auiaualsgmsveslamesueqavuniiaues lamesss

WBDNTY ATzIINa

a a 4 yd 1 3 [ a a ) a
IneniinustiiiludiunilaesmsAnymunangaslsyyinemansuritinge
a a J a a 4
AMUVNWAUAMAAT  AIAIWIAUAMAAT
AULINOINEAT  PHNAINTBUNIING1AY
= =
Unisfiny 2550

4

AVANTUDIYNAINTAINNINGSY



SOME PROPERTIES OF HYPERMODULES OVER KRASNER
HYPERRINGS

Mr. Apirat Siraworakun

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2007
Copyright of Chulalongkorn University



Thesis Title SOME PROPERTIES OF HYPERMODULES OVER
KRASNER HYPERRINGS

By Mr. Apirat Siraworakun

Field of Study Mathematics

Thesis Advisor Assistant Professor Sajee Pianskool, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University, in
Partial Fulfillment of the Requirements for the Master’s Degree

e

............................. Dean of the Faculty of Science

(Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

... Yopuporo. . Kemprasit | Chairman
(Professor Yupaporn Kemprasit, Ph.D.)

.............................. Member
(Associate Professor Amorn Wasanawichit, Ph.D.)



v

sy AszaIna : mniRalszmsveslamesvegavunsimueslamesss.

(SOME PROPERTIES OF HYPERMODULES OVER KRASNER HYPERRINGS)
J =1 =]

0. MITnu : wet. as.AR foserga, 87 wil.

ISUTONSTU (R,+,) 1 ATIues lamesse i () (R,+) Wumluiifalamesngl
(i) (R) WunangUiisl o fugud Tah o Whuendnualiuumnarives (R,+) uaz i)
x(y+z)=x-y+x-z UD% (y+z)-x=y-x+2z-x ﬁmi‘uun x,),Zz€R T!Hlﬂﬁlﬂﬁnuu
asimues lames5e R e mluiifalamedngd M AONadSu (7,m) > rm 20 Rx M
T M éiﬂﬂ r,n.r, € R UnE mm,m,eM (i) r(m, +m,)=rm, +rm, (ii)
(n+rn)m=rm+rym (iii) (r,-r)m=r(rpm) uag (iv) 0,m=0,,

Tuawidoil nwmuﬁuﬁ'ﬁ#’upu*fmmnﬂmnﬁwuﬁnuui’q‘lﬂﬁﬂuﬁiwﬂ!mu{
wegauuAImues lamesss uaz 1AM et eiitugsssuvesveslamesuegavunsia
woilame33s Taomsiarsaninsraianuadsil o puszyudnausiaiiufngliuns
uuuung #ulamed Tenlesdusedre malninfus 18 Tsniinlame

o4 - - w = = w wra
vegaduduuniiomivu iy Tusuafivuegalunguiuegandeusudnumuiamng

4 o o
szmsiduiusiu
ATV oo AGARNARS........ oo doiian... oNy... a"““ﬂ‘
AN <o AAPNTARS ... mwiledeormisimiinm, 2. ﬁ

UMSANYY 25500,



##4872537423 : MAJOR MATHEMATICS
KEY WORD: KRASNER HYPERRINGS / HYPERMODULES / FREE HYPERMODULES

APIRAT SIRAWORAKUN : SOME PROPERTIES OF HYPERMODULES
OVER KRASNER HYPERRINGS. THESIS ADVISOR : ASSIST. PROF.
SAJEE PIANSKOOL, Ph.D., 87 pp.

A system (R,+,-)is said to be a Krasner hyperring if (i) (R,+) is a canonical
hypergroup, (ii) (R,-) is a semigroup with zero 0 where 0 is the scalar identity of (R,+)
and (i) x-(y+z)=x-y+x-z and (y+z)-x=y-x+z-x for all x,y,zeR. A
hypermodule over a Krasner hyperring R is a canonical hypergroup M , for which there

is a function (r,m)—>rm from RxM into M such that for all r,n,r,€eR and
mmm,eM, (1) rim+m)=rm+rm,, () (h+n)m=rm+rm, (i)

(ri-r)m=r(r;m) and (iv) 0pm=0,, .

In this research, various elementary properties of modules over rings are
generalized to properties of hypermodules over Krasner hyperrings and some concrete
examples of hypermodules over Krasner hyperrings are given by considering among the
collection of all multiplicative interval semigroups joining 0 on the system of real
numbers and some h}rpcmpcmﬁ:;ns. Moreover, we give a definition of projective

hypermodule which is parallel to the definition of projective module in module theory

and study some related properties.
Department .......... Mathematics Student’s signature "ﬁ"j h"'ﬁfﬁ .......
Field of Study ....... Mathematics. .. Advisor’s signature .....c%5 ﬂ? ..........

Academic Year.........2007...........



vi

ACKNOWLEDGEMENTS

It is a great pleasure to thank my thesis advisor, Assistant Professor Dr.Sajee
Pianskool, for her excellent supervisions, helpful advices and very useful helps.
Without her constructive suggestions and knowledgeable guidance in this study,
this work would never have successfully been completed. 1 feel very thankful to the
committee, Professor Dr.Yupaporn Kemprasit and Associate Professor Dr.Amorn

Wasanawichit, of my thesis and all the lecturers during my study.

Last but not least, my sincere gratitude and appreciation go to my beloved

parents for their support and consistent encouragement throughout my study.



CONTENTS

page
ABSTACT IN THAT . . . . . . . e iv
ABSTRACT IN ENGLIGH . . . .. ... ... . . . . ..., A\
ACKNOWLEDGEMENTS . . . . . ... .. vi
CONTENTS . . . . e vii
LIST OF SYMBOLS . . . . . .. . ix
CHAPTER

I INTRODUCTION . . . . .. . 1
1.1 Motivation . . . . . . ... 1
1.2 Preliminaries . . . . . . . . ... 2

II ELEMENTARY PROPERTIES OF HYPERMODULES OVER KRAS-
NER HYPERRINGS . . . . . . . . o o o 10
2.1 Hypermodules over Krasner Hyperrings . . . . . . . ... ... .. 10
2.2  Homomorphisms and Isomorphism Theorems . . . . . . . . .. .. 21
2.3 Direct Sums . . . . ..o 29
IIT EXAMPLES OF HYPERMODULES . . . . . ... ... ... ..... 32
3.1 Hyperoperations @mayx, Pmin and Paps -+« v o o o o oL 34
3.1.1 Hyperoperation Gpax - - « « « « v oo 34
3.1.2 Hyperoperation @pin - -+« « o 0o oo oo 38

3.1.3 Hyperoperation @ups - - -« « oo oo oo 42



viil

page

3.2 Hypermodules over Krasner Hyperrings . . . . . .. .. ... ... 46
3.2.1 Hypermodules over Krasner Hyperrings Induced by the Same

Hyperoperations . . . . .. . ... ... ... ... ..., 47

3.2.2  Hypermodules over Krasner Hyperrings Induced by the Dif-

ferent Hyperoperations . . . . . . .. ... ... ... ... 58

IV FREE AND PROJECTIVE HYPERMODULES . . . . . .. ... ... 75
4.1 Free Hypermodules . . . . . . . .. .. ... ... 75
4.2 Projective Hypermodules . . . . . . . . ... ... ... ... 79
REFERENCES . . . . . . . 86



LIST OF SYMBOLS

the set of real numbers

the set of integers modulo a natural number n
the cardinality of a set H

the power set of a set H

the power set of H not containing @

the maximum of a set A

the minimum of a set A

the kernel of a homomorphism f

the image of a function f

the image of X under a function f

the inverse image of X under a function f

the identity map on a set M

X



CHAPTER 1

INTRODUCTION

1.1 Motivation

The theory of hyperstructures (also called multialgebras) started with the
communication of F. Marty in 1934 at the 8% Congress of Scandinavian Math-
ematicians. Marty introduced the notion of hypergroups and since then many
researchers have worked and developed on this topic. The concept of hyperrings
was introduced by M. Krasner. Later, J. Mittas and D. Stratigopoulos, two stu-
dents of Krasner, earned their theses by studying the structure of hyperrings.

P. Corsini gathered the fundamental concepts in his book “Prolegomena of
hypergroup theory” and its applications in “Application of hyperstructure theory”.
The structure of hypermodules over hyperrings is defined analogously to one of
modules over rings. It has been known that there are many different types of
hyperrings, for examples, a Krasner hyperring (or simple hyperring), a feeble
hyperring, a multiplicative hyperring, a D-hyperring and a V-S-hyperring. As a
result, it is not surprised that a hypermodule over a hyperring is defined in various
ways.

The purpose of this thesis is to investigate some properties of hypermodules
over Krasner hyperrings that are parallel to those of modules over rings. Moreover,
we give some examples of hypermodules which are considered from the collection
of all multiplicative interval semigroups of R joining 0.

In addition, CH. G. Massouros [4] gave a definition of free hypermodules over



Krasner hyperrings and delved into their properties. He accomplished one of the
pleasant results stating that a basis of a free hypermodule M is linearly indepen-
dent and generates M. This leads us to the only remaining objective, namely,
studying projective hypermodules. The definition of a projective hypermodule is
given along with its properties.

This thesis contains 4 chapters. In Chapter I, we motivate our work and intro-
duce some definitions and examples which are required in the following chapters.

We give, in Chapter II, a definition of hypermodules over Krasner hyperrings
and study some elementary properties. Moreover, homomorphisms between hy-
permodules over Krasner hyperrings and direct sums of hypermodules over Kras-
ner hyperrings are illustrated.

In Chapter III, we explore some examples of canonical hypergroups and Kras-
ner hyperrings in order to construct hypermodules over Krasner hyperrings. In
this work, we focus on the collection of all interval subsemigroups of R under
usual multiplication joining the real number 0.

In Chapter IV, a definition and investigation of some properties of free hyper-

modules and projective hypermodules are presented.

1.2 Preliminaries

In this section, we introduce some definitions of hyperstructures inspired by

P. Cosini. Many examples of hyperstructures also are given.

For a set H, let P(H) denote the power set of H and P*(H) =P(H) ~{2}.

Definition 1.2.1. [5] A hyperoperation on a nonempty set H is a mapping
of Hx H into P*(H). A hypergroupoid is a system (H,o) consisting of a

nonempty set H and a hyperoperation o on H.



Let (H,o) be a hypergroupoid. For nonempty subsets X and Y of H, let

XoY = U(moy),

reX
yey

and let Xoy=Xo{y} and yoX ={y}o X forall y € H.

A hypergroupoid (H, o) is said to be commutative if
roy=yox forall z,ye H.
A semihypergroup is a hypergroupoid (H, o) such that
(xoy)oz==xzo0(yoz) forall x,y,z€ H.
A hypergroup is a semihypergroup (H,o) such that
roH=Hox=H forallz e H.

Definition 1.2.2. [5] Let (H,o) be a hypergroupoid.

An element e of H is called an identity of H if
x€(xoe)N(eox) forall z € H.
An element e of H is called a scalar identity of H if

roe=ecox={x} forallz€ H.

In general, an identity of a hypergroupoid may not be unique see Exam-

ple 1.2.4. However, a scalar identity is unique since if = and y are scalar identities

of a hypergroupoid (H, o), then {x} =z oy = {y} so that =z = y.

Definition 1.2.3. [5] Let (H,o) be a semihypergroup. An element = of H is

said to be an inverse of an element y of H if there exists an identity e of H such

that



e€(zoy)N(youx),
that is, (z oy) N (y o x) contains at least one identity of H.
Example 1.2.4. [6] Let H be a nonempty set. Define
xoy=H forall x,ye H.
Then (H,o) is a commutative hypergroup with the following properties.

i) Every element of H is an identity of H. Consequently H has a scalar identity

if and only if |H| = 1.
ii) Any pairs of elements of H are inverses of each other.
This hypergroup (H, o) is usually called the total hypergroup.
Definition 1.2.5. [5] A hypergroup (H, o) is called a canonical hypergroup if
i) (H,o) is commutative,
ii) (H,o) has a scalar identity,
iii) every element x of H has a unique inverse, denoted by z=!, in H and
iv) x €yoz implies z € y Loz for z,y,2 € H.

Note that if (H, o) is a canonical hypergroup, then x € y o z also implies

z€xoy !t for x,y,z € H.

Definition 1.2.6. Let (H,0) be a canonical hypergroup. For a nonempty sub-

set X of H, let
X ={z712e€X}.

Proposition 1.2.7. Let (H,o) be a canonical hypergroup. Then (z71)™! = z

and (xoy) ' =xtoy ™t forall x,y € H.



Proof. This is obvious. ]

Example 1.2.8. Let H be a nonempty set of cardinality at least 2. Choose an

element in H and denote by 0. Define a hyperoperation o on H by

(

{a}, it b=0,
{b}, ifa=0,

H, ifa=0#0,

{a,b}, ifa#b, a#0andb#0.
\

Then (H,o) is a canonical hypergroup with 0 as a scalar identity and a as the

inverse of a € H.

Proof. 1t is obvious that (H,o) is commutative. Now, we show that a o H = H
for all @ € H. This is clear if @ = 0. Let a € H ~ {0}. Then ao H =
(aca)U(ao(H~{a}))=HU(ao(H~{a}))=H. Thus Hoa=aoH =H
for all a € H.

To show that (aob)oc=ao(boc) for all a,b,c € H, let a,b,c € H.
Case1: a=0or b=0 or ¢ =0. Without loss of generality, assume that ¢ = 0.
Then (aob)oc=(aob)o0=aoband ao(boc)=ao(bo0)=ao{b} =aob.
Case 2 : a,b,c #0.

Subcase 2.1 : a =b=c¢. Then (aob)oc= (aca)oa=ao(aoca)=ao(boc).

Subcase 2.2 : Only two elements of a,b and ¢ are equal. Without loss of
generality, let a =b. Then (aob)oc=(aoca)oc=Hoc=H and ao(boc) =
ao(aoc)=ao{a,c} =H.

Subcase 2.3 : a,b, ¢ are all distinct. Then (aob)oc = {a,b}oc = {a,b,c} and
ao(boc)=ao{bc} ={a,b,c}.

Thus (aob)oc=ao(boc) for all a,b,c € H.



Hence (H,o) is a commutative hypergroup.

Next, we prove that (H,o) is a canonical hypergroup. It is obvious that 0 is
a scalar identity and a is the unique inverse of a for all @ € H. It remains to
show that for each a,b,c € H if a € boc, then ¢ € aob™!. Let a,b,c € H be
such that a € boc.
Case 1 : b=0. Since a € boc=00c¢ = {c}, we have a = c¢. Then c € a0 0 =
aobt.
Case 2: ¢=0. Since a € boc=bo0={b}, we have a = b, i.e., a =b"'. Then
either aob ™' ={0} or aob™ =H. Thus c=0€aob'.
Case 3: b # c and b,c # 0. Then a € {b,c}. If a = b, then a = b~! so that
ceEH=aoa=aob ' Ifa=c,then a#b,so ce€ {a, by =aob=aob!.
Case 4: b=c and b,c#0. Then a € H. If a=b, then c€ H=aoa=aob=
aob™t. If a#b,then c=bcaob=aob !

Hence (H,o) is a canonical hypergroup with 0 as a scalar identity and a as

the inverse of ¢ € H. O

Definition 1.2.9. [5] Let (H, o) be a canonical hypergroup. A nonempty subset H’

of H is called a canonical subhypergroup of (H,o) if
i) zoy C H forall z,y € H',
ii) e € H' where e is the scalar identity of H and
iii) x~' € H' for every x € H' ( where z~! is the inverse of z in H).

Remark 1.2.10. Let H’ be a canonical subhypergroup of a canonical hypergroup
(H,o). It is easy to see that (H’, o) is a canonical hypergroup such that the scalar
identity of H is a scalar identity of H’ and the inverse of x in H’ is the same as

the inverse of x in H for each z € H'.



The following proposition gives a practical method for verifying whether a

nonempty subset of a given canonical hypergroup is its canonical subhypergroup.

Proposition 1.2.11. Let (H,0) be a canonical hypergroup and H' a nonempty
subset of H. Then H' is a canonical subhypergroup of (H,o) if and only if

xoy ' CH forall z,yc H'.

Proof. First, assume that H' is a canonical subhypergroup of (H, o). If z,y € H',
then y=' € H' so that zoy~! C H'.

Conversely, suppose that z oy~! C H’ for all z,y € H'. Let 2,y € H'. Then
e € xox ! C H'. Since {z7'} = ecox™! C H', we have 27! € H'. Hence
z~!' € H' for each z € H'. Consequently, roy=xzo0 (y~ ') C H'.

This proves that H’ is a canonical subhypergroup of (H, o). O

For the rest of this chapter, a Krasner hyperring is defined and various exam-

ples are given.
Definition 1.2.12. [5] A system (R, ®,0) is called a (Krasner) hyperring if

i) (R,®) is a canonical hypergroup,

ii) (R,o) is a semigroup with zero 0 where 0 is the scalar identity of (R, ®) and
ili) xo(y®z)=xoydrozand (ybz)ox=yoxrdzoux forall z,y,z € R.

The hyperoperation @ and the operation o of a hyperring (R, ®, o) are called
the addition and the multiplication of R, respectively. Moreover, the scalar
identity 0 of (R, ®) is called the zero of R.

Let (R,®,0) be a Krasner hyperring. If (R, o) is a monoid with identity 1g,

then we call (R, ®, o) a Krasner hyperring with identity 1g.



Remark 1.2.13. Let @ be a hyperoperation on {0}. Then ({0}, ®) is a canonical
hypergroup and ({0}, ®,-) is a Krasner hyperring where - is the usual multipli-

cation on R.

Example 1.2.14. [5] Define a hyperoperation & on Zs as follows:

@0 1 2
0l{0y (1} 2
L) {1z
2 {2} 25 {2

Then (Zs,®,-) is a Krasner hyperring with zero 0 in Zz where - is the usual

multiplication on Zs.
Next example shows how to construct a Krasner hyperring from a group.

Example 1.2.15. [6] Let (G,-) be a group. For z,y € G° where G° = G U {0}
and 0 is a new symbol not containing in G and 0-a=0=a-0 for all a € G°,
define

{z}, if y =0,

{y}, if x =0,
rdy =

G~ A{x}, ifz=y+#0,

{z,y}, if v #y, *#0and y # 0.

Then (G° @®,-) is a Krasner hyperring.

Examples 1.2.16-1.2.18 are examples of Krasner hyperrings constructed from

real intervals.

Example 1.2.16. [5] Let a € R be such that 0 <a <1 and R = [0,a] or [0,a).



Define a hyperoperation @& on R by

{max{z,y}}, if v #£y,
rdy =

[0, z], if x =y.

Then (R, ®, ) is a Krasner hyperring where - is the usual multiplication on R.

Example 1.2.17. [5] Let a € R be such that a > 1 and R = [a,00) U {0} or

(a,00) U{0}. Define a hyperoperation & on R by

r@0=00z={z} for all = € R,
r@x=[r,00)U{0} for all x € R~ {0} and
z®y = {min{z,y}} for all z,y € R~ {0} with z # y.

Then (R, ®, ) is a Krasner hyperring where - is the usual multiplication on R.

Example 1.2.18. [5] Let a € R besuch that 0 < @ <1 and R = [—a,a] or (—a,a).

Define a hyperoperation ¢ on R by

r@x={z} for all x € R,
@ (—x) = [—|z|, |z|] for all x € R and
rdy=ydx={x} for all z € R with |y| < |z|.

Then (R, ®, ) is a Krasner hyperring where - is the usual multiplication on R.

Examples 1.2.16-1.2.18 will play major roles in Chapter III. We define three
multi-valued functions @Gpax, Bmin and Baps of R X R into P(R) analogously to
hyperoperations defined in these examples in order to form hypermodules over

Krasner hyperrings.



CHAPTER II
ELEMENTARY PROPERTIES OF HYPERMODULES

OVER KRASNER HYPERRINGS

We investigate elementary properties of hypermodules over Krasner hyper-
rings that are parallel to those of modules over rings. We demonstrate these in
three sections. In the first section, hypermodules, subhypermodules and quotient
hypermodules are defined and their examples are given. In Section 2.2, we look
up some properties regarding homomorphisms and isomorphism theorems. In the

last section, the direct sum of subhypermodules are studied.

2.1 Hypermodules over Krasner Hyperrings

We first introduce a definition and give some examples of hypermodules over

Krasner hyperrings.

Definition 2.1.1. [2] Let (R, &, o) be a Krasner hyperring, one say that (M, +, -)
is a left R-hypermodule (or M is a left R-hypermodule or M is a hypermodule
over R) if

i) (M,+) is a canonical hypergroup,

ii) - is a (left) scalar single-valued operation, that is, a function which associates
with any pair (a,z) € Rx M an element a-z € M such that for all z,y € M

and all a,b € R, the following conditions hold:

(a) a-(z+y)=a-z+a-y,
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(b) (a®b)-x=a-z+0b-x,
(c) (acb)-x=a-(b-x),

(d) Ogr-x = 0p where O and 0y are the zero of R and the scalar identity

of M, respectively.

If R is endowed with an identity 1g, then M is called unitary if 1z -z =«
forall z € M.

A right R-hypermodule is defined in a similar fashion. Unless stated otherwise,
all R-hypermodules in this thesis will be left R-hypermodules.

Let (M, +,-) be an R-hypermodule. For nonempty subsets S of R and

N of M, let
S-N={s-n|seSandne N},

s*N={s}-Nand S-n=S5-{n} forall s € S and n € N. If there is no
ambiguity, then S- N, s- N, S-n and s-n are denoted by SN, sN, Sn and

sn, respectively.
We give some examples of hypermodules over a Krasner hyperrings.

Example 2.1.2. Let R be a Krasner hyperring. Then {0} and R are R-

hypermodules.

Example 2.1.3. Let a,b € R besuchthat a > 1and 0 <b <1, R = [a,00)U{0}
and M = [0,b]. We recall from Example 1.2.16 and Example 1.2.17 that (R, &, o)

is a Krasner hyperring and (M, +) is a canonical hypergroup where o is the usual
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multiplication on R, @& and + are defined as follows

reé0=0&r={r} for all r € R,
réor=|[r,oo)U{0} for all € R~ {0} and
r®s = {min{r,s}} for all s € R~ {0} with r # s,

and

{max{z,y}}, if v # y,
rTH+Y =

0, z], if x =y.
Define a scalar single-valued operation - : R x M — M by, for all ¢ € R and

reM
0 if c=0,

, if c#0.
Then (M, +,-) is an R-hypermodule. The proof will be given later in Proposi-
tion 3.2.25.

Example 2.1.4. Let M, M’ be R-hypermodules and L = {f| f: M — M'}.

Define a hyperoperation & on L by, for each f,g € L,
fog={h: M — M'| h(z) € f(x)+ g(x) for all x € M}
and x: R x L — L by, foreach r € R and f € L,
(r* f)(x) =r(f(x)) forall z € M.
Then (L,®, ) is an R-hypermodule.

Proof. Tt is easy to show that (L,®) is a canonical hypergroup where the zero

function 0y, is a scalar identity and —f is the inverse of f in L and Og* f = 0.
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For each a,b € R and f € L, since ((aob)x f)(z) = (aob)(f(z)) = a(b(f(z))) =
a((bx £)(x)) = (ax (bx f))(z) for all z € M, we obtain that (aob)* f = ax(bx f).

Next, we show that r* (f @ g) =r* f®@rxg forall r € R and f,g € L.
First, let h € f @ g. Then h(z) € f(x)+ g(x) for all x € M. Thus (r*h)(z) =
r(h(z)) € r(f(z) + g(x)) = r(f(2)) +r(g(x)) = (r= f)(z) + (r * g)(x) so that
(rxh)(x) € (r*f)(x)+ (r*g)(x) for all z € M. Hence r+h € rx f & rxg.
On the other hand, let h € r* f @ r*g. Then h(z) € (r* f)(z) + (r*g)(x) =
r(f(z)) +r(g(x)) =r(f(z) + g(x)) for all x € M. So h(z) € r(f(x)+ g(zx)) for
all z € M. Then for each x € M there exists I, € f(x) + g(x) € M’ such that
h(z) = r(l,). Define | : M — M’ by I(z) = I, for all z € M. Then for each
v €M, I(z) € f(z)+g(x) and h(z) = r(l(z)) = (r *1)(z), ie, | € f B g and
h=rxl. Hence h € r* (f @ g). Therefore rx (f @ g) =r* fdrx*g.

Finally, we show that (a +b)* f =ax f@®bx* f. First, let » € a +b. Then
(r f)(@) =r(f(z) € (a+0)(f(x) = a(f(x)) + b(f(x)) = (ax* [)(x) + (bx f)(z)
for all 2z € M. Hence rx f € ax f @®bx f. Next, let h € a* f &b f. Then
h(z) € alf(x)) +b(f(z)) = (a+b)(f(z)) = ((a+b) * f)(z) for all z € M. Hence
h € (a+b)x* f. Therefore (a+b)x f=axfDbx f.

As a result (L, ®, x) is an R-hypermodule. O

From now on, we use +, @ for hyperoperations on an R-hypermodule M
and a Krasner hyperring R, respectively. Besides we denote scalar identities of
M and R and the inverse of m € M and r € R by 0y, O, —m and —r,
respectively. If there is no ambiguity, then 0, and Og are denoted by 0.

As in a module over ring, the following proposition for a hypermodule over a

Krasner hyperring is obtained.
Proposition 2.1.5. Let M be an R-hypermodule. Then

i) rOp =0y forall v € R,



14

ii) r(—m) = —(rm) = (—r)m for all r € R and m € M.

Proof. i) Clearly 70y = 7(0g0p) = (rOg)0ar = (0g)0nr = Oy for all r € R.

it) Let m € M and r € R. By i), we have 0y = 70y € r(m +
(—m)) = rm +r(—m). Then 0y € rm + r(—m) so that —(rm) = r(—m). Also
Op = 0gm € (r @ (—r))m = rm + (—r)m. Then 0y € rm + (—r)m so that

—(rm) = (—=r)m. Therefore r(—m) = —(rm) = (—r)m. O
The concept of subhypermodules of an R-hypermodule have been studied.

Definition 2.1.6. Let M be an R-hypermodule. A nonempty subset N of M
is a subhypermodule of M if N is a canonical subhypergroup of M and rN C N

for all r € R

Proposition 2.1.7. Let M be an R-hypermodule. A nonempty subset N is a
subhypermodule of M if and only if xt —y C N and rx € N for all r € R and

z,y € N.

Proof. This follows from Proposition 1.2.11 and Definition 2.1.6. O]

For a collection of subhypermodules of an R-hypermodule M, the largest
subhypermodule of M contained in these subhypermodules and the smallest sub

hypermodule of M containing these subhypermodules alway exist.

Proposition 2.1.8. Let M be an R-hypermodule and Ny a subhypermodule of M

for each A\ € A. Then ﬂ N, is the largest subhypermodule of M contained in

AEA
all N)\ .

Proof. 1t is obvious that ﬂ N, is contained in all N,. Let z,y € ﬂ N, and

AEA AEA
r € R. Then z,y € N, for all A € A. For each \ € A, since N, is a subhyper-

module of M, it follows that x —y C Ny and rz € N,. Hence ﬂ N, is again a

AeA
subhypermodule of M .
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Next, assume that L is an R- hypermodule contained in all N,. To show that

L C ﬂNA,lethL. Then x € Ny, for all A € A so that x € ﬂN,\.
AeA AeA
Therefore ﬂ N, is the largest subhypermodule of M contained in all N,. [
AeA

Definition 2.1.9. Let M be an R-hypermodule and N, a subhypermodule of M

for each A € A. Define

> Ni={zeM|IreNIN,... .\ €A, z€ Ny, +--+ Ny }.
AEA

We call ZNA the sum of subhypermodules Ny .
AEA

Remark 2.1.10. Let M be an R-hypermodule and N, a subhypermodule of M

for each A € A. Then

Proposition 2.1.11. Let M be an R-hypermodule and N, a subhypermodule

of M for each X € A. Then ZNA 1s the smallest subhypermodule of M con-

AEA
taining all N .

Proof. 1t is obvious that ZNA contains all N,. Let z,y € ZN’\ and r € R.

A€A AEA
Then there exist ri,79 € N and Ay,..., Ay, p1,... 1y, € A such that x € N, +

-+ Ny, and y € Ny, +---+ N, . Since each N, is a subhypermodule of M, we

have —y € N, +--+N,,, andre € rNy, +---+7Ny, C Ny +---+ N, C ZN,\.
AEA
Thus x—ygN,\1+~~~+N,\Tl —l—Nm—i-'--—l—NuT2 QZN,\. Hence ZN,\ is a

AEA AEA
subhypermodule of M containing all N, .

Assume that K is a subhypermodule of M containing all N,. To show that

> N\ C K, let x € Y Nyp. Then there exists r € N and A,..., A € A
AEA AEA
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such that © € N), +---+ N,.. Then z € K since K is a subhypermodule
of M containing all N,. Therefore Z N, is the smallest subhypermodule of M

AEA
containing all N . O

In the case where the index set A is finite, say A = {1,2,3,...,n}, we often

write ZN,\ as ZNi or Ny + Ny +---+ N,. We see that
AEA i=1

Ni+No+---+N,={xeM|3In, € Nyx€ny+ng+---+n,}

and call the sum of subhypermodules Ny, ..., N,. With this notation we obtain

the following consequences.

Proposition 2.1.12. Modularity Condition
Let M be an R-hypermodule. If K, H and L are subhypermodules of M and

KCH, then HN(K+L)=K+(HNL).

Proof. First, let a € HN(K 4+ L). Then a € H and there exists k € K and [ € L
such that a € k+1. Then l € a—k C H,ie,l € Hsothat e HNL. Asa
result, a € k+1 C K+ (HNL). Hence HN(K+L)C K+ (HNL).

On the other hand, since K+(HNL) C H+H = H and K+(HNL) C K+1L,

we have K+ (HNL)CHN(K+L). O

Corollary 2.1.13. Let M be an R-hypermodule and K, H and L are subhy-
permodules of M. If K C HH K+ L = H+ L and KNL = HN L, then

K=H.

Proof. Assume that K C H, K+ L = H+ L and KNL = HNL. By the
Modularity Condition, we have H N (K + L) = K+ (HNL). Then H C HN

(H+L)=HN(K+L)=K+(HNL)=K+(KNL)C K. Hence K =H. [
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This section is ended by constructing a quotient hypermodule over a Krasner

hyperring.
Proposition 2.1.14. Let M be an R-hypermodule and N a subhypermodule
of M. Define the relation p on M by

xpy & x4+ N=y+ N foralz,ye M.

Then p is an equivalence relation on M .
Proof. This is obvious. O]

Definition 2.1.15. Let M be an R-hypermodule, N a subhypermodule of M
and p the equivalence relation defined in Proposition 2.1.14. Denote the set of all

equivalence classes by M/N | i.e.,

M/N ={[z],|Jx € M} ={z + Njz € M}

Moreover, N =0+ N.

Proposition 2.1.16. Let M be an R-hypermodule and N a subhypermodule

of M. Then x € y+ N if and only if t + N =y + N for all x,y € M.
Proof. This follows from the fact that {x+/N|z € M} forms a partition of M. O

Theorem 2.1.17. Let M be an R-hypermodule and N a subhypermodule of M .

Define the hyperoperation ¢ on M/N by
(mi+N)o(me+ N)={v+ N|vem +ma} forallmy,mye M.

Then (M/N,©) is a canonical hypergroup.
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Proof. First, we show that ¢ is well-defined. Let mi+ N =n;+ N and my+ N =
ny + N where mq,mg,ny,ny € M. To show that A := {v+ N|v € my + my} =
{w+ N|w € ny +ns} := B, let v € m; +my. Then v € my +ms C (n1 + N) +
(ng + N) = (ny + ng) + N. So there exists w € ny + ny such that v € w+ N,
ie., v+ N =w+ N. Hence A C B. The proof of the reverse inclusion is similar.
Consequently, ¢ is well-defined.

Next, we show that (M/N,¢) is a hypergroup. Let my, mg, mg € M. Then

((m1+ N)o(mg+ N))o(mz+ N)={v+ Nlv € mi +ms} o (m3+ N)

= U (v+ N)o(ms+ N)

veEmi+mse

= U {w+ N|w € v+ ms}

vEM1+mso

={w+ N|w € (my +my) +ms}
={w+ Nlw € my + (mg + m3)}

= U {w+ N|w € my + v}

veEma+ms

= |J (mi+N)o@w+N)

vEM2+ms

= (m1+ N)o{v+ Nlv € ms+ms}

= (m1+ N) o ((ma+ N) o (m3 + N)).

Thus (M/N, ) is associative. In order to show that (m; + N)o (M/N)= M/N,
let m € M. Since M is a hypergroup, M = m; + M so that there exists n € M
such that m € m; +n. Then m+ N € (my + N)o(n+ N) C (my+ N)o M/N.

Now, we prove that (M/N,¢) is canonical. It is clear that (M/N,¢) is com-
mutative because (M, +) is commutative. We see that N is a scalar identity of

(M/N,) as follows. To show that —m + N is the unique inverse of m + N for
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eachme M,let me M. Then (m+ N)o(—m+ N)={v+ Njv e m+ (—m)}.
Thus N € (m+ N)o(—m+ N). Hence —m + N is an inverse of m + N. For the
uniqueness of an inverse of m+N, welet n € M besuchthat N € (m+ N) o (n+ N).
There exists t e m+nt+N=N. Thent € N andnen+N C (—m+t)+N =
—m+ N. Hence n+ N =—-m+ N.

Finally, assume that m; + N € (my+ N) o (m3+ N) where my, mo, mg € M.
There exists t € mg + mg such that my + N =t + N. Then t € m; + u for some
u € N. Since t € ma + mg, we obtain that ms € t —mg C my +u—my = (my —
ms) +u. There exists s € m; —my such that mg € s+wu so that mg € s+ N, i.e.,

mz+N = s+N. Hence mzg+N € (m1+N)o(—m3+N) = (m;+N)o—(mz+U). O

Theorem 2.1.18. Let M be an R-hypermodule and N a subhypermodule of M .

Define the scalar single-valued operation - : R X M/N — M/N by
r-(m+N)=rm+N forallmeM andr € R.
Then (M/N,o,-) is an R-hypermodule.

Proof. First, we show that - is well-defined. Let r € R and mq,n; € M be such
that m; + N = ny + N. We show that rm; + N = rn; + N. There exists u; € N
such that m; € ny 4+ u; since my + N = ny + N. Then rmy € r(ng + uy) =
rni +ru; € rng + N. Hence rmy € rnqy + N, ie., rmqy + N =1rny + N. Thus -
is well-defined.

To show that (M /N, o,-) isan R-hypermodule, let 71,7y € R and my, mqy € M.
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We see that

r-((mi+N)+ (me+N)) =r-{t+ Nt € mi +mo}
= {rt + N|t € mi + my}
= {s+ N|s € rm; +rmy}
= (rm; + N) o (rmg + N)

=r-(my+N)or-(ms+ N),

(r1+7re) - (my+N)={rm;+ N|r€r +ry}
={m+ N|m € rymq +ramy }
= (rymy + N) o (romy + N)
=ry-(mi+ N)org-(my+ N),
r-(s-(my+N))=ro(sm +N)
=r(smy) + N
= (rs)my + N
= (rs) - (m1+ N),
finally,

Og-(my+ N)=0rm;+ N =0y +N =N.

Therefore (M/N,o,-) is an R-hypermodule. O

From the previous theorem, we are able to give a definition of quotient hyper-

modules.

Definition 2.1.19. Let M be an R-hypermodule and N a subhypermodule
of M. The hypermodule (M/N,o,-) is called the quotient hypermodule of M

by N.
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2.2 Homomorphisms and Isomorphism Theorems

In this section, we are interested in exploring homomorphisms, and isomor-

phism theorems of hypermodules over Krasner hyperrings.

Definition 2.2.1. [2] Let M and M’ be R-hypermodules. A function f: M — M’

is called a (hypermodule) homomorphism if
i) flx+y)=f(x)+ f(y) forall z,y € M and
i) f(rx)=rf(x) forallr € R and x € M.
The followings are simple examples of hypermodule homomorphisms

Example 2.2.2. Let M be an R-hypermodule. The identity function, udj,,

on M is obvious a homomorphism.
Example 2.2.3. Let M be an R-hypermodule and N a subhypermodule of M.
The canonical map py : M — M/N defined by

py(m)=m+ N for all m € M,

is a surjective homomorphism.
Next proposition shows elementary properties of hypermodule homomorphisms.

Proposition 2.2.4. Let M and N be R-hypermodules. If f : M — N be a

homomorphism. then f(0y) = Oy and f(—m) = —f(m) for all m € M.

Proof. We see that f(0y) = f(0r0p) = Ogf(0pr) = On. Consequently, for each
m € M, we obtain that Oy = f(Op) € f(m + (=m)) = f(m) + f(—m) so that

f(=m) = —f(m) as desired. 0



22

Proposition 2.2.5. Let M, N and U be R-hypermodules and f: M — N and
g : N — U homomorphisms. Then the composite function go f : M — U 1s a

homomorphism.

Proof. Let m,m’ € M. Then (gof)(m~+m’) = g(f(m+m')) = g(f(m)+f(m')) =

g(f(m))+g(f(m)) = (gof)(m)+(gof)(m'). Hence gof is a homomorphism. [

For a given homomorphism of hypermodules, its kernel and image are defined
in the usual way. The property that, if f: M — N is a hypermodule homomor-
phism, then ker(f) and im(f) are subhypermodules of M and N, respectively,

are obtained unsurprisingly.

Definition 2.2.6. Let M and N be R-hypermodules and f : M — N a ho-
momorphism. We define the kernel and the image of f, denoted by ker(f) and

im(f), respectively, by

ker(f) ={m € M| f(m) =0} and

im(f) = {f(m)[ m e M}.

Proposition 2.2.7. Let M and N be R-hypermodules and f : M — N a homo-
morphism. Then f(X) is a subhypermodule of N for every subhypermodule X

of M, and f~(Y) is a subhypermodule of M for every subhypermodule Y of N .

Proof. First, let X be a subhypermodule of M. Since X # @, we let z1,29 € X
and 7 € R. Then it is clear that f(z1) — f(z2) = f(z1 — x2) C f(X) and
rf(xz) = f(ray) € f(X). Thus f(X) is a subhypermodule of N.

Next, let Y be a subhypermodule of N. From Proposition 2.2.4, 0 € f~1(Y)
so that f~1(Y) # @. Let x1,20 € f7Y(Y) and r € R. Then f(zy), f(z2) € Y

so that f(z; — x2) = f(x1) — f(xs) € Y. Hence x1 — x5 C f~1(Y). Moreover,
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flrzy) =rf(x)) €Y sothat raz; € f~1(Y). Hence f~1(Y) is a subhypermodule

of M. O

Corollary 2.2.8. Let M and N be R-hypermodules and f : M — N a homomor-

phism. Then ker(f) and im(f) are subhypermodules of M and N, respectively.

Proof. The results follow from Proposition 2.2.7 since ker(f) = f~'({0}) and
im(f) = £(M). .

Proposition 2.2.9. Let M and N be R-hypermodules and f: M — N a homo-

morphism. Then f is injective if and only if ker(f) = {0}.

Proof. First, the injectivity of f and the fact that f(0) =0 imply ker(f) = {0}.
Next, we assume that ker(f) = {0}. Let z,y € M be such that f(z) = f(y).
Then 0 € f(x) — f(y) = f(zr —y). Thus there exists z € = — y such that
f(z) =0, ie., z € ker(f). Hence z = 0. This shows that 0 € z — y and then

r€y+0={y}. Thus x =y. As aresult, f is injective. O

Proposition 2.2.10. Let M and N be R-hypermodules and f : M — N a
homomorphism. If X is a subhypermodule of M and Y is a subhypermodule

of N then

i) fFIXNFUY)] = f(X)NY (this property, in fact, holds even if f is just a

function)

i) Y + f(X)] =1(Y)+ X.

Proof. Let X and Y be subhypermodules of M and N, respectively. We prove
only the property ii).

i) First, let z € f7'[Y + f(X)]. Then f(z) € Y + f(X) so that f(z) €
y1 + f(xq) for some y; € Y and 25 € X. Thus y; € f(z) — f(x2) = f(z — z2).

There exists x; € ¥ — x5 such that f(z,) =y, €Y, ie., x; € f~1(Y). Moreover,
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@ € 21 + x5 and then z € f1(Y) + X. Hence f'[Y + f(X)] C f1(Y) + X.
Next, let # € f~1(Y)+ X. Then there exist x; € f~}(Y) and 2, € X such
that @ € 71 + 25. Thus f(z) € fla1 + 22) = f(z1) + f(z2) € Y + F(X). Hence
z € f7Y + f(X)]. This shows that f~'(Y)+ X C f7'[Y + f(X)].

Therefore i) follows. O

Corollary 2.2.11. Let M and N be R-hypermodules and f : M — N a ho-
momorphism. If X is a subhypermodule of M and Y s a subhypermodule of N

then

i) f[f‘l(Y)] = Y Nim(f) (this property, in fact, holds even if f is just a

function)

i) f_l[f(X)} = X + ker(f).

Proof. This follows immediately from Proposition 2.2.10 and the fact that im(f) =

f(M) and ker(f) = f'({0}). O

We give a definition of an isomorphism of R-hypermodule. Then the main

theorems for isomorphism are proved.

Definition 2.2.12. A hypermodule homomorphism is called an isomorphism if
it is also a bijection. If there exists an isomorphism between R-hypermodules M;

and My, we say that M; and M,y are isomorphic and denote M; = M.

Theorem 2.2.13. Factorization (Homomorphism) Theorem
Let M and N be R-hypermodules and f : M — N a homomorphism. If U is a
subhypermodule of M with U C ker(f), then there exists a unique homomorphism

f:M/U — N with f = fopy, the composite function, i.e., the following diagram



25

commautes.

M ! N
/1
pU /,/
s
MU

Moreover, im(f) = im(f) and ker(f) = ker(f)/U.

Proof. Note that M /U and ker(f)/U are R-hypermodules because U is a sub-

hypermodule of M and ker(f). Define f: M/U — N by

f(m+U)= f(m) for all m € M.

First, we show that f is well-defined. Let =,y € M be such that 2+U = y+U.
Then there is v € U with x € y + u so that f(x) € f(y + w). Since f is a
homomorphism and U C ker(f), it follows that f(z) € f(y+u) = f(y) + f(u) =
fy) +0={f(y)}. Hence f(x) = f(y). Consequently, f is well-defined.

It is clear that f = f opy and f is a homomorphism.

Next, we show the uniqueness of f. Let hy,hy : M/U — N be homomor-
phisms such that f = hy opy and f = hyopy. For each z + U € M/U where

re M,

hi(z+U) = hi(pu(x)) = (hopy)(x) = f(2) = (heopy)(x) = ha(pu(x)) = ha(z+U).

This shows that hy = hy. Hence f is the unique homomorphism such that
f=7Fopu.

Moreover, we see that

im(f) = {f(a + U)le + U € M/U} = {f(2)|e € M} = im(f)
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and
ker(f) ={z+U € M/U|f(x + U) = 0}
={z+U e M/U|f(x) =0}
={x+U € M/U|x € ker(f)}
= ker(f)/U.
Hence im(f) = im(f) and ker(f) = ker(f)/U as desired. O

Theorem 2.2.14. The First Isomorphism Theorem
Let M and N be R-hypermodules and f : M — N a surjective homomor-

phism. Then M/ker(f) = N.

Proof. Apply the Factorization Theorem by setting U = ker(f), then there exists

a homomorphism f : M/ ker(f) — N such that im(f) = im(f) = N and ker(f) =

ker(f)/ker(f) = {0} . Thus f is a bijection. Hence M/ker(f) = N. O

Theorem 2.2.15. The Second Isomorphism Theorem
Let M be an R-hypermodule, N and U subhypemodules of M such that N C

UC M. Then (M/N)/(U/N) ~ M/U.

Proof. Clearly, M/N and U/N are R-hypermodules. Define f : M/N — M/U
by
fm+N)=m+U forall me M.

It is easy to show that f is well-defined and surjective. To show that f is a
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homomorphism, let my + N,mg + N € M/N. Then

f((mi+ N)o(ma+ N)) ={f(v+N)lv€my+ms}
={v+Ulv € my +msy}
=(m1+ U)o (me+U)

:f(m1+N)<>f(m2+N)

Hence f is a homomorphism.

Next, we show that ker(f) = U/N. It is clear that U/N C ker(f). Thus,
let m + N € ker(f). Then m+U = f(m+ N) = U, ie, m € U so that
m+ N € U/N. Hence ker(f) =U/N.

Thus (M/N) / (U/N) = M/U by the First Isomorphism Theorem. O

Theorem 2.2.16. The Third Isomorphism Theorem
Let M be an R-hypermodule, N and U subhypemodules of M . Then

(N+U)/U=N/NNU.

Proof. Note that (N+U)/U and N/NNU are R-hypermodules because U, NNU
are subhypermodules of N + U and N, respectively. Define f: N — (N +U)/U

by
f(n)=n+U forall n € N.

We show that f is a surjective homomorphism whose kernel is N N U.

It is clear that n+U € (N +U)/U for all n € N since 0 € U. Moreover, f is
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surjective obviously. To show that f is a homomorphism, let ny,n5 € N. Then

f(ni+ng) ={v+Ulv € ny +no}
=1+ U)o (ny +0U)

= f(n1) o f(na).

Hence f is a homomorphism. Next, we show that ker(f) = N NU. It is clear
that NNU C ker(f). Now, let = € ker(f). Then x € N and 2 +U = f(x) = U,
i.e., z € U so that x € NNU. Hence ker(f) =NnNU.

Thus (N +U)/U =2 N/N NU by the First Isomorphism Theorem. O

Theorem 2.2.17. The Butterfly of Zazzenhaus
Let M be an R-hypermodule, N, U, N' and U’ subhypemodules of M such

that N CU and N' CU’'. Then

N+UNU) _ unu’ N +({UNU)

N+{UNN)  (NNU)+(N'NU) N+ (NNU)

Proof. Let S=UNU" and T'= N + (UNN’). Then we claim that
i) S+T=N+{UnNU’') and
i) SNT=(NnU)+ (N'nU).

First, S+T = (UNU")+(N+(UNN')) = N+(UNU’) since UNN' CUNU".
Next, to show that SNT C (NNU')+(N'NU),let s € SNT. Then s € UNU’
and s € N+ (UNN’). There exists n € N and n’ € UNN’ such that s € n+n'.
Since UNN CUNU', wehave n € s —n’ C U'. Thus n € NNU’'. Hence
sen+n C(NNU')+ (N'NU). Conversely, since NNU' N NU CSNT, we

obtain that (NNU’)+ (N'NU) C SNT. Hence the second claim is proved.
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By the Third Isomorphism Theorem, (S+7T)/T = S/SNT, i.e.,

N+{UNU) unu’
N+ UNN)  (NNU)+(N'NU)

10

Similarly,
N +UnNnU) _ unu’

N +(NNU)  (NNnU)+(N'NU)

Thus
N+UNU) _ unu’ L N+UNnU)

N+UNN)  (NNU)+(N'NnU)  N+(NnU")

2.3 Direct Sums

This final section devotes to studying elementary properties of direct sums of

R-hypermodules.

Definition 2.3.1. Let N and P be subhypermodules of an R-hypermodule M.
If M =N+ P and NN P = {0}, then M is called the (internal) direct sum of

N and P. This is written as M = N@ P.

Definition 2.3.2. A subhypermodule N of M is called a direct summand of M

if there is a subhypermodule P of M such that M = N & P.

Proposition 2.3.3. Let M = NE@ P. Then every m € M there exist unique

n€ N and p € P such that m en+p withne€ N and p€ P.

Proof. Let m € M. Since M = N@ P, there exist n € N and p € P with
m € n + p. Now, we show the uniqueness of n and p. Let ny,n, € N and
p1,p2 € P be such that m € ny +p; and m € ny + py. Then ny € m — p; so that

ny € Ny + ps — p1 = na + (p2 — p1). Thus there exists x € py — p; € P such that
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ny € ng +x. Hence x € ny —ny C N. This shows that x € NN P = {0}, i.e.,
x = 0. Consequently, n; € ng +0 and 0 € py — p;. Thus n; = ny and p; = ps.

This finishes the proof. 0

Example 2.3.4. Let R-hypermodule M be the direct sum of subhypermodules
P and Q. Define the maps 7: P@Q — P and . : P — PP Q by

m(x) =p forall = € p+q, and

t(p)=p forall peP.

Then 7 is a surjective homomorphism and ¢ is an injective homomorphism.

It is easy to show that ¢ is an injective homomorphism and 7 is surjective.
To show that 7 is a homomorphism, let x1,20 € P@ Q. Then =1 € p1 + 1
and xo € py + @9 for some py,po € P and ¢1,¢2 € Q. Thus p; € 1 — ¢ and

P2 € 9 — qo. We obtain that

142 C(pr+ @)+ (P2 +q2) = (01 +p2) + (1 + ¢2)

p1+p2C (21— q) + (22 — @) = (21 + 22) — (@1 + @2)-

First, let a € 7(x1 + x2). There exists © € x; + x5 such that a = 7(z). Thus
x € p+q for some p € py+ps and ¢ € ¢ + go. Hence a =n(x) =p € p1 + p2 =
m(z1) + m(x2).

Conversely, let a € 7(xq)+m(x2), i.e., a € py+py. Then there exist x € x1+
and q € q; + ¢z such that a € x —¢. Then z € a+q¢ C PP Q. Hence a = w(x).

Therefore 7 is a surjective homomorphism.

Definition 2.3.5. Let P and ) be subhypermodules of an R-hypermodule.

The surjective homomorphism 7 : P @ ) — P and the injective homomorphism
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L: P — P@Q defined in the previous example are called the projection map

and the inclusion map, respectively.

Proposition 2.3.6. Let M and N be R-hypermodules f: M — N and g: N — M
be homomorphisms such that the composition between f and g is the identity
map on N, i.e., fog = idy where idy is the identity map on N. Then
M = ker(f) @im(g).

Proof. First, we show that ker(f) Nim(g) = {0}. Let = € ker(f) Nim(g). Then

f(z) =0 and = = g(n) for some n € N. Then

0= f(x) = flg(n)) = (f o g)(n) = idn(n) = n.

Hence n =0 and = = g(n) = g(0) = 0. As a result, ker(f) Nim(g) = {0}.
Next, we show that M = ker(f) + im(g). It is enough to show only that

M C ker(f) +im(g). Let m € M. Then 0 € f(m — (go f)(m)) because

f(m—{(gof)(m)) = f(m)—f(gof)(m)) = f(m)—(fog)(f(m)) = f(m)— f(m).

Then there exists v € m — (g o f)(m) such that f(v) =0, i.e., v € ker(f). Thus
m € v+ (go f)(m). In fact, v € ker(f) and (g o f)(m) € im(g), so we can

conclude that m € ker(f) +im(g). Therefore M = ker(f) + im(g). O



CHAPTER III

EXAMPLES OF HYPERMODULES

The goal of this chapter is to investigate some examples of hypermodules
over Krasner hyperrings by considering among the collection of all multiplicative
interval semigroups of R joining the real number 0 which are motivated by [3].

There are two sections in this chapter. In Section 3.1, we construct certain
canonical hypergroups and Krasner hyperrings. In Section 3.2, we apply the
results from the previous section in order to explore certain examples of hyper-
modules over Krasner hyperrings which is our main purpose

We would like to recall the characterization of interval semigroups of R under
usual multiplication.

Proposition A [3] Let I be a real interval. Then I is a subsemigroup of R
under usual multiplication if and only if I is one of the following forms :

i) R, ii) {0}, i) {1}, i) (0,00), v) [0,00),

vi) (a,00) where a>1, vii) |a,00) where a>1,

vigg) (0,b) where 0<b<1, i) (0,b] where 0<b<1,

z) [0,0) where 0<b<1, zi) [0,0] where 0 <b<1,

zi1) (a,b) where —1<a<0<a®><b<1,

ziii) (a,b]  where —1<a<0<a><b<1,

ziv) [a,b) where —1<a<0<da*<b<1,

) la,b] where —1<a<0<a*><b<1.

We are interested in interval semigroups I° of R under usual multiplication

joining the real number 0 because 0 will be needed as the scalar identity of canon-
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ical hypergroups. In another word, for a multiplicative interval subsemigroup I

of R, let

o1 if0 €I,
Y =

ru{o} ifoel.

Proposition B Let I be a real interval. Then I is a subsemigroup of R con-
taining the real number 0 under usual multiplication if and only if I is one of the
following forms :

i) R, it) {0}, i) {0,1}, iv) [0,00),

v) (a,00)U{0} where a>1, vi) [a,00)U{0} where a>1,

vii) [0,b) where 0 <b< 1, vigi) [0,b] where 0 <b <1,

iz) (a,b) where —1<a<0<a®><b<1,

z) (a,b] where —1<a<0<a®><b<1,

zi) [a,b) where —1<a<0<a®<b<1,

zii) la,b] where —1<a<0<a?<b<1.

We denote the collection of all multiplicative interval subsemigroups of R
joining the real number 0 induced from all multiplicative interval subsemigroups
of R by Z°.

Next, we would like to construct canonical hypergroups and then Krasner

hyperrings from Z°.
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3.1 Hyperoperations @, Pmin and Paps

3.1.1 Hyperoperation &,y

Define a multi-valued function @, : R x R — P(R) by

{max{x, y}} if x #£ v,
T Dmax Yy =
0, x] if z =y.

Note that if z < 0, then x B v = J.
We investigate a nonempty set H € Z° such that @.. is a hyperoperation

on H.
Lemma 3.1.1. Let H € I° be one of the following forms :
i) R,
i) (a,b) where =1 <a<0<a*><b<1,
i) (a,b] where —1<a<0<a><b<1,
w) [a,b] where —1 <a<0<a?*<b<1,
v) [a,b) where —1 <a<0<a®><b<1.

Then @max s not a hyperoperation on H .

Proof. This is obvious because there is a negative x € H such that x @ . v = 9.
O

Lemma 3.1.2. Let H € I° be one of the following forms :

1) 10,1},

i) (a,00) U {0} where a >1,
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iii) [a,00) U {0} where a > 1.
Then @max s not a hyperoperation on H .

Proof. It H = {0,1}, then 1 @ 1 = [0,1] € {0,1}, so that @pax is not a
hyperoperation on H .
For other cases, we consider (a 4+ 1) ®max (a +1) = [0,a + 1] € (a,00) U {0}

and not a subset of [a,00)U{0}. Hence, @pnax is not a hyperoperation on H. [

Theorem 3.1.3. Let H € I°. Then ®pn.x is a hyperoperation on H if and only

if H is one of the following forms :
i) {0},

i) 10, 00),

iii) [0,0) where 0 <b <1,

iv) [0,b] where 0 <b<1.

Proof. First, assume that H is not one of the above forms. By Lemma 3.1.1 and
Lemma 3.1.2, we obtain that @.,.« is not a hyperoperation on H. Next, if H is

one of the above forms, then it is clear that @, is a hyperoperation on H. [
Next, we characterize when (M, @pnay) is a canonical hypergroup where M € Z°.

Theorem 3.1.4. Let M € I°. Then (M, ®max) is a canonical hypergroup if and

only if M is one of the following forms :
i) {0},
ii) [0,00),

iii) [0,a) where 0 <a <1,
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iv) [0,a] where 0 <a <1.

Proof. First, assume that M is not one of the above forms. By Theorem 3.1.3,
@max 18 not a hyperoperation on M. Hence (M, ®p.x) is not a canonical hyper-
group.

Conversely, by Theorem 3.1.3, Remark 1.2.13 and Example 1.2.16, we have
({0}, @max) , ([0, a), @max) and ([O, al, @max) are canonical hypergroups where
0 < a < 1. For the final case, it is straightforward to show that ([0, 00), ®max) 18
a commutative hypergroup and 0 is its scalar identity. Next, we show that every
nonnegative real numbers has a unique inverse in [0,00). Let = € [0,00). Then z
is an inverse of x because 0 € T @ x. And it is clear that this inverse is unique.
Finally, we show that x € y @®pax 2 implies z € y Gpax « for z,y,z € [0,00). Let
x,y,2z € [0,00) be such that = € y Ppax 2.

Case 1. y =z. Then z € [0,y]. If x =y, then z € [0,2] = 2 Prax 2 = Y Prnax T -
If # y, then x <y so that y ®nax x = {y} = {2}, 1€, 2 €Yy Bmax T.

Case 2. y < z. Then = € y @®pax 2 = {2} so that x = z. Since z € 2z Byax Yy, We
have 2 € T Bmax Y = Y Prmax T-

Case 3. z <y. Then = € y ®pax 2 = {y} so that z = y. Hence y Gpax = [0,9].
Since z < y, we have z € y Pax .

Therefore ([O, 00), EBmaX) is a canonical hypergroup. O

From now on, let - be the usual multiplication on R.

We investigate when (R, ®pnay, -) is a Krasner hyperring where R € Z°.

Theorem 3.1.5. Let R € I°. Then (R, ®max, ") is a Krasner hyperring if and

only if R is one of the following forms :
1) {0},

i) [0,00),
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iii) [0,a) where 0 <a <1,
iv) [0,a] where 0 <a <1.

Proof. If (R, ®max, ) is a Krasner hyperring, then the result follows from Theorem
3.1.3.

Conversely, it follows from Theorem 3.1.3, Remark 1.2.13 and Example 1.2.16,
that ({O}, Brmax, -), ([0, a), Pmax; ) and ([O, a), Bmax, ) are Krasner hyperrings
where 0 < a < 1. The other case, ([0,00),Pmax) is a canonical hypergroup by
Theorem 3.1.4 and ([0, 00),-) is a semigroup with zero 0. Finally, we show that
T (Y Bmax 2) =T Y Omax @ - 2 for all z,y,z € [0,00). Let x,y,z € [0,00).

Case 1. y = z. Then 2y = zz. S0 = (Y ®max 2) = x - [0,y] = [0,zy] and
T Y Pmax T+ 2 = Y Brax £z = [0, 2y]. Hence x - (Y Brax 2) = T - Y Pmax T - 2.
Case 2. y # z. Without loss of generality, assume that y > z. If = 0, then
2y =22 =080 T (Y Bmax 2) = - {y} = {2y} = {0} and -y Bpax v - 2 =
Y Omax vz = {0}. If  # 0, then 2y > 22 s0 =+ (Y Pmax 2) = - {y} = {zy} and
T Y Brmax T+ 2 = TY Omax ©2 = {zy}. Hence - (Y Brmax 2) =T Y Prmax T - 2.

From both cases, = - (Y @max 2) = T+ Y Omax « - 2 for all x,y, z € [0,00). Since
([0, 00), ) is commutative, (y Bmax 2) * T =Y+ T Bax 2 - ¢ for all z,y,z € [0,00).
Therefore, ([0, 00), Bmaxs ) is a Krasner hyperring such that 0 is the zero and the

additive inverse of x € M is z itself. O]
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3.1.2 Hyperoperation &,

Define a multi-valued function @, : R x R — P(R) by

T Omin 0 = 0 B © = {z} for all = € R,
T Bmin ¢ = [x,00) U{0} for all = € R~ {0} and
T Bmin y = {min{z, y}} for all z,y € R~ {0} with = # y.

We investigate when @, is a hyperoperation on H where H € Z°.

Lemma 3.1.6. Let H be one of the following forms :

i) {0,1},

i) (0,a] where 0 <a <1,

iii) [0,a] where 0 <a <1,

i) (a,b) where —1<a<0<a®*<b<1,

v) (a,b] where —1<a<0<a?><b<1,

vi) [a,b] where —1 <a<0<a?><b<1,

vii) [a,b) where —1 <a<0<a*<b<1.

Then Smin 15 not a hyperoperation on H .

Proof. Let x € H \ {0}. Consider & @pyin x = [z,00) U{0} € H. Hence @y is

not a hyperoperation on H . O

Theorem 3.1.7. Let H € I°. Then @i is a hyperoperation on H if and only

if H is one of the following forms :

i) R,
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i) {0},
it) 10, 00),
i) (a,00)U{0} where a > 1,
v) [a,00) U {0} where a > 1.

Proof. First, assume that H is not one of the above forms. We obtain that @,
is not a hyperoperation on H by Lemma 3.1.6. Next, it is obvious that &, is a

hyperoperation on H if H is one of the above forms. O
Now, we examine when (M, ®y,;,) is a canonical hypergroup where M € Z°.

Theorem 3.1.8. Let M € Z°. Then (M, ®min) is a canonical hypergroup if and

only if M is one of the following forms :
i) R,
) {0},
i) [0,00),
iv) (a,00)U{0} where a > 1,
v) [a,00)U{0} where a > 1.

Proof. First, if M is not one of the above forms, then (M, ®y,i,) is not a canonical

hypergroup which is a result of Theorem 3.1.7.

Conversely, Theorem 3.1.7, Remark 1.2.13 and Example 1.2.17 show that
({0}, ®min ), ((a,00) U {0}, Do) and ([a, 00) U {0}, Bmin) are canonical hyper-
groups where a > 1. For the other cases, since [0,00) C R, it suffices to show

only that (R, @) is a canonical hypergroup.
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It is easy to see that (R, @) is a commutative hypergroup, has a scalar
identity 0 and the inverse of x € R is x itself. Next, we show that for x,y,z € M,
T E Y Pmin 2 iImplies z € y Bpin . Let z,y, 2z € M. Assume that x € y B, 2.
Case 1. y =0 and z = 0. Then y @pin 2 = 0 Bpmin 0 = {0}. So 2 = 0. We have
Y Pmin T = 0 Brin 0 = {0}. Hence z € y B .
Case2. y=zand y,2 # 0. Then y®minz = y®Ominy = [y, 00)U{0}. Thus z >y
orz=0.If x =y, then y Bpin & =Y Omin ¥ = [y,00) U{0} 80 2z € y Dpiny . If
x>y or x=0,then y @,z = {y} sothat z € y Byin x.
Case 3. y# 0 and z=0. Then y Gmin 2 = ¥ Gmin 0 = {y} and then x =y. We
have Yy @min = Y Omin ¥ = [y, 00) U{0}. Hence z € y Oyin -
Case 4. y =0 and z # 0. Then y Buin 2 = 0 Bmin 2 = {2} and then x = z. We
have ¥ ®min © = 0 Bmin 2 = {2}. Hence z € y ®pin .
Case 5. y < z. and y,z # 0. Then y ®pnin 2 = {y}, so = y. Thus y Oy =
Y Pmin Y = [y,00) U{0}. Hence z € y Bpin -
Case 6. y > z. and y,z # 0. Then y Gmin 2 = {2}, so v = z. Thus y Sy ¢ =
Y Omin 2 = {z}. Hence z € y Gpin .

By all cases, we obtain that for z,y,2z € M, x € y @y, 2z implies 2 € y B .

Hence (R, @) is a canonical hypergroup. O]
We consider when (R, @iy, ) is a Krasner hyperring where R € Z°.
Lemma 3.1.9. (R, @, ) is not a Krasner hyperring.

Proof. Consider (—2) - (2 @min 2) = (—2) - ([2,00) U{0}) = (—o0, —4] U {0} and
((=2) - 2) @umin ((=2) - 2) = (—4) Buin (—4) = [~4,00). Then (—2) - (2 Buin 2) #

((=2) - 2) Bumin ((—2) - 2). Hence (R, @ppin, -) is not a Krasner hyperring. O

Theorem 3.1.10. Let R € I°. Then (R, ®wmin, ) is a Krasner hyperring if and

only if R is one of the following forms :
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1) {0,

i) [0,00),
iii) (a,00) U {0} where a > 1,
iv) [a,00) U {0} where a > 1.

Proof. Assume that R is not one of the above forms. By Theorem 3.1.8 and
Lemma 3.1.9, (R, @min, -) is not a Krasner hyperring.

Conversely, Theorem 3.1.8, Remark 1.2.13 and Example 1.2.17 show that
({0}, ®rmin, -), ((a,00) U {0}, Bin, -) and ([a, 00) U {0}, Bpuin, -) are Krasner hy-
perrings where a > 1. For the other case, it is obvious that ([0,00),-) is a
semigroup with zero 0 where 0 is a scalar identity. We conclude from Theorem
3.1.8 that ([0, 00), @min) is a canonical hypergroup. It remains to show only that
T (Y ®min 2) =2+ Y Pmin © - 2 for all z,y, 2z € [0,00). This is clear when z = 0.
Now we let x,y,z € [0,00) and x # 0.

Case 1. y=0and z=0. Then z-y =0 and -z = 0. Thus - (y ®min 2) =
T (0®min0) =2 - {0} = {0} and (z - y) Gmin (- 2) = 0 Bmin 0 = {0}. Hence
- (Y Omin 2) = (2 Y) Smin (€ - 2).

Case 2. y = z and y,2 # 0. Then x-y = x -2z and z-y,x -2 # 0. Thus
T (Y Gon2) = T (Y Sminy) = @ - ([:00) U{0}) = [x - y,00) U{0} and
(@ y) Bmin (- 2) = (2 +y) Bmin (- y) =[x+ y,00) U{0}. Hence z - (y Buin 2) =
(T Y) min (T - 2).

Case 3. y # 0 and 2z = 0. Then -y # 0 and z -z = 0. It follows that
T (Y Omin 2) = - (Y B 0) = @ - {y} = {2y} and (2 - y) S (2 - 2) =
(+y) Bmin 0 ={z-y}. Hence x - (y Bmin 2) = (- y) Brin (7 - 2).

Case 4. y =0 and z # 0. The proof is similar to the proof of Case 3.

Case 5. y < z and y,2 # 0. Then x-y < x-z and z-y,x -2z # 0. This leads
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to & (Y Omin 2) = - {y} = {z -y} and (x - y) Omn (z - 2) = {z-y}. Hence
T (Y Bumin 2) = (2 Y) Broin (T - 2).
Case 6. y > z and y, z # 0. The proof is similar to the proof of Case 5.

We obtain from any cases that = - (y ®min 2) = (- y) ©min (¢ - 2). Note that
(Y Brmin 2) - & = (Y - T) Bin (2 - ) because of the commutativity of ([0,00),").

Hence ([0, 00), @min, -) is a Krasner hyperring. O]

3.1.3 Hyperoperation @,ps

Define a multi-valued function @.ps : R X R — P(R) by

T Paps T = {2} for all x € R,
T PBabs Y = Y Paps © = {2} for all z,y € R with |y| < |z| and
T Baps (—x) = [—|x], 2] for all z € R.

Proposition 3.1.11. The multi-valued function @apns s a hyperoperation on H

for all H € 1°.
Proof. This is obvious. O
We verify when (M, @) is a canonical hypergroup where M € Z°.

Proposition 3.1.12. Let M € Z° \ {{0}} If (M,@aps) is a canonical hyper-

group, then M must contain a negative real number.

Proof. Assume that (M, @,ps) is a canonical hypergroup with M # {0}. There
exists m € M such that m # 0. If m < 0, then we are done. Let m > 0.
Since —m is the inverse of m and (M, @) is a canonical hypergroup, we have

—m € M. Therefore the proof is complete. O

Applying Proposition 3.1.12, we obtain the following corollary.
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Corollary 3.1.13. Let M be one of the following forms :
1) {0,1},

ii) 10, 00),

iii) (a,00) U {0} where a > 1,

i) [a,00) U{0} where a > 1,

v) [0,b) where 0 <b<1,

vi) [0,b] where 0 <b<1.

Then (M, @ans) is not a canonical hypergroup.

Lemma 3.1.14. Let M be one of the following forms :
i) (a,b] where -1 <a<0<a*<b<1,

i) [a,b) where =1 <a<0<a?<b<1.

Then (M, ®ans) is not a canonical hypergroup.

Proof. Let a,b € M be such that —1 < a < 0 < a® < b < 1. First, we show that
((a, b], EBabs) is not a canonical hypergroup.
Case 1. b > —a. Then an inverse of b does not exist. Hence ((a,b], @abs) is not

a canonical hypergroup.
—b+a

Case 2. b < —a. Then an inverse of does not exist. Hence ((a, b], @abs)
is not a canonical hypergroup.
We can prove similarly for the case M = [a,b) where —1 <a<0<a?><b<1.

O

Proposition 3.1.15. Let M be one of the following forms :
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i) (a,b) where —1<a<0<a?<b<1,
i) [a,b] where —1<a<0<a*><b<1.
Then (M, @®ans) 18 a canonical hypergroup if and only if a = —b.

Proof. First, we consider M = (a,b) where —1 <a <0 < a®> <b < 1. Suppose

—b
that @ # —b. If —b > a, then an inverse of %() does not exist. And if

b4t (—
—b < a, then an inverse of # does not exist. Then (M, ®,ps) is not a
canonical hypergroup.

Conversely, the result holds by Example 1.2.18. O]

Theorem 3.1.16. Let M € I°. Then (M, @) s a canonical hypergroup if and

only if M is one of the following forms :
i) R,

) {0},

iii) (—a,a) where 0 <a <1,

iv) [—a,a] where 0 <a <1.

Proof. Assume that M is not one of the above forms. Corollary 3.1.13, Lemma
3.1.14 and Proposition 3.1.15 show that (M, @,ys) is not a canonical hypergroup.

Conversely, by Proposition 3.1.11, Remark 1.2.13 and Example 1.2.18, we
obtain that ({0}, @abs) , ((—a, a), @abs) and ([—a, al, @abs) are canonical hyper-
groups where 0 < a < 1. For the remaining case, it is easy to show that (R, @,ps)
is a commutative hypergroup, has a scalar identity 0 and the inverse of x € R is
—x. Next, we show that for x,y,2 € R, © € y @, 2 implies z € —y Daps . Let
z,y,z € R. Assume that x € y @ 2.

Case 1. y = z. Then y @as 2 = ¥ Dans ¥ = {y} so z = y. We have
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—Y Babs T = —Y Pabs Y = [—[yl, [y[]. Hence z € —y Saps .
Case 2. |y| < |z|. Then y@.psz = {2z} so z = z. We have —y@psT = —yPapsz =
{z}. Hence z € —y @ .
Case 3. |z| < |y|. Then y @.s 2 = {y} so z = y. We obtain that —y @.ps v =
—y Babs ¥ = [—|yl, |y|]. Hence z € y ®aps .
Case 4. y = —z. Then y @aps 2 = Yy Bans —y = [—|yl, |y|]. Thus —|y| <z <|y|.
If —|y| <x < |y|, then —y@apsx = {—y} sothat z € —yBapsz. If x =y or —y,
then —y @ans © = [y, [y[] or {—y}, again, z € —y Saps 2.

For any cases, we obtain that for x,y,2 € R, x € y®.psz implies 2 € —yBpine.

Hence (R, @.ps) is a canonical hypergroup. O
We characterize when (R, @, ) is a Krasner hyperring where R € Z°.

Theorem 3.1.17. Let R € I°. Then (R, ®aps, ) 5 a Krasner hyperring if and

only if R is one of the following forms :
i) R,

i) {0},

iii) (—a,a) where 0 <a <1,

i) [—a,a] where 0 <a <1.

Proof. If M is not one of the above forms, then (M,@®,s) is not a Krasner
hyperring which is a result of Theorem 3.1.16.

Conversely, by Proposition 3.1.11, Remark 1.2.13 and Example 1.2.18, we
conclude that ({0}, ®abs, "), ((—a,a),Babs, ) and ([—a, a], Daps, -) are canonical
hypergroups where 0 < a < 1. The remaining case, it is obvious that (R,-) is a
semigroup with zero 0 where 0 is a scalar identity of (R, @aps). Theorem 3.1.16

shows that (R, @.ps) is a canonical hypergroup. Next, we show that x-(y Baps2) =
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Y Daps « - 2 for all x,y,z € R. This is clear when = = 0. Let z,y,z € R and
x#0.
Case 1. y = 2. Then -y = x-2. Thus - (y @aprs 2) = - (Y Dabs y) =
- {y}t ={z -y} and (z-y) Gaps (- 2) = (¥ - y) Bavs (v -y) = {z-y}. Hence
- (Y Baps 2) = (7 - Y) Bavs (- 2).
Case 2. |y| < |z|. Then |z-y| < |z-z|. Thus - (y Baps 2) = - {2} = {z- 2} and
(- y) Daps (- 2) ={x-2z}. Hence =+ (y Baps 2) = (T - y) Daps (7 - 2).
Case 3. |z| < |y|. The proof is similar to the proof of Case 2.
Case 4. y = —z. Then z-y = —(z-2). So - (Y Baps 2) = T - (Y Baps —Yy) =
z- (=l lyl]) = [=le -yl [z - yl] and (2 y) Baps (2 - 2) = (2 y) Oans —(z - y) =
(=l -yl |z yl]. Hence 2+ (y Saps 2) = (2 - y) Babs (7 - 2).

We obtain from all cases that = - (y @aps 2) = (T - y) Babs (@ - 2). Since (R,-)
is commutative, we have (y @aps 2) -2 = (Y- ) Baps (2 - ). Hence (R, Baps, -) is a

Krasner hyperring. O]

3.2 Hypermodules over Krasner Hyperrings

We apply the results from the previous section to costruct hypermodules over
Krasner hyperrings. We focus R-hypermodules M in two aspects. One hand,
hyperoperations on M and R are the same. On the other hand, the difference of
hyperoperations on M and R are considered.

Throughout this section, for each R, M € ZI°, let o, : R x M — R be the

functions defined by

rom=r7r-m
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and

0 if r =0,
rokm = .

—-m ifr#0.

,

where - is the usual multiplication on R.
We provide a proposition for investigating some hypermodules over Krasner

hyperrings.

Proposition 3.2.1. Let (M,®) be a canonical hypergroup and R a Krasner
hyperring. If M = {0} or R = {0} and there exists a function e : R x M — M

such that 0 em =0 for all m € M, then (M,®,e) is an R-hypermodule.
Proof. The proof is trivial. O
Applying Proposition 3.2.1, we obtain the immediate corollaries.

Corollary 3.2.2. Let R be a Krasner hyperring such that R € Z° and & is a

hyperoperation on {0}. Then ({0}, ®,0) and ({0}, ®,*) are R-hypermodules.

Corollary 3.2.3. Let (M,®) be a canonical hypergroup such that M € I°. If
R = ({0},+,) is a Krasner hyperring, then (M,®,0) and (M,®,x) are R-

hypermodules.

3.2.1 Hypermodules over Krasner Hyperrings Induced by

the Same Hyperoperations

We study the existence of R-hypermodules M where hyperoperations on M

and R are the same among @nax, Bmin and Baps-
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Proposition 3.2.4. Let M, R € I° be such that M C R and (R,®,-) a Kras-
ner hyperring. Then (M,®,0) is an R-hypermodule if and only if (M,®) is a

canonical hypergroup and Ro M C M.

Proof. Let (M,@®,0) be an R-hypermodule. It is clear that (M, ®) is a canonical
hypergroup and Ro M C M.

Conversely, assume that (M, ®) is a canonical hypergroup and Ro M C M.
Note that o: Rx M — M. Let a,b € R and x,y € M. Since M C R and R is

a Krasner hyperring, it follows that

1. ac(z@y)=a-(z®y)=a-z®a-y=aoxdaoy
2. (a@b)ox=(a®b)-zr=a-xBb-x=aocxdbox
3. (a-b)ox=a-b-z=a-(b-x)=ao(boux)

4, Qox=0-2=0.

This shows that (M, ®,0) is an R-hypermodule. ]

Proposition 3.2.5. Let M, R € I° be such that R C M and (R,®,-) a Kras-
ner hyperring. If (M,®,-) is a Krasner hyperring, then (M,®,0) is an R-

hypermodule.
Proof. The proof is similar to the proof of Proposition 3.2.4. O

Now, we study on a hyperoperation @,.x. We obtain the following two results

by applying Corollary 3.2.3 and Theorem 3.1.4.

Proposition 3.2.6. Let R = ({O},@max,-) and M € I°. Then (M, @®mpax,0) 18

an R-hypermodule if and only if M is one of the following forms :

i) {0},



49

i) [0,00),
iii) [0,a) where 0 <a <1,
iv) [0,a] where 0 <a <1.

Proposition 3.2.7. Let R = ({O},@max,~) and M € I°. Then (M, ®max, *) is

an R-hypermodule if and only if M 1is one of the following forms :

i) {0},

ii) 10,00),
iii) [0,a) where 0 <a <1,

iv) [0,a] where 0 <a <1.
Proposition 3.2.8. Let R = ([0,00), ®max, ). Then (M, ®pax,0) is an R-
hypermodule if and only if M 1is one of the following forms :

i) {0},

i) [0,00).
Proof. First, assume that (M, ®max,0) is an R-hypermodule. Then (M, ®mnax)
is a canonical hypergroup. By Theorem 3.1.4, M must be one of {0}, [0,00),
[0,a) and [0,a] where 0 < a < 1. If M is [0,a) or [0,a] where 0 < a < 1, then
RoM ¢ M. Hence M is either {0} or [0, 00).

Conversely, suppose that M is one of {0} and [0,00). By Theorem 3.1.4,

(M, ®max) is a canonical hypergroup. Since M C R and RoM C M, (M, ®ax, ©)

is an R-hypermodule from Proposition 3.2.4. O

Corollary 3.2.9. Let R = ([O,a),@max, ) or ([O,a],@max, ) where 0 < a < 1.
Then (M, ®max, ©) is an R-hypermodule if and only if M is one of the following

forms :
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1) {0},

ii) 10, 00),
iii) [0,b) where 0 <b <1,
iv) [0,b] where 0 <b<1.

Proof. First, we consider R = ([O,a),GEmaX,-) where 0 < a < 1. Assume that

(M, Bmax, ©) is an R-hypermodule. Then (M, ®yax) is a canonical hypergroup.

By Theorem 3.1.4, M is one of {0}, [0,00), [0,b) and [0,b] where 0 < b <1.
Conversely, suppose that M is one of {0}, [0,00), [0,b) and [0,b] where

0<b<1. Then (M, ®max, ) is a Krasner hyperring by Theorem 3.1.5.

Case 1. M = {0}. Then (M, @®max) is a canonical hypergroup. Since M C R

and Ro M C M, we conclude that (M, ®pax,0) is an R-hypermodule from

Proposition 3.2.4.

Case 2. M =[0,00) . Since R C M, we have (M, ®pax,©) is an R-hypermodule

from Proposition 3.2.5.

Case 3. M =10,b) where 0 <b<1.Ifb<a,then M CR and RoM C M so

that (M, ®pax, ©) is an R-hypermodule by Proposition 3.2.4. Otherwise, we have

R C M and by Proposition 3.2.5, (M, @nax, ©) is an R-hypermodule.

Case 4. M =0,b]. The proof is similar to the proof of Case 3.

We can proof similarly for the case R = ([0, a], Pmax, *) - O

Proposition 3.2.10. Let R, M € I° and (R, ®max, ) a Krasner hyperring such

that R # {0}. Then (M, ®mnax, *) is an R-hypermodule if and only if M = {0}.

Proof. First, assume that (M, @pax, *) is an R-hypermodule. Then (M, Gpax) is
a canonical hypergroup. Since (R, ®max, ) is a Krasner hyperring and (M, ®ax)

is a canonical hypergroup, M is one of {0}, [0,00), [0,b) and [0,b] where 0 <
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b <1 and R is one of [0,00), [0,a) and [0,a] where 0 < a < 1. Now we claim
that there exist a,b € R and x € M such that (@ ®pax b) * T # a % & Brax b *
when R is one of [0,00), [0,a) and [0,a] and M is one of [0,00) or [0,b) or [0,b].

It suffices to show only the case that R = [0,a) and M = [0,b). We see that

a a b a. b b
(5®max§)*§_[0a§]*§_[E’OO)U{O}
while
a b a b b b
§*§@max§*§—a@max [O,E]
Th (a@ a)*b7éa*b€9 a*b Hence M is not an R-hypermodule
U8y Bmax 9) %5 7 5 %5 Pmax 5 5 P '

Therefore M = {0}.
Conversely, since @pmay is a hyperoperation on {0}, it follows that ({O}, Dmax; *)

is an R-hypermodule by Corollary 3.2.2. O

Next, we explore the hyperoperation @.,. Applying Corollary 3.2.3 and

Theorem 3.1.8, we obtain the next two results.

Proposition 3.2.11. Let R = ({0}, ®uin, -) . Then (M, ®in, ) is an R-hypermodule

if and only if M is one of the following forms :
i) R,

i) {0},

iii) [0, 00),

iv) (a,00) U{0} where a > 1,

v) [a,00) U{0} where a > 1.
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Proposition 3.2.12. Let R = ({0}, ®uin, -) . Then (M, @i, *) is an R-hypermodule

if and only if M is one of the following forms :
i) R,

i) {0},

iii) [0, 00),

iv) (a,00)U{0} where a > 1,
v) |a,00) U {0} where a > 1.

Proposition 3.2.13. Let R = ([O,oo),@min,-). Then (M, ®min,0) is an R-

hypermodule if and only if M is one of the following forms :
i) {0},
ii) [0,00).

Proof. Suppose that (M, @y, o) is an R-hypermodule. Then (M, ®,,) is a
canonical hypergroup. By Theorem 3.1.8, M is one of R, {0}, [0, 00) and (a, c0)U

{0} or [a,00) U{0} where a > 1. If M =R, we see that

(2 Bmin 2) 0 (=2) = ([2,00) U{0}) 0 (=2) = (—o0, —4] U {0}

while

20 (~2) Bmin 20 (=2) = —4 Bmin —4 = [4,00).

Thus (2Bmin2)0(—2) # 20(—2)Bmin20(—2), hence, M is not an R-hypermodule.

If M = (a,00)U{0} or [a,00)U{0}, then RoM ¢ M. Thus M is {0} or [0,00).
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Next, assume that M is one of {0} and [0,00). By Theorem 3.1.8, (M, ®min)
is a canonical hypergroup. Since M C R and Ro M C M, (M, @B, 0) is an

R-hypermodule by Proposition 3.2.4. O]

Proposition 3.2.14. Let R = ((a, 00) U{0}, ®min, ) or ([a, 00) U{0}, ®min, ) .
Then (M, ®min, ©) s an R-hypermodule if and only if M is one of the following

forms :
i) {0},

i) [0,00),

iii) (b,00) U {0} where b> 1,
iv) [b,00) U {0} where b > 1.

Proof. Assume that R = ((a, 00) U {0}, ®rmin, ) :
First, suppose that (M, ®mnin,0) is an R-hypermodule. Then (M, ®uyin) is
a canonical hypergroup. By Theorem 3.1.8, M is one of R, {0}, [0,00) and

(b,00) U {0} or [b,00) U {0} where a > 1. If M =R, we see that
(a+ 1 @i at+ 1) 0 (~2) = ([a+1,00) U{0}) o (~2) = (~o0, ~2(a + 1)] U {0}

while

(a+1) 0 (~2) Buin (a4 1) 0 (~2) = ~2(a + 1) B ~2(a + 1) = [~2(a + 1), 00),

so (a4+1®pna+1)o(—=2)#a+10(—=2)Bmima+10(—2). Hence M is not an
R-hypermodule.
Conversely, assume that M is one of {0}, [0,00), (b, c0)U{0} andr [b, co)U{0}

where b > 1. Then (M, @i, -) is a Krasner hyperring by Theorem 3.1.10.
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Case 1. M = {0}. Then (M, @pnin) is a canonical hypergroup. Since M C R and
Ro M C M, we obtain that (M, ®uyin,©) is an R-hypermodule from Proposition
3.2.4.

Case 2. M =10,00). Since R C M, we have (M, ®yin,©) is an R-hypermodule
by Proposition 3.2.5.

Case 3. (b,00)U{0}. If b>a, then M C R and RoM C M. Then (M, ®pin, 0)
is an R-hypermodule by Proposition 3.2.4. Otherwise, we have R C M and by
Proposition 3.2.5, (M, @y, ) is an R-hypermodule.

Case 4. [b,00) U {0}. The proof is similar to the proof of Case 3.

The proof of the case R = ([a,00) U {0}, ®pin, ) is similar. O

Proposition 3.2.15. Let R, M € Z° and (R, ®min, ) a Krasner hyperring be such

that R # {0}. Then (M, Bmin, *) s an R-hypermodule if and only if M = {0} .

Proof. First, assume that (M, @i, *) is an R-hypermodule. Then (M, @) is
a canonical hypergroup. Since (R, @i, ) is a Krasner hyperring and (M, @®pin)
is a canonical hypergroup, M is one of R, {0}, [0,00) and (b,00) U {0} or
[b,00) U {0} where b > 1 and R is one of [0,00), (a,00) U {0} and [a,oc0)U {0}
where a > 1. Now we show that there exist a,b € R and x € M such that
(@ ®min ) *  # a % T Bpin b * x when R is one of [0,00), (a,00) U {0} and
[a,00)U{0} and M is one of R, [0,00) and (b,00)U{0}, [b,00)U{0}. It suffices

to show only the case that R = (a,00) U{0} and M = (b,00) U{0}. We see that
b
(2a ®pin 2a) * 2b = (2a,00) U {0} x 20 = [0, —]
a
while

b b b
2a % 2b) Bin (2 % 2b) = — Dpin — = |, 00) U {0}.
(205 25) i (205 26) =~ G~ = [, 00) U {0}
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This shows that (2a @pmin 2a) * 2b # (2a % 2b) Bmin (2a * 2b). Hence M is not an
R-hypermodule. Therefore M = {0}.
Conversely, since @iy is a hyperoperation on {0}, it follows that ({0}, Gumin, *)

is an R-hypermodule by Corollary 3.2.2. O

Finally, the hyperoperation .5 is taken into account. Applying Corollary

3.2.3 and Theorem 3.1.16, the following two results are obtained.

Proposition 3.2.16. Let R = ({0}, ®abs, ). Then (M, ®aps, 0) is an R-hypermodule

if and only if M is one of the following forms :
i) R,

w) {0},

iii) (—a,a) where 0 <a <1,

iv) [—a,a] where 0 <a <1.

Proposition 3.2.17. Let R = ({0}, Dabs, ) . Then (M, ®aps, *) is an R-hypermodule

if and only if M is one of the following forms :
i) R,

i) {0},

ii) (—a,a) where 0 <a <1,

iv) [—a,a] where 0 <a <1.

Proposition 3.2.18. Let R = (R, Dabs, ) . Then (M, ®aps, ©) is an R-hypermodule

if and only if M is one of the following forms :

i) R,
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ii) {0}

Proof. Assume that (M, @,ps,0) is an R-hypermodule. Then (M, @) is a
canonical hypergroup. By Theorem 3.1.16, M is one of R, {0}, (—a,a) and
[—a,a] where 0 <a <1.If M =(—a,a) or [—a,a], then RoM ¢ M. Hence M
is R or {0}.

Conversely, suppose that M is R or {0}. By Theorem 3.1.16, (M, @aps) is
a canonical hypergroup. Since M C R and Ro M C M, (M,®as,0) is an

R-hypermodule by Proposition 3.2.4. O

Proposition 3.2.19. Let R = ((—a, a), Dabs, ) or ([—a, al, Dabs, ) where 0 < a < 1.
Then (M, ®aps, 0) s an R-hypermodule if and only if M is one of the following

forms :

i) R,

u) {0},

iii) (—b,b) where 0 <b <1,
iv) [—b,b] where 0 <b<1.

Proof. Assume that R = ((—a,a), Babs, ) where 0 < a < 1.

First, assume that (M, ®,ps,0) is an R-hypermodule. Then (M, ®,s) is a
canonical hypergroup. By Theorem 3.1.16, M is one of R, {0}, (—b,b) and
[—b,b] where 0 <b < 1.

Conversely, suppose M is one of R or {0} or (—b,b) or [—b, b] where 0 < b < 1.
Case 1. M = {0}. Then (M, Baps,) is a Krasner hyperring by Theorem 3.1.16.
Thus (M, @aps) is a canonical hypergroup. Since M C R and Ro M C M,
Proposition 3.2.4 shows that (M, @aps, 0) is an R-hypermodule.

Case 2. M = R. Since R C M, Proposition 3.2.5 shows that (M, ®aps, ) is an
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R-hypermodule.
Case 3. M = (=b,b). If b<a,then M C R and RoM C M. Then (M, ®,ps,0)
is an R-hypermodule by Proposition 3.2.4. Otherwise, we have R C M and by
Proposition 3.2.5, (M, @aps, 0) is an R-hypermodule.
Case 4. M = [—b,b]. The proof is similar to the proof of Case 3.

The proof of the case R = ([0, a), Dmaxs ) where 0 < a <1 is obtained simi-

larly. [

Proposition 3.2.20. Let R, M € Z° and (R, ®aps, -) a Krasner hyperring be such

that R # {0}. Then (M, @aps, *) is an R-hypermodule if and only if M = {0}.

Proof. Assume that (M, @.ps, %) is an R-hypermodule. Then (M,®.s) is a
canonical hypergroup. Since (R, @aps, ) is a Krasner hyperring and (M, ®,p,s) is
a canonical hypergroup, M is one of R, {0}, (=b,b) and [—b,b] where 0 < b <1
and R is one of R, (—a,a) and [—a,a] where 0 < a < 1. Now we show that
there exist a,b € R and x € M such that (a @aps b) *  # a % T Baps b % v when
R is one of R, (—a,a) and [—a,a] and M is one of R, (—b,b) and [—b,b]. It

suffices to show only the case that R = (—a,a) and M = (—b,b). Note that

a a. b a a, b b b
(5 @abs _5) * 5 — [_57 5} * 5 - (_007 _a] U [5700) U {0}
while
a b a b b b . bb
(5 g) G (g ) =4 B =100 00
Thus (L @ae— 212 2 (Le D)@ (=2 2) . Hence M is not an B-hypermodul
uszabs22 5 *5) Pabs 22.ece s not a -hypermodule.

Therefore M = {0}.

Conversely, since @pay is a hyperoperation on {0}, Corollary 3.2.2 shows that
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({0}, Dabs; *) is an R-hypermodule. ]

3.2.2 Hypermodules over Krasner Hyperrings Induced by

the Different Hyperoperations

We consider how to construct R-hypermodules M where hyperoperations
on M and R are different among @y, Bmin and Daps-

We first study the case that Krasner hyperring R and canonical hypergroup M
are equipped with @, and @n.., respectively. Next, we consider the case that
hyperoperations in the previous case interchange their places.

Let (R, ®min, -) be a Krasner hyperring such that R € Z°. We examine, where
M € I° when (M, ®nax,0) and (M, @may, *) are R-hypermodules. From the
assumption, we see that R is one of {0}, [0,00), (a,00) U {0} and [a,oc0) U {0}
where a > 1 and M is one of {0}, [0,00), [0,b) and [0,b] where 0 < b < 1.

Applying Corollary 3.2.3 and Theorem 3.1.4, we obtain the first two proposi-

tions.

Proposition 3.2.21. Let R = ({0},@min,') and M € I°. Then (M, ®max,0) is

an R-hypermodule if and only if M is one of the following forms :
1) {0},

i) [0,00),

iii) [0,a) where 0 <a <1,

iv) [0,a] where 0 <a <1.

Proposition 3.2.22. Let R = ({0},@min7 ) and M € I°. Then (M, ®pax, *) is

an R-hypermodule if and only if M is one of the following forms :

1) {0},
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i) [0,00),
iii) [0,a) where 0 <a <1,

iv) [0,a] where 0 <a <1.

Corollary 3.2.23. Let R, M € I° and (R, ®wn, ) a Krasner hyperring be such

that R # {0}. Then (M, @mnax,©) is an R-hypermodule if and only if M = {0}.

Proof. First, assume that (M, Bnax, ©) is an R-hypermodule. Then (M, Gpax) is
a canonical hypergroup. Since (R, ®min, -) is a Krasner hyperring and (M, ®pax) is
a canonical hypergroup, M is one of {0}, [0,00), [0,b) and [0,b] where 0 < b <1
and R is one of [0,00), (a,00)U{0} and [a,00)U{0} where a > 1. Now we show
that there exist a,b € R and x € M such that (a®pinb) 0x # a0x Bpaxbox when
R is one of [0,00), (a,00) U{0} and [a,00) U {0} and M is one of [0,00), [0,b)
and [0, b]. It suffices to show only the case that R = (a,00)U{0} and M = [0,b).

We see that

(26 @mmin 2a) 0 g = ([2a,00) U{0}) 0 2b = [ab,0) U {0}
while

b b
(2a o 5) Bmax (2a 0 5) = ab Bpax ab = [0, ab],

b b b
50 (2a Bmin 2a) 0 5 # (2a0 5) Bmax (20 0 5) Hence M is not an R-hypermodule.
Therefore M = {0}.
Conversely, since @ is a hyperoperation on {0}, ({0},@max,o) is an R-

hypermodule by Corollary 3.2.1. O]

Proposition 3.2.24. Let R = ([0,00),®min, ) and M € I°. Then (M, ®max, *)

is an R-hypermodule if and only if M is one of the following forms :
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1) {0},
ii) 10, 00).

Proof. First, assume that (M, @pax, *) is an R-hypermodule. Then (M, Gpax) 1S
a canonical hypergroup. By Theorem 3.1.4, M is one of {0}, [0,00), [0,b) and
0,6] where 0 <b < 1. If M =[0,b) or [0,b], then R« M ¢ M. Hence M is {0}
or [0,00).

Conversely, suppose that M is {0} or [0,00). If M = {0}, then (M, ®max, *)
is an R-hypermodule by Corollary 3.2.2. Let M = [0,00). Theorem 3.1.4 shows
that ([0, 00), @max) is a canonical hypergroup. Let z,y € M and a,b € R. First,
we claim that a * (2 Gmax ¥) = @ * T Bpax a * y. It is clear if a = 0. Assume that
a#0

z Y

Case 1. 2 =y. Then — = =. S0 a* (x ®uax y) = a * ([0,2]) = 0, f] and

a a a

A*TDmax QXY = f@maxy = f@maxf = |0, E] Hence a*(x@®maxy) = a*TDmaxa*y.
a a a a a

Case 2. z > y. Then — > 7. S0 a* (T Omax y) = ax {x} = {E} and
a a

8

QIR

a*q;EBmaXa*y:g@max— = {g} Hence a * (& @pax Y) = @ * T Bpax @ % Y.
Case 3. © < y. The proof is similar to the proof of Case 2.
Hence a * ( ®max Y) = @ % T Brax @ * Y.

Second, we show that (@ @pin b) * T = a % & Brax b * T.
Case 1. a=0and b =0. Then axx =0 and bxx = 0. So (@ Ppin b) * x =
(0 ®Bmin 0) xx = {0} xz = {0} and a * & Bpax b x & = 0 By 0 = {0}. Hence
(@ Bpin b) * T = a % T Brax b * .
Case 2. a # 0 and b=0. Then bxz =0. S0 (aPmind) *x = (aBwin0) xz = {a}*
T = {g} and a*T @ b*T = g@maxo = {g} Hence (a®minb)*x = a*xPpaxb*.
Case 3. a =0 and b # 0. The proof is similar to the proof of Case 2.

x

Case 4. a = b and a,b # 0. Then E:Z and E,% # 0. So (a ®min b) *
a a

T
(@ Bmin @) * & = ([a,00) U{0}) *xz = [0, —] and a*x@maxb*wzgﬁBmaX%

SHRS
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E@maxf = |0, E] Hence (@ ®pin b) * 7 = a % T Brax b * .
a a a
Case 5. a < b and a,b # 0. Then r > % and E,% #0. S0 (a®minb) xx = {a} *
a a
T = {f} and a*x@paxb*T = f@max% = {E}.Hence (aPminb)*T = a*T D paxb*T.
a a a

Case 6. @ > b and a,b # 0. The proof is similar to the proof of Case 5.
Hence (a ®min b) * & = a % T Dpax b * .
Finally, we show that (a-b) *xx =ax (b*x). It is obvious if a =0 or b= 0.
x x x

Assume that a # 0 and b # 0. Then (a-b)xz = — and ax(bxz) = axy = —.
a- a-
[l

Since Og - = Opr, (M, Bmax, *) is an R-hypermodule.
Proposition 3.2.25. Let R = ((a,00) U {0}, ®min, ) or ([a,00) U {0}, Brnin, -)
where a > 1 and M € I°. Then (M, ®max, *) is an R-hypermodule if and only

if M is one of the following forms :
1) {0},

i) [0,00),

iii) [0,0) where 0 <b <1,

iv) [0,b] where 0 <b<1.

Proof. Assume that (M, @pax, *) is an R-hypermodule. Then (M, ®yay) is a
canonical hypergroup. We obtain from Theorem 3.1.4 that M is one of {0},
[0,00), [0,b) and [0,b] where 0 < b < 1.

Conversely, suppose that M is one of {0}, [0,00), [0,b) and [0,b] where
0 < b < 1. Again, Theorem 3.1.4 shows that (M, Pna.x) is a canonical hyper-
group. Since M, R C [0,00), the proof is obtained similarly from the proof of

Proposition 3.2.24. O

Let (R, ®max, ) be a Krasner hyperring such that R € Z°. We consider when

M, ®min, 0) or (M, ®min, *) is an R-hypermodule when M € Z°. So, R is one
( y
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of {0}, [0,00), [0,b) and [0,b] where 0 <b <1 and M is one of R, {0}, [0, 00)
and (a,00) U {0} or [a,00) U {0} where a > 1.
Applying Corollary 3.2.3 and Theorem 3.1.8, we obtain the following two state-

ments.

Proposition 3.2.26. Let R = ({0}, ®max, ) . Then (M, Spin, 0) is an R-hypermodule

if and only if M is one of the following forms :
i) R,
w) {0},
iii) [0, 00),
i) (a,00)U{0} where a > 1,
v) [a,00)U{0} where a > 1.

Proposition 3.2.27. Let R = ({0}, Brmax ) . Then (M, ®win, *) is an R-hypermodule

if and only if M is one of the following forms :
i) R,
ii) {0},
iii) [0, 00),
iv) (a,00)U{0} where a > 1,
v) [a,00) U {0} where a > 1.

Corollary 3.2.28. Let R,M € I° and (R, ®max, ) a Krasner hyperring be such

that R # {0}. Then (M, @min,0) is an R-hypermodule if and only if M = {0}.
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Proof. First, assume that (M, ®mpin,0) is an R-hypermodule. Then (M, @) is
a canonical hypergroup. Since (R, ®nyax, -) is a Krasner hyperring and (M, @i, )
is a canonical hypergroup, M is one of {0}, [0,00), (b,00)U{0} and [b,00)U{0}
where b > 1 and R is one of [0,00), [0,a) and [0,a] where 0 < a < 1. Now we
show that there exist a,b € R and x € M such that (a@®yaxb)ox # aox @y box
when R is one of [0,00), [0,a) and [0,a] and M is one of [0, 00), (b, 00)U{0} and
[b,00)U{0}. Tt suffices to show only the case that R = [0,a) and M = (b, 00)U{0}.
We notice that

a a a
(5 Brmax 5) 02b = [0, 5] 020 =0, ab]

while
a a
(5 0 2b) Bmin (5 0 2b) = ab @iy ab = [ab, c0) U {0},
a a a a .
SO (5 Dmax 5) 02b+# (5 0 2b) ®min (5 020). Hence M is not an R-hypermodule.

Therefore M = {0}.
Conversely, since @, is a hyperoperation on {0}, ({O},@min,*) is an R-

hypermodule by Corollary 3.2.2. [

Corollary 3.2.29. Let R = ([0, 00), Bmaxs ) . Then (M, ®win, *) s an R-hypermodule

if and only if M is one of the following forms :
1) {0},
i) 10,00).

Proof. First, assume that (M, @i, *) is an R-hypermodule. Then (M, ®pn) is

a canonical hypergroup. It follows from Theorem 3.1.8 that M is one of R, {0},
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[0,00) and (a,00) U {0} or [a,00) U {0} where a > 1 . If M = (a,00) U{0} or

la,00) U {0}, then R+« M ¢ M. If M =R, we see that
(2 DPmax 2) * (_2> = [07 2] * <_2) = (_007 _1] U {O}
while

(2% =2) @min (2% =2) = (=1) Omin (=1) = [-1,00) U{0}.

Then (2®ax2)*(—2) # (2%—2)Bmin (2x—2). Hence M is not an R-hypermodule.
Therefore M is {0} or [0,00).

Conversely, suppose that M is {0} or [0,00). If M = {0}, then (M, ®pax, *)
is an R-hypermodule from Corollary 3.2.2. Let M = [0,00). Then (M, ®mnin)
is a canonical hypergroup. Let x,y € M and a,b € R. First, we show that
a* (T Omin Y) = a % T Omin a *y. It is clear if a = 0. Assume that a # 0
Case 1. =0 and y =0. Then axxz =0 and axy = 0. So a* (x Bpn y) =
a* (0 ®min 0) = ax {0} = {0} and a*x = Dpna*xy = 0 Dpin 0 = {0}. Hence
a* (T OminY) = a*T Dpin A %Y.

Case 2. x#0 and y=0. Then axy =10. So a* (T Bpin y) = a * (* Bpin 0) =
ax{r} = {2} and a * T Opin @ * Yy = Z@minO: {%} Hence a * (2 @pin y) =
a* T DBmin @ * Y.

Case 3. © < y. The proof is similar to the proof of Case 2.

Case 4. x =y and z,y # 0. Then T_ Y and f,g;éo. So a * (T Bmin Y
a a a’ a

~—

a*(rPminx) = ax([z,00)U{0}) = [E,oo)U{O} and a*x By a*xy = z@min
a a

Q|

f@mmf = [E,oo)U{O}. Hence a * (£ ®min y) = a* T Bpin a * Y.
a a a

Case 5. * <y and z,y # 0. Then T <Y and f,g;éo. So a* (T Bmin y) =
a a a’ a

a*{x}:{z} and a*x@mina*yzf@ming:{f}. Hence a * ( ®uyin y) =
a a a a
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a* T DBmin @ * Y.
Case 6. @ > b and a,b # 0. The proof is similar to the proof of Case 5.
Hence a * (& ®min ¥) = @ % T Bin @ * Y.
Second, we show that (@ @pax b) * & = a % T Opin b * T.
Case 1. a =0.Then a*xz =b*x. S0 (A Pmax b) *T = (A Pmax @) ¥z = ([0,a]) ¥z =
[E,OO)U{O} and a*x T Ppin O * T = a* T Ppyin 4 ¥ T = E@minf = [E,OO)U{O}.
a a a a
Hence (a @pax b) * & = a * & Bppin b * .

Case 2. a > b. Then ~ < % SO (aPmaxb)*x = {a}*xx = {f} and a*z @ b*r =
a a
’ Bmin % = {E} Hence (a ®max b) ¥ & = a % & @rin b * 2.
a

Case 3. x < y. The proof is similar to the proof of Case 2.

Hence (a Bmax b) * T = a * & Opin b * .

Finally, we show that (a-b) xx =ax (b*x). It is obvious if a =0 or b= 0.
Assume that a # 0 and b # 0. Then (a-b)*x = % and ax(bxz) = a*% = ﬁ.
Since Og -« = 0pr, (M, ®min, *) is an R-hypermodule. ]
Proposition 3.2.30. Let R = ([0, b), Bmaxs ) or ([0, b], Bmax, ) where 0 < b < 1.
Then (M, ®win, *) is an R-hypermodule if and only if M is one of the following

forms :

i) {0},

i) [0,00),

iii) (a,00) U {0} where a>1,
i) [a,00) U {0} where a > 1.

Proof. Let R = ([O,b),@max,~) where 0 < b < 1. Assume that (M, ®uyin, *) is
an R-hypermodule. Then (M, @y,,) is a canonical hypergroup. We can see from

Theorem 3.1.8 that M is one of R, {0}, [0,00) and (a,00) U{0} or [a,oc0)U{0}
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where a > 1. If M =R, we see that

b b b —4
(5 DPmax 5) * (_2) = [07 5] * (_2) = (—OO, T} U {O}

while

b b —4 —4 4

— % =2 min \ & —2) = — min 7 — |77 > )

(5 % ~2) Buin (5 * ~2) = == @ia — = [+,00) U {0}

b b b b .

SO (5 @max§)*(—2) + (5*—2)69@11(5*—2). Hence M is not an R-hypermodule.

Therefore M is one of {0}, [0,00), (a,00) U {0} and [a,00) U {0} where a > 1.

Conversely, suppose that M is one of {0} or [0,00) or (a,00)U{0} or [a,oc0)U
{0} where a > 1. By Theorem 3.1.8, (M, ®n) is a canonical hypergroup. Since
M, R C [0,00), the proof is obtained similarly from the proof of Proposition 3.2.29.

[]

Now we focus the hyperoperation @®,,s on R and the hyperoperation @ ,ay

on M.

Proposition 3.2.31. Let R, M € I° and (R, ®aps, ) a Krasner hyperring such

that R # {0}. Then the followings are equivalent :
i) M ={0}.

i) (M, ®max, ©) s an R-hypermodule.

iii) (M, ®max, *) is an R-hypermodule.

Proof. i) = ii) Let M = {0}. Since @pax is a hyperoperation on M, (M, ®pax, 0)
is an R-hypermodule from Corollary 3.2.2.
i1) = i) Suppose that (M, Bmax, ©) is an R-hypermodule. Then (M, ®pax)

is a canonical hypergroup. By Theorem 3.1.4, M is one of {0}, [0,00), [0,b)
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and [0,b] where 0 < b < 1. Since (R, @abs,-) is a Krasner hyperring such that
R # {0}, R is one of R, (—a,a) and [—a,a] where 0 <a < 1. If M is [0,00) or

[0,0) or [0,0], it is seen that

a, b ab
Cgleg =g #M
Then (M, @max, ©) is not an R-hypermodule. Hence M = {0}.

i) = i) Let M = {0}. Since @max is a hyperoperation on M, (M, Bpax, *)
is an R-hypermodule by Corollary 3.2.2.

i1i) = 1) Suppose that (M, Bmax, *) is an R-hypermodule. Then (M, @pax)
is a canonical hypergroup. By Theorem 3.1.4, M is one of {0}, [0,00), [0,b)
and [0,b] where 0 < b < 1. Since (R, @aps, ) is a Krasner hyperring such that
R # {0}, R is one of R, (—a,a) and [—a,a] where 0 < a < 1. If M is one of

[0,00), [0,b) and [0,], then

b a
Yy el =2 '
(Syxp=-Sgm
Then (M, @max, *) is not an R-hypermodule. Hence M = {0}. O

Proposition 3.2.32. Let R, M € I° and (R, ®max,:) be a Krasner hyperring

such that R # {0}. Then the followings are equivalent :
i) M ={0}.

i) (M, @aps,0) is an R-hypermodule.

iii) (M, ®aps, *) is an R-hypermodule.

Proof. i) = ii) Let M = {0}. Since @,ps is a hyperoperation on M, (M, @,ps, ©)

is an R-hypermodule by Corollary 3.2.2.
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it) = i) Suppose that (M, @aps,0) is an R-hypermodule. Then (M, @aps) is
a canonical hypergroup. By Theorem 3.1.16, M is one of {0}, R, (—b,b) and
[—b,b] where 0 < b < 1. Since (R, @max,-) is a Krasner hyperring such that
R # {0}, R is one of [0,00), [0,a) and [0,a] where 0 < a < 1. If M is one of

R, (—b,b) and [~b,b], then

a a b a. b ab
(5 Dmax 5) °3 [0, 5] °3 [0, Z]
while
a b a b ab ab ab

(Gog)@mlgog) =7 Suep =7

b b
5) Babs (g o 5) Hence M is not an R-hypermodule.

a

S0 (5 Gnax 5) 05 # (50
Therefore M = {0}.

i) = iii) Let M = {0}. Since @aps is a hyperoperation on M, (M, Baps, *)
is an R-hypermodule by Corollary 3.2.2.

i11) = i) Suppose that (M, @aps, *) is an R-hypermodule. Then (M, @aps) is
a canonical hypergroup. By Theorem 3.1.16, M is one of {0}, R, (=b,b) and
[—b,b] where 0 < b < 1. Since (R,®max,-) is a Krasner hyperring such that
R # {0}, R is one of [0,00), [0,a) and [0,a] where 0 < a < 1. If M is one of

R, (=b,b) and [—b,b], we obtain that

a a. b a
(5 @maxg)*i = [075]*_ = [57OO}U{O}
while
a b a b b b b
(37 3) G (Grg) =g O =4



69

a a, b a b a b )
So (5 Dmax 5) * 5 + (5 * 5) Babs (5 * 5) Hence M is not an R-hypermodule.
Therefore M = {0}. O

Proposition 3.2.33. Let R,M € I° and (R, ®aps,*) a Krasner hyperring such

that R # {0}. Then the followings are equivalent :
i) M ={0}.

i) (M, ®min,©) is an R-hypermodule.

ii1) (M, ®min, *) is an R-hypermodule.

Proof. i) = ii) Let M = {0}. Since @, is a hyperoperation on M, (M, @i, ©)
is an R-hypermodule by Corollary 3.2.2.

i1) = i) Suppose that (M, @®mpin, 0) is an R-hypermodule. Then (M, @) is a
canonical hypergroup. By Theorem 3.1.8 M is one of R, {0}, [0, 00), (b, 00)U{0}
and [b,00) U {0} where b > 1. Since (R, @abs,) a Krasner hyperring such that
R # {0}, R isone of R, (—a,a) and [—a,a] where 0 < a < 1. If M is one of R,
[0,00), (b,00) U{0} and [b,00) U {0}, we see that

(g@absg)OQb:gOQb:ab

while
a a
(5 0 2b) ®min (5 0 2b) = ab @iy ab = [ab, 00) U {0}.
a a a a ,
So (5 Dabs 5) 02b# (5 0 2b) Brmin (5 o 2b). Hence M is not an R-hypermodule.

Therefore M = {0}.
i) = i) Let M = {0}. Since @, is a hyperoperation on M, (M, ®mpin, *)

is an R-hypermodule by Corollary 3.2.2.
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i11) = i) Suppose that (M, @i, *) is an R-hypermodule. Then (M, ®pi,) is
a canonical hypergroup. By Theorem 3.1.8 M is one of R, {0}, [0,00), (b,00) U
{0} and [b,00) U {0} where b > 1. Since (R, @aps, ) a Krasner hyperring such
that R # {0}, R is one of R, (—a,a) and [—a,a] where 0 < a < 1. If M is one

of R, [0,00), (b,00) U{0} and [b,00) U {0}, then

a a a 4b
(E@abs§)*2b_§*26_g
while
a a 4b 4b 4b
a min \ &5 2b - min — — |7 U 0 .
(&) G (& #28) = L 2 = 12 ) U 0)
a a a a .
So (5 Babs 5) * 2b # (5 % 2b) Brin (5 % 2b). Hence M is not an R-hypermodule.
Therefore M = {0}. O

Proposition 3.2.34. Let R,M € I° and (R, ®mwmin,) be a Krasner hyperring

such that R # {0}. Then the followings are equivalent :
i) M ={0}.

ii) (M, ®ans,0) is an R-hypermodule.

iii) (M, ®aps, *) is an R-hypermodule.

Proof. i) = ii) Let M = {0}. Since @,ps is a hyperoperation on M, (M, Bups, ©)
is an R-hypermodule by Corollary 3.2.2.

i1) = 1) Suppose that (M, @aps, 0) is an R-hypermodule. Then (M, ®aps) is
a canonical hypergroup. By Theorem 3.1.16, M is one of {0}, R, (—b,b) and
[—b,b] where 0 < b < 1. Since (R, ®mm, ) is a Krasner hyperring such that

R # {0}, R is one of [0,00), (a,00) U {0} and [a,00) U {0} where a > 1. If M



71

is one of R, (—b,b) and [—b,b], we see that
b b
(2a Bpax 2a) © 3= ([2a,00) U{0}) 0 3= [ab, 00) U {0}

while

(2a 0 g) @abs (2a 0 g) = ab P.ps ab = ab.

S0 (2a Bax 2a) © g # (2a0 g) @abs (2a 0 g) Hence M is not an R-hypermodule.
Therefore M = {0}.

i) = d1i) Let M = {0}. Since @aps is a hyperoperation on M, (M, Baps, *)
is an R-hypermodule by Corollary 3.2.2.

i1i) = 1) Suppose that (M, @.ps, *) is an R-hypermodule. Then (M, @) is
a canonical hypergroup. By Theorem 3.1.16, M is one of {0}, R, (—b,b) and
[—b,b] where 0 < b < 1. Since (R,®mn,") is a Krasner hyperring such that
R # {0}, R is one of [0,00), (a,00) U{0} and [a,00) U {0} where a > 1. If M

is one of R, (—b,b) and [—b,0], then

b b b
(20 ©umax 20) # 5 = ([20,00) U{0}) * 5 = [0, ]
while
b b b b b
(2a 5) Dabs (2a * 5) =l Dabs o da
b b b ‘
S0 (2a Brmax 2a) * 5 # (2a % 5) Dabs (2a * 5) Hence M is not an R-hypermodule.
Therefore M = {0}. —

So far, for fixed single-valued operations o and *, we are able to characterize
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when (M, @y, 0) and (M, @y, *) are (R, @g,-)-hypermodules where @y, Gg €
{®max> Pmin, Pabs } and - is the usual multiplication on R. We obtain the following

facts.
1. If R ={0}, then (M, ®),0) and (M, @y, *) are (R, Bg, -)-hypermodules.
2. If R # {0}, then

(a) there exists M # {0} in Z° such that (M, ®nax,0) and (M, Bpax, *)
are (R, ®min, -)-hypermodules,
(b) there exists M # {0} in Z° such that (M, ®umin,0) and (M, Bupin, *)
are (R, @max, -)-hypermodules,
(¢) M = {0} is the only case such that (M, Bnax, ©), (M, Bmax, *), (M, Bmin, ©),
(M, ®min, %) are (R, Daps, -)-hypermodules, (M, Baps,0), (M, Baps, *)
are (R, ®max, )-hypermodules and (M, @aps, ©), (M, Daps, *) are (R, Omin, - )-

hypermodules.

This brings us to look for an appropriate single-valued operation e such that
(M, @), ) is an (R, g, -)-hypermodule with M € Z°\ {{0}} and @), and &g

satisfy the case (b) above.

Proposition 3.2.35. Let (M, ®) be a canonical hypergroup and (R, +,-) a Kras-
ner hyperrinng. If we define a funtion e : R X M — M by r em = 0y for all r

in R and m in M, then (M, ®,e) is an R-hypermodule.
Proof. This is obvious. O

Proposition 3.2.36. Let (M, ®na.x) be a canonical hypergroup and (R, ®aps, )
be a Krasner hyperring such that M, R € I° ~\. {{0}}. Then (M, ®pax,®) is an
R-hypermodule if and only if the single-valued operation e : R x M — M must

be uniquely defined by r e m = 0y for all v in R and m in M.
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Proof. First, assume that (M, @pax, ®) is an R-hypermodule. Let r € R and m € M.

Then

(7 Baps ) @M =17 1M By 7 © M

{rtem = [0,rem]
{rem}= 10,7 em]
rem= 0.

Hence r e m = 0;; for all » in R and m in M. Conversely, the result holds from

Proposition 3.2.35. O]

Proposition 3.2.37. Let (M, ®.ps) be a canonical hypergroup and (R, ®max, )
be a Krasner hyperring such that M, R € I° \ {{0}}. Then (M, ®.ps,®) is an
R-hypermodule if and only if the single-valued operation e : R x M — M must

be uniquely defined by r e m = 0y for all v in R and m in M .

Proof. First, assume that (M, @,ps, ®) is an R-hypermodule. Then Or @ m = 0y

for all m e M. Let r € R~ {0} and m € M. Then

(r OmaxT)®mM=10m D7 OM

0,r]em = {rem}

Since 0 € [0,7] em, we have rem = 0y, for all 7 in R and m in M. Conversely,

the result holds by Proposition 3.2.35. [

Proposition 3.2.38. Let (M, ®wyin) be a canonical hypergroup and (R, ®aps, )
a Krasner hyperring such that M, R € Z° ~ {{0}}. Then (M, ®wnmn,®) is an
R -hypermodule if and only if the single-valued operation e : R x M — M must

be uniquely defined by r e m = 0y for all v in R and m in M.



74

Proof. First, assume that (M, @y, ®) is an R-hypermodule. Let r € R and

m € M. Then

(r ©apsT) @M =17 0M Byin 7 © M

{r}em = [rem,o0)U{0} or {0}

Then {rem} = {0}. Hence rem = 0y for all » in R and m in M. Conversely,

the result holds by Proposition 3.2.35. O]

Proposition 3.2.39. Let (M, ®.s) be a canonical hypergroup and (R, ®min, -)
a Krasner hyperring such that M, R € Z° <~ {{0}}. Then (M, ®.s,®) is an
R-hypermodule if and only if the single-valued operation e : R x M — M must

be uniquely defined by r e m = 0y for all v in R and m in M.
Proof. First, assume that (M, @,ps, ®) is an R-hypermodule. Then Oz @ m = 0y

for all m e M. Let r € R~ {0} and m € M. Then

(r Ominr) ®m =1 0m Qs T €M

([r,o0)U{0} or {0})em = {rem}

Then rem = 0. Hence rem = 0, for all » in R and m in M. Conversely, the

result holds by Proposition 3.2.35. ]



CHAPTER IV

FREE AND PROJECTIVE HYPERMODULES

In this chapter, we separate into two sections. The first section is based on [4]
where we adopt the notion of free hypermodules over Krasner hyperrings. How-
ever, we give some certain examples of free hypermodules over Krasner hyperrings
at the end. In the last section, we define a projective hypermodule and some prop-

erties of projective hypermodules over Krasner hyperrings are studied.

4.1 Free Hypermodules

We give some definitions and propositions regarding free R-hypermodules
from [4]. Moreover, examples of free hypermodules are provided at the end of
the section.

First, we give a definition of a (hypermodule) weak homomorphism and a
multi-valued (hypermodule) weak homomorphism which has a major role in the

followings section.

Definition 4.1.1. Let M and M’ be R-hypermodules. A multi-valued (hyper-
module) homomorphism from M into M’ is a multi-valued function from M into

M ie., f: M — P*(M') such that
D) flety) Cfle)+ fly) forall z,ye M,

i) f(rx)=rf(x) forallr € R and x € M.

Definition 4.1.2. [4] Let M be an R-hypermodule and X a nonempty subset

of M.
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A linear combination of X is a sum of the form rix{ +7roxe +- - - +r,x, where
neN, r € Rand z; € X forall i € {1,2,...,n}. Note that if n =1, a linear
combination of the form rz; where 1 € R and z; € X is {rjz}.

We say that X generates M if every element of M belongs to a linear com-

bination of X, i.e., X generates M if and only if for each m € M there exist

1,72, ..., € R and x1,29,...,2, € X such that m € riz; +roxo + -+ +1,2,.
Moreover, X is said to be linearly dependent if there exists distinct x, xs, ..., x,
in X and ry,7ry,...,7, in R, not all of which are 0, such that

0Erizy+roxe+ - +1r,Tn,.

A subset of M which is not linearly dependent is called linearly independent,
i.e., X is linearly independent if and only if for all distinct zy,2o,...,2, € X
and all r,7r9,...,7, € Rif 0 € ray +1r9xo + -+ + 1r,x,, then r; = 0 for all i €
{1,2,...,n}.

Finally, let @ generate {0}.

Note that if X = @, then X is linearly independent.

Definition 4.1.3. [4] Let M be a unitary R-hypermodule. We call an R-
hypermodule M a free R-hypermodule if there exists a subset B of M such

that
i) B generates M and

ii) for every function f from B into an R-hypermodule N there exists a multi-
valued homomorphism f™ : M — P*(N) such that f™(z) = {f(x)} for all

reB.

The set B is called a basis of M.



Proposition 4.1.4. [4] Let M be a unitary R-hypermodule and B = {by, by, ..., b,}

a finite subset of M. Then the followings are equivalent:
i) B is a basis of M,
ii) B s linearly independent and generates M

iii) for every m € M there are uniquely defined elements ry,...,r, € R such

Ifhatm€T1b1+Tng+"‘+Tnbn.

Obviously, {0} is a free hypermodule with the basis @ .
Recall that a basis of a free module M over a ring is a maximal linearly
independent subset of M and is a minimal spanning subset of M. This also holds

for a basis of a free hypermodule.

Proposition 4.1.5. Let M be a free R-hypermodule. If B is a basis of M, then

B is a maximal linearly independent subset of M .

Proof. Assume that B is a basis of M and there is a linearly independent subset C
of M such that B C C. Let v € C~B. Since B is a basis of M, there
exist r1,...,r, € R and by,...,b, € B such that v € r{by +---+ r,b,. Then
0cv—vCrib+---+r,b, + (—1)v. This contradicts the fact that C' is linearly

independent. Hence B is a maximal linearly independent subset of M. O

Proposition 4.1.6. Let M be a free R-hypermodule. If B is a basis of M, then

B is a minimal generating subset of M .

Proof. Assume that B is a basis of M and there is a generating subset C' of M
such that C' C B. Then there exists v € BNC'. Since C' is a generating subset
of M, we have v € ri¢y + -+ 4+ r,¢, for some ri,...,7, € R and ¢q,...,c, € C.
Then 0 € v —v Cricp + -+ - + rpc, + (—1)v. This contradicts the fact that B is

linearly independent. Hence B is a minimal generating subset of M . O]
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We give some examples of free hypermodules.

Example 4.1.7. [4] Let 2 be a nonempty set and (R, +,-) a Krasner hyperring,.
We consider the set R? = {f|f: Q — R}. Denote E(f2) as a set of all functions

in R which vanish almost everywhere, i.e.,

E(Q) = {f € RYf(z) = 0 almost all = € Q}.

Define a hyperoperation @ : E(Q) x E(Q) — P*(E(Q)) and a single-valued

operation o : R x E(Q2) — E(Q) by

feg={heEQ) | h(z) € f(z)+ g(z) for all z € Q}

and

rof=rf whererf:Q — R defined by (ro f)(xz) =rf(z) forall z €

for all f,g € E(Q) and r € R. Hence (E(Q2),®,0) is a free R-hypermodule.

Moreover, a basis of (E(Q),®,0) is {f.|a € Q} where

1 if z = a,
fa(z) =
0 if © # a.

The previous example shows that we can construct a free R-hypermodule from
a nonempty subset Q. In addition, E(€2) has a basis B such that B and € have

the same cardinalities.

Example 4.1.8. If R is a hyperring with identity 1, then R is clearly a free

R-hypermodule with a basis {1}.
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Example 4.1.9. Let R = ([0, 1], ®max, > and M = <[O,a],@max,o> where 0 <

a <1. Then M is a free R-hypemodule with a basis {a}.

Example 4.1.10. Let R = ([1, 00)U{0}, ®min, ) and M = ([a, 00)U{0}, Buin, o)

where a > 1. Then M is a free R-hypemodule with a basis {a}.

Example 4.1.11. Let R = ([—1,1],@abs,') and M = ([—a,a],@abs,o) where

0<a<1. Then M is a free R-hypemodule with a basis {a}.

4.2 Projective Hypermodules

We introduce a definition of a projective hypermodule and investigate some

properties that are parallel to those of a projective module.

Definition 4.2.1. An R-hypermodule P is projective if for any R-hypermodules M
and N, a homomorphism f : P — N and a surjective homomorphism g : M — N,

there exists a multi-valued homomorphism A™ : P — P*(M) such that g[hm[P]] C

fIP].
P
"
P*(M) f
M N

The following proposition shows that a direct sum P @ @ of an R-hypermodule

is also projective if at least one of P or () is projective.

Proposition 4.2.2. Let R-hypermodule M be the direct sum of subhypermodules

P and Q. If P is projective, then P@ Q is a projective R-hypermodule.

Proof. Let N be an R-hypermodule, f : P@Q — N and g : M — N homo-
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morphisms such that g is surjective. Consider the following diagram :

P
L 1

P*(M) PHQ
V
M N

Then fo:: P — N is a homomorphism. Since P is projective, there exists
a multi-valued homomorphism h™ : P — P*(M) such that g[h™[P]] C (f o
[P, ie., g[k™[P]] C f[P]. Then h™om: PEPQ — P*(M) is a multi-valued
homomorphism. Thus g|(h™ o 7)(P@Q)| = g[h"[P] € fIP] € [PBQ).

Hence P &P @ is projective. ]

Proposition 4.2.3. Let P and ) be subhypermodules of an R-hypermodule. If

P& Q is a projective R-hypermodule, then P and Q) are projective.

Proof. To show that P is a projective R-hypermodule, let M and N be R-
hypermodules, f : P — N and g : M — N homomorphisms such that ¢ is

surjective. Consider the following diagram :

rpa
h™_— . 7T]L
P*(M) P
if
M N

Then fom : PP — N is a homomorphism. Since P@ Q) is projective,

there exists a multi-valued homomorphism hA™ : P@Q — P*(M) such that

g[h"P@ Q]| € (for)[PBQ], ic., g[h [P Q)] C f[P]. Then k™ o1 : P — P*(M)
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is a multi-valued homomorphism. Thus

g|(wmo0)(P)| = g[n"1P]] € g[n"(PED Q] C 1P]
Hence P is projective.
Similarly, () is projective. O
Proposition 4.2.4. Every free R-hypermodule is projective.

Proof. Suppose that P is a free R-hypermodule with a basis B. Let M and N
be R-hypermodules, f: P — N and g : M — N homomorphisms such that g is

surjective. Let i : B — P be the map defined by i(z) = x for all z € B.

M

N

Since g is surjective, for each b € B there exists m;, € M such that g(m,) =
(foi)(b) = f(b). Thus, for each b € B, choose once and for all an element
my € M such that f(b) = g(my). Define a mapping h: B — M by h(b) = m,.

We have go h = foi. Since P is free, we can extend h to a multi-valued



82

homomorphism h™ : P — P*(M) such that h™(b) = {h(b)} for all b € B.

To show that g[h™[P]] C f[P], let p € P. Since B generates P, there exist

Qai,...,a, € R and by,...,b, € B such that p € a1b1 + -+ + a,b,. Thus

[ ] glh™ Oé1b1 + -+ Oénbn)}

N

glaith™(b S anhm(bn)}

[
[
gloa{h(b1)} + - + anf{h(by)}]
[
[

g[{arh(br)} + - + {anh(b,)}]

= glagh(b -4 oznh(bn)}

arg(h(by)) + -+ - + ang(h(bn))
= arf(i(b)) + - + an f(i(bn))
= f(by) + -+ anf(bn)

:f(a1b1+"'+anbn) Qf[P].

Thus g[h™(p)] C f[P] forall p € P, i.e., g[h™[P]] C f[P]. Hence P is projective.

]

We can conclude from the previous proposition that Examples 4.1.6-4.1.10 are
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examples of projective hypermodules.

Proposition 4.2.5. Let P be a projective R-hypermodule and M an R -hypermodule.
If f: M — P is a surjective homomorphism, then there exists a multi-valued ho-

momorphism K™ : P — P*(M) such that f[h™[P]] C P.

Proof. Assume that f: M — P is a surjective homomorphism. Let idp : P — P

be the identity function on P.

_P
wm_ -~
A/
P*(M> idp
M 7 P

There exists a multi-valued homomorphism 2™ : P — P*(M) such that f[h™[P]] C

idp[P] = P since P is projective. O

Proposition 4.2.6. Let P be an R-hypermodule. If P is a direct summand of a

free hypermodule, then P 1s projective.

Proof. Assume that P is a direct summand of a free R-hypermodule F'. Then
there exists a hypermodule @ such that F = P@ Q. Since F is a free R-
hypermodule, Proposition 4.2.4 shows that [ is projective. By Proposition 4.2.3,

P is projective. O]

Proposition 4.2.7. Let P be a projective R-hypermodule. Suppose that X,Y and Z
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are R-hypermodules and the diagram

X Y A

is such that f,g and h are homomorphisms, ker(h) = im(g) and ho f = 0.

Then there exists a multi-valued homomorphism ¢™ : P — P*(X) such that

gle™[P]] C fIP].

Proof. Since ho f =0, we have im(f) C ker(h) = im(g). Then we can consider

the given diagram as

X g 1m(g)
Applying the projectivity of P to the diagram, there exists a multi-valued homo-

morphism ¢™ : P — P*(X) such that Q[SDm[PH C f[P].

_P
=z /‘P;
P (X) !
X im(g)

]

Proposition 4.2.8. Let P,M and N be R-hypermodules. Suppose that P is
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projective and the diagram

M

N

g
is such that f and g are homomorphisms. If im(f) C im(g), then there exists a
multi-valued homomorphism h™ : P — P*(M) such that g[h™[P]] C f[P]. The

converse holds if g[h™[P]] = f[P].

Proof. First, assume that im(f) C im(g). Recall that the canonical map pim(g) is

a surjective homomorphism with ker(pim(g)) = im(g). Consider the diagram

Then pim(g) © f = 0 because im(f) C im(g). By Proposition 4.2.7, there exists a

multi-valued homomorphism A™ : P — P*(M) such that g[h™[P]] C f[P].

P
27 “hm
P*(M) !
M J N o NV/im(g)

Conversely, assume that g[h™[P]] = f[P]. Then im(f) = g[h™[P]] C g[M] =

im(g). Hence im(f) C im(g). O
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