สมาชิกปกติของกึ่งกรุปการแปลงที่รักษาอันดับ

นางสาววินิตา โมรา

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิด สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ISBN 974-14-2061-7 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS

Miss Winita Mora

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Mathematics

> Department of Mathematics Faculty of Science Chulalongkorn University Academic Year 2006 ISBN : 974-14-2061-7 Copyright of Chulalongkorn University

Thesis Title	REGULAR ELEMENTS OF ORDER-PRESERVING
	TRANSFORMATION SEMIGROUPS
By	Miss Winita Mora
Field of Study	Mathematics
Thesis Advisor	Professor Yupaporn Kemprasit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Mann

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

(Associate Professor Patanee Udomkavanich, Ph.D.)

(Professor Yupaporn Kemprasit, Ph.D.)

(Assistant Professor Amorn Wasanawichit, Ph.D.)

Sureeporn Chaopraknoi Member (Sureeporn Chaopraknoi, Ph.D.) วินิตา โมรา : สมาชิกปกติของกึ่งกรุปการแปลงที่รักษาอันดับ (REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS) อ. ที่ปรึกษา : ศาสตราจารย์ ดร. ยุพาภรณ์ เข็มประสิทธิ์, 33 หน้า. ISBN 974-14-2061-7.

เราเรียกสมาชิก x ของกึ่งกรุป S ว่า เป็นสมาชิกปกติ ถ้ามีสมาชิก $y \in S$ ซึ่ง x = xyxและเรียก S ว่าเป็น*กึ่งกรุปปกติ* ถ้าทุกสมาชิกของ S เป็นสมาชิกปกติ

เรากล่าวว่าการส่ง α <mark>จากเซตอันดับบางส่วน X</mark> ไปยังเซตอันดับบางส่วน Y เป็น*การส่งที่ รักษาอันดับ* ถ้า

สำหรับ x, $x' \in X$ ใด ๆ $x \leq x'$ ใน $X \implies x \alpha \leq x' \alpha$ ใน Y

สำหรับเซตอันดับบางส่วน X ให้ OT(X) เป็นกึ่งกรุปการแปลงที่รักษาอันดับของ X ภายใต้การ ประกอบ ให้ Z และ R เป็นเซตอันดับทุกส่วนของจำนวนเต็มและเซตของจำนวนจริง ตามลำดับ ภายใต้อันดับธรรมชาติ เป็นที่รู้กันแล้วว่า OT(X) เป็นกึ่งกรุปปกติสำหรับทุกเซตย่อยไม่ว่าง X ของ Z และสำหรับช่วง X ใน R, OT(X) เป็นกึ่งกรุปปกติ ก็ต่อเมื่อ X เป็นช่วงปิดที่มี ขอบเขต ยิ่งไปกว่านั้น สำหรับช่วง X ในฟิลด์ย่อย F ของ R ซึ่ง |X| > 1, OT(X) เป็นกึ่งกรุป ปกติ ก็ต่อเมื่อ $F = \mathbb{R}$ และ X เป็นช่วงปิดที่มีขอบเขต

ในการวิจัยนี้ เราให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับสมาชิกของ *OT(X)* ที่จะเป็น สมาชิกปกติ เมื่อ *X* เป็นเซตอันดับทุกส่วนใดๆ เราได้ประยุกต์ความรู้นี้มาพิสูจน์ผลที่ทราบกันแล้ว ข้างต้นด้วย

สำหรับเซตอันดับทุกส่วน (X, ≤) ใด ๆ *เซตอันดับบางส่วนแบบพจนานุกรม* ของ X คือ เซตอันดับทุกส่วน (X×X, ≤_d) โดย ≤_d นิยามบน X×X โดย

$$(a_1,b_1) \leq_d (a_2,b_2) \iff$$
 (i) $a_1 < a_2$ หรือ
(ii) $a_1 = a_2$ และ $b_1 \leq$

 b_2

เราประยุกต์การให้ลักษณะของสมาชิกปกติมาศึกษาว่าเมื่อใด $OT(X imes X, \leq_d)$ เป็นกึ่งกรุปปกติ เมื่อ X เป็นเซตย่อยไม่ว่างของ Z ช่วงใน $\mathbb R$ หรือ ช่วงในฟิลด์ย่อย F ของ $\mathbb R$

ภาควิชาคณิตศาสตร์	ลายมือชื่อนิสิต. วินิตา โษรา
สาขาวิชาคณิตศาสตร์	ลายมือชื่ออาจารย์ที่ปรึกษานุพางเด เงินปะเลิทธ์
ปีการศึกษา2549	1

4772474423 : MAJOR MATHEMATICS

KEY WORDS : REGULAR ELEMENTS / REGULAR SEMIGROUPS / ORDER-PRESERVING TRANSFORMATION SEMIGROUPS

WINITA MORA : REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS. THESIS ADVISOR : PROFESSOR YUPAPORN KEMPRASIT, Ph.D., 33 pp. ISBN 974-14-2061-7.

An element x of a semigroup S is called *regular* if there is an element $y \in S$ such that x = xyx and S is said to be a *regular semigroup* if every element of S is regular.

A mapping α from a partially ordered set X into a partially ordered set Y is said to be order-preserving if

for any
$$x, x' \in X$$
, $x \leq x'$ in $X \Rightarrow x\alpha \leq x'\alpha$ in Y .

The semigroup, under composition, of all order-preserving transformations of a partially ordered set X is denoted by OT(X). Let Z and R be the chain of integers and the chain of real numbers, respectively, under the natural order. It is known that OT(X) is regular for every nonempty subset X of Z and for an interval X in R, OT(X) is regular if and only if X is closed and bounded. Moreover, for a nontrivial interval X in a subfield F of R, OT(X) is regular if and only if $F = \mathbb{R}$ and X is closed and bounded.

In this research, we provide necessary and sufficient conditions for the elements of OT(X) to be regular when X is any chain. It is then applied to prove the above known results.

For a chain X, the dictionary partially ordered set of X is the chain $(X \times X, \leq_d)$ where \leq_d is defined by

$$(a_1, b_1) \leq_d (a_2, b_2) \Leftrightarrow$$
 (i) $a_1 < a_2$ or
(ii) $a_1 = a_2$ and $b_1 \leq b_2$.

The characterization of regular elements is applied to determine when $OT(X \times X, \leq_d)$ is a regular semigroup where X is a nonempty subset of \mathbb{Z} , an interval in \mathbb{R} or an interval in a subfield F of \mathbb{R} .

ACKNOWLEDGEMENTS

I am indebted to Professor Dr.Yupaporn Kemprasit, my thesis supervisor, for her kind and helpful advice in preparing and writing my thesis. I am also grateful to my thesis committee and all the lecturers during my study.

I acknowledge the 2-year support of the Ministry Development Staff Project Scholarship during my master program study.

Finally, I wish to express my gratitude to my beloved mother for her encouragement throughout my study.

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

page

ABSTRACT IN THAIiv			
ABSTRACT IN ENGLISH			
ACKNOWLEDGEMENTS			
INTRODUCTION			
CHAPTERS			
I PRELIMINARIES			
II REGULAR ELEMENTS OF ORDER-PRESERVING			
TRANSFORMATION SEMIGROUPS ON CHAINS6			
2.1 REGULAR ELEMENTS			
2.2 REGULAR SEMIGROUPS 13			
III REGULAR ORDER-PRESERVING TRANSFORMATION			
SEMIGROUPS ON DICTIONARY PARTIALLY			
ORDERED SETS OF CHAINS			
3.1 CHAINS OF INTEGERS			
3.2 INTERVALS IN \mathbb{R}			
3.3 INTERVALS IN SUBFIELDS OF $\mathbb R$			
REFERENCES			
VITA			

INTRODUCTION

Let X be a partially ordered set and OT(X) the semigroup, under composition, of all order-preserving transformations $\alpha : X \to X$.

It is known from [3, page 203] that OT(X) is a regular semigroup if X is a finite chain. Kemprasit and Changphas [5] extended this result to any chain which is order-isomorphic to a chain X where $X \subseteq \mathbb{Z}$, the set of integers with their natural order. Equivalently, OT(X) is regular for every nonempty subset of \mathbb{Z} with the usual order. Note that if the partially ordered sets X and Y are order-isomorphic, then the semigroups OT(X) and OT(Y) are isomorphic. It is also proved in [5] that for an interval X in \mathbb{R} , the set of real numbers with usual order, OT(X) is a regular semigroup if and only if X is closed and bounded. Rungrattrakoon and Kemprasit [9] extended this fact by showing that for a nontrivial interval X in a subfield F of \mathbb{R} , OT(X) is regular if and only if $F = \mathbb{R}$ and X is closed and bounded. Then it follows as a consequence that for a nontrivial interval X in \mathbb{Q} , the set of rational number, OT(X) is not a regular semigroup. In fact, the above result in [9] is a consequence of the main theorem in [7].

The regularity of semigroups of order-preserving partial transformations have been also studied. See [1], [2] and [5] for examples.

A standard isomorphism is provided in [8, page 222-223] as follows : For partially ordered sets X and Y, $OT(X) \cong OT(Y)$ if and only if X and Y are order-isomorphic or anti-order-isomorphic. In [6], the authors generalized full order-preserving transformation semigroups by using sandwich multiplication and investigated their regularity and also provided some isomorphism theorems.

For a chain X, let \leq_d denote the dictionary partial order on $X \times X$.

In this research, we extend the above results in [5] and [9]. The regular elements

of OT(X) are characterized when X is any chain. Then it is applied to prove those results and to determine the regularity of $OT(X \times X, \leq_d)$ when X is one of the following chains : chains of integers, intervals in \mathbb{R} and intervals in a subfield of \mathbb{R} .

Chapter I provides basic definitions and known results which will be used in this research. Also, see [3] and [4] for more details.

In Chapter II, the regular elements of OT(X) are characterized when X is any chain. Then this characterization is applied to prove the above known results of the regularity of OT(X) where X is a nonempty subset of Z, an interval in \mathbb{R} or an interval in a subfield of \mathbb{R} .

In Chapter III, the regularity of $OT(X \times X, \leq_d)$ is characterized by using the main result in Chapter II, when X is one of the following chains : chains of integers, intervals in \mathbb{R} and intervals in a subfield of \mathbb{R} .

CHAPTER I PRELIMINARIES

For a set X, let |X| denote the cardinality of X. The identity mapping on a nonempty set A is denoted by 1_A . The set of positive integers, the set of integers, the set of rational numbers and the set of real numbers are denoted by \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} , respectively. Note that they are chains with the natural order.

The following property of real numbers will be used. If X is an interval in \mathbb{R} and A, B are nonempty subsets of \mathbb{R} such that

$$X = A \cup B$$
 and $a < b$ for all $a \in A$ and $b \in B$,

then $\sup(A) = \inf(B)$.

An element a of a semigroup S is called *regular* if a = aba for some $b \in S$, and S is called a *regular semigroup* if every element of S is regular. The set of all regular elements of a semigroup S will be denoted by Reg S, that is,

$$\operatorname{Reg} S = \{ a \in S \mid a = aba \text{ for some } b \in S \}.$$

The domain and the range of any mapping α will be denoted by dom α and ran α , respectively. For an element x in the domain of a mapping α , the image of α at x is written by $x\alpha$.

Denote by T(X) the full transformation semigroup on a nonempty set X, that is, the semigroup, under composition, of all mappings $\alpha : X \to X$. It is wellknown that T(X) is a regular semigroup ([3], page 4 or [4], page 63).

Let X and Y be partially ordered sets. A mapping φ from X into Y is said to be *order-preserving* if

for any $x, x' \in X$, $x \leq x'$ in $X \Rightarrow x\varphi \leq x'\varphi$ in Y.

A bijection $\varphi : X \to Y$ is called an *order-isomorphism* if φ and φ^{-1} are orderpreserving. It is clear that if both X and Y are chains and $\varphi : X \to Y$ is an order-preserving bijection, then φ is an order-isomorphism from X onto Y. We say that X and Y are *order-isomorphic* if there is an order-isomorphism from X onto Y.

For a partially ordered set X, let

 $OT(X) = \{ \alpha \in T(X) \mid \alpha \text{ is order-preserving } \}.$

It is clear that OT(X) is a subsemigroup of T(X) containing 1_X and all constant mappings. The semigroup OT(X) is called the *full order-preserving transformation semigroup* on X.

Proposition 1.1. Let X and Y be partially ordered sets. If $\varphi : X \to Y$ is an order-isomorphism, then

- (i) $\varphi^{-1}(OT(X))\varphi \subseteq OT(Y)$ and $\varphi(OT(Y))\varphi^{-1} \subseteq OT(X)$.
- (ii) $OT(X) \cong OT(Y)$ through the mapping $\alpha \mapsto \varphi^{-1} \alpha \varphi$.

Proof. (i) is clearly obtained since $\varphi : X \to Y$ and $\varphi^{-1} : Y \to X$ are orderpreserving.

(ii) Define $\theta: OT(X) \to OT(Y)$ by

 $\alpha \theta = \varphi^{-1} \alpha \varphi$ for all $\alpha \in OT(X)$.

If $\alpha, \beta \in OT(X)$, then

$$(\alpha\beta)\theta = \varphi^{-1}(\alpha\beta)\varphi = (\varphi^{-1}\alpha\varphi)(\varphi^{-1}\beta\varphi) = (\alpha\theta)(\beta\theta).$$

Hence θ is a homomorphism. If $\alpha, \beta \in OT(X)$ are such that $\alpha \theta = \beta \theta$, then

$$\alpha = \varphi(\varphi^{-1}\alpha\varphi)\varphi^{-1} = \varphi(\alpha\theta)\varphi^{-1} = \varphi(\beta\theta)\varphi^{-1} = \varphi(\varphi^{-1}\beta\varphi)\varphi^{-1} = \beta.$$

Thus θ is 1-1. If $\lambda \in OT(Y)$, then by (i), $\varphi \lambda \varphi^{-1} \in OT(X)$ and thus

$$(\varphi\lambda\varphi^{-1})\theta = \varphi^{-1}(\varphi\lambda\varphi^{-1})\varphi = \lambda.$$

This proves that θ is an isomorphism from OT(X) onto OT(Y).

The following result is a direct consequence of Proposition 1.1.

Corollary 1.2. Let X and Y be partially ordered sets. If X and Y are orderisomorphic, then OT(X) is regular if and only if OT(Y) is regular.

Intervals in a chain are defined naturally as follows : A nonempty subset Y of a chain X is called an *interval* in X if for $a, b, x \in X$, $a, b \in Y$ and $a \leq x \leq b$ imply that $x \in Y$. We say that an interval Y in X is a *nontrivial interval* if Y contains more than one element. Since every subfield F of \mathbb{R} contains \mathbb{Q} , it follows that every nontrivial interval X of F is infinite.

The following results about the semigroup OT(X) are known.

Theorem 1.3 ([5]). For any nonempty subset X of \mathbb{Z} , OT(X) is a regular semigroup.

Theorem 1.4 ([5]). For an interval X in \mathbb{R} , OT(X) is a regular semigroup if and only if X is closed and bounded.

Theorem 1.5 ([9]). If X is a nontrivial interval in a subfield F of \mathbb{R} , then OT(X) is regular if and only if $F = \mathbb{R}$ and X is closed and bounded.

Corollary 1.6. For every nontrivial interval X in \mathbb{Q} , OT(X) is not regular.

For a chain X, the dictionary partially ordered set of X is defined to be the chain $(X \times X, \leq_d)$ where \leq_d is defined on $X \times X$ by

 $(a_1, b_1) \leq_d (a_2, b_2) \Leftrightarrow$ (i) $a_1 < a_2$ or (ii) $a_1 = a_2$ and $b_1 \leq b_2$.

CHAPTER II

REGULAR ELEMENTS OF ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON CHAINS

The regular elements of OT(X) are characterized in this chapter where X is any chain. Then by this characterization, necessary and sufficient conditions are given for certain chains X so that OT(X) is a regular semigroup.

2.1 Regular Elements

We recall the following result from [5].

Lemma 2.1.1 ([5]). Let X be a chain. If $\alpha \in OT(X)$ and $a, b \in \operatorname{ran} \alpha$ with a < b, then x < y for all $x \in a\alpha^{-1}$ and $y \in b\alpha^{-1}$.

Also, the following lemma is needed.

Lemma 2.1.2. If X is a nonempty set and $\alpha, \beta \in T(X)$ are such that $\alpha = \alpha \beta \alpha$, then $X\beta \alpha = (\operatorname{ran} \alpha)\beta \alpha$ and $x\beta \alpha = x$ for all $x \in \operatorname{ran} \alpha$.

Proof. If $x \in X$, then $x\alpha = x\alpha\beta\alpha = (x\alpha)\beta\alpha$. This implies that $x\beta\alpha = x$ for all $x \in \operatorname{ran} \alpha$. Since $\operatorname{ran} \alpha = X\alpha = (X\alpha)\beta\alpha = (\operatorname{ran} \alpha)\beta\alpha \subseteq X\beta\alpha \subseteq X\alpha = \operatorname{ran} \alpha$, we have that $X\beta\alpha = (\operatorname{ran} \alpha)\beta\alpha$.

To obtain the main theorem, some necessary conditions for the regular elements of OT(X), where X is any chain, are given as its lemmas.

Lemma 2.1.3. Let X be a chain and $\alpha \in OT(X)$. If α is a regular element of OT(X) and ran α has an upper bound in X, then max(ran α) exists.

Proof. Let $\beta \in OT(X)$ be such that $\alpha = \alpha \beta \alpha$, and let $u \in X$ be an upper bound of ran α . Suppose that ran α has no maximum element in X. Then

$$x < u \quad \text{for all} \quad x \in \operatorname{ran} \alpha.$$
 (1)

From Lemma 2.1.2,

$$X\beta\alpha = (\operatorname{ran}\alpha)\beta\alpha,\tag{2}$$

$$x\beta\alpha = x \quad \text{for all } x \in \operatorname{ran} \alpha.$$
 (3)

From (2), there exists an element $a \in \operatorname{ran} \alpha$ such that $u\beta\alpha = a\beta\alpha$. By (3), $a\beta\alpha = a$. Hence a < u by (1) and $u\beta\alpha = a$. Since $a \in \operatorname{ran} \alpha$ and $\max(\operatorname{ran} \alpha)$ does not exist, there exists an element $b \in \operatorname{ran} \alpha$ such that a < b < u. Then $b\beta\alpha = b$ by (3). Hence $a = a\beta\alpha \leq b\beta\alpha = b \leq u\beta\alpha = a$ which implies that a = b, a contradiction. This proves that $\max(\operatorname{ran} \alpha)$ exists.

The dual of Lemma 2.1.3 is the following lemma.

Lemma 2.1.4. Let X be a chain and $\alpha \in OT(X)$. If α is regular in OT(X) and ran α has a lower bound in X, then min(ran α) exists.

Lemma 2.1.5. Let X be a chain and $\alpha \in OT(X)$. If α is regular in OT(X) and $a \in X \setminus \operatorname{ran} \alpha$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$, then $\max(\{x \in \operatorname{ran} \alpha \mid x < a\})$ or $\min(\{x \in \operatorname{ran} \alpha \mid a < x\})$ exists.

Proof. Let $\beta \in OT(X)$ be such that $\alpha = \alpha \beta \alpha$. It follows from the assumption that

$$\{x \in \operatorname{ran} \alpha \mid x < a\} \neq \emptyset, \ \{x \in \operatorname{ran} \alpha \mid a < x\} \neq \emptyset,$$
$$\operatorname{ran} \alpha = \{x \in \operatorname{ran} \alpha \mid x < a\} \stackrel{.}{\cup} \{x \in \operatorname{ran} \alpha \mid a < x\}.$$
(1)

By Lemma 2.1.2,

$$X\beta\alpha = (\operatorname{ran}\alpha)\beta\alpha,\tag{2}$$

$$x\beta\alpha = x \quad \text{for all } x \in \operatorname{ran} \alpha.$$
 (3)

By (2), $a\beta\alpha = e\beta\alpha$ for some $e \in \operatorname{ran} \alpha$, and hence $a\beta\alpha = e\beta\alpha = e$ by (3). From (1), either e < a or a < e. Suppose that neither $\max(\{x \in \operatorname{ran} \alpha \mid x < a\})$ nor $\min(\{x \in \operatorname{ran} \alpha \mid a < x\})$ exists.

Case 1: e < a. Since $\max(\{x \in \operatorname{ran} \alpha \mid x < a\})$ does not exist, $e for some <math>p \in \operatorname{ran} \alpha$. By (3), $p\alpha\beta = p$. Then $e = e\beta\alpha \leq p\beta\alpha = p \leq a\beta\alpha = e$, so e = p, a contradiction.

Case 2: a < e. Since $\min(\{x \in \operatorname{ran} \alpha \mid a < x\})$ does not exist, there is an element $q \in \operatorname{ran} \alpha$ such that a < q < e. Then we have $q\beta\alpha = q$ by (3) and thus $e = a\beta\alpha \le q\beta\alpha = q \le e\beta\alpha = e$. Hence e = q, a contradiction.

Hence the lemma is proved.

Theorem 2.1.6. Let X be a chain and $\alpha \in OT(X)$. Then α is regular in OT(X) if and only if the following three conditions hold.

- (i) If ran α has an upper bound in X, then max(ran α) exists.
- (ii) If ran α has a lower bound in X, then min(ran α) exists.
- (iii) If $a \in X \setminus \operatorname{ran} \alpha$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$, then $\max(\{x \in \operatorname{ran} \alpha \mid x < a\}) \text{ or } \min(\{x \in \operatorname{ran} \alpha \mid a < x\}) \text{ exists.}$

Proof. If α is regular in OT(X), then (i), (ii) and (iii) hold by Lemma 2.1.3, Lemma 2.1.4 and Lemma 2.1.5, respectively.

For the converse, assume that (i), (ii) and (iii) hold. If ran α has an upper bound, let $u = \max(\operatorname{ran} \alpha)$. If ran α has a lower bound, let $l = \min(\operatorname{ran} \alpha)$. If $x \in X \setminus \operatorname{ran} \alpha$ is neither an upper bound nor a lower bound of ran α , let

$$m_x = \begin{cases} \max(\{t \in \operatorname{ran} \alpha \mid t < x\}) & \text{if } \max(\{t \in \operatorname{ran} \alpha \mid t < x\}) \text{ exists,} \\ \min(\{t \in \operatorname{ran} \alpha \mid x < t\}) & \text{otherwise.} \end{cases}$$

that is,

$$m_x = \begin{cases} \max(\{t \in \operatorname{ran} \alpha \mid t < x\}) & \text{if } \max(\{t \in \operatorname{ran} \alpha \mid t < x\}) \text{ exists,} \\ \min(\{t \in \operatorname{ran} \alpha \mid x < t\}) & \text{if } \max(\{t \in \operatorname{ran} \alpha \mid t < x\}) \text{ does not exists} \\ & \operatorname{and} \min(\{t \in \operatorname{ran} \alpha \mid x < t\}) \text{ exists.} \end{cases}$$

For each $x \in \operatorname{ran} \alpha$, choose an element $x' \in x\alpha^{-1}$. Then $x'\alpha = x$ for all $x \in \operatorname{ran} \alpha$. Thus $(x\alpha)'\alpha = x\alpha$ for all $x \in X$. Define $\beta : X \to X$ by

$$x\beta = \begin{cases} x' & \text{if } x \in \operatorname{ran} \alpha, \\ u' & \text{if } x \in X \smallsetminus \operatorname{ran} \alpha \text{ and } x \text{ is an upper bound of } \operatorname{ran} \alpha, \\ l' & \text{if } x \in X \smallsetminus \operatorname{ran} \alpha \text{ and } x \text{ is a lower bound of } \operatorname{ran} \alpha, \\ m_{x}' & \text{if } x \in X \smallsetminus \operatorname{ran} \alpha \text{ and } x \text{ is neither an upper bound nor} \\ & a \text{ lower bound of } \operatorname{ran} \alpha. \end{cases}$$

for every $x \in X$. Then $\beta \in T(X)$ and for $x \in X$, $x\alpha \in \operatorname{ran} \alpha$ and thus

$$x\alpha\beta\alpha = (x\alpha)\beta\alpha = (x\alpha)'\alpha = x\alpha.$$

Hence $\alpha = \alpha \beta \alpha$. It remains to show that β is order-preserving. Let $x, y \in X$ be such that x < y.

Case 1: $x, y \in \operatorname{ran} \alpha$. By Lemma 2.1.1, s < t for all $s \in x\alpha^{-1}$ and $t \in y\alpha^{-1}$. But $x' \in x\alpha^{-1}$ and $y' \in y\alpha^{-1}$, so x' < y'. Hence $x\beta = x' < y' = y\beta$.

Case 2: $x \in \operatorname{ran} \alpha, y \in X \setminus \operatorname{ran} \alpha$ and y is an upper bound of $\operatorname{ran} \alpha$. Since $x \leq u$, by Lemma 2.1.1, $x' \leq u'$, so $x\beta \leq y\beta$.

Case 3: $x \in X \setminus \operatorname{ran} \alpha$, x is a lower bound of $\operatorname{ran} \alpha$ and $y \in \operatorname{ran} \alpha$. Then $l \leq y$, so by Lemma 2.1.1, $l' \leq y'$. Hence $x\beta \leq y\beta$.

Case 4 : $x, y \in X \setminus \operatorname{ran} \alpha$ and x and y are upper bounds of $\operatorname{ran} \alpha$. Then

$$x\beta = u' = y\beta.$$

Case 5: $x, y \in X \setminus \operatorname{ran} \alpha$ and x and y are lower bounds of $\operatorname{ran} \alpha$. Then $x\beta = l' = y\beta$.

Case 6: $x, y \in X \setminus \operatorname{ran} \alpha$, x is a lower bound of $\operatorname{ran} \alpha$ and y is an upper bound of $\operatorname{ran} \alpha$. Since $l \leq u$, by Lemma 2.1.1, $l' \leq u'$, so $x\beta \leq y\beta$.

Case 7: $x \in \operatorname{ran} \alpha, y \in X \setminus \operatorname{ran} \alpha$ and y is not an upper bound of $\operatorname{ran} \alpha$. Then $y \in X \setminus \operatorname{ran} \alpha$ and y is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$.

Subcase 7.1 : $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ exists. Then

$$m_y = \max(\{t \in \operatorname{ran} \alpha \mid t < y\}).$$

But $x \in \operatorname{ran} \alpha$ and x < y, so $x \leq m_y$. Hence $x' \leq m_y'$ by Lemma 2.1.1. Thus $x\beta \leq y\beta$.

Subcase 7.2 : $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ does not exist. Then

$$m_y = \min(\{t \in \operatorname{ran} \alpha \mid y < t\}).$$

Thus $x < y < m_y$. Hence $x\beta = x' < m_y' = y\beta$, as before.

Case 8 : $x \in X \setminus \operatorname{ran} \alpha, x$ is not a lower bound of $\operatorname{ran} \alpha$ and $y \in \operatorname{ran} \alpha$. Then $x \in X \setminus \operatorname{ran} \alpha$ and x is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$.

Subcase 8.1 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ exists. Then $m_x < x < y$, so $x\beta = m_x' < y' = y\beta$.

Subcase 8.2 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ does not exist. Then $m_x = \min(\{t \in \operatorname{ran} \alpha \mid x < t\})$. Since $y \in \operatorname{ran} \alpha$ and x < y, it follows that $m_x \leq y$. Hence $x\beta = m_x' \leq y' = y\beta$, as before.

Case 9 : $x, y \in X \setminus \operatorname{ran} \alpha$, x is a lower bound of $\operatorname{ran} \alpha$ and y is neither an upper

bound nor a lower bound of ran α .

Subcase 9.1 : $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ exists. Then $l \leq m_y$, so $x\beta = l' \leq m_y' = y\beta$.

Subcase 9.2 : $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ does not exist. Then $m_y = \min(\{t \in \operatorname{ran} \alpha \mid y < t\})$, so $l < y < m_y$. Hence $x\beta = l' < m_y' = y\beta$.

Case 10 : $x, y \in X \setminus \operatorname{ran} \alpha, x$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$ and y is an upper bound of $\operatorname{ran} \alpha$.

Subcase 10.1 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ exists. Then $m_x < x < u$, so $x\beta = m_x^{'} < u' = y\beta$.

Subcase 10.2 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ does not exist. Then $m_x = \min(\{t \in \operatorname{ran} \alpha \mid x < t\})$, so $m_x \leq u$. Hence $x\beta = m_x' \leq u' = y\beta$.

Case 11 : $x, y \in X \setminus \operatorname{ran} \alpha$ and x and y are neither upper bounds nor lower bounds of $\operatorname{ran} \alpha$.

Subcase 11.1 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ and $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ exist. Then

 $m_x = \max(\{t \in \operatorname{ran} \alpha \mid t < x\}) \text{ and } m_y = \max(\{t \in \operatorname{ran} \alpha \mid t < y\}).$

Since x < y, it follows that $\{t \in \operatorname{ran} \alpha \mid t < x\} \subseteq \{t \in \operatorname{ran} \alpha \mid t < y\}$ which implies that $m_x \leq m_y$. Hence $x\beta = m_x' \leq m_y' = y\beta$.

Subcase 11.2 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ exists and $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ does not exist. Then

 $m_x = \max(\{t \in \operatorname{ran} \alpha \mid t < x\}) \text{ and } m_y = \min(\{t \in \operatorname{ran} \alpha \mid y < t\}).$

Then $m_x < x < y < m_y$, so $x\beta = m_x' < m_y' = y\beta$.

Subcase 11.3 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ does not exist and $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ exists. Then

 $m_x = \min(\{t \in \operatorname{ran} \alpha \mid x < t\}) \text{ and } m_y = \max(\{t \in \operatorname{ran} \alpha \mid t < y\}).$

If $\{t \in \operatorname{ran} \alpha \mid x < t < y\} = \emptyset$, then $\{t \in \operatorname{ran} \alpha \mid t < y\} = \{t \in \operatorname{ran} \alpha \mid t < x\}$ which is impossible since $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ does not exist but $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ exists. Then there exists an element $c \in \operatorname{ran} \alpha$ such that x < c < y. Consequently, $m_x \leq c \leq m_y$ which implies that $x\beta = m_x' \leq m_y' = y\beta$.

Subcase 11.4 : $\max(\{t \in \operatorname{ran} \alpha \mid t < x\})$ and $\max(\{t \in \operatorname{ran} \alpha \mid t < y\})$ do not exist. Then

$$m_x = \min(\{t \in \operatorname{ran} \alpha \mid x < t\}) \text{ and } m_y = \min(\{t \in \operatorname{ran} \alpha \mid y < t\}).$$

Since x < y, $\{t \in \operatorname{ran} \alpha \mid x < t\} \supseteq \{t \in \operatorname{ran} \alpha \mid y < t\}$. Then $m_x \leq m_y$, so $x\beta = m_x' \leq m_y' = y\beta$.

Hence $\beta \in OT(X)$, and the proof is complete.

The following lemma shows that if X is an interval in \mathbb{R} , then every $\alpha \in OT(X)$ satisfies (iii) of Theorem 2.1.6.

Lemma 2.1.7. Let X be an interval in \mathbb{R} and $\alpha \in OT(X)$. If $a \in X \setminus \operatorname{ran} \alpha$ is neither an upper bound nor a lower bound of $\operatorname{ran} \alpha$, then either $\max(\{x \in \operatorname{ran} \alpha \mid x < a\})$ or $\min(\{x \in \operatorname{ran} \alpha \mid a < x\})$ exists.

Proof. By assumption, we have that

$$\{x \in \operatorname{ran} \alpha \mid x < a\} \neq \emptyset, \ \{x \in \operatorname{ran} \alpha \mid a < x\} \neq \emptyset,$$
$$\operatorname{ran} \alpha = \{x \in \operatorname{ran} \alpha \mid x < a\} \stackrel{.}{\cup} \{x \in \operatorname{ran} \alpha \mid a < x\}.$$

It follows that

$$\{x \in \operatorname{ran} \alpha \mid x < a\}\alpha^{-1} \neq \emptyset, \ \{x \in \operatorname{ran} \alpha \mid a < x\}\alpha^{-1} \neq \emptyset,$$
(1)

$$X = \{x \in \operatorname{ran} \alpha \mid x < a\} \alpha^{-1} \ \dot{\cup} \ \{x \in \operatorname{ran} \alpha \mid a < x\} \alpha^{-1}.$$

$$(2)$$

By Lemma 2.1.1,

for all
$$s \in \{x \in \operatorname{ran} \alpha \mid x < a\}\alpha^{-1}$$
 and $t \in \{x \in \operatorname{ran} \alpha \mid a < x\}\alpha^{-1}, s < t.$ (3)

Since X is an interval in \mathbb{R} , (1), (2) and (3) yield the fact that

$$\sup\left(\left\{x \in \operatorname{ran} \alpha \mid x < a\right\}\alpha^{-1}\right) = \inf\left(\left\{x \in \operatorname{ran} \alpha \mid a < x\right\}\alpha^{-1}\right), \text{ say } e.$$

Then either $e = \max(\{x \in \operatorname{ran} \alpha \mid x < a\}\alpha^{-1})$ or $e = \min(\{x \in \operatorname{ran} \alpha \mid a < x\}\alpha^{-1})$. Since α is order-preserving, we have

$$e = \max\left(\{x \in \operatorname{ran} \alpha \mid x < a\}\alpha^{-1}\right) \Rightarrow e\alpha = \max\left(\{x \in \operatorname{ran} \alpha \mid x < a\}\right),\$$
$$e = \min\left(\{x \in \operatorname{ran} \alpha \mid a < x\}\alpha^{-1}\right) \Rightarrow e\alpha = \min\left(\{x \in \operatorname{ran} \alpha \mid a < x\}\right).$$

Hence the lemma is proved.

The following corollary is obtained directly from Theorem 2.1.6 and Lemma 2.1.7.

Corollary 2.1.8. Let X be an interval in \mathbb{R} and $\alpha \in OT(X)$. Then α is a regular element of OT(X) if and only if the following two conditions hold.

- (i) If ran α has an upper bound in X, then max(ran α) exists.
- (ii) If ran α has a lower bound in X, then min(ran α) exists.

2.2 Regular Semigroups

Throughout this section, the partial order on a nonempty subset of real numbers always means the natural order.

We shall apply Theorem 2.1.6 to prove Theorem 1.3 and Theorem 1.4 given in [5]. In addition, the regularity of OT(X) for some other chains X in \mathbb{R} are determined.

Theorem 2.2.1. If X is a nonempty subset of \mathbb{Z} , then OT(X) is a regular semigroup.

Proof. Let A be a nonempty subset of X. By the property of subsets of \mathbb{Z} , we have that if A is bounded above in X, then $\max(A)$ exists. Also, if A is bounded below in X, then $\min(A)$ exists.

If $c \in X \setminus A$ is neither an upper bound nor a lower bound of A, then

 $\{x \in A \mid x < c\} \neq \emptyset$ and $\{x \in A \mid c < x\} \neq \emptyset$, so both $\max(\{x \in A \mid x < c\})$ and $\min(\{x \in A \mid c < x\})$ exist.

This shows that for every $\alpha \in OT(X)$, ran α satisfies (i), (ii) and (iii) of Theorem 2.1.6. By Theorem 2.1.6, every $\alpha \in OT(X)$ is regular in OT(X). Hence OT(X) is a regular semigroup.

Lemma 2.2.2. If X is \mathbb{R} , $[a, \infty)$ or (a, ∞) where $a \in \mathbb{R}$, then OT(X) is not a regular semigroup.

Proof. Let $c \in X$ and define $\alpha : X \to \mathbb{R}$ by

$$x\alpha = \begin{cases} c + \frac{x-c}{x-c+1} & \text{if } x \ge c, \\ c & \text{if } x < c. \end{cases}$$

Then $x\alpha = c$ for all $x \in X$ with $x \leq c$, α is continuous on X and the derivative of α at x > c is $\frac{1}{(x - c + 1)^2} > 0$. These imply that α is a nondecreasing function on X. Also, $\operatorname{ran} \alpha = [c, c + 1) \subseteq X$, so $\alpha \in OT(X)$. Since $\operatorname{ran} \alpha$ is bounded in Xand $\max(\operatorname{ran} \alpha)$ does not exist, by Theorem 2.1.6, α is not a regular element of OT(X). Hence OT(X) is not a regular semigroup. \Box

Lemma 2.2.3. If X is $(-\infty, a]$ or $(-\infty, a)$, then OT(X) is not a regular semigroup.

Proof. Let $c \in X$ and define $\alpha : X \to \mathbb{R}$ by

$$x\alpha = \begin{cases} c - \frac{x-c}{x-c+1} & \text{if } x \le c, \\ c & \text{if } x > c. \end{cases}$$

Then $x\alpha = c$ for all $x \ge c$, α is continuous on X and the derivative of α at x < cis $\frac{1}{(x-c+1)^2} > 0$. Hence α is a nondecreasing function on X. We also have that ran $\alpha = (c - 1, c] \subseteq X$. Then $\alpha \in OT(X)$, ran α is bounded in X and min(ran α) does not exist. By Theorem 2.1.6, α is not a regular element of OT(X), hence OT(X) is not a regular semigroup.

Lemma 2.2.4. If X is [a,b), (a,b] or (a,b) where $a,b \in \mathbb{R}$ and a < b, then the semigroup OT(X) is not regular.

Proof. Define $\alpha : X \to \mathbb{R}$ by

$$x\alpha = \frac{1}{4}(x-a) + \frac{a+b}{2}$$
 for all $x \in X$

Then the derivative of α at $x \in X$ is $\frac{1}{4}$. Hence α is a nondecreasing function. Also,

$$\operatorname{ran} \alpha = X\alpha = \begin{cases} \left[\frac{a+b}{2}, \frac{a+3b}{4}\right) & \text{if } X = [a,b), \\ \left(\frac{a+b}{2}, \frac{a+3b}{4}\right] & \text{if } X = (a,b], \\ \left(\frac{a+b}{2}, \frac{a+3b}{4}\right) & \text{if } X = (a,b), \end{cases}$$
$$\overline{a < \frac{a+b}{2} < \frac{a+3b}{4} < b}.$$

Then we deduce that $\alpha \in OT(X)$. Since ran α is both bounded above and bounded below in X, max(ran α) does not exist if X = [a, b) or X = (a, b) and min(ran α) does not exist if X = (a, b) or X = (a, b], it follows from Theorem 2.1.6, α is not a regular element of OT(X). Hence OT(X) is not a regular semigroup.

Lemma 2.2.5. For $a, b \in \mathbb{R}$ with $a \leq b$, OT([a, b]) is a regular semigroup.

Proof. To show that every element of OT([a, b]) is regular, let $\alpha \in OT([a, b])$. Since α is order-preserving on [a, b], we have that $a\alpha = \min(\operatorname{ran} \alpha)$ and $b\alpha = \max(\operatorname{ran} \alpha)$. By Corollary 2.1.8, α is a regular element of OT([a, b]).

From Lemma 2.2.2, Lemma 2.2.3, Lemma 2.2.4 and Lemma 2.2.5, the following theorem is obtained.

Theorem 2.2.6. For an interval X in \mathbb{R} , OT(X) is a regular semigroup if and only if X is closed and bounded.

Note that if X is a trivial interval, that is, |X| = 1, then |OT(X)| = 1, so OT(X) is a regular semigroup.

Theorem 2.2.7. If X is a nontrivial interval of a proper subfield F of \mathbb{R} , then OT(X) is not a regular semigroup.

Proof. We first note that $\mathbb{Q} \subseteq F \subsetneq \mathbb{R}$. Then there is an irrational number $c \in \mathbb{R} \setminus F$. Let $a, b \in X$ be such that a < b. Thus a - c < b - c, so a - c < d < b - c for some $d \in \mathbb{Q}$. Hence a < c + d < b. Since $c \in \mathbb{R} \setminus F$ and $d \in \mathbb{Q} \subseteq F$, it follows that $c + d \in \mathbb{R} \setminus F$ and c + d is an irrational number. Let e = c + d. Consequently,

$$X = \left((-\infty, a) \cap X \right) \cup \left([a, e) \cap X \right) \cup \left((e, \infty) \cap X \right).$$
(1)

Define $\mu : \mathbb{R} \to F$ by

$$x\mu = \begin{cases} x & \text{if } x \in (-\infty, a), \\ \frac{a+x}{2} & \text{if } x \in [a, e), \\ x & \text{if } x \in (e, \infty). \end{cases}$$
(2)

Then $a\mu = a < e, \alpha$ is continuous on $(-\infty, e)$ and the derivative of μ at $x \in (a, e)$ is $\frac{1}{2}$. Consequently, μ is an order-preserving function on \mathbb{R} . Let $\alpha = \mu|_X : X \to F$. Then α is order-preserving. We claim that

$$([a,e) \cap X) \alpha = [a,\frac{a+e}{2}) \cap X.$$
(3)

Let $x \in [a, e) \cap X$. Then $a \le x < e < b$ and $x \in X \subseteq F$, so $a \le \frac{a+x}{2} = x\alpha < \frac{a+e}{2} < \frac{a+b}{2} < b \text{ and } \frac{a+x}{2} \in F.$

This implies that $x\alpha \in [a, \frac{a+e}{2}) \cap X$ since X is an interval in F and $a, b \in X$ with a < b. For the reverse inclusion, let $y \in [a, \frac{a+e}{2}) \cap X$. Then $a \le y < \frac{a+e}{2}$ and $y \in X \subseteq F$. Hence

$$a \le 2y - a < e < b$$
 and $2y - a \in F$.

Then $2y - a \in [a, e) \cap X$ since $a, b \in X$ and X is an interval in F and $(2y - a)\alpha = \frac{a + (2y - a)}{2} = y$. Therefore (3) holds. From (1), (2) and (3), we have

$$\operatorname{ran} \alpha = X\alpha = \left((-\infty, a) \cap X \right) \cup \left([a, \frac{a+e}{2}) \cap X \right) \cup \left((e, \infty) \cap X \right)$$
$$= \left((-\infty, \frac{a+e}{2}) \cap X \right) \cup \left((e, \infty) \cap X \right) \subseteq X.$$
$$\tag{4}$$

Hence $\alpha \in OT(X)$. Let $q \in \mathbb{Q}$ be such that $\frac{a+e}{2} < q < e$. But

$$a < \frac{a+e}{2} < q < e < b,$$

 $q \in \mathbb{Q} \subseteq F, a, b \in X$ and X is an interval in F, thus by (4), $q \in X \setminus \operatorname{ran} \alpha$, $\{x \in \operatorname{ran} \alpha \mid x < q\} = (-\infty, \frac{a+e}{2}) \cap X$ and $\{x \in \operatorname{ran} \alpha \mid q < x\} = (e, \infty) \cap X$. If $\max\left((-\infty, \frac{a+e}{2}) \cap X\right)$ exists, say m, then

$$a \le m < \frac{a+e}{2} < b$$
 and $m \in X$.

Let $p \in \mathbb{Q}$ be such that $m . Then <math>p \in F$ and a which imply $that <math>m , a contradiction. Then <math>\max\left((-\infty, \frac{a+e}{2}) \cap X\right)$ does not exist. We can show similarly that $\min\left((e, \infty) \cap X\right)$ does not exist. By Theorem 2.1.6, α is not a regular element of OT(X). This proves that OT(X) is not a regular semigroup, as desired.

The following corollary is a direct consequence of Theorem 2.2.7.

Corollary 2.2.8. If X is a nontrivial interval in \mathbb{Q} , then OT(X) is not a regular semigroup.

Example 2.2.9. Under the usual order, $X = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ is order-isomorphic to $\{-1, -2, -3, \ldots\}$ through $\frac{1}{n} \mapsto -n$ for $n \in \mathbb{N}$. Then $OT(X) \cong OT(\{-1, -2, -3, \ldots\})$ by Proposition 1.1. Since $OT(\{-1, -2, -3, \ldots\})$ is a regular semigroup by Theorem 2.2.1, it follows that OT(X) is a regular semigroup.

It is natural to ask that whether $OT(X \cup \{0\})$ is a regular semigroup. Note that 1 and 0 are the maximum element and the minimum element of $X \cup \{0\}$, respectively. Since an infinite subset of \mathbb{Z} cannot have both a maximum element and a minimum element, it follows that $X \cup \{0\}$ is not order-isomorphic to any chain of integers. However, we can show by Theorem 2.1.6 that $OT(X \cup \{0\})$ is a regular semigroup. To prove this, let $\alpha \in OT(X \cup \{0\})$. Then $1\alpha = \max(\operatorname{ran} \alpha)$ and $0\alpha = \min(\operatorname{ran} \alpha)$. Let $m \in \mathbb{N} \setminus \{1\}$ be such that $\frac{1}{m} \notin \operatorname{ran} \alpha$, $\{x \in \operatorname{ran} \alpha \mid x < \frac{1}{m}\} \neq \emptyset$ and $\{x \in \operatorname{ran} \alpha \mid \frac{1}{m} < x\} \neq \emptyset$. Since

it follows clearly both $\max(\{x \in \operatorname{ran} \alpha \mid x < \frac{1}{m}\})$ and $\min(\{x \in \operatorname{ran} \alpha \mid \frac{1}{m} < x\})$ exist. Hence by Theorem 2.1.6, α is a regular element of $OT(X \cup \{0\})$.

Example 2.2.10. Let $X = [0,1) \cup (2,3]$ with the natural order. Then OT(X) is not regular. To prove this, define $\alpha \in OT([0,1))$ be as in Lemma 2.2.4. Then $\operatorname{ran} \alpha = [\frac{0+1}{2}, \frac{0+3}{4}) = [\frac{1}{2}, \frac{3}{4})$. Define $\bar{\alpha} : X \to \mathbb{R}$ by

$$x\bar{\alpha} = \begin{cases} x\alpha & \text{if } x \in [0,1), \\ x & \text{if } x \in (2,3]. \end{cases}$$

Thus, $\bar{\alpha} \in OT(X)$ and $\operatorname{ran} \bar{\alpha} = \operatorname{ran} \alpha \cup (2,3] = [\frac{1}{2}, \frac{3}{4}) \cup (2,3]$. Since $\frac{4}{5} \in X \smallsetminus \operatorname{ran} \bar{\alpha}$, $\{x \in \operatorname{ran} \bar{\alpha} \mid x < \frac{4}{5}\} = [\frac{1}{2}, \frac{3}{4})$

and

$$\{x \in \operatorname{ran} \bar{\alpha} \mid \frac{4}{5} < x\} = (2, 3],$$

it follows that neither $\max(\{x \in \operatorname{ran} \bar{\alpha} \mid x < \frac{4}{5}\})$ nor $\min(\{x \in \operatorname{ran} \bar{\alpha} \mid \frac{4}{5} < x\})$ exists. By Theorem 2.1.6, $\bar{\alpha}$ is not a regular element of OT(X).

A natural question arises. If $X = [0,1) \cup [2,3]$ or $[0,1] \cup (2,3]$, is OT(X) a regular semigroup? The following theorem gives a general result. This result indicates that this semigroup OT(X) is a regular semigroup.

Theorem 2.2.11. Let $X = I_1 \cup I_2 \cup ... \cup I_n$ where n > 1,

$$I_{i} \text{ is an interval in } \mathbb{R} \text{ for all } i \in \{1, 2, \dots, n\},$$

for $i \in \{1, 2, \dots, n-1\}, x < y \text{ for all } x \in I_{i} \text{ and } y \in I_{i+1},$
$$I_{i} \cup I_{i+1} \text{ is not an interval in } \mathbb{R},$$

(1)

then OT(X) is regular if and only if the following three conditions hold.

- (i) $\min(I_1)$ exists.
- (ii) $\max(I_n)$ exists.
- (iii) For each $i \in \{1, 2, ..., n-1\}, \max(I_i) \text{ or } \min(I_{i+1}) \text{ exists.}$

Proof. We shall show by contrapositive that if OT(X) is regular, then (i), (ii) and (iii) hold. Assume that at least one of (i), (ii) and (iii) is not true.

Case 1: $\min(I_1)$ does not exist. By the proofs of Lemma 2.2.3 and Lemma 2.2.4, there exists an element $\alpha \in OT(I_1)$ such that

 $\operatorname{ran} \alpha$ has a lower bound in I_1 and $\min(\operatorname{ran} \alpha)$ does not exist. (2)

Define $\overline{\alpha}: X \to X$ by

$$x\overline{\alpha} = \begin{cases} x\alpha & \text{if } x \in I_1, \\ x & \text{if } x \in I_2 \cup \ldots \cup I_n \end{cases}$$

Since $\alpha \in OT(I_1)$, by (1), $\overline{\alpha} \in OT(X)$. Also, $\operatorname{ran} \overline{\alpha} = \operatorname{ran} \alpha \cup I_2 \cup \ldots \cup I_n$. By (1) and (2), $\operatorname{ran} \overline{\alpha}$ has a lower bound and $\min(\operatorname{ran} \overline{\alpha})$ does not exist. By Theorem 2.1.6, $\overline{\alpha}$ is not regular in OT(X).

Case 2: $\max(I_n)$ does not exist. By the proofs of Lemma 2.2.2 and Lemma 2.2.4, there is an element $\beta \in OT(I_n)$ such that

ran β has an upper bound in I_n and max(ran β) does not exist. (3) Define $\overline{\beta} : X \to X$ by

$$x\overline{\beta} = \begin{cases} x & \text{if } x \in I_1 \cup \ldots \cup I_{n-1}, \\ x\beta & \text{if } x \in I_n. \end{cases}$$

Since $\beta \in OT(I_n)$, by (1), $\overline{\beta} \in OT(X)$. We also have ran $\overline{\beta} = I_1 \cup \ldots \cup I_{n-1} \cup \operatorname{ran} \beta$. It follows from (1) and (3) that ran $\overline{\beta}$ has an upper bound and max(ran $\overline{\beta}$) does not exist. By Theorem 2.1.6, $\overline{\beta}$ is not regular in OT(X).

Case 3: $\min(I_1)$ exists, $\max(I_n)$ exists and there exists $j \in \{1, 2, ..., n-1\}$ such that neither $\max(I_j)$ nor $\min(I_{j+1})$ exists. By the proof of Lemma 2.3.4, there are elements $\gamma_1 \in OT(I_j)$ and $\gamma_2 \in OT(I_{j+1})$ such that

ran
$$\gamma_1$$
 has an upper bound in I_j and max(ran γ_1) does not exist. (4)

and

ran γ_2 has a lower bound in I_{j+1} and min(ran γ_2) does not exist. (5)

Define $\overline{\gamma}: X \to X$ by

$$x\overline{\gamma} = \begin{cases} x\gamma_1 & \text{if } x \in I_j, \\ x\gamma_2 & \text{if } x \in I_{j+1} \\ x & \text{if } x \in X \smallsetminus (I_j \cup I_{j+1}). \end{cases}$$

Since $\gamma_1 \in OT(I_j)$ and $\gamma_2 \in OT(I_{j+1})$, it follows from (1) that $\overline{\gamma} \in OT(X)$. Moreover,

$$\operatorname{ran}\overline{\gamma} = I_1 \cup \ldots I_{j-1} \cup \operatorname{ran}\gamma_1 \cup \operatorname{ran}\gamma_2 \cup I_{j+2} \cup \ldots \cup I_n.$$

Let $a \in I_j$ be an upper bound of ran γ_1 . By (4), $a \in I_1 \setminus \operatorname{ran} \gamma_1$. Then $a \in X \setminus \operatorname{ran} \overline{\gamma}$,

$$\operatorname{ran} \overline{\gamma} = \{ x \in \operatorname{ran} \overline{\gamma} \mid x < a \} \stackrel{.}{\cup} \{ x \in \operatorname{ran} \overline{\gamma} \mid a < x \}, \\ \{ x \in \operatorname{ran} \overline{\gamma} \mid x < a \} = I_1 \cup \dots I_{j-1} \cup \operatorname{ran} \gamma_1, \tag{6}$$

$$\{x \in \operatorname{ran} \overline{\gamma} \mid a < x\} = \operatorname{ran} \gamma_2 \cup I_{j+2} \cup \dots I_n.$$
(7)

By (1), (4) and (6), $\max\{x \in \operatorname{ran} \overline{\gamma} \mid x < a\}$ does not exist. Also, by (1), (5) and (7), $\min\{x \in \operatorname{ran} \overline{\gamma} \mid a < x\}$ does not exist. Hence by Theorem 2.1.6, $\overline{\gamma}$ is not regular in OT(X).

For the converse, assume that (i), (ii) and (iii) hold. Note that by (1),

 $\min(X) = \min(I_1)$ and $\max(X) = \max(I_n)$. Let $\alpha \in OT(X)$. Since α is order-preserving, $\min(\operatorname{ran} \alpha) = (\min(X))\alpha$ and $\max(\operatorname{ran} \alpha) = (\max(X))\alpha$. Let $c \in X \setminus \operatorname{ran} \alpha$ be such that $\{x \in \operatorname{ran} \alpha \mid x < c\} \neq \emptyset$ and $\{x \in \operatorname{ran} \alpha \mid c < x\} \neq \emptyset$. Then

$$X = \{ x \in \operatorname{ran} \alpha \mid x < c \} \alpha^{-1} \ \dot{\cup} \ \{ x \in \operatorname{ran} \alpha \mid c < x \} \alpha^{-1}, \tag{8}$$

and by Lemma 2.2.1,

for all
$$s \in \{x \in \operatorname{ran} \alpha \mid x < c\}\alpha^{-1}$$
 and $t \in \{x \in \operatorname{ran} \alpha \mid c < x\}\alpha^{-1}, s < t.$ (9)

From (9) and (10), we have that

either
$$\{x \in \operatorname{ran} \alpha \mid x < c\} \alpha^{-1} = I_1 \cup I_2 \ldots \cup I_k \text{ and}$$

 $\{x \in \operatorname{ran} \alpha \mid c < x\} \alpha^{-1} = I_{k+1} \cup \ldots \cup I_n \text{ for some } k \in \{1, 2, \ldots, n-1\}$
or there exists $k \in \{1, 2, \ldots, n\}$ such that $I_k = A \dot{\cup} B$, A and B are nonempty
interval, $a < b$ for all $a \in A$ and $b \in B$,
 $\{x \in \operatorname{ran} \alpha \mid x < c\} \alpha^{-1} = I_1 \cup I_2 \ldots \cup I_{k-1} \cup A$ and
 $\{x \in \operatorname{ran} \alpha \mid c < x\} \alpha^{-1} = B \cup I_{k+1} \cup \ldots \cup I_n.$

By this fact, the assumption and the property of interval in \mathbb{R} , either $\max(\{x \in \operatorname{ran} \alpha \mid x < c\}\alpha^{-1})$ or $\min(\{x \in \operatorname{ran} \alpha \mid c < x\}\alpha^{-1})$ exists. Since $\{x \in \operatorname{ran} \alpha \mid x < c\}$ $c\} = (\{x \in \operatorname{ran} \alpha \mid x < c\}\alpha^{-1})\alpha$ and $\{x \in \operatorname{ran} \alpha \mid c < x\} = (\{x \in \operatorname{ran} \alpha \mid c < x\}\alpha^{-1})\alpha$ and α is order-preserving, it follows that either $\max(\{x \in \operatorname{ran} \alpha \mid x < c\})$ or $\min(\{x \in \operatorname{ran} \alpha \mid c < x\})$ exists. \Box

From obove Theorem, we can determine the regularity of OT(X) for various kinds of $X \subseteq \mathbb{R}$, for examples, $OT([0,1) \cup [2,3) \cup [4,5])$ is a regular semigroup and $OT((0,1) \cup [2,3) \cup [4,5])$ is not a regular semigroup.

CHAPTER III

REGULAR ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON DICTIONARIES PARTIALLY ORDERED SETS OF CHAINS

In this chapter, we characterize the regularity of $OT(X \times X, \leq_d)$ when X is one of the following chains : chains of integers, intervals in \mathbb{R} and intervals in a subfield of \mathbb{R} . Theorem 2.1.6 is a main tool for these characterizations.

3.1 Chains of integers

The following lemma gives an important necessary condition for $OT(X \times X, \leq_d)$ to be regular when X is any chain.

Lemma 3.1.1. Let X be a chain. If $OT(X \times X, \leq_d)$ is a regular semigroup, then X has a maximum and a minimum.

Proof. Suppose that $OT(X \times X, \leq_d)$ is regular. If |X| = 1, then we are done. Next, assume that |X| > 1. Let $u, v \in X$ be such that u < v. Define $\alpha : X \times X \to X \times X$ by

$$(x, y)\alpha = (u, x)$$
 for all $x, y \in X$. (1)

Then

$$(\{x\} \times X)\alpha = \{(u, x)\}$$
 for all $x \in X$

and so

$$\operatorname{ran} \alpha = \{u\} \times X. \tag{2}$$

We have that for $x, y \in X$,

$$x \le y \implies (u, x) \le_d (u, y). \tag{3}$$

Then (1) and (3) give the fact that α is order-preserving on $(X \times X, \leq_d)$. Hence $\alpha \in OT(X \times X, \leq_d)$. Since $OT(X \times X, \leq_d)$ is regular, we have that $\alpha = \alpha \beta \alpha$ for some $\beta \in OT(X \times X, \leq_d)$. By Lemma 2.1.2, $(\beta \alpha)|_{\operatorname{ran} \alpha}$ is the identity map on $\operatorname{ran} \alpha$ which implies from (2) that

$$(u, x)\beta\alpha = (u, x) \text{ for all } x \in X.$$
 (4)

Since u < v, it follows that

$$(u, x) <_d (v, v)$$
 for all $x \in X$.

Thus $(u, x)\beta\alpha \leq_d (v, v)\beta\alpha$ for all $x \in X$. This implies by (4) that

$$(u,x) \leq_d (v,v)\beta\alpha$$
 for all $x \in X$. (5)

Since $(v, v)\beta\alpha \in \operatorname{ran} \alpha$, by (2), $(v, v)\beta\alpha = (u, f)$ for some $f \in X$. Hence from (5),

$$(u, x) \leq_d (u, f)$$
 for all $x \in X$

which implies that $x \leq f$ for all $x \in X$. This shows that f is the maximum of X.

To show that X also has a minimum, let $\gamma: X \times X \to X \times X$ be defined by

$$(x,y)\gamma = (v,x)$$
 for all $x,y \in X$. (6)

Then

$$(\{x\} \times X)\gamma = \{(v, x)\}$$
 for all $x \in X$

and thus

$$\operatorname{ran}\gamma = \{v\} \times X. \tag{7}$$

Since for $x, y \in X$, $x < y \Rightarrow (v, x) <_d (v, y),$ (8)

we deduce from (6) and (8) that $\gamma \in OT(X \times X, \leq_d)$. Since $OT(X \times X, \leq_d)$ is regular, we have that $\gamma = \gamma \lambda \gamma$ for some $\lambda \in OT(X \times X, \leq_d)$. By Lemma 2.1.2, $(\lambda \gamma)|_{\operatorname{ran} \gamma} = 1|_{\operatorname{ran} \gamma}$, so by (7), we have

$$(v, x)\lambda\gamma = (v, x)$$
 for all $x \in X$. (9)

Since u < v, it follows that

$$(u, u) <_d (v, x)$$
 for all $x \in X$,

and so $(u, u)\lambda\gamma \leq_d (v, x)\lambda\gamma$ for all $x \in X$. This implies by (9) that

$$(u, u)\lambda\gamma \leq_d (v, x) \quad \text{for all } x \in X.$$
 (10)

But $(u, u)\lambda\gamma \in \operatorname{ran}\gamma$, so $(u, u)\lambda\gamma = (v, e)$ for some $e \in X$ by (7). Hence from (10),

$$(v, e) \leq_d (v, x)$$
 for all $x \in X$

which implies that $e \leq x$ for all $x \in X$. Hence e is the minimum of X.

Hence X has a maximum and a minimum, and the proof is complete. \Box

Theorem 3.1.2. For $\emptyset \neq X \subseteq \mathbb{Z}$, $OT(X \times X, \leq_d)$ is a regular semigroup if and only if X is finite.

Proof. If $OT(X \times X, \leq_d)$ is regular, then by Lemma 3.1.1, $\max(X)$ and $\min(X)$ exist. But X is a nonempty subset of \mathbb{Z} , so we have that X must be finite.

Conversely, if X is a finite set, then $(X \times X, \leq_d)$ is a finite chain. It follows that $(X \times X, \leq_d)$ is order-isomorphic to a (finite) chain of integers. Hence by Theorem 2.2.1, $OT(X \times X, \leq_d)$ is regular.

Remark 3.1.3. By Theorem 2.2.1 and Theorem 3.1.2, $OT(\mathbb{Z})$ is regular and $OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$ is not regular, respectively. In addition, $OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$ contains an infinitely many nonregular element. To see this, let $c \in \mathbb{Z}$ and define $\alpha_c : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by

$$(x,y)\alpha_c = (c,x)$$
 for all $x, y \in \mathbb{Z}$.

From the proof of Lemma 3.1.1, $\alpha_c \in OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$ and $ran(\alpha_c) = \{c\} \times \mathbb{Z}$. Since

$$(c, x) <_d (c+1, 0)$$
 for all $x \in \mathbb{Z}$,

we deduce that (c + 1, 0) is an upper bound of $\operatorname{ran}(\alpha_c)$. But $\{c\} \times \mathbb{Z}$ has no maximum, so by Theorem 2.1.6, α_c is not a regular element of $OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$.

Hence

$$\{\alpha_c \mid c \in \mathbb{Z}\} \subseteq OT(\mathbb{Z} \times \mathbb{Z}, \leq_d) \smallsetminus \operatorname{Reg}(OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)).$$

If $c_1 \neq c_2$ in \mathbb{Z} , then $\operatorname{ran}(\alpha_{c_1}) = \{c_1\} \times \mathbb{Z} \neq \{c_2\} \times \mathbb{Z} = \operatorname{ran}(\alpha_{c_2})$ which implies that $\alpha_{c_1} \neq \alpha_{c_2}$. Hence $\{\alpha_c \mid c \in \mathbb{Z}\}$ is an infinite subset of $OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$ $\setminus \operatorname{Reg}(OT(\mathbb{Z} \times \mathbb{Z}, \leq_d))$. Therefore, we deduce that $OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$ contains an infinitely many nonregular elements. Since every constant map in $OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$ is a regular element, it follows that $OT(\mathbb{Z} \times \mathbb{Z}, \leq_d)$ also contains an infinitely many regular elements.

From the above proof, we can show similarly by Theorem 2.1.6 that if X is an infinite subset of \mathbb{Z} , then $OT(X \times X, \leq_d)$ contains an infinitely many nonregular elements and an infinitely many regular elements.

3.2 Intervals in \mathbb{R}

We shall show that for an interval X in \mathbb{R} , $OT(X \times X, \leq_d)$ is regular if and only if X is closed and bounded.

Lemma 3.2.1. Let $a, b \in \mathbb{R}$ be such that a < b. If A and B are nonempty subsets of $[a, b] \times [a, b]$ such that

$$[a,b] \times [a,b] = A \dot{\cup} B \tag{1}$$

and

for all
$$(x, y) \in A$$
 and $(x', y') \in B$, $(x, y) <_d (x', y')$, (2)

then $\sup(A) = \inf(B)$, hence either $\sup(A) = \max(A)$ or $\inf(B) = \min(B)$.

Proof. Since $(a, a) = \min([a, b] \times [a, b], \leq_d)$ and $(b, b) = \max([a, b] \times [a, b], \leq_d)$, we have $(a, a) \in A$ and $(b, b) \in B$. Let

$$A_{1} = \{ x \in [a, b] \mid (x, a) \in A \},$$

$$B_{1} = \{ x \in [a, b] \mid (x, a) \in B \}.$$
(3)

By (1),

$$[a,b] \times \{a\} = (A \cup B) \cap ([a,b] \times \{a\})$$
$$= (A \cap ([a,b] \times \{a\})) \cup (B \cap ([a,b] \times \{a\}))$$

It follows that

$$[a,b] = A_1 \dot{\cup} B_1. \tag{4}$$

If $x \in A_1$ and $y \in B_1$, then by (3), $(x, a) \in A$ and $(y, a) \in B$. Hence $(x, a) <_d (y, a)$ by (2) which implies that x < y. Therefore we have that

for all
$$x \in A_1$$
 and $y \in B_1$, $x < y$. (5)

Since $(a, a) \in A$, we have by (3) that $a \in A_1$.

Case 1: $B_1 = \emptyset$. By (3), $(b, a) \notin B$. Then $(b, a) \in A$ by (1). By the definition of \leq_d , we have

for all
$$(x, y) \in [a, b] \times [a, b]$$
, $(x, y) <_d (b, a) \notin B$.

This fact, (1) and (2) imply that $B \subseteq \{b\} \times (a, b]$. Let

$$A_2 = \{y \in [a, b] \mid (b, y) \in A\}$$
 and $B_2 = \{y \in [a, b] \mid (b, y) \in B\}.$

Then $a \in A_2$ and $b \in B_2$ since $(b, a) \in A$ and $(b, b) \in A$. From (1) and (2), we respectively have

$$[a,b] = A_2 \dot{\cup} B_2$$

and

for all
$$x \in A_2$$
 and $y \in B_2$, $x < y$.

These imply that $\sup(A_2) = \inf(B_2)$, say c. Since $B \subseteq \{b\} \times (a, b]$, it follows from (2) that either $B = \{b\} \times (c, b]$ or $B = \{b\} \times [c, b]$. Then we deduce from (1) that

$$B = \{b\} \times (c,d] \Rightarrow A = ([a,b) \times [a,b]) \cup (\{b\} \times [a,c]),$$
$$B = \{b\} \times [c,d] \Rightarrow A = ([a,b) \times [a,b]) \cup (\{b\} \times [a,c)).$$

Consequently, $\max(A) = (b, c) = \inf(B)$.

Case 2: $B_1 \neq \emptyset$. Then $b \in B_1$ by (4) and (5). It follows that $\sup(A_1) = \inf(B_1)$, say *e*. Let

$$A_3 = \{ y \in [a, b] \mid (e, y) \in A \} \text{ and } B_3 = \{ y \in [a, b] \mid (e, y) \in B \}.$$
(6)

By (1) and (2), we have respectively that

$$[a,b] = A_3 \dot{\cup} B_3 \tag{7}$$

and

for all
$$x \in A_3$$
 and $y \in B_3$, $x < y$. (8)

Subcase 2.1 : $A_3 = \emptyset$. By (6) and (7), we have $(e, a) \notin A$ and $(e, a) \in B$. Since $(a, a) \in A$, we have a < e. By the definition of \leq_d , (1) and (2), we have

$$A = [a, e) \times [a, b]$$
 and $B = [e, b] \times [a, b]$,

and thus $\min(B) = (e, a)$ which is an upper bound of A. If $(u, v) <_d (e, a)$, then u < e. But u < e implies that $(u, v) <_d (\frac{u+e}{2}, v)$ and both belong to $[a, e) \times [a, b]$, so (u, v) is not an upper bound of A. This shows that $\sup(A) = (e, a)$. Hence $\sup(A) = (e, a) = \inf(B)$.

Subcase 2.2 : $B_3 = \emptyset$. Then by (6) and (7), $(e,b) \notin B$ and $(e,b) \in A$. Thus by (1) and (2),

$$A = [a, e] \times [a, b]$$
 and $B = (e, b] \times [a, b]$.

Hence $\max(A) = (e, b)$ and we can show similarly that $\inf(B) = (e, b)$.

Subcase 2.3: $A_3 \neq \emptyset$ and $B_3 \neq \emptyset$. From (7) and (8), we have sup $(A_3) = \inf(B_3)$, say f.

If $f \in A_3$, then $(e, f) \in A$ and $(e, f) \notin B$ by (6) and (7), so from (1) and (2), we have

$$A = ([a, e) \times [a, b]) \cup (\{e\} \times [a, f]),$$
$$B = ((e, b] \times [a, b]) \cup (\{e\} \times (f, b])$$

which implies that $\max(A) = (e, f)$. We can see that (e, f) is a lower bound of B. If $(u, v) >_d (e, f)$, then u > e or u = e and v > f. Hence

$$\begin{split} u > e \; \Rightarrow \; (u,v), (\frac{u+e}{2},v) \in (e,b] \times [a,b] \subseteq B \\ & \text{and} \; (\frac{u+e}{2},v) <_d (u,v), \\ u = e \; \text{and} \; v > f \; \Rightarrow \; (u,v), (u,\frac{v+f}{2}) \in \{e\} \times (f,b] \subseteq B \\ & \text{and} \; (u,\frac{v+f}{2}) <_d (u,v). \end{split}$$

Consequently, $\inf(B) = (e, f)$. Hence $\sup(A) = (e, f) = \inf(B)$.

If $f \in B_3$, then $(e, f) \in B$ and $(e, f) \notin A$, by (6) and (7), so

$$A = ([a, e) \times [a, b]) \cup (\{e\} \times [a, f)),$$
$$B = ([e, b] \times [a, b]) \cup (\{e\} \times [f, b])$$

by (1) and (2). Thus $\min(B) = (e, f)$. We can show similarly that $\sup(A) = (e, f)$. Hence $\sup(A) = (e, f) = \inf(B)$.

Therefore the proof is complete.

Theorem 3.2.2. For an interval X in \mathbb{R} , $OT(X \times X, \leq_d)$ is a regular semigroup if and only if X is closed and bounded.

Proof. Assume that the semigroup $OT(X \times X, \leq_d)$ is regular. By Lemma 3.1.1, X has a maximum and a minimum, say a and b, respectively. Hence X = [a, b].

For the converse, assume that X = [a, b] where $a, b \in \mathbb{R}$ and a < b. We shall prove that $OT(X \times X, \leq_d)$ is a regular semigroup by Theorem 2.1.6 and Lemma 3.2.1. Let $\alpha \in OT(X \times X, \leq_d)$. Since α is order-preserving, $(a, a) = \min(X \times X, \leq_d)$ and $(b, b) = \max(X \times X, \leq_d)$, it following that $(a, a)\alpha = \min(\operatorname{ran} \alpha)$ and $(b, b)\alpha = \max(\operatorname{ran} \alpha)$. Next, let $(e, f) \in (X \times X) \setminus \operatorname{ran} \alpha$ be such that

$$A = \{(x, y) \in \operatorname{ran} \alpha \mid (x, y) <_d (e, f)\} \neq \emptyset$$

and

$$B = \{(x, y) \in \operatorname{ran} \alpha \mid (e, f) <_d (x, y)\} \neq \emptyset.$$

This implies that

$$A\alpha^{-1} \neq \emptyset, \ B\alpha^{-1} \neq \emptyset,$$
$$[a,b] \times [a,b] = A\alpha^{-1} \dot{\cup} B\alpha^{-1},$$

and by Lemma 2.1.1,

for all
$$x \in A\alpha^{-1}$$
 and $y \in B\alpha^{-1}$, $x < y$.

From these facts and Lemma 3.2.1, $\sup(A\alpha^{-1}) = \inf(B\alpha^{-1})$. If $\sup(A\alpha^{-1}) = \max(A\alpha^{-1})$, then $(\max(A\alpha^{-1}))\alpha = \max(A)$ since α is order-preserving. Also, if $\inf(B\alpha^{-1}) = \min(B\alpha^{-1})$, then $(\min(B\alpha^{-1}))\alpha = \min(B)$. Hence by Theorem 2.1.6, α is a regular element of $OT(X \times X, \leq_d)$, as desired.

As a direct consequence of Theorem 2.2.6 and Theorem 3.2.2, we have

Corollary 3.2.3. Let X be an interval in \mathbb{R} . Then the following statements are equivalent.

- (i) $OT(X \times X, \leq_d)$ is a regular semigroup.
- (ii) OT(X) is a regular semigroup.
- (iii) X is closed and bounded.

Remark 3.2.4. We define \leq_d on $[a, b] \times \{1, 2, ..., n\}$, where a < b in \mathbb{R} and $n \in \mathbb{N}$, as before, that is,

$$(x,k) \leq_d (y,l) \Leftrightarrow$$
 either (i) $x < y$ or
(ii) $x = y$ and $k \leq l$.

Then $([a, b] \times \{1, 2, ..., n\}, \leq_d)$ is a chain. It can be easily seen that

$$([a,b] \times \{1,2,...,n\}, \leq_d)$$
 and $(\bigcup_{i=0}^{n-1} [a,b] + 2i(b-a), \leq)$

are order-isomorphic through the map $(x, k) \mapsto x + 2(k-1)(b-a)$ where \leq is the natural order of real numbers. For an example,

$$([1,2] \times \{1,2,3,4\}, \leq_d) \cong ([1,2] \cup [3,4] \cup [5,6] \cup [7,8], \leq).$$

By Theorem 2.2.6, $OT(\bigcup_{i=0}^{n-1} [a,b] + 2i(b-a), \leq)$ is regular. Hence $OT([a,b] \times \{1,2,...,n\}, \leq_d)$ is a regular semigroup.

3.3 Intervals in Subfields of \mathbb{R}

We shall show in this section that if X is a nontrivial interval in a subfield F of \mathbb{R} , then $OT(X \times X, \leq_d)$ is regular only the case that $F = \mathbb{R}$ and X is closed and bounded.

Lemma 3.3.1. If X is a nontrivial interval in a proper subfield F of \mathbb{R} , then $OT(X \times X, \leq_d)$ is not a regular semigroup.

Proof. Let $a, b \in X$ be such that a < b. Then there is an irrational number $e \in \mathbb{R} \setminus F$ such that a < e < b (see the proof of Theorem 2.2.7). Thus

$$X = \left((-\infty, a) \cap X \right) \cup \left([a, e) \cap X \right) \cup \left((e, \infty) \cap X \right).$$

Hence

$$X \times X = \left(\left((-\infty, a) \cap X \right) \times X \right) \cup \left(\left([a, e) \cap X \right) \times X \right) \cup \left(\left((e, \infty) \cap X \right) \times X \right).$$

Define $\alpha: X \times X \to X \times X$ by

$$(x,y)\alpha = \begin{cases} (x,a) & \text{if } x \in (-\infty,a) \cap X \text{ and } y \in X, \\ (\frac{a+x}{2},a) & \text{if } x \in [a,e) \cap X \text{ and } y \in X, \\ (x,a) & \text{if } x \in (e,\infty) \cap X \text{ and } y \in X. \end{cases}$$

We can see from the proof of Theorem 2.2.7 that $\alpha \in OT(X \times X, \leq_d)$ and

$$\operatorname{ran} \alpha = \left(\left(\left(-\infty, \frac{a+e}{2} \right) \cap X \right) \dot{\cup} \left(\left(e, \infty \right) \cap X \right) \right) \times \{a\}.$$

Let $q \in (\frac{a+e}{2}, e) \cap X$. Then $(q, a) \in (X \times X) \setminus \operatorname{ran} \alpha$. We also have from the definition of α that

$$\{(x,y)\in\operatorname{ran}\alpha\mid (x,y)<_d(q,a)\}=\left((-\infty,\frac{a+e}{2})\cap X\right)\times\{a\}$$

and

$$\{(x,y)\in\operatorname{ran}\alpha\mid (q,a)<_d(x,y)\}=\big((e,\infty)\cap X\big)\times\{a\}$$

It can be seen from the proof of Theorem 2.2.7 that none of $\max\left(\left((-\infty, \frac{a+e}{2}) \cap X\right) \times \{a\}\right)$ and $\min\left(\left((e, \infty) \cap X\right) \times \{a\}\right)$ exists. By Theorem 2.1.6, α is not a regular element of $OT(X \times X, \leq_d)$.

As a direct consequence of Lemma 3.3.1, we have

Corollary 3.3.2. It X is a nontrivial interval in \mathbb{Q} , then $OT(X \times X, \leq_d)$ is not a regular semigroup.

Remark 3.3.3. Notice that the converse of Lemma 3.1.1 is true under the assumption that $\emptyset \neq X \subseteq \mathbb{Z}$ or X is an interval in \mathbb{R} . This follows from Theorem 3.1.2 and Theorem 3.2.2. However, the converse of Lemma 3.1.1 is not generally true. To see this, let $a, b \in \mathbb{Q}$ be such that a < b. Then $[a, b] \cap \mathbb{Q}$ is a nontrivial interval in \mathbb{Q} . By Corollary 3.3.2, $OT(([a, b] \cap \mathbb{Q}) \times ([a, b] \cap \mathbb{Q}), \leq_d)$ is not a regular semigroup. However, $b = \max([a, b] \cap \mathbb{Q})$ and $a = \min([a, b] \cap \mathbb{Q})$.

Theorem 3.3.4. Let X be a nontrivial interval in a subfield F of \mathbb{R} . Then $OT(X \times X, \leq_d)$ is a regular semigroup if and only if $F = \mathbb{R}$ and X is closed and bounded.

Proof. If $F \neq \mathbb{R}$, then by Lemma 3.3.1, $OT(X \times X, \leq_d)$ is not regular. Therefore if $OT(X \times X, \leq_d)$ is regular, then $F = \mathbb{R}$, and hence by Theorem 3.2.2, X is closed and bounded.

The converse holds by Theorem 3.2.2.

The following corollary is obtained from Theorem 2.2.7 and Theorem 3.3.4.

Corollary 3.3.5. Let X be a nontrivial interval in a subfield F of \mathbb{R} . Then the following statements are equivalent.

- (i) $OT(X \times X, \leq_d)$ is a regular semigroup.
- (ii) OT(X) is a regular semigroup.
- (iii) $F = \mathbb{R}$ and X is closed and bounded.

31

REFERENCES

- Edwards, C. C. and Anderson, M. Lattice properties of the symmetric weakly inverse semigroup on a totally ordered set. J. Austral. Math. Soc. Ser. A 31(1981): 395-404.
- [2] Fernandes, V. H. Semigroups of order-preserving mappings on a finite chain: A new class of divisors. Semigroup Forum 54(1997): 203-236.
- [3] Higgins, P. M. Techniques of semigroup theory. New York: Oxford University Press, 1992.
- [4] Howie, J. M. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
- [5] Kemprasit, Y. and Changphas, T. Regular order-preserving transformation semigroups. Bull. Austral. Math. Soc. 62(2000): 511-524.
- [6] Kemprasit, Y. and Jaidee, S. Regularity and isomorphism theorems of generalized order-preserving transformation semigroups. Vietnam J. Math. 33(2000): 253-260.
- [7] Kemprasit, Y. Order-preserving transformation semigroups whose bi-ideals and quasi-ideals coincide. Italian J. Pure and Appl. Math., to appear.
- [8] Lyapin, E. S. Semigroups. Translations of Mathematical Monographs Vol.3. Providence, R.I.: Amer. Math. Soc., 1974.
- [9] Rungrattrakoon, P. and Kemprasit, Y. Regularity of full order-preserving transformation semigroups on intervals in subfields of R. East-West
 J. Spec. Vol. for NCAM 2003-2004 (2004): 107-110.

VITA

Name	Miss Winita Mora
Date of Birth	29 November 1980
Place of Birth	Trang, Thailand
Education	B.Sc.(Mathematics)(First Class Honors), Prince of Songkla
	University, 2002
Scholarship	The Ministry Development Staff Project Scholarship for the
	M.Sc.program (2 years)
Place of Work	Department of Mathematics , Faculty of Science, Prince of
	Songkla University, Songkhla 90110
Position	Instructor

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย