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Almost a ¢ a, T ver. proved.a theorem in fixed point

theory, that am ot Wahbing ronnt "$Mitaball of the Euclidean

space R to itselfffas off poiht. Tater ih 103 “ScMadler extended Brouwer’s

ki . h ty of mapping which is
possibly discontiuo e | ing ross direction preserv-
ing and proved n > &y Tooi SSIETLCC ."‘.,il . ving mapping defined on
a nonempty polyto ‘ ‘ ) : mite -\"‘ : set of R™) has a fixed point.

Their work both allows :;-., fes mo ping and generalizes Brouwer’s

theorem.
Later, % 0. Q, to an arbitrary
nonempty cofr 'g

DACEC : el established a new
i .AI
class of mapdis which contains the class of locally grgsg direction preserving

mappings. He ce‘e e mappings in that @la#s half-continuous and proved that

AUBINBRIRBANT

half ntinuous, then f has a fixed point. Furthermore, in the same work, Bich

AR

In this thesis, we prove that some results of Bich are also valid in locally

convex Hausdortl topological vector spaces, and also show that several well-known

theorems can be obtained from our results.



In this cha ies, and fundamental

facts that wi

Definition £ A is called a fixed

point of a ma

Definition 2.pr : (the set of nonempty

subsets of a set V) #§ . om X into Y. A fibers of
F atyeY is the set (x) I"i., or a multivalued mapping F'

from X into Y, a mappi a selection of F if f(x) € F(x)

for all z € X. r- _,_..—:’:-W

Definitior 250l bt ol eSO Ll % is called a fixed

L i}

point of a mappine -
I, i

2.1 Topolovlﬁ aces

zm:é NENS...
q ma»amzu UN1INYIAY

2. Any union of elements of 7 belongs to 7.

Definiti

3. Any finite intersection of elements of 7 belongs to 7.



By a topological space we mean a nonempty set X together with a topology
7 on it, usually denoted by (X, 7') or simply by X. The elements of 7 are called

open sets (of X). A set F' oge closed in X if its complement is

v basis of 7 if for every G in 7

sets of X. § is said to
gy generated by S (as

a subbasis) is t g\l Hibns NngerSedlions of elements of S.

Definition 2.148. > (] be e o li | d. S C X. Then 79 =

ical spakes. "The product topology

on X XY is the toolo AT -:;JJ; S'H collettion of all sets of the form

i 1 subset of X
U x V, where U is an op¢ 1 Sihget o _,F

an open subset of Y.

Deﬁnitio&h 2:1.5. T.ct-X be a topological space. A neig \u: orhood of a point

. il [0
xEXlsanygp S '-'.'

)

M
Definition 2. 1

Let X and Y be topologlcal spaces. Let f : X — Y and
ﬂ ﬁﬂ mfiw ih

1s continuous at every pwlt in X, then f i ald to be contlnuo

q ﬂ’lﬁ“ﬁiﬁﬁﬂiﬁﬁ ’T‘J NETRE

Proposition 2.1.7. (see [8], p.119) Let X, Y be topological spaces and f : X — Y.

Then the following statements are equivalent:



(1) f is continuous;

(2) If V is open in Y, then f~ ( ) is open in X;

Definition 2.1.18" " Xt ¥ sbe top . A mapping F: X — 2Y
is called upper se q' ",;

inY, there existJ ne borh ;‘ of # ‘~\‘ [t F(x) CVforallz e U.

1 neighborhood V' of F(x)

A i
Definition 2.1.11. A .‘.:_.:.;:'..,- faid to be Hausdorff if any two

distinct points in X haycfdis 'f.

‘!.p

Pr0p051t y:——-—m~---—-—-‘------A—------—---—-----Aﬂ.. topological spaces,
i)

L
=

then so 1s

Definition 2. 13 Let X be a topological space and K @ . A cover of K is a

ﬁummm‘ﬂmns
ammmmmﬂﬁmaﬂ

consists of finitely many sets, then we call G’ a finite subcover of G. X is said
to be compact if every open cover of X has a finite subcover. And K is said to

be compact if K is compact with respect to the subspace topology.



Definition 2.1.14. Let X be a topological space. The intersection of all closed

sets in X containing F is called the closure of F' in X and is denoted by F.

Remark 2.1.17. off -t pack <l s 16 Qlupact.

Definition 2.1.18 A ) u;‘? or U of a ol sidalspace X is said to be lo-
Y ‘ f %
cally finite if eaCh z & X hg A ,‘-:'u,_, | p0d t f\‘ jintérsects only finitely many

members of U. If U A nd ' '"'ﬁ'_j& , thén V is a refinement of U/ if

for each V' € V there exis f’%. « j%ﬁ

every Ope@' [ OI A has a locCally Ii

X is said to be paracompact if

UMW

Deﬁmtlon 2.1.20. Let X and Y‘be topological spa s. For a compact subge K

FRTRIIEN ummma 4

{feY™*: f(K)CU}.

The compact-open topology on Y is the topology generated by the sets

S(K,U) as a subbasis.



Definition 2.1.21. Let X be a topological space and (Y, d) a metric space. For

each f € YX, a compact subset K of X and € > 0, let

C[X, Y], the Topologg#of Loy tI Ve gtlic compact-open topology

coincide (see

Let A and @be

ere is a bijection from

A onto B.

Theorem 2..23. 'logz'cal spaces where Y s

“li

#

locally compact Aausdly 1. Suppose Y3 Zy /105 ‘\‘-. compact-open topology, then

C[X x Y, Z] and €[X, €[ 4'_._._ E setd
o ﬂf; "I" ‘
Definition 2.1.24. A.dir'e d ‘se p=<"!. where D is a set and < is

a relation o h 24

[
2Foranyoz,ﬁvGD1fa-<ﬁandﬂ-<7,then <.

FWEHVI HNINHNT

tlon 2.1.25. Let X be a set A net in X is a function from a directed set

q WAl I NS

to a point x in X if for any neighborhood W of z, there is an element oy € D
such that for any a € D,y X « implies z, € W. We call x a limit of the net

(Za)aep and write z, — .



Definition 2.1.27. Let X be a set. Let f: D — X be a net and let f(a) = z,.

If M is a directed set and g : M — D is a mapping such that

2. for each « E

i X converges to at
most one limit.
(2) Let A ere is a net in A which

converges to x.

(3) A mapping f 4@ 2 -—_—‘-rf:""'l‘ A - f and only if for any net
(Za)aep in X, xa)aD ‘.:..:.:...._-:. PE (f(2a))acp converges to f(x).
e :
(4) If ttsnet ONVE ﬂ!* 'WT does any of its subnet.
(5) T ,_u--—A—-—-------'---—-—-----—------—-——-'—-'—--——-» ' has a subnet con-

verging to somﬁ DO -
I, i

Proposition 2. 1(79 see [12], p.188) LetX and Y be topological spaces, (Xa)aen

m:xm NENINEINT

Deﬁnltlon 2.1.30. Let X and Y€ toiologlcal spadedtand let F be a multiVafled

RN I mawma 4

Gr={(r,y) e X xY :ye F(z

We say that F' has a closed graph if G is a closed subset of X x Y.



Theorem 2.1.31. (see [15]) Let X be a topological space, Y a compact Hausdorff

space and F : X — 2¥ a multivalued mapping with nonempty closed values. Then

in Y; ifxa — LYo —

Definition 2#2.1. gicall ve his al space E over a field
F equipped wit; L"I  that the D5, ( r4+yof EXEtoFE

on F) are continuous.

In this research, B% e mean a topological vector

space over R. For each x

and the n@jpl' C

, the translation operator 7,

! L
1l il
for y € £. Wi I te that T, and M, are homeomorphism@E onto E ([14], p.8).

mm:: NYNINYINT "

Proof Assume that z, — = and ! — y. By Proposifiem 2.1.29, (24, Ya)

QW?@@W@WNWWWEW@ )

Definition 2.2.3. Let E be a vector space. A set [z,y] = {dz+ (1 =Ny :0 <
A < 1} is called the line segment joining vectors x and y in E. A set C C E is

said to be convex if every pair of points x,y in C, [z,y] C C.



Definition 2.2.4. Let S be a nonempty subset of a topological vector space. The

convex hull of S is defined to be the intersection of all convex sets containing S.

We denote it by co S.

Note that the conve

// he points which are expressible
in the form é - ____/3

pector space and o a

th, co GG are open.

(G) for all z € H. Since

is open. And since Ma 15 an-open ma = M,(G) is open. Next, for each

LR £

i —m—imi Y

For each n € nd
] i

Gun = {xGE‘there exists xq, xa, ..., T, such thatx—ZA xz} 2)

£l HHANINTNYINT -

nENandAeK LetneNandAEK Itlseasytoseethat

N mnﬁwmw HaY

Notice that A(j) > 0 for some j € {1,2,...,n}. Consequently, G,  is open. O

n € N, let

(2.1)

Definition 2.2.6. A topological vector space FE is said to be locally convex if

every neighborhood of 0 contains a convex neighborhood of 0.
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Example 2.2.7. Any normed space is a locally convex Hausdorff topological

jCall vector space over R. By a linear
%)The dual space of E is the
(@r functional on F.

vector space (see [8], p.166).

* equipped with the
topology of compafft cghfive atico MG £ Thos b logical vector space. To

see this, let (py <@ apd W ) 0% _fbp q in E*. There exists

e
(1
Thus, supwe,(Mp +q) —

Henci the addltGIAontmuous

UHANENINBING -

t set K in E and ¢ > 0 such that

el ANTUUNIINGIA Y

Since K is compact and p € E*, there exists m € R such that |[(p,z)| < m for

|
< € ie., f—l—l Br(p+qe CW.

and s € R be such that |t — s| < ctitl)

every r € K. Let [ € By ( Term(iD)

D, 4(|t|6+1))
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Then, for each = € K,

e (p,z) instead of p(z).

muous linear functional

p‘,"’% 5 3thother complicated form.

Definition 2.2.9. acé. We say that I/* separates

points on £ if (p, 1) #4ps henever x; and zy are distinct

points of @

Remark 2.2.3Q. : ; Tarantees that £* #

[0} if B # {0§
AuE TN n:iﬁm::m 3.

and let A, B be disjoint nonemp‘convex subsets offlly If A is open, therclalsts

R AN URTINEIA Y

If F is a locally convex Hausdorff topological vector space, then E* separates

points on £ (see [14], p.59). Note that the converse is not true as shown in the

following example. It appeared as an exercise in [14]. We give the proof here.
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Example 2.2.12. Let 0 < p < 1. Consider the topological vector space

/P =
metrized by \‘

where z = () @ ut (¢P)* separates points

on /P, -

;7). So B(0;¢) CU

(2.4)

Put § = ¢ + 17 Forg a‘? ,...). Since 6? < 0, x, €

A

I/

A

B(0;6) and so
(2.5)

for all n € N. From
Q

: ,g"m:;ur>0,thereis5> 1
such that

fomnuﬂm Yy NeINg.

is arbl rarlly large. Hence, P is wt locally convex

RIRINTUHNIINGIAY

y € co B(x;e) for all € > 0. Lete>0beg1ven Then

y = Zozjx(j), (2.7)
=1

for all n € N. P is
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where Z?=1 a; =1, a; >0 and 2 2@ . 2® € B(z;¢). We note that

2D < e (2.8)

for all j = 1,2,...

1,2, ..., k. Hence,

and Theorem 2.2. : b Whatd, v) 7 (A, y). O

Definition 272. 4 Bela topologics D 8¢ wiose dual £* separates

points on F. nalles logy: o1 _ % cVelly p € £* continuous is

Remark 2.2.14. A L ' : logy if and only if for each

x € W there are p1, pa, ..., Prsert 7 gaccal numbers €4, €, ..., €, such that

Proposition

jﬂz acﬁ/f E* separates points
(1] |

on E, then the*weak topology 18 Hausdorﬁ

pﬂmlﬁ e Yrmmﬂ‘iiz?:z

{z € E: |{p,z—x)| < €/2} af disjoint neighboglagods of 1 and x> infy#

RN 3T UH1INYIAY

Remark 2.2.16. If E* separates points on E, then the (strong) topology on F

1s also Hausdortft.
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Definition 2.2.17. Let E be a topological vector space. An open half space

H in E is the set of the form H = {x € E: p(x) > a}, where p € E* ~\ {0} and

a € R. Let C be a topologiga

: C — 2F. A mapping F is called
cad / any open half space H in F
o bor

1n C such that F(z) C H

P apping is upper demi-

Mewhich will be used in our

work.

Theorem 2.218 . , Seé --f_"‘.'xj iC ‘l"ﬁi . compact convex subset
of a Hausdorff to .._4. ‘_,- " ol A C’b—> 2¢ is a multivalued
mapping having n'on'ty Conve | open £l ers, then T has a fized point.
Theorem 2.2.19. (Ben— aie I See [10]) Let X be a paracompact

Hausdorff space and agical vector space. Suppose
¢: X — k wed-mapping -having-nonempty-canler values and open

fibers, then

ﬁ b
: | 0. (see [14], p.58) Let A and B be dz oint nonempty convex

subsegs of a l ocaﬂ A}ex Hausdor topol l veclor space E IfA 15 compact

agmny forallxeAandyeB

q wIasnIal ﬁ%ﬁﬁ Wﬂ”lﬁﬂ

sets in E. Then there exists p € E* such that

Theorem 2

W

sup(p, r) < inf (p,y).
€A yeB



Now, we intrg@fce topological vector spaces,

and investigate sop#€ o

i

Definition 3.1.1. \ Band tet C' be a nonempty
subset of £. A g G i _ caid f \'!, dhallsgontinuous if for each
r € C with x # fi s linear functional p € E*

and a neighborhdod

for all y ‘4" 1 . ’_,f
‘ I . l‘-

hat continuous map-

By the nam‘ ; A M
UL 1
pings should b&half-continuous. The following theorem tel¥§ us that the statement

ek Eljﬁimgm

and let C' be a nonempty subset ‘E Then every Combin0US mapping f :

RN I UAINYNR EJ

Proof. Assume that f : C' — E is continuous. Let x € C' be such that x # f(x

Since £ separates points on £, we may assume that, (p, f(z) — x) > 0 for some

p € E*~ {0}.
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Define ¢ : C' — R by

for all z € C. Since f and@y il s, so is 1, and thus there exists a

neighborhood W of z.i %
y# fy), we haV&
The hypot ' be relaxed as will be

shown in th fi¥st prove the following

useful result.

Lemma 3.1.3 4/ y convexr open subsets

are the empty set, d';' g zero functional.

Proof. Assume tha Y /r'. 'I'xﬁ are the empty set and F
itself. Let A € E*. S bposg liat AL )0, for ~'\‘ € E. If A(x) > 0, then

r € A1(0,00). THus, uL-: .?;.u 5

pty convex open subset of E, so

A71(0,00) = E. This isimpost ' (0, 00). Similarly, for the case

) <0. @ i , ’gjo}- =

4 T ge topology {2, E'}

Example ﬂ 1€
| 111
makes F intorl ocally convex topological vector space tm is not Hausdorff. By

Lemma 3.1.3, E*tﬂ so E* does not sepdiladle points on E. Consequently, every

ﬂu BN U eI

le 3.1.5. (see [14], p. 35 or 0 <p <1, let LP[0,1] be the collectlon of

q W"Iﬁ“ﬁﬂ?ﬂi MIINY1aY

A(f) = |f ()" dt < oc.

Then, L?|0, 1] is a Hausdorff topological vector space such that (LP[0,1])* = {0}

(further example see [5]). To prove this, we need the following lemma.
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Lemma 3.1.6. For each o, 3 >0 and 0 <p <1, (a+ )P < aP + [P

Proof. Let a, > 0 and 0 < p < 1. If a = 8 = 0, then the result is obvious.

Assume that a > 3 > 0. g? is continuous on [a, o + (] and

/}h, there exists £ € (a,a + 3)

differentiable on (a,

such that = 8
- (3.2)
Since p — 1
(3.3)
From (3.2) an O

Proof. (Examplg hat d(f,9) = A(f—g)

i |
. - -".r'
defines a metric ’ fi

5 = f

y 0pe "V' ;
Y .H:’E*f’ﬂfi

assume that 0 € G. "ThenwB{8=R) 2 R > 0. Let f € L?[0,1]. Choose
n € N be such that e ‘ :1.3%?;'

Let G be a nonem P , . By translation, we may

e 0
mmm%‘mmﬂz

each & {1,2,...,n}, since M (1)], by Intermedlate Value Theorem

AMTRINIRNNINENAY

1P dt
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Notice that 0 = xg < 21 < 3 < ... < x, = 1 and for any i € {1,2,...,n},

For each i € {1%

4 n"'A(f) < R (3.6)

Hence, g; € B(0, R) for all = edi2 s imphes that

0,1)* = {0}. O

Remark 3. 1 There is a half-continuous mapping which is not continuous.

ﬂw"mﬁ
qw;mn;:m *ﬁﬁ'mmazm

To show that f is half-continuous, let z € R be such that = # f(x). This

implies that x # 2.
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Case x < 2. Define a continuous linear functional p on R by (p,y) = y for all

y € R. Choose € =2 —x > 0. Let z € (x — €,z + €) be such that z # f(z). Then

z < 2 and hence (p, f \
Case x > 2. Define ﬂl
y € R. Choose e == et z such that z # f(z). Then

 ——-=:-
2 < z and hence >0 »

al p on R by (p,y) = —y for all

Moreover, halizge : ¢ ‘At position, the addition

and the scalar myd#pligati Se GO NG alf-continuous mapping

2 otherwise

ﬂumm}mmwni

It is easy to see that go f nd 2g are not halfS@entinuous.

N ANNINURIANBIAY

tiplication, the following lemma gives us a surprise. The assertion is useful in

proving the theorem in the final section.
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Proposition 3.1.8. Let E be a topological vector space whose E* separates point.

Let C' a nonempty subset of E and f : C — E. Then f is half-continuous if and
only if for any B € R, the “ x + Bf(x) is half-continuous.

Proof. The sufficienc & /// et e Randletg: C — F
be defined by g(z —I— I} W fo The case 3 = 0 is obvious.

Letﬁ>0.TOW

be such that = # g(x).

. % instead of p. O

pinds¥en topological vector space

Theorem 3.1.9. Let £ bd wdopologic

atop Jﬁ*"_‘ spacd, C' a nonempty subset of K

ith © # f(x), there exists p € E*

i) ﬁ? at x. Then f is

andf C — E. Supp0§ ‘,, L .for Pt

ST T
such that @

-

half—contz'nté . #
— s
Proof. SuppoMf :C— in the su@sition of the theorem.
To show that f “h -continuous, let x E such that x # f(x). Then there
=] > j ! g S coltlulus x, there
exists a neighborhood V' of z in € such that |(p, > #m < o forall z € V. @h#

QW’] mmwmmmaa

Since p o f is lower semicontinuous at x, there exists a neighborhood U of x in C'

such that

P, f(y)) > (p, f(x)) = (3.8)
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for all y € U. Then, for each y € U NV with y # f(y), we have from (3.7) and
(3.8) that

Therefore, f is O]
As a consequel e ' }' eofehn é,} ,' atk O 9, we have the following
‘ ) j L &
theorem /
Theorem 3.1.10. g pological ves! or sna e, Ca nonempty subset of
and f:C — F. o‘..'-..;.,':..l-‘-_—»- weh ith x # f(x), there exists p € E*
such that (p, f(x) — x «f-a11% gmicontinuous at x. Then f is

half—conti 5
4

Remark 3.11. O ¢ ig and 3.1.10 are
I |
?Mn [2] m

ofﬂ i Hﬂmﬂ ny Wena. .

at x = 0, f satisfies neither as@nptlons of Theor 3.1.9 nor assumpt

MININTRINIINEAE

d > 0 such that (—d,0) C U. Choosez-——EU Thus,

Proposition

0 f(2) = (9.2) < p.3) = (p.3) -
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This means p o f is not lower semicontinuous at 0. Similarly, we can show that f

does not satisfy the assumption of Theorem 3.1.10.

[7 r
/“ et of a Hausdorff topological
mapping x — (p(z), T) is

ain theorem.

for every z,y € G diagonal mapping from

C onto €' x C. Sincg®botigl = inudls, so is . n

Lemma 3.1.13. (Browd f_‘j":,fvj "HWJ: pempty compact convex subset of

-zyv
a locally ct % ( ? E* is continuous,
for all ve C

MEM mj NINYINT..-

ex1st € C such that ( ) > 0. Define & : C’ — 2¢ by

QW’]Mﬂ%ﬁN%’W%mﬂﬂ

for all w € C. Then ®(u) # & for every u € C. Let u € C, uj,uy € ®(u) and

A €[0,1]. Then

(p(u), Aug + (1 — Nug —u) = Meo(u),uy —u) + (1 — A)(p(u), ug —u) > 0.
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This implies that ® is convex valued.

Next, we will prove that ®~(v) is open in C for all v € C. Let v € C' and

define a mapping ¢ : C' —

3.1.12 and the contmu

that 0 = <¢(UOW' ichy oitradiction O
\ - a Hausdorff topolog-

1cal space and g X gjcctite mappiny. i, tinuous, then g is a

Proof. Assume thgf g i cghtiftuot A Po AR Lk Y — X is continuous,
let K be a clos 91X . Then-k ipa ald N®nce g(K) is a compact
subset of Y. Sing f"" ':" 4 c] ihl"a 3 Proposition 2.1.7, g~ *

]

continuous.

Let X and Y be sets

c(f.9) =@

The nek

ppings from X to Y. The set
?of f and g.
~

i [2].

et
! ‘ il
Theorem 3. M5 Let C be a nonempty compact convex I bset of a locally con-

vexr Hausdorff t&ﬁzl vector space E oty - C — C a bijective continuous

%HB’M&%%W&I'mﬁ

each z € C with g(z ) there exists a (nonzero) continuous lmear

QBN

Jor all y € W with g(y) # f(y). Then C(f,qg) is nonempty.
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Proof. Assume that f : C' — C satisfies the property in the supposition of the

theorem. Suppose that C(f,g) = @. Define ® : C' — 2¥" by

O(z) = '(z) in C such that
(y) # f(y)}
= 9
for all x € C. Clearly. : et z € C, p,q € &(x) and
A € [0,1]. There are e Sods W ! in C' such that

>0 (3.10)

and

0. (3.11)

Since E* is a oach y € Wy N Wy with

9(y) # f(y), we

(Ap+ (1 =N, f(y ) -+ — M) (g, f(y) — g(y)) > 0.

Hence, A\p + (1 — N)g & P gonvex valued.

Next, lgt-4 ood W of g7 '(x)

Rg(y) # f(y). Then
|

x € g(W)C Cﬂﬂ ). By Lemma 3°T open, hence @@)) is open in C'. From

Theorem 2.2.19 3‘d ma 3.1.13, there e a continuous selection ¢ : C' — E*

AULM gyr;;w gINT
wmﬂﬁmw% NyIAY

) —9g(20)) (3.13)

in C such

Also, since ¢(g(z0)) € ®(g(20)), by the definition of ®, we have (¢(g(z0)), f(z0) —

g(20)) > 0, which is a contradiction. O
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If g in Theorem 3.1.15 is the identity mapping, then the following result is

immediate.

Corollary 3.1.16. Let C y"' oghpact conves subset of a locally convex

The following r i€ in Fa o b 5 ) " : Pheorem 3.1.2 and Theorem

Let C be a em yco

1’#’: 4 '.I".I o % locally convex Hausdorff

&
!

/| . Y
topological vector SPe ! 5-'—-—-7«--*-1-,- pping f: C — C has a fixed
point.
The resuly in pofffing 1935. It includes
o s
the works @ ) phces considered are

Euclidean spaﬁamd
A ﬂﬂﬁ“mw%’ W

q ARSI NN sy
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Definition 3.2.1. Let E be a topological vector space and C' a nonempty subset

of E. A mapping F : C' — 2F is said to be half-continuous if for each z € C

with x ¢ F(x) there exists a fcahtinuous linear functional p € E* and a
neighborhood W of z i /

, O vz (3.14)
--—,"“
The following theer€ngf1yes o ¢ aMigpefor a multivalued mapping
to be half-continuo
Theorem 3.2.2 convex Hausdorff topo-
logical vector: nuous mapping with
nonempty close / @ v .1’, hal
‘i‘, "'-!" : b, .
Proof. Assume F; ‘ ?j* gntnuglls Wilh nonempty closed convex
values. Let x € C'b h: -—-—'—:'——,-'.-i- bposell fails to be half-continuous.
By Theorem 2.2.20, there CrTats & © R such that
@ (3.15)
for all y € @Y Since F is upper

A
. . ' é ‘
demicontinuous)

for all y € U. S‘ U~ H. Then V i ne1ghborhood of x in C. Indeed,

lfﬂﬁm%ﬁ*ﬁ%WﬂWﬂﬁhICh

1ct10n Since F' is not half—contlnuous there exists oy € V N F

awwaﬂnmum'mmaﬂ

Since zy € U, F(xy) € H, so zy € H. Then, by (3.16), < (p,zv)

L
|
there exists a neighborhood U of z in ‘M’such that F(y) € H

(p,zy). This means that xzy € H, which is a contradiction. Therefore, F' is

half-continuous. O
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However, there is a half-continuous mapping which is not upper demicontinu-

ous. To see this, consider the mapplng F : R — 28 defined by

gfer all y € R and e = 2 — 1.
hl\ b [(y). For each z € F(y),

z<1<yand henc

, r..sz
Case z < —1. Letpe R’ bedefine] g — 1 for ally e Rand e = —1 —z.

ﬂ"“"ﬂfgj'
Let y € (ix,

y<—1§"

or each z € F(y),

il |
H is a séparates points, we need

In the casm
more assumptions on the mapping as the followmg result’

A NN WeInT

with nonempty closed convex valis then F is halfy&Bmginuous.

QW’]@QH?%N%AQW&N&%J

convex values. Suppose that F'is not half-continuous. Then there exists z € C

with © ¢ F'(z) such that for each p € £* \ {0} and for each a neighborhood W
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of x in C, there exists zyw € W \ F(zw) and zy € F(zw) such that

(3.17)
We note that F(z) is f .21, there exists p € E* \ {0}
such that

(3.18)
forally € F(x). L of x in C', which is directed
by reverse inclusio

(3.19)

% colverges to z. Indeed,

for a fix neighp®rhogf ( _‘d' erY ;! 1 each &€ D with U < W, we

|
'}

have zy € W CJ S_\i e Y 'T,-‘;A:- Da "\ .", L. 1.28 (5), we may choose
(zw)wep to be a cony SeplR st (Gt onverges to =. By Theorem 2.1.31,
z € F(z). By Proposmon —‘-:‘_E‘ft ®oposition 2.2.2, zy — xy converges

z —x) < 0. This

to z — z. From (3 ""{ "'ﬂ’ . ave(&\

contradictsd s«i8)=Hence ~Fis-hali-contintons - ]

.l A
Next, we W prov A teeﬁe possessing of fixed
i
points if the ltlvalued mapping is half—contmuous do this, we need the

f@ﬂuﬂgm HNINLING....

— 2E  If F is half- contmu‘ts then F has a —contmuous selectzo

qm MNTAUURIINIAY

f C — FE by

x if v € F(z);
fx) =
f(z) ifxzé¢ F(x).
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Clearly, fis a selection of F'. To show that fis half-continuous, let z € C' be such
that = # f(z). Then 2 ¢ F(z) and hence there exists p € E* and a neighborhood

W of z in C such that

Hence, (p, f(y) —

Remark 3.2.5.300
but some of its

defined by

Then F'is not half- n\p’ fuotis Nevertheless, a mapping

f:00,1] — [0,1] defingfl b

is a half—cc‘-' i

et L
1|} il
Corollary M 16 and Lemma 3.2.4 yield the following'ﬂl}in result.

AU ﬂ%ﬂﬂiﬂﬂm 5

ﬁ:ced Boint.

q RAIRNTUURIINEIGY

Corollary 3.2.7. Let C' be a nonempty compact convex subset of a locally convex
Hausdorff topological vector space E. If F': C — 2© is upper demicontinuous with

nonempty closed convex values, then F has a fixed point.
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We note that if C'is a subset of a topological space X and F : C' — 2% has

closed graph, then the set of fixed points of F'is closed in C. To see this, let A

F:C — 294 ) "'I 7 ouS KU :

the set ofﬁa:ed, nts, f & s nop -Jﬁ' pnd ~'”.,

3.3 Some consgfuen
e g

P I e o
i .

In case that the half— 0 ; -k ! is not a self-mapping on C' but
" ’,;ﬂ{ IJ
f has some-gice p oiZ’m C. We state the

Y

results in
" Ab b

il
et =
Theorem 3..‘ﬁ. Let C™0 conver %ﬁret of a locally convex

Hausdorff topolo?al vector space L. Suppose that f: C — E is half-continuous

AutIngningny
q ﬁ"l SNSRI ey

Define F : C' — 2¢ by

F(z) = Do+ (1 - N f(z) : A€ Az)}
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for all x € C. Then F(x) # @ for every x € C. We will show that F is half-

continuous. Let z € C be such that ¢ F(z). Since f is half-continuous, there

exists p € E* \ {0} and a nei fx in C such that

; _ (3.20)

for all y € W wit

Then there exists A : that ze ) M) f(y). Thus,

fly)—y) >0
By Theorem 3.2.6 ere exists a € A(xg) such
that zo = « o contradiction O

Remark 3.3.24 ['lieore -,J“‘:F A with 4 f(x), if thereis A < 0
L4 ! " ", : “Ill "v ‘
such that z := X \”ﬁ! gen' f(gf mMact, is an element in C.

“'_- ‘* ’
() - oy ().

Indeed, by setting 38l by convexity of O, f(x) =

pr+ (1 —p)z € C. —

ty compact convex

d )
'l -

—
subset of a lojnjly conve

C — FEis contm?us and for each v € C' w h 7é f(z) the line segment [z, f(z)]

AugInenIngn

mct we derive a generahzatlon

|
ector spgice E. Suppose that [ :

F.E. Browder

and B.R. Halpern. To do this le‘ us recall the defilbn of inward and oWREd

ammnmumfmmw

Definition 3.3.4. (see ) Let C' be a subset of a vector space E. A mapping
f:C — Eis called inward (respectively outward) if for each = € C there exists

A > 0 (respectively A < 0) satisfying  + \(f(z) —z) € C.
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As a consequence of Theorem 3.3.1 and Proposition 3.1.8, we have fixed point

theorem for nonself half-continuous mapping which is inward or outward, as follow.

inward. Let »=€C' G i A () 5 W) — ) € C for some

3> 0. Put 5 MAUALE 15 AR N + /() — o) € C.

Next, as - ] Ll [ > _ t) = 2z — f(x) for all

z € C. By Prop#sitiolf 34(8, g ié¥ i \-.“ L&t 7§ C Dbe arbitrary. Since

[ is outward, = + sz + (=A)(g(z) —2) =

x4+ A(f(z) — x) € Ggfhis jm hesthat dlHence, there is 7y € C' such
i ¢ ! .

that xo = g(x0) = 220 — [ (Pothatis-agr= . O

Remark 378,6. Ji Byil5 Wéf‘ or outward) map-

ping, then

Halpern (196@866

In the final p?t, we prove the fixed points theorem for half-continuous inward

ANENINENT, .

Demtlon 3. .7 (see be a subset of a vector spa

C — 2F is called inward ectlvely outwm if for cach z € CRbHb

QWQ a@&ﬂm&l WAANEa Y

Theorem 3.3.8. Let C' be a nonempty compact convexr subset of a locally con-
vex Hausdorff topological vector space E. Then every half-continuous inward (or

outward) mapping F : C — 2F has a fived point.
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Proof. Let F': C — 2F be a half-continuous mapping. Suppose that F' is inward

but it has no fixed point. Define G : C' — 29 by

Gr)={ueC: theree\ﬁ"////>08u0hthatux—l—)\(vx)}

for all z € C. Th ty _ﬁ Let z € C be such that

x ¢ G(x). Since * and a neighborhood W

_' wous ther_ '

exists v € F(y) and
R 1) = A\pv—y) >0,
e eXists g € C such that
7 (x0) and o > 0. That is
xo € F(x0), which i@ ‘rj-

Next, assume that R outward, T il . C' — 27 by H(z) = 20 — F(x)
'ﬂp d. 'f":;ga
for all = F(z) and so, by

half—contin( #d| W of z in C' such

&
et

i)

that

L
i
‘v’EWyQ_fF =>Vz€F ), (p,z—1y)>0.

quﬂ IENINYING

is half-continuous. Next, we WluleW that H is 1n . Let x € C be ar

q !henx—I— ;290 %—x—i—/\yxleﬁmce%cyeﬂ Wegettg

desire. Thus xy € H(zg) for some zy € C. By the definition of H, there exists

v € F(xo) such that g = 2zg — v. That is zy € F(z9). O



34

Any selection of half-continuous inward multivalued mappings may not be

inward as shown in the following example.

for all x € [0,1]. ftion of /. For A > 0, we have

L+ A2~ 1) =1+ \ > LeiThisiniplle pot inward at 1.

Remark 3=3+tO I th c half-continuity of Fisreplaced by spper demicontinuity,

then Theore

y
(1th |
(see [7]). |

v i ‘Ae - _
AuEInENINEINg
Hausdorff topological vector s qc!'E. Suppose F: 2" is half—contmuound.
RINNIUURINEIA Y

. 8 .ee [1]) and Fan(1969)

Let C"be a nonempty compact convex subset of a locally convex



REFERENCES

Infinite Dimensional Analysis : A Hitch-

1] Ahprantls C D. and Border, K L.
ol York, 2006.

[2] Bich, P., Some fixegs ' sepntinuous mappings, Cahiers de
la Maison des SeuglieeSacomom qire, @¥(2006), 1-10.

[5] Cater, S. i Shncal ) e not locally convex,

in 10¢all@onvex topological lin-
WO, 121-126.

J _ . Browder, Math. Z.,
112 (1969), 2 24"

[8] Folland, G. 3 , 2 Tec l\‘l“ gucs and Their Applications,
2nd ed., John W "_ﬂ ns. New 000N

[9] Glicksberg, I.L., A fur NeT—gei OnL_of Kakutani fixed point theorem,
with apphcatlon to Nagh e i it Proc. AMS 3 (1952), 170-174.

[10] Grank . and Dugundji, J., Fia @ New York, 2003.

[11] Herm& v A ed point theorem
for dlscorfqﬁwu ef@s, 36 (2008), 89-93.

| i |
| Munkresi™. R., Topology: A First Course, Prentice-Hall, New Delhi, 1975.

oyden, H. g%l Analysis, 3rd ed. untlce Hall, New Jersey, 1988.

%&l%ﬂ&l%%ﬂ&ﬂ 73

kahashl W., Nonlinear Functional Analysis : Fized Point Theory and 1ts
Applzcatwns Yokohama Puflshers Japan, 20

QW’]MﬂiﬂJﬂJW\’MﬂWﬂH

12]



36

ﬂuﬂqmawswuwns
AT AM TN



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	CHAPTER II PRELIMINARIES
	2.1 Topological Spaces
	2.2 Topological Vector Spaces

	CHAPTER III HALF-CONTINUITY AND FIXED POINT THEOREMS
	3.1 Half-continuous Mappings
	3.2 Half-continuous Multivalued Mappings and Fixed Points Theorem
	3.3 Some consequences

	References
	Vita



