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CHAPTER I 
 

INTRODUCTION 

 

1.1 Introduction 

Generally, in the garment industry, workers have different skill levels due to 

their experience and training.  In addition, due to the high turnover rate in the industry, 

teams often consist of both new workers and experienced workers.  For this reason, a 

high variation of operation time between workers occurs.  The question is how to 

balance the line and assign workers of varying skill levels to workstations to 

maximize productivity.   

Both the assembly line balancing problem and worker assignment problem are 

complicated by themselves and, as such, are typically resolved using a two-stage 

heuristic.  First, the assembly line balancing problem is addressed by aggregating 

tasks using predetermined time standards.  With this established, workers are assigned 

to the tasks.  In the Thai garment industry, it is common for one group to do the line 

balancing and then a line supervisor to assign the workers to the grouped tasks.  This 

basic approach is very poor for a number of reasons, the most serious of which is that 

grouping tasks for the line balancing effort does not consider the differences in 

worker skills whereas the supervisor who makes the actual assignments certainly does.  

This practical observation points to the general problem and defines the research 

problem addressed here, namely, investigation of integrated line balancing by task 

grouping and worker assignment to task groups with consideration of varying skill 

levels between workers for labor-intensive assembly operations.  

To provide further motivation for addressing this problem, consider the 

following example.  There are 3 workers assigned to 5 tasks, the task processing time 

for each worker and the average processing time are given in Table 1.1.  The typical 

two-stage heuristic used in practice would apply average processing time to group 

tasks for line balancing.  If the objective is to minimize the maximum processing time 

of the workstations, the assignments would be task 1 to workstation 1; tasks 2 and 3 to 
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workstation 2; and tasks 4 and 5 to workstation 3.  This yields a maximum processing 

time of 5 using the average times of the workers.  The second phase assigns one 

worker to each workstation with the objective of improving the solution.  This yields 

the assignment of worker A to workstation 1, worker B to workstation 2 and worker C 

to workstation 3.  The maximum processing time is 5 at workstation 2. 

 

Table 1.1.  The task processing time for each worker (sec.) 
 Worker A Worker B Worker C Average 

time 

Task 1 5 2 5 4 
Task 2 3 1 2 2 
Task 3 4 4 1 3 
Task 4 2 2 2 2 
Task 5 5 2 2 3 

 
 
However, if the both problems are integrated, worker skills are considered at 

the same time as task grouping. The optimal solution will be 4.  The solution of task-

workstation assignment is {1 2, 3, 4 5} and the solution of worker-workstation 

assignment is {B, A, C}.  The maximum cycle time is max {3, 4, 4} = 4.  It should be 

noted that the quality of the solution solved in this way is better than the solution in 

the case of grouping tasks without considering worker skills and assigning groups of 

tasks to workers later.  As such, there appears to be a strong potential for significant 

improvement by addressing the line balancing and worker assignment problems in an 

integrated fashion rather than sequentially.  In this study, we are interested in 

developing a methodology for assigning tasks to workers of varying skill levels.     

 

Not all cases however will have this magnitude of error between the integrated 

and two-stage approaches in practical application.  The comparison of the quality of 

the solution between the two approaches can be questioned. What is the effect of the 

varying skill levels on the quality of the solution between the methods used in 

practical application versus an integrated approach to assembly line balancing and 

worker assignment?   
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In the fashion industry, new product styles are launched more frequently than 

in the past with smaller lot sizes due to increased market competition.  Consequently, 

a trend in garment production in Thailand has emerged shifting from mass production 

to small lot production since it is more flexible and responsive compared to mass 

production.  Garment production is labor intensive and the production rate mainly 

depends on worker skills.  With different experience and training, each worker has 

different skill levels and learning ability.  Generally, people learn and improve their 

performance by repeating operations, and as a result, they will require less time to 

produce the succeeding unit or gain proficiency with the repetition of the same task.  

This is called learning behavior.  

In mass production, learning behavior is usually not considered.  A constant 

production rate assumption is always assumed in developing a task-worker 

assignment since the learning period is only a small part compared to a whole 

production period.  However, in the fashion industry, since new product styles are 

launched more frequently and lot sizes are smaller, the learning period becomes a 

more substantial part of production time.  A task-worker assignment with a constant 

production rate assumption may not directly apply since it may not provide the 

optimal solution in practice.  For this reason, learning should be considered in a task-

worker assignment in the fashion industry. 

In this study we are interested in developing a methodology of assigning tasks 

to workers of varying skill levels taking into account learning.  What is the effect of 

applying the constant skill level in situations that account for the workers learning 

ability on the quality of the solution?  

1.2 Statement of the problem  

In this dissertation, an integrated approach to assembly line balancing and 

worker assignment is studied.  The system considered in this problem is an assembly 

line which is a set of sequential workstations.  The problem consists of a simultaneous 

solution to a double assignment: tasks to workstations and workers to workstations.  A 

workstation consists of a worker who operates the assigned tasks.  There are i 

identical items.  An item is processed through a number of tasks from the first task to 

the last task until the item is completed as a finished product.  A worker will operate 
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on an item as soon as she/he has finished their work on the current item and has 

released it into buffer spaces before the next workstation.  All items are processed 

along the same route which passes through all workstations.  The problem assumes 

that the workers have multiple skills so they are be able to do more than one task.  

The skill levels of the workers are different.  The task processing time depends on the 

skills of workers who execute those tasks.  This study looks at both the constant skill 

level and skill level with learning ability.  

A task-worker assignment method where all tasks must be assigned to workers 

was developed.  In it, each worker is assigned to at least one task and some workers 

can have multiple assignments.  Moreover, a task cannot be split and assigned to more 

than one workstation.  In the study, tasks are ordered in a series and consecutive tasks 

are only allowed in the multiple assignments because of the continuous flow of the 

production line.  This problem also includes the following assumptions.  

1) The number of tasks is greater than the number of workers.  

2) The task processing time is given. 

3) Other learning factors among the tasks at the same workstation are not 

considered e.g. the task similarity.   

4) There is unlimited buffer space before each workstation or worker. 

5) At the start of production, there is no work in progress in the line.  

6) Learning ability depends on each worker.  

 

1.3 Dissertation objectives 

1.3.1 The objective of this research is to develop an efficient heuristic to solve 

the problem of an integrated approach to assembly line balancing and worker 

assignment assuming constant skill levels of workers in order to minimize cycle time 

or to minimize the maximum processing time of the workstations. 

1.3.2 The objective of this research is to develop an efficient heuristic to solve 

the problem of an integrated approach to assembly line balancing and worker 

assignment taking into account learning ability of workers in order to minimize 

makespan or the completion time. 
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1.4 Dissertation scope 

This study focuses on a fixed task-worker assignment for which there is a 

solution for the assignment problem.  In the problem, the tasks are ordered in a series 

since it is an assembly line for a finished product.  For learning behavior, the Log-

Linear model was applied to represent the learning ability of each worker.  Based on 

the Log-Linear model, if t1 and tn represent the task processing time of the first and 
the nth item, and using Ø in terms of learning slope, )2log/(log

1
φnttn ⋅=  (Wright, 1936).   

The problem assumes that the task processing time depends on the learning 

ability of the worker who operated the task.  Furthermore, the study sets the task in 

discrete processing time which was generated from the learning model.  If a worker is 

assigned to more than one task, we use the sum of the task processing time that he/she 

performs to represent processing time of the combined tasks.  We assume that the task 

similarity between the tasks is ignored.  

 

1.5 Dissertation contribution 

An integrated approach to the assembly line balancing and worker 

assignment was developed in this dissertation.  The problem was that the quality of 

the solution of the assignment in a practical application or a two stage heuristic may 

not be appropriate when there is high worker skill variation.  The result of the study 

confirms the existence of this problem and can serve to increase the level of 

awareness in the industry of the effect of the varying skills of workers on production 

rates.    

It would be beneficial for the industry to take into account the impact on the 

performance of the production line when assuming constant skill levels in situations 

where worker learning ability is a factor. This can be a guideline for industry for 

developing a more efficient assignment process.   
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Mathematical models of an integrated approach to the assembly line 

balancing and worker assignment assuming constant skill levels and mathematical 

models of the problem accounting for learning ability were proposed in conducting 

this research. 

Furthermore a heuristic was developed to solve the problem of constant skill 

level and its quality of the solution and computational time was compared to the 

solution from a commercial solver.  It was found that in many cases, the heuristic can 

determine the optimal solution.  We used the solution from the first heuristic to limit 

search space for the second problem. 

 
The heuristic for solving the task-worker assignment problem accounting for 

learning ability was proposed and its quality of solution and computational time 

compared to the solution from a commercial optimization solver.  It was found that in 

some cases, the heuristic achieves the optimal solution.  We believe that the results of 

this dissertation can be used a guideline for other researchers to further develop 

similar heuristics or apply them to other problems.   

 

1.6 Dissertation methodology 
This section addresses the dissertation methodology.  Figure 1.1 shows the 

dissertation methodology.   
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Figure 1.1 The research methodology 

 

1.7 Dissertation Organization 

The outline of this dissertation is as follows.  The relevant literature is 

reviewed in Chapter II.  In Chapter III, task-worker assignment assuming constant 

skill level is formulated and a heuristic to solve the problem and a performance 

measurement of the heuristic and the computational results is proposed. In Chapter 

IV, the task-worker assignment accounting for learning ability is formulated and a 

heuristic to solve the problem and a performance measurement of the heuristic and the 

computational results is proposed.  Finally, the conclusion and suggestions for future 

research are presented in Chapter V. 

 

Study the problem  

Use the mathematical model to find the 
optimal solution 

Formulate a mathematical model of the 
problem to minimize cycle time and 

minimize makespan

Conclusion and discussion  
 

Conduct computational experiments Conduct computational experiments 
 

Develop and improve heuristic for the 
problem to minimize cycle time

Develop and improve heuristic for 
the problem to minimize makespan



CHAPTER II 
 

LITERATURE REVIEW 
 

This chapter is organized as follows:  Firstly, a review of assembly line 

balancing problems, which consists of the problem description and solving method.  

Secondly, assignment problems which consist of the problem description, variations 

on assignment problems and a survey of problems related to worker assignment.  

Thirdly, a survey related to assembly line balancing problems and assignment 

problems with a constant skill level and finally, a survey related to assembly line 

balancing problems and assignment problems with learning ability.  

 

2.1  A review of assembly line balancing problems 

An assembly line consists of a series of workstations.  One objective in 

designing a flow line is to attempt to allocate equal amounts of work to each 

workstation (Wile, 1972).  This is known as line balancing.  The problem of line 

balancing is to distribute the total work content to the workstations in the line, such 

that idleness of resource at each station is minimized (Gavett, 1968).  The cycle time 

is the available time for an operator to complete his unit of work at his station.  The 

bottleneck workstation is the workstation in which work content is equal to the cycle 

time. 

 
2.1.1  Assembly line balancing problems 

The simple assembly line balancing problem (SALBP) is one of 

assigning the tasks to stations according to some criteria.  In the problem, the tasks 

have a precedence requirement, so the tasks cannot be processed in an arbitrary 

sequence.  All tasks must be processed.  The task processing time does not depend on 

the workstation, so the task processing time is same for an assignment at any 

workstation.  The total line is considered to be serial.  SALBP is designed for the 

mass-production of a single product.  Mainly, there are two types of simple assembly 

line balancing problems (SALBP).  The objective of SALBP-I is to minimize the 
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number of stations along the line and the cycle time is given.  The objective of 

SALBP-II is to minimize the cycle time or maximize the production rate and the 

number of stations is given (Baybars, 1986).  There are many generalized assembly 

line balancing problems which occur in a system with several products or different 

models and different line layouts.  For example, more than one worker operates the 

tasks or the parallel workstations.  Furthermore, the system has assignment 

restrictions.  For example, some tasks have to be assigned to the same workstation or 

incompatible tasks have to be assigned to different workstations. 

The problem addressed in this dissertation is the SALBP-II type.  Since the 

number of workers is known, we want to minimize the cycle time.  However, this 

problem in the study deviates from the original SALBP since workstations are non-

identical.  A worker who performs the tasks in a workstation has different levels of 

performance.   

 

The mathematical formulation of the SALBP-II problem is the following:  
 
Index 

 S       =  a set of workstations  , Ss∈      ,for  s  = 1,…, k      

J   =  a set of tasks       , Jj∈     ,for  j  = 1,…, o     

ARC  =  a set of arcs from(j, u) which is an arc from task j to u to symbolize 

that j is the immediate predecessor of u 

Parameter 

k   =  the number of workstations or the number of workers 

o   =  the number of tasks 

jt                    =  the processing time of task j  . 

Variable  

jsx   =    1 if task j  is assigned to workstation  s  

               0 otherwise 
Cycle              =        Cycle time 

 

Minimize    Cycle        (2.1) 

Subject to  

Cycle time constraint: 

{
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Cyclext
Jj

jsj ≤×∑
∈

      s∀   (2.2) 

1=∑
∈Ss

jsx        j∀   (2.3) 

∑∑
∈∈

×≤×
Ss

us
Ss

js xsxs       ARCuj ∈∀ ),( (2.4) 

Constraints 2.2 are to ensure that the cycle time is not exceed by the workstation time 

of any workstation.  Constraints 2.3 are to ensure that each task is assigned to just one 

station.  Constraints 2.4 represent the precedence constraints to ensure that no task is 

assigned to an earlier station than its predecessor.  

2.1.2  Solving the problems 

There are a variety of procedures for solving SALBP-I, whereas only a 

few procedures solved SALBP-II directly.  Most research has applied SALBP-I to 

solve SALBP-II by increasing the cycle time until a balance is achieved.  The initial 

lower bound or the minimal cycle time is determined, and then an assignment of tasks 

to workstations following the precedence constraints using SALBP-I method is 

applied.  The trial cycle time is successively increased until a feasible solution found.  

This procedure is called the iterated method (Baybars, 1986; Scholl and Klein, 1999; 

Scholl and Becker, 2006).  The search method starts with the lower bound, and the 

cycle time is successively increased by one until a feasible solution is found.  This is 

called the Lower Bound Method.  The lower bound can be determined by several 

methods. The lower bound (LB) for SALBP-II can be obtained by omitting the 

precedence constraints.  Let tmax be the maximum task time , tsum be the sum of task 

times for all tasks and k be the number of workers, LB = max {tmax,tsum/k}.  For 

another way to set the lower bound, Talbot and Patterson (1984) have restricted the 

possible assignment of each task to a station interval which is bounded by the concept 

of an earliest and latest station.  The lower bound is the minimal cycle time in which 

the earliest station is less than or equal to the latest station for all tasks.  Pastor and 

Ferrer (2008) developed a mathematical model for SALBP based on the concept of a 

feasible assignment from the earliest to latest interval.  Sprecher (1999) and Klein and 

Scholl (1996) have calculated the lower bound using different methods and selected 

the best lower bound among the results.   



 
 

 

11

Not only does the search start with the lower bound, but it also starts with the 

upper bound, and the cycle time is successively decreased by a step until a feasible 

solution is found or it equals the lower bound.  It is called the Upper Bound Method.  

Furthermore, the search can be in the interval [LB, UB].  This is called a binary 

search.  The interval is successively subdivided into two sub-intervals by selecting the 

mean value, (LB+UB)/2.  If a feasible solution is found, the UB is set to the 

maximum station time in the corresponding solution.  Otherwise, LB is set to c plus 

step.  These are the general search procedures applied in the previous research.  The 

exact algorithms for solving SALBP-II are based on the branch and bound principle.  

Furthermore, several rules were developed in order to reduce computation and 

improve the search process (Askin and Standridge, 1993). 

 For example, only maximal station loads have to be considered.  A station is 

termed maximal if no task can be assigned to it without violating the precedence and 

the cycle time constraints, i.e. a workstation should never close while “fittable” tasks 

remain.  A fittable task is an unassigned task that can be completed in the remaining 

idle time of the station.  Moreover, for the dominance rule, suppose there is a station 

where one of its tasks, u, could be feasibly replaced by a longer task, v, and all the 

successors of u must also follow v.  If v is substituted for u, the remaining workload is 

reduced without losing any possible sequence completions.  Suppose we have three 

tasks 1, 2, 3 with task time (2, 4, 2) respectively and task 1 and task 2 are completed 

before their successors task 3 can be started.  In this case, task 2 dominates task 1 

since task time of task 2 > task time of task 1 and all of task 1’s successors.  Let cycle 

time be c = 4.  If we place task 1 first, the solution is (1, 2, and 3).  The workstation 

time will be {2, 4, 2}.  However, if b is placed first, the solution is (2)(1,3). The 

workstation time will be {4, 4}.  The dominated task is ignored.  The solution is better 

than the previous solution.  The partial sequence that places the dominated task is 

fathomed.  The dominance rule is applied in many heuristics.  Furthermore, the bound 

violation is a rule that determines the upper bound of the largest workstation to which 

each task can be assigned.  After a workstation is assigned, the unassigned task is 

checked.  If any such task has an upper bound less than or equal to the order of the 

assigned workstation, then this partial solution is fathomed.   

Regarding the assembly line balancing problem, when the operation time for 

every task is different depending on who executes the task, Miralles, et al. (2008) 

applied branch and bound using the bound violation rule.  Finally, the rule of 
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excessive idle time is the rule that uses the total idle time to fathom the partial 

sequence.  Let the total idle time be k x c - tsum . Thus whenever the cumulative idle 

time exceeds k x c – tsum ,  the partial solution is fathomed. The fathom rule has been 

applied in many algorithms.  Furthermore, there are many researchers who have 

proposed heuristics for SALBP-II e.g. meta-heuristic ( Fatih Ugurdag et al.,1997; Liu, 

et al., 2008; Tasan and Tunali ,2008 ).  Liu, et al., (2008) proposed two-stage 

heuristics for SALBP-II.  First, the initial solution was determined then it was 

improved by swapping tasks among workstations. 

In this study, we are interested in applying the maximal station loads rule to 

limit the number of tasks assigned to a worker within the trial cycle time, then 

determine the feasible assignment from the alternative of the tasks.  After the groups 

of tasks are generated based on the maximal station load rule, the feasible assignments 

from matching the group of tasks that validate the assignment requirement are 

searched.  With this method, the number of the alternative groups of tasks will be 

reduced and the feasible solution will be generated. 

 The UB and LB will be developed.  To determine lower bound, we believe 

that the lower bound considering the precedence constraints is better than the lower 

bound omitting the precedence constraints. 

 

2.2  The assignment  problem 

 The classical assignment problem is to find a one-to-one match between n 

tasks and m agents; the objective is to minimize the total cost of the assignments.  The 

mathematical model for the classic assignment problem may be given as: 

Minimize  ij

m

i

n

j
ij xcz ∑∑

= =

=
1 1

 

 

  Subject to  

    1
1

=∑
=

n

i
ijx       nj ,...,2,1=   (2.5) 

 

    1
1

=∑
=

n

j
ijx         mi ,...,1=   (2.6) 
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    0=ijx   or   1 

;where xij = 1 if agent i is assigned to task j, 0 if not, and cij = the cost of assigning 

agent i to task j. 

2.2.1. Variations on the assignment problem 

Pentico (2007) and Burkard (2002) proposed a survey paper of the 

variation of assignment problems.  For example, an assignment problem that has 

variations in agent and objective, and an assignment problem with multiple tasks per 

agent, among others, were proposed.  

  2.2.1.1 Variations in agent  

   In practice, agents or workers have different skill levels.  The 

industry sets a rating for the workers e.g. A, B and C and only the worker who is 

qualified is allowed to perform a given task (Dell’Amico and Martello, 1997).  In 

assigning workers to machines, there are multiple alternatives in the assignment.  The 

assignment can involve only a subset of workers and machines to be assigned (Prins , 

1994). 

For the proposed assignment problem in this dissertation, we 

assume that the workers have different skill levels; however it is assumed that all 

workers should be assigned in the problem.  

2.2.1.2 Variations in objective  

The original minimizing total cost has been modified based on 

the situation.  For example, Martello, et al. (1984) have pointed out the problem of 

minimizing the difference between the maximum and minimum assignment values, 

which is called the balanced assignment problem.  In addition, Duin and Volgenant 

(1991) have proposed the minimum deviation by minimizing the difference between 

the maximum and average assignment costs. For example, in a cutting problem, the 

objective is to minimize the waste from cutting a standard size edge-piece down to the 

individual sizes.  
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The bottleneck assignment problem differs from the classic 

assignment problem in that the objective changes from minimizing the sum of the 

costs of assigning tasks to agents to minimizing the maximum of costs of the 

assignments.  An example of the bottleneck assignment problem from Lev and Weiss 

(1982) is as follows:  A foreman takes a four-person work crew from Philadelphia to 

Atlantic City in order to fix some equipment.  The four workers have the ability to use 

all machines.  Due to the different skill levels, the length of time will vary for each 

worker to fix each machine. The crew will return to Philadelphia together.  Therefore 

they will leave Atlantic City when the last crew member finishes.  Thus the foreman 

needs to assign the tasks so that the largest task time is minimized.  

The objective of the mini-max formulation is the same as the 

objective in the assembly line balancing problem.  It is applied to the Simple 

Assembly Line Balancing Problem (SALBP-II) with the objective of minimizing 

cycle time or minimizing the maximum workstation time (Scholl, 1999).  Generally, 

mini-max in time will be maxi-min in production rate.  Suer (1998) has proposed the 

maxi-min formulation to maximize the minimization of the assembly rate for 

designing parallel assembly lines.   

 

2.2.1.3 An assignment problem with multiple tasks per agent 

  There is one type of problem called the Generalized 

Assignment Problem (GAP).  In the model, an agent may be assigned more than one 

task.  The generalized assignment problem is the problem of assigning each task 

specifically to one agent, so the total cost of processing all tasks is minimized and no 

agent exceeds its resource capacity.  Applications of the GAP appear in many fields 

such as vehicle routing, fixed charge location problems, grouping and loading for 

flexible manufacturing systems, scheduling projects, allocating storage space, and 

designing communication networks. 

The GAP with m agents and n tasks can be formulated as an 

integer programming problem by defining the zero-one decision variables ijx , where 

ijx =1 if task j is assigned to agent i  , and ijx  =0 otherwise: 
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 Minimize ij

m

i

n

j
ij xc∑∑

= =1 1
 

 Subject to 

   iij

n

j
ij bxa ≤∑

=1
  mi ,...,1=   (2.7) 

   1
1

=∑
=

m

i
ijx   nj ,...,1=   (2.8) 

   { }1,0∈ijx   njmi ,...,1;,...,1 ==  
 

The GAP assumes that there is one resource available to the 

agents. Gavish and Pirkul (1986) have proposed the Multi-Resource Generalized 

Assignment Problem (MRGAP) which consumes several resources processed by the 

agents.  This problem has been applied to the distribution of petroleum products; for 

example, an oil company intending to minimize the costs of delivering petroleum 

products (super, unleaded petrol etc.).  Shtub and Kogan (1998) have presented an 

extension of MRGAP to the case where demand varies over time and capacity 

assignments are dynamic.  

For the proposed assignment problem in this dissertation, 

multiple assignments are allowed for a worker.  However it is different from GAP 

since the resource capacity is not limited.  Furthermore, this dissertation considers that 

the assignments should validate the precedence constraint. 

2.2.1.4 Others variations in assignment problems 

   Multi-dimensional assignment problems match the members of 

three or more sets.  For example, the problem could be matching jobs with workers 

and machines or assigning students and teachers to classes and time slots.  Franz and 

Miller (1993) have discussed the multi-period assignment problem for assigning 

medical residents and rotations at a teaching hospital.  The objective was to maximize 

the expressed preferences of the residents.  Kouvelis and Yu (1997) have presented a 

solution for the assignment problem which contains uncertainties. 
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2.2.2 Skill levels of workers and cross-training in assignment 

problems  
Workers have different skill levels according to experience, 

capability, knowledge and background.  Skill levels are represented by production 

rate, percent of efficiency and performance (Spragg et.al, 1999).  For an assignment 

based on the skill level, many researchers have defined skill level in different patterns.  

Hassamonts (2004) has set skill levels with ratings.  For example the “A” rate is the 

rate that a worker can complete a standard task at least 20% faster than the specified 

standard time.  Chan, et al. (1997) rated skill ranging from 0 (unskilled) to 1.5 (fully – 

skilled) which depends on the performance of the worker performing a sewing 

operation.  Song, et al. (2006) defined the operator’s efficiency as the ratio of the 

garment quantity of a piece finished by an operator divided by time.  The applications 

of skill levels also appeared in planning (e.g. workforce planning, staffing), promoting 

(evaluating performance of a worker), motivating workers and using data of 

assignment.   

For the flexibility of the production line, multi-skilled workers or 

cross-trained workers are required.  It is recognized as a tool for increasing production 

flexibility when addressing changes in demand, worker assignment, and absenteeism. 

Labor flexibility has a positive effect on operational performance indicators, such as 

the throughput time and the delivery performance of jobs (e.g. Treleven, 1989). 

Cross-training also increases the possibility that workers may help each other and 

share their workloads.  Moreover, cross-training can mitigate turnover because 

flexible workers can more easily replace the workers who leave, and can improve 

motivation.  For example, some cross-trained workers feel that they have experienced 

professional growth.  

Multi-functionality is a benefit for organizing the workforce (Zulch 

et al., 2004).  The multi-skilled worker applies both in the industry and service sectors 

e.g. power stations (Eitzen and Panton, 2004), production lines (Bokhorst et al., 2004), 

and hospitals (Brusco, 1998).  Furthermore, a manager or supervisor who has multiple 

skills may be set to be a floater to attend to the operation when it is backed up (Hopp, 

2004).  Farrar (1993) analyzed the potential performance and benefits achievable with 

a floater in serial production systems.   
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However, total flexibility of the workforce is not desirable in 

practical situations.  The requirement of training all workers for all machines would 

be very costly.  Moreover, a high level of labor flexibility may also involve 

considerable productivity loss due to the shift of workers between machines (Slomp et. 

al., 2005).  Wong, et al. (2005) studied the impact of the different levels of skill 

inventory of workers on the assembly.  The number of skills was investigated in order 

to find out the optimal number of task skills that an operator should possess in the 

apparel assembly process.   

Several researchers studied and developed cross-training policies in 

order to determine the distribution of workers’ skills.  Yang (2007) has compared a 

set of cross-training policies studying the different numbers of cross-trained workers 

(i.e. one, two, three or four from each department), additional skills per cross-trained 

worker, and additional machines (i.e. four workers / five machines having worker-to-

machine ratios 80%) to analyze the performance of the policies.  Inman (2005) has 

compared policies of total cross-training, reciprocal pairs (each cross-trained worker 

serving the paired unit) and chained cross-training (one worker trained some units 

linking the units in a chain).  Cross-training has been investigated by many 

researchers such as Brusco and Johns (1998) who studied characteristics of cross-

training policies in the number of work activity categories and the level of 

productivity.  Jordan, et al. (1995) have stated that chained cross-training results in a 

robust change in workload characteristics.  Inman, et al. (2004) applied chaining to 

cross-training assembly line workers to mitigate the impact of absenteeism. 

2.2.3 Surveys related to assignment problems 

Suer (1996) has addressed the problem of finding the optimal 

manpower assignment and cell loads simultaneously.  A single workstation, or “cell”, 

consists of a number of operators assigned to each task type.  A two-phase 

hierarchical method is proposed using two models of mixed integer and integer 

programming formulations.  The first model determines the alternative cell 

configurations in order to maximize the production rate.  The second model is to 

allocate worker assignment and load to cell to maximize the production of the cell and 

utilize the least number of workers.  Suer and Bera (1998) have expanded the 

previous models of Suer (1996) by allowing multiple products to be assigned to 
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multiple cells (lot-splitting).  This model does not address the operator’s skill level for 

each task.  

Nakade and Ohno (1999) have considered the optimal worker 

allocation problem in a U-shaped production line.  The multi-skilled worker operates 

multiple machines and visits each machine once for each unit of production.  They 

derived the lower bound of the number of workers under the required cycle time and 

proposed an algorithm for finding an optimal allocation of workers to machines in 

order to minimize the cycle time using the minimum number of workers.  

Nevertheless, they do not consider the worker allocation problem when there are 

different skill levels among workers.   

Slomp and Molleman (2002) have investigated the impact of cross-

training on team performance under conditions where there is a fluctuating demand 

and supply of human resources.  A task assignment heuristic is used for comparing 

the cross-training policies.  

Slomp and Bokhorst (2005) have proposed a model that considers 

trade-offs between training costs and the workload balance among workers in a 

manufacturing cell.  The integer programming model was proposed to calculate which 

workers have to be trained for which machines.  They used a bottleneck worker to 

determine workload balance.  The assumption of the problem is based on the idea that 

a bottleneck worker is used for determining the efficiency of the manufacturing cell.  

Futatsuishi, et al. (2002) addressed the problem of minimizing the 

total elapsed time from the start up time to the completion of a job in an environment 

where a single worker needs more than one skill and one task can be processed by 

several persons. 

Norman, et al. (2002) have proposed a model accounting for human 

skills. The skill levels of workers are permitted to change by providing them with 

additional training.  A mixed integer programming model to assign workers to tasks in 

manufacturing cells is proposed in order to maximize the effectiveness of the 

organization (function of productivity, output quality and training cost). 

Corominas, et al. (2006) have studied the assignment of tasks to the 

members of a multi-functional staff in a work center.  The problem focuses on service 

industries that train workers on every task.  The different tasks require varying levels 

of attention and responsibility.  The number of consecutive periods operated by 
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workers should fall within the specified interval limited by a minimum and a 

maximum number of periods working at each type of task.  

Campbell and Diaby (2002) have proposed an assignment heuristic 

for allocating cross-trained workers to multiple departments.  Each worker has 

different capabilities for working in each department.  

Caron, et al. (1999) have studied assignment with seniority and job 

priority constraints in the daily scheduling of nurses in a hospital.  

Askin and Chen (2006) have studied dynamic task assignment for 

throughput maximization with worksharing.  Two types of worksharing can be found: 

Dynamic assembly-Line Balancing (DLB) and Moving Worker Modules (MWN).  

MWM applications usually have more machines than workers.  Workers carry work 

pieces along the line within zones and share use of machines.  DLB matches machines 

and workers with some tasks assigned to a designated worker, which are called fixed 

tasks.  Other tasks can be performed by either of an adjacent pair of workers.  These 

are called shared tasks.  A worker chooses to either pass on a job with the shared task 

undone or complete the shared task, according to specific rules.   

 

2.3  Surveys related to assembly line balancing problems and 
assignment problems concerning constant skill level 

Although the integrated line balancing and worker assignment problems 

appear to have tremendous relevance in practice, there are few references indicating 

past research in this area.  Hassamontr (2004) proposed two-phased heuristics for 

assembly line balancing with operator’s skill and machine constraints, which is 

basically the approach described above.  The first phase assigns operations to 

workstations using standard times and the second phase assigns workers to 

workstations.  Wong, et al. (2005) developed a line balancing technique using Genetic 

Algorithms (GA) in which each worker has an efficiency factor related to skill level.  

The required number of workers is computed and worker assignments are then 

generated using GA.  Song, et al. (2006) proposed a recursive algorithm that first 

determines the number of workers for each task that is required, then identifies the 

skill(s) of each worker, and finally makes the assignments.         
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An extremely interesting paper by Miralles, et al. (2008) addresses grouping 

and assigning together considering worker skill.  Their approach uses mathematical 

programming along with a branch and bound solution procedure.  There are a number 

of key differences between this work and the problems under consideration here 

because their research focuses on designing a work environment that helps disabled 

workers develop capabilities where some workers cannot operate some tasks. Then 

Chaves (2009) proposed a hybrid meta-heuristic to solve the problem.   

Chen et al., (2009) addressed the problem of assigning tasks to workstations 

and assigning machines in the workstation in order to balance the load. However all 

machines are assumed to have the same performance.  Assignment restrictions have 

been added to the assembly line balancing problem.  Scholl, et al. (2010) examined 

the assembly line balancing problem with assignment restrictions including task 

restriction, resource restriction and workstation restriction.  For example, 

incompatible tasks must be assigned to different workstations and an assignment 

should not exceed the available space.  However, the difference in task processing 

times between workstations is not considered.  In regard to multi objectives, Zhang, et 

al. (2008) examined the problems of minimizing cycle time, the variation of workload 

and the total cost.  The problem is modelled in a non-linear approach and solved by a 

genetic algorithm.  Zhang and Gen (2009) formulated a non-linear model for mixed – 

model assembly line balancing and solved the problem using a genetic algorithm with 

the objective of minimizing cycle time, increasing the line efficiency and reducing the 

total cost.   

Corominas, et al. (2008) proposed a process of rebalancing a motorcycle-

assembly line considering two groups of workers: skilled and unskilled workers.  The 

skilled workers can perform all the tasks, whereas the unskilled workers can only 

perform a subset of tasks.  The unskilled workers will take longer to perform tasks 

than the skilled workers.  However, the study assumed that the task processing time of 

workers in the same group (skilled and unskilled) is equal.   
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2.4  Surveys related to assignment problems concerning 

learning ability 

Generally, people will learn and improve by repeating operations.  They will 

require less time to produce succeeding units.  This is learning behavior and can be 

studied and represented by a mathematical model (Wright, 1936, Dar-El, 2000).  

Learning is time-dependent.  In this dissertation, we focus on the Log-Linear model.  
Based on the Log-Linear model, if t1 and tn represent the task processing times of the 

first and the nth item, and use Ø in terms of learning slope, )2log/(log
1

φnttn ⋅= (Wright, 

1936).  The property of the learning phenomenon is that whenever the total quantity 

of units produced doubles, the time per unit to produce the unit decreases by a 

constant rate (known as learning rate) (Sumanth, 1985).  For example, if the time 

taken to produce the first unit is 10 hours, and if the learning rate is 80 percent, then 

the time taken to produce the second, fourth, eighth, and sixteenth units are as follows:   

Second unit = 0.8 × 10   = 8   Time units. 

Fourth unit = 0.8 × 8   = 6.4   Time units. 

Eighth unit = 0.8 × 6.4   = 5.12 Time units. 

Sixteenth unit = 0.8 × 5.12  = 4.096 Time units. 

 

In general, the percent rate of learning =  

Cumulative average/unit at a given level of production 
Cumulative average time/unit at half the given production level 

 
For example, time taken for eighth unit / time taken for fourth unit = 5.12/6.4 =0.8 

The learning curve is given by a hyperbola of the form:  

  tn = t1(n)s 

where  

  tn = time to produce the nth unit 

  t1 = time to produce the first unit 

  n = unit number 

  s =  slope of the learning curve when it is represented on the 

log scale 

    =  log of learning rate / log2  

    =  log r / log 2 : r = learning rate 
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Since learning rate (r) =  tn / tn/2  = 
s

s

nt

nt

)
2

(

)(

1

1  = (2)s 

Therefore,     
2log

log rs =  

,and               )2log/(log
1

φnttn ⋅=  

Many factors influence learning e.g. job complexity, the number of repetitions, 

previous experience and training (Dar-El, 2000).  Learning is addressed in many 

studies related to production e.g. scheduling (Mosheiov, 2001), assembly line 

balancing (Chakravarty, 1988), and allocation or worker selection (Nembhard, and 

Osothsilp, 2005).  Workers vary in learning which is affected by many factors: 

individual ability, individual variability, financial incentives, organizational norms 

and constraints, training and the nature of the social environment (Uzumeri and 

Nemhard, 1998).  Learning data can be kept and analyzed due to systems support.  

Many organizations have installed data acquisition systems to record detailed 

production and quality data to enable product tracking, quality control, and piece-rate 

wage tracking (Nemhard et al., 2000).  Moreover, computer technology allows 

organizations to record individual worker activities at shorter time intervals at a 

dramatically lower cost (Uzumeri and Nemhard, 1998).  Therefore, many researchers 

can examine the mathematical form for individual learning.  Examples of learning 

models are: log-linear, exponential function, and hyperbolic functions. 

Nemhard and Uzumeri (2000B) have categorized learning modeling into two 

broad areas: organizational learning and individual learning.  Organization learning 

research has focused on the overall implications of learning across large 

organizational units (Nemhard and Uzumeri, 2000B).  The organization learning 

curves use data that are aggregated across many individuals and many processes 

(Nemhard and Uzumeri, 2000B).  Individual learning research has examined the 

microstructure of the learning curve in order to understand the mechanisms by which 

learning occurs at the individual level (Nemhard and Uzumeri, 2000A).  The purpose 

of individual learning is to provide management the information that will give the 

assignment more efficient allocation with specific characteristics.  This study focuses 

on the individual learning of each worker.   
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Task complexity is a factor that affects the learning function.  Uzumeri and 

Nemhard (1998) have found that workers have variations in a task.  Workers learn 

more quickly in a location task (fixed location) than in a more difficult search task 

(randomized location) and it was also found that there were greater performance 

improvements in tasks performed in the order of “difficult to easy” than those 

performed in the order of “easy to difficult.”  Nembhard (2000) has studied the effects 

of task complexity on learning and forgetting.  The results indicate that task 

complexity significantly affects learning and forgetting rates. 

In a sewing process, three attributes of skill-complexity, which are method, 

machine and material, are involved.  The method consists of the sewing stitch, the 

length of the stitch, and the section of the unit that is assembled.  The machine 

consists of the type of equipment employed and the amount of automation relevant for 

the task.  The material consists of the specific grade, density, fiber type and accounts 

for whether the fabric is knitted or woven.   

Nembhard (2000) has also examined the effects of task complexity and 

experience on parameters of learning and forgetting in the garment industry.  The 

study found that the effect of task complexity on learning and forgetting parameters 

depends on the experience of workers.  Workers who have experience with the task 

method, machine, or material will learn more rapidly and forget more rapidly.  

Nembhard (2001) proposed a heuristic worker-task assignment policy by assigning 

the more rapid learners to the shorter production run tasks, and the more gradual 

learners to the longer production run tasks.  The results indicate that the heuristic 

method significantly improves overall productivity under empirically observed 

conditions and under many experimental conditions.  
Leopairote (2003) has investigated workforce flexibility in a labor constrained 

flow line system assuming that workers are heterogeneous with respect to learning-

forgetting effects.  The distribution of individual learning and forgetting behaviors 

was obtained from an automotive company.  The study focused on an unpaced and 

asynchronous flow line system and addressed selecting appropriate workers for the 

production lines.  The number of stations performed by each worker and level of task 

sharing are determined.  Workers are then assigned to stations and the worker 

schedule and rotation pattern over a production period is determined in order to 

maximize throughput of flow line.   
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Sayin and Karabati (2007) have proposed assigning cross-trained workers to 

departments.  This model has two objectives which are maximum utility and skill 

improvement.  The department utility is a function of departmental labor shortage. 

Two stages of optimization were studied.  The first stage of the model needs to 

maximize total departmental utility subject to typical assignment constraints.  The 

second stage of the model seeks to maximize total skill improvement by using the 

outcome of total utility value of the first stage as a parameter input in a constraint of 

the second stage model.  A worker must be allocated to a department.  One 

department allows many workers to work.  The skill level of each worker is modeled 

by a hyperbolic learning curve.  The research proposes that once a worker is assigned 

to a department, his skill levels should improve according to his individual learning 

curve and the improved skill levels are used for the assignment in the next period.   

The problem in this dissertation focuses on assigning the tasks to workstations 

when the tasks have a precedence requirement, which is the assembly line balancing 

problem.  Generally, the conventional assembly line balancing problem is designed 

for large batch problems, so the given processing time of the problem is the same for 

all units; whereas in an assembly line balancing problem for small batch problems, 

learning cannot be ignored (Karni and Herer, 1995).  Consequently, the objective of 

the conventional problem, which is minimizing the maximum workstation time, 

cannot be applied when learning is relevant since the bottleneck time dynamically 

changes based on the reduction of learning slope of an assignment.  For this reason, 

minimizing makespan or completion time is incorporated in this problem.  

 

An assembly line balancing problem with learning consideration is studied under 

different assumptions.  For example, the learning for all tasks is same (Toksari, et al. 

2008), learning depends on the task which is assigned (Chakravarty 1988; Karni and 

Herer 1995; Dar-El 1998; Cohen, Vitner et al. 2006), and learning depends on the 

worker who operates the task (Cohen, Y., 2008).  Furthermore, the processing time 

which represents learning behavior is set in different ways e.g. discrete (Karni and 

Herer,1995 ; Chakravarty, 1988) and continuous, (Cohen and Dar-El 1998 ; Cohen, 

Vitner et al. 2006 ; Cohen, Y., 2008) which is represented by a learning model.  

Moreover some studies assumed that tasks can be divisible (Cohen, Vitner et al. 2006 

and Cohen, Y., 2008), whereas others (Karni and Herer, 1995 ; Chakravarty, 1988 ; 

Cohen and Dar-El 1998 ) assumed the tasks cannot be split.   
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Regarding the production system, most previous studies focused on the 

assembly line which is a non-buffered system in which all units are transferred 

between workstations simultaneously based on the bottleneck station.  The upper 

envelope concept was developed and applied in the non-buffered system (Cohen, 

Vitner et al. 2006).  The upper envelope is formed by the largest workstation time 

value.  It represents the production rate of each stage.  Thus the makespan is the sum 

of the production times under the envelope.  For this reason, minimizing area under 

the envelope is minimizing makespan.  Cohen, Vitner, et al. (2006) and Cohen, Y. 

(2008) developed a method to determine the optimal assignment based on the upper 

envelope concept.  Cohen and Dar-El (1998) proposed an outline of a heuristic 

procedure to solve the problem.  The idea is that the flat learning slope will give the 

small slope in makespan value, so the heuristic will start with limiting the small slope, 

then determine the task-worker assignment which is valid for the allowance.  Using 

the total processing time of each task, an assembly line balancing technique is 

determined.  The allowance is re-adjusted in increments and solving the problem is 

repeated until a feasible solution is found.  In this dissertation, we focus on the 

buffered production line.  However, in previous studies, there is rarely research which 

focuses on the problem where a buffer is allowed in the system.   

 

2.5  Surveys related task-worker assignment in the garment 

industry  
Many researchers have studied problems in the garment industry.  Examples 

of research study are simulation modeling (Khan, 1999), assembly line balancing 

(Masaru, et al.,1981; Betts and Mahmoud, 1992; Chan, 1997; Hui and Ng; 1999), 

scheduling (Wong and Chan; 2001; Tomastik, 1996; Chen, et al., 1992), and 

allocation (Spragg, et al., 1999 and Hui et al., 2002). 

Hui and Ng (1999) have studied the effect of time variation for assembly line 

balancing.  They have reported that the time variance should be taken into 

consideration for improving the effectiveness of line balancing.  In real situations, 

there can be a wide variation in the average skill of workers.  A lot of factors cause 

variations in the operational time of the task such as the fabrics and sub materials, 

performance of the machinery, working environment and quality level of the product.   
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Betts and Mahmoud (1992) have studied assembly line balancing in the cloth industry 

for varying skill of workers.  They have stated that the problem of varying skill of 

workers has multiple optimum solutions that allow the line balancer increased 

flexibility in the choice of a particular solution.  Since the assembly line involves 

different operations being performed at different production rates, balance control is 

necessary to make sure that the right person is assigned the right task.  Chan, et al. 

(1997) have presented a Genetic Algorithm that can be used for solving the assembly 

line balancing problem in an effective manner to meet the realistic production 

conditions in which workers have arbitrary skill levels.  However, they assumed the 

skill levels at a constant production rate.  Moreover, they have allowed that a worker 

performs only one task and that a task can be assigned to only one worker. 

In practice, the performance of the assignment depends on the skill and 

experience of supervisors who are important for it to be successful.  Spargg, et al. 

(1999) have proposed a model accounting for a supervisor to monitor, analyze and 

repair production schedules; whereas, Hui, et al. (2002) have captured the knowledge 

of experienced supervisors and proposed a rule based system for determining the right 

number of operators to be moved in and out of a sewing section.  
 



CHAPTER III 
 

TASK-WORKER ASSIGNMENT ASSUMING 

CONSTANT SKILL LEVEL    

This chapter presents a problem of an integrate approach to assembly line 

balancing problem and worker assignment problem assuming constant skill levels of 

workers.  The remainder of this chapter is organized as follows.  A problem 

description and mathematical model are presented in Section 3.1- 3.2.  A heuristic to 

solve the problem is presented in Section 3.3.  A performance measurement of 

heuristic and the computational results are presented in Section 3.4.  The conclusions 

of this work and discussion are presented in Section 3.5.  

3.1 Problem description 

This problem concerns a flow shop where all job routings are identical and 

involve all workstations that are in series in the line.  A workstation consists of a 

worker who operates the assigned tasks.  An order includes i identical items must be 

processed through those tasks.  We consider the process that includes o tasks and k 

workers where o k≥ .  Workers with potentially multiple skills and different skill 

levels must be assigned to perform tasks.  Workers with multiple skills are allowed to 

perform more than one task as long as they are consecutive in the routing.  The 

differing skill levels of workers are reflected in different processing times for each 

worker on the same task.   

The problem is to jointly assign tasks so that the line is balanced and assign 

workers to those tasks.  To simplify the problem, artificial workstations are 

established to represent grouped tasks.  Tasks within the same workstation must be 

performed consecutively by the same worker.  Recall, some workers have multiple 

skills and can perform multiple tasks.  Since all workers must be assigned, the number 

of workstations must equals to the number of workers but the number of tasks can be 

greater than these because some workers can perform more than one task.  As a result, 

the decision becomes worker-workstation assignment.  
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Figure 3.1 refers to the earlier example of 5 tasks to 3 workstations and 

illustrated alternative assignment between workstations and workers.  For example, on 

the first row, tasks 1, 2, and 3 are assigned to workstation 1; the task 4 is assigned 

workstation 2; task 5 is assigned to workstation 3.  At the bottom of the Figure 3.1, 

alternatives of worker-workstation assignment are illustrated. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The solutions of grouping tasks to workstation and the assignment 

between workstations and workers. 
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 which is rather large 

for reasonably sized, practical problems. It is computed by the number of possible 

ways to group consecutive tasks to workstations multiplied by the number of possible 

assignment between workstations and workers.  Table 3.1 shows the number of 

feasible assignments or complexity of the problem.  The goal of the research is to 

develop a task-worker assignment where all tasks must be assigned to workers and 

each worker is assigned to at least one task.  If worker is assigned to more than one 

task, the length of time they spend on that group of tasks equal to the sum of the 
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processing time of those tasks.  The consecutive tasks are only allowed in case of the 

multiple assignments.  It is further assumed that there is unlimited buffer space 

between each workstation and the travelling time between workstations is zero. 

 
Table 3.1 The number of feasible assignments or complexity of the problem 

 

 

 

 

 

 

 

 

 

 

 

3.2 Model formulation 

The mathematical model presents below to determine which tasks 

{ j =1,…, o } and workers { w  =1,…, k } have to be assigned to the workstations { s  

=1,…, k }.  The model has one type of continuous decision variable and three types of 

binary decision variables.  The continuous variable is the objective function value or 

cycle time (Cycle ).  The binary decision variables relate to the assignments that are to 

determine whether the task is assigned in a workstation ( jsy ), whether the worker is 

chosen for a workstation ( wsr ).  And also the three dimensional variables, wjsa  

combine the assignment solution of both variables jsy and wsr  .  A number of 

constraints are formulated to ensure feasibility of assignment.  The first set of 

constraints is required to represent the calculation of cycle time or bottleneck time.  

The maximum processing time of workstation is examined to evaluate the cycle time.  

The second set of constraints involves worker – workstation assignment.  They are 

required to ensure that all workers must be assigned to operate tasks in a workstation.  

The last set of constraints involves task – workstation assignment.  They are required 

No. No. complexity(1) complexity(2) (1)*(2) 
Worker Task of grouping assignment Complexity of the problem 

3 5                               6                            6                                                    36 
5 10                           126                         120                                               15,120 
5 15                       1,001                         120                                             120,120 
5 20                       3,876                         120                                             465,120 
6 18                        6,188                         720                                          4,455,360 
6 24               33,649                         720                                         24,227,280 
7 21                38,760                      5,040                                       195,350,400 
7 28               296,010                      5,040                                     1,491,890,400 
8 24              245,157                    40,320                                     9,884,730,240 
8 32            2,629,575                    40,320                                 106,024,464,000 
9 24 490,314   362,880                                 177,925,144,320 
9 32            7,888,725   362,880                               2,862,660,528,000 

12 36         417,225,900 479,001,600 199,851,873,661,440,000 
12 48     17,417,133,617 479,001,600 8,342,834,869,956,790,000 
15 45    114,955,808,528 1,307,674,368,000 150,324,764,264,781,000,000,000 
15 60 13,298,522,298,180 1,307,674,368,000 17,390,136,741,606,400,000,000,000 
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to ensure that all tasks are grouped and assigned to workstations.  The MIP model for 

this problem will be defined using the following notations (Table 3.2): 

 

 
Table 3.2 Notations  

_____________________________________________________________________ 

Index 

 S       =  a set of workstations  , Ss ∈      ,for  s  = 1,…, k      

J   =  a set of tasks       , Jj ∈     ,for  j  = 1,…, o     

W   =  a set of workers       , Ww∈   ,for  w = 1,…, k  

Parameter 

k   =  the number of workstations or the number of workers 

o   =  the number of tasks 

wjP                    =  the processing time it takes worker w to complete task j. 

 

Variable  

wjsa             =    1 if task j  is assigned to worker w  in workstation  s  

          0 otherwise  

jsy   =     1 if task j  is assigned to workstation on s  

                   or to any workstation on the preceeds s  

              0 otherwise  

wsr   = 1 if worker w is assigned to workstation on s  

0 otherwise  

Cycle   = Cycle time 

_____________________________________________________________________ 

 

 

 

 

The model, then is a follow: 

Minimize    Cycle        (3.1) 

Subject to  
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Cycle time constraint: 

CycleaP wjs
Ww Jj

wj ≤∑∑
∈ ∈

    s∀       (3.2) 

 

Worker – workstation assignment constraint: 

1wjs
j J s S

a
∈ ∈

≥∑∑     w∀     (3.3) 

ws
Jj

wjs roa ×≤∑
∈

   w∀  , s∀    (3.4) 

1=∑
∈Ss

wsr     w∀     (3.5) 

1=∑
∈Ww

wsr     s∀     (3.6) 

Grouping task – workstation assignment constraint: 

1=oky          (3.7) 

jssj yy ≤+  1     11 −≤≤ Jj   , s∀   (3.8) 

1 +≤ sjjs yy     j∀   , 11 −≤≤ Ss   (3.9) 

∑
∈

=
Ww

wjj ay 11     j∀       (3.10) 

∑
∈

− =−
Ww

wjssjjs ayy 1    j∀   , Ss ≤≤2              (3.11) 

(0,1), (0,1), (0,1), 0wjs js wsa y r Cycle∈ ∈ ∈ ≥  
 

The objective function (3.1) minimizes cycle time.  Constraints (3.2) 

determine the cycle time which is the sum of the processing times of the workstation 
in which tasks are assigned.  Constraints (3.3) through (3.6) relate worker assignments 

to workstations.  Constraints (3.3) force all workers to be assigned to at least one task.  

Constraints (3.4) ensure that if a worker is assigned to the tasks at a workstation, he or 

she must be assigned to that workstation while constraints (3.5) and (3.6) deal with 

the required one to one assignment between workers and workstations.  Constraints 

(3.7) through (3.11) are focused on grouping tasks and assigning them to 

workstations.  Constraints (3.7) through (3.9) force a structure on the task-workstation 

assignments: (3.7) assigns the last task o to the last workstation k , (3.8) forces the 

required precedence relationships among the tasks in the y variables.  That is, if 
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1 1 =+ sjy  then 1=jsy .  (e.g., If 53 1y = , then 43 1y = and, in turn, if 43 1y = , 

then 33 1y = .)  Similarly, (3.9) forces the correct structure for the precedence 

relationships on the workstations: if 1jsy =  then 11 =+sjy  (e.g., if 11 1y = , then 

12 1y = and since 12 1y = then 13 1y = ).  Constraints (3.10) and (3.11) ensure that a task 

cannot be split among workers; thus, each task will be assigned to only one worker. 

To illustrate how these variables are interpreted, consider the 5 task, 3 

workstations example discussed previously.  The solution on the first row of Figure 

3.1 would be represented in the model as 1 [1  1  1  0  0]Ty =
r , 2 [1  1  1  1  0]Ty =

r  and 

3 [1  1  1  1  1]Ty =
r .  To interpret these vectors, 11 21 31 1y y y= = =  in 1

Tyr means that 

tasks 1, 2 and 3 are grouped and assigned to workstation 1. For the other 2 

workstations (s= 2 and 3), the assignments are determined by 1 −− sjjs yy  for each j.  

So, for example, 2 1 [0  0  0  1  0]T Ty y− =
r r  means that task 4 is assigned to workstation 

2.This is how the constraint set restricts consecutive tasks to the same workstation.  It 

is proposed by Glass and Herer, 2006. 

 

3.3 Heuristic description and numerical example 

The proposed heuristic for finding a solution to this problem involves two 

steps: first, tasks are grouped and, then, the problem is transformed into an assignment 

problem between the groups of tasks and workers.  As noted earlier, there are a very 

large number of possible task groupings and this is critical to the quality of the 

solution, so developing a methodology to generate groups of task efficiently is one 

focus of this research.  The proposed methodology starts by determining the upper 

bound (UB) and lower bound (LB) of the cycle time.  A trial value between UB and 

LB is set to be an upper limit of group size.  Then, consecutive tasks are grouped base 

upon the maximal station load rule.  Once tasks are grouped, the problem becomes an 

assignment problem between workers and groups of tasks.  Figure 3.2 illustrates an 

overview of the heuristic. 
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Figure 3.2 The overview of the heuristic 
 

The grouping methodology is now presented as a step by step procedure and then 

computational experiments are provided. 

Step1: Generate initial values 
For LB ,UB

Step 2: Set a trial value: 
0.5×UB + 0.5×LB

Step 3: Determine the 
possible groups of tasks 
based on the maximal rule  

Step 4: Assign the group of 
tasks to workers

Step 5: 
Is solution feasible? 

Compute cycle time and 
update UB

Is solution good enough?  
UB-LB  <  linit 

Stop 

Update LB 

No

No 

Yes

Yes
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 Step 1:  Generate the initial UB and LB 

To determine the LB of the cycle time, the processing time of the fastest 

worker who performs each task is used to represent the processing time of that task.  

The tasks are assigned to the workstation as in SALBP-II which can be solved by an 

exact algorithm to minimize cycle time.  Groups of tasks are obtained once the LB is 

found.  All precedence constraints are considered to determine the LB.  It should be 

noted that since the LB is obtained using the processing time of the fastest workers, it 

may not feasible when all workers are assigned. 

To illustrate, again consider our 5 task, 3 worker example.  The minimum 

processing time of each task is {2, 1, 1, 2, 2} which is the time of the fastest worker 

for each of the 5 tasks.  To minimize cycle time using the exact algorithm, the tasks 

are grouped for the 3 workers as {1 and 2, 3 and 4,5} with corresponding workstation 

time of {3, 3, 2}.  The initial lower bound is max{3,3,2} = 3.  However the assigned 

worker solution is {B, C, C}, which is infeasible.   

 

The initial UB is defined as a feasible solution.  This is achieved by a one to 

one assignment between the groups of tasks from LB and workers.  This assignment 

is not an original assignment problem since the objective is to minimize the maximum 

workstation time or cycle time; therefore, a mathematical model of the problem is 

formulated.  This solution will be the initial feasible solution and the cycle time will 

be the initial UB.  In the example, the initial UB is max {3, 3, 5} = 5 with solution 

task grouping {12, 34, 5} executed by worker assignment {B, C, A}. 

Step 2:  Set the “trial value” of the cycle time 

Once the LB and UB are determined, a trial value is set.  A trial value is chosen to be 

the bound on the cycle time for generating groups of tasks.  This can be done in any 

number of ways as long as it is between the LB and the UB so it can be though of as 

the liner combination of the two, Bt = �×LB + (1-�)×UB, 0 1α≤ ≤ .  For example, 

other research that uses this general approach frequently begins with the midpoint, 

�=0.5.  This parameter will certainly have an effect on how efficiently the algorithm 

finds a high quality solution as well as the computation time of the algorithm so it is 

adjusted for specific situations using computational experimentation to achieve the 

desirable balance for the decision maker. 



35 

Step 3:  Determine the groups of tasks 

A fundamental property associated with optimal solutions of this class of problems is 

that the consecutive tasks will be grouped with the maximum group size and without 

exceeding the current trial value.  This idea is the foundation behind this step in the 

heuristic because groups of tasks will only be generated based on the maximal station 

load rule.  With this method, the number of the groups of tasks will be reduced and a 

feasible solution will be generated. 

This idea is implemented by using the maximal station load rule to generate 

groups of tasks for that workstation.  Tasks are added sequentially until the trial value 

is exceeded; that is, only the groups that have a cycle time (e.g, the sum of task 

processing time) within the trial value is considered.  Referring back to our 5 task, 3 

worker example, if LB = 3, UB = 5 and � = .5, the first trial value is 4.  The possible 

groups of tasks based on the rule of worker A are {task2}, {task3} and {task4}. 

Worker A cannot operate task number 1 since his or her processing time of this task is 

5 which is greater than 4.  Using this logic, the possible groups of tasks for worker B 

are {task1, task2}, {task2}, {task3}, {task4, task5} and {task5}.  Worker B cannot 

perform task 1 alone because the his or her processing time is below the LB so tasks 1 

and 2 are grouped (processing time 3 seconds) which is above the LB and below the 

trial value.  Therefore the first task groups for worker B is {task1, task2}.  The 

possible groups of tasks for worker C are {task2, task3}, {task3, task4},{task4, task5} 

and {task5}.   

  

Step 4:  Determine the assignment between the possible groups of tasks and workers 

 

The tasks, the worker who performs the tasks and sizes of the possible groups of tasks 

are transformed in parameters so the assignment between the possible groups of 

tasks ),...2,1( Gg =  and workers is obtained from the following mathematical model 

with the objective of minimizing cycle time. 
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Inputs 

⎩
⎨
⎧

=
                                   otherwise 0 

  groupin  assigned is  task if  1 gj
bjg  

⎩
⎨
⎧

=
                                                     otherwise 0 
  groupin   tasks theoperates  worker if  1 gw

rwg  

geg  group of size group  =  

 

Variables  

  
⎩
⎨
⎧

=
                    otherwise 0 

 selected is  group if  1 g
xg  

 

Minimize  Cycle              

Subject to   

 1=∑
∈

g
Gg

jg xb                j∀                                            (12)      

  1=∑
∈

g
Gg

wg xr    w∀       (13) 

 Cyclexe gg ≤     g∀         (14) 

 0),1,0( ≥∈ Cyclexg  

For example, 
jgb = 

 

 

 

 

wgr = 

 

 

ge = 

 

 

Group  1  2  3  4  5  6  7  8  9  10  11  12 
j=1  1  0  0  0  0  0  0  0  0  0  0  0 
j=2  1  1  1  1  0  0  0  0  0  0  0  0 
j=3  0  0  0  1  1  1  1  0  0  0  0  0 
j=4  0  0  0  0  0  0  1  1  1  1  0  0 
j=5  0  0  0  0  0  0  0  0  1  1  1  1 

Group  1  2  3  4  5  6  7  8  9  10  11  12 
A  0  1  0  0  1  0  0  1  0  0  0  0 
B  1  0  1  0  0  1  0  0  1  0  1  0 
C  0  0  0  1  0  0  1  0  0  1  0  1 

Group  1  2  3  4  5  6  7  8  9  10  11  12 
   3  3  1  3  4  4  3  2  4  4  2  2 
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gx = 

cycle =  4 

 

Step 5:  Check the feasibility of the solution 

 

In this step, the UB or LB is altered based on the previous results to reduce the search 

space for the next iteration.  If a feasible solution is found using the trial value, the 

UB is set to the maximum workstation time in this feasible solution.  If not, the LB is 

set to the trial value.  After the UB or LB is updated, the heuristic will check the gap 

between UB and LB.  The search stops when a gap, UB- LB, is less than a predefined 

amount. 

Back to our example, a feasible solution can be obtained from the task groups 

identified in Step 3.  The assignment is {task1, task2} for worker B, {task3} for 

worker A and {task4, task5} for worker C.  The cycle time of the assignment is 

max{3,4,4}=4. Since the solution is feasible, UB is set to 4.  For LB=3 and UB=4, the 

next trial value is 3.5.  After groups of tasks are generated and the assignment 

problem is solved, no feasible solution is found. Hence, LB is set to 3.5.  If the 

stopping criteria is for the gap size to be 1 or less, the heuristic stops because UB – 

LB < 1 and the minimal cycle time from the heuristics is 4. 

3.4 Performance measurement of heuristic 

3.4.1 Testing problem  

The computational experiments are designed to exercise the model and 

heuristic in a way that illustrates some of the features of each as well as gain some 

insights that numerical examples can provide.  Normally in a modular production in 

the garment industry, the number of workers is between 6 and 15. The problem 

parameters were chosen to reflect a realistic situation in the garment industry.  In this 

testing, the number of tasks was three times to four times the number of workers, 

since generally in the garment industry a worker is assigned less than three to four 

tasks.  The experiments set the number of workers at 8, 12 and 15 and the number of 

tasks at 3 times and 4 times the number of workers.  Hence, there are six problem 

sizes: 8 workers with 24 tasks (8w24t), 8 workers with 32 tasks (8w32t), 12 workers 

pattern  1  2  3  4  5  6  7  8  9  10  11  12 
   1  0  0  0  1  0  0  0  0  1  0  0 
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with 36 tasks (12w36t), 12 workers with 48 tasks (12w48t), 15 workers with 45 tasks 

(15w45t) and 15 workers with 60 tasks (15w60t).  For each problem size, an 

experiment was run with the standard processing times and skill of the workers set at 

two levels.  The standard processing times of each task are generated randomly on the 

intervals [1, 10] and [1, 30] according to a uniform distribution.  The skill level of 

workers is generated on the intervals [-20%, 20%] and [-50%, 50%] also according to 

a uniform distribution.  The skill level of worker is the percentage deviation of the 

task processing time from the standard processing time.  Each standard processing 

time intervals are paired with both skill level intervals for each combination of 

workers and tasks, so there are 4 tests for each problem size.  For example, if the 

standard processing time of task1 is 10 and the skill level of worker A is 20%, so the 

task1’s processing time of worker A becomes 12.  5 replications are used in each test 

meaning that the processing times and skill levels were randomly generated 5 times 

for each number of tasks and workers.  All algorithms have been implemented using 

C++ a PC with an Intel CoreTM2 Duo 2.00 GHz CPU and 1.93 GB of RAM. All 

mathematical programs were solved using the AMPL CPLEX 8.0.  There are 4 tests 

for each problem size, 20 replicates for a problem size, 8 worker and 5 replicates for 

12 workers and 15 workers as shown in Table 3.3.   

Table 3.3 Problem Size 

Problem 

Code 

Number of 

Worker 

Number of 

Task 

Instances CPLEX Sol. 

8w23t 8 23 20 Optimal Sol. 

12w36t 12 36 20 Limit time* 

15w45t 15 45 20 Limit time*  

8w32t 8 32 20 Optimal Sol. 

12w48t 12 48 20 Limit time* 

15w60t 15 60 20 Limit Time* 

     

Note     * Limit time = 54,000 sec. or (15 hours)  
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3.4.2 Computational experiments 

The computational experiments are designed to exercise the model and 

heuristic in a way that illustrates some of the features of each as well as gain some 

insights that numerical examples can provide. Normally in a modular production 

system in the garment industry, the number of workers is between 6 and 15.  The 

problem parameters were chosen to reflect a realistic situation in the garment 

industry.  In this testing, the number of tasks was three times to four times the number 

of workers, since generally in the garment industry a worker is assigned less than 

three to four tasks.  The experiments set the number of workers at 8, 12 and 15 and 

the number of tasks at 3 times and 4 times the number of workers.  Hence, there are 

six problem sizes: 8 workers with 24 tasks (8w24t), 8 workers with 32 tasks (8w32t), 

12 workers with 36 tasks (12w36t), 12 workers with 48 tasks (12w48t), 15 workers 

with 45 tasks (15w45t) and 15 workers with 60 tasks (15w60t).  For each problem 

size, an experiment was run with the standard processing times and skill of the 

workers set at two levels.  The standard processing times of each task are generated 

randomly on the intervals [1, 10] and [1, 30] according to a uniform distribution.  The 

skill level of workers is generated on the intervals [-20%, 20%] and [-50%, 50%] also 

according to a uniform distribution.  The skill level of worker is the percentage 

deviation of the task processing time from the standard processing time.  Each 

standard processing time intervals are paired with both skill level intervals for each 

combination of workers and tasks, so there are 4 tests for each problem size.  For 

example, if the standard processing time of task1 is 10 and the skill level of worker A 

is 20%, so the task1’s processing time of worker A becomes 12.  5 replications are 

used in each test meaning that the processing times and skill levels were randomly 

generated 5 times for each number of tasks and workers.  All algorithms have been 

implemented using C++ a PC with an Intel CoreTM2 Duo 2.00 GHz CPU and 1.93 GB of 

RAM. All mathematical programs were solved using the AMPL CPLEX 8.0. 

3.4.2.1 The performance of UB and LB of the heuristic  

The initial UB and the initial LB are obtained by the heuristic 

given in Section 3.3.  As mentioned, we expect the range between the initial UB and 

initial LB is in short-range.  The experiment is designed to investigate the effect of the 
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factor of the variation of skills of worker on the quality of the initial UB and the initial 

LB.  The average on the difference between initial UB and initial LB is presented in 

Table 3.4.  

Table 3.4 The difference between the initial upper bound and initial lower 

bound. 
Processing Skill   Problem    

Time Level 8w24t 8w36t 12w36t 12w48t 15w45t 15w60t

U[1,10] U[-20,20] 1.7947 2.2831 1.3490 2.4396 1.4325 2.2299

U[1,10] U[-50,50] 7.7667 13.4670 9.5528 14.2486 10.1590 13.5106

From the data obtained in Table 3.4, it is found that when the 

skills of worker is vary in high level, the interval [-50,50], the difference between the 

initial UB and initial LB is higher than its when the skills of worker is vary in low 

level, the interval [-20,20].  The search space of the trial bound will be increased 

when skills of worker vary in high level. 

3.4.2.2 The parameters applied in the heuristic 

There are two parameters associated with the heuristic: the gap 

between UB and LB that will serve as the stopping criterion and the weights to be 

placed on the upper and lower bounds for determining the trial value.  It is anticipated 

that the value of the gap that terminates the heuristic affects the trade-off between the 

quality of the solution and the computational time.  When the gap size is small the 

quality of the solution will be better but the computation time will be longer because 

of the increased number of iterations.  With wider gaps the reverse is seen.  As 

mentioned previously, experimentation is one way to set these parameters at levels 

that are acceptable to the decision maker.  As such, an experimental study was 

conducted with the gap between UB and LB at four levels, (0.001, 0.003, 0.03, and 

0.3).  The weights associated with the UB and LB correspond to α = .8, .5, .2 and .1 

meaning the ratio of the UB:LB weights are (20:80, 50:50, 80:20, 90:10).  For 

example, 90:10 ratio places the trial value 10% of the interval below the UB.  This is 

strictly trial and error because the sole purpose here is to determine suitable 

parameters to use in the heuristic for the experimental comparisons.  The experiments 



41 

were performed on problem 8w24t and the measures that were recorded were 

computational time and quality of the solution.  Quality is measured by the 

normalized difference between the heuristic solution and the CPLEX obtained optimal 

solution using: 

 

 Heuristis solution - Optimal solution% Difference = 100
Optimal solution

×  

 

 Figure 3.3 indicates that more weight on the UB leads to shorter computational times 

for all stopping criteria conditions although the difference is not very dramatic 

because the computational time is rather short for a 30% gap.  Regarding solution 

quality, Figure 3.4 shows that all gaps except 30% found the optimal solution to this 

problem.  As such, we selected a 90:10 weight ratio and a gap of 0.03 in an effort to 

achieve a good solution rather quickly. 

 
 

 

Figure 3.3 The computational time when weight between UB LB are varied(sec.) 
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Figure 3.4 The percentage difference of cycle time between heuristic and exact 

solution (%) 
 

As expected, the ability to find a high quality feasible solution 

depends on the position of trial value.  In these experiments, it is noted that the 

optimal solution was found routinely with and rather quickly with most of the weight 

on the UB so we hypothesize that the UB in the heuristic is very good.  It would take 

extensive experimentation to generalize this over wide range of situation; however, in 

these experiments this is true. 

3.4.2.3 The computational time and the quality of the solution of 

the heuristic 

The computational time of the heuristic is compared to the 

computational time of optimal solution which is found by solved the mathematical 

model presented in Section 4 using CPLEX.  The run time of the problem is limited to 

15 hours (54,000 sec.) and the results are presented in Table 3.5.  Blank entries 

indicate that no optimal solution is found within 15 hours.  For the problem with 8 

workers, the optimal solution can be found for all tests whereas for the problem with 

12 workers, the optimal solution is only found by CPLEX in certain cases so the 

average run time is calculated from the cars where the optimal solutions were found 

within 15 hours.  For 15 workers, CPLEX could not find the optimal solution for any 

cases.  As expected, the computational time of the heuristic is significantly lower than 
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the time to find the exact solution and even for larger problems the computing time 

was less than 10 seconds. 

Table 3.5  The computational time of the heuristic and exact solution (sec.)     
Test 8w24t 8w36t 12w36t 12w48t 15w45t 15w60t 
       
Run time  : Optimal 
(sec.) 

2115 7549 25,026 41,582  -  - 

Run time  : 
Heuristic(sec.) 

1.156 1.520 2.189 3.983 4.375 9.105 
             

 

Figure 3.5 compares the computational time of the heuristic versus different skill 

levels of the workers.  It can be seen that computational time is dramatically higher 

when the variability of the skill levels is high., that is, the skill levels are generated 

using the broader uniform distribution between [1, 50].  The high variation of skill 

level results the big difference between UB and LB since the fastest worker in the 

high variation of skill level reflects the lower LB.  The number of search increases 

when the difference between UB and LB is high.  With the reason the computational 

time increases. 

 

Figure 3.5 Computational time of the heuristic when the skills of worker are 

varied 
 For the quality of solution, % difference is used as described in 

earlier.  For problems 8w24t and 8w32t, the heuristic found the optimal solution in 

almost all cases.  Since the optimal solutions was rarely found by CPELX within 15 
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hours for problems with 12 and 15 workers, the  comparison is made between the best 

know solution from CPLEX and the heuristic.  As can be seen in Figure 3.6, the 

heuristic solution is better than the best solution from CPLEX for all the cases.  

Furthermore, the difference between the best found solution and the optimal solution 

increases when the problem size increases and especially when skills of workers vary 

in high level as shown in Figure 3.6.  The heuristic works well comparied to CPLEX 

when the problem size increase. 

 

 
 

Figure 3.6 The percentage of the difference between the optimal or the best 

found solution and the heuristic solutions(%) 

3.4.2.4 Comparison with the heuristic in practical application  

A final set of experiments is conducted to compare the solution 

quality found using the proposed heuristic solution to the solution quality found by 

applying the 2-stage heuristic commonly found in the Thai garment industry that has 

been outlined earlier in this paper.  For comparison, a slight modification to the 

previous percentage difference is made: 

 2-stage solution - Heuristic solution%Difference =  100
Heuristic solution

×  

The skill levels of the workers are distributed uniformly in four intervals for these 

tests: [-10,10], [-20,20], [-30,30], [-50,50].  Figure 3.7 displays the results and they 

are very interesting.  The 2-stage heuristic is less than 5% worse that the proposed 
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heuristic when the deviation of skills of worker is small (e.g., generated by the [-

20,20] interval).  The performance degrades to 10-15% when the deviation of skills of 

worker increases as reflected in a generation interval of [-30, 30] and the degradation 

is dramatic in the highest level of variance, increasing to 25-40%.  We submit that this 

degree of error in labor intensive industries where competitive position can be lost 

with small decreases in efficiency, it is important for decision makers to consider 

using an integrated approach such as this proposed algorithm. 

 

 

Figure 3.7 The comparison of the percentage difference between the proposed 

heuristic and a 2-stage heuristic solutions 

 
3.5 Conclusion  

This chapter has proposed a problem of an integrate approach to assembly line 

balancing problem and worker assignment problem assuming constant skill levels of 

workers.  The problem with the objective to minimize cycle time is modeled.  For 

solving the problem, a heuristic is developed.  The lower bound and upper bound are 

determined.  The binary search is modified to determine the sequence of trial cycle 

time.  The heuristic groups the tasks based on the maximal station load rule within a 

trial value limit.  Then, an assignment between the groups of tasks and the workers is 

performed. 
 The effectiveness of the heuristic is evaluated in term of computational time 

and quality of solution compared to the optimal solution.  Moreover, the proposed 
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heuristic is compared to the 2-stage heuristic in term of the quality of solutions.  It 

confirms the disadvantage if the 2-stage heuristic is applied when the skills of worker 

vary highly.  

 



CHAPTER IV 
 

TASK-WORKER ASSIGNMENT TAKING INTO 
ACCOUNT LEARNING ABILITY 

This chapter presents a problem of an integrated approach to assembly line 

balancing and worker assignment taking into account learning ability of workers.  The 

remainder of this chapter is organized as follows.  A problem description and 

mathematical model presented in Section 4.1- 4.2.  A heuristic to solve the problem is 

presented in Section 4.3.  The detail of the heuristic and a numerical example shows 

in Section 4.4.  A performance measurement of heuristic and the computational 

results will be presented in Section 4.5.  The conclusions of this work and discussion 

are presented in Section 4.6.  

 

4.1 Problem description 

This problem concerns an assembly line which is a set of sequential 

workstations.  Buffer spaces are set up between workstations.   A workstation consists 

of a worker who carries out assigned tasks.  An order includes i, which are identical 

items that must be processed along the same route pass through all workstations. This 

problem assumes that the workers have multiple skills and are able to do more than 

one task.  The skill levels of workers differ; therefore, workers’ processing time vary. 

 Moreover, workers have different learning abilities, i.e. the processing time of 

the succeeding item being shorter than the preceding item.  In the problem, the 

processing time of each worker for each item is based on the skill level and learning 

of the worker.  Table 4.1 provides an example of processing time applied in the 

problem. 
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Table 4.1 The processing times of 5 tasks, 3 workers (A, B, C) and 3 items (sec.) 

 

 

 

 

 

 

 

 

 

We want to establish worker assignments where all tasks must be assigned to 

workers.  Each worker is assigned to at least one task.  Since it is assumed that the 

number of tasks is greater than the number of workers, some workers can perform 

multiple tasks.  Only consecutive tasks are allowed in the multiple assignments to 

smooth out the line.  If a worker is assigned to more than one task, the worker 

processing time is determined by the sum of the processing time of all tasks that s/he 

performs.  For example, if task 1 and task 2 are assigned to worker A, then the task 

processing times are 7, 6, 4 for items 1, 2, and 3 respectively.  Tasks cannot be split.   

This problem is also based on the following assumptions: 

      1) The other learning factors among the tasks at the same workstation are not 

considered such as the task similarity.   

      2) There is unlimited buffer space between each workstation.  The objective is 

to minimize the makespan, which is the completion time of the last item of the last 

task.  The problem is formulated in an integer linear programming model. 

The objective is to minimize the makespan which is the completion time of the 

last item of the last task.  Figure 4.1 illustrates makespan from an assignment solution 

Worker   A  items 1  items 2  items 3  
Task 1  4  4  3  
Task 2 3  2  1  
Task 3 7  4  4  
Task 4 2  1  1  

Task 5 4  4  3  

Worker   B items 1  items 2  items 3  

Task 1  5  4  3  

Task 2 3  3  2  

Task 3 6  6  4 

Task 4 3  1  1  

Task 5 5  4  2  

Worker   C  items 1  items 2 items 3 

Task 1  4 2  2  

Task 2 4  2  2  

Task 3 7  6  5  

Task 4 2  2  1  

Task 5 6  2  2  
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i.e. the solution of assignment i.e. worker A – operation 1 and 2, worker B – operation 

3 and worker C – operation 4 and 5. 
 

 

 

 

 

 

  

Figure 4.1 Makespan from an assignment solution 

4.2 Model formulation 
 

The mathematical model presented below determines which tasks 

{ j =1,…, o } and workers { w  =1,…, k } are assigned to the workstations { s  

=1,…, k }.  Workers must complete all items { m =1,…, i } with the minimum 

completion time.  The model uses three types of continuous decision variables and 

three types of binary decision variables.  The continuous variables relate to the 

objective function value or makespan ( maxC ), the processing time ( msq ), and 

completion time ( msπ ) of items m  in workstations s .  The binary decision variables 

relate to the assignments that are to determine whether the task is assigned to a 

workstation ( jsy ), whether the worker is chosen for a workstation ( wsr ), and also the 

three dimensional variables, wjsa  which combine the assignment solution of both 

variables jsy and wsr .  Different types of constraints are formulated to ensure feasibility 

of assignment.  The first set of constraints represents the mechanism of the flow line 

in which all items follow the same sequence of operations.  The processing time of 

tasks was used to evaluate the completion time of each item.  The second set of 

constraints involves worker – workstation assignment.  They are required to ensure 

that all workers must be assigned to operate tasks within a workstation.  The last set 

of constraints involves task – workstation assignment.  They are required to ensure 

that only consecutive tasks are grouped and assigned to workstations.  The MIP model 

for this problem was developed using the notations in Table 4.2:  

 
|________________________   makespan   __________________________| 
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Table 4.2 Notations  
____________________________________________________________________ 

Index 
 M       =  set of items                , Mm ∈   ,for   m  = 1,…, i         
S        =  set of workstations  , , Ss∈       ,for   s   = 1,…, k     J    =  set of tasks       , Jj ∈      ,for  j   = 1,…, o     
W    =  set of workers       , Ww∈    ,for  w   = 1,…, k  
 
Parameter 
i    =  the number of items   
k    =  the number of workstations / the number of workers 
o    =  the number of tasks 

wmjT                    =  the processing time of item m  task j operated by worker w  
          
Variable  

wjsa       =  1 if task j  is assigned to worker w  in workstation  s  
                    0 otherwise  

jsy                       =  1 if task j   is assigned in or before workstation s  
                                        0 otherwise  

wsr                        =  1 if worker w works in workstation s  
                                        0 otherwise     

msq                       = the processing time of item m  in the workstation s  

msπ                       = the completion time of item m in workstation s  
_____________________________________________________________________ 

Minimize    ikπ         (4.1) 

Subject to  

Completion time constraint: 

wjs
Ww Jj

wmjms aTq ∑∑
∈ ∈

=    m∀  , s∀    (4.2) 

1111 q=π         (4.3) 

mssmms q+≥ −1 ππ    Mm ≤≤1 ,  Ss ≤≤2  (4.4) 

mssmms q+≥ −  1ππ    ,2 Mm ≤≤   Ss ≤≤1   (4.5) 

 

Worker – workstation assignment constraint: 

1wjs
j J s S

a
∈ ∈

≥∑∑     w∀     (4.6) 

ws
Jj

wjs roa ×≤∑
∈

   w∀  , s∀    (4.7) 
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1=∑
∈Ss

wsr     w∀     (4.8) 

1=∑
∈Ww

wsr     s∀     (4.9) 

Grouping task – workstation assignment constraint: 

1=oky          (4.10) 

jssj yy ≤+1     11 −≤≤ Jj   , s∀   (4.11) 

1+≤ jsjs yy     j∀   , 11 −≤≤ Ss   (4.12) 

∑
∈

=
Ww

wjj ay 11     j∀       (4.13) 

∑
∈

− =−
Ww

wjsjsjs ayy 1    j∀   , Ss ≤≤2              (4.14) 

Objective function (4.1) is to minimize the makespan.  Constraints (4.2) are 

used to calculate the sum processing time of all tasks that are assigned in 

workstation s  for item m.  Constraint (4.3) reflects that the production line starts 

empty, no WIP at the beginning of production so the completion time of first item in 

the first workstation equals   11q .  Constraints (4.4) represent that workstation s  can 

process an item only after the previous workstation 1−s   has finished the operation 

on the item m .  Similarly, an item m  can be operated on a workstation only after the 

previous item 1−m  has completed the operation on the workstation as shown in 

constraints (4.5).  Constraints (4.6) force all workers to be assigned to at least one 

task.  Constraints (4.7) represent that if a worker is assigned to any tasks in 

workstation, they must work in that workstation.  Constraints (4.8)-(4.9) represent one 

- one assignment between workers and workstations.   

Constraints (4.10) through (4.14) concern grouping tasks and assigning them 

to workstations.  Constraints (4.10) through (4.12) force a structure on the task-

workstation assignments.  Constraint (4.10) assigns the last task o to the last 

workstation k .  Constraints (4.11) force the required precedence relationships among 

the tasks in the y variables.  That is, if 1 1 =+ sjy  then 1=jsy .  (e.g., If 53 1y = , then 

43 1y = and, in turn, if 43 1y = , then 33 1y = .)  Similarly, constraints (4.12) force the 

correct structure for the precedence relationships on the workstations: if 1jsy =  then 

11 =+sjy  (e.g., If 11 1y = , then 12 1y = and since 12 1y = then 13 1y = .   
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Constraints (4.13) and (4.14) also ensure that a task cannot be split among 

workers; thus, each task will be assigned to only one worker.   

To illustrate how these variables are interpreted, consider the 5 task, 3 

workstations example discussed previously.  If tasks 1, 2, and 3 are assigned to 

workstation 1, task 4 is assigned to workstation 2 and task 5 is assigned to workstation 

3, this assignment would be represented in the model as 1 [1  1  1  0  0]Ty =
r , 

2 [1  1  1  1  0]Ty =
r  and 3 [1  1  1  1  1]Ty =

r .  To interpret these vectors, 

11 21 31 1y y y= = =  in 1
Tyr means that tasks 1, 2 and 3 are grouped and assigned to 

workstation 1.  For the other 2 workstations (s= 2 and 3), the assignments are 

determined by 1 −− sjjs yy  for each j.  So, for example, 2 1 [0  0  0  1  0]T Ty y− =
r r  means 

that task 4 is assigned to workstation 2.  This is how the constraint set restricts 

consecutive tasks to the same workstation.  

4.3 Heuristic description 

The idea behind the heuristic is applying the concept of an upper envelope of a 

non-buffered system in order to determine the upper bound (UB) and lower bound 

(LB) of the solution to limit search space.  The solutions are searched only between 

UB and LB.  The heuristic starts by grouping tasks into workstations then, assigning 

workers to perform grouped tasks.  Groups of consecutive tasks are generated based 

on the trial value, which is a predetermined value between UB and LB.  The objective 

of the problem is to determine the assignment of the grouped tasks and workers which 

has the minimum makespan. 

Regarding the relation between idle time and makespan, the idle time has the 

recurrence relation between the idle time of the previous workstation and the idle time 

of the previous item on the same workstation.  Bellman (1982)  identified makespan 

in two simple expressions.  For the first expression, makespan is calculated by the idle 

time on the last station plus the summation of the task’s processing time of the last 

workstation.  For the second expression, it is calculated by the flow time of a last item 

from the completion time on the first workstation to the completion on the last 

workstation plus the summation of task’s processing time of the first station as shown 

in Figure 4.2.  
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Figure 4.2 An expression of the Makespan 

Makespan depends on the idle time on the last station plus the total task 

processing time of the last workstation, and the idle time on the last station depends 

on the idle time of previous stations.  The recurrence relation of the idle times of the 

previous workstation is shown in Section 4.3.1.  We developed a methodology to 

minimize the idle time of every workstation via a recurrence relation.  The details of 

the heuristic are presented in Section 4.3.3.  

4.3.1 The recurrence relation between the idle times 

This section shows the recurrence relation between the idle times of 
the previous workstation.  Let msFT  be the flow time of an item m  from the 

completion time of the first workstation to the completion of workstation s  as shown 
in an equation 4.15, i.e. 33FT  = 3332 qq + ,  let msID   be the idle time of an item m  at 

workstation s , there are two types of expression of the makespan.  Using the idle time 

on the last workstation, the makespan ( ikπ ) =   ∑∑
==

+
i

m
mk

i

m
mk IDq

11

, the first term is the 

sum of the task processing time and the second term is the sum of the idle times on 

the last workstation.  Using the flow time, the makespan ( ikπ ) =   ik

i

m
m FTq +∑

=1
1, , the 

first term of the right side is the sum of the task processing time at the first 

workstation and flow time  of the last item at the last workstation.  
 

 =msFT msπ - 1mπ           (4.15) 
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  Makespan1 (π33) = q13+ q23+ q33+ ID13+ ID33 
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q32 
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ID33 ID13 

FT33 Makespan2=q12+ q21+ q31+
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Since the start of the processing of item m  at workstation s   follows both the 

completion of  item m at the previous workstation 1−s  and the completion of  the 

previous item  1−m    on workstation s , the recurrence relation hold for every flow 

time, so 

 ],max[ 1 1 1 −− −+= smmsmmsms FTqFTqFT        (4.17) 

 

By replacing smFT  1− and 1 −smFT  in an equation 4.17 by the equation 4.16, 
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By subtracting the quantity,  ∑
=

−
m

z
zzk qq

1
1)(  from both sides of the 

equation 4.18, the recurrence relation for idle time is obtained.  
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An equation 4.19 shows the recurrence relation between the idle time 

of the previous workstation and the idle time of the previous item on the same 

workstation.  For example given a partial solution on workstation 1, which is worker1 

operating task 1, 2 on station 1, so when a worker is assigned on the workstation2, the 

idle on the workstation 2 will depend on the idle on the workstation 1 and the idle 

time of the previous item on the workstation2.  The relation is the same for the next 

workstation until the last workstation which is a part of makespan.  From this fact of 

the recurrence relation, we expect that minimizing idle time of partial solution of 

assignment from the first workstation to the last workstation can lead to a good 

solution of full assignment to minimizing makespan.   
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4.3.2 The Dijkstra’s algorithm 

Generally, Dijistra’s algorithm is algorithm to determine the shortest 

path.  For example Dijkstra’s algorithm is used to determine the shortest path between 

any two nodes the start node, s and the end node, t.  The principle behind Dijkstra’s 

algorithm is that if node x is a node between the start node, s and the end node, t, the 

shortest path from s to t, then s, . .  , x had better be the shortest path from s to x.  The 

length of the shortest path to each node is improved if there is a better way from s to 

other node through x.  This algorithm is dynamic programming strategy where the 

distance from s to all nearby nodes is kept, then it is use to find the shortest path to 

other distant nodes, Skiena (1998).  Figure 4.3 shows the step of Dijkstra’s algorithm. 

The Dijkstra’s algorithm is modified to determine the feasible assignment between the 

consecutive grouped tasks and workers which has minimum makespan.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Dijkstra’s algorithm 
 

Dijkstra’s algorithm 
1  FOR   each (v) in all nodes  
2  SET   weight of each node (Weightv) = infinite 
3  SET   status of the previous node (previousv)= NULL 
4   END   Loop 
5  SET   Weightstart_node of the start node = 0        
6  SET   Se = empty set 
7  SET   Q = set of solutions in all nodes  
8  WHILE   (Q is not an empty set loop)  
9          Determine (u) node which has the minimum weight in set Q,  
10  u   is removed from set Q  
11  u   is added in set Se  
12 FOR each node (b) which is connected from node u  using a  single arc 
13  IF ((distanceb > distanceu + weightb  ) then 
14 distanceb  =  distanceu + Weightb   
15 SET  u  = the previousv of node b 
16  END IF 
17   END Loop 
18     END WHILE 
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4.4 The detail of the heuristic and numerical example 

 The heuristic simplifies the problem by grouping tasks first.  After tasks are 

grouped, the feasible assignment between the groups of tasks and workers will be 

determined by the modified Dijkstra’s algorithm.  We developed a procedure to 

generate groups of tasks.  First, the UB and LB of the solution are determined.  Then 

the trial value between UB and LB is set as a bound for task grouping.  They are 

detailed in the following steps.  Figure 4.4 shows the flowchart of the heuristic.   

 

Step 1: Generate the initial UB and LB  

 

To determine UB and LB, the summation of task processing time is determined 

in Table 4.3 based on the data in Table 4.1 and it is solved as an assembly line 

balancing problem to minimize the maximum workstation time.  The objective 

function value in this stage becomes the LB of the original problem.  The solution of 

worker - task assignment is used to evaluate makespan.  This makespan becomes the 

UB of the original problem. 

 

For example, to minimize the maximum workstation time, the solution of the task-

workstation assignment is {12, 3, 45}, the worker-workstation assignment is {C, B, 

A} and the objective value is 16, so the LB is 16.  The makespan of this solution and 

also the UB is 29, as shown in Figure 4.5. 

 

Step 2: Set the trial value (TV)  

 

Once LB and UB are determined, a trial value is set.  A trial value is chosen to 

be the bound for generating groups of tasks.  The trial value is 10% of the UB-LB 

difference increased from the LB or TV = LB + (UB-LB)×0.1.  Therefore, the first 

trial value of the example is 16 + (29-16) × 0.1 = 17.3.  The UB or the makespan 

value of the solution consists of the idle time plus workstation time at the last 

workstation.  The LB is the minimum size of grouped tasks.  However, the solution of 

the minimum groups of tasks may not give the optimal solution in makespan value.  

For this reason, we set the trial value by increasing the LB with the small amount 

(10%) of the UB-LB difference in order to search for a better solution in a close area. 
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Figure 4.4 the flowchart of heuristic 
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Table 4.3 the summation of task processing time (sec.) 

  Task 1 Task 2 Task 3 Task 4 Task 5 

Worker A 11 6 15 4 11 

Worker B 12 8 16 5 11 

Worker C 8 8 18 5 10 
 

  

 

 

Makespan =  29 

Max station time = 16 
8 4 4 

6 4 6 
6 5 4 

Station1, C, task 12 

Station2, B, task 3  

Station3, A, task 45  

 

Figure 4.5 An example of LB and UB 
 
 Step 3:  Determine the groups of tasks 

The idea is that we will generate only the groups of tasks based on the maximal 

station load rule which is that a workstation will never close if fittable tasks remain.  

The consecutive tasks will be grouped without exceeding the current trial value and 

with the maximum group size.  Only the groups of tasks based on the maximal station 

load rule are generated.  Beginning with each task, the next consecutive task will be in 

the groups.  Only the maximum group size (the sum of task processing time) within 

the trial value is considered.  The groups of tasks are generated based on the trial 

value.  For example, the first trial value is 17.3. The possible groups of tasks based on 

the rule of worker A are {tasks1, 2}, {task2} {task3} {tasks4, 5}, and {task 5}.  

Worker A does not operate task 1 alone and 4 alone because the sum processing time 

of tasks 1 and 2 is 17 seconds and the sum processing time of tasks 4 and 5 is 15 

seconds which are below the maximum group size of 17.3 seconds.  The possible 

groups of tasks for worker B are {task1}, {task2}, {task3}, {tasks4, 5} and {task5}.  

Worker B does not operate tasks 4 alone because the sum processing time of tasks 4 

and 5 is 16 seconds which is below the maximum group size of 17.3 seconds.  The 

possible groups of tasks for worker C are {tasks1, 2}, {task2}, {tasks 4, 5} and 

{task5}.  Worker C cannot operate task 3 since the processing time of task 3 is 18 

seconds which is greater than 17.3. 
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In Figure 4.7(A), the number in the nodes shows a group of consecutive tasks within 

the trial value.  In this step, a worker who is chosen to carry out each group of tasks is 

not considered.  However, workers who can do those tasks within the trial value are 

shown at upper right of the nodes.  For node 12, workers A and C can be chosen.  In 

the next step, the heuristic will determine the feasible paths.  A feasible path must 

include all tasks using the number of nodes equal to the number of workers.  The 

infeasible nodes are cut off as in Figure 4.7(B). The feasible path is duplicated based 

on the workers who can operate tasks in those nodes.  Therefore, node 12 will be 

extracted to node 12A and 12C as shown in Figure 4.7(C).  After that, the step of the 

modified Dijkstra’s algorithm is run to determine the path which leads to the 

minimum makespan.   

 
 

 

 

 

Figure 4.6 (A) Nodes of the group of tasks, 4.7(B) Feasible nodes of 

task-workstation assignment,4.7(C) Nodes for Modified 

Dijkstra’s algorithm 
 

Step 4:  Determine the assignment of the possible groups of tasks and workers 

 

This step applies the idea of Dijkstra’s algorithm.  Generally, Dijistra’s 

algorithm is an algorithm to determine the shortest path.  A node in this problem is a 

workstation that includes an assignment between the consecutive tasks and a worker 

and a path means the assignment starting from the first workstation to the last 

workstation.  In the Dijistra’s algorithm, the shortest path from the starting node to 

every other node is determined in order to develop the shortest path to the ending 

node.  In the heuristic, the shortest path to each node becomes the minimum idle time 

of that node which is designed to search for a solution minimizing makespan.  If the 

 
 
 
 
 
 
 4.7(A)   4.7(B)                                      4.7(C) 

  

3A

3B

45A 

45B 

45C 

12A

12C
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minimum idle time of the last station is found, the minimum makespan would tend to 

be reached.           

The search will start at a randomly selected initial node.  The initial nodes are 

the ones which own the first task e.g. node 12A and 12C.  The algorithm will repeat at 

other initial nodes that are not selected.  All initial nodes are possible to be chosen.  

Figure 4.7 shows the pseudo code of the modified Dijkstra’s algorithm.  

Firstly, the best makespan is set to UB (line 0).  The initial node is randomly selected 

(line 1) and the variables to keep a solution are initialized (line 2 to line 10).  In each 

step, the heuristic will determine which node in set Q which has the minimum idle 

time.  It will be node u as shown in line 12.  In the first loop, node u will be the initial 

node.  If node u is found, the node u will be added to set Se and removed from set Q 

(line 14 to line 15).  The nodes which are connected from node u using a single arc 

will be node b.  The algorithm will check the feasibility of assignment of node b from 

node u.  The one to one assignment between worker and workstation is examined.  If 

the assignment is feasible (line 17), the sub-makespan and the idle time on the 

workstation b will be determined (line 18).   

If the new idle time, new_idleb, is less than idle time, idleb of node b and the 

sub makespan is less than the best makespan, the idle time of the node, idleb is 

updated (line 19 - 20).  Then the assignment solution is kept (line 21).  For example, 

the initial node is 12A, so node 12A will be node u. Node 3B will be node b.  This 

assignment is feasible.  The sub-makespan will be 23 and the idle time will be 7.   

Figure 4.9 shows an example of the idle and the sub-makespan.  Set previousb 

, the previous node of node b equals node 12A.  The steps will repeat for all node b.  

Then the new node u, which has minimum idle time, is determined again.  The step 

will repeat until no node having minimum idle is found or idle time of every node in 

Q equals infinity.  If the last tasks is in node b and s_makespanb is less than the best 

makespan, then the best makespan is updated (line 22-23).  For example, node u is 3B 

and node 45C is node b.  Previously, the best makespan was infinity.  It is updated to 

28 with the assignment solution (12A, 3B, 45C) as shown in Figure 4.8.  Since the 

heuristic is designed to minimize idle time that is not a direct algorithm to minimize 

makespan, it is better to keep a set of solutions in a node.  

 

 

 



61 

Step 5:  Check the improvement of the solution and Stopping Criteria 

This step is to select whether UB and LB should be updated in order to further 

limit search space.  If a better makespan of a feasible solution is found, the UB is set 

to the makespan value in the corresponding solution.  Otherwise LB is set to the 

previous trial value.  Then new trial value is re-calculated.  The stopping criteria 

depend on the cumulative number of iterations which is not improving the makespan.  

For example, the limit of iterations is 2; the heuristic will stop if a solution is not 

improved in 2 consecutive iterations 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 The pseudo code of Modified Dijkstra’s algorithms 

Modified Dijkstra’s algorithm 
0    Set  best_makespan  = UB 
1    Randomly select of initial node 
2  FOR   each node v   
3  SET   idle time of each node (idlev) = infinite  
4  SET   sub makespan of each node (s_makespanv) = infinite 
5  SET   status of the previous node (previousv)= NULL 
6   END   Loop 
7  SET   idlev of the selected starting node = 0        
8  SET   Se = empty set  
9  SET   Q   = set of unselected nodes 
10  SET   Have_min = true  
11  WHILE   (Have_min  =  true)  
12 Determine node (u) which has the minimum idle time in Q,  
13 IF node u is found    THEN 
14  u   is removed from set Q  
15  u   is added in set Se  
16     FOR   each node b in Q , a node that is connected from node u  using a  single arc 
17       IF (the assignment of b from u valid feasible assignment) THEN  
18      Determine idle time, new_idleb and sub makespan, s_makespanb  
19                     IF ((new_idleb <  idleb) AND (s_makespanb < best_makespan)) THEN 
20                             idleb is replaced by new_idleb  
21                             SET  u  = the previousv of node b 
22                             IF node b is the last workstation 
23                                   IF s_makespanb < best_makespan  THEN  update  best_makespan 
24                                   END IF                     
25                             END IF 
26                     END IF 
27              END IF 
28          END Loop 
29       ELSE Have_min = false   End IF   
30  END WHILE 
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Trial The Modified Dijkstra’s algorithm 
 
The 1st Trial 
UB=29  LB=16 

 
Trial value = 16 +(29-16) × 0.1 = 17.3 
Best makespan =UB = 29 
 

 
 

 
Start at node 12A  
Se        = {Ø}            , Q   = {12A, 3B, 45A, 45C }   
best_makespan = 29  
Node 12A 3B 45A 45C 
idlev 0 ∞ ∞ ∞ 
s_makespanv ∞ ∞ ∞ ∞ 
previousv - - - - 

 
Node u = 12A    
Se        = {12A}        , Q  = { 3B, 45A, 45C}    
best_makespan = 29 
                                       Node b    
Node 12A 3B 45A 45C 
idlev 0 7 ∞ ∞ 
s_makespanv - 23 - - 
previousv - 12A - - 

 
Node u = 3B    
Se        = {12A, 3B}   , Q  = { 45A, 45C} 
                                                                 Node b1    Node b2   
Node 12A 3B 45A 45C 
idlev 0 7 ∞ 13 
s_makespanv - 23 - 28 
previousv - 12A - 3B 

Node b  = 45A :  Infeasible assignment solution(12A,3B,45A) 
Node b  = 45C :  assignment solution (12A,3B,45C) 
best_makespan = 28 
 
Start at node 12C 
 
Se        = {Ø}    , Q  = {12A, 3A, 3B, 45A, 45B, 45C }   
best_makespan = 28 
Node 12C 3A 3B 45A 45B 45C 
idlev 0 ∞ ∞ ∞ ∞ ∞ 
s_makespanv ∞ ∞ ∞ ∞ ∞ ∞ 
previousv - - - - - - 

 
Node u = 12C    
Se        = {12C} , Q   = { 3A, 3B, 45A, 45B, 45C}     
best_makespan = 28 
 
 
 

 

3B 

45A 

45C 

12A 

 

3B 

45A 

45C 

12A 

 

3B 

45A 

45C 

12A 

 
3A 

3B 

45A 

45B 

45C 
12C 
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                                                    Node b1   Node b2   
Node 12C 3A 3B 45A 45B 45C 
idlev 0 8 8 ∞ ∞ ∞ 
s_makespanv - 23 24 - - - 
previousv - 12C 12C - - - 

 
Node u = 3A    
Se        = {12C,3A}, Q   = { 3B, 45A, 45B, 45C}     
best_makespan = 28 
                                                                                                Node b1   Node b2   
Node 12C 3A 3B 45A 45B 45C 
idlev 0 8 8 ∞ 15 ∞ 
s_makespanv - 23 24 - 31 - 
previousv - 12C 12C - 3A - 

Node b2  = 45C : Infeasible assignment (12C,3A,45C) 
 
Node u = 3B    
Se        = {12C,3A,3B }, Q   = { 45A, 45B, 45C}     
best_makespan = 28 
                                                                                  Node b1                Node b2   
Node 12C 3A 3B 45A 45B 45C 
idlev 0 8 8 14 15 ∞ 
s_makespanv - 23 24 29 31 - 
previousv - 12C 12C 3B 3A - 

The best makespan = 28 
The best solution is {12A,3B, 45C} 

 
The 2nd 
UB=28  LB=17.3 

 
Trial value = 17.3+ (28-17.3)×0.1=18.37 
An improvement of solution is not found. 

 
The 3rd 

UB=28  B=18.37 

 
Trial value  = 19.33 
An improvement of solution is not found. 

 
Stop 

 
If the limit number of the consecutive trial value equals 2, 
the search will stop. 
 

Figure 4.8 An example of the Modified Dijkstra’s algorithm 
 

 

 

  

 

Figure 4.9 An example of idle and sub-makespan 
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4.5 Performance measurement of the heuristic 

4.5.1 Testing the problems  

A heuristic algorithm was implemented using the C++ programming 

language.  The quality of the solution and computational time of the proposed 

heuristic were compared to those obtained from the mathematical model which was 

solved by CPLEX 8.0.  Both CPLEX and the heuristic algorithm were run on a PC 

with an Intel CoreTM2 Duo 2.00 GHz CPU and 1.93 GB of RAM.   

Normally in a modular production system in the garment industry, the 

number of workers is between 6 and 15.  However, only the problem with 7-9 

workers was tested since a problem size of 10-15 workers is too large to achieve 

optimal solutions using the mathematical model.  The problem parameters were 

chosen to reflect a realistic situation in the garment industry.  In this testing, the 

number of tasks was three times to four times the number of workers, since generally 

in the garment industry a worker is assigned less than three to four tasks.  The 

numbers of items that were examined were 100 and 300 for the difference of lot sizes.  

Furthermore, the difference in learning period is also reflected.  Regarding the 

learning process, a major reduction in the processing time occurs during the beginning 

of the process.  Therefore, for the 100 item problem, major reduction is the large part 

of the process, whereas the 300 item problems include both major and minor 

reduction.  The proportion of minor reduction is greater than that of major reduction 

Table 4.4 shows all the problem sets of this test.  The parameters of the 

problem instances were developed.  Based on Log-Linear model, if t1 and tn represent 

the task processing times of the first and the nth item, and using Ø in terms of learning 

slope, )2log/(log
1

φnttn ⋅=  (Wright, 1936).  The learning slope for apparel manufacturing 

is reported by Rosenwasser (1982) and is 0.77-0.85.  In this test, the learning slope 

was uniformly generated from the interval between [0.77, 0.85] and [0.70, 0.90] in 

two levels.  Since the task processing of the sewing process varies, it was uniformly 

generated.  The mean task processing times of the first item (t1) were generated 

uniformly in the intervals [1, 10] and [1, 30].  The differences in performance of 

experienced and inexperienced workers on the sewing line are represented by the 

percent deviations from the mean task processing times.  The percent deviations are 
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uniformly distributed in the intervals [-20%, 20%] and [-50%, 50%].  For example, if 

the mean task processing time of the first item is 10 and the percentage of deviation 

20%, t1 becomes 12.   

Table 4.4 Problem Size 
Problem 

Code 

Number of 

Worker 

Number of 

Task 

Number of 

item 

Instances CPLEX Sol. 

7w21t100i 7 21 100 80 Optimal Sol. 

8w24t100i 8 24 100 80 Optimal Sol. 

9w27t100i 9 27 100 40 Limit time*  

7w21t300i 7 21 300 80 Optimal Sol. 

8w24t300i 8 24 300 40 Optimal Sol. 

9w27t300i 9 27 300 40 Limit Time** 

7w28t100i 7 28 100 80 Optimal Sol. 

8w32t100i 8 32 100 80 Optimal Sol. 

Note     * Limit time = 259,200 sec. or (3days), **Limit time = 345,500 sec. or (4days)  

There are 8 tests per problem size.  Each test has 10 replicates, but for 

8w24t300i, 9w27t100i and 9w27t300i, we used 5 replicates, so the number of 

instances are 40 for 8w24t300i, 9w27t100i and 9w27t300i and 80 for the other 

problems.  For the problem sets 7w21t100i, 7w21t300i, 8w24t100i and 8w24t300i, 

CPLEX was designed to run until the optimal solution was found.  Since the problem 

size of 9 workers is quite large to achieve the optimal solutions, the run time of the 

problem was limited.  For 9 workers with 100 items, 9w27t100i, the limited run time 

was 259,200 sec. (3 days).  For 9 workers with 300 items, 9w27t300i, the limited run 

time was 345,500 sec. (4 days) due to the larger size of the problem.   

4.5.2 The parameters applied in the heuristic 

Four parameters were applied in the heuristic, i.e. the gap to set the 

trial value (Gap), the limit number of the loop (Limit), % of special group and the 

number of solutions that were kept. 

The gap to set trial value is to the position of trial value between the 

UB and LB and was calculated from the percentage of the difference between the two.  

The gap value affects the computational time and quality of the solution and the 

computational time is reduced for the large gap.  However, the optimal solution may 
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be missed if the gap is too large.  To determine the suitable parameter, the gap to set 

trial value was designed in two levels, Gap {0.2, 0.3}. 

The limit number of loop (Limit) is the stopping criteria.  For example, 

the heuristic will stop if the best solution is not improved greater than or equal to 3 

loops of the trial makespan.  Figure 4.10 shows an example of an improvement of 

makespan when the limit number is three.  The computational time is reduced when 

the limit number of the loop is small.  However the optimal solution may be missed if 

the loop stops too early.  To determine a suitable parameter, the limit number of the 

loop (Limit) was designed in two levels, Limit {3, 5}. 

 

 

 

 

 

 

 

 

 

Figure 4.10 An example of an improvement of makespan 

 
The heuristic also allows a sub set of the groups which has a 

summation of task processing times close to the generated group to add in the 

heuristic.  If the number of groups increase, the chance to find the optimal solution 

will increase while the computational time also increases e.g. Task {1, 2, 3} is the 

generated group of tasks which has 10 sec.  Let % of special group be equal to 10%, if 

the tasks 1, 2 consume 9 sec.  The group of tasks 1, 2 will be the special group which 

is included in the heuristic.  To determine a suitable parameter, % of special group 

was designed in two levels, {10%, 15%}. 

Since the heuristic was designed to minimize idle time that is not a 

direct algorithm to minimize makespan, it is better to keep a set of solutions in a node.  

In the modified Dijkstra’s algorithm, more than one solution is kept, so the 

computational time will increase if the number of solutions increases.  In the heuristic, 

the number of solutions is designed in two levels, two times and three times the 
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number of workers, {2w, and 3w}.  If the number of the workers is 7, then the number 

of the solutions will be 14 and 21.  

The problem size 7w21t100i was tested.  The test started at the level of 

parameters which gives the quickest computational times which are, 

Gap{0.3},Limit{3},% of special group{10%}and  the number of solutions that are 

stored in a node{2w} in Test 1.  Then the quality of the solution and the 

computational time were investigated.  The results of the tests are in Table 4.5.  The 

percentage difference of the heuristic solution from the optimal solution was 

calculated as the following equation: 

 

where Heusol is the makespan obtained by a heuristic, and Optsol is the makespan of 

the optimal solution obtained by using an exact algorithm. 

 

 Each factor was adjusted to another level one at a time and then the quality of 

the solution and the computational time were investigated. The results of the test are 

shown in Table 4.5, Figures 4.11 and 4.12.  Since no test significantly improves the 

quality of the solution of Test 1 as shown in Table 4.5, the parameters of Test 1 were 

selected to be suitable parameters which are Gap{0.3},Limit{3},% of special 

group{10%}and  the number of solutions that are stored in a node{2w}.   

Table 4.5  The quality of the solution and CPU Time of the test when the 

parameters are varied 
 Gap Limit % of 

special 

group 

No. sol. 

stored in 

a node 

Avg. diff 

(%) 

Max. diff 

(%) 

CPU 

Time 

(sec.) 

Test 1 0.3 3 10% 14 0.109 2.762 5.420 

Test 2 0.2 3 10% 14 0.239 2.768 5.751 

Test 3 0.3 5 10% 14 0.109 2.762 7.647 

Test 4 0.3 3 15% 14 0.094 2.762 7.218 

Test 5 0.3 3 10% 21 0.109 2.762 7.647 

 

 

% difference from the optimal solution = diff  = 100sol sol

sol

Heu Opt
Opt
−

×  
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Figure 4.11  The quality of the solution of the test when the 

parameters are varied(%) 
 

 

 

Figure 4.12  The CPU of the test when the parameters are varied(sec.) 

4.5.3 Performance of heuristics on test problems 

The purpose of these experiments was to evaluate the performance of 

the proposed algorithm on the test problems.  In Sections 4.5.3.1- 4.5.3.2 the 

performance of heuristics are tested in two aspects; solution quality, and 

computational time.  The comparison of the quality of the solution between the 

problems applying the constant skill level and the skill level including learning ability 

are investigated in section 4.5.3.3.  
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4.5.3.1 The computational time of the heuristic 

This dissertation compares the computational time of the 

proposed heuristic to the computational time from CPLEX solution.  The task 

processing time of the first item, the % deviation of the processing time among the 

workers and the learning slope are varied in two levels as mentioned in Section 4.5.1.  

Table 4.6 presents the computational time of the problem when the number of tasks is 

equal to 3 times the number of workers with 100 items.  Table 4.7 presents the 

computational time of the problem when the number of tasks is equal to 3 times the 

number of workers with 300 items. Table 4.8 presents the computational time of the 

problem when the number of tasks is equal to 4 times the number of workers with 100 

items for problems using 7 and 8 workers. 

Table 4.6 CPU time of the problem : No. tasks = 3× No. workers , 100 items(sec.) 
Processing Skill Learning Computational time (sec.) 

Time Level Slope 7w21t100i 8w24t100i 9w27t100i 

     Opt. Heu. Opt. Heu. Opt. Heu. 

 

U[1,10] 

 

U[1,20] 

 

U[0.77,0.85] 801.845 3.821 1,479.828 10.74 
 

38,847.11 

        

43.66  

 

U[1,10] 

 

U[1,20] 

 

U[0.70,0.90] 2,704.773 5.931 15,317.14 14.04 

 
 

221,328.11 

        

71.85  

 

U[1,10] 

 

U[1,50] 

 

U[0.77,0.85]  1,253.58  

      

5.26  

  

13,872.80  

        

14.73  
 

75,117.24 

        

63.93  

 

U[1,10] 

 

U[1,50] 

 

U[0.70,0.90]  3,220.02  

      

8.18  

  

18,364.12  

        

19.81  
 

133,728.19 

        

42.29  

 

U[1,30] 

 

U[1,20] 

 

U[0.77,0.85]     427.74  

      

2.12  

    

1,920.55  

        

27.08  
 

8,508.04 

        

91.15  

 

U[1,30] 

 

U[1,20] 

 

U[0.70,0.90]  1,474.55  

      

6.76  

  

21,773.07  

        

19.23  
 

127,300.91 

        

76.73  

 

U[1,30] 

 

U[1,50] 

 

U[0.77,0.85]     529.93  

      

4.85  

  

17,706.71  

        

12.24  
 

87,128.28 

        

54.82  

 

U[1,30] 

 

U[1,50] 

 

U[0.70,0.90]  2,383.27  

      

4.56  

  

61,631.84  

        

16.55  
 

211,616.94 

        

51.86  

 

 

 



70 

Table 4.7 CPU time of the problem : No. tasks = 3× No. workers , 300 items(sec.) 
Processing Skill Learning Computational time (sec.) 

Time Level Slope 7w21t300i 8w24t300i 9w27t300i 

     Opt. Heu. Opt. Heu. Opt. Heu. 

 

U[1,10] 

 

U[±20] 

 

U[0.77,0.85] 801.845 3.821 
  
 16,687.96  

        

39.79  -         86.95 

 

U[1,10] 

 

U[±20] 

 

U[0.70,0.90] 2,704.773 5.931 
  
160,363.91  

        

45.37  -       189.15 

 

U[1,10] 

 

U[±50] 

 

U[0.77,0.85] 

    

5,964.87  

          

7.93  
   
41,142.10  

        

35.01  

 

-       148.73 

 

U[1,10] 

 

U[±50] 

 

U[0.70,0.90] 

  

12,423.63 

        

12.62  
  
237,607.59  

        

37.21  -       105.21 

 

U[1,30] 

 

U[±20] 

 

U[0.77,0.85] 

    

3,148.66  

          

5.43  
   
26,227.23  

        

25.34  -       239.47 

 

U[1,30] 

 

U[±20] 

 

U[0.70,0.90] 

  

14,189.63 

        

13.37  
  
185,995.06  

        

39.26  -       138.38 

 

U[1,30] 

 

U[±50] 

 

U[0.77,0.85] 

    

3,297.25  

          

9.73  
  
110,749.60  

        

45.85  -       228.19 

 

U[1,30] 

 

U[±50] 

 

U[0.70,0.90] 

  

11,183.15 

        

10.10  
  
189,963.72  

        

56.49  -       198.97 

For the computational time of the optimal solution, it was 

found that when the number of tasks and the number of workers are increased, the 

computational time of the optimal solution will increase as shown in Figure 4.13.  

And when the number of items and the number of workers are increased, the 

computational time of the optimal solution will dramatically increase as shown in 

Figure 4.14.   

 

 

 

 

 

 



71 

Table 4.8 CPU time of the problem : No. tasks = 4× No. workers , 100 items(sec.) 
Processing Skill Learning  Computational time (sec.) 

Time Level Slope 7w28t100i 8w32t100i 

     Opt. Heu. Opt. Heu. 

 

U[1,10] 

 

U[±20] 

 

U[0.77,0.85]  1,262.44  

      

9.87      6,015.19  

        

14.50  

 

U[1,10] 

 

U[± 20] 

 

U[0.70,0.90]  7,420.15  

     

26.63    56,597.09  

        

40.93  

 

U[1,10] 

 

U[±50] 

 

U[0.77,0.85]  4,844.74  

     

21.80    86,142.74  

        

39.30  

 

U[1,10] 

 

U[±50] 

 

U[0.70,0.90]  4,809.68  

     

19.75    85,285.44  

        

40.93  

 

U[1,30] 

 

U[±20] 

 

U[0.77,0.85]  1,262.19  

     

13.81    22,177.36  

        

29.34  

 

U[1,30] 

 

U[±20] 

 

U[0.70,0.90]  4,232.49  

     

10.61    57,779.92  

        

35.12  

 

U[1,30] 

 

U[±50] 

 

U[0.77,0.85]  3,880.08  

      

8.98    39,668.41  

        

34.66  

 

U[1,30] 

 

U[±50] 

 

U[0.70,0.90]  5,822.06  

     

10.65    92,853.20  

        

42.91  

 

 

 

Figure 4.13 CPU Time of optimal sol. when No. Tasks increase (sec.) 
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Figure 4.14 CPU Time of optimal sol. when No. Items increase (sec.) 

Furthermore, when the learning slope of the worker varies at a 

high level, it was found that the computational time of the optimal solution is greater 

than the computational time when learning slope varies at a low level as seen in 

Figure 4.15. 

 

 

Figure 4.15 CPU. Time of optimal sol. when learning slope varies 

(sec.)  
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For the computational time of the proposed heuristic, it was 

found that the total computational time of the heuristic is less than the computational 

time from CPLEX solution.  When the number of tasks and the number of workers are 

increased, the computational time of the heuristic solution will slightly increase as 

shown in Figure 4.16.  However when the number of items and the number of 

workers are increased, the total computational time of the heuristic solution will 

increase, especially for 9 workers as shown in Figure 4.17.  

 

 

Figure 4.16 CPU. Time of heuristic sol. when No. Tasks increase(sec.) 

 

 

Figure 4.17 CPU. Time of heuristic sol. when No. Items increase(sec.) 
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To investigate the computational time of the heuristic, the heuristic 

step was divided into three parts which are generating UB and LB, determining the 

feasible path and applying the modified Dijkstra’s algorithm.  It was found that 

determining the feasible path consumes 81% of the total time, generating UB and LB 

consumes 18% of the total time, and applying  the modified Dijkstra’s algorithm takes 

only 1% of the total time as seen in Figure 4.18.   

 

Figure 4.18 The fraction of CPU. Time (%) 

 

4.5.3.2 The quality of the solution of the heuristic 

The performance of heuristics is presented in the form of the 

percentage difference of a heuristic from the solution of CPLEX solution.  The 

percentage difference of the heuristic solution from the optimal solution was 

calculated as the following equation: 

 

% difference from the optimal solution  diff  = 100sol sol

sol

Heu Opt
Opt
−

×  
 

 

where Heusol is the makespan obtained by a heuristic, and Optsol is the makespan from 

the optimal  solution obtained by using an exact algorithm. 
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The offset from the optimal including mean (Avg. diff), the standard 

deviation (Std. diff) and the maximum of the difference from the optimal solution 

(Max diff) were calculated.  When the optimal solution was not achieved within the 

time limit for problem 9w27t100i and 9w27t300i, the best objective value within the 

time limit was compared to the heuristic solution.  Table 4.9 shows the percentage 

difference of the problem when the number of tasks is equal to 3 times the number of 

workers for 100 items.  Table 4.10 shows the percentage difference of the problem 

when the number of tasks is equal to 3 times the number of workers for 300 items.  

For the problem size of 9 workers, since the time of exact solution test is limited, 

some tests may found the optimal solution.  In the column “Exact Opt”, the problem 

9w27t300i has two parts which consist of the solutions which were found to be the 

optimal solution and the solutions which were not found to be the optimal solution 

within the time limit.  The number of the optimal solutions for each test is presented 

in the column.  For example, 1/5 means that from 5 tests, 1 test has the optimal 

solution within the limit time.  Table 4.11 presents the percentage difference of the 

problem when the number of tasks is equal to 4 times the number of workers with 100 

items for problems of 7 and 8 workers.  In Figures 4.19 - 4.24, the percentage 

difference of the heuristic from the solution of exact solution of each problem size is 

presented.  

It was found that the heuristic gives the percentage difference from the 

optimal solution at less than 0.80 %.  The maximum of the difference was less than 

4.6% for all tests.   
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Table 4.9 The percentage difference of the problem :No. tasks = 3× No. workers, 

100item(%)

 

 

 

 

 

 

Processing Skill Learning 
The difference between the exact solution and the heuristic solution (%) 

Time Level Slope 
7w21t100i 8w24t100i 9w27t100i 

 

    

Avg. 
diff 

Std. 
diff 

Max. 
diff 

Avg. 
diff 

Std. 
diff 

Max. 
diff 

Exact 
Opt. 

Avg. diff Max. 
diff 

 

 
U[1,10] 

 
U[±20] 

 
U[0.77,0.85] 0.38 0.89 2.76 0.20 0.64 2.01 

 
5/5 1.08 3.16  

   

      

 
Not 
Opt. - -  

 
U[1,10] 

 
U[± 20] 

 
U[0.70,0.90] 0.03 0.09 0.29 0.52 0.52 1.43 1/5 0.58 0.58  

   

      

 
Not 
Opt. -1.39 0.01  

 
U[1,10] 

 
U[±50] 

 
U[0.77,0.85] 0.13 0.31 0.98 0.14 0.46 1.44 5/5 0.49 1.50  

   

      

 
Not 
Opt. - -  

 
U[1,10] 

 
U[±50] 

 
U[0.70,0.90] 0.08 0.22 0.69 0.21 0.35 0.98 3/5 1.00 2.62  

   

      

 
Not 
Opt. 4.48 7.50  

 
U[1,30] 

 
U[±20] 

 
U[0.77,0.85] 0.05 0.13 0.42 0.39 0.91 2.86 5/5 0.38 0.89  

   

      

 
Not 
Opt. - -  

 
U[1,30] 

 
U[±20] 

 
U[0.70,0.90] 0.08 0.22 0.71 0.33 0.54 1.44 4/5 0.71 2.09  

   

      

 
Not 
Opt. - 0.68 - 0.68  

 
U[1,30] 

 
U[±50] 

 
U[0.77,0.85] 0.00 0.01 0.03 0.43 1.32 4.18 4/5 0.13 0.36  

   
      

Not 
Opt. - 1.39 - 1.39  

 
U[1,30] 

 
U[±50] 

 
U[0.70,0.90] 0.04 0.06 0.16 0.29 0.37 1.08 3/5 1.49 1.99  

   
      

Not 
Opt 1.15 1.70  
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Table 4.10 The percentage deviation of the problem : No. tasks = 3× No. 

workers, 300 items(%) 

Processing Skill Learning 
The difference between the exact solution and the heuristic solution (%) 

Time Level Slope 
7w21t300i 8w24t300i 9w27t300i 

 

    

Avg. diff Std. 
diff 

Max. 
diff 

Avg. 
diff 

Std. 
diff 

Max. 
diff 

Exact 
Opt. 

Avg. 
diff 

Max. 
diff 

 

 
U[1,10] 

 
U[±20] 

 
U[0.77,0.85] 0.00 0.00 0.00 

      
0.39  0.57 

      
1.67  

 
4/5 0.01 0.04  

   

      

 
Not 
Opt. -1.27 -1.27  

 
U[1,10] 

 
U[± 20] 

 
U[0.70,0.90] 0.06 0.19 0.61 

      
0.70  1.26 

      
3.53  0/5 - -  

   

      

 
Not 
Opt. -2.12 -0.38  

 
U[1,10] 

 
U[±50] 

 
U[0.77,0.85] 0.14 0.33 1.05 

      
0.07  0.20 

      
0.63  2/5  0.91 

  
1.79  

   

      

 
Not 
Opt. -0.68 2.51  

 
U[1,10] 

 
U[±50] 

 
U[0.70,0.90] 0.10 0.22 0.57 

      
0.01  0.02 

      
0.06  0/5 - -  

   

      

 
Not 
Opt. -1.71 -0.79  

 
U[1,30] 

 
U[±20] 

 
U[0.77,0.85] 0.55 1.46 4.63 

      
0.17  0.43 

      
1.15  3/5  0.14  0.42  

   

      

 
Not 
Opt. -0.53 -0.48  

 
U[1,30] 

 
U[±20] 

 
U[0.70,0.90] 0.14 0.38 1.22 

      
0.00  0.00 

      
0.00  1/5  1.23  1.23  

   

      

 
Not 
Opt. -0.82  1.03  

 
U[1,30] 

 
U[±50] 

 
U[0.77,0.85] 0.26 0.81 2.56 

      
0.03  0.04 

      
0.10  2/5  0.00  0.00  

   
      

Not 
Opt. - 1.87 - 1.39  

 
U[1,30] 

 
U[±50] 

 
U[0.70,0.90] 0.14 0.33 1.05 

       
0.00   0.00 

       
0.00   0/5 -1.61 - 0.40  

   
      

Not 
Opt 1.15     1.70  
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Table 4.11 The percentage difference of the problem : No. tasks = 4× No. 

workers,  100 items(%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 The percentage difference 7w28t100i(%) 

 

 

 

Processing Skill Learning 
The difference between the exact solution and the heuristic solution (%) 

Time Level Slope 
7w28t100i 8w24t100i 

 

  

Avg. diff Std. 
diff 

Max. 
diff 

Avg. diff Std. 
diff 

Max. 
diff 

Avg. 
diff 

 
U[1,10] 

 
U[±20] 

 
U[0.77,0.85]       0.21  0.61 

      
1.95        0.04  0.09 

      
0.29  

      
0.04  

 
U[1,10] 

 
U[± 20] 

 
U[0.70,0.90]       0.02  0.06 

      
0.17        0.02  0.03 

      
0.07  

      
0.02  

 
U[1,10] 

 
U[±50] 

 
U[0.77,0.85]       0.23  0.54 

      
1.65        0.05  0.12 

      
0.37  

      
0.05  

 
U[1,10] 

 
U[±50] 

 
U[0.70,0.90]       0.00  0.00 

      
0.01        0.34  0.70 

      
2.28  

      
0.34  

 
U[1,30] 

 
U[±20] 

 
U[0.77,0.85]          0.00   0.00 

         
0.00          0.13  0.34 

      
1.07  

      
0.13  

 
U[1,30] 

 
U[±20] 

 
U[0.70,0.90]          0.00 0.00 

         
0.00          0.43  0.66 

      
1.68  

      
0.43  

 
U[1,30] 

 
U[±50] 

 
U[0.77,0.85]       0.08  0.21 

      
0.66        0.20  0.39 

      
0.98  

      
0.20  

 
U[1,30] 

 
U[±50] 

 
U[0.70,0.90]       0.11  0.33 

      
1.05        0.08  0.25 

      
0.79  

      
0.08  

   
       

            
 

 



79 

 

 

Figure 4.20 The percentage difference 7w21t100i (%) 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 The percentage difference 7w21t300i (%) 
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Figure 4.22 The percentage difference 8w32t100i(%) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 The percentage difference 8w24t100i (%) 
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Figure 4.24 The percentage difference 8w24t300i (%) 

 

It is found that the percentage difference will increase when the 

number of workers increases.  Producing 100 items has the percentage 

difference higher than 300 items as seen in Figure 4.20.   The reason is that the 

heuristic group tasks are based on the sum of processing times, so the sum of 

processing times from 300 items can better represent the learning effect than 

the sum of processing times from 100 items.  For example, the sums of 

processing times of task 1 for 100 items from workers A and B are equal, 

while the learning slopes of worker A and worker B are different for 100 

items. However, if the production is 300 items, the sum of processing times is 

significantly different. For this reason, the heuristic achieves the better 

solution. 
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Figure 4.25 The percentage difference when No. Tasks and No.Items 

increase(%) 

 

4.5.3.3 The comparison of the quality of the solution of the heuristic 

to the heuristic for the constant skill level 

 This section is to study the effect of using the constant skill 

level in situations accounting for worker learning ability.  The quality of the solution 

was investigated.  The constant skill level was determined from the summation of task 

processing times.  Based on the data, the problem was solved according to the 

heuristic method in Chapter 3.  We wanted to know the quality of the solution when it 

is used in situations where workers’ learning ability is a factor.  The performance is 

presented in the form of the percentage difference of makespan.  The percentage 

difference of the constant skill level solution from the heuristic solution was 

calculated as the following equation: 

 

% difference from the heuristic solution    diffcon_heu =  100×
−

sol

solsol

Heu
HeuCon
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where Consol is the makespan obtained by a heuristic for constant skill level, and 

Heusol is the makespan from the heuristic  solution obtained by the heuristic in Section 

4.3.   

 

Table 4.12 shows the percentage difference between the constant skill 

level and the heuristic solution.  It was found that when the learning slope among 

workers has high variation, their percentage difference will be higher as in Figure 

4.26.  It was also found that the percentage difference of the learning slope among 

workers which varies at a low level is low.  When the learning slope among workers 

has high variation for both of 100 and 300 items, there is a higher percentage 

difference than the low variation as shown in Figure 4.27.  This means that the 

assumption of constant skill level is appropriate for the small difference in learning 

slope among workers and for large lots.  

Table 4.12 The percentage difference of the constant skill level 

solution from the heuristic solution (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 
The difference between the constant skill level solution and the 

heuristic solution (%) 
Process 

 Skill Learning 7w21t 7w28t 7w21t 8w24t 8w32t 8w24t 9w27t 9w27t 
Time Level Slope 100i 100i 300i 100i 100i 300i 100i 300i 

 
U[1,10] 

 
U[±20] 

 
U[0.77,0.85] 3.43 5.36 1.64 5.36 2.86 3.43 5.36 1.64 

 
U[1,10] 

 
U[± 20] 

 
U[0.70,0.90] 5.20 6.37 4.95 6.49 5.33 5.20 6.37 4.95 

 
U[1,10] 

 
U[±50] 

 
U[0.77,0.85] 4.63 3.26 2.97 4.01 2.20 4.63 3.26 2.97 

 
U[1,10] 

 
U[±50] 

 
U[0.70,0.90] 6.83 5.77 5.37 4.25 7.57 6.83 5.77 5.37 

 
U[1,30] 

 
U[±20] 

 
U[0.77,0.85] 4.65 4.12 1.40 5.23 1.57 4.65 4.12 1.40 

 
U[1,30] 

 
U[±20] 

 
U[0.70,0.90] 7.99 7.72 4.66 7.71 1.77 7.99 7.72 4.66 

 
U[1,30] 

 
U[±50] 

 
U[0.77,0.85] 3.13 4.19 2.24 6.19 2.13 3.13 4.19 2.24 

 
U[1,30] 

 
U[±50] 

 
U[0.70,0.90] 5.20 8.47 5.80 7.55 4.42 5.20 8.47 5.80 
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Figure 4.26 The percentage difference diffcon_heu  when No. Tasks 

increase 

 

 

 

 

 

 

 

 
 

Figure 4.27 The percentage difference diffcon_heu  when No. Items 

increase(%) 
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4.6 Discussion of computation results 

This chapter has proposed a problem of Assembly Line Worker Assignment 

and Balancing Problem with learning consideration.  The problem which consists of 

the assembly line balancing problem and assignment problem with the objective of 

minimizing makespan was modeled.  A heuristic was developed to solve the problem 

and the lower bound and upper bound were determined.  For the sequence of trial 

makespan, the search starts from LB to UB. The heuristic groups the tasks were based 

on the value of the trial value.  The groups of tasks were filtered and only the groups 

that were possible to give the feasible task-workstation assignment were kept.  The 

worker-workstation assignment solution was determined based on the recurrence 

relation of the idle time among workstations in Section 4.3.1.  The modified Dijkstra’s 

algorithm was developed to determine the worker-workstation assignment.   

The effectiveness of the heuristic was evaluated in terms of computational 

time and quality of the solution or makespan.  It was found that the computational 

time of the proposed heuristic is significantly lower than the computational time from 

the exact solution.  However, the computational time of the heuristic increases when 

the number of items and the number of workers increase.  The heuristic found a 

solution within 0.80% from optimal solution on average.   

To answer the question about the effect of using the constant skill level in 

situations accounting for worker learning ability, it was found that using the constant 

skill level in this situation is not appropriate since it has an effect on makespan.  

However, the constant skill level is suitable in situations where workers have slightly 

different learning slopes and a large production lot.   



 

 

CHAPTER V 
 

CONCLUSION AND FUTURE RESEARCH 
 

5.1 Conclusion 

 5.1.1 Introduction  

The appropriateness of using a two-stage heuristic for the practical 

application of worker assignment for workers with highly varying skill levels is 

addressed in this research.  An integrated approach to the assembly line balancing 

problem and worker assignment problem was developed.  The problem consists of a 

simultaneous solution to a double assignment: tasks to workstations and workers to 

workstations.  This dissertation concerns both situations which are constant skill 

levels of workers and skill levels taking into account the learning ability of workers. 

 

5.1.2 Problem description: the task-worker assignment 

problem assuming constant skill levels 

The problem focuses on the final assembly line.  The total line is 

considered to be serial with workstations consisting of one worker.  Since the number 

of tasks is greater than the number of workers, a worker may be assigned more than 

one task.  For the multiple assignments, consecutive tasks are only allowed since the 

tasks have precedence relation.  There are i identical items which is processed in a 

number of tasks.  After the worker has finished the tasks for processing an item, the 

item is sent to the next workstation along the line until it has passed through the last 

workstation.  The processing time depends on the skill levels of workers who execute 

the tasks.  
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5.1.3 Mathematical model of the task-worker assignment 

problem assuming constant skill levels 

A mathematical model is outlined in Chapter III.  The model combines 

the original assembly line balancing problem and assignment problem.  A variable 

awjs which represents that task j is assigned to worker w in workstation s which is 

designed to merge both problems.  The main constraints were designed to cover the 

requirements of the system.  To represent the group of consecutive tasks, the variable 

yjs was developed.  The objective of the mathematical model is to minimize the 

maximum workstation time of cycle time.   

 

5.1.4 Heuristic for the task-worker assignment problem 

assuming constant skill levels 

For the proposed heuristic, starting with limiting search space by UB and LB, 

the heuristic uses the processing time of quickest worker of each task to determine 

LB.  To set the UB close to the LB, the UB was developed based on the solution from 

the LB.  The search space between UB and LB is split by the trial cycle time and the 

solution between the trial cycle time and LB is examined.  No matter what solution is 

feasible or infeasible, the part of the search space separated by a trial value is 

discarded.  Consequently, the search space is continuously reduced.  The groups of 

tasks are generated based on the trial value, then assigned to the workers.  Only the 

groups which have valid maximal station loads rule are considered.  Tasks are added 

sequentially until the trial value is exceeded; that is, only the groups that have a cycle 

time within the trial value are considered.  The maximal station loads rule is a classic 

rule for assembly line balancing problems.  To determine the feasible assignment of 

the groups of tasks to workers, a mathematical model is modeled in the heuristic.  The 

highlight of the model is that we added two parameters, bjg and rwg to indicate which 

tasks are contained in the group of tasks and which worker operates the group of 

tasks.  Then a solver selects the groups of tasks on the list which are valid feasible 

assignments based on the information from both parameters. 
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5.1.5 Performance measurement of the heuristic assuming 

constant skill levels 

The heuristic factors that have an effect on the quality of the solution, 

such as the position of the trial value between the UB and LB and stopping criteria of 

the search, were investigated.  These parameters were tested in a small problem size, 

8w24t.  It was found that the position that is close to UB gives the best computation 

time. This means that the final solution is close to the upper bound and we can 

conclude that the heuristic has an efficient UB.  The suitable stopping criterion of the 

heuristic which is limited by a gap between UB and LB is then determined.  

Furthermore, the effect of the varying skill levels on the quality of the 

solution between the two-stage heuristic and the proposed heuristic was studied.  

Using the two-stage heuristic, firstly, the assembly line balancing problem is 

addressed by aggregating tasks using predetermined time standards and then with this 

established, the workers are assigned to the tasks.  The percentage difference between 

the cycle time from the proposed heuristic and the cycle time from the two stages 

method is calculated.  The result of the comparison confirms the disadvantage if the 

practical application is applied when the skills of workers vary greatly. The 

performance degrades to 10-15% when the deviation of skills of workers increases as 

reflected in a generation interval of [-30, 30] and the degradation is dramatic in the 

highest level of variance, increasing to 25-40%.   

5.1.6 Problem description: the task-worker assignment 

problem taking into account learning ability 

The second problem takes into account skill levels with learning 

consideration since it is the nature of fashion industry to launch new designs and new 

styles every season.  For this reason, workers in the industry must continually learn 

about new fabrics and sewing processes.  Based on the same problem, a mathematical 

model was developed.  The objective of the problem is to minimize makespan.  The 

objective of the conventional problem, which is minimizing the maximum 

workstation time, does not apply when learning is relevant since the bottleneck time 
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dynamically changes based on the reduction of learning ability for an assignment. 

Therefore, minimizing makespan or completion time was used as the objective in 

addressing this problem. 

5.1.7 Mathematical model of the task-worker assignment 

problem taking into account learning ability 

A mathematical model for the problem was developed as described in 

Chapter IV.  However, this model is different from the mathematical model in 

Chapter III in regards to calculating the objective value, makespan, which is based on 

the completion time of the last item.  The number of constraints in the problem is 

greater than in the problem in Chapter III due to the calculation of makespan, which 

depends on the number of items.  Consequently, the computational time of the model 

is higher than the mathematical model proposed in Chapter III.   

5.1.8 Heuristic for the task-worker assignment problem taking 

into account learning ability 

A heuristic was developed to solve the problem of assigning tasks to 

workers factoring in learning consideration.  The heuristic starts with limiting search 

space by UB and LB.  We use the benefit of the solution from the heuristic of the 

problem using constant skill levels to determine UB and LB of the solution.  The 

summation of the task processing time is represented as the constant skill level.  The 

objective value or cycle time is the LB.  It can be LB since it is obvious that the 

maximum workstation time is always less than the makespan value.  The solution is 

evaluated using the makespan value as UB.   

For the sequence of trial value between UB and LB, the search extends from 

LB to UB. The binary search could not be applied in the problem since the 

characteristics of both problems are different.  A groups of tasks based on the trial 

value was generated.  The groups of tasks were filtered and only the groups that were 

possible to give the feasible task-workstation assignment were kept.  The assignment 

of the possible groups of tasks and workers was then determined  
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In the Dijistra’s algorithm, the shortest path from the starting node to every 

other node was determined in order to develop the shortest path to the ending node.  

In the heuristic, the shortest path to each node becomes the minimum idle time of that 

node which is designed to search for a solution minimizing makespan.  If the 

minimum idle time of the last station is found, the minimum makespan would tend to 

be reached.  The Dijkstra’s algorithm was modified for the problem to fit the problem.   

5.1.9 Performance measurement of the heuristic taking into 

account learning ability 

The effectiveness of the heuristic was evaluated in terms of computational 

time and quality of the solution.  It was found that the computational time of the 

proposed heuristic is significantly lower than the computational time of the exact 

solution.  Furthermore, the proposed heuristic can keep the quality of the solution 

with a percentage deviation of less than 0.80 on average.  

In addition, it was found that when the workers have different learning slopes, 

the assumption of a constant skill level in all situations is not appropriate since it has 

an effect on the quality of the solution.  However, the constant skill level is suitable in 

situations where the workers have slightly different learning slopes and with the large 

production lots.   

 

5.2 Discussion and recommendations 

5.2.1 Task-worker assignment assuming constant skill levels 

It was found that the quality of UB and LB was reduced when the 

workers have high variation in skill levels as seen in Section 3.4.2.1.  For this reason, 

the computational time of the heuristic is higher when workers have high variation in 

skill levels.  Consequently, we recommend resetting the UB in order to make the 

heuristic is not sensitive to high variation in skill levels.  
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There are three variables of assignment in the mathematical models of 

the both problems, which are awjs , yjs and  rws .  The three dimension variable awjs is 

the same assignment solution which is combined from yjs and rws.  The mathematical 

model was developed based on background knowledge. Consequently, we 

recommend improving the model or resetting of precedence constraints.  

Although the computational time of the heuristic is fast, when the 

number of tasks and workers increase, it tends to rapidly increase. If was found that 

the main computational time of the heuristic is from the assignment of the grouped 

tasks to the workers in which a solver is called to solve an assignment model.  As a 

result, it was determined that the heuristic could be improved.  

This heuristic may have a limitation in application since the problem is 

designed for tasks that are set in series.  Nevertheless, the framework of this heuristic 

can be applied. 

Since the model assumes that all workers are fully cross-trained, it is 

further assumed that they can be assigned to any task on a line.  However in practice, 

a worker may have skills to work on only certain tasks.  To solve this problem, the 

assumption can be relaxed in our model by assigning an infinite cost to any worker-

task combination.  Consequently, the number of the alternatives of grouped tasks is 

reduced, as is the problem size of the assignment groups of tasks to workers in 

Section 3.3. The computational time can be reduced when workers have skills for 

only certain tasks. 

Since the heuristic generates the groups of tasks based on the trial 

value, the optimal solution is a solution in which all workers work as close to the final 

cycle time as possible.  However in fact, there may be the other solutions that give the 

same cycle time which are not included in this heuristic. 

Comparing the two stage assignments, which are the assembly line 

balancing problem and worker assignment problem, to the proposed problem; it was 

found that the proposed problem has more complexity since it addresses the two 

problems together.  We recommend that the supervisor should consider the variation 
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of skills of the workers before making an assignment.  The proposed problem is 

recommended to account for the high variation of skills of workers. 

   

5.2.2 Task-worker assignment taking into account learning 

ability  

   When more than one task is assigned to a worker, the processing time 

of the combined tasks is determined by the sum of the processing time of the tasks 

that he/she performs.  This assumption may not be suitable if the combined tasks are 

similar since there may be a learning factor as a result of the task similarity. 

In addition, the computational time heuristic is sensitive when the 

number of items and the number of workers increase.  The main computational time is 

obtained from the step generating the feasible path of task-workstation assignment.  

This part should be further refined.  

5.3 Future research 

There are several interesting possible extensions to the present work.  A future 

research direction could be to consider a more general case.  It can be developed as an 

integrated approach to assembly line balancing and worker assignment in different 

conditions in industrial manufacturing.  The problem can be modified following 

generalized assembly line balancing.  For example, it may be a system for several 

products or different models, or include a different line layout.  For example, it could 

include parallel workstations or a group of tasks which can be operated by more than 

one worker or a system which has assignment restrictions e.g. some tasks have to be 

assigned to the same workstation or some tasks are incompatible and have to be 

assigned to a different station.  Furthermore, industrial manufacturing may require 

more than a one-objective problem, so the objective of the problem can be considered 

in the form of a multi-objective problem.   
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Also regarding further solution development, a randomized-based heuristic 

can be added to improve the quality of the solution.  A local search procedure or 

meta-heuristic may be more efficient for problems of a larger size.  
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