

$$
(x, y) \alpha=\left\{\begin{array}{cc}
(x, a) & \text { if } x \in(-\infty, a) \cap X \text { and } y \in X, \\
\left(\frac{a+x}{2}, a\right) & \text { if } x \in[a, e) \cap X \text { and } y \in X, \\
(x, a) & \text { if } x \in(e, \infty) \cap X \text { and } y \in X .
\end{array}\right.
$$

We can see from the proof of Theorem 2.2.7 that $\alpha \in O T\left(X \times X, \leq_{d}\right)$ and

$$
\operatorname{ran} \alpha=\left(\left(\left(-\infty, \frac{a+e}{2}\right) \cap X\right) \dot{\cup}((e, \infty) \cap X)\right) \times\{a\} .
$$

Let $q \in\left(\frac{a+e}{2}, e\right) \cap X$. Then $(q, a) \in(X \times X) \backslash \operatorname{ran} \alpha$. We also have from the definition of α that

$$
\left\{(x, y) \in \operatorname{ran} \alpha \mid(x, y)<_{d}(q, a)\right\}=\left(\left(-\infty, \frac{a+e}{2}\right) \cap X\right) \times\{a\}
$$

and

$$
\left\{(x, y) \in \operatorname{ran} \alpha \mid(q, a)<_{d}(x, y)\right\}=((e, \infty) \cap X) \times\{a\}
$$

It can be seen from the proof of Theorem 2.2.7 that none of $\max \left(\left(\left(-\infty, \frac{a+e}{2}\right) \cap\right.\right.$ $X) \times\{a\})$ and $\min (((e, \infty) \cap X) \times\{a\})$ exists. By Theorem 2.1.6, α is not a regular element of $O T\left(X \times X, \leq_{d}\right)$.

As a direct consequence of Lemma 3.3.1, we have
Corollary 3.3.2. It X is a nontrivial interval in \mathbb{Q}, then $O T\left(X \times X, \leq_{d}\right)$ is not a regular semigroup

Remark 3.3.3. Notice that the converse of Lemma 3.1.1 is true under the assumption that $\varnothing \neq X \subseteq \mathbb{Z}$ or X is an interval in \mathbb{R}. This follows from Theorem 3.1.2 and Theorem 3.2.2. However, the converse of Lemma 3.1.1 is not generally true. To see this, let $a, b \in \mathbb{Q}$ be such that $a<b$. Then $[a, b] \cap \mathbb{Q}$ is a nontrivial interval in \mathbb{Q}. By Corollary 3.3.2, OT $\left(([a, b] \cap \mathbb{Q}) \times([a, b] \cap \mathbb{Q}), \leq_{d}\right)$ is not a regular semigroup. However, $b=\max ([a, b] \cap \mathbb{Q})$ and $a=\min ([a, b] \cap \mathbb{Q})$.

Theorem 3.3.4. Let X be a nontrivial interval in a subfield F of \mathbb{R}. Then $O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup if and only if $F=\mathbb{R}$ and X is closed and bounded.

Proof. If $F \neq \mathbb{R}$, then by Lemma 3.3.1, $O T\left(X \times X, \leq_{d}\right)$ is not regular. Therefore if $O T\left(X \times X, \leq_{d}\right)$ is regular, then $F=\mathbb{R}$, and hence by Theorem 3.2.2, X is

The converse holds by Theorem 3.2.2.
The following corollary is obtained from Theorem 2.2.7 and Theorem 3.3.4.
Corollary 3.3.5. Let X be a nontrivial interval in a subfield F of \mathbb{R}. Then the following statements are equivalent.
(i) $O T\left(X \times X, \leq_{d}\right)$ is a regular semigroup.
(ii) $O T(X)$ is a regular semigroup.
(iii) $F=\mathbb{R}$ and X is closed and bounded.

REFERENCES

[1] Edwards, C. C. and Anderson, M. Lattice properties of the symmetric weakly inverse semigroup on a totally ordered set. J. Austral. Math. Soc. Ser. A 31(1981): 395-404.
[2] Fernandes, V. H. Semigroups of order-preserving mappings on a finite chain: A new class of divisors. Semigroup Forum 54(1997): 203-236.
[3] Higgins, P. M. Techniques of semigroup theory. New York: Oxford University Press, 1992.
[4] Howie, J. M. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
[5] Kemprasit, Y. and Changphás, T. Regular order-preserving transformation semigroups. Bull. Austral. Math. Soc. 62(2000): 511-524.
[6] Kemprasit, Y. and Jaidee, S. Regularity and isomorphism theorems of generalized order-preserving transformation semigroups. Vietnam J. Math. 33(2000): 253-260.
[7] Kemprasit, Y. Order-preserving transformation semigroups whose bi-ideals and quasi-ideals coincide. Italian J. Pure and Appl. Math., to appear.
[8] Lyapin, E. S. Semigroups. Translations of Mathematical Monographs Vol.3. Providence, R.I.: Amer, Math. Soc., 1974.
[9] Rungrattrakoon, P. and Kemprasit, Y, Regularity of full order-preserving transformation semigroups on intervals in subfields of \mathbb{R}. East-West J. Spec. Vol. for NCAM 2003-2004 (2004): 107-110.

VITA

Name	Miss Winita Mora
Date of Birth	29 November 1980
Place of Birth	Trang, Thailand
Education	B.Sc.(Mathematics)(First Class Honors), Prince of Songkla
University, 2002	
Scholarship	The Ministry Development Staff Project Scholarship for the
	M.Sc.program (2 years)
Place of Work	Department of Mathematics, Faculty of Science, Prince of
Position	Songkla University, Songkhla 90110
	Instructorman

