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CHAPTER I

INTRODUCTION

1.1 Motivation

The theory of hyperstructures (also called multialgebras) started with the

communication of F. Marty in 1934 at the 8th Congress of Scandinavian Math-

ematicians. Marty introduced the notion of hypergroups and since then many

researchers have worked and developed on this topic. The concept of hyperrings

was introduced by M. Krasner. Later, J. Mittas and D. Stratigopoulos, two stu-

dents of Krasner, earned their theses by studying the structure of hyperrings.

P. Corsini gathered the fundamental concepts in his book “Prolegomena of

hypergroup theory”and its applications in “Application of hyperstructure theory”.

The structure of hypermodules over hyperrings is defined analogously to one of

modules over rings. It has been known that there are many different types of

hyperrings, for examples, a Krasner hyperring (or simple hyperring), a feeble

hyperring, a multiplicative hyperring, a D-hyperring and a V-S-hyperring. As a

result, it is not surprised that a hypermodule over a hyperring is defined in various

ways.

The purpose of this thesis is to investigate some properties of hypermodules

over Krasner hyperrings that are parallel to those of modules over rings. Moreover,

we give some examples of hypermodules which are considered from the collection

of all multiplicative interval semigroups of R joining 0.

In addition, CH. G. Massouros [4] gave a definition of free hypermodules over



2

Krasner hyperrings and delved into their properties. He accomplished one of the

pleasant results stating that a basis of a free hypermodule M is linearly indepen-

dent and generates M . This leads us to the only remaining objective, namely,

studying projective hypermodules. The definition of a projective hypermodule is

given along with its properties.

This thesis contains 4 chapters. In Chapter I, we motivate our work and intro-

duce some definitions and examples which are required in the following chapters.

We give, in Chapter II, a definition of hypermodules over Krasner hyperrings

and study some elementary properties. Moreover, homomorphisms between hy-

permodules over Krasner hyperrings and direct sums of hypermodules over Kras-

ner hyperrings are illustrated.

In Chapter III, we explore some examples of canonical hypergroups and Kras-

ner hyperrings in order to construct hypermodules over Krasner hyperrings. In

this work, we focus on the collection of all interval subsemigroups of R under

usual multiplication joining the real number 0.

In Chapter IV, a definition and investigation of some properties of free hyper-

modules and projective hypermodules are presented.

1.2 Preliminaries

In this section, we introduce some definitions of hyperstructures inspired by

P. Cosini. Many examples of hyperstructures also are given.

For a set H, let P(H) denote the power set of H and P∗(H) = P(H) r {∅} .

Definition 1.2.1. [5] A hyperoperation on a nonempty set H is a mapping

of H ×H into P∗(H). A hypergroupoid is a system (H, ◦) consisting of a

nonempty set H and a hyperoperation ◦ on H .
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Let (H, ◦) be a hypergroupoid. For nonempty subsets X and Y of H, let

X ◦ Y =
⋃
x∈X
y∈Y

(x ◦ y),

and let X ◦ y = X ◦ {y} and y ◦X = {y} ◦X for all y ∈ H .

A hypergroupoid (H, ◦) is said to be commutative if

x ◦ y = y ◦ x for all x, y ∈ H .

A semihypergroup is a hypergroupoid (H, ◦) such that

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H .

A hypergroup is a semihypergroup (H, ◦) such that

x ◦H = H ◦ x = H for all x ∈ H .

Definition 1.2.2. [5] Let (H, ◦) be a hypergroupoid.

An element e of H is called an identity of H if

x ∈ (x ◦ e) ∩ (e ◦ x) for all x ∈ H .

An element e of H is called a scalar identity of H if

x ◦ e = e ◦ x = {x} for all x ∈ H .

In general, an identity of a hypergroupoid may not be unique see Exam-

ple 1.2.4. However, a scalar identity is unique since if x and y are scalar identities

of a hypergroupoid (H, ◦), then {x} = x ◦ y = {y} so that x = y .

Definition 1.2.3. [5] Let (H, ◦) be a semihypergroup. An element x of H is

said to be an inverse of an element y of H if there exists an identity e of H such

that
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e ∈ (x ◦ y) ∩ (y ◦ x),

that is, (x ◦ y) ∩ (y ◦ x) contains at least one identity of H .

Example 1.2.4. [6] Let H be a nonempty set. Define

x ◦ y = H for all x, y ∈ H .

Then (H, ◦) is a commutative hypergroup with the following properties.

i) Every element of H is an identity of H . Consequently H has a scalar identity

if and only if |H| = 1.

ii) Any pairs of elements of H are inverses of each other.

This hypergroup (H, ◦) is usually called the total hypergroup.

Definition 1.2.5. [5] A hypergroup (H, ◦) is called a canonical hypergroup if

i) (H, ◦) is commutative,

ii) (H, ◦) has a scalar identity,

iii) every element x of H has a unique inverse, denoted by x−1 , in H and

iv) x ∈ y ◦ z implies z ∈ y−1 ◦ x for x, y, z ∈ H .

Note that if (H, ◦) is a canonical hypergroup, then x ∈ y ◦ z also implies

z ∈ x ◦ y−1 for x, y, z ∈ H .

Definition 1.2.6. Let (H, ◦) be a canonical hypergroup. For a nonempty sub-

set X of H , let

X−1 = {x−1| x ∈ X} .

Proposition 1.2.7. Let (H, ◦) be a canonical hypergroup. Then (x−1)−1 = x

and (x ◦ y)−1 = x−1 ◦ y−1 for all x, y ∈ H .
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Proof. This is obvious.

Example 1.2.8. Let H be a nonempty set of cardinality at least 2. Choose an

element in H and denote by 0. Define a hyperoperation ◦ on H by

a ◦ b =



{a}, if b = 0,

{b}, if a = 0,

H, if a = b 6= 0,

{a, b}, if a 6= b, a 6= 0 and b 6= 0.

Then (H, ◦) is a canonical hypergroup with 0 as a scalar identity and a as the

inverse of a ∈ H .

Proof. It is obvious that (H, ◦) is commutative. Now, we show that a ◦H = H

for all a ∈ H . This is clear if a = 0. Let a ∈ H r {0} . Then a ◦ H =

(a ◦ a) ∪
(
a ◦ (H r {a})

)
= H ∪

(
a ◦ (H r {a})

)
= H . Thus H ◦ a = a ◦H = H

for all a ∈ H .

To show that (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ H , let a, b, c ∈ H .

Case 1 : a = 0 or b = 0 or c = 0. Without loss of generality, assume that c = 0.

Then (a ◦ b) ◦ c = (a ◦ b) ◦ 0 = a ◦ b and a ◦ (b ◦ c) = a ◦ (b ◦ 0) = a ◦ {b} = a ◦ b .

Case 2 : a, b, c 6= 0.

Subcase 2.1 : a = b = c . Then (a ◦ b) ◦ c = (a ◦ a) ◦ a = a ◦ (a ◦ a) = a ◦ (b ◦ c).

Subcase 2.2 : Only two elements of a, b and c are equal. Without loss of

generality, let a = b . Then (a ◦ b) ◦ c = (a ◦ a) ◦ c = H ◦ c = H and a ◦ (b ◦ c) =

a ◦ (a ◦ c) = a ◦ {a, c} = H .

Subcase 2.3 : a, b, c are all distinct. Then (a◦ b)◦ c = {a, b}◦ c = {a, b, c} and

a ◦ (b ◦ c) = a ◦ {b, c} = {a, b, c} .

Thus (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ H .
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Hence (H, ◦) is a commutative hypergroup.

Next, we prove that (H, ◦) is a canonical hypergroup. It is obvious that 0 is

a scalar identity and a is the unique inverse of a for all a ∈ H . It remains to

show that for each a, b, c ∈ H if a ∈ b ◦ c , then c ∈ a ◦ b−1 . Let a, b, c ∈ H be

such that a ∈ b ◦ c .

Case 1 : b = 0. Since a ∈ b ◦ c = 0 ◦ c = {c} , we have a = c . Then c ∈ a ◦ 0 =

a ◦ b−1 .

Case 2 : c = 0. Since a ∈ b ◦ c = b ◦ 0 = {b} , we have a = b , i.e., a = b−1 . Then

either a ◦ b−1 = {0} or a ◦ b−1 = H . Thus c = 0 ∈ a ◦ b−1 .

Case 3 : b 6= c and b, c 6= 0. Then a ∈ {b, c} . If a = b , then a = b−1 so that

c ∈ H = a ◦ a = a ◦ b−1 . If a = c , then a 6= b , so c ∈ {a, b} = a ◦ b = a ◦ b−1 .

Case 4: b = c and b, c 6= 0. Then a ∈ H . If a = b , then c ∈ H = a ◦ a = a ◦ b =

a ◦ b−1 . If a 6= b , then c = b ∈ a ◦ b = a ◦ b−1 .

Hence (H, ◦) is a canonical hypergroup with 0 as a scalar identity and a as

the inverse of a ∈ H .

Definition 1.2.9. [5] Let (H, ◦) be a canonical hypergroup. A nonempty subsetH ′

of H is called a canonical subhypergroup of (H, ◦) if

i) x ◦ y ⊆ H ′ for all x, y ∈ H ′ ,

ii) e ∈ H ′ where e is the scalar identity of H and

iii) x−1 ∈ H ′ for every x ∈ H ′ ( where x−1 is the inverse of x in H ).

Remark 1.2.10. Let H ′ be a canonical subhypergroup of a canonical hypergroup

(H, ◦). It is easy to see that (H ′, ◦) is a canonical hypergroup such that the scalar

identity of H is a scalar identity of H ′ and the inverse of x in H ′ is the same as

the inverse of x in H for each x ∈ H ′ .
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The following proposition gives a practical method for verifying whether a

nonempty subset of a given canonical hypergroup is its canonical subhypergroup.

Proposition 1.2.11. Let (H, ◦) be a canonical hypergroup and H ′ a nonempty

subset of H . Then H ′ is a canonical subhypergroup of (H, ◦) if and only if

x ◦ y−1 ⊆ H ′ for all x, y ∈ H ′ .

Proof. First, assume that H ′ is a canonical subhypergroup of (H, ◦). If x, y ∈ H ′ ,

then y−1 ∈ H ′ so that x ◦ y−1 ⊆ H ′ .

Conversely, suppose that x ◦ y−1 ⊆ H ′ for all x, y ∈ H ′ . Let x, y ∈ H ′ . Then

e ∈ x ◦ x−1 ⊆ H ′ . Since {x−1} = e ◦ x−1 ⊆ H ′ , we have x−1 ∈ H ′ . Hence

x−1 ∈ H ′ for each x ∈ H ′ . Consequently, x ◦ y = x ◦ (y−1)−1 ⊆ H ′ .

This proves that H ′ is a canonical subhypergroup of (H, ◦).

For the rest of this chapter, a Krasner hyperring is defined and various exam-

ples are given.

Definition 1.2.12. [5] A system (R,⊕, ◦) is called a (Krasner) hyperring if

i) (R,⊕) is a canonical hypergroup,

ii) (R, ◦) is a semigroup with zero 0 where 0 is the scalar identity of (R,⊕) and

iii) x ◦ (y ⊕ z) = x ◦ y ⊕ x ◦ z and (y ⊕ z) ◦ x = y ◦ x⊕ z ◦ x for all x, y, z ∈ R .

The hyperoperation ⊕ and the operation ◦ of a hyperring (R,⊕, ◦) are called

the addition and the multiplication of R , respectively. Moreover, the scalar

identity 0 of (R,⊕) is called the zero of R .

Let (R,⊕, ◦) be a Krasner hyperring. If (R, ◦) is a monoid with identity 1R ,

then we call (R,⊕, ◦) a Krasner hyperring with identity 1R .
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Remark 1.2.13. Let ⊕ be a hyperoperation on {0} . Then ({0},⊕) is a canonical

hypergroup and ({0},⊕, ·) is a Krasner hyperring where · is the usual multipli-

cation on R .

Example 1.2.14. [5] Define a hyperoperation ⊕ on Z3 as follows:

⊕ 0 1 2

0 {0} {1} {2}

1 {1} {1} Z3

2 {2} Z3 {2}

Then (Z3,⊕, ·) is a Krasner hyperring with zero 0 in Z3 where · is the usual

multiplication on Z3 .

Next example shows how to construct a Krasner hyperring from a group.

Example 1.2.15. [6] Let (G, ·) be a group. For x, y ∈ G0 where G0 = G ∪ {0}

and 0 is a new symbol not containing in G and 0 · a = 0 = a · 0 for all a ∈ G0 ,

define

x⊕ y =



{x}, if y = 0,

{y}, if x = 0,

G0 r {x}, if x = y 6= 0,

{x, y}, if x 6= y, x 6= 0 and y 6= 0.

Then (G0,⊕, ·) is a Krasner hyperring.

Examples 1.2.16–1.2.18 are examples of Krasner hyperrings constructed from

real intervals.

Example 1.2.16. [5] Let a ∈ R be such that 0 < a ≤ 1 and R = [0, a] or [0, a).
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Define a hyperoperation ⊕ on R by

x⊕ y =


{
max{x, y}

}
, if x 6= y,

[0, x], if x = y.

Then (R,⊕, ·) is a Krasner hyperring where · is the usual multiplication on R .

Example 1.2.17. [5] Let a ∈ R be such that a ≥ 1 and R = [a,∞) ∪ {0} or

(a,∞) ∪ {0} . Define a hyperoperation ⊕ on R by

x⊕ 0 = 0⊕ x = {x} for all x ∈ R,

x⊕ x = [x,∞) ∪ {0} for all x ∈ R r {0} and

x⊕ y =
{
min{x, y}

}
for all x, y ∈ R r {0} with x 6= y.

Then (R,⊕, ·) is a Krasner hyperring where · is the usual multiplication on R .

Example 1.2.18. [5] Let a ∈ R be such that 0 < a ≤ 1 and R = [−a, a] or (−a, a).

Define a hyperoperation ⊕ on R by

x⊕ x = {x} for all x ∈ R,

x⊕ (−x) = [−|x|, |x| ] for all x ∈ R and

x⊕ y = y ⊕ x = {x} for all x ∈ R with |y| < |x|.

Then (R,⊕, ·) is a Krasner hyperring where · is the usual multiplication on R .

Examples 1.2.16–1.2.18 will play major roles in Chapter III. We define three

multi-valued functions ⊕max,⊕min and ⊕abs of R × R into P(R) analogously to

hyperoperations defined in these examples in order to form hypermodules over

Krasner hyperrings.



CHAPTER II

ELEMENTARY PROPERTIES OF HYPERMODULES

OVER KRASNER HYPERRINGS

We investigate elementary properties of hypermodules over Krasner hyper-

rings that are parallel to those of modules over rings. We demonstrate these in

three sections. In the first section, hypermodules, subhypermodules and quotient

hypermodules are defined and their examples are given. In Section 2.2, we look

up some properties regarding homomorphisms and isomorphism theorems. In the

last section, the direct sum of subhypermodules are studied.

2.1 Hypermodules over Krasner Hyperrings

We first introduce a definition and give some examples of hypermodules over

Krasner hyperrings.

Definition 2.1.1. [2] Let (R,⊕, ◦) be a Krasner hyperring, one say that (M, +, ·)

is a left R-hypermodule (or M is a left R-hypermodule or M is a hypermodule

over R) if

i) (M, +) is a canonical hypergroup,

ii) · is a (left) scalar single-valued operation, that is, a function which associates

with any pair (a, x) ∈ R×M an element a ·x ∈ M such that for all x, y ∈ M

and all a, b ∈ R , the following conditions hold:

(a) a · (x + y) = a · x + a · y ,
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(b) (a⊕ b) · x = a · x + b · x ,

(c) (a ◦ b) · x = a · (b · x),

(d) 0R ·x = 0M where 0R and 0M are the zero of R and the scalar identity

of M, respectively.

If R is endowed with an identity 1R , then M is called unitary if 1R · x = x

for all x ∈ M .

A right R-hypermodule is defined in a similar fashion. Unless stated otherwise,

all R-hypermodules in this thesis will be left R-hypermodules.

Let (M, +, ·) be an R-hypermodule. For nonempty subsets S of R and

N of M, let

S ·N = {s · n|s ∈ S and n ∈ N},

s · N = {s} · N and S · n = S · {n} for all s ∈ S and n ∈ N . If there is no

ambiguity, then S · N , s · N , S · n and s · n are denoted by SN , sN , Sn and

sn , respectively.

We give some examples of hypermodules over a Krasner hyperrings.

Example 2.1.2. Let R be a Krasner hyperring. Then {0} and R are R-

hypermodules.

Example 2.1.3. Let a, b ∈ R be such that a ≥ 1 and 0 < b ≤ 1, R = [a,∞)∪{0}

and M = [0, b] . We recall from Example 1.2.16 and Example 1.2.17 that (R,⊕, ◦)

is a Krasner hyperring and (M, +) is a canonical hypergroup where ◦ is the usual
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multiplication on R , ⊕ and + are defined as follows

r ⊕ 0 = 0⊕ r = {r} for all r ∈ R,

r ⊕ r = [r,∞) ∪ {0} for all r ∈ R r {0} and

r ⊕ s =
{
min{r, s}

}
for all r, s ∈ R r {0} with r 6= s,

and

x + y =


{
max{x, y}

}
, if x 6= y,

[0, x], if x = y.

Define a scalar single-valued operation · : R×M → M by, for all c ∈ R and

x ∈ M

c · x =


0 if c = 0,

x

c
, if c 6= 0.

Then (M, +, ·) is an R-hypermodule. The proof will be given later in Proposi-

tion 3.2.25.

Example 2.1.4. Let M, M ′ be R-hypermodules and L = {f | f : M → M ′} .

Define a hyperoperation ⊕ on L by, for each f, g ∈ L ,

f ⊕ g = {h : M → M ′| h(x) ∈ f(x) + g(x) for all x ∈ M}

and ∗ : R× L → L by, for each r ∈ R and f ∈ L ,

(r ∗ f)(x) = r(f(x)) for all x ∈ M .

Then (L,⊕, ∗) is an R-hypermodule.

Proof. It is easy to show that (L,⊕) is a canonical hypergroup where the zero

function 0L is a scalar identity and −f is the inverse of f in L and 0R ∗ f = 0L .
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For each a, b ∈ R and f ∈ L , since
(
(a ◦ b) ∗ f

)
(x) = (a ◦ b)(f(x)) = a(b(f(x))) =

a((b∗f)(x)) = (a∗ (b∗f))(x) for all x ∈ M , we obtain that (a◦b)∗f = a∗ (b∗f).

Next, we show that r ∗ (f ⊕ g) = r ∗ f ⊕ r ∗ g for all r ∈ R and f, g ∈ L .

First, let h ∈ f ⊕ g . Then h(x) ∈ f(x) + g(x) for all x ∈ M . Thus (r ∗ h)(x) =

r(h(x)) ∈ r(f(x) + g(x)) = r(f(x)) + r(g(x)) = (r ∗ f)(x) + (r ∗ g)(x) so that

(r ∗ h)(x) ∈ (r ∗ f)(x) + (r ∗ g)(x) for all x ∈ M . Hence r ∗ h ∈ r ∗ f ⊕ r ∗ g .

On the other hand, let h ∈ r ∗ f ⊕ r ∗ g . Then h(x) ∈ (r ∗ f)(x) + (r ∗ g)(x) =

r(f(x)) + r(g(x)) = r(f(x) + g(x)) for all x ∈ M . So h(x) ∈ r(f(x) + g(x)) for

all x ∈ M . Then for each x ∈ M there exists lx ∈ f(x) + g(x) ⊆ M ′ such that

h(x) = r(lx). Define l : M → M ′ by l(x) = lx for all x ∈ M . Then for each

x ∈ M , l(x) ∈ f(x) + g(x) and h(x) = r(l(x)) = (r ∗ l)(x), i.e., l ∈ f ⊕ g and

h = r ∗ l . Hence h ∈ r ∗ (f ⊕ g). Therefore r ∗ (f ⊕ g) = r ∗ f ⊕ r ∗ g .

Finally, we show that (a + b) ∗ f = a ∗ f ⊕ b ∗ f . First, let r ∈ a + b . Then

(r ∗ f)(x) = r(f(x)) ∈ (a + b)(f(x)) = a(f(x)) + b(f(x)) = (a ∗ f)(x) + (b ∗ f)(x)

for all x ∈ M . Hence r ∗ f ∈ a ∗ f ⊕ b ∗ f . Next, let h ∈ a ∗ f ⊕ b ∗ f . Then

h(x) ∈ a(f(x)) + b(f(x)) = (a + b)(f(x)) = ((a + b) ∗ f)(x) for all x ∈ M . Hence

h ∈ (a + b) ∗ f . Therefore (a + b) ∗ f = a ∗ f ⊕ b ∗ f .

As a result (L,⊕, ∗) is an R-hypermodule.

From now on, we use +, ⊕ for hyperoperations on an R-hypermodule M

and a Krasner hyperring R , respectively. Besides we denote scalar identities of

M and R and the inverse of m ∈ M and r ∈ R by 0M , 0R , −m and −r ,

respectively. If there is no ambiguity, then 0M and 0R are denoted by 0.

As in a module over ring, the following proposition for a hypermodule over a

Krasner hyperring is obtained.

Proposition 2.1.5. Let M be an R-hypermodule. Then

i) r0M = 0M for all r ∈ R ,
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ii) r(−m) = −(rm) = (−r)m for all r ∈ R and m ∈ M .

Proof. i) Clearly r0M = r(0R0M) = (r0R)0M = (0R)0M = 0M for all r ∈ R .

ii) Let m ∈ M and r ∈ R . By i), we have 0M = r0M ∈ r(m +

(−m)) = rm + r(−m). Then 0M ∈ rm + r(−m) so that −(rm) = r(−m). Also

0M = 0Rm ∈ (r ⊕ (−r))m = rm + (−r)m . Then 0M ∈ rm + (−r)m so that

−(rm) = (−r)m . Therefore r(−m) = −(rm) = (−r)m .

The concept of subhypermodules of an R-hypermodule have been studied.

Definition 2.1.6. Let M be an R-hypermodule. A nonempty subset N of M

is a subhypermodule of M if N is a canonical subhypergroup of M and rN ⊆ N

for all r ∈ R

Proposition 2.1.7. Let M be an R-hypermodule. A nonempty subset N is a

subhypermodule of M if and only if x − y ⊆ N and rx ∈ N for all r ∈ R and

x, y ∈ N .

Proof. This follows from Proposition 1.2.11 and Definition 2.1.6.

For a collection of subhypermodules of an R-hypermodule M , the largest

subhypermodule of M contained in these subhypermodules and the smallest sub

hypermodule of M containing these subhypermodules alway exist.

Proposition 2.1.8. Let M be an R-hypermodule and Nλ a subhypermodule of M

for each λ ∈ Λ. Then
⋂
λ∈Λ

Nλ is the largest subhypermodule of M contained in

all Nλ .

Proof. It is obvious that
⋂
λ∈Λ

Nλ is contained in all Nλ . Let x, y ∈
⋂
λ∈Λ

Nλ and

r ∈ R . Then x, y ∈ Nλ for all λ ∈ Λ. For each λ ∈ Λ, since Nλ is a subhyper-

module of M , it follows that x− y ⊆ Nλ and rx ∈ Nλ . Hence
⋂
λ∈Λ

Nλ is again a

subhypermodule of M .
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Next, assume that L is an R- hypermodule contained in all Nλ . To show that

L ⊆
⋂
λ∈Λ

Nλ , let x ∈ L . Then x ∈ Nλ for all λ ∈ Λ so that x ∈
⋂
λ∈Λ

Nλ .

Therefore
⋂
λ∈Λ

Nλ is the largest subhypermodule of M contained in all Nλ .

Definition 2.1.9. Let M be an R-hypermodule and Nλ a subhypermodule of M

for each λ ∈ Λ. Define

∑
λ∈Λ

Nλ =
{
x ∈ M

∣∣ ∃r ∈ N ∃ λ1, . . . , λr ∈ Λ, x ∈ Nλ1 + · · ·+ Nλr

}
.

We call
∑
λ∈Λ

Nλ the sum of subhypermodules Nλ .

Remark 2.1.10. Let M be an R-hypermodule and Nλ a subhypermodule of M

for each λ ∈ Λ. Then

∑
λ∈Λ

Nλ =
⋃

λ1,...,λr∈Λ
r∈N

(Nλ1 + · · ·+ Nλr).

Proposition 2.1.11. Let M be an R-hypermodule and Nλ a subhypermodule

of M for each λ ∈ Λ. Then
∑
λ∈Λ

Nλ is the smallest subhypermodule of M con-

taining all Nλ .

Proof. It is obvious that
∑
λ∈Λ

Nλ contains all Nλ . Let x, y ∈
∑
λ∈Λ

Nλ and r ∈ R .

Then there exist r1, r2 ∈ N and λ1, . . . , λr1 , µ1, . . . µr2 ∈ Λ such that x ∈ Nλ1 +

· · ·+Nλr1
and y ∈ Nµ1 + · · ·+Nµr2

. Since each Nλ is a subhypermodule of M , we

have −y ∈ Nµ1+· · ·+Nµr2
and rx ∈ rNλ1 + · · ·+ rNλr1

⊆ Nλ1 + · · ·+ Nλr1
⊆

∑
λ∈Λ

Nλ .

Thus x− y ⊆ Nλ1 + · · · + Nλr1
+ Nµ1 + · · · + Nµr2

⊆
∑
λ∈Λ

Nλ . Hence
∑
λ∈Λ

Nλ is a

subhypermodule of M containing all Nλ .

Assume that K is a subhypermodule of M containing all Nλ . To show that∑
λ∈Λ

Nλ ⊆ K , let x ∈
∑
λ∈Λ

Nλ . Then there exists r ∈ N and λ1, . . . , λr ∈ Λ
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such that x ∈ Nλ1 + · · · + Nλr . Then x ∈ K since K is a subhypermodule

of M containing all Nλ . Therefore
∑
λ∈Λ

Nλ is the smallest subhypermodule of M

containing all Nλ .

In the case where the index set Λ is finite, say Λ = {1, 2, 3, . . . , n}, we often

write
∑
λ∈Λ

Nλ as
n∑

i=1

Ni or N1 + N2 + · · ·+ Nn. We see that

N1 + N2 + · · ·+ Nn = {x ∈ M | ∃ni ∈ Ni, x ∈ n1 + n2 + · · ·+ nn}

and call the sum of subhypermodules N1, . . . , Nn . With this notation we obtain

the following consequences.

Proposition 2.1.12. Modularity Condition

Let M be an R-hypermodule. If K, H and L are subhypermodules of M and

K ⊆ H, then H ∩ (K + L) = K + (H ∩ L).

Proof. First, let a ∈ H ∩ (K +L). Then a ∈ H and there exists k ∈ K and l ∈ L

such that a ∈ k + l . Then l ∈ a − k ⊆ H , i.e., l ∈ H so that l ∈ H ∩ L . As a

result, a ∈ k + l ⊆ K + (H ∩ L). Hence H ∩ (K + L) ⊆ K + (H ∩ L).

On the other hand, since K+(H∩L) ⊆ H+H = H and K+(H∩L) ⊆ K+L ,

we have K + (H ∩ L) ⊆ H ∩ (K + L).

Corollary 2.1.13. Let M be an R-hypermodule and K, H and L are subhy-

permodules of M . If K ⊆ H, K + L = H + L and K ∩ L = H ∩ L, then

K = H .

Proof. Assume that K ⊆ H, K + L = H + L and K ∩ L = H ∩ L . By the

Modularity Condition, we have H ∩ (K + L) = K + (H ∩ L). Then H ⊆ H ∩

(H + L) = H ∩ (K + L) = K + (H ∩L) = K + (K ∩L) ⊆ K . Hence K = H .
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This section is ended by constructing a quotient hypermodule over a Krasner

hyperring.

Proposition 2.1.14. Let M be an R-hypermodule and N a subhypermodule

of M . Define the relation ρ on M by

xρy ⇔ x + N = y + N for all x, y ∈ M.

Then ρ is an equivalence relation on M .

Proof. This is obvious.

Definition 2.1.15. Let M be an R-hypermodule, N a subhypermodule of M

and ρ the equivalence relation defined in Proposition 2.1.14. Denote the set of all

equivalence classes by M/N , i.e.,

M/N =
{
[x]ρ|x ∈ M

}
= {x + N |x ∈ M}

Moreover, N = 0 + N .

Proposition 2.1.16. Let M be an R-hypermodule and N a subhypermodule

of M . Then x ∈ y + N if and only if x + N = y + N for all x, y ∈ M .

Proof. This follows from the fact that {x+N |x ∈ M} forms a partition of M .

Theorem 2.1.17. Let M be an R-hypermodule and N a subhypermodule of M .

Define the hyperoperation � on M/N by

(m1 + N) � (m2 + N) = {v + N | v ∈ m1 + m2} for all m1, m2 ∈ M .

Then (M/N, �) is a canonical hypergroup.
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Proof. First, we show that � is well-defined. Let m1 +N = n1 +N and m2 +N =

n2 + N where m1, m2, n1, n2 ∈ M . To show that A := {v + N |v ∈ m1 + m2} =

{w + N |w ∈ n1 + n2} := B , let v ∈ m1 + m2 . Then v ∈ m1 + m2 ⊆ (n1 + N) +

(n2 + N) = (n1 + n2) + N . So there exists w ∈ n1 + n2 such that v ∈ w + N ,

i.e., v + N = w + N . Hence A ⊆ B . The proof of the reverse inclusion is similar.

Consequently, � is well-defined.

Next, we show that (M/N, �) is a hypergroup. Let m1, m2, m3 ∈ M . Then

(
(m1 + N) � (m2 + N)

)
� (m3 + N) = {v + N |v ∈ m1 + m2} � (m3 + N)

=
⋃

v∈m1+m2

(v + N) � (m3 + N)

=
⋃

v∈m1+m2

{w + N |w ∈ v + m3}

= {w + N |w ∈ (m1 + m2) + m3}

= {w + N |w ∈ m1 + (m2 + m3)}

=
⋃

v∈m2+m3

{w + N |w ∈ m1 + v}

=
⋃

v∈m2+m3

(m1 + N) � (v + N)

= (m1 + N) � {v + N |v ∈ m2 + m3}

= (m1 + N) �
(
(m2 + N) � (m3 + N)

)
.

Thus (M/N, �) is associative. In order to show that (m1 + N) � (M/N) = M/N ,

let m ∈ M . Since M is a hypergroup, M = m1 + M so that there exists n ∈ M

such that m ∈ m1 + n . Then m + N ∈ (m1 + N) � (n + N) ⊆ (m1 + N) �M/N .

Now, we prove that (M/N, �) is canonical. It is clear that (M/N, �) is com-

mutative because (M, +) is commutative. We see that N is a scalar identity of

(M/N, �) as follows. To show that −m + N is the unique inverse of m + N for
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each m ∈ M , let m ∈ M . Then (m + N) � (−m + N) = {v + N |v ∈ m + (−m)} .

Thus N ∈ (m + N) � (−m + N). Hence −m + N is an inverse of m + N . For the

uniqueness of an inverse of m+N , we let n ∈ M be such that N ∈ (m + N) � (n + N).

There exists t ∈ m+n t+N = N . Then t ∈ N and n ∈ n+N ⊆ (−m+ t)+N =

−m + N . Hence n + N = −m + N .

Finally, assume that m1 + N ∈ (m2 + N) � (m3 + N) where m1, m2, m3 ∈ M .

There exists t ∈ m2 + m3 such that m1 + N = t + N . Then t ∈ m1 + u for some

u ∈ N . Since t ∈ m2 + m3 , we obtain that m3 ∈ t−m2 ⊆ m1 + u−m2 = (m1 −

m2)+u . There exists s ∈ m1−m2 such that m3 ∈ s+u so that m3 ∈ s+N , i.e.,

m3+N = s+N . Hence m3+N ∈ (m1+N)�(−m3+N) = (m1+N)�−(m3+U).

Theorem 2.1.18. Let M be an R-hypermodule and N a subhypermodule of M .

Define the scalar single-valued operation · : R×M/N → M/N by

r · (m + N) = rm + N for all m ∈ M and r ∈ R .

Then (M/N, �, ·) is an R-hypermodule.

Proof. First, we show that · is well-defined. Let r ∈ R and m1, n1 ∈ M be such

that m1 + N = n1 + N . We show that rm1 + N = rn1 + N . There exists u1 ∈ N

such that m1 ∈ n1 + u1 since m1 + N = n1 + N . Then rm1 ∈ r(n1 + u1) =

rn1 + ru1 ⊆ rn1 + N . Hence rm1 ∈ rn1 + N , i.e., rm1 + N = rn1 + N . Thus ·

is well-defined.

To show that (M/N, �, ·) is an R-hypermodule, let r1, r2 ∈ R and m1, m2 ∈ M .
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We see that

r ·
(
(m1 + N) + (m2 + N)

)
= r · {t + N |t ∈ m1 + m2}

= {rt + N |t ∈ m1 + m2}

= {s + N |s ∈ rm1 + rm2}

= (rm1 + N) � (rm2 + N)

= r · (m1 + N) � r · (m2 + N),

(r1 + r2) · (m1 + N) = {rm1 + N |r ∈ r1 + r2}

= {m + N |m ∈ r1m1 + r2m1}

= (r1m1 + N) � (r2m1 + N)

= r1 · (m1 + N) � r2 · (m1 + N),

r ·
(
s · (m1 + N)

)
= r ◦ (sm1 + N)

= r(sm1) + N

= (rs)m1 + N

= (rs) · (m1 + N),

finally,

0R · (m1 + N) = 0Rm1 + N = 0M + N = N.

Therefore (M/N, �, ·) is an R-hypermodule.

From the previous theorem, we are able to give a definition of quotient hyper-

modules.

Definition 2.1.19. Let M be an R-hypermodule and N a subhypermodule

of M . The hypermodule (M/N, �, ·) is called the quotient hypermodule of M

by N .
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2.2 Homomorphisms and Isomorphism Theorems

In this section, we are interested in exploring homomorphisms, and isomor-

phism theorems of hypermodules over Krasner hyperrings.

Definition 2.2.1. [2] Let M and M ′ be R-hypermodules. A function f : M → M ′

is called a (hypermodule) homomorphism if

i) f(x + y) = f(x) + f(y) for all x, y ∈ M and

ii) f(rx) = rf(x) for all r ∈ R and x ∈ M .

The followings are simple examples of hypermodule homomorphisms

Example 2.2.2. Let M be an R-hypermodule. The identity function, idM ,

on M is obvious a homomorphism.

Example 2.2.3. Let M be an R-hypermodule and N a subhypermodule of M .

The canonical map pN : M → M/N defined by

pN(m) = m + N for all m ∈ M,

is a surjective homomorphism.

Next proposition shows elementary properties of hypermodule homomorphisms.

Proposition 2.2.4. Let M and N be R-hypermodules. If f : M → N be a

homomorphism. then f(0M) = 0N and f(−m) = −f(m) for all m ∈ M .

Proof. We see that f(0M) = f(0R0M) = 0Rf(0M) = 0N . Consequently, for each

m ∈ M , we obtain that 0N = f(0M) ∈ f
(
m + (−m)

)
= f(m) + f(−m) so that

f(−m) = −f(m) as desired.
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Proposition 2.2.5. Let M , N and U be R-hypermodules and f : M → N and

g : N → U homomorphisms. Then the composite function g ◦ f : M → U is a

homomorphism.

Proof. Let m, m′ ∈ M . Then (g◦f)(m+m′) = g
(
f(m+m′)

)
= g

(
f(m)+f(m′)

)
=

g
(
f(m)

)
+g

(
f(m′)

)
= (g◦f)(m)+(g◦f)(m′). Hence g◦f is a homomorphism.

For a given homomorphism of hypermodules, its kernel and image are defined

in the usual way. The property that, if f : M → N is a hypermodule homomor-

phism, then ker(f) and im(f) are subhypermodules of M and N , respectively,

are obtained unsurprisingly.

Definition 2.2.6. Let M and N be R-hypermodules and f : M → N a ho-

momorphism. We define the kernel and the image of f , denoted by ker(f) and

im(f), respectively, by

ker(f) = {m ∈ M | f(m) = 0} and

im(f) = {f(m)| m ∈ M}.

Proposition 2.2.7. Let M and N be R-hypermodules and f : M → N a homo-

morphism. Then f(X) is a subhypermodule of N for every subhypermodule X

of M , and f−1(Y ) is a subhypermodule of M for every subhypermodule Y of N .

Proof. First, let X be a subhypermodule of M . Since X 6= ∅ , we let x1, x2 ∈ X

and r ∈ R . Then it is clear that f(x1) − f(x2) = f(x1 − x2) ⊆ f(X) and

rf(x1) = f(rx1) ∈ f(X). Thus f(X) is a subhypermodule of N .

Next, let Y be a subhypermodule of N . From Proposition 2.2.4, 0 ∈ f−1(Y )

so that f−1(Y ) 6= ∅ . Let x1, x2 ∈ f−1(Y ) and r ∈ R . Then f(x1), f(x2) ∈ Y

so that f(x1 − x2) = f(x1) − f(x2) ∈ Y . Hence x1 − x2 ⊆ f−1(Y ). Moreover,
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f(rx1) = rf(x1) ∈ Y so that rx1 ∈ f−1(Y ). Hence f−1(Y ) is a subhypermodule

of M .

Corollary 2.2.8. Let M and N be R-hypermodules and f : M → N a homomor-

phism. Then ker(f) and im(f) are subhypermodules of M and N , respectively.

Proof. The results follow from Proposition 2.2.7 since ker(f) = f−1
(
{0}

)
and

im(f) = f(M).

Proposition 2.2.9. Let M and N be R-hypermodules and f : M → N a homo-

morphism. Then f is injective if and only if ker(f) = {0}.

Proof. First, the injectivity of f and the fact that f(0) = 0 imply ker(f) = {0} .

Next, we assume that ker(f) = {0} . Let x, y ∈ M be such that f(x) = f(y).

Then 0 ∈ f(x) − f(y) = f(x − y). Thus there exists z ∈ x − y such that

f(z) = 0, i.e., z ∈ ker(f). Hence z = 0. This shows that 0 ∈ x − y and then

x ∈ y + 0 = {y} . Thus x = y . As a result, f is injective.

Proposition 2.2.10. Let M and N be R-hypermodules and f : M → N a

homomorphism. If X is a subhypermodule of M and Y is a subhypermodule

of N then

i) f
[
X ∩ f−1(Y )

]
= f(X) ∩ Y (this property, in fact, holds even if f is just a

function)

ii) f−1
[
Y + f(X)

]
= f−1(Y ) + X .

Proof. Let X and Y be subhypermodules of M and N , respectively. We prove

only the property ii).

ii) First, let x ∈ f−1
[
Y + f(X)

]
. Then f(x) ∈ Y + f(X) so that f(x) ∈

y1 + f(x2) for some y1 ∈ Y and x2 ∈ X . Thus y1 ∈ f(x) − f(x2) = f(x − x2).

There exists x1 ∈ x− x2 such that f(x1) = y1 ∈ Y , i.e., x1 ∈ f−1(Y ). Moreover,
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x ∈ x1 + x2 and then x ∈ f−1(Y ) + X . Hence f−1
[
Y + f(X)

]
⊆ f−1(Y ) + X .

Next, let x ∈ f−1(Y ) + X . Then there exist x1 ∈ f−1(Y ) and x2 ∈ X such

that x ∈ x1 + x2 . Thus f(x) ∈ f(x1 + x2) = f(x1) + f(x2) ∈ Y + f(X). Hence

x ∈ f−1[Y + f(X)]. This shows that f−1(Y ) + X ⊆ f−1
[
Y + f(X)

]
.

Therefore ii) follows.

Corollary 2.2.11. Let M and N be R-hypermodules and f : M → N a ho-

momorphism. If X is a subhypermodule of M and Y is a subhypermodule of N

then

i) f
[
f−1(Y )

]
= Y ∩ im(f)(this property, in fact, holds even if f is just a

function)

ii) f−1
[
f(X)

]
= X + ker(f).

Proof. This follows immediately from Proposition 2.2.10 and the fact that im(f) =

f(M) and ker(f) = f−1
(
{0}

)
.

We give a definition of an isomorphism of R-hypermodule. Then the main

theorems for isomorphism are proved.

Definition 2.2.12. A hypermodule homomorphism is called an isomorphism if

it is also a bijection. If there exists an isomorphism between R-hypermodules M1

and M2 , we say that M1 and M2 are isomorphic and denote M1
∼= M2 .

Theorem 2.2.13. Factorization (Homomorphism) Theorem

Let M and N be R-hypermodules and f : M → N a homomorphism. If U is a

subhypermodule of M with U ⊆ ker(f), then there exists a unique homomorphism

f̄ : M/U → N with f = f̄ ◦pU , the composite function, i.e., the following diagram
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commutes.

M
f //

pU

��

N

M/U

f̄

=={
{

{
{

{
{

{
{

{

Moreover, im(f̄) = im(f) and ker(f̄) = ker(f)/U .

Proof. Note that M/U and ker(f)/U are R-hypermodules because U is a sub-

hypermodule of M and ker(f). Define f̄ : M/U → N by

f̄(m + U) = f(m) for all m ∈ M .

First, we show that f̄ is well-defined. Let x, y ∈ M be such that x+U = y+U .

Then there is u ∈ U with x ∈ y + u so that f(x) ∈ f(y + u). Since f is a

homomorphism and U ⊆ ker(f), it follows that f(x) ∈ f(y + u) = f(y) + f(u) =

f(y) + 0 = {f(y)} . Hence f(x) = f(y). Consequently, f̄ is well-defined.

It is clear that f = f̄ ◦ pU and f̄ is a homomorphism.

Next, we show the uniqueness of f̄ . Let h1, h2 : M/U → N be homomor-

phisms such that f = h1 ◦ pU and f = h2 ◦ pU . For each x + U ∈ M/U where

x ∈ M ,

h1(x+U) = h1(pU(x)) = (h1◦pU)(x) = f(x) = (h2◦pU)(x) = h2(pU(x)) = h2(x+U).

This shows that h1 = h2 . Hence f̄ is the unique homomorphism such that

f = f̄ ◦ pU .

Moreover, we see that

im(f̄) = {f̄(x + U)|x + U ∈ M/U} = {f(x)|x ∈ M} = im(f)
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and

ker(f̄) = {x + U ∈ M/U |f̄(x + U) = 0}

= {x + U ∈ M/U |f(x) = 0}

= {x + U ∈ M/U |x ∈ ker(f)}

= ker(f)/U.

Hence im(f̄) = im(f) and ker(f̄) = ker(f)/U as desired.

Theorem 2.2.14. The First Isomorphism Theorem

Let M and N be R-hypermodules and f : M → N a surjective homomor-

phism. Then M/ ker(f) ∼= N .

Proof. Apply the Factorization Theorem by setting U = ker(f), then there exists

a homomorphism f̄ : M/ ker(f) → N such that im(f̄) = im(f) = N and ker(f̄) =

ker(f)/ ker(f) = {0} . Thus f̄ is a bijection. Hence M/ ker(f) ∼= N .

Theorem 2.2.15. The Second Isomorphism Theorem

Let M be an R-hypermodule, N and U subhypemodules of M such that N ⊆

U ⊆ M . Then (M/N)
/

(U/N) ∼= M/U .

Proof. Clearly, M/N and U/N are R-hypermodules. Define f : M/N → M/U

by

f(m + N) = m + U for all m ∈ M .

It is easy to show that f is well-defined and surjective. To show that f is a
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homomorphism, let m1 + N, m2 + N ∈ M/N . Then

f
(
(m1 + N) � (m2 + N)

)
= {f(v + N)|v ∈ m1 + m2}

= {v + U |v ∈ m1 + m2}

= (m1 + U) � (m2 + U)

= f(m1 + N) � f(m2 + N).

Hence f is a homomorphism.

Next, we show that ker(f) = U/N . It is clear that U/N ⊆ ker(f). Thus,

let m + N ∈ ker(f). Then m + U = f(m + N) = U , i.e., m ∈ U so that

m + N ∈ U/N . Hence ker(f) = U/N .

Thus (M/N)
/

(U/N) ∼= M/U by the First Isomorphism Theorem.

Theorem 2.2.16. The Third Isomorphism Theorem

Let M be an R-hypermodule, N and U subhypemodules of M . Then

(N + U)/U ∼= N/N ∩ U .

Proof. Note that (N+U)/U and N/N∩U are R-hypermodules because U , N∩U

are subhypermodules of N + U and N , respectively. Define f : N → (N + U)/U

by

f(n) = n + U for all n ∈ N .

We show that f is a surjective homomorphism whose kernel is N ∩ U .

It is clear that n+U ∈ (N +U)/U for all n ∈ N since 0 ∈ U . Moreover, f is
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surjective obviously. To show that f is a homomorphism, let n1, n2 ∈ N . Then

f(n1 + n2) = {v + U |v ∈ n1 + n2}

= (n1 + U) � (n2 + U)

= f(n1) � f(n2).

Hence f is a homomorphism. Next, we show that ker(f) = N ∩ U . It is clear

that N ∩U ⊆ ker(f). Now, let x ∈ ker(f). Then x ∈ N and x + U = f(x) = U ,

i.e., x ∈ U so that x ∈ N ∩ U . Hence ker(f) = N ∩ U .

Thus (N + U)/U ∼= N/N ∩ U by the First Isomorphism Theorem.

Theorem 2.2.17. The Butterfly of Zazzenhaus

Let M be an R-hypermodule, N , U , N ′ and U ′ subhypemodules of M such

that N ⊆ U and N ′ ⊆ U ′ . Then

N + (U ∩ U ′)

N + (U ∩N ′)
∼=

U ∩ U ′

(N ∩ U ′) + (N ′ ∩ U)
∼=

N ′ + (U ∩ U ′)

N ′ + (N ∩ U ′)
.

Proof. Let S = U ∩ U ′ and T = N + (U ∩N ′). Then we claim that

i) S + T = N + (U ∩ U ′) and

ii) S ∩ T = (N ∩ U ′) + (N ′ ∩ U).

First, S+T = (U∩U ′)+(N +(U∩N ′)) = N +(U∩U ′) since U∩N ′ ⊆ U∩U ′ .

Next, to show that S∩T ⊆ (N∩U ′)+(N ′∩U), let s ∈ S∩T . Then s ∈ U∩U ′

and s ∈ N +(U ∩N ′). There exists n ∈ N and n′ ∈ U ∩N ′ such that s ∈ n+n′ .

Since U ∩ N ′ ⊆ U ∩ U ′ , we have n ∈ s − n′ ⊆ U ′ . Thus n ∈ N ∩ U ′ . Hence

s ∈ n + n′ ⊆ (N ∩ U ′) + (N ′ ∩ U). Conversely, since N ∩ U ′, N ′ ∩ U ⊆ S ∩ T , we

obtain that (N ∩ U ′) + (N ′ ∩ U) ⊆ S ∩ T . Hence the second claim is proved.
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By the Third Isomorphism Theorem, (S + T )/T ∼= S/S ∩ T , i.e.,

N + (U ∩ U ′)

N + (U ∩N ′)
∼=

U ∩ U ′

(N ∩ U ′) + (N ′ ∩ U)
.

Similarly,

N ′ + (U ∩ U ′)

N ′ + (N ∩ U ′)
∼=

U ∩ U ′

(N ∩ U ′) + (N ′ ∩ U)
.

Thus

N + (U ∩ U ′)

N + (U ∩N ′)
∼=

U ∩ U ′

(N ∩ U ′) + (N ′ ∩ U)
∼=

N ′ + (U ∩ U ′)

N ′ + (N ∩ U ′)
.

2.3 Direct Sums

This final section devotes to studying elementary properties of direct sums of

R-hypermodules.

Definition 2.3.1. Let N and P be subhypermodules of an R-hypermodule M .

If M = N + P and N ∩ P = {0} , then M is called the (internal) direct sum of

N and P . This is written as M = N
⊕

P .

Definition 2.3.2. A subhypermodule N of M is called a direct summand of M

if there is a subhypermodule P of M such that M = N
⊕

P .

Proposition 2.3.3. Let M = N
⊕

P . Then every m ∈ M there exist unique

n ∈ N and p ∈ P such that m ∈ n + p with n ∈ N and p ∈ P .

Proof. Let m ∈ M . Since M = N
⊕

P , there exist n ∈ N and p ∈ P with

m ∈ n + p . Now, we show the uniqueness of n and p . Let n1, n2 ∈ N and

p1, p2 ∈ P be such that m ∈ n1 + p1 and m ∈ n2 + p2 . Then n1 ∈ m− p1 so that

n1 ∈ n2 + p2 − p1 = n2 + (p2 − p1). Thus there exists x ∈ p2 − p1 ⊆ P such that
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n1 ∈ n2 + x . Hence x ∈ n1 − n2 ⊆ N . This shows that x ∈ N ∩ P = {0} , i.e.,

x = 0. Consequently, n1 ∈ n2 + 0 and 0 ∈ p2 − p1 . Thus n1 = n2 and p1 = p2 .

This finishes the proof.

Example 2.3.4. Let R-hypermodule M be the direct sum of subhypermodules

P and Q . Define the maps π : P
⊕

Q → P and ι : P → P
⊕

Q by

π(x) = p for all x ∈ p + q, and

ι(p) = p for all p ∈ P.

Then π is a surjective homomorphism and ι is an injective homomorphism.

It is easy to show that ι is an injective homomorphism and π is surjective.

To show that π is a homomorphism, let x1, x2 ∈ P
⊕

Q . Then x1 ∈ p1 + q1

and x2 ∈ p2 + q2 for some p1, p2 ∈ P and q1, q2 ∈ Q . Thus p1 ∈ x1 − q1 and

p2 ∈ x2 − q2 . We obtain that

x1 + x2 ⊆ (p1 + q1) + (p2 + q2) = (p1 + p2) + (q1 + q2)

p1 + p2 ⊆ (x1 − q1) + (x2 − q2) = (x1 + x2)− (q1 + q2).

First, let a ∈ π(x1 + x2). There exists x ∈ x1 + x2 such that a = π(x). Thus

x ∈ p + q for some p ∈ p1 + p2 and q ∈ q1 + q2 . Hence a = π(x) = p ∈ p1 + p2 =

π(x1) + π(x2).

Conversely, let a ∈ π(x1)+π(x2), i.e., a ∈ p1+p2 . Then there exist x ∈ x1+x2

and q ∈ q1 + q2 such that a ∈ x− q . Then x ∈ a + q ⊆ P
⊕

Q . Hence a = π(x).

Therefore π is a surjective homomorphism.

Definition 2.3.5. Let P and Q be subhypermodules of an R-hypermodule.

The surjective homomorphism π : P
⊕

Q → P and the injective homomorphism
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ι : P → P
⊕

Q defined in the previous example are called the projection map

and the inclusion map, respectively.

Proposition 2.3.6. Let M and N be R-hypermodules f : M → N and g : N → M

be homomorphisms such that the composition between f and g is the identity

map on N , i.e., f ◦ g = idN where idN is the identity map on N . Then

M = ker(f)
⊕

im(g).

Proof. First, we show that ker(f) ∩ im(g) = {0} . Let x ∈ ker(f) ∩ im(g). Then

f(x) = 0 and x = g(n) for some n ∈ N. Then

0 = f(x) = f(g(n)) = (f ◦ g)(n) = idN(n) = n.

Hence n = 0 and x = g(n) = g(0) = 0. As a result, ker(f) ∩ im(g) = {0} .

Next, we show that M = ker(f) + im(g). It is enough to show only that

M ⊆ ker(f) + im(g). Let m ∈ M . Then 0 ∈ f
(
m− (g ◦ f)(m)

)
because

f
(
m− (g ◦f)(m)

)
= f(m)−f(g ◦f)(m)) = f(m)− (f ◦g)(f(m)) = f(m)−f(m).

Then there exists v ∈ m− (g ◦ f)(m) such that f(v) = 0, i.e., v ∈ ker(f). Thus

m ∈ v + (g ◦ f)(m). In fact, v ∈ ker(f) and (g ◦ f)(m) ∈ im(g), so we can

conclude that m ∈ ker(f) + im(g). Therefore M = ker(f) + im(g).



CHAPTER III

EXAMPLES OF HYPERMODULES

The goal of this chapter is to investigate some examples of hypermodules

over Krasner hyperrings by considering among the collection of all multiplicative

interval semigroups of R joining the real number 0 which are motivated by [3].

There are two sections in this chapter. In Section 3.1, we construct certain

canonical hypergroups and Krasner hyperrings. In Section 3.2, we apply the

results from the previous section in order to explore certain examples of hyper-

modules over Krasner hyperrings which is our main purpose

We would like to recall the characterization of interval semigroups of R under

usual multiplication.

Proposition A [3] Let I be a real interval. Then I is a subsemigroup of R

under usual multiplication if and only if I is one of the following forms :

i) R, ii) {0}, iii) {1}, iv) (0,∞), v) [0,∞),

vi) (a,∞) where a ≥ 1, vii) [a,∞) where a ≥ 1,

viii) (0, b) where 0 < b ≤ 1, ix) (0, b] where 0 < b ≤ 1,

x) [0, b) where 0 < b ≤ 1, xi) [0, b] where 0 < b ≤ 1,

xii) (a, b) where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

xiii) (a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

xiv) [a, b) where −1 ≤ a < 0 < a2 < b ≤ 1,

xv) [a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1.

We are interested in interval semigroups I0 of R under usual multiplication

joining the real number 0 because 0 will be needed as the scalar identity of canon-
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ical hypergroups. In another word, for a multiplicative interval subsemigroup I

of R , let

I0 =


I if 0 ∈ I,

I ∪ {0} if 0 /∈ I.

Proposition B Let I be a real interval. Then I is a subsemigroup of R con-

taining the real number 0 under usual multiplication if and only if I is one of the

following forms :

i) R, ii) {0}, iii) {0, 1}, iv) [0,∞),

v) (a,∞) ∪ {0} where a ≥ 1, vi) [a,∞) ∪ {0} where a ≥ 1,

vii) [0, b) where 0 < b ≤ 1, viii) [0, b] where 0 < b ≤ 1,

ix) (a, b) where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

x) (a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

xi) [a, b) where −1 ≤ a < 0 < a2 < b ≤ 1,

xii) [a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1.

We denote the collection of all multiplicative interval subsemigroups of R

joining the real number 0 induced from all multiplicative interval subsemigroups

of R by I0 .

Next, we would like to construct canonical hypergroups and then Krasner

hyperrings from I0 .
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3.1 Hyperoperations ⊕max , ⊕min and ⊕abs

3.1.1 Hyperoperation ⊕max

Define a multi-valued function ⊕max : R× R → P(R) by

x⊕max y =


{
max{x, y}

}
if x 6= y,

[0, x] if x = y.

Note that if x < 0, then x⊕max x = ∅ .

We investigate a nonempty set H ∈ I0 such that ⊕max is a hyperoperation

on H .

Lemma 3.1.1. Let H ∈ I0 be one of the following forms :

i) R,

ii) (a, b) where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

iii) (a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

iv) [a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

v) [a, b) where −1 ≤ a < 0 < a2 < b ≤ 1.

Then ⊕max is not a hyperoperation on H .

Proof. This is obvious because there is a negative x ∈ H such that x⊕max x = ∅ .

Lemma 3.1.2. Let H ∈ I0 be one of the following forms :

i) {0, 1},

ii) (a,∞) ∪ {0} where a ≥ 1,
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iii) [a,∞) ∪ {0} where a ≥ 1.

Then ⊕max is not a hyperoperation on H .

Proof. If H = {0, 1} , then 1 ⊕max 1 = [0, 1] * {0, 1} , so that ⊕max is not a

hyperoperation on H .

For other cases, we consider (a + 1) ⊕max (a + 1) = [0, a + 1] * (a,∞) ∪ {0}

and not a subset of [a,∞)∪{0} . Hence, ⊕max is not a hyperoperation on H .

Theorem 3.1.3. Let H ∈ I0 . Then ⊕max is a hyperoperation on H if and only

if H is one of the following forms :

i) {0},

ii) [0,∞),

iii) [0, b) where 0 < b ≤ 1,

iv) [0, b] where 0 < b ≤ 1.

Proof. First, assume that H is not one of the above forms. By Lemma 3.1.1 and

Lemma 3.1.2, we obtain that ⊕max is not a hyperoperation on H . Next, if H is

one of the above forms, then it is clear that ⊕max is a hyperoperation on H .

Next, we characterize when (M,⊕max) is a canonical hypergroup where M ∈ I0 .

Theorem 3.1.4. Let M ∈ I0 . Then (M,⊕max) is a canonical hypergroup if and

only if M is one of the following forms :

i) {0},

ii) [0,∞),

iii) [0, a) where 0 < a ≤ 1,
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iv) [0, a] where 0 < a ≤ 1.

Proof. First, assume that M is not one of the above forms. By Theorem 3.1.3,

⊕max is not a hyperoperation on M . Hence (M,⊕max) is not a canonical hyper-

group.

Conversely, by Theorem 3.1.3, Remark 1.2.13 and Example 1.2.16, we have(
{0},⊕max

)
,

(
[0, a),⊕max

)
and

(
[0, a],⊕max

)
are canonical hypergroups where

0 < a ≤ 1. For the final case, it is straightforward to show that ([0,∞),⊕max) is

a commutative hypergroup and 0 is its scalar identity. Next, we show that every

nonnegative real numbers has a unique inverse in [0,∞). Let x ∈ [0,∞). Then x

is an inverse of x because 0 ∈ x⊕max x . And it is clear that this inverse is unique.

Finally, we show that x ∈ y ⊕max z implies z ∈ y ⊕max x for x, y, z ∈ [0,∞). Let

x, y, z ∈ [0,∞) be such that x ∈ y ⊕max z .

Case 1. y = z . Then x ∈ [0, y] . If x = y , then z ∈ [0, z] = z ⊕max z = y ⊕max x .

If x 6= y , then x < y so that y ⊕max x = {y} = {z} , i.e., z ∈ y ⊕max x .

Case 2. y < z . Then x ∈ y ⊕max z = {z} so that x = z . Since z ∈ z ⊕max y , we

have z ∈ x⊕max y = y ⊕max x .

Case 3. z < y . Then x ∈ y⊕max z = {y} so that x = y . Hence y⊕max x = [0, y] .

Since z < y , we have z ∈ y ⊕max x .

Therefore
(
[0,∞),⊕max

)
is a canonical hypergroup.

From now on, let · be the usual multiplication on R .

We investigate when (R,⊕max, ·) is a Krasner hyperring where R ∈ I0 .

Theorem 3.1.5. Let R ∈ I0 . Then (R,⊕max, ·) is a Krasner hyperring if and

only if R is one of the following forms :

i) {0},

ii) [0,∞),
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iii) [0, a) where 0 < a ≤ 1,

iv) [0, a] where 0 < a ≤ 1.

Proof. If (R,⊕max, ·) is a Krasner hyperring, then the result follows from Theorem

3.1.3.

Conversely, it follows from Theorem 3.1.3, Remark 1.2.13 and Example 1.2.16,

that
(
{0},⊕max, ·

)
,

(
[0, a),⊕max, ·

)
and

(
[0, a],⊕max, ·

)
are Krasner hyperrings

where 0 < a ≤ 1. The other case, ([0,∞),⊕max) is a canonical hypergroup by

Theorem 3.1.4 and ([0,∞), ·) is a semigroup with zero 0. Finally, we show that

x · (y ⊕max z) = x · y ⊕max x · z for all x, y, z ∈ [0,∞). Let x, y, z ∈ [0,∞).

Case 1. y = z . Then xy = xz . So x · (y ⊕max z) = x · [0, y] = [0, xy] and

x · y ⊕max x · z = xy ⊕max xz = [0, xy] . Hence x · (y ⊕max z) = x · y ⊕max x · z .

Case 2. y 6= z . Without loss of generality, assume that y > z . If x = 0, then

xy = xz = 0 so x · (y ⊕max z) = x · {y} = {xy} = {0} and x · y ⊕max x · z =

xy⊕max xz = {0} . If x 6= 0, then xy > xz so x · (y⊕max z) = x · {y} = {xy} and

x · y ⊕max x · z = xy ⊕max xz = {xy} . Hence x · (y ⊕max z) = x · y ⊕max x · z .

From both cases, x · (y ⊕max z) = x · y ⊕max x · z for all x, y, z ∈ [0,∞). Since(
[0,∞), ·

)
is commutative, (y ⊕max z) · x = y · x⊕max z · x for all x, y, z ∈ [0,∞).

Therefore,
(
[0,∞),⊕max, ·

)
is a Krasner hyperring such that 0 is the zero and the

additive inverse of x ∈ M is x itself.



38

3.1.2 Hyperoperation ⊕min

Define a multi-valued function ⊕min : R× R → P(R) by

x⊕min 0 = 0⊕min x = {x} for all x ∈ R,

x⊕min x = [x,∞) ∪ {0} for all x ∈ R r {0} and

x⊕min y =
{
min{x, y}

}
for all x, y ∈ R r {0} with x 6= y.

We investigate when ⊕min is a hyperoperation on H where H ∈ I0 .

Lemma 3.1.6. Let H be one of the following forms :

i) {0, 1},

ii) (0, a] where 0 < a ≤ 1,

iii) [0, a] where 0 < a ≤ 1,

iv) (a, b) where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

v) (a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

vi) [a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

vii) [a, b) where −1 ≤ a < 0 < a2 < b ≤ 1.

Then ⊕min is not a hyperoperation on H .

Proof. Let x ∈ H r {0} . Consider x⊕min x = [x,∞) ∪ {0} * H . Hence ⊕min is

not a hyperoperation on H .

Theorem 3.1.7. Let H ∈ I0 . Then ⊕min is a hyperoperation on H if and only

if H is one of the following forms :

i) R,
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ii) {0},

iii) [0,∞),

iv) (a,∞) ∪ {0} where a ≥ 1,

v) [a,∞) ∪ {0} where a ≥ 1.

Proof. First, assume that H is not one of the above forms. We obtain that ⊕min

is not a hyperoperation on H by Lemma 3.1.6. Next, it is obvious that ⊕min is a

hyperoperation on H if H is one of the above forms.

Now, we examine when (M,⊕min) is a canonical hypergroup where M ∈ I0 .

Theorem 3.1.8. Let M ∈ I0 . Then (M,⊕min) is a canonical hypergroup if and

only if M is one of the following forms :

i) R,

ii) {0},

iii) [0,∞),

iv) (a,∞) ∪ {0} where a ≥ 1,

v) [a,∞) ∪ {0} where a ≥ 1.

Proof. First, if M is not one of the above forms, then (M,⊕min) is not a canonical

hypergroup which is a result of Theorem 3.1.7.

Conversely, Theorem 3.1.7, Remark 1.2.13 and Example 1.2.17 show that(
{0},⊕min

)
,

(
(a,∞) ∪ {0},⊕min

)
and

(
[a,∞) ∪ {0},⊕min

)
are canonical hyper-

groups where a ≥ 1. For the other cases, since [0,∞) ⊆ R , it suffices to show

only that (R,⊕min) is a canonical hypergroup.
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It is easy to see that (R,⊕min) is a commutative hypergroup, has a scalar

identity 0 and the inverse of x ∈ R is x itself. Next, we show that for x, y, z ∈ M ,

x ∈ y ⊕min z implies z ∈ y ⊕min x . Let x, y, z ∈ M . Assume that x ∈ y ⊕min z .

Case 1. y = 0 and z = 0. Then y ⊕min z = 0⊕min 0 = {0} . So x = 0. We have

y ⊕min x = 0⊕min 0 = {0} . Hence z ∈ y ⊕min x .

Case 2. y = z and y, z 6= 0. Then y⊕min z = y⊕min y = [y,∞)∪{0} . Thus x ≥ y

or x = 0. If x = y , then y ⊕min x = y ⊕min y = [y,∞) ∪ {0} so z ∈ y ⊕min x . If

x > y or x = 0, then y ⊕min x = {y} so that z ∈ y ⊕min x .

Case 3. y 6= 0 and z = 0. Then y ⊕min z = y ⊕min 0 = {y} and then x = y . We

have y ⊕min x = y ⊕min y = [y,∞) ∪ {0} . Hence z ∈ y ⊕min x .

Case 4. y = 0 and z 6= 0. Then y ⊕min z = 0⊕min z = {z} and then x = z . We

have y ⊕min x = 0⊕min z = {z} . Hence z ∈ y ⊕min x .

Case 5. y < z . and y, z 6= 0. Then y ⊕min z = {y} , so x = y . Thus y ⊕min x =

y ⊕min y = [y,∞) ∪ {0} . Hence z ∈ y ⊕min x .

Case 6. y > z . and y, z 6= 0. Then y ⊕min z = {z} , so x = z . Thus y ⊕min x =

y ⊕min z = {z} . Hence z ∈ y ⊕min x .

By all cases, we obtain that for x, y, z ∈ M , x ∈ y⊕min z implies z ∈ y⊕min x .

Hence (R,⊕min) is a canonical hypergroup.

We consider when (R,⊕min, ·) is a Krasner hyperring where R ∈ I0 .

Lemma 3.1.9. (R,⊕min, ·) is not a Krasner hyperring.

Proof. Consider (−2) · (2⊕min 2) = (−2) ·
(
[2,∞) ∪ {0}

)
= (−∞,−4] ∪ {0} and(

(−2) · 2
)
⊕min

(
(−2) · 2

)
= (−4)⊕min (−4) = [−4,∞). Then (−2) ·

(
2⊕min 2

)
6=

((−2) · 2)⊕min ((−2) · 2). Hence (R,⊕min, ·) is not a Krasner hyperring.

Theorem 3.1.10. Let R ∈ I0 . Then (R,⊕min, ·) is a Krasner hyperring if and

only if R is one of the following forms :
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i) {0},

ii) [0,∞),

iii) (a,∞) ∪ {0} where a ≥ 1,

iv) [a,∞) ∪ {0} where a ≥ 1.

Proof. Assume that R is not one of the above forms. By Theorem 3.1.8 and

Lemma 3.1.9, (R,⊕min, ·) is not a Krasner hyperring.

Conversely, Theorem 3.1.8, Remark 1.2.13 and Example 1.2.17 show that(
{0},⊕min, ·

)
,

(
(a,∞) ∪ {0},⊕min, ·

)
and

(
[a,∞) ∪ {0},⊕min, ·

)
are Krasner hy-

perrings where a ≥ 1. For the other case, it is obvious that
(
[0,∞), ·

)
is a

semigroup with zero 0 where 0 is a scalar identity. We conclude from Theorem

3.1.8 that
(
[0,∞),⊕min

)
is a canonical hypergroup. It remains to show only that

x · (y ⊕min z) = x · y ⊕min x · z for all x, y, z ∈ [0,∞). This is clear when x = 0.

Now we let x, y, z ∈ [0,∞) and x 6= 0.

Case 1. y = 0 and z = 0. Then x · y = 0 and x · z = 0. Thus x · (y ⊕min z) =

x · (0 ⊕min 0) = x · {0} = {0} and (x · y) ⊕min (x · z) = 0 ⊕min 0 = {0} . Hence

x · (y ⊕min z) = (x · y)⊕min (x · z).

Case 2. y = z and y, z 6= 0. Then x · y = x · z and x · y, x · z 6= 0. Thus

x · (y ⊕min z) = x · (y ⊕min y) = x ·
(
[y,∞) ∪ {0}

)
= [x · y,∞) ∪ {0} and

(x · y)⊕min (x · z) = (x · y)⊕min (x · y) = [x · y,∞) ∪ {0} . Hence x · (y ⊕min z) =

(x · y)⊕min (x · z).

Case 3. y 6= 0 and z = 0. Then x · y 6= 0 and x · z = 0. It follows that

x · (y ⊕min z) = x · (y ⊕min 0) = x · {y} = {x · y} and (x · y) ⊕min (x · z) =

(x · y)⊕min 0 = {x · y} . Hence x · (y ⊕min z) = (x · y)⊕min (x · z).

Case 4. y = 0 and z 6= 0. The proof is similar to the proof of Case 3.

Case 5. y < z and y, z 6= 0. Then x · y < x · z and x · y, x · z 6= 0. This leads
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to x · (y ⊕min z) = x · {y} = {x · y} and (x · y) ⊕min (x · z) = {x · y} . Hence

x · (y ⊕min z) = (x · y)⊕min (x · z).

Case 6. y > z and y, z 6= 0. The proof is similar to the proof of Case 5.

We obtain from any cases that x · (y ⊕min z) = (x · y)⊕min (x · z). Note that

(y ⊕min z) · x = (y · x) ⊕min (z · x) because of the commutativity of
(
[0,∞), ·

)
.

Hence ([0,∞),⊕min, ·) is a Krasner hyperring.

3.1.3 Hyperoperation ⊕abs

Define a multi-valued function ⊕abs : R× R → P(R) by

x⊕abs x = {x} for all x ∈ R,

x⊕abs y = y ⊕abs x = {x} for all x, y ∈ R with |y| < |x| and

x⊕abs (−x) = [−|x|, |x| ] for all x ∈ R.

Proposition 3.1.11. The multi-valued function ⊕abs is a hyperoperation on H

for all H ∈ I0 .

Proof. This is obvious.

We verify when (M,⊕abs) is a canonical hypergroup where M ∈ I0 .

Proposition 3.1.12. Let M ∈ I0 r
{
{0}

}
. If (M,⊕abs) is a canonical hyper-

group, then M must contain a negative real number.

Proof. Assume that (M,⊕abs) is a canonical hypergroup with M 6= {0} . There

exists m ∈ M such that m 6= 0. If m < 0, then we are done. Let m > 0.

Since −m is the inverse of m and (M,⊕abs) is a canonical hypergroup, we have

−m ∈ M . Therefore the proof is complete.

Applying Proposition 3.1.12, we obtain the following corollary.
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Corollary 3.1.13. Let M be one of the following forms :

i) {0, 1},

ii) [0,∞),

iii) (a,∞) ∪ {0} where a ≥ 1,

iv) [a,∞) ∪ {0} where a ≥ 1,

v) [0, b) where 0 < b ≤ 1,

vi) [0, b] where 0 < b ≤ 1.

Then (M,⊕abs) is not a canonical hypergroup.

Lemma 3.1.14. Let M be one of the following forms :

i) (a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

ii) [a, b) where −1 ≤ a < 0 < a2 < b ≤ 1.

Then (M,⊕abs) is not a canonical hypergroup.

Proof. Let a, b ∈ M be such that −1 ≤ a < 0 < a2 ≤ b ≤ 1. First, we show that(
(a, b],⊕abs

)
is not a canonical hypergroup.

Case 1. b ≥ −a . Then an inverse of b does not exist. Hence
(
(a, b],⊕abs

)
is not

a canonical hypergroup.

Case 2. b < −a . Then an inverse of
−b + a

2
does not exist. Hence

(
(a, b],⊕abs

)
is not a canonical hypergroup.

We can prove similarly for the case M = [a, b) where −1 ≤ a < 0 < a2 < b ≤ 1.

Proposition 3.1.15. Let M be one of the following forms :
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i) (a, b) where −1 ≤ a < 0 < a2 ≤ b ≤ 1,

ii) [a, b] where −1 ≤ a < 0 < a2 ≤ b ≤ 1.

Then (M,⊕abs) is a canonical hypergroup if and only if a = −b.

Proof. First, we consider M = (a, b) where −1 ≤ a < 0 < a2 ≤ b ≤ 1. Suppose

that a 6= −b . If −b > a , then an inverse of
a + (−b)

2
does not exist. And if

−b < a , then an inverse of
b + (−a)

2
does not exist. Then (M,⊕abs) is not a

canonical hypergroup.

Conversely, the result holds by Example 1.2.18.

Theorem 3.1.16. Let M ∈ I0 . Then (M,⊕abs) is a canonical hypergroup if and

only if M is one of the following forms :

i) R,

ii) {0},

iii) (−a, a) where 0 < a ≤ 1,

iv) [−a, a] where 0 < a ≤ 1.

Proof. Assume that M is not one of the above forms. Corollary 3.1.13, Lemma

3.1.14 and Proposition 3.1.15 show that (M,⊕abs) is not a canonical hypergroup.

Conversely, by Proposition 3.1.11, Remark 1.2.13 and Example 1.2.18, we

obtain that
(
{0},⊕abs

)
,

(
(−a, a),⊕abs

)
and

(
[−a, a],⊕abs

)
are canonical hyper-

groups where 0 < a ≤ 1. For the remaining case, it is easy to show that (R,⊕abs)

is a commutative hypergroup, has a scalar identity 0 and the inverse of x ∈ R is

−x . Next, we show that for x, y, z ∈ R , x ∈ y ⊕abs z implies z ∈ −y ⊕abs x . Let

x, y, z ∈ R . Assume that x ∈ y ⊕abs z .

Case 1. y = z . Then y ⊕abs z = y ⊕abs y = {y} so x = y . We have
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−y ⊕abs x = −y ⊕abs y = [−|y|, |y|] . Hence z ∈ −y ⊕abs x .

Case 2. |y| < |z| . Then y⊕absz = {z} so x = z . We have −y⊕absx = −y⊕absz =

{z} . Hence z ∈ −y ⊕abs x .

Case 3. |z| < |y| . Then y ⊕abs z = {y} so x = y . We obtain that −y ⊕abs x =

−y ⊕abs y = [−|y|, |y|] . Hence z ∈ y ⊕abs x .

Case 4. y = −z . Then y ⊕abs z = y ⊕abs −y = [−|y|, |y|] . Thus −|y| ≤ x ≤ |y| .

If −|y| < x < |y| , then −y⊕abs x = {−y} so that z ∈ −y⊕abs x . If x = y or −y ,

then −y ⊕abs x = [−|y|, |y|] or {−y} , again, z ∈ −y ⊕abs x .

For any cases, we obtain that for x, y, z ∈ R , x ∈ y⊕absz implies z ∈ −y⊕minx .

Hence (R,⊕abs) is a canonical hypergroup.

We characterize when (R,⊕abs, ·) is a Krasner hyperring where R ∈ I0 .

Theorem 3.1.17. Let R ∈ I0 . Then (R,⊕abs, ·) is a Krasner hyperring if and

only if R is one of the following forms :

i) R,

ii) {0},

iii) (−a, a) where 0 < a ≤ 1,

iv) [−a, a] where 0 < a ≤ 1.

Proof. If M is not one of the above forms, then (M,⊕abs) is not a Krasner

hyperring which is a result of Theorem 3.1.16.

Conversely, by Proposition 3.1.11, Remark 1.2.13 and Example 1.2.18, we

conclude that
(
{0},⊕abs, ·

)
,

(
(−a, a),⊕abs, ·

)
and

(
[−a, a],⊕abs, ·

)
are canonical

hypergroups where 0 < a ≤ 1. The remaining case, it is obvious that (R, ·) is a

semigroup with zero 0 where 0 is a scalar identity of (R,⊕abs). Theorem 3.1.16

shows that(R,⊕abs) is a canonical hypergroup. Next, we show that x ·(y⊕abs z) =
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x · y ⊕abs x · z for all x, y, z ∈ R . This is clear when x = 0. Let x, y, z ∈ R and

x 6= 0.

Case 1. y = z . Then x · y = x · z . Thus x · (y ⊕abs z) = x · (y ⊕abs y) =

x · {y} = {x · y} and (x · y) ⊕abs (x · z) = (x · y) ⊕abs (x · y) = {x · y} . Hence

x · (y ⊕abs z) = (x · y)⊕abs (x · z).

Case 2. |y| < |z| . Then |x · y| < |x · z| . Thus x · (y⊕abs z) = x · {z} = {x · z} and

(x · y)⊕abs (x · z) = {x · z} . Hence x · (y ⊕abs z) = (x · y)⊕abs (x · z).

Case 3. |z| < |y| . The proof is similar to the proof of Case 2.

Case 4. y = −z . Then x · y = −(x · z). So x · (y ⊕abs z) = x · (y ⊕abs −y) =

x · ([−|y|, |y|]) = [−|x · y|, |x · y|] and (x · y) ⊕abs (x · z) = (x · y) ⊕abs −(x · y) =

[−|x · y|, |x · y|] . Hence x · (y ⊕abs z) = (x · y)⊕abs (x · z).

We obtain from all cases that x · (y ⊕abs z) = (x · y) ⊕abs (x · z). Since (R, ·)

is commutative, we have (y⊕abs z) · x = (y · x)⊕abs (z · x). Hence (R,⊕abs, ·) is a

Krasner hyperring.

3.2 Hypermodules over Krasner Hyperrings

We apply the results from the previous section to costruct hypermodules over

Krasner hyperrings. We focus R-hypermodules M in two aspects. One hand,

hyperoperations on M and R are the same. On the other hand, the difference of

hyperoperations on M and R are considered.

Throughout this section, for each R,M ∈ I0 , let ◦, ∗ : R × M → R be the

functions defined by

r ◦m = r ·m
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and

r ∗m =


0 if r = 0,

1

r
·m if r 6= 0.

where · is the usual multiplication on R .

We provide a proposition for investigating some hypermodules over Krasner

hyperrings.

Proposition 3.2.1. Let (M,⊕) be a canonical hypergroup and R a Krasner

hyperring. If M = {0} or R = {0} and there exists a function • : R ×M → M

such that 0 •m = 0 for all m ∈ M , then (M,⊕, •) is an R-hypermodule.

Proof. The proof is trivial.

Applying Proposition 3.2.1, we obtain the immediate corollaries.

Corollary 3.2.2. Let R be a Krasner hyperring such that R ∈ I0 and ⊕ is a

hyperoperation on {0}. Then
(
{0},⊕, ◦

)
and

(
{0},⊕, ∗

)
are R-hypermodules.

Corollary 3.2.3. Let (M,⊕) be a canonical hypergroup such that M ∈ I0 . If

R =
(
{0}, +, ·

)
is a Krasner hyperring, then

(
M,⊕, ◦

)
and

(
M,⊕, ∗

)
are R-

hypermodules.

3.2.1 Hypermodules over Krasner Hyperrings Induced by

the Same Hyperoperations

We study the existence of R-hypermodules M where hyperoperations on M

and R are the same among ⊕max , ⊕min and ⊕abs .
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Proposition 3.2.4. Let M, R ∈ I0 be such that M ⊆ R and (R,⊕, ·) a Kras-

ner hyperring. Then (M,⊕, ◦) is an R-hypermodule if and only if (M,⊕) is a

canonical hypergroup and R ◦M ⊆ M .

Proof. Let (M,⊕, ◦) be an R-hypermodule. It is clear that (M,⊕) is a canonical

hypergroup and R ◦M ⊆ M .

Conversely, assume that (M,⊕) is a canonical hypergroup and R ◦M ⊆ M .

Note that ◦ : R ×M → M . Let a, b ∈ R and x, y ∈ M . Since M ⊆ R and R is

a Krasner hyperring, it follows that

1. a ◦ (x⊕ y) = a · (x⊕ y) = a · x⊕ a · y = a ◦ x⊕ a ◦ y

2. (a⊕ b) ◦ x = (a⊕ b) · x = a · x⊕ b · x = a ◦ x⊕ b ◦ x

3. (a · b) ◦ x = a · b · x = a · (b · x) = a ◦ (b ◦ x)

4. 0 ◦ x = 0 · x = 0.

This shows that (M,⊕, ◦) is an R-hypermodule.

Proposition 3.2.5. Let M, R ∈ I0 be such that R ⊆ M and (R,⊕, ·) a Kras-

ner hyperring. If (M,⊕, ·) is a Krasner hyperring, then (M,⊕, ◦) is an R-

hypermodule.

Proof. The proof is similar to the proof of Proposition 3.2.4.

Now, we study on a hyperoperation ⊕max . We obtain the following two results

by applying Corollary 3.2.3 and Theorem 3.1.4.

Proposition 3.2.6. Let R =
(
{0},⊕max, ·

)
and M ∈ I0 . Then (M,⊕max, ◦) is

an R-hypermodule if and only if M is one of the following forms :

i) {0},
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ii) [0,∞),

iii) [0, a) where 0 < a ≤ 1,

iv) [0, a] where 0 < a ≤ 1.

Proposition 3.2.7. Let R =
(
{0},⊕max, ·

)
and M ∈ I0 . Then (M,⊕max, ∗) is

an R-hypermodule if and only if M is one of the following forms :

i) {0},

ii) [0,∞),

iii) [0, a) where 0 < a ≤ 1,

iv) [0, a] where 0 < a ≤ 1.

Proposition 3.2.8. Let R =
(
[0,∞),⊕max, ·

)
. Then (M,⊕max, ◦) is an R-

hypermodule if and only if M is one of the following forms :

i) {0},

ii) [0,∞).

Proof. First, assume that (M,⊕max, ◦) is an R-hypermodule. Then (M,⊕max)

is a canonical hypergroup. By Theorem 3.1.4, M must be one of {0} , [0,∞),

[0, a) and [0, a] where 0 < a ≤ 1. If M is [0, a) or [0, a] where 0 < a ≤ 1, then

R ◦M * M . Hence M is either {0} or [0,∞).

Conversely, suppose that M is one of {0} and [0,∞). By Theorem 3.1.4,

(M,⊕max) is a canonical hypergroup. Since M ⊆ R and R◦M ⊆ M , (M,⊕max, ◦)

is an R-hypermodule from Proposition 3.2.4.

Corollary 3.2.9. Let R =
(
[0, a),⊕max, ·

)
or

(
[0, a],⊕max, ·

)
where 0 < a ≤ 1.

Then (M,⊕max, ◦) is an R-hypermodule if and only if M is one of the following

forms :
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i) {0},

ii) [0,∞),

iii) [0, b) where 0 < b ≤ 1,

iv) [0, b] where 0 < b ≤ 1.

Proof. First, we consider R =
(
[0, a),⊕max, ·

)
where 0 < a ≤ 1. Assume that

(M,⊕max, ◦) is an R-hypermodule. Then (M,⊕max) is a canonical hypergroup.

By Theorem 3.1.4, M is one of {0} , [0,∞), [0, b) and [0, b] where 0 < b ≤ 1.

Conversely, suppose that M is one of {0} , [0,∞), [0, b) and [0, b] where

0 < b ≤ 1. Then (M,⊕max, ·) is a Krasner hyperring by Theorem 3.1.5.

Case 1. M = {0} . Then (M,⊕max) is a canonical hypergroup. Since M ⊆ R

and R ◦ M ⊆ M , we conclude that (M,⊕max, ◦) is an R-hypermodule from

Proposition 3.2.4.

Case 2. M = [0,∞) . Since R ⊆ M , we have (M,⊕max, ◦) is an R-hypermodule

from Proposition 3.2.5.

Case 3. M = [0, b) where 0 < b ≤ 1. If b < a , then M ⊆ R and R ◦M ⊆ M so

that (M,⊕max, ◦) is an R-hypermodule by Proposition 3.2.4. Otherwise, we have

R ⊆ M and by Proposition 3.2.5, (M,⊕max, ◦) is an R-hypermodule.

Case 4. M = [0, b] . The proof is similar to the proof of Case 3.

We can proof similarly for the case R = ([0, a],⊕max, ·).

Proposition 3.2.10. Let R,M ∈ I0 and (R,⊕max, ·) a Krasner hyperring such

that R 6= {0}. Then (M,⊕max, ∗) is an R-hypermodule if and only if M = {0}.

Proof. First, assume that (M,⊕max, ∗) is an R-hypermodule. Then (M,⊕max) is

a canonical hypergroup. Since (R,⊕max, ·) is a Krasner hyperring and (M,⊕max)

is a canonical hypergroup, M is one of {0} , [0,∞), [0, b) and [0, b] where 0 <
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b ≤ 1 and R is one of [0,∞), [0, a) and [0, a] where 0 < a ≤ 1. Now we claim

that there exist a, b ∈ R and x ∈ M such that (a ⊕max b) ∗ x 6= a ∗ x ⊕max b ∗ x

when R is one of [0,∞), [0, a) and [0, a] and M is one of [0,∞) or [0, b) or [0, b] .

It suffices to show only the case that R = [0, a) and M = [0, b). We see that

(
a

2
⊕max

a

2
) ∗ b

2
= [0,

a

2
] ∗ b

2
= [

b

a
,∞) ∪ {0}

while

a

2
∗ b

2
⊕max

a

2
∗ b

2
=

b

a
⊕max

b

a
= [0,

b

a
]

Thus (
a

2
⊕max

a

2
) ∗ b

2
6= a

2
∗ b

2
⊕max

a

2
∗ b

2
. Hence M is not an R-hypermodule.

Therefore M = {0} .

Conversely, since ⊕max is a hyperoperation on {0} , it follows that
(
{0},⊕max, ∗

)
is an R-hypermodule by Corollary 3.2.2.

Next, we explore the hyperoperation ⊕min . Applying Corollary 3.2.3 and

Theorem 3.1.8, we obtain the next two results.

Proposition 3.2.11. Let R =
(
{0},⊕min, ·

)
. Then (M,⊕min, ◦) is an R-hypermodule

if and only if M is one of the following forms :

i) R,

ii) {0},

iii) [0,∞),

iv) (a,∞) ∪ {0} where a ≥ 1,

v) [a,∞) ∪ {0} where a ≥ 1.
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Proposition 3.2.12. Let R =
(
{0},⊕min, ·

)
. Then (M,⊕min, ∗) is an R-hypermodule

if and only if M is one of the following forms :

i) R,

ii) {0},

iii) [0,∞),

iv) (a,∞) ∪ {0} where a ≥ 1,

v) [a,∞) ∪ {0} where a ≥ 1.

Proposition 3.2.13. Let R =
(
[0,∞),⊕min, ·

)
. Then (M,⊕min, ◦) is an R-

hypermodule if and only if M is one of the following forms :

i) {0},

ii) [0,∞).

Proof. Suppose that (M,⊕min, ◦) is an R-hypermodule. Then (M,⊕min) is a

canonical hypergroup. By Theorem 3.1.8, M is one of R , {0} , [0,∞) and (a,∞)∪

{0} or [a,∞) ∪ {0} where a ≥ 1. If M = R , we see that

(2⊕min 2) ◦ (−2) = ([2,∞) ∪ {0}) ◦ (−2) = (−∞,−4] ∪ {0}

while

2 ◦ (−2)⊕min 2 ◦ (−2) = −4⊕min −4 = [−4,∞).

Thus (2⊕min2)◦(−2) 6= 2◦(−2)⊕min2◦(−2), hence, M is not an R-hypermodule.

If M = (a,∞)∪{0} or [a,∞)∪{0} , then R◦M * M . Thus M is {0} or [0,∞).
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Next, assume that M is one of {0} and [0,∞). By Theorem 3.1.8, (M,⊕min)

is a canonical hypergroup. Since M ⊆ R and R ◦ M ⊆ M , (M,⊕min, ◦) is an

R-hypermodule by Proposition 3.2.4.

Proposition 3.2.14. Let R =
(
(a,∞)∪ {0},⊕min, ·

)
or

(
[a,∞)∪ {0},⊕min, ·

)
.

Then (M,⊕min, ◦) is an R-hypermodule if and only if M is one of the following

forms :

i) {0},

ii) [0,∞),

iii) (b,∞) ∪ {0} where b ≥ 1,

iv) [b,∞) ∪ {0} where b ≥ 1.

Proof. Assume that R =
(
(a,∞) ∪ {0},⊕min, ·

)
.

First, suppose that (M,⊕min, ◦) is an R-hypermodule. Then (M,⊕min) is

a canonical hypergroup. By Theorem 3.1.8, M is one of R , {0} , [0,∞) and

(b,∞) ∪ {0} or [b,∞) ∪ {0} where a ≥ 1. If M = R , we see that

(a + 1⊕min a + 1) ◦ (−2) =
(
[a + 1,∞) ∪ {0}

)
◦ (−2) = (−∞,−2(a + 1)] ∪ {0}

while

(a + 1) ◦ (−2)⊕min (a + 1) ◦ (−2) = −2(a + 1)⊕min −2(a + 1) = [−2(a + 1),∞),

so (a + 1⊕min a + 1) ◦ (−2) 6= a + 1 ◦ (−2)⊕min a + 1 ◦ (−2). Hence M is not an

R-hypermodule.

Conversely, assume that M is one of {0} , [0,∞), (b,∞)∪{0} andr [b,∞)∪{0}

where b ≥ 1. Then (M,⊕min, ·) is a Krasner hyperring by Theorem 3.1.10.
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Case 1. M = {0} . Then (M,⊕min) is a canonical hypergroup. Since M ⊆ R and

R ◦M ⊆ M , we obtain that (M,⊕min, ◦) is an R-hypermodule from Proposition

3.2.4.

Case 2. M = [0,∞). Since R ⊆ M , we have (M,⊕min, ◦) is an R-hypermodule

by Proposition 3.2.5.

Case 3. (b,∞)∪{0} . If b ≥ a , then M ⊆ R and R ◦M ⊆ M . Then (M,⊕min, ◦)

is an R-hypermodule by Proposition 3.2.4. Otherwise, we have R ⊆ M and by

Proposition 3.2.5, (M,⊕min, ◦) is an R-hypermodule.

Case 4. [b,∞) ∪ {0} . The proof is similar to the proof of Case 3.

The proof of the case R =
(
[a,∞) ∪ {0},⊕min, ·

)
is similar.

Proposition 3.2.15. Let R,M ∈ I0 and (R,⊕min, ·) a Krasner hyperring be such

that R 6= {0}. Then (M,⊕min, ∗) is an R-hypermodule if and only if M = {0}.

Proof. First, assume that (M,⊕min, ∗) is an R-hypermodule. Then (M,⊕min) is

a canonical hypergroup. Since (R,⊕min, ·) is a Krasner hyperring and (M,⊕min)

is a canonical hypergroup, M is one of R , {0} , [0,∞) and (b,∞) ∪ {0} or

[b,∞) ∪ {0} where b ≥ 1 and R is one of [0,∞), (a,∞) ∪ {0} and [a,∞) ∪ {0}

where a ≥ 1. Now we show that there exist a, b ∈ R and x ∈ M such that

(a ⊕min b) ∗ x 6= a ∗ x ⊕min b ∗ x when R is one of [0,∞), (a,∞) ∪ {0} and

[a,∞)∪{0} and M is one of R , [0,∞) and (b,∞)∪{0} , [b,∞)∪{0} . It suffices

to show only the case that R = (a,∞)∪ {0} and M = (b,∞)∪ {0} . We see that

(2a⊕min 2a) ∗ 2b = (2a,∞) ∪ {0} ∗ 2b = [0,
b

a
]

while

(2a ∗ 2b)⊕min (2a ∗ 2b) =
b

a
⊕min

b

a
= [

b

a
,∞) ∪ {0}.
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This shows that (2a⊕min 2a) ∗ 2b 6= (2a ∗ 2b)⊕min (2a ∗ 2b). Hence M is not an

R-hypermodule. Therefore M = {0} .

Conversely, since ⊕min is a hyperoperation on {0} , it follows that ({0},⊕min, ∗)

is an R-hypermodule by Corollary 3.2.2.

Finally, the hyperoperation ⊕abs is taken into account. Applying Corollary

3.2.3 and Theorem 3.1.16, the following two results are obtained.

Proposition 3.2.16. Let R =
(
{0},⊕abs, ·

)
. Then (M,⊕abs, ◦) is an R-hypermodule

if and only if M is one of the following forms :

i) R,

ii) {0},

iii) (−a, a) where 0 < a ≤ 1,

iv) [−a, a] where 0 < a ≤ 1.

Proposition 3.2.17. Let R =
(
{0},⊕abs, ·

)
. Then (M,⊕abs, ∗) is an R-hypermodule

if and only if M is one of the following forms :

i) R,

ii) {0},

iii) (−a, a) where 0 < a ≤ 1,

iv) [−a, a] where 0 < a ≤ 1.

Proposition 3.2.18. Let R =
(
R,⊕abs, ·

)
. Then (M,⊕abs, ◦) is an R-hypermodule

if and only if M is one of the following forms :

i) R,
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ii) {0}.

Proof. Assume that (M,⊕abs, ◦) is an R-hypermodule. Then (M,⊕abs) is a

canonical hypergroup. By Theorem 3.1.16, M is one of R , {0} , (−a, a) and

[−a, a] where 0 < a ≤ 1. If M = (−a, a) or [−a, a] , then R ◦M * M . Hence M

is R or {0} .

Conversely, suppose that M is R or {0} . By Theorem 3.1.16, (M,⊕abs) is

a canonical hypergroup. Since M ⊆ R and R ◦ M ⊆ M , (M,⊕abs, ◦) is an

R-hypermodule by Proposition 3.2.4.

Proposition 3.2.19. Let R =
(
(−a, a),⊕abs, ·

)
or

(
[−a, a],⊕abs, ·

)
where 0 < a ≤ 1.

Then (M,⊕abs, ◦) is an R-hypermodule if and only if M is one of the following

forms :

i) R,

ii) {0},

iii) (−b, b) where 0 < b ≤ 1,

iv) [−b, b] where 0 < b ≤ 1.

Proof. Assume that R =
(
(−a, a),⊕abs, ·

)
where 0 < a ≤ 1.

First, assume that (M,⊕abs, ◦) is an R-hypermodule. Then (M,⊕abs) is a

canonical hypergroup. By Theorem 3.1.16, M is one of R , {0} , (−b, b) and

[−b, b] where 0 < b ≤ 1.

Conversely, suppose M is one of R or {0} or (−b, b) or [−b, b] where 0 < b ≤ 1.

Case 1. M = {0} . Then (M,⊕abs, ·) is a Krasner hyperring by Theorem 3.1.16.

Thus (M,⊕abs) is a canonical hypergroup. Since M ⊆ R and R ◦ M ⊆ M ,

Proposition 3.2.4 shows that (M,⊕abs, ◦) is an R-hypermodule.

Case 2. M = R . Since R ⊆ M , Proposition 3.2.5 shows that (M,⊕abs, ◦) is an
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R-hypermodule.

Case 3. M = (−b, b). If b < a , then M ⊆ R and R ◦M ⊆ M . Then (M,⊕abs, ◦)

is an R-hypermodule by Proposition 3.2.4. Otherwise, we have R ⊆ M and by

Proposition 3.2.5, (M,⊕abs, ◦) is an R-hypermodule.

Case 4. M = [−b, b] . The proof is similar to the proof of Case 3.

The proof of the case R =
(
[0, a],⊕max, ·

)
where 0 < a ≤ 1 is obtained simi-

larly.

Proposition 3.2.20. Let R,M ∈ I0 and (R,⊕abs, ·) a Krasner hyperring be such

that R 6= {0}. Then (M,⊕abs, ∗) is an R-hypermodule if and only if M = {0}.

Proof. Assume that (M,⊕abs, ∗) is an R-hypermodule. Then (M,⊕abs) is a

canonical hypergroup. Since (R,⊕abs, ·) is a Krasner hyperring and (M,⊕abs) is

a canonical hypergroup, M is one of R , {0} , (−b, b) and [−b, b] where 0 < b ≤ 1

and R is one of R , (−a, a) and [−a, a] where 0 < a ≤ 1. Now we show that

there exist a, b ∈ R and x ∈ M such that (a ⊕abs b) ∗ x 6= a ∗ x ⊕abs b ∗ x when

R is one of R , (−a, a) and [−a, a] and M is one of R , (−b, b) and [−b, b] . It

suffices to show only the case that R = (−a, a) and M = (−b, b). Note that

(
a

2
⊕abs −

a

2
) ∗ b

2
= [−a

2
,
a

2
] ∗ b

2
= (−∞,− b

a
] ∪ [

b

a
,∞) ∪ {0}

while

(
a

2
∗ b

2
)⊕abs (−a

2
∗ b

2
) =

b

a
⊕abs −

b

a
= [− b

a
,
b

a
].

Thus (
a

2
⊕abs−

a

2
)∗ b

2
6= (

a

2
∗ b

2
)⊕abs (−

a

2
∗ b

2
). Hence M is not an R-hypermodule.

Therefore M = {0} .

Conversely, since ⊕max is a hyperoperation on {0} , Corollary 3.2.2 shows that
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(
{0},⊕abs, ∗

)
is an R-hypermodule.

3.2.2 Hypermodules over Krasner Hyperrings Induced by

the Different Hyperoperations

We consider how to construct R-hypermodules M where hyperoperations

on M and R are different among ⊕max , ⊕min and ⊕abs .

We first study the case that Krasner hyperring R and canonical hypergroup M

are equipped with ⊕min and ⊕max , respectively. Next, we consider the case that

hyperoperations in the previous case interchange their places.

Let (R,⊕min, ·) be a Krasner hyperring such that R ∈ I0 . We examine, where

M ∈ I0 , when (M,⊕max, ◦) and (M,⊕max, ∗) are R-hypermodules. From the

assumption, we see that R is one of {0} , [0,∞), (a,∞) ∪ {0} and [a,∞) ∪ {0}

where a ≥ 1 and M is one of {0} , [0,∞), [0, b) and [0, b] where 0 < b ≤ 1.

Applying Corollary 3.2.3 and Theorem 3.1.4, we obtain the first two proposi-

tions.

Proposition 3.2.21. Let R =
(
{0},⊕min, ·

)
and M ∈ I0 . Then (M,⊕max, ◦) is

an R-hypermodule if and only if M is one of the following forms :

i) {0},

ii) [0,∞),

iii) [0, a) where 0 < a ≤ 1,

iv) [0, a] where 0 < a ≤ 1.

Proposition 3.2.22. Let R =
(
{0},⊕min, ·

)
and M ∈ I0 . Then (M,⊕max, ∗) is

an R-hypermodule if and only if M is one of the following forms :

i) {0},
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ii) [0,∞),

iii) [0, a) where 0 < a ≤ 1,

iv) [0, a] where 0 < a ≤ 1.

Corollary 3.2.23. Let R,M ∈ I0 and (R,⊕min, ·) a Krasner hyperring be such

that R 6= {0}. Then (M,⊕max, ◦) is an R-hypermodule if and only if M = {0}.

Proof. First, assume that (M,⊕max, ◦) is an R-hypermodule. Then (M,⊕max) is

a canonical hypergroup. Since (R,⊕min, ·) is a Krasner hyperring and (M,⊕max) is

a canonical hypergroup, M is one of {0} , [0,∞), [0, b) and [0, b] where 0 < b ≤ 1

and R is one of [0,∞), (a,∞)∪{0} and [a,∞)∪{0} where a ≥ 1. Now we show

that there exist a, b ∈ R and x ∈ M such that (a⊕min b)◦x 6= a◦x⊕max b◦x when

R is one of [0,∞), (a,∞) ∪ {0} and [a,∞) ∪ {0} and M is one of [0,∞), [0, b)

and [0, b] . It suffices to show only the case that R = (a,∞)∪{0} and M = [0, b).

We see that

(2a⊕min 2a) ◦ b

2
= ([2a,∞) ∪ {0}) ◦ 2b = [ab,∞) ∪ {0}

while

(2a ◦ b

2
)⊕max (2a ◦ b

2
) = ab⊕max ab = [0, ab],

so (2a⊕min 2a) ◦ b

2
6= (2a ◦ b

2
)⊕max (2a ◦ b

2
). Hence M is not an R-hypermodule.

Therefore M = {0} .

Conversely, since ⊕max is a hyperoperation on {0} ,
(
{0},⊕max, ◦

)
is an R-

hypermodule by Corollary 3.2.1.

Proposition 3.2.24. Let R =
(
[0,∞),⊕min, ·

)
and M ∈ I0 . Then (M,⊕max, ∗)

is an R-hypermodule if and only if M is one of the following forms :
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i) {0},

ii) [0,∞).

Proof. First, assume that (M,⊕max, ∗) is an R-hypermodule. Then (M,⊕max) is

a canonical hypergroup. By Theorem 3.1.4, M is one of {0} , [0,∞), [0, b) and

[0, b] where 0 < b ≤ 1. If M = [0, b) or [0, b] , then R ∗M * M . Hence M is {0}

or [0,∞).

Conversely, suppose that M is {0} or [0,∞). If M = {0} , then (M,⊕max, ∗)

is an R-hypermodule by Corollary 3.2.2. Let M = [0,∞). Theorem 3.1.4 shows

that
(
[0,∞),⊕max

)
is a canonical hypergroup. Let x, y ∈ M and a, b ∈ R . First,

we claim that a ∗ (x⊕max y) = a ∗ x⊕max a ∗ y . It is clear if a = 0. Assume that

a 6= 0

Case 1. x = y . Then
x

a
=

y

a
. So a ∗ (x ⊕max y) = a ∗ ([0, x]) = [0,

x

a
] and

a∗x⊕maxa∗y =
x

a
⊕max

y

a
=

x

a
⊕max

x

a
= [0,

x

a
] . Hence a∗(x⊕maxy) = a∗x⊕maxa∗y .

Case 2. x > y . Then
x

a
>

y

a
. So a ∗ (x ⊕max y) = a ∗ {x} = {x

a
} and

a ∗ x⊕max a ∗ y =
x

a
⊕max

y

a
= {x

a
} . Hence a ∗ (x⊕max y) = a ∗ x⊕max a ∗ y .

Case 3. x < y . The proof is similar to the proof of Case 2.

Hence a ∗ (x⊕max y) = a ∗ x⊕max a ∗ y .

Second, we show that (a⊕min b) ∗ x = a ∗ x⊕max b ∗ x .

Case 1. a = 0 and b = 0. Then a ∗ x = 0 and b ∗ x = 0. So (a ⊕min b) ∗ x =

(0 ⊕min 0) ∗ x = {0} ∗ x = {0} and a ∗ x ⊕max b ∗ x = 0 ⊕max 0 = {0} . Hence

(a⊕min b) ∗ x = a ∗ x⊕max b ∗ x .

Case 2. a 6= 0 and b = 0. Then b∗x = 0. So (a⊕min b)∗x = (a⊕min 0)∗x = {a}∗

x = {x

a
} and a∗x⊕maxb∗x =

x

a
⊕max0 = {x

a
} . Hence (a⊕minb)∗x = a∗x⊕maxb∗x .

Case 3. a = 0 and b 6= 0. The proof is similar to the proof of Case 2.

Case 4. a = b and a, b 6= 0. Then
x

a
=

x

b
and

x

a
,
x

b
6= 0. So (a ⊕min b) ∗ x =

(a ⊕min a) ∗ x = ([a,∞) ∪ {0}) ∗ x = [0,
x

a
] and a ∗ x ⊕max b ∗ x =

x

a
⊕max

x

b
=
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x

a
⊕max

x

a
= [0,

x

a
] . Hence (a⊕min b) ∗ x = a ∗ x⊕max b ∗ x .

Case 5. a < b and a, b 6= 0. Then
x

a
>

x

b
and

x

a
,
x

b
6= 0. So (a⊕min b)∗x = {a}∗

x = {x

a
} and a∗x⊕maxb∗x =

x

a
⊕max

x

b
= {x

a
} .Hence (a⊕minb)∗x = a∗x⊕maxb∗x .

Case 6. a > b and a, b 6= 0. The proof is similar to the proof of Case 5.

Hence (a⊕min b) ∗ x = a ∗ x⊕max b ∗ x .

Finally, we show that (a · b) ∗ x = a ∗ (b ∗ x). It is obvious if a = 0 or b = 0.

Assume that a 6= 0 and b 6= 0. Then (a·b)∗x =
x

a · b
and a∗(b∗x) = a∗x

b
=

x

a · b
.

Since 0R · x = 0M , (M,⊕max, ∗) is an R-hypermodule.

Proposition 3.2.25. Let R =
(
(a,∞) ∪ {0},⊕min, ·

)
or

(
[a,∞) ∪ {0},⊕min, ·

)
where a ≥ 1 and M ∈ I0 . Then (M,⊕max, ∗) is an R-hypermodule if and only

if M is one of the following forms :

i) {0},

ii) [0,∞),

iii) [0, b) where 0 < b ≤ 1,

iv) [0, b] where 0 < b ≤ 1.

Proof. Assume that (M,⊕max, ∗) is an R-hypermodule. Then (M,⊕max) is a

canonical hypergroup. We obtain from Theorem 3.1.4 that M is one of {0} ,

[0,∞), [0, b) and [0, b] where 0 < b ≤ 1.

Conversely, suppose that M is one of {0} , [0,∞), [0, b) and [0, b] where

0 < b ≤ 1. Again, Theorem 3.1.4 shows that (M,⊕max) is a canonical hyper-

group. Since M, R ⊆ [0,∞), the proof is obtained similarly from the proof of

Proposition 3.2.24.

Let (R,⊕max, ·) be a Krasner hyperring such that R ∈ I0 . We consider when

(M,⊕min, ◦) or (M,⊕min, ∗) is an R-hypermodule when M ∈ I0 . So, R is one
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of {0} , [0,∞), [0, b) and [0, b] where 0 < b ≤ 1 and M is one of R , {0} , [0,∞)

and (a,∞) ∪ {0} or [a,∞) ∪ {0} where a ≥ 1.

Applying Corollary 3.2.3 and Theorem 3.1.8, we obtain the following two state-

ments.

Proposition 3.2.26. Let R =
(
{0},⊕max, ·

)
. Then (M,⊕min, ◦) is an R-hypermodule

if and only if M is one of the following forms :

i) R,

ii) {0},

iii) [0,∞),

iv) (a,∞) ∪ {0} where a ≥ 1,

v) [a,∞) ∪ {0} where a ≥ 1.

Proposition 3.2.27. Let R =
(
{0},⊕max, ·

)
. Then (M,⊕min, ∗) is an R-hypermodule

if and only if M is one of the following forms :

i) R,

ii) {0},

iii) [0,∞),

iv) (a,∞) ∪ {0} where a ≥ 1,

v) [a,∞) ∪ {0} where a ≥ 1.

Corollary 3.2.28. Let R,M ∈ I0 and (R,⊕max, ·) a Krasner hyperring be such

that R 6= {0}. Then (M,⊕min, ◦) is an R-hypermodule if and only if M = {0}.
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Proof. First, assume that (M,⊕min, ◦) is an R-hypermodule. Then (M,⊕min) is

a canonical hypergroup. Since (R,⊕max, ·) is a Krasner hyperring and (M,⊕min)

is a canonical hypergroup, M is one of {0} , [0,∞), (b,∞)∪{0} and [b,∞)∪{0}

where b ≥ 1 and R is one of [0,∞), [0, a) and [0, a] where 0 < a ≤ 1. Now we

show that there exist a, b ∈ R and x ∈ M such that (a⊕max b)◦x 6= a◦x⊕min b◦x

when R is one of [0,∞), [0, a) and [0, a] and M is one of [0,∞), (b,∞)∪{0} and

[b,∞)∪{0} . It suffices to show only the case that R = [0, a) and M = (b,∞)∪{0} .

We notice that

(
a

2
⊕max

a

2
) ◦ 2b = [0,

a

2
] ◦ 2b = [0, ab]

while

(
a

2
◦ 2b)⊕min (

a

2
◦ 2b) = ab⊕min ab = [ab,∞) ∪ {0},

so (
a

2
⊕max

a

2
) ◦ 2b 6= (

a

2
◦ 2b)⊕min (

a

2
◦ 2b). Hence M is not an R-hypermodule.

Therefore M = {0} .

Conversely, since ⊕min is a hyperoperation on {0} ,
(
{0},⊕min, ∗

)
is an R-

hypermodule by Corollary 3.2.2.

Corollary 3.2.29. Let R =
(
[0,∞),⊕max, ·

)
. Then (M,⊕min, ∗) is an R-hypermodule

if and only if M is one of the following forms :

i) {0},

ii) [0,∞).

Proof. First, assume that (M,⊕min, ∗) is an R-hypermodule. Then (M,⊕min) is

a canonical hypergroup. It follows from Theorem 3.1.8 that M is one of R , {0} ,
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[0,∞) and (a,∞) ∪ {0} or [a,∞) ∪ {0} where a ≥ 1 . If M = (a,∞) ∪ {0} or

[a,∞) ∪ {0} , then R ∗M * M . If M = R , we see that

(2⊕max 2) ∗ (−2) = [0, 2] ∗ (−2) = (−∞,−1] ∪ {0}

while

(2 ∗ −2)⊕min (2 ∗ −2) = (−1)⊕min (−1) = [−1,∞) ∪ {0}.

Then (2⊕max2)∗(−2) 6= (2∗−2)⊕min(2∗−2). Hence M is not an R-hypermodule.

Therefore M is {0} or [0,∞).

Conversely, suppose that M is {0} or [0,∞). If M = {0} , then (M,⊕max, ∗)

is an R-hypermodule from Corollary 3.2.2. Let M = [0,∞). Then (M,⊕min)

is a canonical hypergroup. Let x, y ∈ M and a, b ∈ R . First, we show that

a ∗ (x⊕min y) = a ∗ x⊕min a ∗ y . It is clear if a = 0. Assume that a 6= 0

Case 1. x = 0 and y = 0. Then a ∗ x = 0 and a ∗ y = 0. So a ∗ (x ⊕min y) =

a ∗ (0 ⊕min 0) = a ∗ {0} = {0} and a ∗ x ⊕min a ∗ y = 0 ⊕min 0 = {0} . Hence

a ∗ (x⊕min y) = a ∗ x⊕min a ∗ y .

Case 2. x 6= 0 and y = 0. Then a ∗ y = 0. So a ∗ (x ⊕min y) = a ∗ (x ⊕min 0) =

a ∗ {x} = {x

a
} and a ∗ x ⊕min a ∗ y =

x

a
⊕min 0 = {x

a
} . Hence a ∗ (x ⊕min y) =

a ∗ x⊕min a ∗ y .

Case 3. x < y . The proof is similar to the proof of Case 2.

Case 4. x = y and x, y 6= 0. Then
x

a
=

y

a
and

x

a
,
y

a
6= 0. So a ∗ (x ⊕min y) =

a∗ (x⊕min x) = a∗ ([x,∞)∪{0}) = [
x

a
,∞)∪{0} and a∗x⊕min a∗y =

x

a
⊕min

y

a
=

x

a
⊕min

x

a
= [

x

a
,∞) ∪ {0} . Hence a ∗ (x⊕min y) = a ∗ x⊕min a ∗ y .

Case 5. x < y and x, y 6= 0. Then
x

a
<

y

a
and

x

a
,
y

a
6= 0. So a ∗ (x ⊕min y) =

a ∗ {x} = {x

a
} and a ∗ x ⊕min a ∗ y =

x

a
⊕min

y

a
= {x

a
} . Hence a ∗ (x ⊕min y) =
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a ∗ x⊕min a ∗ y .

Case 6. a > b and a, b 6= 0. The proof is similar to the proof of Case 5.

Hence a ∗ (x⊕min y) = a ∗ x⊕min a ∗ y .

Second, we show that (a⊕max b) ∗ x = a ∗ x⊕min b ∗ x .

Case 1. a = b .Then a∗x = b∗x . So (a⊕max b)∗x = (a⊕max a)∗x = ([0, a])∗x =

[
x

a
,∞) ∪ {0} and a ∗ x⊕min b ∗ x = a ∗ x⊕min a ∗ x =

x

a
⊕min

x

a
= [

x

a
,∞) ∪ {0} .

Hence (a⊕max b) ∗ x = a ∗ x⊕min b ∗ x .

Case 2. a > b . Then
x

a
<

x

b
. So (a⊕maxb)∗x = {a}∗x = {x

a
} and a∗x⊕minb∗x =

x

a
⊕min

x

b
= {x

a
} . Hence (a⊕max b) ∗ x = a ∗ x⊕min b ∗ x .

Case 3. x < y . The proof is similar to the proof of Case 2.

Hence (a⊕max b) ∗ x = a ∗ x⊕min b ∗ x .

Finally, we show that (a · b) ∗ x = a ∗ (b ∗ x). It is obvious if a = 0 or b = 0.

Assume that a 6= 0 and b 6= 0. Then (a·b)∗x =
x

a · b
and a∗(b∗x) = a∗x

b
=

x

a · b
.

Since 0R · x = 0M , (M,⊕min, ∗) is an R-hypermodule.

Proposition 3.2.30. Let R =
(
[0, b),⊕max, ·

)
or

(
[0, b],⊕max, ·

)
where 0 < b ≤ 1.

Then (M,⊕min, ∗) is an R-hypermodule if and only if M is one of the following

forms :

i) {0},

ii) [0,∞),

iii) (a,∞) ∪ {0} where a ≥ 1,

iv) [a,∞) ∪ {0} where a ≥ 1.

Proof. Let R =
(
[0, b),⊕max, ·

)
where 0 < b ≤ 1. Assume that (M,⊕min, ∗) is

an R-hypermodule. Then (M,⊕min) is a canonical hypergroup. We can see from

Theorem 3.1.8 that M is one of R , {0} , [0,∞) and (a,∞)∪ {0} or [a,∞)∪ {0}
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where a ≥ 1. If M = R , we see that

(
b

2
⊕max

b

2
) ∗ (−2) = [0,

b

2
] ∗ (−2) = (−∞,

−4

b
] ∪ {0}

while

(
b

2
∗ −2)⊕min (

b

2
∗ −2) =

−4

b
⊕min

−4

b
= [

−4

b
,∞) ∪ {0},

so (
b

2
⊕max

b

2
)∗(−2) 6= (

b

2
∗−2)⊕min (

b

2
∗−2). Hence M is not an R-hypermodule.

Therefore M is one of {0} , [0,∞), (a,∞) ∪ {0} and [a,∞) ∪ {0} where a ≥ 1.

Conversely, suppose that M is one of {0} or [0,∞) or (a,∞)∪{0} or [a,∞)∪

{0} where a ≥ 1. By Theorem 3.1.8, (M,⊕min) is a canonical hypergroup. Since

M, R ⊆ [0,∞), the proof is obtained similarly from the proof of Proposition 3.2.29.

Now we focus the hyperoperation ⊕abs on R and the hyperoperation ⊕max

on M .

Proposition 3.2.31. Let R,M ∈ I0 and (R,⊕abs, ·) a Krasner hyperring such

that R 6= {0}. Then the followings are equivalent :

i) M = {0}.

ii) (M,⊕max, ◦) is an R-hypermodule.

iii) (M,⊕max, ∗) is an R-hypermodule.

Proof. i) ⇒ ii) Let M = {0} . Since ⊕max is a hyperoperation on M , (M,⊕max, ◦)

is an R-hypermodule from Corollary 3.2.2.

ii) ⇒ i) Suppose that (M,⊕max, ◦) is an R-hypermodule. Then (M,⊕max)

is a canonical hypergroup. By Theorem 3.1.4, M is one of {0} , [0,∞), [0, b)
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and [0, b] where 0 < b ≤ 1. Since (R,⊕abs, ·) is a Krasner hyperring such that

R 6= {0} , R is one of R , (−a, a) and [−a, a] where 0 < a ≤ 1. If M is [0,∞) or

[0, b) or [0, b] , it is seen that

(−a

2
) ◦ b

2
= −ab

4
/∈ M.

Then (M,⊕max, ◦) is not an R-hypermodule. Hence M = {0} .

i) ⇒ iii) Let M = {0} . Since ⊕max is a hyperoperation on M , (M,⊕max, ∗)

is an R-hypermodule by Corollary 3.2.2.

iii) ⇒ i) Suppose that (M,⊕max, ∗) is an R-hypermodule. Then (M,⊕max)

is a canonical hypergroup. By Theorem 3.1.4, M is one of {0} , [0,∞), [0, b)

and [0, b] where 0 < b ≤ 1. Since (R,⊕abs, ·) is a Krasner hyperring such that

R 6= {0} , R is one of R , (−a, a) and [−a, a] where 0 < a ≤ 1. If M is one of

[0,∞), [0, b) and [0, b] , then

(−a

2
) ∗ b

2
= −a

b
/∈ M.

Then (M,⊕max, ∗) is not an R-hypermodule. Hence M = {0} .

Proposition 3.2.32. Let R,M ∈ I0 and (R,⊕max, ·) be a Krasner hyperring

such that R 6= {0}. Then the followings are equivalent :

i) M = {0}.

ii) (M,⊕abs, ◦) is an R-hypermodule.

iii) (M,⊕abs, ∗) is an R-hypermodule.

Proof. i) ⇒ ii) Let M = {0} . Since ⊕abs is a hyperoperation on M , (M,⊕abs, ◦)

is an R-hypermodule by Corollary 3.2.2.
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ii) ⇒ i) Suppose that (M,⊕abs, ◦) is an R-hypermodule. Then (M,⊕abs) is

a canonical hypergroup. By Theorem 3.1.16, M is one of {0} , R , (−b, b) and

[−b, b] where 0 < b ≤ 1. Since (R,⊕max, ·) is a Krasner hyperring such that

R 6= {0} , R is one of [0,∞), [0, a) and [0, a] where 0 < a ≤ 1. If M is one of

R , (−b, b) and [−b, b] , then

(
a

2
⊕max

a

2
) ◦ b

2
= [0,

a

2
] ◦ b

2
= [0,

ab

4
]

while

(
a

2
◦ b

2
)⊕abs (

a

2
◦ b

2
) =

ab

4
⊕abs

ab

4
=

ab

4
.

So (
a

2
⊕max

a

2
) ◦ b

2
6= (

a

2
◦ b

2
) ⊕abs (

a

2
◦ b

2
). Hence M is not an R-hypermodule.

Therefore M = {0} .

i) ⇒ iii) Let M = {0} . Since ⊕abs is a hyperoperation on M , (M,⊕abs, ∗)

is an R-hypermodule by Corollary 3.2.2.

iii) ⇒ i) Suppose that (M,⊕abs, ∗) is an R-hypermodule. Then (M,⊕abs) is

a canonical hypergroup. By Theorem 3.1.16, M is one of {0} , R , (−b, b) and

[−b, b] where 0 < b ≤ 1. Since (R,⊕max, ·) is a Krasner hyperring such that

R 6= {0} , R is one of [0,∞), [0, a) and [0, a] where 0 < a ≤ 1. If M is one of

R , (−b, b) and [−b, b] , we obtain that

(
a

2
⊕max

a

2
) ∗ b

2
= [0,

a

2
] ∗ b

2
= [

b

a
,∞] ∪ {0}

while

(
a

2
∗ b

2
)⊕abs (

a

2
∗ b

2
) =

b

a
⊕abs

b

a
=

b

a
.
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So (
a

2
⊕max

a

2
) ∗ b

2
6= (

a

2
∗ b

2
) ⊕abs (

a

2
∗ b

2
). Hence M is not an R-hypermodule.

Therefore M = {0} .

Proposition 3.2.33. Let R,M ∈ I0 and (R,⊕abs, ·) a Krasner hyperring such

that R 6= {0}. Then the followings are equivalent :

i) M = {0}.

ii) (M,⊕min, ◦) is an R-hypermodule.

iii) (M,⊕min, ∗) is an R-hypermodule.

Proof. i) ⇒ ii) Let M = {0} . Since ⊕min is a hyperoperation on M , (M,⊕min, ◦)

is an R-hypermodule by Corollary 3.2.2.

ii) ⇒ i) Suppose that (M,⊕min, ◦) is an R-hypermodule. Then (M,⊕min) is a

canonical hypergroup. By Theorem 3.1.8 M is one of R , {0} , [0,∞), (b,∞)∪{0}

and [b,∞) ∪ {0} where b ≥ 1. Since (R,⊕abs, ·) a Krasner hyperring such that

R 6= {0} , R is one of R , (−a, a) and [−a, a] where 0 < a ≤ 1. If M is one of R ,

[0,∞), (b,∞) ∪ {0} and [b,∞) ∪ {0} , we see that

(
a

2
⊕abs

a

2
) ◦ 2b =

a

2
◦ 2b = ab

while

(
a

2
◦ 2b)⊕min (

a

2
◦ 2b) = ab⊕min ab = [ab,∞) ∪ {0}.

So (
a

2
⊕abs

a

2
) ◦ 2b 6= (

a

2
◦ 2b)⊕min (

a

2
◦ 2b). Hence M is not an R-hypermodule.

Therefore M = {0} .

i) ⇒ iii) Let M = {0} . Since ⊕min is a hyperoperation on M , (M,⊕min, ∗)

is an R-hypermodule by Corollary 3.2.2.
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iii) ⇒ i) Suppose that (M,⊕min, ∗) is an R-hypermodule. Then (M,⊕min) is

a canonical hypergroup. By Theorem 3.1.8 M is one of R , {0} , [0,∞), (b,∞)∪

{0} and [b,∞) ∪ {0} where b ≥ 1. Since (R,⊕abs, ·) a Krasner hyperring such

that R 6= {0} , R is one of R , (−a, a) and [−a, a] where 0 < a ≤ 1. If M is one

of R , [0,∞), (b,∞) ∪ {0} and [b,∞) ∪ {0} , then

(
a

2
⊕abs

a

2
) ∗ 2b =

a

2
∗ 2b =

4b

a

while

(
a

2
∗)⊕min (

a

2
∗ 2b) =

4b

a
⊕min

4b

a
= [

4b

a
,∞) ∪ {0}.

So (
a

2
⊕abs

a

2
) ∗ 2b 6= (

a

2
∗ 2b)⊕min (

a

2
∗ 2b). Hence M is not an R-hypermodule.

Therefore M = {0} .

Proposition 3.2.34. Let R,M ∈ I0 and (R,⊕min, ·) be a Krasner hyperring

such that R 6= {0}. Then the followings are equivalent :

i) M = {0}.

ii) (M,⊕abs, ◦) is an R-hypermodule.

iii) (M,⊕abs, ∗) is an R-hypermodule.

Proof. i) ⇒ ii) Let M = {0} . Since ⊕abs is a hyperoperation on M , (M,⊕abs, ◦)

is an R-hypermodule by Corollary 3.2.2.

ii) ⇒ i) Suppose that (M,⊕abs, ◦) is an R-hypermodule. Then (M,⊕abs) is

a canonical hypergroup. By Theorem 3.1.16, M is one of {0} , R , (−b, b) and

[−b, b] where 0 < b ≤ 1. Since (R,⊕min, ·) is a Krasner hyperring such that

R 6= {0} , R is one of [0,∞), (a,∞) ∪ {0} and [a,∞) ∪ {0} where a ≥ 1. If M
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is one of R , (−b, b) and [−b, b] , we see that

(2a⊕max 2a) ◦ b

2
= ([2a,∞) ∪ {0}) ◦ b

2
= [ab,∞) ∪ {0}

while

(2a ◦ b

2
)⊕abs (2a ◦ b

2
) = ab⊕abs ab = ab.

So (2a⊕max 2a) ◦ b

2
6= (2a ◦ b

2
)⊕abs (2a ◦ b

2
). Hence M is not an R-hypermodule.

Therefore M = {0} .

i) ⇒ iii) Let M = {0} . Since ⊕abs is a hyperoperation on M , (M,⊕abs, ∗)

is an R-hypermodule by Corollary 3.2.2.

iii) ⇒ i) Suppose that (M,⊕abs, ∗) is an R-hypermodule. Then (M,⊕abs) is

a canonical hypergroup. By Theorem 3.1.16, M is one of {0} , R , (−b, b) and

[−b, b] where 0 < b ≤ 1. Since (R,⊕min, ·) is a Krasner hyperring such that

R 6= {0} , R is one of [0,∞), (a,∞) ∪ {0} and [a,∞) ∪ {0} where a ≥ 1. If M

is one of R , (−b, b) and [−b, b] , then

(2a⊕max 2a) ∗ b

2
= ([2a,∞) ∪ {0}) ∗ b

2
= [0,

b

4a
]

while

(2a ∗ b

2
)⊕abs (2a ∗ b

2
) =

b

4a
⊕abs

b

4a
=

b

4a
.

So (2a⊕max 2a) ∗ b

2
6= (2a ∗ b

2
)⊕abs (2a ∗ b

2
). Hence M is not an R-hypermodule.

Therefore M = {0} .

So far, for fixed single-valued operations ◦ and ∗ , we are able to characterize
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when (M,⊕M , ◦) and (M,⊕M , ∗) are (R,⊕R, ·)-hypermodules where ⊕M ,⊕R ∈

{⊕max,⊕min,⊕abs} and · is the usual multiplication on R . We obtain the following

facts.

1. If R = {0} , then (M,⊕M , ◦) and (M,⊕M , ∗) are (R,⊕R, ·)-hypermodules.

2. If R 6= {0} , then

(a) there exists M 6= {0} in I0 such that (M,⊕max, ◦) and (M,⊕max, ∗)

are (R,⊕min, ·)-hypermodules,

(b) there exists M 6= {0} in I0 such that (M,⊕min, ◦) and (M,⊕min, ∗)

are (R,⊕max, ·)-hypermodules,

(c) M = {0} is the only case such that (M,⊕max, ◦), (M,⊕max, ∗), (M,⊕min, ◦),

(M,⊕min, ∗) are (R,⊕abs, ·)-hypermodules, (M,⊕abs, ◦), (M,⊕abs, ∗)

are (R,⊕max, ·)-hypermodules and (M,⊕abs, ◦), (M,⊕abs, ∗) are (R,⊕min, ·)-

hypermodules.

This brings us to look for an appropriate single-valued operation • such that

(M,⊕M , •) is an (R,⊕R, ·)-hypermodule with M ∈ I0 r
{
{0}

}
and ⊕M and ⊕R

satisfy the case (b) above.

Proposition 3.2.35. Let (M,⊕) be a canonical hypergroup and (R, +, ·) a Kras-

ner hyperrinng. If we define a funtion • : R ×M → M by r •m = 0M for all r

in R and m in M , then (M,⊕, •) is an R-hypermodule.

Proof. This is obvious.

Proposition 3.2.36. Let (M,⊕max) be a canonical hypergroup and (R,⊕abs, ·)

be a Krasner hyperring such that M , R ∈ I0 r {{0}}. Then (M,⊕max, •) is an

R-hypermodule if and only if the single-valued operation • : R × M → M must

be uniquely defined by r •m = 0M for all r in R and m in M .
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Proof. First, assume that (M,⊕max, •) is an R-hypermodule. Let r ∈ R and m ∈ M .

Then

(r ⊕abs r) •m = r •m⊕max r •m

{r} •m = [0, r •m]

{r •m} = [0, r •m]

r •m = 0.

Hence r •m = 0M for all r in R and m in M . Conversely, the result holds from

Proposition 3.2.35.

Proposition 3.2.37. Let (M,⊕abs) be a canonical hypergroup and (R,⊕max, ·)

be a Krasner hyperring such that M , R ∈ I0 r
{
{0}

}
. Then (M,⊕abs, •) is an

R-hypermodule if and only if the single-valued operation • : R × M → M must

be uniquely defined by r •m = 0M for all r in R and m in M .

Proof. First, assume that (M,⊕abs, •) is an R-hypermodule. Then 0R •m = 0M

for all m ∈ M . Let r ∈ R r {0} and m ∈ M . Then

(r ⊕max r) •m = r •m⊕abs r •m

[0, r] •m = {r •m}

Since 0 ∈ [0, r] •m , we have r •m = 0M for all r in R and m in M . Conversely,

the result holds by Proposition 3.2.35.

Proposition 3.2.38. Let (M,⊕min) be a canonical hypergroup and (R,⊕abs, ·)

a Krasner hyperring such that M , R ∈ I0 r {{0}}. Then (M,⊕min, •) is an

R-hypermodule if and only if the single-valued operation • : R × M → M must

be uniquely defined by r •m = 0M for all r in R and m in M .
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Proof. First, assume that (M,⊕min, •) is an R-hypermodule. Let r ∈ R and

m ∈ M . Then

(r ⊕abs r) •m = r •m⊕min r •m

{r} •m = [r •m,∞) ∪ {0} or {0}

Then {r •m} = {0} . Hence r •m = 0M for all r in R and m in M . Conversely,

the result holds by Proposition 3.2.35.

Proposition 3.2.39. Let (M,⊕abs) be a canonical hypergroup and (R,⊕min, ·)

a Krasner hyperring such that M , R ∈ I0 r {{0}}. Then (M,⊕abs, •) is an

R-hypermodule if and only if the single-valued operation • : R × M → M must

be uniquely defined by r •m = 0M for all r in R and m in M .

Proof. First, assume that (M,⊕abs, •) is an R-hypermodule. Then 0R •m = 0M

for all m ∈ M . Let r ∈ R r {0} and m ∈ M . Then

(r ⊕min r) •m = r •m⊕abs r •m

([r,∞) ∪ {0} or {0}) •m = {r •m}

Then r •m = 0. Hence r •m = 0M for all r in R and m in M . Conversely, the

result holds by Proposition 3.2.35.



CHAPTER IV

FREE AND PROJECTIVE HYPERMODULES

In this chapter, we separate into two sections. The first section is based on [4]

where we adopt the notion of free hypermodules over Krasner hyperrings. How-

ever, we give some certain examples of free hypermodules over Krasner hyperrings

at the end. In the last section, we define a projective hypermodule and some prop-

erties of projective hypermodules over Krasner hyperrings are studied.

4.1 Free Hypermodules

We give some definitions and propositions regarding free R-hypermodules

from [4]. Moreover, examples of free hypermodules are provided at the end of

the section.

First, we give a definition of a (hypermodule) weak homomorphism and a

multi-valued (hypermodule) weak homomorphism which has a major role in the

followings section.

Definition 4.1.1. Let M and M ′ be R-hypermodules. A multi-valued (hyper-

module) homomorphism from M into M ′ is a multi-valued function from M into

M ′ , i.e., f : M → P∗(M ′) such that

i) f(x + y) ⊆ f(x) + f(y) for all x, y ∈ M ,

ii) f(rx) = rf(x) for all r ∈ R and x ∈ M .

Definition 4.1.2. [4] Let M be an R-hypermodule and X a nonempty subset

of M .
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A linear combination of X is a sum of the form r1x1 + r2x2 + · · ·+ rnxn where

n ∈ N , ri ∈ R and xi ∈ X for all i ∈ {1, 2, . . . , n} . Note that if n = 1, a linear

combination of the form r1x1 where r1 ∈ R and x1 ∈ X is {r1x1} .

We say that X generates M if every element of M belongs to a linear com-

bination of X , i.e., X generates M if and only if for each m ∈ M there exist

r1, r2, . . . , rn ∈ R and x1, x2, . . . , xn ∈ X such that m ∈ r1x1 + r2x2 + · · ·+ rnxn .

Moreover, X is said to be linearly dependent if there exists distinct x1, x2, . . . , xn

in X and r1, r2, . . . , rn in R , not all of which are 0, such that

0 ∈ r1x1 + r2x2 + · · ·+ rnxn.

A subset of M which is not linearly dependent is called linearly independent,

i.e., X is linearly independent if and only if for all distinct x1, x2, . . . , xn ∈ X

and all r1, r2, . . . , rn ∈ R if 0 ∈ r1x1 + r2x2 + · · · + rnxn , then ri = 0 for all i ∈

{1, 2, . . . , n} .

Finally, let ∅ generate {0} .

Note that if X = ∅ , then X is linearly independent.

Definition 4.1.3. [4] Let M be a unitary R-hypermodule. We call an R-

hypermodule M a free R-hypermodule if there exists a subset B of M such

that

i) B generates M and

ii) for every function f from B into an R-hypermodule N there exists a multi-

valued homomorphism fm : M → P∗(N) such that fm(x) = {f(x)} for all

x ∈ B .

The set B is called a basis of M .



77

Proposition 4.1.4. [4] Let M be a unitary R-hypermodule and B = {b1, b2, . . . , bn}

a finite subset of M . Then the followings are equivalent:

i) B is a basis of M ,

ii) B is linearly independent and generates M ,

iii) for every m ∈ M there are uniquely defined elements r1, . . . , rn ∈ R such

that m ∈ r1b1 + r2b2 + · · ·+ rnbn .

Obviously, {0} is a free hypermodule with the basis ∅ .

Recall that a basis of a free module M over a ring is a maximal linearly

independent subset of M and is a minimal spanning subset of M . This also holds

for a basis of a free hypermodule.

Proposition 4.1.5. Let M be a free R-hypermodule. If B is a basis of M , then

B is a maximal linearly independent subset of M .

Proof. Assume that B is a basis of M and there is a linearly independent subset C

of M such that B ( C . Let v ∈ C rB . Since B is a basis of M , there

exist r1, . . . , rn ∈ R and b1, . . . , bn ∈ B such that v ∈ r1b1 + · · · + rnbn . Then

0 ∈ v− v ⊆ r1b1 + · · ·+ rnbn +(−1)v . This contradicts the fact that C is linearly

independent. Hence B is a maximal linearly independent subset of M .

Proposition 4.1.6. Let M be a free R-hypermodule. If B is a basis of M , then

B is a minimal generating subset of M .

Proof. Assume that B is a basis of M and there is a generating subset C of M

such that C ( B . Then there exists v ∈ BrC . Since C is a generating subset

of M , we have v ∈ r1c1 + · · ·+ rncn for some r1, . . . , rn ∈ R and c1, . . . , cn ∈ C .

Then 0 ∈ v − v ⊆ r1c1 + · · ·+ rncn + (−1)v . This contradicts the fact that B is

linearly independent. Hence B is a minimal generating subset of M .
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We give some examples of free hypermodules.

Example 4.1.7. [4] Let Ω be a nonempty set and (R, +, ·) a Krasner hyperring.

We consider the set RΩ = {f |f : Ω → R} . Denote E(Ω) as a set of all functions

in RΩ which vanish almost everywhere, i.e.,

E(Ω) = {f ∈ RΩ|f(x) = 0 almost all x ∈ Ω}.

Define a hyperoperation ⊕ : E(Ω) × E(Ω) → P∗(E(Ω)
)

and a single-valued

operation ◦ : R× E(Ω) → E(Ω) by

f ⊕ g =
{
h ∈ E(Ω)

∣∣ h(x) ∈ f(x) + g(x) for all x ∈ Ω
}

and

r ◦ f = rf where rf : Ω → R defined by (r ◦ f)(x) = rf(x) for all x ∈ Ω

for all f, g ∈ E(Ω) and r ∈ R . Hence (E(Ω),⊕, ◦) is a free R-hypermodule.

Moreover, a basis of (E(Ω),⊕, ◦) is {fa|a ∈ Ω} where

fa(x) =


1 if x = a,

0 if x 6= a.

The previous example shows that we can construct a free R-hypermodule from

a nonempty subset Ω. In addition, E(Ω) has a basis B such that B and Ω have

the same cardinalities.

Example 4.1.8. If R is a hyperring with identity 1, then R is clearly a free

R-hypermodule with a basis {1} .
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Example 4.1.9. Let R =
(
[0, 1],⊕max, ·

)
and M =

(
[0, a],⊕max, ◦

)
where 0 <

a ≤ 1. Then M is a free R-hypemodule with a basis {a} .

Example 4.1.10. Let R =
(
[1,∞)∪{0},⊕min, ·

)
and M =

(
[a,∞)∪{0},⊕min, ◦

)
where a ≥ 1. Then M is a free R-hypemodule with a basis {a} .

Example 4.1.11. Let R =
(
[−1, 1],⊕abs, ·

)
and M =

(
[−a, a],⊕abs, ◦

)
where

0 < a ≤ 1. Then M is a free R-hypemodule with a basis {a} .

4.2 Projective Hypermodules

We introduce a definition of a projective hypermodule and investigate some

properties that are parallel to those of a projective module.

Definition 4.2.1. An R-hypermodule P is projective if for any R-hypermodules M

and N , a homomorphism f : P → N and a surjective homomorphism g : M → N ,

there exists a multi-valued homomorphism hm : P → P∗(M) such that g
[
hm[P ]

]
⊆

f [P ] .

P

f

��

hm

wwn n n n n n n

P∗(M)

M g
// N

The following proposition shows that a direct sum P
⊕

Q of an R-hypermodule

is also projective if at least one of P or Q is projective.

Proposition 4.2.2. Let R-hypermodule M be the direct sum of subhypermodules

P and Q. If P is projective, then P
⊕

Q is a projective R-hypermodule.

Proof. Let N be an R-hypermodule, f : P
⊕

Q → N and g : M → N homo-
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morphisms such that g is surjective. Consider the following diagram :

P

ι
��

hm

vvl l l l l l l l

P∗(M) P
⊕

Q

f

��

π

OO

M g
// N

Then f ◦ ι : P → N is a homomorphism. Since P is projective, there exists

a multi-valued homomorphism hm : P → P∗(M) such that g
[
hm[P ]

]
⊆ (f ◦

ι)[P ] , i.e., g
[
hm[P ]

]
⊆ f [P ] . Then hm ◦ π : P

⊕
Q → P∗(M) is a multi-valued

homomorphism. Thus g
[
(hm ◦ π)(P

⊕
Q)

]
= g

[
hm[P ]

]
⊆ f [P ] ⊆ f [P

⊕
Q] .

Hence P
⊕

Q is projective.

Proposition 4.2.3. Let P and Q be subhypermodules of an R-hypermodule. If

P
⊕

Q is a projective R-hypermodule, then P and Q are projective.

Proof. To show that P is a projective R-hypermodule, let M and N be R-

hypermodules, f : P → N and g : M → N homomorphisms such that g is

surjective. Consider the following diagram :

P
⊕

Q

ι

��

hm

vvm m m m m m

P∗(M) P

f

��

π

OO

M g
// N

Then f ◦ π : P
⊕

Q → N is a homomorphism. Since P
⊕

Q is projective,

there exists a multi-valued homomorphism hm : P
⊕

Q → P∗(M) such that

g
[
hm[P

⊕
Q]

]
⊆ (f◦π)[P

⊕
Q] , i.e., g

[
hm[P

⊕
Q]

]
⊆ f [P ] . Then hm ◦ ι : P → P∗(M)
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is a multi-valued homomorphism. Thus

g
[
(hm ◦ ι)(P )

]
= g

[
hm[P ]

]
⊆ g

[
hm[P

⊕
Q]

]
⊆ f [P ].

Hence P is projective.

Similarly, Q is projective.

Proposition 4.2.4. Every free R-hypermodule is projective.

Proof. Suppose that P is a free R-hypermodule with a basis B . Let M and N

be R-hypermodules, f : P → N and g : M → N homomorphisms such that g is

surjective. Let i : B → P be the map defined by i(x) = x for all x ∈ B .

B

i

��
P

f

��
M g

// N

Since g is surjective, for each b ∈ B there exists mb ∈ M such that g(mb) =

(f ◦ i)(b) = f(b). Thus, for each b ∈ B , choose once and for all an element

mb ∈ M such that f(b) = g(mb). Define a mapping h : B → M by h(b) = mb .

We have g ◦ h = f ◦ i . Since P is free, we can extend h to a multi-valued



82

homomorphism hm : P → P∗(M) such that hm(b) = {h(b)} for all b ∈ B .

B

i

��
h

��
















P

f

��

hmwwn n n n n n n

P∗(M)

M g
// N

To show that g
[
hm[P ]

]
⊆ f [P ] , let p ∈ P . Since B generates P , there exist

α1, . . . , αn ∈ R and b1, . . . , bn ∈ B such that p ∈ α1b1 + · · ·+ αnbn . Thus

g
[
hm(p)

]
⊆ g

[
hm(α1b1 + · · ·+ αnbn)

]
⊆ g

[
α1h

m(b1) + · · ·+ αnh
m(bn)

]
= g

[
α1{h(b1)}+ · · ·+ αn{h(bn)}

]
= g

[
{α1h(b1)}+ · · ·+ {αnh(bn)}

]
= g

[
α1h(b1) + · · ·+ αnh(bn)

]
= α1g(h(b1)) + · · ·+ αng(h(bn))

= α1f(i(b1)) + · · ·+ αnf(i(bn))

= α1f(b1) + · · ·+ αnf(bn)

= f(α1b1 + · · ·+ αnbn) ⊆ f [P ].

Thus g
[
hm(p)

]
⊆ f [P ] for all p ∈ P , i.e., g

[
hm[P ]

]
⊆ f [P ] . Hence P is projective.

We can conclude from the previous proposition that Examples 4.1.6–4.1.10 are
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examples of projective hypermodules.

Proposition 4.2.5. Let P be a projective R-hypermodule and M an R-hypermodule.

If f : M → P is a surjective homomorphism, then there exists a multi-valued ho-

momorphism hm : P → P∗(M) such that f
[
hm[P ]

]
⊆ P .

Proof. Assume that f : M → P is a surjective homomorphism. Let idP : P → P

be the identity function on P .

P

idP

��

hm

wwo o o o o o o

P∗(M)

M
f

// P

There exists a multi-valued homomorphism hm : P → P∗(M) such that f
[
hm[P ]

]
⊆

idP [P ] = P since P is projective.

Proposition 4.2.6. Let P be an R-hypermodule. If P is a direct summand of a

free hypermodule, then P is projective.

Proof. Assume that P is a direct summand of a free R-hypermodule F . Then

there exists a hypermodule Q such that F = P
⊕

Q . Since F is a free R-

hypermodule, Proposition 4.2.4 shows that F is projective. By Proposition 4.2.3,

P is projective.

Proposition 4.2.7. Let P be a projective R-hypermodule. Suppose that X, Y and Z
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are R-hypermodules and the diagram

P

f

��
X g

// Y
h

// Z

is such that f, g and h are homomorphisms, ker(h) = im(g) and h ◦ f = 0.

Then there exists a multi-valued homomorphism ϕm : P → P∗(X) such that

g
[
ϕm[P ]

]
⊆ f [P ].

Proof. Since h ◦ f = 0, we have im(f) ⊆ ker(h) = im(g). Then we can consider

the given diagram as

P

f

��
X g

// im(g)

Applying the projectivity of P to the diagram, there exists a multi-valued homo-

morphism ϕm : P → P∗(X) such that g
[
ϕm[P ]

]
⊆ f [P ] .

P

f

��

ϕm
vvm m m m m m m

P∗(X)

X g
// im(g)

Proposition 4.2.8. Let P, M and N be R-hypermodules. Suppose that P is
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projective and the diagram

P

f

��
M g

// N

is such that f and g are homomorphisms. If im(f) ⊆ im(g), then there exists a

multi-valued homomorphism hm : P → P∗(M) such that g
[
hm[P ]

]
⊆ f [P ]. The

converse holds if g
[
hm[P ]

]
= f [P ].

Proof. First, assume that im(f) ⊆ im(g). Recall that the canonical map pim(g) is

a surjective homomorphism with ker(pim(g)) = im(g). Consider the diagram

P

f

��
M g

// N pim(g)

// N/im(g)

Then pim(g) ◦ f = 0 because im(f) ⊆ im(g). By Proposition 4.2.7, there exists a

multi-valued homomorphism hm : P → P∗(M) such that g
[
hm[P ]

]
⊆ f [P ] .

P

f

��

hmwwn n n n n n n

P∗(M)

M g
// N pim(g)

// N/im(g)

Conversely, assume that g
[
hm[P ]

]
= f [P ] . Then im(f) = g

[
hm[P ]

]
⊆ g[M ] =

im(g). Hence im(f) ⊆ im(g).
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