การเร่งกระบวนการหาผลเฉลยของการออกแบบการวางผังที่เหมาะที่สุด

ศูนย์วิทยทรัพยากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญูวิกยาศาสตรมหาบัณฑิตอ

ปีการศึกษา 2552
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

จุฬาลงกรลมมมทกวิทยยาลัย

Academic Year 2009
Copyright of Chulalongkorn University

ฐิดิยา เทพารส : การเร่งกระบวนการหาผลเฉลยของการออกแบบการวางผังโดยใช้ ขั้นตอนวิธีทางพันฐุกรรม (Accelerating the solving process of optimal layout Design using genetic lalgorithm) อ. ที่ปรีกษา วิทยานิพนธ์หลัก : ผู้ช่วย ศาสตราจารย์ คร. กรรง สินอภิรมย์สราษ, 72 หน้า.

การออกแบบณารวงงศังที่เหมาะี่ทุด เป็นขั้นตอนของการออกแบบทางสถาปัตกรรม ที่เกี่ยวข้องกับการหาตำเเท่งนเสะขนาดของห้องที่เหมาะที่สุดที่สอดคล้อง กับเงื่อนไขทาง สถาปัตยกรรม ในบทความนี้เรา สร้างตัวแบมของปัญหาการออกเบบถารวางผังในรูปของ กำหนดการเซิงเส้นจำนวนนตศมผสม ตวมฉุดอ้างอิงของตัวแบบที่จุค ตรงกลาง ของห้อง และใช้ หลักการของตัวแปรทวิภาคเละซังก์ชันเป้าหมายแบบหลายเป่าหมาย โดขอาศัยหลักการของ การขยายและการจำกัดเขตในการหาผลเฉลยที่เหมาะที่ฮุด อย่างไรก็ตามแม้ว่า การออกแบบ การวางผังในรูปของกำทนดการเซิงเส้นจำนวนเต็มมผสมนั้น จะง่ายต่อการสร้างและปรับตัว แบบให้สอดคล้องกับความต้องการของผู้ออกแบบ แต่จำนวนห้องกีมีมลล่อเวลาในการหาผล เฉลยเป็นอย่างมาก

ค้วยเหจุนี้เราจึงทำการลคำนวนรอบการหาผลเฉลยของคัวแบบลง โดยการเร่ง กระบวนการหาผลเฉลขของตั้แบบกำหนดการเชิงเส้นจำนวนเต็มผสมในขั้นตอนของการ ขยายและจำกัดเขตให้ไปสู่กำตอบเร็วขึ้นโดยนำหลักคารของขั้นตอนวิธีทางพันถูกรรมมา ช่วยหาลำดับของตัวแปรในการขยายเพื่อเป็นการลดปรูฎิิในการค้นหาในขั้นตอนการหาผล เฉลขลง ศ่งผลทำให้เราสามารถลคจำนวนรอบของการหาผลเฉลยลงได้อยางมีนัขสำคัญ

\#\#5072264623 : MAJOR COMPUTATIONAL SCIENCE KEYWORDS : ARCHITECTURAL LAYOUT DESIGN / OPTIMIZATION PROBLEM/ MIXED INTEGER PROGRAMMING / GENETIC ALGORITHMS

THITIYA THEPAROD : ACCELERATING THE SOLVING PROCESS OF

LAYOUT DESIGN USING GENEPIC ALGORITHM.THESIS ADVISOR :
ASSTSTANT PROFESSOR KRUNG SINAPIROMSARAN, Ph.D., 72 pp.

The layout design optimization is a complicated process of an architectural design which is concerned with finding feasible locations and size of rooms that meet design requirement and design preference. This paper formulates the optimal layout design as multi-objective mixed integer programming model using the binary variables and branch \& bound technique to determine the best location and size of a group of interrelated rectangular rooms by placing a representative point at the center of the room. Although solving the layout problems using MIP model is easy to formulate and adapt for meeting architectural requirements, the number of iterations to find the optimal solution is still influenced by the number of rooms. For this reason, we decrease the number of iterations by accelerating branch and bound process. The genetic algorithm has been adopted to find a candidate sequence of branching variables which helps reducing the search tree. - 11 II From the empirical test, we found that the iterations can be reduced significantly.

ACKNOWLEDGEMENTS

I would like to express my full gratitude to all those who made it possible to complete this thesis. I am deeply grateful to my thesis advisor Assistant Professor Dr. Krung Sinapiromsaran whose help with his simultating suggestions, superior encouragement and magnificent guidance helped me during the time of all my research and in the writing of this thesis. I furthermore would like to thank Associate Professor Dr. Pornchai Satravaha, Assistant Professor Dr. Anusorn Chonwerayuth and Dr. Kamol Keatruangkamala and my thesis committee; for their useful suggestions for improvement. My grateful thanks are also extended to my teachers and lecturers during my study.

Lastly but by no means least, I would like to give my special thanks to my family and friends whose encouragement enabled me to complete this thesis.

 จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

Page
iv
ABSTRACT IN ENGLISH
 X
LIST OF FIGURES. xi
CHAPTER

I INTRODUCTION 1II BACKGROUND KNOWLEDGE.A.J................................... 99
2.1 Mathematical programming model $9 \| ? \cap ?$ 9 9

2.2 Introduction to Genetic Algorithm 17
2.2.1 Overview of Genetic Algorithm 17
2.2.2 Representation and Operators 19
2.2.3 Characteristics of the genetic search 23
III Problem Methodology 24
3.1 Mathematical model based on multi-objective function 24
3.1.1 Problem description 24
3.1.2 Multi-objective linear programming 26
3.1.3 Problem constraint formulations 30
3.2 Genetic Algorithm technique- 38
3.2.1 Chromosomes 39
3.2.2 Operators / \% . (..). 42
3.2.3 Fitness function .7 .7. 43
IV Experimental Design and Results. 45
4.1 Experimental design s.r.3......... 45
4.2 Parameters and designsetting for a genetic algotithm 47
4.2.1 Population size 47
4.2.2 Crossover and mutation probability 48
4.2.3 The length of string representation 48
4.2.4 Generations and stopping criterion 49
 49 63
จุ หวืลังกิรณ์มหาวิทยาลั d
5.3 Suggestion 64
REFERENCES 65

LIST OF TABLES

4.1 Iteration comparision between MIP and GALMIP 50
4.2 Iteration comparision of AL-MMP, MIP, AL-MIP + GA and GALMIP 514.3 Illustrates 4 rooms candidate SOS variable $p_{i j}$ and $q_{i j}$54
4.4 Illustrates 5 rooms eandidate SOS variable $p_{i j}$ and $q_{i j} \ldots . . .55$
4.5 Illustrates 6 rooms camdidate SOS variable $p_{i j}$ and $q_{i j}$
4.6 Illustrates 7 rooms comdidate $S O S$ variable $p_{i j}$ and $q_{i j}$
4.7 The result of applying the SOS candidate with the area room size of $6 \times 12 \mathrm{sqm}$
4.8 The result of applying the SOS/candidate with the area room size of $7 \times 14 \mathrm{sqm}$
4.9 The result of applying the SOS candidate with the area room size

LIST OF FIGURES

1.1.1 Slicing structure 2
1.1.2 Grid structure 3
1.1.3 O-tree and placement 43
2.1.1 An example of a simple layout 10
2.1.2 The braneh and boned free 16
2.2.1 Example of chromosome A and B 19
2.2.2 Two parent chromosone 21
2.2.3 Two offspring from one-point crossover 21
2.2.4 Two parent chromosomes A and B with two random cut points 21
2.2.5 Two offspring fromi two-point crossover 22
3.1.1 A room and a boundary representation 25
3.1.2 Relationship between the room i and 26
3.1.3 Manhattan and Euclidean distance 29
3.1.4 Decation constraint representation for case $\left(p_{i j}, q \hat{v}\right)-(0,0)$ 31
3.1.5 Location constraint representation for case $\left(p_{i j}, \bar{q}_{i j}\right)=(0,1)$ 32
3.1.6 Location constraint representation for case $\left(p_{i j}, q_{i j}\right)=(1,0)$ 32
3.1.7 Location constraint representationfor case $\left(p_{i j}, q_{i j}\right)=(1,1)$ 33
3.1 .8 Connectivity constraint representation for case $\left(p_{i j}, q_{i j}\right)=(0,0)$ 34
3.1.9 Connectivity constraint representation for case $\left(p_{i j}, q_{i j}\right)=(0,1)$
35
35

จฬ 3.1.10 Connectivity constraint representation for case 3.1.1 Connectivity constraint representation for case $\left(p_{i j}, q_{i j}\right)=(1,1)$) | 35 |
| :--- |
| 2 |
| 35 |

3.1.12Access-way constraint representation for the adjacent area of the

3.1.13Access-way constraint representation for the adjacent area of the

$$
\text { lower corner of the room } i \text {. } 37
$$

3.1.14Access-way constraint representation for the adjacent area of the left corner of the room - $\cdot 1$.
3.1.15 Access-way constraint representation for the adjacent area of the right corner of the room
3.2.1 Representation of order of branching variables in tree structure
3.2.2 A chromosome representation corresponding to a sequence of branching variables in tree structure e $\cdots \cdots \ldots$
4.1.1 The distinet patterns $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of 10 rooms .

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Architecture is an art and science of designing and constructing buildings and other physical structures for human shelter (Arch.Thamer Al Jbarat). Designing building involves both interior and exterior design, which must address both the feasibility and the building cost, as well as the function and aesthetics for the dweller.

Interior design is a multi-faceted profession in which creative and technical solutions are applied within a structure to achieve a built interior environment. Interior design involves the floor planning, interior decoration, etc.

The layout design is a complex process of an interior architectural design. An architect starts by relationship diagram between rooms spaces and other physical objects within the structure. Then he/she will focus on the size of rooms, and the distance among rooms according to given relationship. He/she normally studies and drafts many possible alternatives to select the best layout design
before submitting the plan to be implemented. However, due to the combinatorial effects of layouts, the researchers must cope with thseproblems as a combinatorial

design which are often grouped as the direct representation, the slicing structure,
and non-slicing structure (Berntsson and Tang,2004). In 1986, Wong and Liu [1]
presented an algorithm based on the slicing structure of an architecture layout. A slicing structure divides the floorplan by recursively cutting rectangles into finer rectangular objects using vertical and horizontal lines and then fit blocks into each segment (see figure 1.1.1).

A slicing floorplan can be represented by an oriented rooted binary tree, call slicing tree. Each parent node of the tree corresponds to a vertical and horizontal cut. Each leaf node represents a single segment. The system then computes the corresponding segment dimentions and their positions coordinates. The prosedure starts with a random bipartitions and improve the partition iteratively by二 performing a $\overrightarrow{s e}$ quince of vertex movements. If the resulting floorplan design is acceptable, then the design process is terminated. This technique helps reducing the complexity of the problem and search space, leading to shorter runtime.
Even though slicing floorplans are easycto used for optimization, this re Q)
sentation cannot handle non-slicifig floorplan. In recent years, many researchers acylic graph, such as B*-tree [2], Transitive Closure Graph (TCG) [3], Twin Binary Sequence [4], and Corner Block List (CBL) [5][6].

For a non-slicing floorplan, researchers have proposed several representations.

In 1991, Onodera et al.[7] classify a topological relationship between two blocks into four classes and use the branch and bound method to solve it. The algorithm runtime is $O\left(2^{n(n+2)}\right)$ which makes it inpossible to handle a large problem at that time.

In 1995, sequence pair representation was proposed by Murata et al. [8]. They use two sets of permutatiens to present a geometric relationship of blocks. In the following year, 1996. Nakatake et [al. [9] devised a bounded slicing grid approach. An $n \times n$ grid plane is used for the placement of n blocks (see figure 1.1.2). A block can have several choices to place, however the disadvantage of this representation is due to its redundancy.
 proposed in 1999 by Guo et al. [10]. There ary two type of an O-tree consists of horizontal and veritical O-tree. In the O-tree, a node denotes a block, an edge denotes the horizontal or verticalrelated positions between blocks and the perwhen wecan draw a horizontal or vertical !ine betweentwo blocks without passing through other blocks. See the example of horizontal O-tree in figure 1.1.3

The O-tree is a simplified struture to present the geometric relation. The tree structure is well known inpapplied mathematics and computer science and the properties of tree are very straightforward and simple. The run time for transforming an O-tree to its representing placement is linear with respect to the number of blocks, i.e. $O(n)$ (14]..

In the designing process, qualitative and quantitative analyses are needed to be treated. Some qualitative measures such as noise and vibration disturbances must be handled appropriately whereas quantitative measures such as the cost of transporting products between department or the cost of commuting between
 ically. The layout design optimization with both qualitative and quantitative is generally difficult to formulate using a mathematical programming model. Attempts to automate the process of layout design problems started many
deeades ago. Pioneer work by Armour and Buffa in 1963 [12] presented heuristic algorithm and simulation approach using a computer program to determine the
a block diagrammatic layout of facility area, where area does not need to be equal.
Another technique that was proposed in layout planning is a use of linear graphs for representing a floor plan [13]. Researchers have used several approaches
to deal with this problem.
Drew J. van Camp, Michael W. Carter and Anthoni Vannelli [14] proposed a nonlinear programming technique (NLT) used to formulate the layout problem based on three constraints. Two constraints are based on a layout structure, that is, two departments may hot overlap.and may not be located outside the boundary area. The last eonstraint is based on the dimension boundary of each department. The shape of every department must be rectangular and the area must be fixed, while the height and width are optimized using mathematical programming solver. To this end, three models used in NLT to approximate a layout problem were developed. The performance of NLT on several test problems were presented. Running time to solve these problems is acceptable for real-world problems comparing to some other algorithms.

Since a layout problem is known as NP-hard (Sahniand Gonzalez, 1976) and cannot be solved exhaustively for reasonably sized layout problems, many heuristic approaches have been proposedto avoid searching the design space exhaustively.

David (M.) Tate and Alice E. Smith [15] presented a heuristic search methodology called Genetic Algorithms (GA) for unequal area layout and showed how optimal solutions are affected by constraints on permitted department shapes, as specified by a maximum allowable aspect ratio for each department.
 with a minimum of eight departments.

I- Cheng Yeh (2005) presented a new framework for a facility layout problem, named annealed neural network which arises from a combination of the Hopfield neural network and the simulated annealing [18]. The first is a representation model of a layout problem and the segond is a search algorithm for finding the optimum or near optimum solutions. Annealed neural network exhibits the rapid convergence of the neural network, 产hile preserving the solution quality afforded by simulated annealing.

Exact algorithm for solving this layout problem such as the branch and bound algorithm faces with arge computational time. To alleviate this, the use of the genetic algorithm (GA) has become an incereasingly popular tool in a computational optimization problem in recent years in order to deal with large-size instances. This is because GA offers several attractive features. GA is easy to understand and can be applied to many types ofoptimization problems with little or no modification, while other approaches have required substantial modification for using in building applications successfully. It is effective to solve complex problems that can not be solved by other optimization methods. GA is easy to be implemented. c Other methods may offer the better performance but must befidentified and configured properly. The main advantage of using a GA is that while other methods always process single solution, GA maintains a population of potential solutions.

 improvement of their new algorithm.

In this thesis, we use the representation similar to the work from Bloch et.
al.[20] using a coordinated system. According to a nature of an architectural problem, there are several aspects to consider. Thus, this problem is not appropriated to be formulated as a single objective function. In this thesis, the multi-objective fuction has been used in order to meet several objective requirements. Our mathematical model has been constructed based on the work of Kamol Keatruangkamala and Krung Sinapiromsaran [21] using rectangular components. In [21], they use a point at the 101 left corner of the room to be set as a reference point. For our research, we pse the reference point at the center of the room. Our thought is encouraged by observation that middle point is common for a symetrical room. Besides, research in this field often concentrates on the reference point at the center of the room such as the work of Michalek [22].

Because a computational time of a mathematical model has grown exponentially large, Kamol and Krung prosented valid inequality to reduce their computational time and iteration 23. From their experiments, the computational time and the number of iterations have been reduced leading to solve the larger problem size. However, the reduction is not consistant. As aproblem grows, the capability of reduction is decreased because of the redundan

In this thesis, we formulate a layout problem as a Mixed Integer Programming model (Grorge, 1988, Linderoth et al., 1999, Russell et al., 1999) to determine the optimall solutionusing pinary variables. We named this mathematieal model problems with more than seven fooms exceeds seven hours, which is farem to find the order of branching variables in the branch and bound algorithm which is the process of solving MIP. By knowing a sequence of branching variables it
helps reduce a search space by identifying the better path in the search tree.

1.2 The research objective

We expect to accelerate the branch and bound process of a layout design optimization via a special order set using a genetic algorithm for MIP model.

1.3 Overview of this thesis

The rest of this thesis is oreanized as follows.
In chapter II, we introduce backgrounds used in this thesis including linear programming, integer programming and genetic algorithm.

Chapter III presents an overview of the proposed model based on the MIP methodology. We also explain how fol apply genetic algorithm to our problem in this chapter.

Finally, the results of experiments are presented in chapter IV. We also discuss with some concluding remarks and suggestions in the last chapter.

 จุหาลงกรณ์มหาวิทยาลัย

2.1.1 Layout design
 A layoutdesign problem is considered as a process of findting the best location and size of components. Each component is usually refered as an orthogonal regtangular unit for a specific architectural fulution, such as living space, storage ศศยวิทยทรัพยากร

Components are grouped into several categories based on their functions, which Q are room, boundary, hallway, and access way[24]. A room is refered to a space closes other components inside. A hallway is a space that functions as a connector between components. Access way is a small area that connects two components together, usually one is a hallway and another is a room. Figure 2.1.1 shows an
example of a simple layout whose composes of a bedroom, a bathroom, a living room, a kitchen and a hall. The letter "a"represents access-ways between two components.

From figure 2.1.1 we can see that a valid layout design does not overlap internal components and the total area is the sum of areas from all eomponents excluding access ways. This representation is easy to formulate using mathematical model. A popular techrique for an optimization problems is to usea linear programming which, is described in the next section.
2.162 Linear Programming

- Definition

Linear programming model is amathematical programming model widely used for solving optimization problems in several aspects of business including production and management, which areneeded to optimize the objective function subject to certain constraints. The-mathenatical-expressions for the objective function

- Assumptions of the linear programming model

To model using a linear relation, the problem must satisfisfy.

1. Proportionality - It requires that the value of each term in the linear programming problem is strictly proportional to the value of the variable in the term. We can also say that the slope of objective and constraints function is constant.

2. Additivity - It concens with the relationship among decision variables. Terns in the objective function and constraint equations must be additive.
3. Divisabitity - The decision variables are real-valued-which means they can take on fractional values and therefore they are continuous. However, frac-

4. Certainty - Parameters in the model are required to be known before they

Next we give the general mathematical programming formula of the linear programming problem.

- Standard form

A standard form of a linear programming problem is to find a vector $\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots, x_{n}\right)$

where, $a_{i j}, b_{i}$ and c_{j} are given constants. We shall always assume that the equation in 1 I .2 has been multiplied by - Fwhere necessary to make $b_{i} \geq 0$. of
There are several notations in common use.

2. Minimize $\mathbf{c} x$
subject to $\quad A x=b$
and
ct where $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right.$ is a rgw vector, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is a column vector, $A=a_{i j \nmid \text { man },}, \mathrm{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ is a cotumn vector, and 0 is a n dimensional null column yector.
3. Minimize subject
where P_{j} for $j=1,2, \ldots, n$ is the $j^{\text {th }}$ column of the matrix A and $P_{0}=b$ (Saul

- Solving linear programming problems using the Simplex method

Simplex method is a general procedure for solving linear programming problems, published by George Dantzig in 1947. The Simplex method guarantees to find the optimal solution in a finite number of steps. It starts at the basic feasible solution and boves along the border of the feasible region step by step from the
corner point (extreme point) to an adjacent corner point where larger (for maxi-
mization) or smaller (for minimization) value of objective function is obtained at each step. This procedure is summarized asfollows.

Stēp 2: Check the optimality of the current basic feasible solution. If none of
basic feasible solution. Repeat this step until the stopping conditions are met.

2.1.3 Integer Programming (IP)

In many practical problems, only integer values of decision variables are needed. Problems in which this is the case are called integer programming (IP) problems. The mathematical model for integer programming is simply the linear programming model with one additional restriction, all variables must be integral. If only variables are required to have integer values, then this model is referred to Mixed Integer Programming (MIP). Therefore, the minimization of the MIP is. Minimize
subject to
and

-/ / $\quad x_{j}$

$$
c_{j} \text { is integer, for } j=1,2, \ldots, m \quad(m \leq n) .
$$

If $m=n$, this problem becomes, the pure IP problem.
In this thesis, an architecturarlayout design problem is modeled as the MIP. There are several different algorithms to solve it. Popular methods are based on solving the LP relaxation because solving integer programming directly is more thansolving linear programming. A branch and Round algrirthm is one difficult thansolving linear programming. A branch and Bound algrirthm is one of the algorithins relating to LP relaxation. We will deseribe in more details in the following section.

A branch and bound algorithm is a widely used approach for solving MIP

Branch and bound algorithm uses the divide and conquer method with the best
first search strategy. The basic concept is to divide a large problem into smaller
ones. The dividing or branch part is a process that partitions the entire set of feasible solutions into smaller subsets. The conquering part is done by estimating how good a solution can be for each smaller problem. We may have to divide the problem further, until we get an optimal solution. The feasible region of the a subproblem is a subset of the feasible region of the original problem.

Next, we describe three basic steps of the branch and bound algorithm consisting of branching, bounding and fathoming.

- Branching

This process is to partition a feasible region into several smaller subproblems. The partitioning will be repeated reeursively in each subproblem until a subproblem is fathomed. The rule of fathoming will be described in the next section. Branching is generally represented in terms of a tree structure.

Let S be the feasible region and the set of all solutions.
$S_{i}:$ A subset of S where $i=1,2, \ldots, n$

The partitioning involves choosing variables to create new subproblems. The variables will be chosen specifying in a range of values. Since some yariables in the MIP problem are restricted to be integer. Therefore, only the restricted variables Q 0 that has a non-integer value will be chosen, see figure 2.12^{2}

Figure 2.1.2: The branch and bound tree

Figure 2.1.2 illustrates the concept of branching for the case where there are only four supbproblems. S represents the original feasible solution set while S_{1}, S_{3}, S_{4} represent feasible solutions of subproblems divided from the original one. The variables a and b are variables that have a non-integer value. The variables used in the branching process are called branching variables.

In order to determine the best feasible solution, we need to find bounds from solving relaxations to develop bounds for a solution. To maximize the problem, the lower bound is given as the best current solution. 0.4
Given $Z=$ optimal value of associated LP relaxation.
จุาลงกม่ดมมหาวิทยาลัย
$Z_{*} \leq Z \leq Z^{*}$

Note that a subproblem that has the optimal solution worse than Z_{*} can be fathomed, and dismissed from a further consideration. The fathoming rule will be discribed more in the next section.
A subproblem can be fathomed based on the following three
follows.

Rule 1. The relaxation of the subproblem has an optimal solution with $Z \leq Z_{*}$ for maximization problem and $Z \leq Z$ for minimization problem, where Z_{*} is the value of the best current solution

Rule 2. The LP relaxation of the subproblem has no feasible solution.
Rule 3. The LP relaxation of a subproblem has an optimal solution that have all integer values (or binary if it is BIP).
 คศนย์อิคมษฆศรัตนยากร

Agenetic algorithm (GA) was invented and developed by John Holland and (4) his students and colleagues at the University of Michigan in the 1960's and 1970's. world. The algorithm is used as an optimization method that has been applied to many areas. Although the range of problems that a genetic algorithm has been applied is quite broad, this algorithm is often viewed as a function optimizer.

Genetic algorithm is usually applied to optimization problems that are difficult to solve by a mathematical formulation. It is also used to resolved NP-hard and NP-complete such as traveling saleman problem (TSP), scheduling and design problems. It performs searching throughout the solution space to find the near optimal solution.

An implementation of agenetic algorithestarts with a set of solutions called population. These solutions may /be represented by character strings which are referred to chromosomes. A chromosome is made up from discrete units called genes. The population normally randomly initialized. The structure of GA is illustrated as follows. BEGIN GA
Creat an initial population.of P and Evaluate the fitness of each chromoson
WHILE BEGIN

4.Process each offspring by the mutation operator.
 จุหาลงครณ่มหาวิทยาลัย

6.Evaluate the fitness of each chromosome in the new population

END

END GA

The above algorithm refers to the evaluation, crossover operator to exchange bit string and mutation operator to introduce random perturbations in the search process. These concepts are now described precisely in the next section.

2.2.2 Representation and Operators

The performanee of the GA is/ controlled by the following factors.

- Encoding

The encoding process is often the most difficult aspect of solving a problem using genetic algorithm. It depends on many fators. It is often hard to find an appropriate representation to efficiently perform the crossover process. The popular representation is using a string of zeros and ones, called binary string representation which is not restricted tomber. There are several ways to represent it such as permutation encoding, valueencoding, tree encoding and matrix encoding etc. For this thesis, we will explain binary string representation

For instance, suppose we have a problem which has solytions in the set of $\{0, \ldots, 5\}$. The binary representations of 4 and 5 are $1 \overrightarrow{10}$ and 011 respectively. The example of chromosomes with binary representation is shown as follow.
ศูนย์วิทยทรัพยากร

correction must be made after crossover and/or mutation.

- Evaluation

We use the evalution function to decide how good a chromosome is, which plays important role in genetic algorthms. For' optimization problems, it usually is an objective function. The value of the evaluation function is calculated for an individual of population, callee fitness value. This fitness may use to decide the probability that a particular chromosome would be chosen to contribute to the next generation.

- Crossover

Crossover is a straightforward procedure where the two chromosomes are recombined to new chromosomes which are copied into the new generation. Not every chromosome is used in crossover. The chromosomes are chosen randomly based on a fitness value of each chromosome given by the evaluation function. Chromosomes with the highest fitness are more likely to be chosen. After the crossover is performed, new chromosomes created by crossover called offspring are moved into the new generation. For this reason, the next generation are expected to be better than the previous generation because the best chromosomes from previous genemation were used to create the new generation. Crossover continues until the new generation is full. ศนยวิยยทรัพยากร dom chromosomes to be parents for crossover. A random position between 1 and Q ${ }^{L}-1$ along the two parent chromosomes are chosen, where L is the chromosome's example using our parent chromosomes in figure 2.2.2.

Parent A : 001	001	101	100	010
Parent B : 001	110	100	010	000

 To change the generated offspring into the legal representation we need a repair algorithm. Moreover, it is possible that selected chromosomes are copied to the new population directly without any modification. This will ensure that good chromosomesean be preserved from one generation to the nort. We can also have two - point crassover. Two cut points are chosen randemly and the substring located between two cut points are exchanged, see figure 2.2.4.

There are various derivation of the crossover routines. Other generalizations, like the M-point crossover and the uniform crossover (Syswerda,1989) may be

| Offspring A : $001 \mid$ | 110 | $100 \mid$ | 100 | 010 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Offspring B : $001 \mid$ | 001 | $101 \mid$ | 010 | 000 |

Figure 2.2.5. Two offspring from two-point crossover

Due to the randomness of the crossover process may occasionally find a local optimum but not the global optimum. Because the chromosomes close to the local optimum will have a better fitness, they will be selected to crossover. This may cause GA to find the local optimum instead of the global optimum. So the mutation is used to introduce random perturbations into the search space. It is created to avoid a local optimum trap. It is essential to introduce diversity in homogeneous populations, and to restore bit values that cannot be recovered via crossover. Therefore, mutation is a completely random way for obtaining to possible solutions that would otherwise may be missed.

The bits of the two offsprings generated by the crossover operator are then processed by the mutation operator. The operator is applied to each bit with a probability equal to the mutation rate, which is close to zero. A chromosome is $\sigma=$ selected from the new generation. Then, we randomly choose a point to mutate and switch that point from 0 to 1 or from 1 to 0 . For instance, we have an example with the random mutation point at third position.

จุฬาลงคศรณมมทตวิตยาลัย

2.2.3 Characteristics of the genetic search

The search performed Genetic algorithm can be characterized in the following manner (Goldberg 1989):

1. Genetic algorithms manipulate bit strings or chromosomes encoding useful information about the problem- but they do not manipulate the information (no decoding or interpretation).
2. Genetic algorithms use the evaluation of a chromosome, as returned by the fitness function, to guide the search, They do not use any other information about the fitness function or the application domain.
3. The search is run in parallel from a population to population.
4. The transition from one chromosome to another in the search space is done stochastically.

In this section, we describe a simple genetic algorithm that solves a combinatorial problem. For more details about a genetic algorithm, theredder is suggested to read the standard book such as GA in Search Optimization, and Machine Learning (Goldberg,1989). The next section we will explain howa genetic algorithm is ศู่นย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

In this thesis, we propose two methodologies which will be described in two sections. In the first section. we describe how to formulate the mathematical model of the problem as a mixed-integer programming model base on multiobjective function. For the second one we use a genetic algorithm as a machine learning algorithm to learn a special order set (SOS),

3.1.1 Problem description

 system. The relationship between distinct rooms ensures two rooms cannot occupy the same space. Every room must be inside the main buileing boundary. We use a point at the center of the room as the reference point and a point at the top left corner of the boundary area as the reference origin $(0, \bar{\theta})$. Design variables are defined as follow.
$E_{i}=$ The distance between the center and east wall of the room i.
$N_{i}=$ The distance between the center and north wall of the room i.

Additionally, width and height of the boundary area are represented by parameters W and H, respectively. In addition, we use $w_{\min _{i}}, w_{\max _{i}}$ which are the minimal and maximal width of the room i in order to control the width of the room i. Similarly, we use $h_{\text {min }_{3}} h_{\text {max }_{i}}$ to control he height of the room i. Thus we have,

Moreover, $T_{i j}$ is the minimal access way between room i and room j, see fig-
ure 3.1.1

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย$(0,0)$

In the real yerld problem, it is rare for any problem to concern for only a single objective. Multi-objective optimization known as multi-criteria or multi-attribute optimization is the process of simultancously optimizing two or more conflicting objectives subject to certain-eonstraints. A standard technique for multi-objective problem is to minimize a positively weighted convex sum of the objectives, that is,

By choosing the different weights u_{i}, for the different objectives, the preference of the decision-maker is taken into account. As the objective functions are generallyl of different magnitudes, they might have to be normalized first. Although Q 0 makermulation is simple, the method requires a special treatment. The decisionhis/her a specific purpose procedure.

- The layout design multi-objective functions formulation.

In this thesis, we concentrate on three objective functions, which are maximizing room area, minimizing the distance between rooms and the adding objective function which aim to eliminate alternative solutions. To cope with these multiobjective preferences, we-eombine three objeetive-functions into a summation of weighted components. These weights can be adjusted according to architect's favor. In our-experiment, we use equal weights to measure performance of our model.

Where x_{i}, y_{i} are X and Y coordinate of the room $i, \quad i=1,2, n$,

$\forall i<j$,

$$
i=1,2, n,
$$

z_{i} is a value thatess than w_{i} and h_{i}

ing approximated room area. If an architect prefers larger room area then the weighted sum of u_{3} is set to bergreater than u_{2}. If an architect prefers a short total distance between rooms then u_{2} is set to be greater than u_{3}. Hence, archiQ. ${ }^{\text {tect can generate alternative solutions by selecting different room } i \text { to be placed }}$ near thefop left corner or reassign the desired objective weights. The erepresents the maximized value between w_{i} and h_{i} that we can use to approximate the maximized area. Next, we describe each objective in detail.

- Placing a room position near the origin

Nevertheless, there always exist alternative solutions with the same objective value due to the layout rotation and symmetric which could affect the total solution time. In order to eliminate sone unusec solutions, we fix the room which is selected randomly from-available roons to be-placed at the nearest origin of the boundary area, from III. 4 here is room i. The formulation can be stated as follow.

$$
y_{i} \quad \text { is } Y \text { coordinate of room } i
$$

The idea of this formulation is to minimize the summation of x_{i} and y_{i}. Being that $\left(x_{i}, y_{i}\right)$ is the referencepoint at the center of the room and it identifies the location of the room, the value of x_{i} and y_{i} matter. If the reference point is nearest

An interesting criteria of an architect's prefence is a short distances between rooms. Calculating the distanceas a limear function is not possible. The absolute distance function is preferred over the Euclidean distance function due to two

Euclidean distance. The second reason is that the walking distance from room to room can not join diagonally across the room to reach a target room. We could only walk along the boundary of any obstacle room. Manhattan Distance
between two points in an Euclidean space is defined as the sum of the (absolute) differences of their coordinates.
For example, the Manhattan distance between the point of P_{1} with the coordinates of $\left(x_{1}, y_{1}\right)$ and the pointiof P_{2} at $\left(x_{2}, y_{2}\right)$ is

Then, the distance between any/point of P_{i} at $\left(x_{i}, y_{i}\right)$ and P_{j} at $\left(x_{j}, y_{j}\right)$ is

where n is the number of points. The figure 3.1.2 illustrates the difference between the Manhattan distance and the Euclidean distance

(9) 0.9 Figure 3.1.3: Manhattan and Euclidean distance
 Then, our room distance objective is

จุหาลงกรณ์มมหาวิทยาลัย

Subject to: $x_{j}-x_{i} \leq d_{i j}^{x}, \quad x_{i}-x_{j} \leq d_{i j}^{x}, \quad d_{i j}^{x} \geq 0$,

$$
y_{j}-y_{i} \leq d_{i j}^{y}, \quad y_{i}-y_{j} \leq d_{i j}^{y}, \quad d_{i j}^{y} \geq 0
$$

- Maximizing area of rooms

Since the formulae of the area of a rectangular room is nonlinear, we have to find the area in another way in order to obtain linear formulae. Our objective is to maximize the room area so that we use the idea of maximizing each side of the room. So as the length and height increases, se does the area we obtain.

3.1.3 Problem constraint formulations

In this thesis, we formulate the problem as a linear function. Then we apply the absolute distance funetion called Manhattan distance to maintain the linear function, instead of using the commonly used Euclidean distance.
 north, south, east and west direction corresponding to the following constraints.

From the location constraint, we use decision variables $p_{i j}$ and $q_{i j}$ to force the room i to be placed next to the north, south, east or west of the room j. Since
the decision variables $p_{i j}$ and $q_{i j}$ are binary variables, four cases of $\left(p_{i j}, q_{i j}\right)$ occur, which are $(0,0),(0,1),(1,0)$ and $(1,1)$.

For the first case, $\left(p_{i j}, q_{i j}\right)$ is $(0,0)$. The solution must satisfy $x_{i}+E_{i} \leq x_{j}-E_{j}$ for the constraint III. 7 implying that the room 5 must be placed at the east of

Figure 3.1.4: Location constraint representation for case $\left(p_{i j}, q_{i j}\right)=(0,0)$

Simultaneously, constraint in 8 becomes $y_{j}+N_{j} \leq y_{i}-N_{i}+H$. In view of the large value of H, the right-hand side of the constraint becomes a large positive value. Hence, any smaller positive $y_{j}+\lambda_{j}$ will satisfy the constraint III.8. Similarly, constraint III. 9 becomes $x_{j}+E_{j} \leq x_{i}-E_{i}+W$ so that any positive value $x_{j}+E_{j}$ will be less than $x_{i}-E_{i}+W$ which means constraint III.9 Pal ways satisfied for this case. Mercover, the constraint III. 10 becomes $y_{i}+N_{i} \leqq y_{j}-N_{j}+2 H$. In view of the large value of H, every smaller value $y_{i}+N_{i}$ will beless than $y_{j}-N_{j}+2 H$, which guarantees that this constraint is alwayslsatisfied for the case of $p_{i j}$ and $q_{i j}$. The second case, $\left(p_{i j}, q_{i j}\right)$ is set to be (0, 1) whichleads the constraint III. 8 to $y_{\hat{3}+\mathrm{H}} N_{j} \leq y_{i}-N_{i}$. It implies that the room j must be forced to place at the north of the room i, shown in the figure 3.1.5.

Figure 3.1.5: Location constraint representation for case $\left(p_{i j}, q_{i j}\right)=(0,1)$

Constraint II. 7 becomes $x_{i}+E_{i} \leq x_{j}-E_{j}+W$. In view of the large value of W, any small value $x_{i}+H_{i}$ will always be less than $x_{j}-E_{j}+W$, which means constraint III. 7 is always satisfied for this case. At the same time, the constraint III. 8 becomes $x_{j}+E_{j} \leq x_{i}-E_{i}+W$. Because of the same reason with constraint III.7, this constraint is satisfied. Similarly, constraint III. 10 becomes $y_{i}+N_{i} \leq y_{j}-N_{j}+H$ which is also satisfied because of the large value of H.

The third case is similat to the other ones, the value of $\left(p_{i j}, q_{i j}\right)=(0,1)$ makes the constraint III. 9 become $x_{j}+E_{j} \leq x_{i}-E_{i}$ which leads the room j to be placed on the left of the room i, visualized as follow. Figure 3.1.6: Location constraint representation for case $\left(p_{i j}, q_{i j}\right)=(1,0)$
ค) Simultaneously, the constraint III. 7 becomes $x_{i}+E_{i} \leq x_{j}-E_{j}+W$. The large
value of W on the right-hand side becomes a large positive value. For any smaller positive $x_{i}+E_{i}$ satisfies the constraint III.7. While constraint III. 8 and III. 10 becomes $x_{j}+E_{j} \leq x_{i}-E_{i}+W$ and $y_{i}+N_{i} \leq y_{j}-N_{j}+H$. The positive values of
$x_{j}+E_{j}$ and $y_{i}+N_{i}$ are smaller than $x_{i}-E_{i}+W$ and $y_{j}-N_{j}+H$ which satisfy the constraint III. 8 and III. 10 respectively.

The last case, $\left(p_{i j}, q_{i j}\right)$ is set to be (1, 1) pwich leads the constraint III. 10 be $y_{i}+N_{i} \leq y_{j}-N_{j}+H$. This implies that the room j is forced to be placed south of the room i, as in figure 3.1.7.

Figure 3.1.7: Location constraint representation for case $\left(p_{i j}, q_{i j}\right)=(1,1)$

Similarly, constraint III. and III 9 becomes $x_{i}+E_{i} \leq x_{j}-E_{j}+W$ and $x_{j}+E_{j} \leq$ $x_{i}-E_{i}+W$ respectively white the constraint III. 8 becomes $y_{j}+N_{j} \leq y_{i}-N_{i}+H$. The large value of W and H in the right-hand side become a large positive value. Hence, any positive value $x_{i}+E_{i}$ will satisfy constraint III. 7 and III.9, respectively. Also, any positive value $y_{j}+N_{j}$ satisfies constraint III.8.

Connectivity constraint explains and identifies the location of the rooms of each pair of rooms that have to be connected together. We use the same two binary variables $p_{i j}$ and $q_{i j}$ withedifferent sets of constraints. By using the same argumient as the Location constraint, four cases of $\left(p_{i j}, q_{i j}\right)$ occur.

The first case, $\left(p_{i j}, q_{i j}\right)$ is set to be $(0,0)$ which leads constraint III. 11 to be $x_{i}+E_{i} \geq x_{j}-E_{j}$. It implies that the room j must be forced to be placed on the right of the room i, shown in the figure 3.1.8.

Figure 3.1.8: Connectivity constyaint representation for ease $\left(p_{i j}, q_{i j}\right)=(0,0)$

Constraint IH.12 becomes $y_{y_{j}}+N_{i} \geq y_{i}-N_{i}-H$. In view of the large value of H, the right-hand side of the constraint becomes a very small negative value. Hence, any positive $y_{j}+N_{j}$ will always be greater than $y_{i}-N_{i}-H$. Similarly, constraint III. 13 becomes $x_{j} \neq E_{j} \geq x_{i}-E_{i}-W$ so that any positive value $x_{j}+E_{j}$ will be greater than $x_{i}-E_{i}=$ Which means constraint III. 13 is always satisfied for this case. Moreover, constraint III. 14 becomes $y_{i}+N_{i} \geq y_{j}-N_{j}-2 H$. In view of the targe value of H, every positive value $y_{i}+N$ will be greater than $y_{j}-N_{j}-2 H$, which quarantees that this constraint is alwats-satisfied for the case of $p_{i j}$ and $q_{i j}$.

For second case, $\left(\boldsymbol{p}_{i j}, q_{i j}\right)$ is set to be $(0,1)$. Constraint III. 12 becomes $y_{j}+N_{j} \geq$ y_{i} PN, which force the rom joto place at the northof the room i. Similar to the previous constraint, other constraints will be satisfied unconditionally due to

$x_{i}-E_{i}$, which forces room j to be placed on the left of the room i. Similar to the previous constraints, other constraints will be satisfied unconditionally due to the large value of H and W, see figure 3.1.10.

Figure 3.1.9: Connectivity constraint representation for case $\left(p_{i j}, q_{i j}\right)=(0,1)$

Figure 3.1.10: Comnectivity constraint representation for case $\left(p_{i j}, q_{i j}\right)=(0,1)$

The last case for conectivity constraint is $\left(p_{i j}, q_{i j}\right)$ which becomes $(1,1)$. Constraint III. 14 becomes $y_{i}+N_{i} \geq y_{j}-N_{j}$, which forces the room j to be placed at the south of the room i. Similar to the previous constraint, other constraints will be satisfied aineonditionally due to the large value of H and

(2) Figure 3.1.11: connectivityconstraint representation for case $\left(p_{i j}, q_{i j}\right)=0(1,1)$

Access-way constraint : If two rooms touch with each other, then the junction
between two rooms must be wide enough to accommodate the accessway. We
defined the minimal contact length of value $T_{i j}$.

Again $q_{i j}$ is a binary variable/ so $q_{i j}$ can be either 1 or 0 . If $q_{i j}$ equals to 0 , then constraint III. 15 and II. 16 beeemes $y_{j}+N_{i} \leq y_{i}-N_{i}+T_{i j}$ and $y_{i}+N_{i} \leq$ $y_{j}-N_{j}+T_{i j}$, respectively. While other constraints are satisfied unconditionally due to the large value of H and W. Constraint III. 15 explains that the room j is adjacent to the room i at the upper corner of the room i, which has vertical contact, see figure 3.1.12

Figure 3.1.12: Access-way constraint representation for the adjacent area of the upper, corner of the room i room i for constraint III.16, which has the vertical contact, shown as figure 3.1113

จุฬาลงกรณมหาวิทยาละย

Figure 3.1.13: Access-way constraint representation for the adjacent area of the lower corner of the roomi

Next, $q_{i j}$ is 1. Constraipt $11 / 17$ and III. 18 becomes $x_{j} \pm E_{j} \leq x_{i}-E_{i}+T_{i j}$ and $x_{i}+E_{i} \leq x_{j}-E j+F_{i j}$, respectively. While other constraints are satisfied unconditionally due to the harge value of H and W. Constraint III. 17 explains that the room j is adjacent to the room i at the left corner of the room i, see figure 3.1.14.

Figure 3.1.14: Access-way constraint representation for the adjacent area of the left corner of the room $i /$

Simutaneously, the room j is adjacent to the room i at the left corner of therom Q 9 for constraint IIT.18, which has horizontah contact, shown as figure 3.1.75 ?

Figure 3.1.15: Access-way constraint representation for the adjacent area of the right corner of the room

3.2 Genetic Algorithm technique

From the previous section, we have formulated the MIP to fit to the layout design problem. From the experiment, the computational time of the MIP model demonstrates that it can deal with a small-sized problem. For a larger sized problem, the computational time is still far from satisfactory. In order to accelerate the computational speed, a genctic algorithm has been adopted. In this thesis, we use the genctic algorithm as a robustness learning methodology to utilized an idea of the Speciail Order Set (SOS) based on the branching in branch and bound algorithm.

Our purpose for using a genetic algorithm is to guide the sequence of branching strategy in MIP solving process. It is adopted to search the branch and bound
tree and used to help finding the good path along the tree structure to the optimal solution. The good path will correspond to the order of branching variables. We learning process, the stronger gene from GA represents the appropriated SOS with
a good path in the search tree. For this reason, the appropriated SOS helps to
prune the search tree that leads the algorithm to reach the optimal solution faster.
Next, we will describe our GA principles in detail.

3.2.1 Chromosomes

A chromosome is represented by a string which is a sequence of branching variables. Each bit of string eontains a random branching variable, here is either $p_{i j}$ or $q_{i j}$, see figure 3.2.1 for ex ample.

Given P_{0} is an original proplem. $P_{2}, P_{3}, P_{4}, \ldots, P_{n}$ are subproblems. $p_{i_{r}, j_{r}}$ and $q_{i_{r}, j_{r}}$ are binary variables, where r gorresponds to the order of branching and $1 \leq r \leq n, n$ is the last order of branching and n is finite.

Suppose P_{0} is divided into two smaller subproblems P_{1} and P_{2} using binary variable $p_{i_{1} j_{1}} . P_{1}$ is divided into shaller subproblem P_{3} and P_{4} using binary variable $q_{i_{2} j_{2}}$ and P_{2} is divided to be P_{5} and P_{6} using binary variable $q_{i_{3} j_{3}}$ and so on until P_{n}.

Figure 3.2.1: Representation of order of branching variables in tree structure

In the figure 3.2.1, we have a path from the top node $\left(\operatorname{Problem} P_{0}\right)$ to the bottom node (Problem P_{n}) pass through subproblems $P_{1}, P_{3}, P_{8}, \ldots, P_{n}$. A sequence of branching variables is $\left\{\left.p_{i^{2}}\right|_{j_{1}} \mid q_{i_{2}} \sum_{2}, q_{i_{3} j_{3}}, \ldots, p_{i_{n} j_{n}}\right\}$. Next, we will record this sequence into a chromosome by placing a first order of branching variable that is $p_{i_{1} j_{1}}$ at the first gene of chromosome. Thesecond and third order and later order ones are placed consecutivety to the right of the first gene, see figure 3.2.2.

Figure 3.2.2: A chromosome representation corresponding to a sequence of branching variables, in tree structure

In this thesis, we use a two dimention(2D) binary string to store information of a sequence binary variables $p_{i j}$ and $q_{i j}$ because one dimention binary string can't be fit with entire information. The space of 2 D pinary string is $m \times n$, where the m presents the numbers of variables and the n represents the sequential order

A chromosome is a chain formed by any characters. In genetics, the whole information of an individual strueture is stored in chromosomeas genetic codes. The
genome string is composed of a finite set of genes and their values. In this thesis, we encode the branching variablessinto a chromosome using 2D binary string. We Q. fixed the numericalorder for 12 variables of $p_{i j}$ and $q_{i j}$, that are used in the SOS.

However, a four bits string can represent 16 different patterns which are larger than the number of the variables $p_{i j}$ and $q_{i j}$. The remaining patterns will not be
ignored during the GA run. Thus, for example, we can represent variable $p_{i j}$ and $q_{i j}$ for four rooms as follow.

Suppose we have the sequence of branching variables for 4 rooms in a chromosome as the following example.
$p_{13} p_{12} q_{34} p_{23} q_{12} q_{23}$

Therefore we have the 2D binary string representing the sequence of branching variables of the above exampleass: $5 / 1$.
 ing variable. Nevertheless, if the current pattern is not represented by any SOS

that only feasible SOS is created and will be used in the chromosome.

3.2.2 Operators

- Selection

As you have already known from the simple, genetic algorithm which is described in Section II, chromosome are selected to be parents to crossover. According to Darwin's evolution theory the best ones should survive and create new offspring. There are many methods how to select the best chromosomes, for example roulette wheel selection, Boltzman selection, tournament selection, rank selection, steady state selection and some others.

In this thesis, we use proportional selection known as roulette wheel selection. Parents are selected according to their fitness. All chromosomes in the population are placed in the roulette wheel. For example, if we have P chromosomes in the population, we will have P segments on the roulette wheel. The size of its segment depends on the fitness of a partieular chromosome.

1. Sum up the fitness yalues of all chromosomes in the population.
2. Generate a random number between 0 and the sum of fithess values.

3. Select the chromosome whose fitness value added the sum of the fitness values of the previous is greater than or equal to therandom number.

next generation.
 จุหาจงกรณมหหาวิทยาลัย

The order crossover using two parents and two crossover sites are selected randomly and the elements between the two selecting points in one of the parent are directly inherited by the offspring.

- Mutation

Mutation is the process applied to each offspring individually after the crossover. This operator creats new individual chromosome by a small change in a single individual chromosome by a random selection. In this thesis, the encoded SOS using the 2D binary string that the mutation is applied to a bit string. It sweeps down the bits and replace by randomly selected bit if the probability of the test passes.

3.2.3 Fitness function

In order to describe the details of the evaluated fitness function. This thesis uses the MIP optimization solver called CPLEX to evaluate the fitness value of GA. The setting of the CPLEX solver will be described below.

- The optimization CPLEX solver

CPLEX is an optimization software package. It is named for the simplex method and the C programming language. It was originally developed by Robert E. Bixby and distributed via CPLEX Optimization Inc. CDIEX can solve MIP problem and च्very large LP problems. Moreover, it has a modeling layer and is also available-with several modeling systems like AIMMS, AMPL, GAMS IDE and OPL Development Studio. In this thesis, we develop a modeling language based on GAMS IDE and solve the model on CPLEX version 11.0.

- Fitness evaluation
more opportunities to be chosen in breeding new chromosomes. In this thesis, the
CPLEX solver has been used to solve the MIP using the SOS variables from GA
which determines the largest score from the number of iterations.

At each transition, the value of computational iterations from GALMIP (fitness_score)
is subtracted from a standard fitness score (standard_fitness_score) which is obtained from the computational iterations of the MIP. The fitness_score higher than the standard_fitness-score presents a better candidate of SOS (a strong gene) which will bestored into a text file. The GA fitness is measured from the subtraction of the computational iteration of MIP and the current computational iteration of GALMIP. We can deseribe the GA fitness with an equation as follow.

Evaluate Eitness = Standard-fitness_score -fitness_score

ศูนย์วิทยทรัพยากร
 จุหาลงกรณ์มหาวิทยาลัย

CHAPTER IV

4.1 Experimental design

In this thesis, we design the layout as the instances with four distinct configurations in order to measure their performance capabilities. The outcomes have been carried out on a PC computer which has an Intel (R) Core (TM)2 Duo as a processer CPU and 2004 MB of memory. This experiment is simulated with 4, 5, 6 and 7 rooms, which are based on the following four distinct configurations;

1. linear configuration
2. rail configuration

3. connected wheel configuration

See the figure 4.1.1 for the graphical representation of these four distinct patterns. between 5 and 10 meters. The boundary area is set on 100×100 square meters.

4.2 Parameters and design setting for a genetic algotithm

This section will covers the settings of parameters which are used in genetic operator in order to achieve a desireable solution and performance, it consists of parameters of population size, crossover probability and mutation probability.

In order to achieve the desirable results and performance, appropriated GA parameters have to be set. Seyeral researchers have been trying to understand the complex interactions anopo the GA parameters and are trying to design them to fit into any world problems. In 1975, De Jons presented the GA parameters that have been adopted widely which it is known as "standard" settings with a population size of 50 to 100, a crossover probability of 0.9 and mutation probability of 0.001 . However, these "standard "settings are not suitable for all problems. It depends on the nature of the function being evaluated and the way of encoding variables being used (Goldberg, 1985; Hart and Below, 1991; Deb, 1999). Later in 2000, Lobo suggested usingan appropriated GA parameter that determines by

 the nature of the problem needed; not too big and not too small. If the population large, the algorithm will waste unnecessary computational resources.

According to De Jong (1975), the appropriated size of population is usually in the range of 50 to 100. The layout design is experimented using the population
size of 100 .

4.2.2 Crossover and mutation probability
 Crossover operator is important becanse it ensures good mixing of candidate

 solutions. The higher the erossover probablity, the more promising solutions are mixed. A crossover prebability of $1 . \overline{\overline{0}}$ indicates that the crossover process happen with all selected chromosomes. Golberg and holland advocated that the better results are achieved by the ase of a high crossover probability in the range [0.8, 1] and a low mutation propabflity in the range $[0,0.01$We use the common crossover of 0.9 and mutation 0.001 suggested by De jong(1975) and Goldberg (1985).2For the reason being that the high levels of mutation are the most disruptive and also achieve the lowest levels of construction. The chance that a new candidate gene is found decreases. The performance of GA is not so influenced by these operators than the population sizes and generations.
 In order to determine the maximum lengthof the chromosome, we need to find the posibility of connectivity between the rom i and the room j which is identified by $p_{i j}$ and $q_{i j}$. For example of 4 rooms we have 6 possible connectivities between each room. Therefore we have 6 variables of $p_{i j}$ and 6 variables of $q_{i j}$ /to identify the connectivities, which consist of $\left\{p_{12}, p_{13}, q_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right\}$ and $\left\{q_{12}, q_{13}, q_{13}, q_{14}, q_{23}, q_{24}, q_{34}\right\}$. The total results of a SOS variable consists of the combination of both variables $p_{i j}$ and $q_{i j}$. Therefore, we can determine an SOS variable length in a candidate SOS using the equation,

$$
\begin{equation*}
C(n, r)=\frac{n!}{r!\times(n-r)!}, \tag{IV.1}
\end{equation*}
$$

where n is the number of rooms and r is the number of SOS variables used in the problem. Since there are-only two binary variables used in each problem, the value of r is equal to 2 in this thesis:

4.2.4 Generations and stopping criterion

The stopping criterion are created by predefining the number of generations. The algorithm will stop when the number of generations is reached.

4.3 The result of MJP and GALMIP

In this section, the objective values and the number of iterations between MIP and GALMIP of $4-7$ rooms among the distinct patterns of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are shown in the table 4.1.

Moreover the experiment has been performed with population size of 10, generation iteration of 100 , crossover probability of 0.9 and mutation probability of 0.001. see table 4.1 .

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย

Table 4.2: Iteration comparision of AL-MIP, MIP, AL-MIP+GA and GALMIP
 จุฬาลงกรณ์มหาวิทยาลัย

Table 4.1 shows the objective value and number of iterations of each configuration between MIP and GALMIP. The four distinct configurations illustrate the various computational iterations. According to the table 4.1, the results demonstrate that they depend on the structyral connectivity. For 4 rooms, all configurations have simitar number of iterations while the number of iterations start to be different when the number of rooms is targer. From 5, 6 and 7 rooms, we can see that the computationd iterations of rail configuration (Pattern B) and the connected wheel configupation (pattern C) have similar number of iterations while a linear configuration (pattern A) and a nested wheel configuration (pattern D) have quite far more iterations than both patterns B and C. Significantly, the linear configuration has higher computational iterations than the nested wheel configuration for 7 rooms. Besides, the tinear configuration has more iterations than the rail configuration about 10 times, more than 3 times for the connected wheel configuration and almost 1 time the nested wheel configuration. This illustrates that the structural connectivity matters. Moreover, the number of iterations of the rail configuraton is the least for every experiment. MIP + GA and GALMIP in term of the number of iterations, where AL-MIP and MIP are mathematical models, AL-MIP+GA and GALMIP are models using the application llof Gềnetic Algorithm!. Ap-MIP and ALEMIPAGA are the models
formulatea by Kamoland Krung[21]/ while MIP and GALMIP are oul model in this thesis.
reduction is around $7-11$ percentage. For pattern D, the reduction is around 14-48 percentage. For pattern B and D, the reduction percentage increases as the number of rooms increase. This trend is different for patterns A and B, the reductions of A and B are not stable ass the problem size grows. Therefore, we can conclude that the reduction of iterations depends on structural connectivity. Since the depth from any wo farthest nodes of pattern D has the least depth, the path to the solution of this patyern is shorter than the other patterns. GA can effectively find appropriate SOS/than other patterns.

- The results of Special Order Set and its application

This part ilustrates the cadidate SOS obtained from our experiments which vary from 4-7 rooms of patterns \bar{A}, B, C and D presented by table 4.3 to 4.6 .

Moreover, we mplemented the SOS candidate into different sizes of rooms, we discovered that it can be applied to rooms with the area sizes of $6 \times 12,7 \times 14$ and 10×15 square meters which are shown in table 4.7, 4.8 and 4.9 .

จุหาลงกรณ์มหาวิทยาลัย

From our $\overline{\text { exp }}$ periments, the results can be concluded asfollows.

1. The MIP nôdel is easy to formulate the layout design problem.

(2) 94 duced. Similarly, we can conchude that GALMIP has better performance

3. The reduction of iterations depends on the structural connectivity.

5.2 Application of the candidate SOS

Since the size of each room can be yaried in real situation of layout designing for building, we attempt to apply our condidate SOS to other room sizes. We have found that the candidate SOS obtained from GA can be applied with some patterns, meaning that the number of iterations of MIP can be reduced by using the same candidate SOS. Neyertheless, the candidate can not be applied to every room size. Therefore, we can conclude that the binary variables $p_{i j}$ and $q_{i j}$ might not be suitable to be learned by GA. We might need to find other relations that is suitable for GA.

5.3 Suggestion

Our approach can be further developed as a possible perspective direction to improve an architectural layout design problem as the following suggests.

1. We can add new objectiyes or constraints to the model to improve optimization behavior or quality of the layouts.
2. Since theshape of the layouts is not restricted, we can generalize them more by using more complex shapes that are non-rectangutar.
 design for the real architect.

จุหาลงกรณมมหาวิทยาลัย

REFERENCES

[1] D. F. Wong and C. L. Liu. A new algorithm for floorplan design. Proceedings of the 23rd ACM/IEEE Design Automation Conference (June 1986) : 101107.
[2] Y. C. Chang, Y. W. Chang, G. M. Wu and S. W. Wu. B*-trees:a new representation for non-slicing Hoorplans. Proccedings of 37 th Design Autiomation Conference (June 2000):458-463.
[3] J. M. Lin, and Y. W. Chang.JGG : a transitive closure graph-based representation for non-slicing floorplans. Proceedings of the 38 th annual Design Automation Conference (June 2001): 764-769
[4] E. F. Y.Young, C. C. N. Chu, and Z. C. Shen. Twin binary sequences : a nonredundant representation for general nonslicing floorplan. IEEE Transactions on Computer-Aided Design of Intergrated Circuits and System 22 (April 2003) : 457-459.
[5] X. Hong, G.Huang, Y. Cai, J. Gu, S. Dong, and C. K. Cheng. Corner block list representation and its application to floorplan optimization. IEEE Transactions on Curcuit and Systems II:Express and Briefs 51 (May 2004) : 228-233.
[6] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, and C. K. Cheng. Corner block list : an effective and efficient topological representation of nonslicing floorplan. Proceedings of the 2000 IEEE/ACM international conference on Computeraided design (2000): 8-12.
[7] H. Onodera, Y. Taniguchi, and K. Tamaru. Branch-and-oound placement for building block layout. Proceedings of the 28th ACM/IEEE Design Automation Conference (1991) : 433-439.
[8] H. Murata. K. Fujiyoshi, S. Nakatake, and Y. Ikjatani. Rectangular packingbased moduleplacement. Proceedings of IEEE/ACM international conference on Computer-aided design (November 1995) : 472-479.
[9]S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module placernent rnational conference on Computer-aided design (1996) : 484-491.
[11] P.N. Guo ,C.-K. Cheng ,T. Yoshimura. An O-tree Representation of Nonslicing floorplan and its applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (1999) : 268-273.
[12] G. C. Armour and E. S. Buffa. A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities. Management Science 9 (January 1963) : 294-309.
[13] P. H. Lavin. Use of graphs to decide the optimum layout of buildings. Arcitects' Journal 14 (October 1964): 809-815.
[14] D. J. Van Camp, M. M. Carter, and A. Vannelli. A Nonlinear Optimization Approach for Solving Facility Layeut Problems. European Journal of Operational Research 57 (1992)=174-189.
[15] D. M. Tate, A.E. Smith. Jnequal-area facility layout by genetic search. IIE Transactions 27 (April 1994): 465-472
[16] T. D. Thelma and P.M. Pardales. Simulated annealing and genetic algorithms for the facility layout problem: a survey Computational Optimization and Applications 7 (January 1997): 111-126.
[17] R. D. Meller, V. Narayanan, (and P. H. Vance. Optimal facility layout design. Operation Research 23 (1998): 117.
[18] I-Cheng Yeh. Construction site tayout using annealed neural network. Journal of Computing in Civil Engineering 9 (July 1995): 205-208.
[19] R. Bausys and I. Pankrasovaite. Optimization of architectural layout by improved genetic algorithm. Journal of civil engineering and management 11 (2005) : 13-21.
[20] C. J. Bloch and R. Krishnamurti. The counting of rectangular dissections. Environment and Planning 2 (1978) : 207-214.
[21] K. Keatyuangkamala and K. Sinapiromsaran. Optimization Architectural Layout Dēsign via Mixed Integer Programming. Proceeding in CAADFutures (2005) : 175-184.
[22] J. Michalek and.P. Y. Papalambros. Interactive layout design optimization.
Engineering Optimization 34 (February, 2002): $461-484$. Keatruangkamala and K. Sinapiromsaran. Mixed Integer Programming out Design Optimization. Songklanakarin Journal of Science and Technology Q 424$]$ J. Michalek and P. Y. Papalambros. Architecturallayont desigh optimization.

Appendix

GAMS IDE model for MIP

This appendix section presents the GANS/DE model for MIP methodology
\$ontex

ALIAS(ROOM, k);
set
LINK (i,j)
CONNECT(i,j)
PARAMETERS

WeightMaxArea;
VARIABLE z;

POSITIVE VARIABLES

abs_plus_x (i, j)

