

การมอบหมายงานใหกับพนกังานที่มีระดบัความชํานาญหลากหลายโดยมีการเรียนรู

นางสาวกัญจนา ทองสนิท

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมอุตสาหการ ภาควิชาวิศวกรรมอุตสาหการ

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย
ปการศึกษา 2552

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

 ASSIGNMENT OF CROSS-TRAINED WORKERS WITH LEARNING EFFECT

FOR SEWING OPERATION IN GARMENT INDUSTRY

Miss. Kanjana Thongsanit

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Industrial Engineering

Department of Industrial Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2009

Copyright of Chulalongkorn University

Thesis Title ASSIGNMENT OF CROSS-TRAINED WORKERS WITH

LEARNING EFFECT

BY Miss Kanjana Thongsanit
Field of Study Industrial Engineering

Thesis Advisor Assistant Professor Rein Boondiskulchok, D.Eng.

Thesis Co-advisor Assistant Professor Wipawee Thanmaphomphilas, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkom University in Partial

Fulfillment of the Requirements for the Doctoral Degree

&. - Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.1ng.)

THESIS COMMITTEE

&- ... Chairman

(Assistant Professor Manop Reodecha, Ph.D.)

d ~ , ... Thesis Advisor

(Assistant Professor Rein Bwndiskulchok, D.Eng.)

I r L ... Thesis Co-advisor

(Assistant Professor Wipawee Thammaphornphilas, Ph.D.)

P- 2%- .. .Examiner

(Assistant Professor Paveena Chaovalitwongse, Ph.D.)

dJ.1 .. .Examiner

(Assistant Professor Napassavong Rojanarowan, Ph.D.)

... External Member

(Assistant Professor Karndee Leopairote, Ph.D.)

niysui nadaCin : nisu~uuuiu~id46uw~n~iu~iis:hirnaiu1iu1cyunin~~iu

Pnuiinlshuf. (ASSIGNMENT OF CROSS-TRAINED WORKERS WITH

LEARNING EFFECT). a. ~ f i n w 5 n u i ~ w u g n : urn, ns. nl'sucy qcyAar)~bn.

a. d~nwi5nuiCwuiiau : urn. ms.5n-;? assuinsdGfii~l. 93 uci.

4771848321 : MAJOR: INDUSTRIAL ENGINEERING

KEYWORDS: ASSMGMENT PROBLEM / LEARNING / HEURISTIC

KANJANA THONGSANIT: ASSIGNMENT OF CROSS-TRAINED

WORKERS WITH LEARNING EFFECT. ADVISOR : ASST. PROF. REIN

BOONDISKULCHOK, Ph.D., COADVISOR : ASST. PROF. WIPAWEE

THARMMAPHORNPHILAS, 93 pp.

This dissertation addresses the problem of the practical application of worker

assignment among workers of highly varying skill levels. Generally, a heuristic

method for the assembly line balancing problem is applied in garment industry, which

is that the tasks or grouped tasks are first pre-determined based on a standard

processing time and then are assigned to the workers. The process of grouping and

assigning tasks without considering the skill level of the worker limits the quality of

the solution. Consequently, an integrated approach to the assembly line balancing and

worker assignment problem has been developed.

Due to the nature of fashion industry, new designs and new styles are launched

every season and the workers in the industry are continuously required to learn new

processes. This dissertation concerns the skill level of workers of both constant skill

levels and learning ability. MIP models for both problems were developed and the

objective is to minimize the cycle time and makespan respectively. To find a solution,

a heuristic was proposed and a lower bound and the upper bound were determined:

The performances of the heuristics were tested by comparing the solution obtained to

the optimal solution. The result of the comparison of the solution from the heuristic

and in practical application confirms the disadvantage if the practical application is

applied for workers of highly varying skill levels. The constant skill level of workers

learning ability is not appropriate in situations where workers have differing learning

slopes.

Depament : lndustlia!.Engj!!eeri.~?g Student's Signature ("v,?? ??!!!!!!
Field of Study : ..l."du~tG!.Engjnee~lI?g Advisor's Signature f!k?

Yvck--- Academic Year : 2009 Co-Advisor's Signature

 vi

ACKNOWLEDGEMENTS

I would like to thank my advisor Asst. Prof. Rein Boondiskulchok,

Ph.D. and my co-advisor Asst. Prof. Wipawee Thammaphornphilas , Ph.D. to provide

advice and support all period of the study and I always remember the word “balancing

your life also” as you recommendation. I would also like to thank Prof. Dr. William

G. Ferrell and Assoc. Prof. Dr. Mary E. Kurz from Faculty of Industrial Engineering,

Clemson University, U.S.A, for encouragement and suggestions.

I am very thankful to my committee members and faculty members

Asst. Prof. Dr. Manop Reodecha, Asst. Prof. Dr. Paveena Chaovalitwongse, Asst.

Prof. Dr. Napassavong Rojanarowan, Prof. Dr. Karndee Leopairote, Asst. Prof. Dr.

Seeronk Prichanont , Assoc. Prof. Dr. Parames Chutima , Ajarn Surapong

Sirikulvadhana and Ajarn Poom for their useful suggestions.

I wish to acknowledge Thai Government and Silpakorn University for

the sponsorship of my education. Thanks to friendship from my friends Ph.D.

Student , Jitti, Surachai, Supakanya, Chaiyathuch, Kanya, Sujin, Ronnachai,

Thanasan, Aniruth, Isarawit, Varaporn, Siravit and Krisada. I am thankful to my

friends at Clemson U., Swaros, Onurai ,Sunarin, Arika, Jaqui, Esengul, Yongjun,

Duanmu, Mahdieh, Xiaoyu for friendship and supports. I really appreciate their helps.

I cannot forget to thank my KMITNB’s friends, Nattawut, Thidawan, Naratip,

Nantakrit and my friends from Chiang Mai U. and Silpakorn U. who always support

me. I also would like to thanks my friends from Thai Garment Development

Foundation to support me the data about garment industry.

I would like to thank my family and my cousins who always take care

me. I would like to thank my parents (Jaroon and Wongduan) who give me breath

and also fulfill my life with endless love. A youngest sister would like to thank to my

sisters (Asst. Prof. Dr. Pajaree and Dr. Jaruwan) for their supports and endless love.

Finally, I would like to thank everything and everyone to make me completed this

work.

TABLE OF CONTENTS

Page

ABSTRACT (THAI) ... iv

ABSTRACT (ENGLISH) ... v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

LISTS OF TABLES .. xi

LISTS OF FIGURES .. xiii

CHAPTER I INTRODUCTION .. 1

 1.1 Introduction ... 1

 1.2 Statement of the problem .. 3

 1.3 Dissertation objectives .. 4

 1.4 Dissertation scope ... 5

 1.5 Dissertation contribution ... 5

 1.6 Dissertation methodology ... 6

 1.7 Dissertation organization .. 7

CHAPTER II LITERATURE REVIEW ... 8

 2.1 A review of assembly line balancing problems 8

 2.1.1 Assembly line balancing problems .. 8

 2.1.2 Solving the problems ... 10

 2.2 The assignment problem ... 12

 2.2.1 Variations on the assignment problem 13

 2.2.1.1 Variations in agent .. 13

 2.2.1.2 Variations in objective .. 13

 2.2.1.3 An assignment problem with multiple tasks per agent14

 2.2.1.4 Others variations in assignment problems 15

 2.2.2 Skill levels of workers and cross-training

 in assignment problems.. 16

viii

 Page

 2.2.3 Surveys related to the assignment problems 17

 2.3 Surveys related to assembly line balancing problem and assignment

problem concerning constant skill level ... 19

 2.4 Surveys related to the assignment problems concerning learning ability 21

 2.5 Surveys related to the task-worker assignment in garment industry 25

CHAPTER III TASK-WORKER ASSIGNMENT ASSUMING CONSTANT

SKILL LEVEL .. 27

 3.1 Problem description .. 27

 3.2 Model formulation .. 29

 3.3 Heuristic description and numerical example 32

 3.4 Performance measurement of heuristic ... 37

 3.4.1 Testing problem ... 37

 3.4.2 Computational experiments ... 39

 3.4.2.1 The performance of UB and LB of the heuristic 39

 3.4.2.2 The parameters applied in the heuristic 40

 3.4.2.3 The computational time and the quality of solution 42

3.4.2.4 Comparison with the heuristic in practical

 application ... 44

 3.5 Conclusion .. 45

CHAPTER IV TASK-WORKER ASSIGNMENT TAKING INTO ACCOUNT

LEARNING ABILITY ... 47

 4.1 Problem description .. 47

 4.2 Model formulation .. 49

 4.3 Heuristic description ... 52

 4.3.1 The recurrence relation between the idle times 53

 4.3.2 The Dijkstra’s algorithm .. 55

 4.4 The detail of the heuristic and numerical example 56

 4.5 Performance measurement of heuristic ... 64

ix

 Page

 4.5.1 Testing the problems .. 64

 4.5.2 The parameters applied in the heuristic 65

 4.5.3 Performance of heuristics on test problems 68

 4.5.3.1 The computational time of the heuristic 69

 4.5.3.2 The quality of the solution of the heuristic 74

 4.5.3.3 The comparison of the quality of the solution of the

heuristic to the heuristic for the constant skill level 82

 4.6 Discussion of computational results ... 85

CHAPTER V CONCLUSION AND FUTURE RESEARCH 86

 5.1 Conclusion ... 86

 5.1.1 Introduction ... 86

 5.1.2 Problem description: the task-worker assignment problem

assuming constant skill levels .. 86

 5.1.3 Mathematical model of the task-worker assignment problem

assuming constant skill levels .. 87

 5.1.4 Heuristic for the task-worker assignment problem assuming

constant skill levels .. 87

 5.1.5 Performance measurement of the heuristic assuming constant

skill levels .. 88

 5.1.6 Problem description: the task-worker assignment problem into

account learning ability .. 88

 5.1.7 Mathematical model of the task-worker assignment problem

taking into account learning ability 89

 5.1.8 Heuristic for the task-worker assignment problem taking into

account learning ability .. 89

 5.1.9 Performance measurement of the heuristic taking into account

learning ability ... 90

 5.2 Discussion and recommendations .. 90

 5.2.1 Task-worker assignment assuming constant skill levels 90

x

 Page

 5.2.2 Task-worker assignment taking into account learning ability 92

 5.3 Future research ... 92

REFERENCES .. 94

VITA... 102

LIST OF TABLES

page

Table 1.1. The task processing time for each worker (sec.) ...2

Table 3.1 The number of feasible assignments or complexity of the problem29

Table 3.2 Notations ..30

Table 3.3 Problem Size ...38

Table 3.4 The difference between the initial upper bound and initial lower bound.40

Table 3.5 The computational time of the heuristic and exact solution (sec.)43

Table 4.1 The processing time of 5 tasks, 3 workers (A, B, C) and 3 items (sec.)48

Table 4.2 Notations ..50

Table 4.3 the summation of task processing time ..58

Table 4.4 Problem Size ...65

Table 4.5 The quality of the solution and CPU. of test when the parameters are

varied ..67

Table 4.6 CPU. time of the problem : No. tasks = 3× No. workers , 100 items69

Table 4.7 CPU. time of the problem : No. tasks = 3× No. workers , 300 items70

Table 4.8 CPU. time of the problem : No. tasks = 4× No. workers , 100 items71

Table 4.9 The percentage difference of the problem : No. tasks = 3× No. workers ,

100 items ..76

Table 4.10 The percentage difference of the problem : No. tasks = 3× No. workers ,

300 items ..77

Table 4.11 The percentage difference of the problem : No. tasks = 4× No. workers ,

100 items ..78

Table 4.12 The percentage deviation of the heuristic for constant skill level from the

heuristic solution ..83

LIST OF FIGURES

page

Figure 1.1 The research methodology ..7

Figure 3.1 the solutions of grouping tasks to workstation and the assignment

between workstations and workers. ..28

Figure 3.2 The overview of the heuristic ..33

Figure 3.3 The computational time when weight between UB LB are varied (sec.) ...41

Figure 3.4 The percentage difference of cycle time between heuristic and exact

solution (%) ..42

Figure 3.5 Computational time of the heuristic when the skills of worker are varied 43

Figure 3.6 The percentage of the difference between the optimal solution or the best

found solution and the heuristic solutions (%). ..44

Figure 3.7 The comparison of the percentage difference between the proposed

heuristic and 2-stage heuristic solutions (%) ..45

Figure 4.1 Makespan from an assignment solution ..49

Figure 4.2 An expression of the Makespan ..53

Figure 4.3 Dijkstra’s algorithm ..55

Figure 4.4 the overview of the heuristic ...57

Figure 4.5 An example of LB and UB..58

Figure 4.6 (A) Nodes of the group of tasks ..59

Figure 4.6 (B) Feasible nodes of task-workstation assignment59

Figure 4.6 (C) Nodes for Modified Dijkstra’s algorithm ...59

Figure 4.7 The pseudo code of Modified Dijkstra’s algorithms...................................61

Figure 4.8 An example of the Modified Dijkstra’s algorithm63

Figure 4.9 An example to determine idle and sub-makespan.......................................63

Figure 4.10 An example of an improvement of makespan...66

Figure 4.11 The quality of the solution of the test when the parameters are varied68

Figure 4.12 CPU time of the test when the parameters are varied (sec.)68

Figure 4.13 CPU Time of optimal sol. when No. Tasks increase (sec.).......................71

Figure 4.14 CPU Time of optimal sol. when No. Items increase (sec.)72

Figure 4.15 CPU Time of optimal sol. when No. learning slope varies (sec.)72

Figure 4.16 CPU Time of heuristic sol. when No. Tasks increase (sec.)73

Figure 4.17 CPU Time of heuristic sol. when No. Items increase (sec.)73

Figure 4.18 The fraction of CPU.Time (%)..74

Figure 4.19 The percentage difference 7w28t100i (%) ..78

Figure 4.20 The percentage difference 7w21t100i (%) ..79

Figure 4.21 The percentage difference 7w21t300i (%) ..79

Figure 4.22 The percentage difference 8w32t100i (%) ..80

Figure 4.23 The percentage difference 8w24t100i (%) ..80

Figure 4.24 The percentage difference 8w24t300i(%) ...81

Figure 4.25 The percentage difference when No. Tasks and No.Items increase (%) ..82

Figure 4.26 The percentage difference diffcon_heu when No. Tasks increase (%)84

Figure 4.27 The percentage difference diffcon_heu when No. Items increase(%)84

CHAPTER I

INTRODUCTION

1.1 Introduction

Generally, in the garment industry, workers have different skill levels due to

their experience and training. In addition, due to the high turnover rate in the industry,

teams often consist of both new workers and experienced workers. For this reason, a

high variation of operation time between workers occurs. The question is how to

balance the line and assign workers of varying skill levels to workstations to

maximize productivity.

Both the assembly line balancing problem and worker assignment problem are

complicated by themselves and, as such, are typically resolved using a two-stage

heuristic. First, the assembly line balancing problem is addressed by aggregating

tasks using predetermined time standards. With this established, workers are assigned

to the tasks. In the Thai garment industry, it is common for one group to do the line

balancing and then a line supervisor to assign the workers to the grouped tasks. This

basic approach is very poor for a number of reasons, the most serious of which is that

grouping tasks for the line balancing effort does not consider the differences in

worker skills whereas the supervisor who makes the actual assignments certainly does.

This practical observation points to the general problem and defines the research

problem addressed here, namely, investigation of integrated line balancing by task

grouping and worker assignment to task groups with consideration of varying skill

levels between workers for labor-intensive assembly operations.

To provide further motivation for addressing this problem, consider the

following example. There are 3 workers assigned to 5 tasks, the task processing time

for each worker and the average processing time are given in Table 1.1. The typical

two-stage heuristic used in practice would apply average processing time to group

tasks for line balancing. If the objective is to minimize the maximum processing time

of the workstations, the assignments would be task 1 to workstation 1; tasks 2 and 3 to

 2

workstation 2; and tasks 4 and 5 to workstation 3. This yields a maximum processing

time of 5 using the average times of the workers. The second phase assigns one

worker to each workstation with the objective of improving the solution. This yields

the assignment of worker A to workstation 1, worker B to workstation 2 and worker C

to workstation 3. The maximum processing time is 5 at workstation 2.

Table 1.1. The task processing time for each worker (sec.)
 Worker A Worker B Worker C Average

time

Task 1 5 2 5 4
Task 2 3 1 2 2
Task 3 4 4 1 3
Task 4 2 2 2 2
Task 5 5 2 2 3

However, if the both problems are integrated, worker skills are considered at

the same time as task grouping. The optimal solution will be 4. The solution of task-

workstation assignment is {1 2, 3, 4 5} and the solution of worker-workstation

assignment is {B, A, C}. The maximum cycle time is max {3, 4, 4} = 4. It should be

noted that the quality of the solution solved in this way is better than the solution in

the case of grouping tasks without considering worker skills and assigning groups of

tasks to workers later. As such, there appears to be a strong potential for significant

improvement by addressing the line balancing and worker assignment problems in an

integrated fashion rather than sequentially. In this study, we are interested in

developing a methodology for assigning tasks to workers of varying skill levels.

Not all cases however will have this magnitude of error between the integrated

and two-stage approaches in practical application. The comparison of the quality of

the solution between the two approaches can be questioned. What is the effect of the

varying skill levels on the quality of the solution between the methods used in

practical application versus an integrated approach to assembly line balancing and

worker assignment?

 3

In the fashion industry, new product styles are launched more frequently than

in the past with smaller lot sizes due to increased market competition. Consequently,

a trend in garment production in Thailand has emerged shifting from mass production

to small lot production since it is more flexible and responsive compared to mass

production. Garment production is labor intensive and the production rate mainly

depends on worker skills. With different experience and training, each worker has

different skill levels and learning ability. Generally, people learn and improve their

performance by repeating operations, and as a result, they will require less time to

produce the succeeding unit or gain proficiency with the repetition of the same task.

This is called learning behavior.

In mass production, learning behavior is usually not considered. A constant

production rate assumption is always assumed in developing a task-worker

assignment since the learning period is only a small part compared to a whole

production period. However, in the fashion industry, since new product styles are

launched more frequently and lot sizes are smaller, the learning period becomes a

more substantial part of production time. A task-worker assignment with a constant

production rate assumption may not directly apply since it may not provide the

optimal solution in practice. For this reason, learning should be considered in a task-

worker assignment in the fashion industry.

In this study we are interested in developing a methodology of assigning tasks

to workers of varying skill levels taking into account learning. What is the effect of

applying the constant skill level in situations that account for the workers learning

ability on the quality of the solution?

1.2 Statement of the problem

In this dissertation, an integrated approach to assembly line balancing and

worker assignment is studied. The system considered in this problem is an assembly

line which is a set of sequential workstations. The problem consists of a simultaneous

solution to a double assignment: tasks to workstations and workers to workstations. A

workstation consists of a worker who operates the assigned tasks. There are i

identical items. An item is processed through a number of tasks from the first task to

the last task until the item is completed as a finished product. A worker will operate

 4

on an item as soon as she/he has finished their work on the current item and has

released it into buffer spaces before the next workstation. All items are processed

along the same route which passes through all workstations. The problem assumes

that the workers have multiple skills so they are be able to do more than one task.

The skill levels of the workers are different. The task processing time depends on the

skills of workers who execute those tasks. This study looks at both the constant skill

level and skill level with learning ability.

A task-worker assignment method where all tasks must be assigned to workers

was developed. In it, each worker is assigned to at least one task and some workers

can have multiple assignments. Moreover, a task cannot be split and assigned to more

than one workstation. In the study, tasks are ordered in a series and consecutive tasks

are only allowed in the multiple assignments because of the continuous flow of the

production line. This problem also includes the following assumptions.

1) The number of tasks is greater than the number of workers.

2) The task processing time is given.

3) Other learning factors among the tasks at the same workstation are not

considered e.g. the task similarity.

4) There is unlimited buffer space before each workstation or worker.

5) At the start of production, there is no work in progress in the line.

6) Learning ability depends on each worker.

1.3 Dissertation objectives

1.3.1 The objective of this research is to develop an efficient heuristic to solve

the problem of an integrated approach to assembly line balancing and worker

assignment assuming constant skill levels of workers in order to minimize cycle time

or to minimize the maximum processing time of the workstations.

1.3.2 The objective of this research is to develop an efficient heuristic to solve

the problem of an integrated approach to assembly line balancing and worker

assignment taking into account learning ability of workers in order to minimize

makespan or the completion time.

 5

1.4 Dissertation scope

This study focuses on a fixed task-worker assignment for which there is a

solution for the assignment problem. In the problem, the tasks are ordered in a series

since it is an assembly line for a finished product. For learning behavior, the Log-

Linear model was applied to represent the learning ability of each worker. Based on

the Log-Linear model, if t1 and tn represent the task processing time of the first and
the nth item, and using Ø in terms of learning slope,)2log/(log

1
φnttn ⋅= (Wright, 1936).

The problem assumes that the task processing time depends on the learning

ability of the worker who operated the task. Furthermore, the study sets the task in

discrete processing time which was generated from the learning model. If a worker is

assigned to more than one task, we use the sum of the task processing time that he/she

performs to represent processing time of the combined tasks. We assume that the task

similarity between the tasks is ignored.

1.5 Dissertation contribution

An integrated approach to the assembly line balancing and worker

assignment was developed in this dissertation. The problem was that the quality of

the solution of the assignment in a practical application or a two stage heuristic may

not be appropriate when there is high worker skill variation. The result of the study

confirms the existence of this problem and can serve to increase the level of

awareness in the industry of the effect of the varying skills of workers on production

rates.

It would be beneficial for the industry to take into account the impact on the

performance of the production line when assuming constant skill levels in situations

where worker learning ability is a factor. This can be a guideline for industry for

developing a more efficient assignment process.

 6

Mathematical models of an integrated approach to the assembly line

balancing and worker assignment assuming constant skill levels and mathematical

models of the problem accounting for learning ability were proposed in conducting

this research.

Furthermore a heuristic was developed to solve the problem of constant skill

level and its quality of the solution and computational time was compared to the

solution from a commercial solver. It was found that in many cases, the heuristic can

determine the optimal solution. We used the solution from the first heuristic to limit

search space for the second problem.

The heuristic for solving the task-worker assignment problem accounting for

learning ability was proposed and its quality of solution and computational time

compared to the solution from a commercial optimization solver. It was found that in

some cases, the heuristic achieves the optimal solution. We believe that the results of

this dissertation can be used a guideline for other researchers to further develop

similar heuristics or apply them to other problems.

1.6 Dissertation methodology
This section addresses the dissertation methodology. Figure 1.1 shows the

dissertation methodology.

 7

Figure 1.1 The research methodology

1.7 Dissertation Organization

The outline of this dissertation is as follows. The relevant literature is

reviewed in Chapter II. In Chapter III, task-worker assignment assuming constant

skill level is formulated and a heuristic to solve the problem and a performance

measurement of the heuristic and the computational results is proposed. In Chapter

IV, the task-worker assignment accounting for learning ability is formulated and a

heuristic to solve the problem and a performance measurement of the heuristic and the

computational results is proposed. Finally, the conclusion and suggestions for future

research are presented in Chapter V.

Study the problem

Use the mathematical model to find the
optimal solution

Formulate a mathematical model of the
problem to minimize cycle time and

minimize makespan

Conclusion and discussion

Conduct computational experiments Conduct computational experiments

Develop and improve heuristic for the
problem to minimize cycle time

Develop and improve heuristic for
the problem to minimize makespan

CHAPTER II

LITERATURE REVIEW

This chapter is organized as follows: Firstly, a review of assembly line

balancing problems, which consists of the problem description and solving method.

Secondly, assignment problems which consist of the problem description, variations

on assignment problems and a survey of problems related to worker assignment.

Thirdly, a survey related to assembly line balancing problems and assignment

problems with a constant skill level and finally, a survey related to assembly line

balancing problems and assignment problems with learning ability.

2.1 A review of assembly line balancing problems

An assembly line consists of a series of workstations. One objective in

designing a flow line is to attempt to allocate equal amounts of work to each

workstation (Wile, 1972). This is known as line balancing. The problem of line

balancing is to distribute the total work content to the workstations in the line, such

that idleness of resource at each station is minimized (Gavett, 1968). The cycle time

is the available time for an operator to complete his unit of work at his station. The

bottleneck workstation is the workstation in which work content is equal to the cycle

time.

2.1.1 Assembly line balancing problems

The simple assembly line balancing problem (SALBP) is one of

assigning the tasks to stations according to some criteria. In the problem, the tasks

have a precedence requirement, so the tasks cannot be processed in an arbitrary

sequence. All tasks must be processed. The task processing time does not depend on

the workstation, so the task processing time is same for an assignment at any

workstation. The total line is considered to be serial. SALBP is designed for the

mass-production of a single product. Mainly, there are two types of simple assembly

line balancing problems (SALBP). The objective of SALBP-I is to minimize the

9

number of stations along the line and the cycle time is given. The objective of

SALBP-II is to minimize the cycle time or maximize the production rate and the

number of stations is given (Baybars, 1986). There are many generalized assembly

line balancing problems which occur in a system with several products or different

models and different line layouts. For example, more than one worker operates the

tasks or the parallel workstations. Furthermore, the system has assignment

restrictions. For example, some tasks have to be assigned to the same workstation or

incompatible tasks have to be assigned to different workstations.

The problem addressed in this dissertation is the SALBP-II type. Since the

number of workers is known, we want to minimize the cycle time. However, this

problem in the study deviates from the original SALBP since workstations are non-

identical. A worker who performs the tasks in a workstation has different levels of

performance.

The mathematical formulation of the SALBP-II problem is the following:

Index

 S = a set of workstations , Ss∈ ,for s = 1,…, k

J = a set of tasks , Jj∈ ,for j = 1,…, o

ARC = a set of arcs from(j, u) which is an arc from task j to u to symbolize

that j is the immediate predecessor of u

Parameter

k = the number of workstations or the number of workers

o = the number of tasks

jt = the processing time of task j .

Variable

jsx = 1 if task j is assigned to workstation s

 0 otherwise
Cycle = Cycle time

Minimize Cycle (2.1)

Subject to

Cycle time constraint:

{

10

Cyclext
Jj

jsj ≤×∑
∈

 s∀ (2.2)

1=∑
∈Ss

jsx j∀ (2.3)

∑∑
∈∈

×≤×
Ss

us
Ss

js xsxs ARCuj ∈∀),((2.4)

Constraints 2.2 are to ensure that the cycle time is not exceed by the workstation time

of any workstation. Constraints 2.3 are to ensure that each task is assigned to just one

station. Constraints 2.4 represent the precedence constraints to ensure that no task is

assigned to an earlier station than its predecessor.

2.1.2 Solving the problems

There are a variety of procedures for solving SALBP-I, whereas only a

few procedures solved SALBP-II directly. Most research has applied SALBP-I to

solve SALBP-II by increasing the cycle time until a balance is achieved. The initial

lower bound or the minimal cycle time is determined, and then an assignment of tasks

to workstations following the precedence constraints using SALBP-I method is

applied. The trial cycle time is successively increased until a feasible solution found.

This procedure is called the iterated method (Baybars, 1986; Scholl and Klein, 1999;

Scholl and Becker, 2006). The search method starts with the lower bound, and the

cycle time is successively increased by one until a feasible solution is found. This is

called the Lower Bound Method. The lower bound can be determined by several

methods. The lower bound (LB) for SALBP-II can be obtained by omitting the

precedence constraints. Let tmax be the maximum task time , tsum be the sum of task

times for all tasks and k be the number of workers, LB = max {tmax,tsum/k}. For

another way to set the lower bound, Talbot and Patterson (1984) have restricted the

possible assignment of each task to a station interval which is bounded by the concept

of an earliest and latest station. The lower bound is the minimal cycle time in which

the earliest station is less than or equal to the latest station for all tasks. Pastor and

Ferrer (2008) developed a mathematical model for SALBP based on the concept of a

feasible assignment from the earliest to latest interval. Sprecher (1999) and Klein and

Scholl (1996) have calculated the lower bound using different methods and selected

the best lower bound among the results.

11

Not only does the search start with the lower bound, but it also starts with the

upper bound, and the cycle time is successively decreased by a step until a feasible

solution is found or it equals the lower bound. It is called the Upper Bound Method.

Furthermore, the search can be in the interval [LB, UB]. This is called a binary

search. The interval is successively subdivided into two sub-intervals by selecting the

mean value, (LB+UB)/2. If a feasible solution is found, the UB is set to the

maximum station time in the corresponding solution. Otherwise, LB is set to c plus

step. These are the general search procedures applied in the previous research. The

exact algorithms for solving SALBP-II are based on the branch and bound principle.

Furthermore, several rules were developed in order to reduce computation and

improve the search process (Askin and Standridge, 1993).

 For example, only maximal station loads have to be considered. A station is

termed maximal if no task can be assigned to it without violating the precedence and

the cycle time constraints, i.e. a workstation should never close while “fittable” tasks

remain. A fittable task is an unassigned task that can be completed in the remaining

idle time of the station. Moreover, for the dominance rule, suppose there is a station

where one of its tasks, u, could be feasibly replaced by a longer task, v, and all the

successors of u must also follow v. If v is substituted for u, the remaining workload is

reduced without losing any possible sequence completions. Suppose we have three

tasks 1, 2, 3 with task time (2, 4, 2) respectively and task 1 and task 2 are completed

before their successors task 3 can be started. In this case, task 2 dominates task 1

since task time of task 2 > task time of task 1 and all of task 1’s successors. Let cycle

time be c = 4. If we place task 1 first, the solution is (1, 2, and 3). The workstation

time will be {2, 4, 2}. However, if b is placed first, the solution is (2)(1,3). The

workstation time will be {4, 4}. The dominated task is ignored. The solution is better

than the previous solution. The partial sequence that places the dominated task is

fathomed. The dominance rule is applied in many heuristics. Furthermore, the bound

violation is a rule that determines the upper bound of the largest workstation to which

each task can be assigned. After a workstation is assigned, the unassigned task is

checked. If any such task has an upper bound less than or equal to the order of the

assigned workstation, then this partial solution is fathomed.

Regarding the assembly line balancing problem, when the operation time for

every task is different depending on who executes the task, Miralles, et al. (2008)

applied branch and bound using the bound violation rule. Finally, the rule of

12

excessive idle time is the rule that uses the total idle time to fathom the partial

sequence. Let the total idle time be k x c - tsum . Thus whenever the cumulative idle

time exceeds k x c – tsum , the partial solution is fathomed. The fathom rule has been

applied in many algorithms. Furthermore, there are many researchers who have

proposed heuristics for SALBP-II e.g. meta-heuristic (Fatih Ugurdag et al.,1997; Liu,

et al., 2008; Tasan and Tunali ,2008). Liu, et al., (2008) proposed two-stage

heuristics for SALBP-II. First, the initial solution was determined then it was

improved by swapping tasks among workstations.

In this study, we are interested in applying the maximal station loads rule to

limit the number of tasks assigned to a worker within the trial cycle time, then

determine the feasible assignment from the alternative of the tasks. After the groups

of tasks are generated based on the maximal station load rule, the feasible assignments

from matching the group of tasks that validate the assignment requirement are

searched. With this method, the number of the alternative groups of tasks will be

reduced and the feasible solution will be generated.

 The UB and LB will be developed. To determine lower bound, we believe

that the lower bound considering the precedence constraints is better than the lower

bound omitting the precedence constraints.

2.2 The assignment problem

 The classical assignment problem is to find a one-to-one match between n

tasks and m agents; the objective is to minimize the total cost of the assignments. The

mathematical model for the classic assignment problem may be given as:

Minimize ij

m

i

n

j
ij xcz ∑∑

= =

=
1 1

 Subject to

 1
1

=∑
=

n

i
ijx nj ,...,2,1= (2.5)

 1
1

=∑
=

n

j
ijx mi ,...,1= (2.6)

13

 0=ijx or 1

;where xij = 1 if agent i is assigned to task j, 0 if not, and cij = the cost of assigning

agent i to task j.

2.2.1. Variations on the assignment problem

Pentico (2007) and Burkard (2002) proposed a survey paper of the

variation of assignment problems. For example, an assignment problem that has

variations in agent and objective, and an assignment problem with multiple tasks per

agent, among others, were proposed.

 2.2.1.1 Variations in agent

 In practice, agents or workers have different skill levels. The

industry sets a rating for the workers e.g. A, B and C and only the worker who is

qualified is allowed to perform a given task (Dell’Amico and Martello, 1997). In

assigning workers to machines, there are multiple alternatives in the assignment. The

assignment can involve only a subset of workers and machines to be assigned (Prins ,

1994).

For the proposed assignment problem in this dissertation, we

assume that the workers have different skill levels; however it is assumed that all

workers should be assigned in the problem.

2.2.1.2 Variations in objective

The original minimizing total cost has been modified based on

the situation. For example, Martello, et al. (1984) have pointed out the problem of

minimizing the difference between the maximum and minimum assignment values,

which is called the balanced assignment problem. In addition, Duin and Volgenant

(1991) have proposed the minimum deviation by minimizing the difference between

the maximum and average assignment costs. For example, in a cutting problem, the

objective is to minimize the waste from cutting a standard size edge-piece down to the

individual sizes.

14

The bottleneck assignment problem differs from the classic

assignment problem in that the objective changes from minimizing the sum of the

costs of assigning tasks to agents to minimizing the maximum of costs of the

assignments. An example of the bottleneck assignment problem from Lev and Weiss

(1982) is as follows: A foreman takes a four-person work crew from Philadelphia to

Atlantic City in order to fix some equipment. The four workers have the ability to use

all machines. Due to the different skill levels, the length of time will vary for each

worker to fix each machine. The crew will return to Philadelphia together. Therefore

they will leave Atlantic City when the last crew member finishes. Thus the foreman

needs to assign the tasks so that the largest task time is minimized.

The objective of the mini-max formulation is the same as the

objective in the assembly line balancing problem. It is applied to the Simple

Assembly Line Balancing Problem (SALBP-II) with the objective of minimizing

cycle time or minimizing the maximum workstation time (Scholl, 1999). Generally,

mini-max in time will be maxi-min in production rate. Suer (1998) has proposed the

maxi-min formulation to maximize the minimization of the assembly rate for

designing parallel assembly lines.

2.2.1.3 An assignment problem with multiple tasks per agent

 There is one type of problem called the Generalized

Assignment Problem (GAP). In the model, an agent may be assigned more than one

task. The generalized assignment problem is the problem of assigning each task

specifically to one agent, so the total cost of processing all tasks is minimized and no

agent exceeds its resource capacity. Applications of the GAP appear in many fields

such as vehicle routing, fixed charge location problems, grouping and loading for

flexible manufacturing systems, scheduling projects, allocating storage space, and

designing communication networks.

The GAP with m agents and n tasks can be formulated as an

integer programming problem by defining the zero-one decision variables ijx , where

ijx =1 if task j is assigned to agent i , and ijx =0 otherwise:

15

 Minimize ij

m

i

n

j
ij xc∑∑

= =1 1

 Subject to

 iij

n

j
ij bxa ≤∑

=1
 mi ,...,1= (2.7)

 1
1

=∑
=

m

i
ijx nj ,...,1= (2.8)

 { }1,0∈ijx njmi ,...,1;,...,1 ==

The GAP assumes that there is one resource available to the

agents. Gavish and Pirkul (1986) have proposed the Multi-Resource Generalized

Assignment Problem (MRGAP) which consumes several resources processed by the

agents. This problem has been applied to the distribution of petroleum products; for

example, an oil company intending to minimize the costs of delivering petroleum

products (super, unleaded petrol etc.). Shtub and Kogan (1998) have presented an

extension of MRGAP to the case where demand varies over time and capacity

assignments are dynamic.

For the proposed assignment problem in this dissertation,

multiple assignments are allowed for a worker. However it is different from GAP

since the resource capacity is not limited. Furthermore, this dissertation considers that

the assignments should validate the precedence constraint.

2.2.1.4 Others variations in assignment problems

 Multi-dimensional assignment problems match the members of

three or more sets. For example, the problem could be matching jobs with workers

and machines or assigning students and teachers to classes and time slots. Franz and

Miller (1993) have discussed the multi-period assignment problem for assigning

medical residents and rotations at a teaching hospital. The objective was to maximize

the expressed preferences of the residents. Kouvelis and Yu (1997) have presented a

solution for the assignment problem which contains uncertainties.

16

2.2.2 Skill levels of workers and cross-training in assignment

problems
Workers have different skill levels according to experience,

capability, knowledge and background. Skill levels are represented by production

rate, percent of efficiency and performance (Spragg et.al, 1999). For an assignment

based on the skill level, many researchers have defined skill level in different patterns.

Hassamonts (2004) has set skill levels with ratings. For example the “A” rate is the

rate that a worker can complete a standard task at least 20% faster than the specified

standard time. Chan, et al. (1997) rated skill ranging from 0 (unskilled) to 1.5 (fully –

skilled) which depends on the performance of the worker performing a sewing

operation. Song, et al. (2006) defined the operator’s efficiency as the ratio of the

garment quantity of a piece finished by an operator divided by time. The applications

of skill levels also appeared in planning (e.g. workforce planning, staffing), promoting

(evaluating performance of a worker), motivating workers and using data of

assignment.

For the flexibility of the production line, multi-skilled workers or

cross-trained workers are required. It is recognized as a tool for increasing production

flexibility when addressing changes in demand, worker assignment, and absenteeism.

Labor flexibility has a positive effect on operational performance indicators, such as

the throughput time and the delivery performance of jobs (e.g. Treleven, 1989).

Cross-training also increases the possibility that workers may help each other and

share their workloads. Moreover, cross-training can mitigate turnover because

flexible workers can more easily replace the workers who leave, and can improve

motivation. For example, some cross-trained workers feel that they have experienced

professional growth.

Multi-functionality is a benefit for organizing the workforce (Zulch

et al., 2004). The multi-skilled worker applies both in the industry and service sectors

e.g. power stations (Eitzen and Panton, 2004), production lines (Bokhorst et al., 2004),

and hospitals (Brusco, 1998). Furthermore, a manager or supervisor who has multiple

skills may be set to be a floater to attend to the operation when it is backed up (Hopp,

2004). Farrar (1993) analyzed the potential performance and benefits achievable with

a floater in serial production systems.

17

However, total flexibility of the workforce is not desirable in

practical situations. The requirement of training all workers for all machines would

be very costly. Moreover, a high level of labor flexibility may also involve

considerable productivity loss due to the shift of workers between machines (Slomp et.

al., 2005). Wong, et al. (2005) studied the impact of the different levels of skill

inventory of workers on the assembly. The number of skills was investigated in order

to find out the optimal number of task skills that an operator should possess in the

apparel assembly process.

Several researchers studied and developed cross-training policies in

order to determine the distribution of workers’ skills. Yang (2007) has compared a

set of cross-training policies studying the different numbers of cross-trained workers

(i.e. one, two, three or four from each department), additional skills per cross-trained

worker, and additional machines (i.e. four workers / five machines having worker-to-

machine ratios 80%) to analyze the performance of the policies. Inman (2005) has

compared policies of total cross-training, reciprocal pairs (each cross-trained worker

serving the paired unit) and chained cross-training (one worker trained some units

linking the units in a chain). Cross-training has been investigated by many

researchers such as Brusco and Johns (1998) who studied characteristics of cross-

training policies in the number of work activity categories and the level of

productivity. Jordan, et al. (1995) have stated that chained cross-training results in a

robust change in workload characteristics. Inman, et al. (2004) applied chaining to

cross-training assembly line workers to mitigate the impact of absenteeism.

2.2.3 Surveys related to assignment problems

Suer (1996) has addressed the problem of finding the optimal

manpower assignment and cell loads simultaneously. A single workstation, or “cell”,

consists of a number of operators assigned to each task type. A two-phase

hierarchical method is proposed using two models of mixed integer and integer

programming formulations. The first model determines the alternative cell

configurations in order to maximize the production rate. The second model is to

allocate worker assignment and load to cell to maximize the production of the cell and

utilize the least number of workers. Suer and Bera (1998) have expanded the

previous models of Suer (1996) by allowing multiple products to be assigned to

18

multiple cells (lot-splitting). This model does not address the operator’s skill level for

each task.

Nakade and Ohno (1999) have considered the optimal worker

allocation problem in a U-shaped production line. The multi-skilled worker operates

multiple machines and visits each machine once for each unit of production. They

derived the lower bound of the number of workers under the required cycle time and

proposed an algorithm for finding an optimal allocation of workers to machines in

order to minimize the cycle time using the minimum number of workers.

Nevertheless, they do not consider the worker allocation problem when there are

different skill levels among workers.

Slomp and Molleman (2002) have investigated the impact of cross-

training on team performance under conditions where there is a fluctuating demand

and supply of human resources. A task assignment heuristic is used for comparing

the cross-training policies.

Slomp and Bokhorst (2005) have proposed a model that considers

trade-offs between training costs and the workload balance among workers in a

manufacturing cell. The integer programming model was proposed to calculate which

workers have to be trained for which machines. They used a bottleneck worker to

determine workload balance. The assumption of the problem is based on the idea that

a bottleneck worker is used for determining the efficiency of the manufacturing cell.

Futatsuishi, et al. (2002) addressed the problem of minimizing the

total elapsed time from the start up time to the completion of a job in an environment

where a single worker needs more than one skill and one task can be processed by

several persons.

Norman, et al. (2002) have proposed a model accounting for human

skills. The skill levels of workers are permitted to change by providing them with

additional training. A mixed integer programming model to assign workers to tasks in

manufacturing cells is proposed in order to maximize the effectiveness of the

organization (function of productivity, output quality and training cost).

Corominas, et al. (2006) have studied the assignment of tasks to the

members of a multi-functional staff in a work center. The problem focuses on service

industries that train workers on every task. The different tasks require varying levels

of attention and responsibility. The number of consecutive periods operated by

19

workers should fall within the specified interval limited by a minimum and a

maximum number of periods working at each type of task.

Campbell and Diaby (2002) have proposed an assignment heuristic

for allocating cross-trained workers to multiple departments. Each worker has

different capabilities for working in each department.

Caron, et al. (1999) have studied assignment with seniority and job

priority constraints in the daily scheduling of nurses in a hospital.

Askin and Chen (2006) have studied dynamic task assignment for

throughput maximization with worksharing. Two types of worksharing can be found:

Dynamic assembly-Line Balancing (DLB) and Moving Worker Modules (MWN).

MWM applications usually have more machines than workers. Workers carry work

pieces along the line within zones and share use of machines. DLB matches machines

and workers with some tasks assigned to a designated worker, which are called fixed

tasks. Other tasks can be performed by either of an adjacent pair of workers. These

are called shared tasks. A worker chooses to either pass on a job with the shared task

undone or complete the shared task, according to specific rules.

2.3 Surveys related to assembly line balancing problems and
assignment problems concerning constant skill level

Although the integrated line balancing and worker assignment problems

appear to have tremendous relevance in practice, there are few references indicating

past research in this area. Hassamontr (2004) proposed two-phased heuristics for

assembly line balancing with operator’s skill and machine constraints, which is

basically the approach described above. The first phase assigns operations to

workstations using standard times and the second phase assigns workers to

workstations. Wong, et al. (2005) developed a line balancing technique using Genetic

Algorithms (GA) in which each worker has an efficiency factor related to skill level.

The required number of workers is computed and worker assignments are then

generated using GA. Song, et al. (2006) proposed a recursive algorithm that first

determines the number of workers for each task that is required, then identifies the

skill(s) of each worker, and finally makes the assignments.

20

An extremely interesting paper by Miralles, et al. (2008) addresses grouping

and assigning together considering worker skill. Their approach uses mathematical

programming along with a branch and bound solution procedure. There are a number

of key differences between this work and the problems under consideration here

because their research focuses on designing a work environment that helps disabled

workers develop capabilities where some workers cannot operate some tasks. Then

Chaves (2009) proposed a hybrid meta-heuristic to solve the problem.

Chen et al., (2009) addressed the problem of assigning tasks to workstations

and assigning machines in the workstation in order to balance the load. However all

machines are assumed to have the same performance. Assignment restrictions have

been added to the assembly line balancing problem. Scholl, et al. (2010) examined

the assembly line balancing problem with assignment restrictions including task

restriction, resource restriction and workstation restriction. For example,

incompatible tasks must be assigned to different workstations and an assignment

should not exceed the available space. However, the difference in task processing

times between workstations is not considered. In regard to multi objectives, Zhang, et

al. (2008) examined the problems of minimizing cycle time, the variation of workload

and the total cost. The problem is modelled in a non-linear approach and solved by a

genetic algorithm. Zhang and Gen (2009) formulated a non-linear model for mixed –

model assembly line balancing and solved the problem using a genetic algorithm with

the objective of minimizing cycle time, increasing the line efficiency and reducing the

total cost.

Corominas, et al. (2008) proposed a process of rebalancing a motorcycle-

assembly line considering two groups of workers: skilled and unskilled workers. The

skilled workers can perform all the tasks, whereas the unskilled workers can only

perform a subset of tasks. The unskilled workers will take longer to perform tasks

than the skilled workers. However, the study assumed that the task processing time of

workers in the same group (skilled and unskilled) is equal.

21

2.4 Surveys related to assignment problems concerning

learning ability

Generally, people will learn and improve by repeating operations. They will

require less time to produce succeeding units. This is learning behavior and can be

studied and represented by a mathematical model (Wright, 1936, Dar-El, 2000).

Learning is time-dependent. In this dissertation, we focus on the Log-Linear model.
Based on the Log-Linear model, if t1 and tn represent the task processing times of the

first and the nth item, and use Ø in terms of learning slope,)2log/(log
1

φnttn ⋅= (Wright,

1936). The property of the learning phenomenon is that whenever the total quantity

of units produced doubles, the time per unit to produce the unit decreases by a

constant rate (known as learning rate) (Sumanth, 1985). For example, if the time

taken to produce the first unit is 10 hours, and if the learning rate is 80 percent, then

the time taken to produce the second, fourth, eighth, and sixteenth units are as follows:

Second unit = 0.8 × 10 = 8 Time units.

Fourth unit = 0.8 × 8 = 6.4 Time units.

Eighth unit = 0.8 × 6.4 = 5.12 Time units.

Sixteenth unit = 0.8 × 5.12 = 4.096 Time units.

In general, the percent rate of learning =

Cumulative average/unit at a given level of production
Cumulative average time/unit at half the given production level

For example, time taken for eighth unit / time taken for fourth unit = 5.12/6.4 =0.8

The learning curve is given by a hyperbola of the form:

 tn = t1(n)s

where

 tn = time to produce the nth unit

 t1 = time to produce the first unit

 n = unit number

 s = slope of the learning curve when it is represented on the

log scale

 = log of learning rate / log2

 = log r / log 2 : r = learning rate

22

Since learning rate (r) = tn / tn/2 =
s

s

nt

nt

)
2

(

)(

1

1 = (2)s

Therefore,
2log

log rs =

,and)2log/(log
1

φnttn ⋅=

Many factors influence learning e.g. job complexity, the number of repetitions,

previous experience and training (Dar-El, 2000). Learning is addressed in many

studies related to production e.g. scheduling (Mosheiov, 2001), assembly line

balancing (Chakravarty, 1988), and allocation or worker selection (Nembhard, and

Osothsilp, 2005). Workers vary in learning which is affected by many factors:

individual ability, individual variability, financial incentives, organizational norms

and constraints, training and the nature of the social environment (Uzumeri and

Nemhard, 1998). Learning data can be kept and analyzed due to systems support.

Many organizations have installed data acquisition systems to record detailed

production and quality data to enable product tracking, quality control, and piece-rate

wage tracking (Nemhard et al., 2000). Moreover, computer technology allows

organizations to record individual worker activities at shorter time intervals at a

dramatically lower cost (Uzumeri and Nemhard, 1998). Therefore, many researchers

can examine the mathematical form for individual learning. Examples of learning

models are: log-linear, exponential function, and hyperbolic functions.

Nemhard and Uzumeri (2000B) have categorized learning modeling into two

broad areas: organizational learning and individual learning. Organization learning

research has focused on the overall implications of learning across large

organizational units (Nemhard and Uzumeri, 2000B). The organization learning

curves use data that are aggregated across many individuals and many processes

(Nemhard and Uzumeri, 2000B). Individual learning research has examined the

microstructure of the learning curve in order to understand the mechanisms by which

learning occurs at the individual level (Nemhard and Uzumeri, 2000A). The purpose

of individual learning is to provide management the information that will give the

assignment more efficient allocation with specific characteristics. This study focuses

on the individual learning of each worker.

23

Task complexity is a factor that affects the learning function. Uzumeri and

Nemhard (1998) have found that workers have variations in a task. Workers learn

more quickly in a location task (fixed location) than in a more difficult search task

(randomized location) and it was also found that there were greater performance

improvements in tasks performed in the order of “difficult to easy” than those

performed in the order of “easy to difficult.” Nembhard (2000) has studied the effects

of task complexity on learning and forgetting. The results indicate that task

complexity significantly affects learning and forgetting rates.

In a sewing process, three attributes of skill-complexity, which are method,

machine and material, are involved. The method consists of the sewing stitch, the

length of the stitch, and the section of the unit that is assembled. The machine

consists of the type of equipment employed and the amount of automation relevant for

the task. The material consists of the specific grade, density, fiber type and accounts

for whether the fabric is knitted or woven.

Nembhard (2000) has also examined the effects of task complexity and

experience on parameters of learning and forgetting in the garment industry. The

study found that the effect of task complexity on learning and forgetting parameters

depends on the experience of workers. Workers who have experience with the task

method, machine, or material will learn more rapidly and forget more rapidly.

Nembhard (2001) proposed a heuristic worker-task assignment policy by assigning

the more rapid learners to the shorter production run tasks, and the more gradual

learners to the longer production run tasks. The results indicate that the heuristic

method significantly improves overall productivity under empirically observed

conditions and under many experimental conditions.
Leopairote (2003) has investigated workforce flexibility in a labor constrained

flow line system assuming that workers are heterogeneous with respect to learning-

forgetting effects. The distribution of individual learning and forgetting behaviors

was obtained from an automotive company. The study focused on an unpaced and

asynchronous flow line system and addressed selecting appropriate workers for the

production lines. The number of stations performed by each worker and level of task

sharing are determined. Workers are then assigned to stations and the worker

schedule and rotation pattern over a production period is determined in order to

maximize throughput of flow line.

24

Sayin and Karabati (2007) have proposed assigning cross-trained workers to

departments. This model has two objectives which are maximum utility and skill

improvement. The department utility is a function of departmental labor shortage.

Two stages of optimization were studied. The first stage of the model needs to

maximize total departmental utility subject to typical assignment constraints. The

second stage of the model seeks to maximize total skill improvement by using the

outcome of total utility value of the first stage as a parameter input in a constraint of

the second stage model. A worker must be allocated to a department. One

department allows many workers to work. The skill level of each worker is modeled

by a hyperbolic learning curve. The research proposes that once a worker is assigned

to a department, his skill levels should improve according to his individual learning

curve and the improved skill levels are used for the assignment in the next period.

The problem in this dissertation focuses on assigning the tasks to workstations

when the tasks have a precedence requirement, which is the assembly line balancing

problem. Generally, the conventional assembly line balancing problem is designed

for large batch problems, so the given processing time of the problem is the same for

all units; whereas in an assembly line balancing problem for small batch problems,

learning cannot be ignored (Karni and Herer, 1995). Consequently, the objective of

the conventional problem, which is minimizing the maximum workstation time,

cannot be applied when learning is relevant since the bottleneck time dynamically

changes based on the reduction of learning slope of an assignment. For this reason,

minimizing makespan or completion time is incorporated in this problem.

An assembly line balancing problem with learning consideration is studied under

different assumptions. For example, the learning for all tasks is same (Toksari, et al.

2008), learning depends on the task which is assigned (Chakravarty 1988; Karni and

Herer 1995; Dar-El 1998; Cohen, Vitner et al. 2006), and learning depends on the

worker who operates the task (Cohen, Y., 2008). Furthermore, the processing time

which represents learning behavior is set in different ways e.g. discrete (Karni and

Herer,1995 ; Chakravarty, 1988) and continuous, (Cohen and Dar-El 1998 ; Cohen,

Vitner et al. 2006 ; Cohen, Y., 2008) which is represented by a learning model.

Moreover some studies assumed that tasks can be divisible (Cohen, Vitner et al. 2006

and Cohen, Y., 2008), whereas others (Karni and Herer, 1995 ; Chakravarty, 1988 ;

Cohen and Dar-El 1998) assumed the tasks cannot be split.

25

Regarding the production system, most previous studies focused on the

assembly line which is a non-buffered system in which all units are transferred

between workstations simultaneously based on the bottleneck station. The upper

envelope concept was developed and applied in the non-buffered system (Cohen,

Vitner et al. 2006). The upper envelope is formed by the largest workstation time

value. It represents the production rate of each stage. Thus the makespan is the sum

of the production times under the envelope. For this reason, minimizing area under

the envelope is minimizing makespan. Cohen, Vitner, et al. (2006) and Cohen, Y.

(2008) developed a method to determine the optimal assignment based on the upper

envelope concept. Cohen and Dar-El (1998) proposed an outline of a heuristic

procedure to solve the problem. The idea is that the flat learning slope will give the

small slope in makespan value, so the heuristic will start with limiting the small slope,

then determine the task-worker assignment which is valid for the allowance. Using

the total processing time of each task, an assembly line balancing technique is

determined. The allowance is re-adjusted in increments and solving the problem is

repeated until a feasible solution is found. In this dissertation, we focus on the

buffered production line. However, in previous studies, there is rarely research which

focuses on the problem where a buffer is allowed in the system.

2.5 Surveys related task-worker assignment in the garment

industry
Many researchers have studied problems in the garment industry. Examples

of research study are simulation modeling (Khan, 1999), assembly line balancing

(Masaru, et al.,1981; Betts and Mahmoud, 1992; Chan, 1997; Hui and Ng; 1999),

scheduling (Wong and Chan; 2001; Tomastik, 1996; Chen, et al., 1992), and

allocation (Spragg, et al., 1999 and Hui et al., 2002).

Hui and Ng (1999) have studied the effect of time variation for assembly line

balancing. They have reported that the time variance should be taken into

consideration for improving the effectiveness of line balancing. In real situations,

there can be a wide variation in the average skill of workers. A lot of factors cause

variations in the operational time of the task such as the fabrics and sub materials,

performance of the machinery, working environment and quality level of the product.

26

Betts and Mahmoud (1992) have studied assembly line balancing in the cloth industry

for varying skill of workers. They have stated that the problem of varying skill of

workers has multiple optimum solutions that allow the line balancer increased

flexibility in the choice of a particular solution. Since the assembly line involves

different operations being performed at different production rates, balance control is

necessary to make sure that the right person is assigned the right task. Chan, et al.

(1997) have presented a Genetic Algorithm that can be used for solving the assembly

line balancing problem in an effective manner to meet the realistic production

conditions in which workers have arbitrary skill levels. However, they assumed the

skill levels at a constant production rate. Moreover, they have allowed that a worker

performs only one task and that a task can be assigned to only one worker.

In practice, the performance of the assignment depends on the skill and

experience of supervisors who are important for it to be successful. Spargg, et al.

(1999) have proposed a model accounting for a supervisor to monitor, analyze and

repair production schedules; whereas, Hui, et al. (2002) have captured the knowledge

of experienced supervisors and proposed a rule based system for determining the right

number of operators to be moved in and out of a sewing section.

CHAPTER III

TASK-WORKER ASSIGNMENT ASSUMING

CONSTANT SKILL LEVEL

This chapter presents a problem of an integrate approach to assembly line

balancing problem and worker assignment problem assuming constant skill levels of

workers. The remainder of this chapter is organized as follows. A problem

description and mathematical model are presented in Section 3.1- 3.2. A heuristic to

solve the problem is presented in Section 3.3. A performance measurement of

heuristic and the computational results are presented in Section 3.4. The conclusions

of this work and discussion are presented in Section 3.5.

3.1 Problem description

This problem concerns a flow shop where all job routings are identical and

involve all workstations that are in series in the line. A workstation consists of a

worker who operates the assigned tasks. An order includes i identical items must be

processed through those tasks. We consider the process that includes o tasks and k

workers where o k≥ . Workers with potentially multiple skills and different skill

levels must be assigned to perform tasks. Workers with multiple skills are allowed to

perform more than one task as long as they are consecutive in the routing. The

differing skill levels of workers are reflected in different processing times for each

worker on the same task.

The problem is to jointly assign tasks so that the line is balanced and assign

workers to those tasks. To simplify the problem, artificial workstations are

established to represent grouped tasks. Tasks within the same workstation must be

performed consecutively by the same worker. Recall, some workers have multiple

skills and can perform multiple tasks. Since all workers must be assigned, the number

of workstations must equals to the number of workers but the number of tasks can be

greater than these because some workers can perform more than one task. As a result,

the decision becomes worker-workstation assignment.

28

Figure 3.1 refers to the earlier example of 5 tasks to 3 workstations and

illustrated alternative assignment between workstations and workers. For example, on

the first row, tasks 1, 2, and 3 are assigned to workstation 1; the task 4 is assigned

workstation 2; task 5 is assigned to workstation 3. At the bottom of the Figure 3.1,

alternatives of worker-workstation assignment are illustrated.

Figure 3.1 The solutions of grouping tasks to workstation and the assignment

between workstations and workers.

The total number of feasible assignments is !
1
1

k
k
o

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

 which is rather large

for reasonably sized, practical problems. It is computed by the number of possible

ways to group consecutive tasks to workstations multiplied by the number of possible

assignment between workstations and workers. Table 3.1 shows the number of

feasible assignments or complexity of the problem. The goal of the research is to

develop a task-worker assignment where all tasks must be assigned to workers and

each worker is assigned to at least one task. If worker is assigned to more than one

task, the length of time they spend on that group of tasks equal to the sum of the

29

processing time of those tasks. The consecutive tasks are only allowed in case of the

multiple assignments. It is further assumed that there is unlimited buffer space

between each workstation and the travelling time between workstations is zero.

Table 3.1 The number of feasible assignments or complexity of the problem

3.2 Model formulation

The mathematical model presents below to determine which tasks

{ j =1,…, o } and workers { w =1,…, k } have to be assigned to the workstations { s

=1,…, k }. The model has one type of continuous decision variable and three types of

binary decision variables. The continuous variable is the objective function value or

cycle time (Cycle). The binary decision variables relate to the assignments that are to

determine whether the task is assigned in a workstation (jsy), whether the worker is

chosen for a workstation (wsr). And also the three dimensional variables, wjsa

combine the assignment solution of both variables jsy and wsr . A number of

constraints are formulated to ensure feasibility of assignment. The first set of

constraints is required to represent the calculation of cycle time or bottleneck time.

The maximum processing time of workstation is examined to evaluate the cycle time.

The second set of constraints involves worker – workstation assignment. They are

required to ensure that all workers must be assigned to operate tasks in a workstation.

The last set of constraints involves task – workstation assignment. They are required

No. No. complexity(1) complexity(2) (1)*(2)
Worker Task of grouping assignment Complexity of the problem

3 5 6 6 36
5 10 126 120 15,120
5 15 1,001 120 120,120
5 20 3,876 120 465,120
6 18 6,188 720 4,455,360
6 24 33,649 720 24,227,280
7 21 38,760 5,040 195,350,400
7 28 296,010 5,040 1,491,890,400
8 24 245,157 40,320 9,884,730,240
8 32 2,629,575 40,320 106,024,464,000
9 24 490,314 362,880 177,925,144,320
9 32 7,888,725 362,880 2,862,660,528,000

12 36 417,225,900 479,001,600 199,851,873,661,440,000
12 48 17,417,133,617 479,001,600 8,342,834,869,956,790,000
15 45 114,955,808,528 1,307,674,368,000 150,324,764,264,781,000,000,000
15 60 13,298,522,298,180 1,307,674,368,000 17,390,136,741,606,400,000,000,000

30

to ensure that all tasks are grouped and assigned to workstations. The MIP model for

this problem will be defined using the following notations (Table 3.2):

Table 3.2 Notations

Index

 S = a set of workstations , Ss ∈ ,for s = 1,…, k

J = a set of tasks , Jj ∈ ,for j = 1,…, o

W = a set of workers , Ww∈ ,for w = 1,…, k

Parameter

k = the number of workstations or the number of workers

o = the number of tasks

wjP = the processing time it takes worker w to complete task j.

Variable

wjsa = 1 if task j is assigned to worker w in workstation s

 0 otherwise

jsy = 1 if task j is assigned to workstation on s

 or to any workstation on the preceeds s

 0 otherwise

wsr = 1 if worker w is assigned to workstation on s

0 otherwise

Cycle = Cycle time

The model, then is a follow:

Minimize Cycle (3.1)

Subject to

31

Cycle time constraint:

CycleaP wjs
Ww Jj

wj ≤∑∑
∈ ∈

 s∀ (3.2)

Worker – workstation assignment constraint:

1wjs
j J s S

a
∈ ∈

≥∑∑ w∀ (3.3)

ws
Jj

wjs roa ×≤∑
∈

 w∀ , s∀ (3.4)

1=∑
∈Ss

wsr w∀ (3.5)

1=∑
∈Ww

wsr s∀ (3.6)

Grouping task – workstation assignment constraint:

1=oky (3.7)

jssj yy ≤+ 1 11 −≤≤ Jj , s∀ (3.8)

1 +≤ sjjs yy j∀ , 11 −≤≤ Ss (3.9)

∑
∈

=
Ww

wjj ay 11 j∀ (3.10)

∑
∈

− =−
Ww

wjssjjs ayy 1 j∀ , Ss ≤≤2 (3.11)

(0,1), (0,1), (0,1), 0wjs js wsa y r Cycle∈ ∈ ∈ ≥

The objective function (3.1) minimizes cycle time. Constraints (3.2)

determine the cycle time which is the sum of the processing times of the workstation
in which tasks are assigned. Constraints (3.3) through (3.6) relate worker assignments

to workstations. Constraints (3.3) force all workers to be assigned to at least one task.

Constraints (3.4) ensure that if a worker is assigned to the tasks at a workstation, he or

she must be assigned to that workstation while constraints (3.5) and (3.6) deal with

the required one to one assignment between workers and workstations. Constraints

(3.7) through (3.11) are focused on grouping tasks and assigning them to

workstations. Constraints (3.7) through (3.9) force a structure on the task-workstation

assignments: (3.7) assigns the last task o to the last workstation k , (3.8) forces the

required precedence relationships among the tasks in the y variables. That is, if

32

1 1 =+ sjy then 1=jsy . (e.g., If 53 1y = , then 43 1y = and, in turn, if 43 1y = ,

then 33 1y = .) Similarly, (3.9) forces the correct structure for the precedence

relationships on the workstations: if 1jsy = then 11 =+sjy (e.g., if 11 1y = , then

12 1y = and since 12 1y = then 13 1y =). Constraints (3.10) and (3.11) ensure that a task

cannot be split among workers; thus, each task will be assigned to only one worker.

To illustrate how these variables are interpreted, consider the 5 task, 3

workstations example discussed previously. The solution on the first row of Figure

3.1 would be represented in the model as 1 [1 1 1 0 0]Ty =
r , 2 [1 1 1 1 0]Ty =

r and

3 [1 1 1 1 1]Ty =
r . To interpret these vectors, 11 21 31 1y y y= = = in 1

Tyr means that

tasks 1, 2 and 3 are grouped and assigned to workstation 1. For the other 2

workstations (s= 2 and 3), the assignments are determined by 1 −− sjjs yy for each j.

So, for example, 2 1 [0 0 0 1 0]T Ty y− =
r r means that task 4 is assigned to workstation

2.This is how the constraint set restricts consecutive tasks to the same workstation. It

is proposed by Glass and Herer, 2006.

3.3 Heuristic description and numerical example

The proposed heuristic for finding a solution to this problem involves two

steps: first, tasks are grouped and, then, the problem is transformed into an assignment

problem between the groups of tasks and workers. As noted earlier, there are a very

large number of possible task groupings and this is critical to the quality of the

solution, so developing a methodology to generate groups of task efficiently is one

focus of this research. The proposed methodology starts by determining the upper

bound (UB) and lower bound (LB) of the cycle time. A trial value between UB and

LB is set to be an upper limit of group size. Then, consecutive tasks are grouped base

upon the maximal station load rule. Once tasks are grouped, the problem becomes an

assignment problem between workers and groups of tasks. Figure 3.2 illustrates an

overview of the heuristic.

33

Figure 3.2 The overview of the heuristic

The grouping methodology is now presented as a step by step procedure and then

computational experiments are provided.

Step1: Generate initial values
For LB ,UB

Step 2: Set a trial value:
0.5×UB + 0.5×LB

Step 3: Determine the
possible groups of tasks
based on the maximal rule

Step 4: Assign the group of
tasks to workers

Step 5:
Is solution feasible?

Compute cycle time and
update UB

Is solution good enough?
UB-LB < linit

Stop

Update LB

No

No

Yes

Yes

34

 Step 1: Generate the initial UB and LB

To determine the LB of the cycle time, the processing time of the fastest

worker who performs each task is used to represent the processing time of that task.

The tasks are assigned to the workstation as in SALBP-II which can be solved by an

exact algorithm to minimize cycle time. Groups of tasks are obtained once the LB is

found. All precedence constraints are considered to determine the LB. It should be

noted that since the LB is obtained using the processing time of the fastest workers, it

may not feasible when all workers are assigned.

To illustrate, again consider our 5 task, 3 worker example. The minimum

processing time of each task is {2, 1, 1, 2, 2} which is the time of the fastest worker

for each of the 5 tasks. To minimize cycle time using the exact algorithm, the tasks

are grouped for the 3 workers as {1 and 2, 3 and 4,5} with corresponding workstation

time of {3, 3, 2}. The initial lower bound is max{3,3,2} = 3. However the assigned

worker solution is {B, C, C}, which is infeasible.

The initial UB is defined as a feasible solution. This is achieved by a one to

one assignment between the groups of tasks from LB and workers. This assignment

is not an original assignment problem since the objective is to minimize the maximum

workstation time or cycle time; therefore, a mathematical model of the problem is

formulated. This solution will be the initial feasible solution and the cycle time will

be the initial UB. In the example, the initial UB is max {3, 3, 5} = 5 with solution

task grouping {12, 34, 5} executed by worker assignment {B, C, A}.

Step 2: Set the “trial value” of the cycle time

Once the LB and UB are determined, a trial value is set. A trial value is chosen to be

the bound on the cycle time for generating groups of tasks. This can be done in any

number of ways as long as it is between the LB and the UB so it can be though of as

the liner combination of the two, Bt = �×LB + (1-�)×UB, 0 1α≤ ≤ . For example,

other research that uses this general approach frequently begins with the midpoint,

�=0.5. This parameter will certainly have an effect on how efficiently the algorithm

finds a high quality solution as well as the computation time of the algorithm so it is

adjusted for specific situations using computational experimentation to achieve the

desirable balance for the decision maker.

35

Step 3: Determine the groups of tasks

A fundamental property associated with optimal solutions of this class of problems is

that the consecutive tasks will be grouped with the maximum group size and without

exceeding the current trial value. This idea is the foundation behind this step in the

heuristic because groups of tasks will only be generated based on the maximal station

load rule. With this method, the number of the groups of tasks will be reduced and a

feasible solution will be generated.

This idea is implemented by using the maximal station load rule to generate

groups of tasks for that workstation. Tasks are added sequentially until the trial value

is exceeded; that is, only the groups that have a cycle time (e.g, the sum of task

processing time) within the trial value is considered. Referring back to our 5 task, 3

worker example, if LB = 3, UB = 5 and � = .5, the first trial value is 4. The possible

groups of tasks based on the rule of worker A are {task2}, {task3} and {task4}.

Worker A cannot operate task number 1 since his or her processing time of this task is

5 which is greater than 4. Using this logic, the possible groups of tasks for worker B

are {task1, task2}, {task2}, {task3}, {task4, task5} and {task5}. Worker B cannot

perform task 1 alone because the his or her processing time is below the LB so tasks 1

and 2 are grouped (processing time 3 seconds) which is above the LB and below the

trial value. Therefore the first task groups for worker B is {task1, task2}. The

possible groups of tasks for worker C are {task2, task3}, {task3, task4},{task4, task5}

and {task5}.

Step 4: Determine the assignment between the possible groups of tasks and workers

The tasks, the worker who performs the tasks and sizes of the possible groups of tasks

are transformed in parameters so the assignment between the possible groups of

tasks),...2,1(Gg = and workers is obtained from the following mathematical model

with the objective of minimizing cycle time.

36

Inputs

⎩
⎨
⎧

=
 otherwise 0

 groupin assigned is task if 1 gj
bjg

⎩
⎨
⎧

=
 otherwise 0
 groupin tasks theoperates worker if 1 gw

rwg

geg group of size group =

Variables

⎩
⎨
⎧

=
 otherwise 0

 selected is group if 1 g
xg

Minimize Cycle

Subject to

 1=∑
∈

g
Gg

jg xb j∀ (12)

 1=∑
∈

g
Gg

wg xr w∀ (13)

 Cyclexe gg ≤ g∀ (14)

 0),1,0(≥∈ Cyclexg

For example,
jgb =

wgr =

ge =

Group 1 2 3 4 5 6 7 8 9 10 11 12
j=1 1 0 0 0 0 0 0 0 0 0 0 0
j=2 1 1 1 1 0 0 0 0 0 0 0 0
j=3 0 0 0 1 1 1 1 0 0 0 0 0
j=4 0 0 0 0 0 0 1 1 1 1 0 0
j=5 0 0 0 0 0 0 0 0 1 1 1 1

Group 1 2 3 4 5 6 7 8 9 10 11 12
A 0 1 0 0 1 0 0 1 0 0 0 0
B 1 0 1 0 0 1 0 0 1 0 1 0
C 0 0 0 1 0 0 1 0 0 1 0 1

Group 1 2 3 4 5 6 7 8 9 10 11 12
 3 3 1 3 4 4 3 2 4 4 2 2

37

gx =

cycle = 4

Step 5: Check the feasibility of the solution

In this step, the UB or LB is altered based on the previous results to reduce the search

space for the next iteration. If a feasible solution is found using the trial value, the

UB is set to the maximum workstation time in this feasible solution. If not, the LB is

set to the trial value. After the UB or LB is updated, the heuristic will check the gap

between UB and LB. The search stops when a gap, UB- LB, is less than a predefined

amount.

Back to our example, a feasible solution can be obtained from the task groups

identified in Step 3. The assignment is {task1, task2} for worker B, {task3} for

worker A and {task4, task5} for worker C. The cycle time of the assignment is

max{3,4,4}=4. Since the solution is feasible, UB is set to 4. For LB=3 and UB=4, the

next trial value is 3.5. After groups of tasks are generated and the assignment

problem is solved, no feasible solution is found. Hence, LB is set to 3.5. If the

stopping criteria is for the gap size to be 1 or less, the heuristic stops because UB –

LB < 1 and the minimal cycle time from the heuristics is 4.

3.4 Performance measurement of heuristic

3.4.1 Testing problem

The computational experiments are designed to exercise the model and

heuristic in a way that illustrates some of the features of each as well as gain some

insights that numerical examples can provide. Normally in a modular production in

the garment industry, the number of workers is between 6 and 15. The problem

parameters were chosen to reflect a realistic situation in the garment industry. In this

testing, the number of tasks was three times to four times the number of workers,

since generally in the garment industry a worker is assigned less than three to four

tasks. The experiments set the number of workers at 8, 12 and 15 and the number of

tasks at 3 times and 4 times the number of workers. Hence, there are six problem

sizes: 8 workers with 24 tasks (8w24t), 8 workers with 32 tasks (8w32t), 12 workers

pattern 1 2 3 4 5 6 7 8 9 10 11 12
 1 0 0 0 1 0 0 0 0 1 0 0

38

with 36 tasks (12w36t), 12 workers with 48 tasks (12w48t), 15 workers with 45 tasks

(15w45t) and 15 workers with 60 tasks (15w60t). For each problem size, an

experiment was run with the standard processing times and skill of the workers set at

two levels. The standard processing times of each task are generated randomly on the

intervals [1, 10] and [1, 30] according to a uniform distribution. The skill level of

workers is generated on the intervals [-20%, 20%] and [-50%, 50%] also according to

a uniform distribution. The skill level of worker is the percentage deviation of the

task processing time from the standard processing time. Each standard processing

time intervals are paired with both skill level intervals for each combination of

workers and tasks, so there are 4 tests for each problem size. For example, if the

standard processing time of task1 is 10 and the skill level of worker A is 20%, so the

task1’s processing time of worker A becomes 12. 5 replications are used in each test

meaning that the processing times and skill levels were randomly generated 5 times

for each number of tasks and workers. All algorithms have been implemented using

C++ a PC with an Intel CoreTM2 Duo 2.00 GHz CPU and 1.93 GB of RAM. All

mathematical programs were solved using the AMPL CPLEX 8.0. There are 4 tests

for each problem size, 20 replicates for a problem size, 8 worker and 5 replicates for

12 workers and 15 workers as shown in Table 3.3.

Table 3.3 Problem Size

Problem

Code

Number of

Worker

Number of

Task

Instances CPLEX Sol.

8w23t 8 23 20 Optimal Sol.

12w36t 12 36 20 Limit time*

15w45t 15 45 20 Limit time*

8w32t 8 32 20 Optimal Sol.

12w48t 12 48 20 Limit time*

15w60t 15 60 20 Limit Time*

Note * Limit time = 54,000 sec. or (15 hours)

39

3.4.2 Computational experiments

The computational experiments are designed to exercise the model and

heuristic in a way that illustrates some of the features of each as well as gain some

insights that numerical examples can provide. Normally in a modular production

system in the garment industry, the number of workers is between 6 and 15. The

problem parameters were chosen to reflect a realistic situation in the garment

industry. In this testing, the number of tasks was three times to four times the number

of workers, since generally in the garment industry a worker is assigned less than

three to four tasks. The experiments set the number of workers at 8, 12 and 15 and

the number of tasks at 3 times and 4 times the number of workers. Hence, there are

six problem sizes: 8 workers with 24 tasks (8w24t), 8 workers with 32 tasks (8w32t),

12 workers with 36 tasks (12w36t), 12 workers with 48 tasks (12w48t), 15 workers

with 45 tasks (15w45t) and 15 workers with 60 tasks (15w60t). For each problem

size, an experiment was run with the standard processing times and skill of the

workers set at two levels. The standard processing times of each task are generated

randomly on the intervals [1, 10] and [1, 30] according to a uniform distribution. The

skill level of workers is generated on the intervals [-20%, 20%] and [-50%, 50%] also

according to a uniform distribution. The skill level of worker is the percentage

deviation of the task processing time from the standard processing time. Each

standard processing time intervals are paired with both skill level intervals for each

combination of workers and tasks, so there are 4 tests for each problem size. For

example, if the standard processing time of task1 is 10 and the skill level of worker A

is 20%, so the task1’s processing time of worker A becomes 12. 5 replications are

used in each test meaning that the processing times and skill levels were randomly

generated 5 times for each number of tasks and workers. All algorithms have been

implemented using C++ a PC with an Intel CoreTM2 Duo 2.00 GHz CPU and 1.93 GB of

RAM. All mathematical programs were solved using the AMPL CPLEX 8.0.

3.4.2.1 The performance of UB and LB of the heuristic

The initial UB and the initial LB are obtained by the heuristic

given in Section 3.3. As mentioned, we expect the range between the initial UB and

initial LB is in short-range. The experiment is designed to investigate the effect of the

40

factor of the variation of skills of worker on the quality of the initial UB and the initial

LB. The average on the difference between initial UB and initial LB is presented in

Table 3.4.

Table 3.4 The difference between the initial upper bound and initial lower

bound.
Processing Skill Problem

Time Level 8w24t 8w36t 12w36t 12w48t 15w45t 15w60t

U[1,10] U[-20,20] 1.7947 2.2831 1.3490 2.4396 1.4325 2.2299

U[1,10] U[-50,50] 7.7667 13.4670 9.5528 14.2486 10.1590 13.5106

From the data obtained in Table 3.4, it is found that when the

skills of worker is vary in high level, the interval [-50,50], the difference between the

initial UB and initial LB is higher than its when the skills of worker is vary in low

level, the interval [-20,20]. The search space of the trial bound will be increased

when skills of worker vary in high level.

3.4.2.2 The parameters applied in the heuristic

There are two parameters associated with the heuristic: the gap

between UB and LB that will serve as the stopping criterion and the weights to be

placed on the upper and lower bounds for determining the trial value. It is anticipated

that the value of the gap that terminates the heuristic affects the trade-off between the

quality of the solution and the computational time. When the gap size is small the

quality of the solution will be better but the computation time will be longer because

of the increased number of iterations. With wider gaps the reverse is seen. As

mentioned previously, experimentation is one way to set these parameters at levels

that are acceptable to the decision maker. As such, an experimental study was

conducted with the gap between UB and LB at four levels, (0.001, 0.003, 0.03, and

0.3). The weights associated with the UB and LB correspond to α = .8, .5, .2 and .1

meaning the ratio of the UB:LB weights are (20:80, 50:50, 80:20, 90:10). For

example, 90:10 ratio places the trial value 10% of the interval below the UB. This is

strictly trial and error because the sole purpose here is to determine suitable

parameters to use in the heuristic for the experimental comparisons. The experiments

41

were performed on problem 8w24t and the measures that were recorded were

computational time and quality of the solution. Quality is measured by the

normalized difference between the heuristic solution and the CPLEX obtained optimal

solution using:

 Heuristis solution - Optimal solution% Difference = 100
Optimal solution

×

 Figure 3.3 indicates that more weight on the UB leads to shorter computational times

for all stopping criteria conditions although the difference is not very dramatic

because the computational time is rather short for a 30% gap. Regarding solution

quality, Figure 3.4 shows that all gaps except 30% found the optimal solution to this

problem. As such, we selected a 90:10 weight ratio and a gap of 0.03 in an effort to

achieve a good solution rather quickly.

Figure 3.3 The computational time when weight between UB LB are varied(sec.)

42

Figure 3.4 The percentage difference of cycle time between heuristic and exact

solution (%)

As expected, the ability to find a high quality feasible solution

depends on the position of trial value. In these experiments, it is noted that the

optimal solution was found routinely with and rather quickly with most of the weight

on the UB so we hypothesize that the UB in the heuristic is very good. It would take

extensive experimentation to generalize this over wide range of situation; however, in

these experiments this is true.

3.4.2.3 The computational time and the quality of the solution of

the heuristic

The computational time of the heuristic is compared to the

computational time of optimal solution which is found by solved the mathematical

model presented in Section 4 using CPLEX. The run time of the problem is limited to

15 hours (54,000 sec.) and the results are presented in Table 3.5. Blank entries

indicate that no optimal solution is found within 15 hours. For the problem with 8

workers, the optimal solution can be found for all tests whereas for the problem with

12 workers, the optimal solution is only found by CPLEX in certain cases so the

average run time is calculated from the cars where the optimal solutions were found

within 15 hours. For 15 workers, CPLEX could not find the optimal solution for any

cases. As expected, the computational time of the heuristic is significantly lower than

43

the time to find the exact solution and even for larger problems the computing time

was less than 10 seconds.

Table 3.5 The computational time of the heuristic and exact solution (sec.)
Test 8w24t 8w36t 12w36t 12w48t 15w45t 15w60t

Run time : Optimal
(sec.)

2115 7549 25,026 41,582 - -

Run time :
Heuristic(sec.)

1.156 1.520 2.189 3.983 4.375 9.105

Figure 3.5 compares the computational time of the heuristic versus different skill

levels of the workers. It can be seen that computational time is dramatically higher

when the variability of the skill levels is high., that is, the skill levels are generated

using the broader uniform distribution between [1, 50]. The high variation of skill

level results the big difference between UB and LB since the fastest worker in the

high variation of skill level reflects the lower LB. The number of search increases

when the difference between UB and LB is high. With the reason the computational

time increases.

Figure 3.5 Computational time of the heuristic when the skills of worker are

varied
 For the quality of solution, % difference is used as described in

earlier. For problems 8w24t and 8w32t, the heuristic found the optimal solution in

almost all cases. Since the optimal solutions was rarely found by CPELX within 15

44

hours for problems with 12 and 15 workers, the comparison is made between the best

know solution from CPLEX and the heuristic. As can be seen in Figure 3.6, the

heuristic solution is better than the best solution from CPLEX for all the cases.

Furthermore, the difference between the best found solution and the optimal solution

increases when the problem size increases and especially when skills of workers vary

in high level as shown in Figure 3.6. The heuristic works well comparied to CPLEX

when the problem size increase.

Figure 3.6 The percentage of the difference between the optimal or the best

found solution and the heuristic solutions(%)

3.4.2.4 Comparison with the heuristic in practical application

A final set of experiments is conducted to compare the solution

quality found using the proposed heuristic solution to the solution quality found by

applying the 2-stage heuristic commonly found in the Thai garment industry that has

been outlined earlier in this paper. For comparison, a slight modification to the

previous percentage difference is made:

 2-stage solution - Heuristic solution%Difference = 100
Heuristic solution

×

The skill levels of the workers are distributed uniformly in four intervals for these

tests: [-10,10], [-20,20], [-30,30], [-50,50]. Figure 3.7 displays the results and they

are very interesting. The 2-stage heuristic is less than 5% worse that the proposed

45

heuristic when the deviation of skills of worker is small (e.g., generated by the [-

20,20] interval). The performance degrades to 10-15% when the deviation of skills of

worker increases as reflected in a generation interval of [-30, 30] and the degradation

is dramatic in the highest level of variance, increasing to 25-40%. We submit that this

degree of error in labor intensive industries where competitive position can be lost

with small decreases in efficiency, it is important for decision makers to consider

using an integrated approach such as this proposed algorithm.

Figure 3.7 The comparison of the percentage difference between the proposed

heuristic and a 2-stage heuristic solutions

3.5 Conclusion

This chapter has proposed a problem of an integrate approach to assembly line

balancing problem and worker assignment problem assuming constant skill levels of

workers. The problem with the objective to minimize cycle time is modeled. For

solving the problem, a heuristic is developed. The lower bound and upper bound are

determined. The binary search is modified to determine the sequence of trial cycle

time. The heuristic groups the tasks based on the maximal station load rule within a

trial value limit. Then, an assignment between the groups of tasks and the workers is

performed.
 The effectiveness of the heuristic is evaluated in term of computational time

and quality of solution compared to the optimal solution. Moreover, the proposed

46

heuristic is compared to the 2-stage heuristic in term of the quality of solutions. It

confirms the disadvantage if the 2-stage heuristic is applied when the skills of worker

vary highly.

CHAPTER IV

TASK-WORKER ASSIGNMENT TAKING INTO
ACCOUNT LEARNING ABILITY

This chapter presents a problem of an integrated approach to assembly line

balancing and worker assignment taking into account learning ability of workers. The

remainder of this chapter is organized as follows. A problem description and

mathematical model presented in Section 4.1- 4.2. A heuristic to solve the problem is

presented in Section 4.3. The detail of the heuristic and a numerical example shows

in Section 4.4. A performance measurement of heuristic and the computational

results will be presented in Section 4.5. The conclusions of this work and discussion

are presented in Section 4.6.

4.1 Problem description

This problem concerns an assembly line which is a set of sequential

workstations. Buffer spaces are set up between workstations. A workstation consists

of a worker who carries out assigned tasks. An order includes i, which are identical

items that must be processed along the same route pass through all workstations. This

problem assumes that the workers have multiple skills and are able to do more than

one task. The skill levels of workers differ; therefore, workers’ processing time vary.

 Moreover, workers have different learning abilities, i.e. the processing time of

the succeeding item being shorter than the preceding item. In the problem, the

processing time of each worker for each item is based on the skill level and learning

of the worker. Table 4.1 provides an example of processing time applied in the

problem.

48

Table 4.1 The processing times of 5 tasks, 3 workers (A, B, C) and 3 items (sec.)

We want to establish worker assignments where all tasks must be assigned to

workers. Each worker is assigned to at least one task. Since it is assumed that the

number of tasks is greater than the number of workers, some workers can perform

multiple tasks. Only consecutive tasks are allowed in the multiple assignments to

smooth out the line. If a worker is assigned to more than one task, the worker

processing time is determined by the sum of the processing time of all tasks that s/he

performs. For example, if task 1 and task 2 are assigned to worker A, then the task

processing times are 7, 6, 4 for items 1, 2, and 3 respectively. Tasks cannot be split.

This problem is also based on the following assumptions:

 1) The other learning factors among the tasks at the same workstation are not

considered such as the task similarity.

 2) There is unlimited buffer space between each workstation. The objective is

to minimize the makespan, which is the completion time of the last item of the last

task. The problem is formulated in an integer linear programming model.

The objective is to minimize the makespan which is the completion time of the

last item of the last task. Figure 4.1 illustrates makespan from an assignment solution

Worker A items 1 items 2 items 3
Task 1 4 4 3
Task 2 3 2 1
Task 3 7 4 4
Task 4 2 1 1

Task 5 4 4 3

Worker B items 1 items 2 items 3

Task 1 5 4 3

Task 2 3 3 2

Task 3 6 6 4

Task 4 3 1 1

Task 5 5 4 2

Worker C items 1 items 2 items 3

Task 1 4 2 2

Task 2 4 2 2

Task 3 7 6 5

Task 4 2 2 1

Task 5 6 2 2

49

i.e. the solution of assignment i.e. worker A – operation 1 and 2, worker B – operation

3 and worker C – operation 4 and 5.

Figure 4.1 Makespan from an assignment solution

4.2 Model formulation

The mathematical model presented below determines which tasks

{ j =1,…, o } and workers { w =1,…, k } are assigned to the workstations { s

=1,…, k }. Workers must complete all items { m =1,…, i } with the minimum

completion time. The model uses three types of continuous decision variables and

three types of binary decision variables. The continuous variables relate to the

objective function value or makespan (maxC), the processing time (msq), and

completion time (msπ) of items m in workstations s . The binary decision variables

relate to the assignments that are to determine whether the task is assigned to a

workstation (jsy), whether the worker is chosen for a workstation (wsr), and also the

three dimensional variables, wjsa which combine the assignment solution of both

variables jsy and wsr . Different types of constraints are formulated to ensure feasibility

of assignment. The first set of constraints represents the mechanism of the flow line

in which all items follow the same sequence of operations. The processing time of

tasks was used to evaluate the completion time of each item. The second set of

constraints involves worker – workstation assignment. They are required to ensure

that all workers must be assigned to operate tasks within a workstation. The last set

of constraints involves task – workstation assignment. They are required to ensure

that only consecutive tasks are grouped and assigned to workstations. The MIP model

for this problem was developed using the notations in Table 4.2:

|________________________ makespan __________________________|

50

Table 4.2 Notations
__

Index
 M = set of items , Mm ∈ ,for m = 1,…, i
S = set of workstations , , Ss∈ ,for s = 1,…, k J = set of tasks , Jj ∈ ,for j = 1,…, o
W = set of workers , Ww∈ ,for w = 1,…, k

Parameter
i = the number of items
k = the number of workstations / the number of workers
o = the number of tasks

wmjT = the processing time of item m task j operated by worker w

Variable

wjsa = 1 if task j is assigned to worker w in workstation s
 0 otherwise

jsy = 1 if task j is assigned in or before workstation s
 0 otherwise

wsr = 1 if worker w works in workstation s
 0 otherwise

msq = the processing time of item m in the workstation s

msπ = the completion time of item m in workstation s

Minimize ikπ (4.1)

Subject to

Completion time constraint:

wjs
Ww Jj

wmjms aTq ∑∑
∈ ∈

= m∀ , s∀ (4.2)

1111 q=π (4.3)

mssmms q+≥ −1 ππ Mm ≤≤1 , Ss ≤≤2 (4.4)

mssmms q+≥ − 1ππ ,2 Mm ≤≤ Ss ≤≤1 (4.5)

Worker – workstation assignment constraint:

1wjs
j J s S

a
∈ ∈

≥∑∑ w∀ (4.6)

ws
Jj

wjs roa ×≤∑
∈

 w∀ , s∀ (4.7)

51

1=∑
∈Ss

wsr w∀ (4.8)

1=∑
∈Ww

wsr s∀ (4.9)

Grouping task – workstation assignment constraint:

1=oky (4.10)

jssj yy ≤+1 11 −≤≤ Jj , s∀ (4.11)

1+≤ jsjs yy j∀ , 11 −≤≤ Ss (4.12)

∑
∈

=
Ww

wjj ay 11 j∀ (4.13)

∑
∈

− =−
Ww

wjsjsjs ayy 1 j∀ , Ss ≤≤2 (4.14)

Objective function (4.1) is to minimize the makespan. Constraints (4.2) are

used to calculate the sum processing time of all tasks that are assigned in

workstation s for item m. Constraint (4.3) reflects that the production line starts

empty, no WIP at the beginning of production so the completion time of first item in

the first workstation equals 11q . Constraints (4.4) represent that workstation s can

process an item only after the previous workstation 1−s has finished the operation

on the item m . Similarly, an item m can be operated on a workstation only after the

previous item 1−m has completed the operation on the workstation as shown in

constraints (4.5). Constraints (4.6) force all workers to be assigned to at least one

task. Constraints (4.7) represent that if a worker is assigned to any tasks in

workstation, they must work in that workstation. Constraints (4.8)-(4.9) represent one

- one assignment between workers and workstations.

Constraints (4.10) through (4.14) concern grouping tasks and assigning them

to workstations. Constraints (4.10) through (4.12) force a structure on the task-

workstation assignments. Constraint (4.10) assigns the last task o to the last

workstation k . Constraints (4.11) force the required precedence relationships among

the tasks in the y variables. That is, if 1 1 =+ sjy then 1=jsy . (e.g., If 53 1y = , then

43 1y = and, in turn, if 43 1y = , then 33 1y = .) Similarly, constraints (4.12) force the

correct structure for the precedence relationships on the workstations: if 1jsy = then

11 =+sjy (e.g., If 11 1y = , then 12 1y = and since 12 1y = then 13 1y = .

52

Constraints (4.13) and (4.14) also ensure that a task cannot be split among

workers; thus, each task will be assigned to only one worker.

To illustrate how these variables are interpreted, consider the 5 task, 3

workstations example discussed previously. If tasks 1, 2, and 3 are assigned to

workstation 1, task 4 is assigned to workstation 2 and task 5 is assigned to workstation

3, this assignment would be represented in the model as 1 [1 1 1 0 0]Ty =
r ,

2 [1 1 1 1 0]Ty =
r and 3 [1 1 1 1 1]Ty =

r . To interpret these vectors,

11 21 31 1y y y= = = in 1
Tyr means that tasks 1, 2 and 3 are grouped and assigned to

workstation 1. For the other 2 workstations (s= 2 and 3), the assignments are

determined by 1 −− sjjs yy for each j. So, for example, 2 1 [0 0 0 1 0]T Ty y− =
r r means

that task 4 is assigned to workstation 2. This is how the constraint set restricts

consecutive tasks to the same workstation.

4.3 Heuristic description

The idea behind the heuristic is applying the concept of an upper envelope of a

non-buffered system in order to determine the upper bound (UB) and lower bound

(LB) of the solution to limit search space. The solutions are searched only between

UB and LB. The heuristic starts by grouping tasks into workstations then, assigning

workers to perform grouped tasks. Groups of consecutive tasks are generated based

on the trial value, which is a predetermined value between UB and LB. The objective

of the problem is to determine the assignment of the grouped tasks and workers which

has the minimum makespan.

Regarding the relation between idle time and makespan, the idle time has the

recurrence relation between the idle time of the previous workstation and the idle time

of the previous item on the same workstation. Bellman (1982) identified makespan

in two simple expressions. For the first expression, makespan is calculated by the idle

time on the last station plus the summation of the task’s processing time of the last

workstation. For the second expression, it is calculated by the flow time of a last item

from the completion time on the first workstation to the completion on the last

workstation plus the summation of task’s processing time of the first station as shown

in Figure 4.2.

53

Figure 4.2 An expression of the Makespan

Makespan depends on the idle time on the last station plus the total task

processing time of the last workstation, and the idle time on the last station depends

on the idle time of previous stations. The recurrence relation of the idle times of the

previous workstation is shown in Section 4.3.1. We developed a methodology to

minimize the idle time of every workstation via a recurrence relation. The details of

the heuristic are presented in Section 4.3.3.

4.3.1 The recurrence relation between the idle times

This section shows the recurrence relation between the idle times of
the previous workstation. Let msFT be the flow time of an item m from the

completion time of the first workstation to the completion of workstation s as shown
in an equation 4.15, i.e. 33FT = 3332 qq + , let msID be the idle time of an item m at

workstation s , there are two types of expression of the makespan. Using the idle time

on the last workstation, the makespan (ikπ) = ∑∑
==

+
i

m
mk

i

m
mk IDq

11

, the first term is the

sum of the task processing time and the second term is the sum of the idle times on

the last workstation. Using the flow time, the makespan (ikπ) = ik

i

m
m FTq +∑

=1
1, , the

first term of the right side is the sum of the task processing time at the first

workstation and flow time of the last item at the last workstation.

 =msFT msπ - 1mπ (4.15)

Since msπ = ∑∑
==

+
m

z
zs

m

z
zs IDq

11

 and 1mπ = ∑
=

m

z
zq

1
1 ,

 so ∑∑
==

−+=
m

z
zzs

m

z
zsms qqIDFT

1
1

1

)((4.16)

 Makespan1 (π33) = q13+ q23+ q33+ ID13+ ID33

q11 q31

q22q12
q21

q13 q23

Station1
Station2
Station3

q32
q33

ID33 ID13

FT33 Makespan2=q12+ q21+ q31+

54

Since the start of the processing of item m at workstation s follows both the

completion of item m at the previous workstation 1−s and the completion of the

previous item 1−m on workstation s , the recurrence relation hold for every flow

time, so

],max[1 1 1 −− −+= smmsmmsms FTqFTqFT (4.17)

By replacing smFT 1− and 1 −smFT in an equation 4.17 by the equation 4.16,

∑∑
==

−+
m

z
zzs

m

z
zs qqID

1
1

1

)(=

])(,)(max[
1

11
1

11

1

1
1

1

1
∑∑∑∑
=

−
=

−

−

=

−

=

−+−−++
m

z
zzs

m

z
zsm

m

z
zzs

m

z
zsms qqIDqqqIDq (4.18)

By subtracting the quantity, ∑
=

−
m

z
zzk qq

1
1)(from both sides of the

equation 4.18, the recurrence relation for idle time is obtained.

 ∑
=

m

z
zsID

1

 =)](,max[
1

1

1
1

1
1

1

1
∑ ∑∑∑
=

−

=
−

=
−

−

=

−+
m

z

m

z
zszs

m

z
zs

m

z
zs qqIDID (4.19)

An equation 4.19 shows the recurrence relation between the idle time

of the previous workstation and the idle time of the previous item on the same

workstation. For example given a partial solution on workstation 1, which is worker1

operating task 1, 2 on station 1, so when a worker is assigned on the workstation2, the

idle on the workstation 2 will depend on the idle on the workstation 1 and the idle

time of the previous item on the workstation2. The relation is the same for the next

workstation until the last workstation which is a part of makespan. From this fact of

the recurrence relation, we expect that minimizing idle time of partial solution of

assignment from the first workstation to the last workstation can lead to a good

solution of full assignment to minimizing makespan.

55

4.3.2 The Dijkstra’s algorithm

Generally, Dijistra’s algorithm is algorithm to determine the shortest

path. For example Dijkstra’s algorithm is used to determine the shortest path between

any two nodes the start node, s and the end node, t. The principle behind Dijkstra’s

algorithm is that if node x is a node between the start node, s and the end node, t, the

shortest path from s to t, then s, . . , x had better be the shortest path from s to x. The

length of the shortest path to each node is improved if there is a better way from s to

other node through x. This algorithm is dynamic programming strategy where the

distance from s to all nearby nodes is kept, then it is use to find the shortest path to

other distant nodes, Skiena (1998). Figure 4.3 shows the step of Dijkstra’s algorithm.

The Dijkstra’s algorithm is modified to determine the feasible assignment between the

consecutive grouped tasks and workers which has minimum makespan.

Figure 4.3 Dijkstra’s algorithm

Dijkstra’s algorithm
1 FOR each (v) in all nodes
2 SET weight of each node (Weightv) = infinite
3 SET status of the previous node (previousv)= NULL
4 END Loop
5 SET Weightstart_node of the start node = 0
6 SET Se = empty set
7 SET Q = set of solutions in all nodes
8 WHILE (Q is not an empty set loop)
9 Determine (u) node which has the minimum weight in set Q,
10 u is removed from set Q
11 u is added in set Se
12 FOR each node (b) which is connected from node u using a single arc
13 IF ((distanceb > distanceu + weightb) then
14 distanceb = distanceu + Weightb
15 SET u = the previousv of node b
16 END IF
17 END Loop
18 END WHILE

56

4.4 The detail of the heuristic and numerical example

 The heuristic simplifies the problem by grouping tasks first. After tasks are

grouped, the feasible assignment between the groups of tasks and workers will be

determined by the modified Dijkstra’s algorithm. We developed a procedure to

generate groups of tasks. First, the UB and LB of the solution are determined. Then

the trial value between UB and LB is set as a bound for task grouping. They are

detailed in the following steps. Figure 4.4 shows the flowchart of the heuristic.

Step 1: Generate the initial UB and LB

To determine UB and LB, the summation of task processing time is determined

in Table 4.3 based on the data in Table 4.1 and it is solved as an assembly line

balancing problem to minimize the maximum workstation time. The objective

function value in this stage becomes the LB of the original problem. The solution of

worker - task assignment is used to evaluate makespan. This makespan becomes the

UB of the original problem.

For example, to minimize the maximum workstation time, the solution of the task-

workstation assignment is {12, 3, 45}, the worker-workstation assignment is {C, B,

A} and the objective value is 16, so the LB is 16. The makespan of this solution and

also the UB is 29, as shown in Figure 4.5.

Step 2: Set the trial value (TV)

Once LB and UB are determined, a trial value is set. A trial value is chosen to

be the bound for generating groups of tasks. The trial value is 10% of the UB-LB

difference increased from the LB or TV = LB + (UB-LB)×0.1. Therefore, the first

trial value of the example is 16 + (29-16) × 0.1 = 17.3. The UB or the makespan

value of the solution consists of the idle time plus workstation time at the last

workstation. The LB is the minimum size of grouped tasks. However, the solution of

the minimum groups of tasks may not give the optimal solution in makespan value.

For this reason, we set the trial value by increasing the LB with the small amount

(10%) of the UB-LB difference in order to search for a better solution in a close area.

57

Figure 4.4 the flowchart of heuristic

58

Table 4.3 the summation of task processing time (sec.)

 Task 1 Task 2 Task 3 Task 4 Task 5

Worker A 11 6 15 4 11

Worker B 12 8 16 5 11

Worker C 8 8 18 5 10

Makespan = 29

Max station time = 16
8 4 4

6 4 6
6 5 4

Station1, C, task 12

Station2, B, task 3

Station3, A, task 45

Figure 4.5 An example of LB and UB

 Step 3: Determine the groups of tasks

The idea is that we will generate only the groups of tasks based on the maximal

station load rule which is that a workstation will never close if fittable tasks remain.

The consecutive tasks will be grouped without exceeding the current trial value and

with the maximum group size. Only the groups of tasks based on the maximal station

load rule are generated. Beginning with each task, the next consecutive task will be in

the groups. Only the maximum group size (the sum of task processing time) within

the trial value is considered. The groups of tasks are generated based on the trial

value. For example, the first trial value is 17.3. The possible groups of tasks based on

the rule of worker A are {tasks1, 2}, {task2} {task3} {tasks4, 5}, and {task 5}.

Worker A does not operate task 1 alone and 4 alone because the sum processing time

of tasks 1 and 2 is 17 seconds and the sum processing time of tasks 4 and 5 is 15

seconds which are below the maximum group size of 17.3 seconds. The possible

groups of tasks for worker B are {task1}, {task2}, {task3}, {tasks4, 5} and {task5}.

Worker B does not operate tasks 4 alone because the sum processing time of tasks 4

and 5 is 16 seconds which is below the maximum group size of 17.3 seconds. The

possible groups of tasks for worker C are {tasks1, 2}, {task2}, {tasks 4, 5} and

{task5}. Worker C cannot operate task 3 since the processing time of task 3 is 18

seconds which is greater than 17.3.

59

In Figure 4.7(A), the number in the nodes shows a group of consecutive tasks within

the trial value. In this step, a worker who is chosen to carry out each group of tasks is

not considered. However, workers who can do those tasks within the trial value are

shown at upper right of the nodes. For node 12, workers A and C can be chosen. In

the next step, the heuristic will determine the feasible paths. A feasible path must

include all tasks using the number of nodes equal to the number of workers. The

infeasible nodes are cut off as in Figure 4.7(B). The feasible path is duplicated based

on the workers who can operate tasks in those nodes. Therefore, node 12 will be

extracted to node 12A and 12C as shown in Figure 4.7(C). After that, the step of the

modified Dijkstra’s algorithm is run to determine the path which leads to the

minimum makespan.

Figure 4.6 (A) Nodes of the group of tasks, 4.7(B) Feasible nodes of

task-workstation assignment,4.7(C) Nodes for Modified

Dijkstra’s algorithm

Step 4: Determine the assignment of the possible groups of tasks and workers

This step applies the idea of Dijkstra’s algorithm. Generally, Dijistra’s

algorithm is an algorithm to determine the shortest path. A node in this problem is a

workstation that includes an assignment between the consecutive tasks and a worker

and a path means the assignment starting from the first workstation to the last

workstation. In the Dijistra’s algorithm, the shortest path from the starting node to

every other node is determined in order to develop the shortest path to the ending

node. In the heuristic, the shortest path to each node becomes the minimum idle time

of that node which is designed to search for a solution minimizing makespan. If the

 4.7(A) 4.7(B) 4.7(C)

3A

3B

45A

45B

45C

12A

12C

60

minimum idle time of the last station is found, the minimum makespan would tend to

be reached.

The search will start at a randomly selected initial node. The initial nodes are

the ones which own the first task e.g. node 12A and 12C. The algorithm will repeat at

other initial nodes that are not selected. All initial nodes are possible to be chosen.

Figure 4.7 shows the pseudo code of the modified Dijkstra’s algorithm.

Firstly, the best makespan is set to UB (line 0). The initial node is randomly selected

(line 1) and the variables to keep a solution are initialized (line 2 to line 10). In each

step, the heuristic will determine which node in set Q which has the minimum idle

time. It will be node u as shown in line 12. In the first loop, node u will be the initial

node. If node u is found, the node u will be added to set Se and removed from set Q

(line 14 to line 15). The nodes which are connected from node u using a single arc

will be node b. The algorithm will check the feasibility of assignment of node b from

node u. The one to one assignment between worker and workstation is examined. If

the assignment is feasible (line 17), the sub-makespan and the idle time on the

workstation b will be determined (line 18).

If the new idle time, new_idleb, is less than idle time, idleb of node b and the

sub makespan is less than the best makespan, the idle time of the node, idleb is

updated (line 19 - 20). Then the assignment solution is kept (line 21). For example,

the initial node is 12A, so node 12A will be node u. Node 3B will be node b. This

assignment is feasible. The sub-makespan will be 23 and the idle time will be 7.

Figure 4.9 shows an example of the idle and the sub-makespan. Set previousb

, the previous node of node b equals node 12A. The steps will repeat for all node b.

Then the new node u, which has minimum idle time, is determined again. The step

will repeat until no node having minimum idle is found or idle time of every node in

Q equals infinity. If the last tasks is in node b and s_makespanb is less than the best

makespan, then the best makespan is updated (line 22-23). For example, node u is 3B

and node 45C is node b. Previously, the best makespan was infinity. It is updated to

28 with the assignment solution (12A, 3B, 45C) as shown in Figure 4.8. Since the

heuristic is designed to minimize idle time that is not a direct algorithm to minimize

makespan, it is better to keep a set of solutions in a node.

61

Step 5: Check the improvement of the solution and Stopping Criteria

This step is to select whether UB and LB should be updated in order to further

limit search space. If a better makespan of a feasible solution is found, the UB is set

to the makespan value in the corresponding solution. Otherwise LB is set to the

previous trial value. Then new trial value is re-calculated. The stopping criteria

depend on the cumulative number of iterations which is not improving the makespan.

For example, the limit of iterations is 2; the heuristic will stop if a solution is not

improved in 2 consecutive iterations

Figure 4.7 The pseudo code of Modified Dijkstra’s algorithms

Modified Dijkstra’s algorithm
0 Set best_makespan = UB
1 Randomly select of initial node
2 FOR each node v
3 SET idle time of each node (idlev) = infinite
4 SET sub makespan of each node (s_makespanv) = infinite
5 SET status of the previous node (previousv)= NULL
6 END Loop
7 SET idlev of the selected starting node = 0
8 SET Se = empty set
9 SET Q = set of unselected nodes
10 SET Have_min = true
11 WHILE (Have_min = true)
12 Determine node (u) which has the minimum idle time in Q,
13 IF node u is found THEN
14 u is removed from set Q
15 u is added in set Se
16 FOR each node b in Q , a node that is connected from node u using a single arc
17 IF (the assignment of b from u valid feasible assignment) THEN
18 Determine idle time, new_idleb and sub makespan, s_makespanb
19 IF ((new_idleb < idleb) AND (s_makespanb < best_makespan)) THEN
20 idleb is replaced by new_idleb
21 SET u = the previousv of node b
22 IF node b is the last workstation
23 IF s_makespanb < best_makespan THEN update best_makespan
24 END IF
25 END IF
26 END IF
27 END IF
28 END Loop
29 ELSE Have_min = false End IF
30 END WHILE

62

Trial The Modified Dijkstra’s algorithm

The 1st Trial
UB=29 LB=16

Trial value = 16 +(29-16) × 0.1 = 17.3
Best makespan =UB = 29

Start at node 12A
Se = {Ø} , Q = {12A, 3B, 45A, 45C }
best_makespan = 29
Node 12A 3B 45A 45C
idlev 0 ∞ ∞ ∞
s_makespanv ∞ ∞ ∞ ∞
previousv - - - -

Node u = 12A
Se = {12A} , Q = { 3B, 45A, 45C}
best_makespan = 29
 Node b
Node 12A 3B 45A 45C
idlev 0 7 ∞ ∞
s_makespanv - 23 - -
previousv - 12A - -

Node u = 3B
Se = {12A, 3B} , Q = { 45A, 45C}
 Node b1 Node b2
Node 12A 3B 45A 45C
idlev 0 7 ∞ 13
s_makespanv - 23 - 28
previousv - 12A - 3B

Node b = 45A : Infeasible assignment solution(12A,3B,45A)
Node b = 45C : assignment solution (12A,3B,45C)
best_makespan = 28

Start at node 12C

Se = {Ø} , Q = {12A, 3A, 3B, 45A, 45B, 45C }
best_makespan = 28
Node 12C 3A 3B 45A 45B 45C
idlev 0 ∞ ∞ ∞ ∞ ∞
s_makespanv ∞ ∞ ∞ ∞ ∞ ∞
previousv - - - - - -

Node u = 12C
Se = {12C} , Q = { 3A, 3B, 45A, 45B, 45C}
best_makespan = 28

3B

45A

45C

12A

3B

45A

45C

12A

3B

45A

45C

12A

3A

3B

45A

45B

45C
12C

63

 Node b1 Node b2
Node 12C 3A 3B 45A 45B 45C
idlev 0 8 8 ∞ ∞ ∞
s_makespanv - 23 24 - - -
previousv - 12C 12C - - -

Node u = 3A
Se = {12C,3A}, Q = { 3B, 45A, 45B, 45C}
best_makespan = 28
 Node b1 Node b2
Node 12C 3A 3B 45A 45B 45C
idlev 0 8 8 ∞ 15 ∞
s_makespanv - 23 24 - 31 -
previousv - 12C 12C - 3A -

Node b2 = 45C : Infeasible assignment (12C,3A,45C)

Node u = 3B
Se = {12C,3A,3B }, Q = { 45A, 45B, 45C}
best_makespan = 28
 Node b1 Node b2
Node 12C 3A 3B 45A 45B 45C
idlev 0 8 8 14 15 ∞
s_makespanv - 23 24 29 31 -
previousv - 12C 12C 3B 3A -

The best makespan = 28
The best solution is {12A,3B, 45C}

The 2nd
UB=28 LB=17.3

Trial value = 17.3+ (28-17.3)×0.1=18.37
An improvement of solution is not found.

The 3rd

UB=28 B=18.37

Trial value = 19.33
An improvement of solution is not found.

Stop

If the limit number of the consecutive trial value equals 2,
the search will stop.

Figure 4.8 An example of the Modified Dijkstra’s algorithm

Figure 4.9 An example of idle and sub-makespan

Sub‐makespan = 23

6
4 7

46
station1, A, task 12
Station2, B, task 3

6

Idle =7

3A

3B

45A

45B

45C
12C

3A

3B

45A

45B

45C
12C

3A

3B

45A

45B

45C
12C

64

4.5 Performance measurement of the heuristic

4.5.1 Testing the problems

A heuristic algorithm was implemented using the C++ programming

language. The quality of the solution and computational time of the proposed

heuristic were compared to those obtained from the mathematical model which was

solved by CPLEX 8.0. Both CPLEX and the heuristic algorithm were run on a PC

with an Intel CoreTM2 Duo 2.00 GHz CPU and 1.93 GB of RAM.

Normally in a modular production system in the garment industry, the

number of workers is between 6 and 15. However, only the problem with 7-9

workers was tested since a problem size of 10-15 workers is too large to achieve

optimal solutions using the mathematical model. The problem parameters were

chosen to reflect a realistic situation in the garment industry. In this testing, the

number of tasks was three times to four times the number of workers, since generally

in the garment industry a worker is assigned less than three to four tasks. The

numbers of items that were examined were 100 and 300 for the difference of lot sizes.

Furthermore, the difference in learning period is also reflected. Regarding the

learning process, a major reduction in the processing time occurs during the beginning

of the process. Therefore, for the 100 item problem, major reduction is the large part

of the process, whereas the 300 item problems include both major and minor

reduction. The proportion of minor reduction is greater than that of major reduction

Table 4.4 shows all the problem sets of this test. The parameters of the

problem instances were developed. Based on Log-Linear model, if t1 and tn represent

the task processing times of the first and the nth item, and using Ø in terms of learning

slope,)2log/(log
1

φnttn ⋅= (Wright, 1936). The learning slope for apparel manufacturing

is reported by Rosenwasser (1982) and is 0.77-0.85. In this test, the learning slope

was uniformly generated from the interval between [0.77, 0.85] and [0.70, 0.90] in

two levels. Since the task processing of the sewing process varies, it was uniformly

generated. The mean task processing times of the first item (t1) were generated

uniformly in the intervals [1, 10] and [1, 30]. The differences in performance of

experienced and inexperienced workers on the sewing line are represented by the

percent deviations from the mean task processing times. The percent deviations are

65

uniformly distributed in the intervals [-20%, 20%] and [-50%, 50%]. For example, if

the mean task processing time of the first item is 10 and the percentage of deviation

20%, t1 becomes 12.

Table 4.4 Problem Size
Problem

Code

Number of

Worker

Number of

Task

Number of

item

Instances CPLEX Sol.

7w21t100i 7 21 100 80 Optimal Sol.

8w24t100i 8 24 100 80 Optimal Sol.

9w27t100i 9 27 100 40 Limit time*

7w21t300i 7 21 300 80 Optimal Sol.

8w24t300i 8 24 300 40 Optimal Sol.

9w27t300i 9 27 300 40 Limit Time**

7w28t100i 7 28 100 80 Optimal Sol.

8w32t100i 8 32 100 80 Optimal Sol.

Note * Limit time = 259,200 sec. or (3days), **Limit time = 345,500 sec. or (4days)

There are 8 tests per problem size. Each test has 10 replicates, but for

8w24t300i, 9w27t100i and 9w27t300i, we used 5 replicates, so the number of

instances are 40 for 8w24t300i, 9w27t100i and 9w27t300i and 80 for the other

problems. For the problem sets 7w21t100i, 7w21t300i, 8w24t100i and 8w24t300i,

CPLEX was designed to run until the optimal solution was found. Since the problem

size of 9 workers is quite large to achieve the optimal solutions, the run time of the

problem was limited. For 9 workers with 100 items, 9w27t100i, the limited run time

was 259,200 sec. (3 days). For 9 workers with 300 items, 9w27t300i, the limited run

time was 345,500 sec. (4 days) due to the larger size of the problem.

4.5.2 The parameters applied in the heuristic

Four parameters were applied in the heuristic, i.e. the gap to set the

trial value (Gap), the limit number of the loop (Limit), % of special group and the

number of solutions that were kept.

The gap to set trial value is to the position of trial value between the

UB and LB and was calculated from the percentage of the difference between the two.

The gap value affects the computational time and quality of the solution and the

computational time is reduced for the large gap. However, the optimal solution may

66

be missed if the gap is too large. To determine the suitable parameter, the gap to set

trial value was designed in two levels, Gap {0.2, 0.3}.

The limit number of loop (Limit) is the stopping criteria. For example,

the heuristic will stop if the best solution is not improved greater than or equal to 3

loops of the trial makespan. Figure 4.10 shows an example of an improvement of

makespan when the limit number is three. The computational time is reduced when

the limit number of the loop is small. However the optimal solution may be missed if

the loop stops too early. To determine a suitable parameter, the limit number of the

loop (Limit) was designed in two levels, Limit {3, 5}.

Figure 4.10 An example of an improvement of makespan

The heuristic also allows a sub set of the groups which has a

summation of task processing times close to the generated group to add in the

heuristic. If the number of groups increase, the chance to find the optimal solution

will increase while the computational time also increases e.g. Task {1, 2, 3} is the

generated group of tasks which has 10 sec. Let % of special group be equal to 10%, if

the tasks 1, 2 consume 9 sec. The group of tasks 1, 2 will be the special group which

is included in the heuristic. To determine a suitable parameter, % of special group

was designed in two levels, {10%, 15%}.

Since the heuristic was designed to minimize idle time that is not a

direct algorithm to minimize makespan, it is better to keep a set of solutions in a node.

In the modified Dijkstra’s algorithm, more than one solution is kept, so the

computational time will increase if the number of solutions increases. In the heuristic,

the number of solutions is designed in two levels, two times and three times the

67

number of workers, {2w, and 3w}. If the number of the workers is 7, then the number

of the solutions will be 14 and 21.

The problem size 7w21t100i was tested. The test started at the level of

parameters which gives the quickest computational times which are,

Gap{0.3},Limit{3},% of special group{10%}and the number of solutions that are

stored in a node{2w} in Test 1. Then the quality of the solution and the

computational time were investigated. The results of the tests are in Table 4.5. The

percentage difference of the heuristic solution from the optimal solution was

calculated as the following equation:

where Heusol is the makespan obtained by a heuristic, and Optsol is the makespan of

the optimal solution obtained by using an exact algorithm.

 Each factor was adjusted to another level one at a time and then the quality of

the solution and the computational time were investigated. The results of the test are

shown in Table 4.5, Figures 4.11 and 4.12. Since no test significantly improves the

quality of the solution of Test 1 as shown in Table 4.5, the parameters of Test 1 were

selected to be suitable parameters which are Gap{0.3},Limit{3},% of special

group{10%}and the number of solutions that are stored in a node{2w}.

Table 4.5 The quality of the solution and CPU Time of the test when the

parameters are varied
 Gap Limit % of

special

group

No. sol.

stored in

a node

Avg. diff

(%)

Max. diff

(%)

CPU

Time

(sec.)

Test 1 0.3 3 10% 14 0.109 2.762 5.420

Test 2 0.2 3 10% 14 0.239 2.768 5.751

Test 3 0.3 5 10% 14 0.109 2.762 7.647

Test 4 0.3 3 15% 14 0.094 2.762 7.218

Test 5 0.3 3 10% 21 0.109 2.762 7.647

% difference from the optimal solution = diff = 100sol sol

sol

Heu Opt
Opt
−

×

68

Figure 4.11 The quality of the solution of the test when the

parameters are varied(%)

Figure 4.12 The CPU of the test when the parameters are varied(sec.)

4.5.3 Performance of heuristics on test problems

The purpose of these experiments was to evaluate the performance of

the proposed algorithm on the test problems. In Sections 4.5.3.1- 4.5.3.2 the

performance of heuristics are tested in two aspects; solution quality, and

computational time. The comparison of the quality of the solution between the

problems applying the constant skill level and the skill level including learning ability

are investigated in section 4.5.3.3.

69

4.5.3.1 The computational time of the heuristic

This dissertation compares the computational time of the

proposed heuristic to the computational time from CPLEX solution. The task

processing time of the first item, the % deviation of the processing time among the

workers and the learning slope are varied in two levels as mentioned in Section 4.5.1.

Table 4.6 presents the computational time of the problem when the number of tasks is

equal to 3 times the number of workers with 100 items. Table 4.7 presents the

computational time of the problem when the number of tasks is equal to 3 times the

number of workers with 300 items. Table 4.8 presents the computational time of the

problem when the number of tasks is equal to 4 times the number of workers with 100

items for problems using 7 and 8 workers.

Table 4.6 CPU time of the problem : No. tasks = 3× No. workers , 100 items(sec.)
Processing Skill Learning Computational time (sec.)

Time Level Slope 7w21t100i 8w24t100i 9w27t100i

 Opt. Heu. Opt. Heu. Opt. Heu.

U[1,10]

U[1,20]

U[0.77,0.85] 801.845 3.821 1,479.828 10.74

38,847.11

43.66

U[1,10]

U[1,20]

U[0.70,0.90] 2,704.773 5.931 15,317.14 14.04

221,328.11

71.85

U[1,10]

U[1,50]

U[0.77,0.85] 1,253.58

5.26

13,872.80

14.73

75,117.24

63.93

U[1,10]

U[1,50]

U[0.70,0.90] 3,220.02

8.18

18,364.12

19.81

133,728.19

42.29

U[1,30]

U[1,20]

U[0.77,0.85] 427.74

2.12

1,920.55

27.08

8,508.04

91.15

U[1,30]

U[1,20]

U[0.70,0.90] 1,474.55

6.76

21,773.07

19.23

127,300.91

76.73

U[1,30]

U[1,50]

U[0.77,0.85] 529.93

4.85

17,706.71

12.24

87,128.28

54.82

U[1,30]

U[1,50]

U[0.70,0.90] 2,383.27

4.56

61,631.84

16.55

211,616.94

51.86

70

Table 4.7 CPU time of the problem : No. tasks = 3× No. workers , 300 items(sec.)
Processing Skill Learning Computational time (sec.)

Time Level Slope 7w21t300i 8w24t300i 9w27t300i

 Opt. Heu. Opt. Heu. Opt. Heu.

U[1,10]

U[±20]

U[0.77,0.85] 801.845 3.821

 16,687.96

39.79 - 86.95

U[1,10]

U[±20]

U[0.70,0.90] 2,704.773 5.931

160,363.91

45.37 - 189.15

U[1,10]

U[±50]

U[0.77,0.85]

5,964.87

7.93

41,142.10

35.01

- 148.73

U[1,10]

U[±50]

U[0.70,0.90]

12,423.63

12.62

237,607.59

37.21 - 105.21

U[1,30]

U[±20]

U[0.77,0.85]

3,148.66

5.43

26,227.23

25.34 - 239.47

U[1,30]

U[±20]

U[0.70,0.90]

14,189.63

13.37

185,995.06

39.26 - 138.38

U[1,30]

U[±50]

U[0.77,0.85]

3,297.25

9.73

110,749.60

45.85 - 228.19

U[1,30]

U[±50]

U[0.70,0.90]

11,183.15

10.10

189,963.72

56.49 - 198.97

For the computational time of the optimal solution, it was

found that when the number of tasks and the number of workers are increased, the

computational time of the optimal solution will increase as shown in Figure 4.13.

And when the number of items and the number of workers are increased, the

computational time of the optimal solution will dramatically increase as shown in

Figure 4.14.

71

Table 4.8 CPU time of the problem : No. tasks = 4× No. workers , 100 items(sec.)
Processing Skill Learning Computational time (sec.)

Time Level Slope 7w28t100i 8w32t100i

 Opt. Heu. Opt. Heu.

U[1,10]

U[±20]

U[0.77,0.85] 1,262.44

9.87 6,015.19

14.50

U[1,10]

U[± 20]

U[0.70,0.90] 7,420.15

26.63 56,597.09

40.93

U[1,10]

U[±50]

U[0.77,0.85] 4,844.74

21.80 86,142.74

39.30

U[1,10]

U[±50]

U[0.70,0.90] 4,809.68

19.75 85,285.44

40.93

U[1,30]

U[±20]

U[0.77,0.85] 1,262.19

13.81 22,177.36

29.34

U[1,30]

U[±20]

U[0.70,0.90] 4,232.49

10.61 57,779.92

35.12

U[1,30]

U[±50]

U[0.77,0.85] 3,880.08

8.98 39,668.41

34.66

U[1,30]

U[±50]

U[0.70,0.90] 5,822.06

10.65 92,853.20

42.91

Figure 4.13 CPU Time of optimal sol. when No. Tasks increase (sec.)

72

Figure 4.14 CPU Time of optimal sol. when No. Items increase (sec.)

Furthermore, when the learning slope of the worker varies at a

high level, it was found that the computational time of the optimal solution is greater

than the computational time when learning slope varies at a low level as seen in

Figure 4.15.

Figure 4.15 CPU. Time of optimal sol. when learning slope varies

(sec.)

73

For the computational time of the proposed heuristic, it was

found that the total computational time of the heuristic is less than the computational

time from CPLEX solution. When the number of tasks and the number of workers are

increased, the computational time of the heuristic solution will slightly increase as

shown in Figure 4.16. However when the number of items and the number of

workers are increased, the total computational time of the heuristic solution will

increase, especially for 9 workers as shown in Figure 4.17.

Figure 4.16 CPU. Time of heuristic sol. when No. Tasks increase(sec.)

Figure 4.17 CPU. Time of heuristic sol. when No. Items increase(sec.)

74

To investigate the computational time of the heuristic, the heuristic

step was divided into three parts which are generating UB and LB, determining the

feasible path and applying the modified Dijkstra’s algorithm. It was found that

determining the feasible path consumes 81% of the total time, generating UB and LB

consumes 18% of the total time, and applying the modified Dijkstra’s algorithm takes

only 1% of the total time as seen in Figure 4.18.

Figure 4.18 The fraction of CPU. Time (%)

4.5.3.2 The quality of the solution of the heuristic

The performance of heuristics is presented in the form of the

percentage difference of a heuristic from the solution of CPLEX solution. The

percentage difference of the heuristic solution from the optimal solution was

calculated as the following equation:

% difference from the optimal solution diff = 100sol sol

sol

Heu Opt
Opt
−

×

where Heusol is the makespan obtained by a heuristic, and Optsol is the makespan from

the optimal solution obtained by using an exact algorithm.

75

The offset from the optimal including mean (Avg. diff), the standard

deviation (Std. diff) and the maximum of the difference from the optimal solution

(Max diff) were calculated. When the optimal solution was not achieved within the

time limit for problem 9w27t100i and 9w27t300i, the best objective value within the

time limit was compared to the heuristic solution. Table 4.9 shows the percentage

difference of the problem when the number of tasks is equal to 3 times the number of

workers for 100 items. Table 4.10 shows the percentage difference of the problem

when the number of tasks is equal to 3 times the number of workers for 300 items.

For the problem size of 9 workers, since the time of exact solution test is limited,

some tests may found the optimal solution. In the column “Exact Opt”, the problem

9w27t300i has two parts which consist of the solutions which were found to be the

optimal solution and the solutions which were not found to be the optimal solution

within the time limit. The number of the optimal solutions for each test is presented

in the column. For example, 1/5 means that from 5 tests, 1 test has the optimal

solution within the limit time. Table 4.11 presents the percentage difference of the

problem when the number of tasks is equal to 4 times the number of workers with 100

items for problems of 7 and 8 workers. In Figures 4.19 - 4.24, the percentage

difference of the heuristic from the solution of exact solution of each problem size is

presented.

It was found that the heuristic gives the percentage difference from the

optimal solution at less than 0.80 %. The maximum of the difference was less than

4.6% for all tests.

76

Table 4.9 The percentage difference of the problem :No. tasks = 3× No. workers,

100item(%)

Processing Skill Learning
The difference between the exact solution and the heuristic solution (%)

Time Level Slope
7w21t100i 8w24t100i 9w27t100i

Avg.
diff

Std.
diff

Max.
diff

Avg.
diff

Std.
diff

Max.
diff

Exact
Opt.

Avg. diff Max.
diff

U[1,10]

U[±20]

U[0.77,0.85] 0.38 0.89 2.76 0.20 0.64 2.01

5/5 1.08 3.16

Not
Opt. - -

U[1,10]

U[± 20]

U[0.70,0.90] 0.03 0.09 0.29 0.52 0.52 1.43 1/5 0.58 0.58

Not
Opt. -1.39 0.01

U[1,10]

U[±50]

U[0.77,0.85] 0.13 0.31 0.98 0.14 0.46 1.44 5/5 0.49 1.50

Not
Opt. - -

U[1,10]

U[±50]

U[0.70,0.90] 0.08 0.22 0.69 0.21 0.35 0.98 3/5 1.00 2.62

Not
Opt. 4.48 7.50

U[1,30]

U[±20]

U[0.77,0.85] 0.05 0.13 0.42 0.39 0.91 2.86 5/5 0.38 0.89

Not
Opt. - -

U[1,30]

U[±20]

U[0.70,0.90] 0.08 0.22 0.71 0.33 0.54 1.44 4/5 0.71 2.09

Not
Opt. - 0.68 - 0.68

U[1,30]

U[±50]

U[0.77,0.85] 0.00 0.01 0.03 0.43 1.32 4.18 4/5 0.13 0.36

Not
Opt. - 1.39 - 1.39

U[1,30]

U[±50]

U[0.70,0.90] 0.04 0.06 0.16 0.29 0.37 1.08 3/5 1.49 1.99

Not
Opt 1.15 1.70

77

Table 4.10 The percentage deviation of the problem : No. tasks = 3× No.

workers, 300 items(%)

Processing Skill Learning
The difference between the exact solution and the heuristic solution (%)

Time Level Slope
7w21t300i 8w24t300i 9w27t300i

Avg. diff Std.
diff

Max.
diff

Avg.
diff

Std.
diff

Max.
diff

Exact
Opt.

Avg.
diff

Max.
diff

U[1,10]

U[±20]

U[0.77,0.85] 0.00 0.00 0.00

0.39 0.57

1.67

4/5 0.01 0.04

Not
Opt. -1.27 -1.27

U[1,10]

U[± 20]

U[0.70,0.90] 0.06 0.19 0.61

0.70 1.26

3.53 0/5 - -

Not
Opt. -2.12 -0.38

U[1,10]

U[±50]

U[0.77,0.85] 0.14 0.33 1.05

0.07 0.20

0.63 2/5 0.91

1.79

Not
Opt. -0.68 2.51

U[1,10]

U[±50]

U[0.70,0.90] 0.10 0.22 0.57

0.01 0.02

0.06 0/5 - -

Not
Opt. -1.71 -0.79

U[1,30]

U[±20]

U[0.77,0.85] 0.55 1.46 4.63

0.17 0.43

1.15 3/5 0.14 0.42

Not
Opt. -0.53 -0.48

U[1,30]

U[±20]

U[0.70,0.90] 0.14 0.38 1.22

0.00 0.00

0.00 1/5 1.23 1.23

Not
Opt. -0.82 1.03

U[1,30]

U[±50]

U[0.77,0.85] 0.26 0.81 2.56

0.03 0.04

0.10 2/5 0.00 0.00

Not
Opt. - 1.87 - 1.39

U[1,30]

U[±50]

U[0.70,0.90] 0.14 0.33 1.05

0.00 0.00

0.00 0/5 -1.61 - 0.40

Not
Opt 1.15 1.70

78

Table 4.11 The percentage difference of the problem : No. tasks = 4× No.

workers, 100 items(%)

Figure 4.19 The percentage difference 7w28t100i(%)

Processing Skill Learning
The difference between the exact solution and the heuristic solution (%)

Time Level Slope
7w28t100i 8w24t100i

Avg. diff Std.
diff

Max.
diff

Avg. diff Std.
diff

Max.
diff

Avg.
diff

U[1,10]

U[±20]

U[0.77,0.85] 0.21 0.61

1.95 0.04 0.09

0.29

0.04

U[1,10]

U[± 20]

U[0.70,0.90] 0.02 0.06

0.17 0.02 0.03

0.07

0.02

U[1,10]

U[±50]

U[0.77,0.85] 0.23 0.54

1.65 0.05 0.12

0.37

0.05

U[1,10]

U[±50]

U[0.70,0.90] 0.00 0.00

0.01 0.34 0.70

2.28

0.34

U[1,30]

U[±20]

U[0.77,0.85] 0.00 0.00

0.00 0.13 0.34

1.07

0.13

U[1,30]

U[±20]

U[0.70,0.90] 0.00 0.00

0.00 0.43 0.66

1.68

0.43

U[1,30]

U[±50]

U[0.77,0.85] 0.08 0.21

0.66 0.20 0.39

0.98

0.20

U[1,30]

U[±50]

U[0.70,0.90] 0.11 0.33

1.05 0.08 0.25

0.79

0.08

79

Figure 4.20 The percentage difference 7w21t100i (%)

Figure 4.21 The percentage difference 7w21t300i (%)

80

Figure 4.22 The percentage difference 8w32t100i(%)

Figure 4.23 The percentage difference 8w24t100i (%)

81

Figure 4.24 The percentage difference 8w24t300i (%)

It is found that the percentage difference will increase when the

number of workers increases. Producing 100 items has the percentage

difference higher than 300 items as seen in Figure 4.20. The reason is that the

heuristic group tasks are based on the sum of processing times, so the sum of

processing times from 300 items can better represent the learning effect than

the sum of processing times from 100 items. For example, the sums of

processing times of task 1 for 100 items from workers A and B are equal,

while the learning slopes of worker A and worker B are different for 100

items. However, if the production is 300 items, the sum of processing times is

significantly different. For this reason, the heuristic achieves the better

solution.

82

Figure 4.25 The percentage difference when No. Tasks and No.Items

increase(%)

4.5.3.3 The comparison of the quality of the solution of the heuristic

to the heuristic for the constant skill level

 This section is to study the effect of using the constant skill

level in situations accounting for worker learning ability. The quality of the solution

was investigated. The constant skill level was determined from the summation of task

processing times. Based on the data, the problem was solved according to the

heuristic method in Chapter 3. We wanted to know the quality of the solution when it

is used in situations where workers’ learning ability is a factor. The performance is

presented in the form of the percentage difference of makespan. The percentage

difference of the constant skill level solution from the heuristic solution was

calculated as the following equation:

% difference from the heuristic solution diffcon_heu = 100×
−

sol

solsol

Heu
HeuCon

83

where Consol is the makespan obtained by a heuristic for constant skill level, and

Heusol is the makespan from the heuristic solution obtained by the heuristic in Section

4.3.

Table 4.12 shows the percentage difference between the constant skill

level and the heuristic solution. It was found that when the learning slope among

workers has high variation, their percentage difference will be higher as in Figure

4.26. It was also found that the percentage difference of the learning slope among

workers which varies at a low level is low. When the learning slope among workers

has high variation for both of 100 and 300 items, there is a higher percentage

difference than the low variation as shown in Figure 4.27. This means that the

assumption of constant skill level is appropriate for the small difference in learning

slope among workers and for large lots.

Table 4.12 The percentage difference of the constant skill level

solution from the heuristic solution (%)

The difference between the constant skill level solution and the

heuristic solution (%)
Process

 Skill Learning 7w21t 7w28t 7w21t 8w24t 8w32t 8w24t 9w27t 9w27t
Time Level Slope 100i 100i 300i 100i 100i 300i 100i 300i

U[1,10]

U[±20]

U[0.77,0.85] 3.43 5.36 1.64 5.36 2.86 3.43 5.36 1.64

U[1,10]

U[± 20]

U[0.70,0.90] 5.20 6.37 4.95 6.49 5.33 5.20 6.37 4.95

U[1,10]

U[±50]

U[0.77,0.85] 4.63 3.26 2.97 4.01 2.20 4.63 3.26 2.97

U[1,10]

U[±50]

U[0.70,0.90] 6.83 5.77 5.37 4.25 7.57 6.83 5.77 5.37

U[1,30]

U[±20]

U[0.77,0.85] 4.65 4.12 1.40 5.23 1.57 4.65 4.12 1.40

U[1,30]

U[±20]

U[0.70,0.90] 7.99 7.72 4.66 7.71 1.77 7.99 7.72 4.66

U[1,30]

U[±50]

U[0.77,0.85] 3.13 4.19 2.24 6.19 2.13 3.13 4.19 2.24

U[1,30]

U[±50]

U[0.70,0.90] 5.20 8.47 5.80 7.55 4.42 5.20 8.47 5.80

84

Figure 4.26 The percentage difference diffcon_heu when No. Tasks

increase

Figure 4.27 The percentage difference diffcon_heu when No. Items

increase(%)

85

4.6 Discussion of computation results

This chapter has proposed a problem of Assembly Line Worker Assignment

and Balancing Problem with learning consideration. The problem which consists of

the assembly line balancing problem and assignment problem with the objective of

minimizing makespan was modeled. A heuristic was developed to solve the problem

and the lower bound and upper bound were determined. For the sequence of trial

makespan, the search starts from LB to UB. The heuristic groups the tasks were based

on the value of the trial value. The groups of tasks were filtered and only the groups

that were possible to give the feasible task-workstation assignment were kept. The

worker-workstation assignment solution was determined based on the recurrence

relation of the idle time among workstations in Section 4.3.1. The modified Dijkstra’s

algorithm was developed to determine the worker-workstation assignment.

The effectiveness of the heuristic was evaluated in terms of computational

time and quality of the solution or makespan. It was found that the computational

time of the proposed heuristic is significantly lower than the computational time from

the exact solution. However, the computational time of the heuristic increases when

the number of items and the number of workers increase. The heuristic found a

solution within 0.80% from optimal solution on average.

To answer the question about the effect of using the constant skill level in

situations accounting for worker learning ability, it was found that using the constant

skill level in this situation is not appropriate since it has an effect on makespan.

However, the constant skill level is suitable in situations where workers have slightly

different learning slopes and a large production lot.

CHAPTER V

CONCLUSION AND FUTURE RESEARCH

5.1 Conclusion

 5.1.1 Introduction

The appropriateness of using a two-stage heuristic for the practical

application of worker assignment for workers with highly varying skill levels is

addressed in this research. An integrated approach to the assembly line balancing

problem and worker assignment problem was developed. The problem consists of a

simultaneous solution to a double assignment: tasks to workstations and workers to

workstations. This dissertation concerns both situations which are constant skill

levels of workers and skill levels taking into account the learning ability of workers.

5.1.2 Problem description: the task-worker assignment

problem assuming constant skill levels

The problem focuses on the final assembly line. The total line is

considered to be serial with workstations consisting of one worker. Since the number

of tasks is greater than the number of workers, a worker may be assigned more than

one task. For the multiple assignments, consecutive tasks are only allowed since the

tasks have precedence relation. There are i identical items which is processed in a

number of tasks. After the worker has finished the tasks for processing an item, the

item is sent to the next workstation along the line until it has passed through the last

workstation. The processing time depends on the skill levels of workers who execute

the tasks.

87

5.1.3 Mathematical model of the task-worker assignment

problem assuming constant skill levels

A mathematical model is outlined in Chapter III. The model combines

the original assembly line balancing problem and assignment problem. A variable

awjs which represents that task j is assigned to worker w in workstation s which is

designed to merge both problems. The main constraints were designed to cover the

requirements of the system. To represent the group of consecutive tasks, the variable

yjs was developed. The objective of the mathematical model is to minimize the

maximum workstation time of cycle time.

5.1.4 Heuristic for the task-worker assignment problem

assuming constant skill levels

For the proposed heuristic, starting with limiting search space by UB and LB,

the heuristic uses the processing time of quickest worker of each task to determine

LB. To set the UB close to the LB, the UB was developed based on the solution from

the LB. The search space between UB and LB is split by the trial cycle time and the

solution between the trial cycle time and LB is examined. No matter what solution is

feasible or infeasible, the part of the search space separated by a trial value is

discarded. Consequently, the search space is continuously reduced. The groups of

tasks are generated based on the trial value, then assigned to the workers. Only the

groups which have valid maximal station loads rule are considered. Tasks are added

sequentially until the trial value is exceeded; that is, only the groups that have a cycle

time within the trial value are considered. The maximal station loads rule is a classic

rule for assembly line balancing problems. To determine the feasible assignment of

the groups of tasks to workers, a mathematical model is modeled in the heuristic. The

highlight of the model is that we added two parameters, bjg and rwg to indicate which

tasks are contained in the group of tasks and which worker operates the group of

tasks. Then a solver selects the groups of tasks on the list which are valid feasible

assignments based on the information from both parameters.

88

5.1.5 Performance measurement of the heuristic assuming

constant skill levels

The heuristic factors that have an effect on the quality of the solution,

such as the position of the trial value between the UB and LB and stopping criteria of

the search, were investigated. These parameters were tested in a small problem size,

8w24t. It was found that the position that is close to UB gives the best computation

time. This means that the final solution is close to the upper bound and we can

conclude that the heuristic has an efficient UB. The suitable stopping criterion of the

heuristic which is limited by a gap between UB and LB is then determined.

Furthermore, the effect of the varying skill levels on the quality of the

solution between the two-stage heuristic and the proposed heuristic was studied.

Using the two-stage heuristic, firstly, the assembly line balancing problem is

addressed by aggregating tasks using predetermined time standards and then with this

established, the workers are assigned to the tasks. The percentage difference between

the cycle time from the proposed heuristic and the cycle time from the two stages

method is calculated. The result of the comparison confirms the disadvantage if the

practical application is applied when the skills of workers vary greatly. The

performance degrades to 10-15% when the deviation of skills of workers increases as

reflected in a generation interval of [-30, 30] and the degradation is dramatic in the

highest level of variance, increasing to 25-40%.

5.1.6 Problem description: the task-worker assignment

problem taking into account learning ability

The second problem takes into account skill levels with learning

consideration since it is the nature of fashion industry to launch new designs and new

styles every season. For this reason, workers in the industry must continually learn

about new fabrics and sewing processes. Based on the same problem, a mathematical

model was developed. The objective of the problem is to minimize makespan. The

objective of the conventional problem, which is minimizing the maximum

workstation time, does not apply when learning is relevant since the bottleneck time

89

dynamically changes based on the reduction of learning ability for an assignment.

Therefore, minimizing makespan or completion time was used as the objective in

addressing this problem.

5.1.7 Mathematical model of the task-worker assignment

problem taking into account learning ability

A mathematical model for the problem was developed as described in

Chapter IV. However, this model is different from the mathematical model in

Chapter III in regards to calculating the objective value, makespan, which is based on

the completion time of the last item. The number of constraints in the problem is

greater than in the problem in Chapter III due to the calculation of makespan, which

depends on the number of items. Consequently, the computational time of the model

is higher than the mathematical model proposed in Chapter III.

5.1.8 Heuristic for the task-worker assignment problem taking

into account learning ability

A heuristic was developed to solve the problem of assigning tasks to

workers factoring in learning consideration. The heuristic starts with limiting search

space by UB and LB. We use the benefit of the solution from the heuristic of the

problem using constant skill levels to determine UB and LB of the solution. The

summation of the task processing time is represented as the constant skill level. The

objective value or cycle time is the LB. It can be LB since it is obvious that the

maximum workstation time is always less than the makespan value. The solution is

evaluated using the makespan value as UB.

For the sequence of trial value between UB and LB, the search extends from

LB to UB. The binary search could not be applied in the problem since the

characteristics of both problems are different. A groups of tasks based on the trial

value was generated. The groups of tasks were filtered and only the groups that were

possible to give the feasible task-workstation assignment were kept. The assignment

of the possible groups of tasks and workers was then determined

90

In the Dijistra’s algorithm, the shortest path from the starting node to every

other node was determined in order to develop the shortest path to the ending node.

In the heuristic, the shortest path to each node becomes the minimum idle time of that

node which is designed to search for a solution minimizing makespan. If the

minimum idle time of the last station is found, the minimum makespan would tend to

be reached. The Dijkstra’s algorithm was modified for the problem to fit the problem.

5.1.9 Performance measurement of the heuristic taking into

account learning ability

The effectiveness of the heuristic was evaluated in terms of computational

time and quality of the solution. It was found that the computational time of the

proposed heuristic is significantly lower than the computational time of the exact

solution. Furthermore, the proposed heuristic can keep the quality of the solution

with a percentage deviation of less than 0.80 on average.

In addition, it was found that when the workers have different learning slopes,

the assumption of a constant skill level in all situations is not appropriate since it has

an effect on the quality of the solution. However, the constant skill level is suitable in

situations where the workers have slightly different learning slopes and with the large

production lots.

5.2 Discussion and recommendations

5.2.1 Task-worker assignment assuming constant skill levels

It was found that the quality of UB and LB was reduced when the

workers have high variation in skill levels as seen in Section 3.4.2.1. For this reason,

the computational time of the heuristic is higher when workers have high variation in

skill levels. Consequently, we recommend resetting the UB in order to make the

heuristic is not sensitive to high variation in skill levels.

91

There are three variables of assignment in the mathematical models of

the both problems, which are awjs , yjs and rws . The three dimension variable awjs is

the same assignment solution which is combined from yjs and rws. The mathematical

model was developed based on background knowledge. Consequently, we

recommend improving the model or resetting of precedence constraints.

Although the computational time of the heuristic is fast, when the

number of tasks and workers increase, it tends to rapidly increase. If was found that

the main computational time of the heuristic is from the assignment of the grouped

tasks to the workers in which a solver is called to solve an assignment model. As a

result, it was determined that the heuristic could be improved.

This heuristic may have a limitation in application since the problem is

designed for tasks that are set in series. Nevertheless, the framework of this heuristic

can be applied.

Since the model assumes that all workers are fully cross-trained, it is

further assumed that they can be assigned to any task on a line. However in practice,

a worker may have skills to work on only certain tasks. To solve this problem, the

assumption can be relaxed in our model by assigning an infinite cost to any worker-

task combination. Consequently, the number of the alternatives of grouped tasks is

reduced, as is the problem size of the assignment groups of tasks to workers in

Section 3.3. The computational time can be reduced when workers have skills for

only certain tasks.

Since the heuristic generates the groups of tasks based on the trial

value, the optimal solution is a solution in which all workers work as close to the final

cycle time as possible. However in fact, there may be the other solutions that give the

same cycle time which are not included in this heuristic.

Comparing the two stage assignments, which are the assembly line

balancing problem and worker assignment problem, to the proposed problem; it was

found that the proposed problem has more complexity since it addresses the two

problems together. We recommend that the supervisor should consider the variation

92

of skills of the workers before making an assignment. The proposed problem is

recommended to account for the high variation of skills of workers.

5.2.2 Task-worker assignment taking into account learning

ability

 When more than one task is assigned to a worker, the processing time

of the combined tasks is determined by the sum of the processing time of the tasks

that he/she performs. This assumption may not be suitable if the combined tasks are

similar since there may be a learning factor as a result of the task similarity.

In addition, the computational time heuristic is sensitive when the

number of items and the number of workers increase. The main computational time is

obtained from the step generating the feasible path of task-workstation assignment.

This part should be further refined.

5.3 Future research

There are several interesting possible extensions to the present work. A future

research direction could be to consider a more general case. It can be developed as an

integrated approach to assembly line balancing and worker assignment in different

conditions in industrial manufacturing. The problem can be modified following

generalized assembly line balancing. For example, it may be a system for several

products or different models, or include a different line layout. For example, it could

include parallel workstations or a group of tasks which can be operated by more than

one worker or a system which has assignment restrictions e.g. some tasks have to be

assigned to the same workstation or some tasks are incompatible and have to be

assigned to a different station. Furthermore, industrial manufacturing may require

more than a one-objective problem, so the objective of the problem can be considered

in the form of a multi-objective problem.

93

Also regarding further solution development, a randomized-based heuristic

can be added to improve the quality of the solution. A local search procedure or

meta-heuristic may be more efficient for problems of a larger size.

REFERENCES

Altimparmak, F., Dengiz, B. and Bulgak, A.A. 2007. Buffer allocation and

performance modeling in asychronous assembly system operations: An

artificial neural network metamodeling approach. Applied Soft Computing,

7: 946-956.

Askin, R, G. and Chen, J. 2006. Dynamic task assignment for throughput

maximization with worksharing. European Journal of Operational research

168: 853-869.
 Askin, R. G. and Standridge, C. R. 1993. Modeling and Analysis of Manufacturing

Systems, 1st Ed. New York: John Wiley &Sons.

Baybars, I. 1986. A Survey of Exact Algorithms for the Simple Assembly Line

Balancing Problem. Management Science, 32
Bellman, R., Esogbue, A.O. and Nabeshima, I. 1982. Mathematical aspects of

scheduling & Applications. 1st ed.: Pergamon Press, 1982.

Betts, J. and Mahmoud, KI. 1992. Assembly line balancing in the clothing industry

allowing for varying skills of operatives. International Journal of clothing

Science and Technology 4(4): 28-34.

Bokhorst, A.C., Slomp, J. and Molleman, E. 2004. Development and evaluation of

cross-training policies for manufacturing teams. IIE Transactions 36: 969-

984.

Brusco, M.J. and Johns, T.R. 1998. Staffing a multi-skilled workforce with

varying levels of productivity: an analysis of cross-training policies.

Decision Sciences 29: 499-515.

Burkard, R.E. 2002. Selected topics on assignment problems. Discrete Applied

Mathematics 123: 257-302.

Caron, G., Hansen, P.and Jaumard 1999. The assignment problem with seniority and

job priority constraints. Operations Research 47(3): 449-493.

Campbell, G.M. and Diaby, M. 2002. Development and evaluation of an assignment

heuristic for allocating cross-trained workers. European Journal of

Operational Research 138: 9-20.

95
Chakravarty, A. K. 1988. Line Balancing with Task Learning Effects IIE

Transactions 20(2): 186-193.

Chan, K.C.C. 1997. Handling the assembly line balancing problem in the clothing

industry using a genetic algorithm. International Journal of clothing Science

and Technology 10(1): 21-37.

Chaves, A.A., Lorena, A.A.N. and Miralles, C. 2009. Hybrid Metaheuristic for the

Assembly Line Worker Assignment and Balancing Problem. Lecture Notes in

Computer Science: Hybrid Metaheuristic, Springer : Berlin, Heidelberg.

Chen, C. , Racine, R. and Swift, F. 1992. A practical approach to the apparel

production-planning and scheduling problem. International Journal of

clothing Science and Technology 4(2): 9-18.

Chen, J.C. , Hsaio, M.H., Chun-Chieh, C. and Cheng-Ju, S. 2009. A grouping genetic

algorithm for the assembly line balancing problem of sewing lines in garment

industry. The eight International Conference on Machine Learning and

Cybernetics, China.

Cohen, Y. , Vitner, G. and Sarin, S. 2007. Work allocation of work in assembly lines

for lots with homogenous learning. European Journal of Operational

Research 108: 922-931.

Cohen, Y., Vitner, G. and Sarin, S. 2008. Work allocation to stations with varying

learning slopes and without buffers. European Journal of Operational

Research 184(2): 797-801.

Corominas, A., Pastor, R., and Plans, J. 2008. Balancing assembly line with skilled

and unskilled workers. Omega 36(6): 1126-1132.

Corominas, A., Pastor, R. and Rodiriguez, E. 2006. Rotational allocation of tasks to

multifunctional workers in a service industry. International Journal

Production Economics 103: 3-9.

Dar-El, E.M. 2000. Human Learning: From Learning Curves to Learning

Organizations, Kluwer: Boston, MA.

Dar-El, E.M., Cohen, Y. 1998. Optimizing the number of stations in assembly lines

under learning for limited production. Production Planning & Control 9(3):

230-240.

Dell’Amico, M. and Martello, S. 1997. The k-cardinality assignment problem.

Discrete Applied Mathematics 76: 103-131.

96
Duin, C.W. and Volgenant, A. 1991. Minimum deviation and balanced optimization:

A unified approach. Operations Research Letters 10(1): 43-48.

Eitzen, G. and Panton, D. 2004. Multi-skilled Workforce Optimization. Annals of

Operations Research 127: 359-372.

Farrar, T.M. 1993. Optimal use of an extra server in a two station tandem queuing

network. IEEE Transactions on Automatic Control 38: 1296-1299.

Fatih Ugurdag, H., Rachamadugu, R., and Papachristou, C. A., 1997. Designing paced

assembly lines with fixed number of stations. European Journal of

Operational Research 102(3) pp: 488-501.

Franz, L.S. and Miller, J.L. 1993. Scheduling medical residents to rotations:solving

the large-scale multiperiod staff assignment problem. Operation Research

68(3): 269-279.

Futatsuishi, Y., Watanabe, I and Nakanishi, T. 2002. A study of the multi-stage flow

shop scheduling problem with alternative operation assignments.

Mathematics and Computers in Simulation 59: 73-79.

Gavett, J.W. 1968 Production and operations management, Harcourt, Brace &

world Inc.

Gavish, B., Pirkul, H. 1991. Algorithms for the multi-resource generalized assignment

problem. Management Science 36(7): 583-590.

Hassamontr, J 2004. Assembly Line Balancing with Operator’s Skill and Machine

Constraints. Hawaii International Conference on Business (HIC 2004),

June 20-24, 2004, USA.

Hopp, W.J. and Van Oyen, M.P. 2004. Agile workforce evaluation: a framework for

cross-training and coordination. IIE Transactions 36: 919-940.

Hui, P.C.L. and Ng, S.F. 1999. A study of the effect of time variation for assembly

line balancing in the clothing industry. International Journal of clothing

Science and Technology 11(4): 181-188.

Hui, P.C.L., Chan, C.C., Yeung, K.W. and Ng, S.F. 2002. Fuzzy operator allocation

for balance control of assembly lines in apparel manufacturing. IEEE

Transaction on Engineering Management 49(2): 173-180.

Inman, R.R., Blumenfeld, D.E.and Ko, A. 2005. Cross-training Hospital Nurses to

Reduce Staffing Costs. Health Care Management Rev 30(2): 116-125.

97
Jordan, W.C. and Graves, S.C. 1995. Principles on the benefits of manufacturing

process flexibility. Management Science 41: 577-594.

Kan, M.R. 1999. Simulation modeling of a garment production system using a

spreadsheet to minimize production cost. International Journal of clothing

Science and Technology 11(5): 287-299.

Karni, R. and Herer, Y. T. 1995. Allocation of tasks to stations in small-batch

assembly with learning: basic concepts. International Journal of Production

Research 33(11): 2973-2998.

Kouvelis, P. and Yu, G. 1997. Robust Discrete Optimization and Its Applications

Kluwer Academic Publishers, Dordrecht, The Netherlands.

Leopairote, K. 2003. Policies for multi-skilled worker selection assignment and

scheduling Dissertation, Industrial Engineering, University of Wisconsin-

madison.

Lev, B. and Weiss, H. 1982. Introduction to Mathematical Programming

Quantitative Tools for decision Making 1st ed. New York:Elsevier North

Holland,Inc.

Liu, S. B., Ong, H. L., and Huang, H. C., 2003. Two bi-directional heuristics for the

assembly line type II problem. The International Journal of Advanced

Manufacturing Technology 9(9): 656-661.

Martello, S., Pulleyblank, W.R., Toth, P and de Werra, D. 1984. Balanced

optimization problems. Operations Research Letters 3 (5): 275–278.

Masaru, N., Sei, U., Yochito, M., Katsuyuki, S.and Yukihiro, A. 1981. Line balancing

of sewing systems (a simple calculating method to determine the number of

workstations and cycle time). Journal of the Textile Machinery Society of

Japan 27(2):57-62.

Miralles, C., Garcia-Sabater, J. P., Andres, C. & Cardos, M. 2008. Branch and bound

procedures for solving the Assembly Line Worker Assignment and Balancing

Problem: Application to Sheltered Work centres for Disable. Discrete

Applied Mathematics 156(3): 352-367.

Mosheiov, G. 2001. Scheduling problems with a learning effect. European Journal

of Operational Research 132(3): 687-693.

98
Nakade, K. and Ohno 1999. An optimal worker allocation problem for a U-shaped

production line. International Journal Production Economics 60-61: 353-

358.

Nembhard, D.A. 2000. The effects of task complexity and experience on learning and

forgetting: A Field study. Human factors 42(2): 272-286.

Nembhard, D.A. 2001. Heuristic approach for assigning workers to tasks based on

individual learning rates. International Journal of Production Research

39(9): 1955-1968.

Nembhard, D.A. and Osothsilp, N. 2005. Learning and forgetting-based worker

selection for tasks of varying complexity. Journal of the Operational

Research Society 56(2): 576-587.

Nemhard, D.A. and Uzumeri, M V. 2000A. An individual-based description of

learning within an organization. IEEE Transactions on Engineering

Management 47(3): 370-378.

Nemhard, D.A. and Uzumeri, M V. 2000B. Experiential learning and forgetting for

manual and cognitive tasks. International Journal of Industrial Ergonomics

25(4),315-326.

Norman, B.A., Tharmmaphornphilas, W, Needy, K.L., Bidanda, B. and Warner, R.C.

2002. Worker assignment in cellular manufacturing considering technical and

human skills. International journal production research (40)6:1479-1492.

Pastor, R. and Ferrer, L. 2008. An improved mathematical program to solve the

simple assembly line balancing problem. International Journal of

Production Research 47(11): 2943-2959.

Pentico, D.W. 2007. Assignment problems: A golden anniversary survey. European

Journal of Operational Research Volume 176(2): 774-793.

Prins, C. 1994. An overview of scheduling problems arising in satellite

communications. Journal of the Operational Research Society 45(6): 611–

623.

Scholl, A. 1999. Balancing and sequencing of assembly lines 2nd ed., Physica-

Verlag, Germany.

Scholl, A. and Becker, C. 2006. State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing. European Journal of

Operational Research 168(3): 666-693.

99
Scholl, A., Fliedner, M., and Boysen, N., 2010. Absalom: Balancing assembly lines

with assignment restrictions. European Journal of Operational Research

200: 688-701.

Scholl, A. and Klein, R. 1996. Maximizing the production rate in simple assembly

line balancing - A branch and bound procedure. European Journal of

Operational Research 91(3): 367-385.

Sayin, S. and Karabati, S. 2007. Assigning cross-trained workers to departments: A

two-stage optimization model to maximize utility and skill improvement.

European Journal of operational research 176:1643-1658.

Skiena, S.S. 2008. The Algorithm Design Manual. Springer: Newyork, USA.

Slomp, J., Bokhorst, J.A.C. and Molleman, E. 2005. Cross-training in a cellular

manufacturing environment. Computers & Industrial Engineering 48: 609-

624.

Slomp, J., Molleman, E. 2002. Cross-training policies and team performance.

International Journal production research 50(5): 1193-1219.

Song, B.L., Wong, W.K. Fan, J.T. and Chan, S.F. 2006. A recursive operator

allocation approach for assembly line balancing optimization problem with the

consideration of operator efficiency. Computer & Industrial Engineering

51(4): 585-608.

Spragg, J.E., Fozzard, G. and Tyler, D.L. 1999. FLEAS:A flow line environment of

automated supervision. International Journal of clothing Science and

Technology 10(6): 322-327.

Sprecher, A. 1999. A competitive branch-and-bound algorithm for the simple

assembly line balancing problem. International Journal of Production

Research 37(8): 1787-1816.

Suer, G.A. 1996 Optimal operator and cell loading in labor-intensive manufacturing

cells. Computer industrial Engineering 31(1/2): 155-158.

Suer, G.A. and Bera, I.S. 1998 Optimal operator assignment and cell loading when

lot-splitting is allowed, Computer industrial Engineering 35(3-5): 431-434.

Talbot, F.B. and Patterson, J.H. 1984. An integer programming algorithm with

network cuts for solving the assembly line balancing problem. Management

Science 30(1): 85-99.

100
Tasan, S., and Tunali, S. 2008. A review of the current applications of genetic

algorithms in assembly line balancing. Journal of Intelligent Manufacturing

19(1): 49-69.

Toksari, M. D. and Isleyen, S. K. 2008. Simple and U-type assembly line balancing

problems with a learning effect. Applied Mathematical Modeling 32(12):

2954-2961.

Tomastik, R.N., Luh, P.B. and Liu G. 1996. Scheduling Flexible Manufacturing

System for Apparel Production. IEEE Transaction on Robotics and

Automation 12(5): 789-799.

Treleven, M. 1989. A review of dual resource constrained systems research. IIE

Transactions 21: 279–287.

Uzumeri, M and Nembhard D.A. 1998. A population of learning: a new way to

measure organizational learning. Journal of Operations Management 16:

515-528.

 Wild, R. 1972. Mass-production management; the design and operation of

production flow-line systems, John Wiley & Sons.

Wong, W.K., Chan C.K. and Ip, W.H. 2001. A hybrid flowshop scheduling model for

apparel manufacture. International Journal of clothing Science and

Technology 13(2):115-131.

Wong, W.K., Mok, P.Y. and Leung, S.Y.S. 2005. Developing a Genetic Optimisation

Approach to Balance an Apparel Assembly Line. International Journal

Advanced Manufacturing Technology 28: 387-394.

Wright, T.R. 1936. Factors affecting the cost of airplanes. Journal of Aeronautical

Sciences 3(4): 122-128.

Yang, K.K. 2007. A comparison of cross-training policies in different job shops.

International Journal of Production Research 45(6): 1279-1295.

Zhang W. and Gen M., 2009. An efficient multiobjective genetic algorithm for mixed-

model assembly line balancing problem considering demand ratio-based cycle

time. Journal of Intelligent Manufacturing 20(3): 283-293.

Zhang W., Lin L., and Gen M., 2008. A Multiobjective Genetic Algorithm based

Approach to Assembly Line Balancing Problem with Worker Allocation.

International Conference on Systems, Man and Cybernetics (SMC)

Singapore.

101
Zulch, G., Rottinger, S. 2004. A simulation approach for planning and re-assigning of

personnel in manufacturing. International Journal of Production

Economics 90(2): 265-277.

102

VITA

Miss Kanjana Thongsanit was born on April 10th, 1976 in Phitsanuloke

province, Thailand. She graduated from Chiang Mai University, Thailand in academic

year 1998 with a bachelor’s degree in Industrial Engineering. She earned a Master’s

degree in Industrial Management Engineering from King Mongkut’s University of

Technology North Bangkok, Thailand in academic year 2001. After her graduation, she

decided to work as a quality management consultant at Thai Garment Development

Foundation (TGDF) from 2001-2002. In 2003, she changed her career to be a lecturer at

Industrial Engineering and Management department, Silpakorn University (Sanamchan

Campus), Nakornpatom. She got a scholarship from Thai government to study a Ph.D. in

year 2004 in Industrial Engineering at Chulalongkorn University, Thailand.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Introduction
	1.2 Statement of the problem
	1.3 Dissertation objectives
	1.4 Dissertation scope
	1.5 Dissertation contribution
	1.6 Dissertation methodology
	1.7 Dissertation Organization

	Chapter II Literature Review
	2.1 A review of assembly line balancing problems
	2.2 The assignment problem
	2.3 Surveys related to assembly line balancing problems andassignment problems concerning constant skill level
	2.4 Surveys related to assignment problems concerninglearning ability
	2.5 Surveys related task-worker assignment in the garmentindustry

	Chapter III Task-Worker Assignment Assuming Constant Skill level
	3.1 Problem description
	3.2 Model formulation
	3.3 Heuristic description and numerical example
	3.4 Performance measurement of heuristic
	3.5 Conclusion

	Chapter IV Task-Worker assignment taking into account learning ability
	4.1 Problem description
	4.2 Model formulation
	4.3 Heuristic description
	4.4 The detail of the heuristic and numerical example
	4.5 Performance measurement of the heuristic
	4.6 Discussion of computation results

	Chapter V Conclusion and Future Research
	5.1 Conclusion
	5.2 Discussion and recommendations
	5.3 Future research

	References
	Vita

