

การเร่งกระบวนการหาผลเฉลยของการออกแบบการวางผงัท่ีเหมาะท่ีสุด

โดยใชข้ั้นตอนวิธีทางพนัธุกรรม

นางสาวฐิติยา เทพารส

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบณัฑิต

สาขาวิชาวิทยาการคณนา ภาควิชาคณิตศาสตร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั

ปีการศึกษา 2552

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

ACCELERATING THE SOLVING PROCESS OF OPTIMAL LAYOUT

DESIGN USING GENETIC ALGORITHM

Miss Thitiya Theparod

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Computational Science

Department of Mathematics

Faculty of Science

Chulalongkorn University

Academic Year 2009

Copyright of Chulalongkorn University

The i s Title ACCELERATING THE SOLVING PROCESS OF

OPTIMAL LAYOUT DESIGN USING GENETIC ALGORITHM

BY M i Thitiya Theparod

Field of Study Computational Science

Thesis Advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr. rer. nat.)

THESIS COMMITTEE

... Chairman

Satravaha, Ph.D.)

........... Thesis Advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

.......................... Examiner

(Assistant Professor Anusorn Chonwerayuth, Ph.D.)

External Examiner

(Kamol Keatruangkamala, Ph.D.)

i z u i tnmrm : nir~i~ns=u~unisninn~nn~uo~niroont~uunir~i~i~lmulG

i u ~ o u n i u n s u (Accelerating the solving process of optimal layout

Design using genetic algorithm) o . i f inlri ?nuiu'nuintn : j i 2 u

aiaslsioisu'ms. nlq 2uoiisuaksiq. 7 2 ~ G l .

5072264623 : MAJOR COMPUTATIONAL SCIENCE KEYWORDS : AR-

CHITECTURAL LAYOUT DESIGN / OPTIMIZATION PROBLEM/ MIXED

INTEGER PROGRAMMING / GENETIC ALGORITHMS

THITIYA THEPAROD : ACCELERATING THE SOLVING PROCESS OF

LAYOUT DESIGN USING GENETIC ALGORITHM.THESIS ADVISOR :

ASSTSTANT PROFESSOR KRUNG SINAPIROMSARAN, Ph.D., 72 pp.

The layout design optimization is a complicated process of an architectural

design which is concerned with finding feasible locations and size of rooms that

meet design requirement and design preference. This paper formulates the opti-

mal layout design as multi+bjective mixed integer programming model using the

binary variables and branch & bound technique to determine the best location

and size of a group of interrelated rectangular rooms by placing a representative

point at the center of the room. Although solving the layout problems using MIP

model is easy to formulate and adapt for meeting architectural requirements, the

number of iterations to find the optimal solution is still influenced by the number

of rooms. For this reason, we decrease the number of iterations by accelerating

branch and bound process. The genetic algorithm has been adopted to find a

candidate sequence of branching variables which helps reducing the search tree.

Fkom the empirical test, we found that the iterations can be reduced significantly.

.... Department :....Mathematics Student's Signature : +...

....

Academic Year : 2009

76 Field of Study : Computational Science Advisor's Signature :

..........

vi

ACKNOWLEDGEMENTS

I would like to express my full gratitude to all those who made it possible to

complete this thesis. I am deeply grateful to my thesis advisor Assistant Professor

Dr. Krung Sinapiromsaran whose help with his simultating suggestions, superior

encouragement and magnificent guidance helped me during the time of all my

research and in the writing of this thesis. I furthermore would like to thank

Associate Professor Dr. Pornchai Satravaha, Assistant Professor Dr. Anusorn

Chonwerayuth and Dr. Kamol Keatruangkamala and my thesis committee; for

their useful suggestions for improvement. My grateful thanks are also extended

to my teachers and lecturers during my study.

Lastly but by no means least, I would like to give my special thanks to my

family and friends whose encouragement enabled me to complete this thesis.

CONTENTS

Page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH. v

ACKNOWLEDGEMENTS . vi

CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

I INTRODUCTION . 1

1.1 Motivation . 1

1.2 The research objective . 8

1.3 Overview of this thesis . 8

II BACKGROUND KNOWLEDGE. 9

2.1 Mathematical programming model 9

2.1.1 Layout design . 9

2.1.2 Linear Programming . 10

2.1.3 Integer Programming (IP) 14

2.1.4 A Branch and Bound Algorithm for MIP 14

2.2 Introduction to Genetic Algorithm 17

2.2.1 Overview of Genetic Algorithm 17

viii

2.2.2 Representation and Operators 19

2.2.3 Characteristics of the genetic search 23

IIIProblem Methodology . 24

3.1 Mathematical model based on multi-objective function 24

3.1.1 Problem description . 24

3.1.2 Multi-objective linear programming 26

3.1.3 Problem constraint formulations 30

3.2 Genetic Algorithm technique . 38

3.2.1 Chromosomes . 39

3.2.2 Operators . 42

3.2.3 Fitness function . 43

IVExperimental Design and Results . 45

4.1 Experimental design . 45

4.2 Parameters and design setting for a genetic algotithm 47

4.2.1 Population size . 47

4.2.2 Crossover and mutation probability 48

4.2.3 The length of string representation 48

4.2.4 Generations and stopping criterion 49

4.3 The result of MIP and GALMIP 49

V CONCLUSION AND SUGGESTION . 63

5.1 Conclusion . 63

5.2 Application of the candidate SOS 64

5.3 Suggestion . 64

REFERENCES . 65

ix

APPENDIX. 67

VITAE. 72

LIST OF TABLES

4.1 Iteration comparision between MIP and GALMIP 50

4.2 Iteration comparision of AL-MIP, MIP, AL-MIP+GA and GALMIP 51

4.3 Illustrates 4 rooms candidate SOS variable pij and qij 54

4.4 Illustrates 5 rooms candidate SOS variable pij and qij 55

4.5 Illustrates 6 rooms candidate SOS variable pij and qij 56

4.6 Illustrates 7 rooms candidate SOS variable pij and qij 58

4.7 The result of applying the SOS candidate with the area room size

of 6Ö12 sqm . 60

4.8 The result of applying the SOS candidate with the area room size

of 7Ö14 sqm . 61

4.9 The result of applying the SOS candidate with the area room size

of 10× 15 sqm . 62

LIST OF FIGURES

1.1.1 Slicing structure . 2

1.1.2 Grid structure . 3

1.1.3 O-tree and placement . 4

2.1.1 An example of a simple layout 10

2.1.2 The branch and bound tree . 16

2.2.1 Example of chromosome A and B 19

2.2.2 Two parent chromosomes . 21

2.2.3 Two offspring from one-point crossover 21

2.2.4 Two parent chromosomes A and B with two random cut points . 21

2.2.5 Two offspring from two-point crossover 22

3.1.1 A room and a boundary representation 25

3.1.2 Relationship between the room i and j 26

3.1.3 Manhattan and Euclidean distance 29

3.1.4 Location constraint representation for case (pij, qij) = (0, 0) . . . 31

3.1.5 Location constraint representation for case (pij, qij) = (0, 1) . . . 32

3.1.6 Location constraint representation for case (pij, qij) = (1, 0) . . . 32

3.1.7 Location constraint representation for case (pij, qij) = (1, 1) . . . 33

3.1.8 Connectivity constraint representation for case (pij, qij) = (0, 0) . 34

3.1.9 Connectivity constraint representation for case (pij, qij) = (0, 1) . 35

3.1.10Connectivity constraint representation for case (pij, qij) = (0, 1) . 35

3.1.11Connectivity constraint representation for case (pij, qij) = (1, 1) . 35

3.1.12Access-way constraint representation for the adjacent area of the

upper corner of the room i . 36

xii

3.1.13Access-way constraint representation for the adjacent area of the

lower corner of the room i . 37

3.1.14Access-way constraint representation for the adjacent area of the

left corner of the room i . 37

3.1.15Access-way constraint representation for the adjacent area of the

right corner of the room i . 38

3.2.1 Representation of order of branching variables in tree structure . 39

3.2.2 A chromosome representation corresponding to a sequence of branch-

ing variables in tree structure . 40

4.1.1 The distinct patterns A, B, C and D of 10 rooms 46

CHAPTER I

INTRODUCTION

1.1 Motivation

Architecture is an art and science of designing and constructing buildings and

other physical structures for human shelter (Arch.Thamer Al Jbarat). Designing

building involves both interior and exterior design, which must address both the

feasibility and the building cost, as well as the function and aesthetics for the

dweller.

Interior design is a multi-faceted profession in which creative and technical

solutions are applied within a structure to achieve a built interior environment.

Interior design involves the floor planning, interior decoration,etc.

The layout design is a complex process of an interior architectural design.

An architect starts by relationship diagram between rooms, spaces and other

physical objects within the structure. Then he/she will focus on the size of rooms,

and the distance among rooms according to given relationship. He/she normally

studies and drafts many possible alternatives to select the best layout design

before submitting the plan to be implemented. However, due to the combinatorial

effects of layouts, the researchers must cope with thse problems as a combinatorial

optimization.

A number of representations have been proposed for the interior achitectural

design which are often grouped as the direct representation, the slicing structure,

and non-slicing structure (Berntsson and Tang,2004). In 1986, Wong and Liu [1]

2

presented an algorithm based on the slicing structure of an architecture layout. A

slicing structure divides the floorplan by recursively cutting rectangles into finer

rectangular objects using vertical and horizontal lines and then fit blocks into each

segment (see figure 1.1.1).

Figure 1.1.1: Slicing structure

A slicing floorplan can be represented by an oriented rooted binary tree, call

slicing tree. Each parent node of the tree corresponds to a vertical and horizontal

cut. Each leaf node represents a single segment. The system then computes the

corresponding segment dimentions and their positions coordinates. The proce-

dure starts with a random bipartitions and improve the partition iteratively by

performing a sequence of vertex movements. If the resulting floorplan design is

acceptable, then the design process is terminated. This technique helps reducing

the complexity of the problem and search space, leading to shorter runtime.

Even though slicing floorplans are easy to used for optimization, this repre-

sentation cannot handle non-slicing floorplan. In recent years, many researchers

have been divising more layout representations to the topology using a directed

acylic graph, such as B*-tree [2], Transitive Clusure Graph (TCG)[3], Twin Binary

Sequence [4], and Corner Block List (CBL)[5][6].

For a non-slicing floorplan, researchers have proposed several representations.

3

In 1991, Onodera et al.[7] classify a topological relationship between two blocks

into four classes and use the branch and bound method to solve it. The algorithm

runtime is O(2n(n+2)) which makes it impossible to handle a large problem at that

time.

In 1995, sequence pair representation was proposed by Murata et al.[8]. They

use two sets of permutations to present a geometric relationship of blocks. In the

following year, 1996, Nakatake et al.[9] devised a bounded slicing grid approach.

An nÖn grid plane is used for the placement of n blocks (see figure 1.1.2). A block

can have several choices to place, however the disadvantage of this representation

is due to its redundancy.

Figure 1.1.2: Grid structure

Another representation called the ordered tree (O-tree) representation was

proposed in 1999 by Guo et al.[10]. There are two type of an O-tree consists of

horizontal and veritical O-tree. In the O-tree, a node denotes a block, an edge

denotes the horizontal or vertical related positions between blocks and the per-

mutation determines their vertical relationship. The geometric constraint exists

when we can draw a horizontal or vertical line between two blocks without passing

through other blocks. See the example of horizontal O-tree in figure 1.1.3

4

A

B

C

D

F

G

H

Figure 1.1.3: O-tree and placement

The O-tree is a simplified struture to present the geometric relation. The

tree structure is well known in applied mathematics and computer science and

the properties of tree are very straightforward and simple. The run time for

transforming an O-tree to its representing placement is linear with respect to the

number of blocks, i.e. O(n) [11].

In the designing process, qualitative and quantitative analyses are needed to

be treated. Some qualitative measures such as noise and vibration disturbances

must be handled appropriately whereas quantitative measures such as the cost

of transporting products between department or the cost of commuting between

rooms or the cost of laying the communication wiring must be handled mathmat-

ically. The layout design optimization with both qualitative and quantitative is

generally difficult to formulate using a mathematical programming model.

Attempts to automate the process of layout design problems started many

decades ago. Pioneer work by Armour and Buffa in 1963 [12] presented a heuristic

algorithm and simulation approach using a computer program to determine the

suboptimum relative location patterns for facilities. The computer output obtains

a block diagrammatic layout of facility area, where area does not need to be equal.

Another technique that was proposed in layout planning is a use of linear

graphs for representing a floor plan [13]. Researchers have used several approaches

5

to deal with this problem.

Drew J. van Camp, Michael W. Carter and Anthoni Vannelli [14] proposed

a nonlinear programming technique (NLT) used to formulate the layout problem

based on three constraints. Two constraints are based on a layout structure,

that is, two departments may not overlap, and may not be located outside the

boundary area. The last constraint is based on the dimension boundary of each

department. The shape of every department must be rectangular and the area

must be fixed, while the height and width are optimized using mathematical

programming solver. To this end, three models used in NLT to approximate a

layout problem were developed. The performance of NLT on several test problems

were presented. Running time to solve these problems is acceptable for real-world

problems comparing to some other algorithms.

Since a layout problem is known as NP-hard (Sahni and Gonzalez, 1976) and

cannot be solved exhaustively for reasonably sized layout problems, many heuristic

approaches have been proposed to avoid searching the design space exhaustively.

David M. Tate and Alice E. Smith [15] presented a heuristic search method-

ology called Genetic Algorithms (GA) for unequal area layout and showed how

optimal solutions are affected by constraints on permitted department shapes, as

specified by a maximum allowable aspect ratio for each department.

Thelma D. Maridou and Panos M. Pardalos revised (1997) a simulated an-

nealing and genetic algorithms for solving facility layout problem approximately

[16].

Russel D. Meller [17] reformulated Montreul’s model by improving perimeter

constraint, refining his binary variables and tightening the department area con-

straints. Optimum solution for facility layout problem (FLP) has been reported

with a minimum of eight departments.

6

I- Cheng Yeh (2005) presented a new framework for a facility layout problem,

named annealed neural network which arises from a combination of the Hopfield

neural network and the simulated annealing [18]. The first is a representation

model of a layout problem and the second is a search algorithm for finding the

optimum or near optimum solutions. Annealed neural network exhibits the rapid

convergence of the neural network, while preserving the solution quality afforded

by simulated annealing.

Exact algorithm for solving this layout problem such as the branch and bound

algorithm faces with large computational time. To alleviate this, the use of the ge-

netic algorithm (GA) has become an increasingly popular tool in a computational

optimization problem in recent years in order to deal with large-size instances.

This is because GA offers several attractive features. GA is easy to understand

and can be applied to many types of optimization problems with little or no mod-

ification, while other approaches have required substantial modification for using

in building applications successfully. It is effective to solve complex problems that

can not be solved by other optimization methods. GA is easy to be implemented.

Other methods may offer the better performance but must be identified and con-

figured properly. The main advantage of using a GA is that while other methods

always process single solution, GA maintains a population of potential solutions.

Romualdas Bausys and Ina Pankrasovaite (2005) proposed improved GA for

the architectural layout problem since the rate of convergence of standard genetic

algorithm for solving a problem is not very effective for some realistic problems[19].

The performance of standard and improved genetic algorithm for architectural

layout design has been analyzed and compared. The results demonstrate the

improvement of their new algorithm.

In this thesis, we use the representation similar to the work from Bloch et.

7

al.[20] using a coordinated system. According to a nature of an architectural

problem, there are several aspects to consider. Thus, this problem is not ap-

propriated to be formulated as a single objective function. In this thesis, the

multi-objective fuction has been used in order to meet several objective require-

ments. Our mathematical model has been constructed based on the work of Kamol

Keatruangkamala and Krung Sinapiromsaran [21] using rectangular components.

In [21], they use a point at the top left corner of the room to be set as a reference

point. For our research, we use the reference point at the center of the room. Our

thought is encouraged by observation that middle point is common for a symetri-

cal room. Besides, research in this field often concentrates on the reference point

at the center of the room such as the work of Michalek [22].

Because a computational time of a mathematical model has grown exponen-

tially large, Kamol and Krung presented valid inequality to reduce their com-

putational time and iteration [23]. From their experiments, the computational

time and the number of iterations have been reduced leading to solve the larger

problem size. However, the reduction is not consistant. As a problem grows, the

capability of reduction is decreased because of the redundancy.

In this thesis, we formulate a layout problem as a Mixed Integer Programming

model (Grorge, 1988, Linderoth et al., 1999, Russell et al., 1999) to determine

the optimal solution using binary variables. We named this mathematical model

as MIP. From our experiments, we found that a computational time for solving

problems with more than seven rooms exceeds seven hours, which is far from

satisfactory. To reduce the computational time significantly, Genetic Algorithm

are proposed, called GALMIP. We use GA as a robustness learning methodology

to find the order of branching variables in the branch and bound algorithm which

is the process of solving MIP. By knowing a sequence of branching variables it

8

helps reduce a search space by identifying the better path in the search tree.

1.2 The research objective

We expect to accelerate the branch and bound process of a layout design

optimization via a special order set using a genetic algorithm for MIP model.

1.3 Overview of this thesis

The rest of this thesis is organized as follows.

In chapter II, we introduce backgrounds used in this thesis including linear

programming, integer programming and genetic algorithm.

Chapter III presents an overview of the proposed model based on the MIP

methodology. We also explain how to apply genetic algorithm to our problem in

this chapter.

Finally, the results of our experiments are presented in chapter IV. We also

discuss with some concluding remarks and suggestions in the last chapter.

CHAPTER II

BACKGROUND KNOWLEDGE

This chapter provides some important background knowledges that are used

in this thesis. It consists of two main sections.

First, we introduce the mathematical programming background which is used

to model a layout design problem. Then the branch and bound algorithm is

applied to solve the Mixed Integer Programming model (MIP).

Secondly, we describe a genetic algorithm which is applied to the variable

selection for the branch and bound algorithm.

2.1 Mathematical programming model

2.1.1 Layout design

A layout design problem is considered as a process of finding the best location

and size of components. Each component is usually refered as an orthogonal

regtangular unit for a specific architectural function, such as living space, storage

space, facility and accesiblity space [24].

Components are grouped into several categories based on their functions, which

are room, boundary, hallway, and access way [24]. A room is refered to a space

which is considered by a designer for a living area. A boundary is a space that en-

closes other components inside. A hallway is a space that functions as a connector

between components. Access way is a small area that connects two components

together, usually one is a hallway and another is a room. Figure 2.1.1 shows an

10

example of a simple layout whose composes of a bedroom, a bathroom, a living

room, a kitchen and a hall. The letter “a”represents access-ways between two

components.

H a l l

L i v i n g R o o mK i t c h e n

B e d r o o mB a t h

a a

a a

a

a

Figure 2.1.1: An example of a simple layout

From figure 2.1.1 we can see that a valid layout design does not overlap internal

components and the total area is the sum of areas from all components excluding

access ways. This representation is easy to formulate using a mathematical model.

A popular technique for an optimization problems is to use a linear programming

which is described in the next section.

2.1.2 Linear Programming

In this section We will describe an algebraic representation and its assumption,

which are neccessary for formulating a linear programming model.

11

� Definition

Linear programming model is a mathematical programming model widely used

for solving optimization problems in several aspects of business including produc-

tion and management, which are needed to optimize the objective function subject

to certain constraints. The mathematical expressions for the objective function

and constraints are linear.

� Assumptions of the linear programming model

To model using a linear relation, the problem must satisfisfy.

1. Proportionality - It requires that the value of each term in the linear pro-

gramming problem is strictly proportional to the value of the variable in the

term. We can also say that the slope of objective and constraints function

is constant.

2. Additivity - It concerns with the relationship among decision variables.

Terms in the objective function and constraint equations must be additive.

3. Divisability - The decision variables are real-valued which means they can

take on fractional values and therefore they are continuous. However, frac-

tional values are not suitable to represent some quantities, such as the num-

ber of workers. So in this case, it is appropriate to use an integer variable.

4. Certainty - Parameters in the model are required to be known before they

are solved.

Next we give the general mathematical programming formula of the linear

programming problem.

12

� Standard form

A standard form of a linear programming problem is to find a vector (x1, x2, ..., xj, ..., xn)

which minimizes the linear objective function

c1x1 + c2x2 + ...+ cjxj + ...+ cnxn (II.1)

subject to the nonnegativity constraints

xj ≥ 0 j = 1, 2, . . . , n

and linear constraints

a11x1 + a12x2 + ...+ a1jxj + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2jxj + ...+ a2nxn = b2

.

ai1x1 + ai2x2 + ...+ aijxj + ...+ ainxn = bi (II.2)

.

am1x1 + am2x2 + ...+ amjxj + ...+ amnxn = bm

where aij, bi, and cj are given constants. We shall always assume that the equation

in II.2 has been multiplied by -1 where necessary to make bi ≥ 0.

There are several notations in common use.

1. Minimize
n∑
1

cjxj

subject to
n∑

j=1

aijxj = bi i = 1, 2, . . . ,m

and xj ≥ 0 j = 1, 2, . . . , n

13

2. Minimize cx

subject to Ax = b

and x ≥ 0

ct where c = (c1, c2, ..., cn) is a row vector, x = (x1, x2, ..., xn)
T is a column

vector, A = [aij]mxn,b = (b1, b2, ..., bm) is a column vector, and 0 is a n-

dimensional null column vector.

3. Minimize cx

subject to x1P1 + x2P2 + ...+ xnPn = P0

where Pj for j = 1, 2, ..., n is the jth column of the matrix A and P0 = b

(Saul I. GASS, 1964)

� Solving linear programming problems using the Simplex method

Simplex method is a general procedure for solving linear programming prob-

lems, published by George Dantzig in 1947. The Simplex method guarantees to

find the optimal solution in a finite number of steps. It starts at the basic feasible

solution and moves along the border of the feasible region step by step from the

corner point (extreme point) to an adjacent corner point where larger(for maxi-

mization) or smaller (for minimization) value of objective function is obtained at

each step. This procedure is summarized as follows.

Step 1 : Start with the initial basic point feasible solution.

Step 2 : Check the optimality of the current basic feasible solution. If none of

its adjacent basic feasible solutions have better objective values, the current basic

feasible solution is optimal. Otherwise, go to step 3.

Step 3 : Move from the current basic feasible solution to a better adjacent

basic feasible solution. Repeat this step until the stopping conditions are met.

14

2.1.3 Integer Programming (IP)

In many practical problems, only integer values of decision variables are needed.

Problems in which this is the case are called integer programming (IP) problems.

The mathematical model for integer programming is simply the linear program-

ming model with one additional restriction, all variables must be integral. If only

variables are required to have integer values, then this model is referred to Mixed

Integer Programming (MIP). Therefore, the minimization of the MIP is.

Minimize Z =
n∑
1

cjxj

subject to
n∑

j=1

aijxj = bi for i = 1, 2, . . . ,m

and xj ≥ 0 for j = 1, 2, . . . , n

xj is integer, for j = 1, 2, . . . ,m (m ≤ n).

If m = n, this problem becomes the pure IP problem.

In this thesis, an architectural layout design problem is modeled as the MIP.

There are several different algorithms to solve it. Popular methods are based on

solving the LP relaxation because solving integer programming directly is more

difficult than solving linear programming. A branch and Bound algrirthm is one

of the algorithms relating to LP relaxation. We will describe in more details in

the following section.

2.1.4 A Branch and Bound Algorithm for MIP

A branch and bound algorithm is a widely used approach for solving MIP

presenting in this section. The structure of this algorithm was first developed

by R.J. Dakin, based on a pioneering work from A. H. Land and A. G. Doig.

Branch and bound algorithm uses the divide and conquer method with the best

first search strategy. The basic concept is to divide a large problem into smaller

15

ones. The dividing or branch part is a process that partitions the entire set of

feasible solutions into smaller subsets. The conquering part is done by estimating

how good a solution can be for each smaller problem. We may have to divide the

problem further, until we get an optimal solution. The feasible region of the a

subproblem is a subset of the feasible region of the original problem.

Next, we describe three basic steps of the branch and bound algorithm con-

sisting of branching, bounding and fathoming.

� Branching

This process is to partition a feasible region into several smaller subproblems.

The partitioning will be repeated recursively in each subproblem until a subprob-

lem is fathomed. The rule of fathoming will be described in the next section.

Branching is generally represented in terms of a tree structure.

Let S be the feasible region and the set of all solutions.

Si : A subset of S where i = 1, 2, ..., n

The branching process will lead to a partition of S in which,

S1

∪
S2

∪
· · ·

∪
Sn = S,

Si

∩
Sj = Ø , i ̸= j

The partitioning involves choosing variables to create new subproblems. The

variables will be chosen specifying in a range of values. Since some variables in the

MIP problem are restricted to be integer. Therefore, only the restricted variables

that has a non-integer value will be chosen, see figure 2.1.2 .

16

Figure 2.1.2: The branch and bound tree

Figure 2.1.2 illustrates the concept of branching for the case where there are

only four supbproblems. S represents the original feasible solution set while

S1, S3, S4 represent feasible solutions of subproblems divided from the original

one. The variables a and b are variables that have a non-integer value. The

variables used in the branching process are called branching variables.

� Bounding

In order to determine the best feasible solution, we need to find bounds from

solving relaxations to develop bounds for a solution. To maximize the problem,

the lower bound is given as the best current solution.

Given Z = optimal value of associated LP relaxation.

Z∗ is the best upper bound.

Z∗ is the best known feasible solution.

Then, the bound of the solution of the maximization problem is

Z∗ ≤ Z ≤ Z∗

17

Note that a subproblem that has the optimal solution worse than Z∗ can be

fathomed, and dismissed from a further consideration. The fathoming rule will

be discribed more in the next section.

� Fathoming

A subproblem can be fathomed based on the following three rules described as

follows.

Rule 1. The relaxation of the subproblem has an optimal solution with Z ≤ Z∗

for maximization problem and Z∗ ≤ Z for minimization problem, where Z∗ is the

value of the best current solution.

Rule 2. The LP relaxation of the subproblem has no feasible solution.

Rule 3. The LP relaxation of a subproblem has an optimal solution that have

all integer values (or binary if it is BIP).

2.2 Introduction to Genetic Algorithm

This section describes some fundamental basics of a genetic algorithm.

A genetic algorithm is a part of evolutionary computing inspired by Darwin’s

theory about evolution.

2.2.1 Overview of Genetic Algorithm

A genetic algorithm (GA) was invented and developed by John Holland and

his students and colleagues at the University of Michigan in the 1960’s and 1970’s.

Genetic algorithm has been widely studied and applied in science and engineering

world. The algorithm is used as an optimization method that has been applied to

many areas. Although the range of problems that a genetic algorithm has been

applied is quite broad, this algorithm is often viewed as a function optimizer.

18

Genetic algorithm is usually applied to optimization problems that are difficult

to solve by a mathematical formulation. It is also used to resolved NP-hard and

NP-complete such as traveling saleman problem (TSP), scheduling and design

problems. It performs searching throughout the solution space to find the near

optimal solution.

An implementation of a genetic algorithm starts with a set of solutions called

population. These solutions may be represented by character strings which are

referred to chromosomes. A chromosome is made up from discrete units called

genes. The population normally randomly initialized. The structure of GA is

illustrated as follows.

BEGIN GA

Creat an initial population of P and Evaluate the fitness of each

chromosome.

WHILE n ≤ N DO

BEGIN

1.Select parents from population via roulette wheel selection.

WHILE stopping condition not fulfilled DO

BEGIN

2.Choose at random a pair of parents for mating.

3.Produce offsprings from the chosed parents by crossover

operator.

4.Process each offspring by the mutation operator.

END

5.Replace the old population of chromosomes by the stronger ones.

6.Evaluate the fitness of each chromosome in the new population

END

19

END GA

The above algorithm refers to the evaluation, crossover operator to exchange

bit string and mutation operator to introduce random perturbations in the search

process. These concepts are now described precisely in the next section.

2.2.2 Representation and Operators

The performance of the GA is controlled by the following factors.

� Encoding

The encoding process is often the most difficult aspect of solving a problem using

genetic algorithm. It depends on many fators. It is often hard to find an ap-

propriate representation to efficiently perform the crossover process. The popular

representation is using a string of zeros and ones, called binary string representa-

tion which is not restricted to number. There are several ways to represent it such

as permutation encoding, value encoding, tree encoding and matrix encoding etc.

For this thesis, we will explain binary string representation.

For instance, suppose we have a problem which has solutions in the set of

{0, . . . , 5}. The binary representations of 4 and 5 are 110 and 011 respectively.

The example of chromosomes with binary representation is shown as follow.

Parent A : 001 001 101 100 010

Parent B : 001 110 100 010 000

Figure 2.2.1: Example of chromosome A and B

This representation is often not natural for many problems and sometimes

correction must be made after crossover and/or mutation.

20

� Evaluation

We use the evalution function to decide how good a chromosome is, which

plays important role in genetic algorthms. For optimization problems, it usually

is an objective function. The value of the evaluation function is calculated for an

individual of population, called fitness value. This fitness may use to decide the

probability that a particular chromosome would be chosen to contribute to the

next generation.

� Crossover

Crossover is a straightforward procedure where the two chromosomes are re-

combined to new chromosomes which are copied into the new generation. Not

every chromosome is used in crossover. The chromosomes are chosen randomly

based on a fitness value of each chromosome given by the evaluation function.

Chromosomes with the highest fitness are more likely to be chosen. After the

crossover is performed, new chromosomes created by crossover called offspring are

moved into the new generation. For this reason, the next generation are expected

to be better than the previous generation because the best chromosomes from

previous generation were used to create the new generation. Crossover continues

until the new generation is full.

The simplest case of crossover is one-point crossover operator. Pick two ran-

dom chromosomes to be parents for crossover. A random position between 1 and

L−1 along the two parent chromosomes are chosen, where L is the chromosome’s

length. Then, switch all genes after that point to create two offsprings. For

example using our parent chromosomes in figure 2.2.2.

21

Parent A : 001 001 101 100 010

Parent B : 001 110 100 010 000

Figure 2.2.2: Two parent chromosomes

We randomly choose the crossover point, here is at position three. Then,

switch all genes after the random position.

Offspring A : 001 001 101| 010 000

Offspring B : 001 110 100| 100 010

Figure 2.2.3: Two offspring from one-point crossover

Some new generated offspring might not satisfy the representation criteria.

To change the generated offspring into the legal representation we need a repair

algorithm. Moreover, it is possible that selected chromosomes are copied to the

new population directly without any modification. This will ensure that good

chromosomes can be preserved from one generation to the next. We can also have

two - point crossover. Two cut points are chosen randomly and the substring

located between two cut points are exchanged, see figure 2.2.4.

Parent A : 001 | 001 101| 100 010

Parent B : 001 | 110 100| 010 000

Figure 2.2.4: Two parent chromosomes A and B with two random cut points

To get two offspring, swich the genes between the two points.

There are various derivation of the crossover routines. Other generalizations,

like the M-point crossover and the uniform crossover (Syswerda,1989) may be

22

Offspring A : 001 | 110 100| 100 010

Offspring B : 001 | 001 101| 010 000

Figure 2.2.5: Two offspring from two-point crossover

found in literature.

� Mutation

Due to the randomness of the crossover process may occasionally find a local

optimum but not the global optimum. Because the chromosomes close to the

local optimum will have a better fitness, they will be selected to crossover. This

may cause GA to find the local optimum instead of the global optimum. So the

mutation is used to introduce random perturbations into the search space. It

is created to avoid a local optimum trap. It is essential to introduce diversity

in homogeneous populations, and to restore bit values that cannot be recovered

via crossover. Therefore, mutation is a completely random way for obtaining to

possible solutions that would otherwise may be missed.

The bits of the two offsprings generated by the crossover operator are then

processed by the mutation operator. The operator is applied to each bit with a

probability equal to the mutation rate, which is close to zero. A chromosome is

selected from the new generation. Then, we randomly choose a point to mutate

and switch that point from 0 to 1 or from 1 to 0. For instance, we have an example

with the random mutation point at third position.

Offspring A : 001 001 101 010 000

We have,

Offspring A* : 001 001 010 010 000

23

2.2.3 Characteristics of the genetic search

The search performed Genetic algorithm can be characterized in the following

manner (Goldberg 1989):

1. Genetic algorithms manipulate bit strings or chromosomes encoding useful

information about the problem, but they do not manipulate the information

(no decoding or interpretation).

2. Genetic algorithms use the evaluation of a chromosome, as returned by the

fitness function, to guide the search. They do not use any other information

about the fitness function or the application domain.

3. The search is run in parallel from a population to population.

4. The transition from one chromosome to another in the search space is done

stochastically.

In this section, we describe a simple genetic algorithm that solves a combinato-

rial problem. For more details about a genetic algorithm, the reader is suggested to

read the standard book such as GA in Search Optimization, and Machine Learn-

ing (Goldberg,1989). The next section we will explain how a genetic algorithm is

applied to our problem.

CHAPTER III

Problem Methodology

In this thesis, we propose two methodologies which will be described in two

sections. In the first section, we describe how to formulate the mathematical

model of the problem as a mixed integer programming model base on multi-

objective function. For the second one we use a genetic algorithm as a machine

learning algorithm to learn a special order set (SOS).

3.1 Mathematical model based on multi-objective func-

tion

3.1.1 Problem description

In this thesis, we define a room as a rectangular room based on the coordinated

system. The relationship between distinct rooms ensures two rooms cannot occupy

the same space. Every room must be inside the main building boundary. We use

a point at the center of the room as the reference point and a point at the top left

corner of the boundary area as the reference origin (0,0).

Design variables are defined as follow.

xi = X coordinate of the center of the room i.

yi = Y coordinate of the center of the room i.

Ei = The distance between the center and east wall of the room i.

Ni = The distance between the center and north wall of the room i.

25

Additionally, width and height of the boundary area are represented by parameters

W and H, respectively. In addition, we use wmini
, wmaxi

which are the minimal

and maximal width of the room i in order to control the width of the room i.

Similarly, we use hmini
, hmaxi

to control the height of the room i. Thus we have,

wmini
≤ wi ≤ wmaxi

(III.1)

hmini
≤ hi ≤ hmaxi

(III.2)

Moreover, Tij is the minimal access way between room i and room j, see fig-

ure 3.1.1

Figure 3.1.1: A room and a boundary representation

26

Figure 3.1.2: Relationship between the room i and j

3.1.2 Multi-objective linear programming

In the real world problem, it is rare for any problem to concern for only a single

objective. Multi-objective optimization known as multi-criteria or multi-attribute

optimization is the process of simultaneously optimizing two or more conflicting

objectives subject to certain constraints. A standard technique for multi-objective

problem is to minimize a positively weighted convex sum of the objectives, that

is,

∑n
n=1 µifi(x), µi ≥ 0, i = 1, 2, 3, . . . , n.

By choosing the different weights ui, for the different objectives, the preference

of the decision-maker is taken into account. As the objective functions are gen-

erally of different magnitudes, they might have to be normalized first. Although

the formulation is simple, the method requires a special treatment. The decision-

maker must determine the weights used in the objective function according to

his/her a specific purpose procedure.

27

� The layout design multi-objective functions formulation.

In this thesis, we concentrate on three objective functions, which are maximiz-

ing room area, minimizing the distance between rooms and the adding objective

function which aim to eliminate alternative solutions. To cope with these multi-

objective preferences, we combine three objective functions into a summation of

weighted components. These weights can be adjusted according to architect’s

favor. In our experiment, we use equal weights to measure performance of our

model.

Minimize u1(xi + yi) + u2

∑
(dxij + dyij)− u3

∑
zi (III.3)

Where xi, yi are X and Y coordinate of the room i, i = 1, 2, , n,

dxij, d
y
ij are absolute distance on X and Y coordinate of room i and j

∀i < j,

zi is a value that less than wi and hi i = 1, 2, , n,

u1, u2, u3 are the weight values.

Objective III.3 denotes the minimization of the multiobjective optimization where

the u1 is the weight of the room i positioning to the nearest top left corner, u2

is the weight of the total absolute distance and u3 is the weight of the maximiz-

ing approximated room area. If an architect prefers larger room area then the

weighted sum of u3 is set to be greater than u2. If an architect prefers a short

total distance between rooms then u2 is set to be greater than u3. Hence, archi-

tect can generate alternative solutions by selecting different room i to be placed

near the top left corner or reassign the desired objective weights. The zi repre-

sents the maximized value between wi and hi that we can use to approximate the

maximized area. Next, we describe each objective in detail.

28

� Placing a room position near the origin

Nevertheless, there always exist alternative solutions with the same objective value

due to the layout rotation and symmetric which could affect the total solution

time. In order to eliminate some unused solutions, we fix the room which is

selected randomly from available rooms to be placed at the nearest origin of the

boundary area, from III.4 here is room i. The formulation can be stated as follow.

Choose i ∈ {1, 2, . . . , n}.

Minimize (xi + yi) (III.4)

where xi is X coordinate of room i,

yi is Y coordinate of room i.

The idea of this formulation is to minimize the summation of xi and yi. Being

that (xi, yi) is the reference point at the center of the room and it identifies the

location of the room, the value of xi and yi matter. If the reference point is nearest

to the origin, the summation of xi and yi will be the smallest.

� Minimizing the absolute room distance

An interesting criteria of an architect’s preference is a short distances between

rooms. Calculating the distance as a linear function is not possible. The absolute

distance function is preferred over the Euclidean distance function due to two

reasons. The first reason is that it maintains the unit during the comparison.

Therefore, there is no need to take the root of the sum square distance as the

Euclidean distance. The second reason is that the walking distance from room

to room can not join diagonally across the room to reach a target room. We

could only walk along the boundary of any obstacle room. Manhattan Distance

29

between two points in an Euclidean space is defined as the sum of the (absolute)

differences of their coordinates.

For example, the Manhattan distance between the point of P1 with the coordinates

of (x1, y1) and the point of P2 at (x2, y2) is

|x1 − x2|+ |y1 − y2|

Then, the distance between any point of Pi at (xi, yi) and Pj at (xj, yj) is

d =
n∑

i,j=1

|xi − xj|+ |yi − yj|,

where n is the number of points. The figure 3.1.2 illustrates the difference between

the Manhattan distance and the Euclidean distance:

Figure 3.1.3: Manhattan and Euclidean distance

Then, our room distance objective is

Minimize
∑

(dxij + dyij) (III.5)

Subject to: xj − xi ≤ dxij, xi − xj ≤ dxij, dxij ≥ 0,

yj − yi ≤ dyij, yi − yj ≤ dyij, dyij ≥ 0

30

� Maximizing area of rooms

Since the formulae of the area of a rectangular room is nonlinear, we have to

find the area in another way in order to obtain linear formulae. Our objective is

to maximize the room area so that we use the idea of maximizing each side of the

room. So as the length and height increases, so does the area we obtain.

Maximize
∑

zi (III.6)

subject to: zi ≤ wi

zi ≤ hi

3.1.3 Problem constraint formulations

In this thesis, we formulate the problem as a linear function. Then we apply

the absolute distance function called Manhattan distance to maintain the linear

function, instead of using the commonly used Euclidean distance.

Location constraint identifies the location of rooms and explains the relation-

ship between distinct rooms. Each pair of rooms does not need to be connected

together. We use binary variables pij and qij to represent the four directions of

north, south, east and west direction corresponding to the following constraints.

xi + Ei ≤ xj − Ej +W ∗ (pij + qij) pij = 0, qij = 0 (III.7)

yj +Nj ≤ yi −Ni +H ∗ (1 + pij − qij) pij = 0, qij = 1 (III.8)

xj + Ej ≤ xi − Ei +W ∗ (1− pij + qij) pij = 1, qij = 0 (III.9)

yi +Ni ≤ yj −Nj +H ∗ (2− pij − qij) pij = 1, qij = 1 (III.10)

From the location constraint, we use decision variables pij and qij to force the

room i to be placed next to the north, south, east or west of the room j. Since

31

the decision variables pij and qij are binary variables, four cases of (pij, qij) occur,

which are (0, 0), (0, 1), (1, 0) and (1, 1).

For the first case, (pij, qij) is (0, 0). The solution must satisfy xi+Ei ≤ xj−Ej

for the constraint III.7 implying that the room j must be placed at the east of

the room i, as in the figure 3.1.4.

Figure 3.1.4: Location constraint representation for case (pij, qij) = (0, 0)

Simultaneously, constraint III.8 becomes yj+Nj ≤ yi−Ni+H . In view of the large

value of H, the right-hand side of the constraint becomes a large positive value.

Hence, any smaller positive yj + Nj will satisfy the constraint III.8. Similarly,

constraint III.9 becomes xj+Ej ≤ xi−Ei+W so that any positive value xj+Ej

will be less than xi − Ei +W which means constraint III.9 is always satisfied for

this case. Moreover, the constraint III.10 becomes yi+Ni ≤ yj−Nj+2H. In view

of the large value of H, every smaller value yi+Ni will be less than yj −Nj +2H,

which guarantees that this constraint is always satisfied for the case of pij and qij.

The second case, (pij, qij) is set to be (0, 1) which leads the constraint III.8

to yj +Nj ≤ yi −Ni . It implies that the room j must be forced to place at the

north of the room i, shown in the figure 3.1.5.

32

Figure 3.1.5: Location constraint representation for case (pij, qij) = (0, 1)

Constraint III.7 becomes xi + Ei ≤ xj − Ej +W . In view of the large value

of W , any small value xi + Ei will always be less than xj − Ej + W , which

means constraint III.7 is always satisfied for this case. At the same time, the

constraint III.8 becomes xj +Ej ≤ xi−Ei+W . Because of the same reason with

constraint III.7, this constraint is satisfied. Similarly, constraint III.10 becomes

yi +Ni ≤ yj −Nj +H which is also satisfied because of the large value of H.

The third case is similar to the other ones, the value of (pij, qij) = (0, 1) makes

the constraint III.9 become xj+Ej ≤ xi−Ei which leads the room j to be placed

on the left of the room i, visualized as follow.

Figure 3.1.6: Location constraint representation for case (pij, qij) = (1, 0)

Simultaneously, the constraint III.7 becomes xi+Ei ≤ xj−Ej+W . The large

value of W on the right-hand side becomes a large positive value. For any smaller

positive xi + Ei satisfies the constraint III.7 . While constraint III.8 and III.10

becomes xj +Ej ≤ xi−Ei+W and yi+Ni ≤ yj −Nj +H. The positive values of

33

xj +Ej and yi +Ni are smaller than xi −Ei +W and yj −Nj +H which satisfy

the constraint III.8 and III.10 respectively.

The last case, (pij, qij) is set to be (1, 1) which leads the constraint III.10 be

yi +Ni ≤ yj −Nj +H. This implies that the room j is forced to be placed south

of the room i, as in figure 3.1.7.

Figure 3.1.7: Location constraint representation for case (pij, qij) = (1, 1)

Similarly, constraint III.7 and III.9 becomes xi+Ei ≤ xj−Ej+W and xj+Ej ≤

xi−Ei+W respectively while the constraint III.8 becomes yj+Nj ≤ yi−Ni+H.

The large value of W and H in the right-hand side become a large positive value.

Hence, any positive value xi+Ei will satisfy constraint III.7 and III.9, respectively.

Also, any positive value yj +Nj satisfies constraint III.8.

Connectivity constraint explains and identifies the location of the rooms of

each pair of rooms that have to be connected together. We use the same two

binary variables pij and qij with different sets of constraints. By using the same

argument as the Location constraint, four cases of (pij, qij) occur.

xi + Ei ≥ xj − Ej −W ∗ (pij + qij), pij = 0, qij = 0 (III.11)

yj +Nj ≥ yi −Ni −H ∗ (1 + pij − qij), pij = 0, qij = 1 (III.12)

xj + Ej ≥ xi − Ei −W ∗ (1− pij + qij), pij = 1, qij = 0 (III.13)

yi +Ni ≥ yj −Nj −H ∗ (2− pij − qij) pij = 1, qij = 1 (III.14)

34

The first case, (pij, qij) is set to be (0, 0) which leads constraint III.11 to be

xi +Ei ≥ xj −Ej. It implies that the room j must be forced to be placed on the

right of the room i, shown in the figure 3.1.8.

Figure 3.1.8: Connectivity constraint representation for case (pij, qij) = (0, 0)

Constraint III.12 becomes yj + Nj ≥ yi − Ni − H. In view of the large value

of H, the right-hand side of the constraint becomes a very small negative value.

Hence, any positive yj + Nj will always be greater than yi − Ni − H. Similarly,

constraint III.13 becomes xj+Ej ≥ xi−Ei−W so that any positive value xj+Ej

will be greater than xi −Ei −W which means constraint III.13 is always satisfied

for this case. Moreover, constraint III.14 becomes yi + Ni ≥ yj − Nj − 2H. In

view of the large value of H, every positive value yi + Ni will be greater than

yj−Nj−2H, which quarantees that this constraint is always satisfied for the case

of pij and qij.

For second case, (pij, qij) is set to be (0, 1). Constraint III.12 becomes yj+Nj ≥

yi − Ni, which force the room j to place at the north of the room i. Similar to

the previous constraint, other constraints will be satisfied unconditionally due to

the large value of H and W , see figure 3.1.9.

The third case, (pij, qij) is set to be (1, 0). Constraint III.13 becomes xj+Ej ≥

xi−Ei, which forces room j to be placed on the left of the room i. Similar to the

previous constraints, other constraints will be satisfied unconditionally due to the

large value of H and W , see figure 3.1.10.

35

Figure 3.1.9: Connectivity constraint representation for case (pij, qij) = (0, 1)

Figure 3.1.10: Connectivity constraint representation for case (pij, qij) = (0, 1)

The last case for conectivity constraint is (pij, qij) which becomes (1,1). Con-

straint III.14 becomes yi +Ni ≥ yj −Nj, which forces the room j to be placed at

the south of the room i. Similar to the previous constraint, other constraints will

be satisfied unconditionally due to the large value of H and W , see figure 3.1.11.

Figure 3.1.11: Connectivity constraint representation for case (pij, qij) = (1, 1)

Access-way constraint : If two rooms touch with each other, then the junction

between two rooms must be wide enough to accommodate the accessway. We

36

defined the minimal contact length of value Tij.

yj +Nj ≤ yi −Ni + Tij −H ∗ (qij), qij = 0 (III.15)

yi +Ni ≤ yj −Nj + Tij −H ∗ (qij), qij = 0 (III.16)

xj + Ej ≤ xi − Ei + Tij −W ∗ (1− qij) qij = 1 (III.17)

xi + Ei ≤ xj − Ej + Tij −W ∗ (1− qij) qij = 1 (III.18)

Again qij is a binary variable, so qij can be either 1 or 0. If qij equals to 0,

then constraint III.15 and III.16 becomes yj +Nj ≤ yi−Ni+Tij and yi+Ni ≤

yj − Nj + Tij, respectively. While other constraints are satisfied unconditionally

due to the large value of H and W . Constraint III.15 explains that the room j

is adjacent to the room i at the upper corner of the room i, which has vertical

contact, see figure 3.1.12 .

Figure 3.1.12: Access-way constraint representation for the adjacent area of the

upper corner of the room i

Simutaneously, the room j is adjacent to the room i at the lower corner of the

room i for constraint III.16, which has the vertical contact, shown as figure 3.1.13

37

Figure 3.1.13: Access-way constraint representation for the adjacent area of the

lower corner of the room i

Next, qij is 1. Constraint III.17 and III.18 becomes xj + Ej ≤ xi − Ei + Tij

and xi + Ei ≤ xj − Ej + Tij , respectively. While other constraints are satisfied

unconditionally due to the large value of H and W . Constraint III.17 explains

that the room j is adjacent to the room i at the left corner of the room i, see

figure 3.1.14.

Figure 3.1.14: Access-way constraint representation for the adjacent area of the

left corner of the room i

Simutaneously, the room j is adjacent to the room i at the left corner of the room

i for constraint III.18, which has horizontal contact, shown as figure 3.1.15.

38

Figure 3.1.15: Access-way constraint representation for the adjacent area of the

right corner of the room i

3.2 Genetic Algorithm technique

From the previous section, we have formulated the MIP to fit to the layout

design problem. From the experiment, the computational time of the MIP model

demonstrates that it can deal with a small-sized problem. For a larger sized prob-

lem, the computational time is still far from satisfactory. In order to accelerate

the computational speed, a genetic algorithm has been adopted. In this thesis, we

use the genetic algorithm as a robustness learning methodology to utilized an idea

of the Special Order Set (SOS) based on the branching in a branch and bound

algorithm.

Our purpose for using a genetic algorithm is to guide the sequence of branching

strategy in MIP solving process. It is adopted to search the branch and bound

tree and used to help finding the good path along the tree structure to the optimal

solution. The good path will correspond to the order of branching variables. We

therefore utilize the learning algorithm GA to find an appropriate squences of

pij and qij which are branching variables of our problem. After completing the

learning process, the stronger gene from GA represents the appropriated SOS with

a good path in the search tree. For this reason, the appropriated SOS helps to

39

prune the search tree that leads the algorithm to reach the optimal solution faster.

Next, we will describe our GA principles in detail.

3.2.1 Chromosomes

A chromosome is represented by a string which is a sequence of branching

variables. Each bit of string contains a random branching variable, here is either

pij or qij, see figure 3.2.1 for example.

Given P0 is an original problem. P2, P3, P4,. . . , Pn are subproblems. pir,jr

and qir,jr are binary variables, where r corresponds to the order of branching and

1 ≤ r ≤ n, n is the last order of branching and n is finite.

Suppose P0 is divided into two smaller subproblems P1 and P2 using binary

variable pi1j1 . P1 is divided into smaller subproblem P3 and P4 using binary

variable qi2j2 and P2 is divided to be P5 and P6 using binary variable qi3j3 and so

on until Pn.

Figure 3.2.1: Representation of order of branching variables in tree structure

40

In the figure 3.2.1, we have a path from the top node(Problem P0) to the

bottom node (Problem Pn) pass through subproblems P1, P3, P8,. . . , Pn. A

sequence of branching variables is {pi1j1 , qi2j2 , qi3j3 , . . . , pinjn}. Next, we will record

this sequence into a chromosome by placing a first order of branching variable that

is pi1j1 at the first gene of chromosome. The second and third order and later order

ones are placed consecutively to the right of the first gene, see figure 3.2.2.

Figure 3.2.2: A chromosome representation corresponding to a sequence of branch-

ing variables in tree structure

In this thesis, we use a two dimention(2D) binary string to store information

of a sequence binary variables pij and qij because one dimention binary string

can’t be fit with entire information.The space of 2D binary string is m× n,where

the m presents the numbers of variables and the n represents the sequential order

of variable pij and qij.

� Encoding of a chromosome

A chromosome is a chain formed by any characters. In genetics, the whole infor-

mation of an individual structure is stored in a chromosome as genetic codes. The

genome string is composed of a finite set of genes and their values. In this thesis,

we encode the branching variables into a chromosome using 2D binary string. We

fixed the numerical order for 12 variables of pij and qij, that are used in the SOS.

Therefore, we need four bits to represent all possible cases of variables pij and qij.

However, a four bits string can represent 16 different patterns which are larger

than the number of the variables pij and qij. The remaining patterns will not be

41

ignored during the GA run. Thus, for example, we can represent variable pij and

qij for four rooms as follow.

p12 = 0001 q12 = 0111

p13 = 0010 q13 = 1000

p14 = 0011 q14 = 1001

p23 = 0100 q23 = 1010

p24 = 0101 q24 = 1011

p34 = 0110 q34 = 1100

Suppose we have the sequence of branching variables for 4 rooms in a chromo-

some as the following example.

p13p12q34p23q12q23

Therefore we have the 2D binary string representing the sequence of branching

variables of the above example as:

0 0 1 0 0 1

0 0 1 1 1 0

1 0 0 0 1 1

0 1 0 0 1 0

Moreover, all numbers of zero (0000) are not used to representing any branch-

ing variable. Nevertheless, if the current pattern is not represented by any SOS

variable, the algorithm will ignore and proceed with the next variable, and the

index of this variable is not stored into a candidate SOS. This method ensures

that only feasible SOS is created and will be used in the chromosome.

42

3.2.2 Operators

� Selection

As you have already known from the simple genetic algorithm which is de-

scribed in Section II, chromosome are selected to be parents to crossover. Ac-

cording to Darwin’s evolution theory the best ones should survive and create new

offspring. There are many methods how to select the best chromosomes, for ex-

ample roulette wheel selection, Boltzman selection, tournament selection, rank

selection, steady state selection and some others.

In this thesis, we use proportional selection known as roulette wheel selection.

Parents are selected according to their fitness. All chromosomes in the population

are placed in the roulette wheel. For example, if we have P chromosomes in the

population, we will have P segments on the roulette wheel. The size of its segment

depends on the fitness of a particular chromosome.

1. Sum up the fitness values of all chromosomes in the population.

2. Generate a random number between 0 and the sum of fitness values.

3. Select the chromosome whose fitness value added to the sum of the fitness

values of the previous is greater than or equal to the random number.

Obviously, a chromosome with high fitness has a greater probabilty of being

selected as a parent. This step will try to maintain good solution features to the

next generation.

� Crossover

The order crossover using two parents and two crossover sites are selected

randomly and the elements between the two selecting points in one of the parent

are directly inherited by the offspring.

43

� Mutation

Mutation is the process applied to each offspring individually after the crossover.

This operator creats new individual chromosome by a small change in a single in-

dividual chromosome by a random selection. In this thesis, the encoded SOS using

the 2D binary string that the mutation is applied to a bit string. It sweeps down

the bits and replace by randomly selected bit if the probability of the test passes.

3.2.3 Fitness function

In order to describe the details of the evaluated fitness function. This thesis

uses the MIP optimization solver called CPLEX to evaluate the fitness value of

GA. The setting of the CPLEX solver will be described below.

� The optimization CPLEX solver

CPLEX is an optimization software package. It is named for the simplex

method and the C programming language. It was originally developed by Robert

E. Bixby and distributed via CPLEX Optimization Inc. CPLEX can solve MIP

problem and very large LP problems. Moreover, it has a modeling layer and is

also available with several modeling systems like AIMMS, AMPL, GAMS IDE

and OPL Development Studio. In this thesis, we develop a modeling language

based on GAMS IDE and solve the model on CPLEX version 11.0.

� Fitness evaluation

As far as GA is concerned, it’s better to have a higher fitness value to provide

more opportunities to be chosen in breeding new chromosomes. In this thesis, the

CPLEX solver has been used to solve the MIP using the SOS variables from GA

which determines the largest score from the number of iterations.

44

At each transition, the value of computational iterations from GALMIP (fitness score)

is subtracted from a standard fitness score (standard fitness score) which is ob-

tained from the computational iterations of the MIP. The fitness score higher

than the standard fitness score presents a better candidate of SOS (a strong

gene) which will be stored into a text file. The GA fitness is measured from the

subtraction of the computational iterations of MIP and the current computational

iteration of GALMIP. We can describe the GA fitness with an equation as follow.

Evaluate Fitness = Standard fitness score− fitness score (III.19)

CHAPTER IV

Experimental Design and Results

4.1 Experimental design

In this thesis, we design the layout as the instances with four distinct config-

urations in order to measure their performance capabilities. The outcomes have

been carried out on a PC computer which has an Intel(R) Core (TM)2 Duo as a

processer CPU and 2004 MB of memory. This experiment is simulated with 4, 5,

6 and 7 rooms, which are based on the following four distinct configurations;

1. linear configuration

2. rail configuration

3. connected wheel configuration

4. nested wheel configuration

See the figure 4.1.1 for the graphical representation of these four distinct pat-

terns.

The minimum and maximum width and height of each room are defined to be

between 5 and 10 meters. The boundary area is set on 100× 100 square meters.

Moreover, the weighted sum of u1, u2 and u3 are equivalently set to 1.

46

Figure 4.1.1: The distinct patterns A, B, C and D of 10 rooms

47

4.2 Parameters and design setting for a genetic algotithm

This section will covers the settings of parameters which are used in genetic

operator in order to achieve a desireable solution and performance, it consists of

parameters of population size, crossover probability and mutation probability.

In order to achieve the desirable results and performance, appropriated GA

parameters have to be set. Several researchers have been trying to understand

the complex interactions among the GA parameters and are trying to design them

to fit into any world problems. In 1975, De Jong presented the GA parameters

that have been adopted widely which it is known as “standard” settings with a

population size of 50 to 100, a crossover probability of 0.9 and mutation probability

of 0.001. However, these “standard ”settings are not suitable for all problems. It

depends on the nature of the function being evaluated and the way of encoding

variables being used (Goldberg,1985;Hart and Below, 1991; Deb, 1999). Later in

2000, Lobo suggested using an appropriated GA parameter that determines by

parameters trial and error.

Next, we will describe how to set each parameter in detail.

4.2.1 Population size

The population size parameter is a major factor in determining the quality of

the solutions, so it has to be considered carefully. The population size depends on

the nature of the problem needed; not too big and not too small. If the population

is too small, the genetic algorithm may not explore enough the solution space to

consistently find good solutions. On the other hand, if the population size is too

large, the algorithm will waste unnecessary computational resources.

According to De Jong (1975), the appropriated size of population is usually in

the range of 50 to 100. The layout design is experimented using the population

48

size of 100.

4.2.2 Crossover and mutation probability

Crossover operator is important because it ensures good mixing of candidate

solutions. The higher the crossover probability, the more promising solutions are

mixed. A crossover probability of 1.0 indicates that the crossover process happen

with all selected chromosomes. Golberg and holland advocated that the better

results are achieved by the use of a high crossover probability in the range [0.8,1]

and a low mutation probability in the range [0,0.01].

We use the common crossover of 0.9 and mutation 0.001 suggested by De

jong(1975) and Goldberg (1985). For the reason being that the high levels of

mutation are the most disruptive and also achieve the lowest levels of construction.

The chance that a new candidate gene is found decreases. The performance of GA

is not so influenced by these operators than the population sizes and generations.

4.2.3 The length of string representation

Before creating a string, binary variables pij and qij need to be ordered and

given an index. The string will then be filled in by the index of those variables.

In order to determine the maximum length of the chromosome, we need to find

the posibility of connectivity between the room i and the room j which is iden-

tified by pij and qij. For example of 4 rooms we have 6 possible connectivities

between each room. Therefore we have 6 variables of pij and 6 variables of qij

to identify the connectivities, which consist of {p12, p13, q13, p14, p23, p24, p34} and

{q12, q13, q13, q14, q23, q24, q34}. The total results of a SOS variable consists of the

combination of both variables pij and qij. Therefore, we can determine an SOS

variable length in a candidate SOS using the equation,

49

C(n, r) =
n!

r!× (n− r)!
, (IV.1)

where n is the number of rooms and r is the number of SOS variables used in

the problem. Since there are only two binary variables used in each problem, the

value of r is equal to 2 in this thesis.

4.2.4 Generations and stopping criterion

The stopping criterion are created by predefining the number of generations.

The algorithm will stop when the number of generations is reached.

4.3 The result of MIP and GALMIP

In this section, the objective values and the number of iterations between MIP

and GALMIP of 4-7 rooms among the distinct patterns of A, B, C and D are

shown in the table 4.1.

Moreover, the experiment has been performed with population size of 10, gen-

eration iteration of 100, crossover probability of 0.9 and mutation probability of

0.001. see table 4.1.

50

Table 4.1: Iteration comparision between MIP and GALMIP

Room no. Pattern Objective value MIP GALMIP

4 A 25 1249 1116

B 27 1523 1471

C 28 1730 1600

D 25 1256 1076

5 A 60 21470 19548

B 60 15773 11119

C 65 19264 17013

D 60 21726 17684

6 A 100 296568 275767

B 103 106968 73817

C 115 204405 192828

D 104 413618 215698

7 A 160 10376928 10012139

B 170 705809 491427

C 178 2059350 2014997

D 161 6314838 3318656

51

Table 4.2: Iteration comparision of AL-MIP, MIP, AL-MIP+GA and GALMIP

Room no. patterns AL-MIP MIP AL-MIP+GA GALMIP

4 A 1.10× 103 1.25× 103 4.53× 102 1.12× 103

B 1.19× 103 1.52× 103 4.55× 102 1.47× 103

C 1.39× 103 1.73× 103 5.29× 102 1.60× 103

D 1.07× 103 1.26× 103 4.81× 102 1.08× 103

5 A 1.31× 104 2.15× 104 3.69× 103 1.95× 104

B 8.88× 104 1.58× 104 2.41× 103 1.11× 104

C 1.11× 104 1.93× 104 1.82× 103 1.70× 104

D 1.52× 104 2.17× 104 3.81× 103 1.80× 104

6 A 1.84× 105 2.96× 105 2.78× 104 2.76× 105

B 4.38× 104 1.07× 105 1.06× 104 7.38× 104

C 6.11× 104 2.04× 105 5.40× 104 1.93× 105

D 2.27× 105 4.14× 105 2.39× 104 2.16× 105

7 A 5.25× 106 1.04× 107 1.83× 105 1.00× 105

B 1.76× 105 7.06× 105 4.08× 104 4.91× 104

C 2.01× 105 2.06× 106 3.23× 104 2.01× 105

D 1.11× 106 6.31× 106 1.04× 105 4.32× 105

52

Table 4.1 shows the objective value and number of iterations of each configu-

ration between MIP and GALMIP. The four distinct configurations illustrate the

various computational iterations. According to the table 4.1, the results demon-

strate that they depend on the structural connectivity. For 4 rooms, all config-

urations have similar number of iterations while the number of iterations start

to be different when the number of rooms is larger. From 5, 6 and 7 rooms,we

can see that the computational iterations of rail configuration (Pattern B) and the

connected wheel configuration (pattern C) have similar number of iterations while

a linear configuration (pattern A) and a nested wheel configuration (pattern D)

have quite far more iterations than both patterns B and C. Significantly, the linear

configuration has higher computational iterations than the nested wheel configu-

ration for 7 rooms. Besides, the linear configuration has more iterations than the

rail configuration about 10 times, more than 3 times for the connected wheel con-

figuration and almost 1 time for the nested wheel configuration. This illustrates

that the structural connectivity matters. Moreover, the number of iterations of

the rail configuraton is the least for every experiment.

Table 4.2 presents the comparision among the results of AL-MIP, MIP, AL-

MIP+GA and GALMIP in term of the number of iterations, where AL-MIP and

MIP are mathematical models, AL-MIP+GA and GALMIP are models using the

application of Genetic Algorithm. AL-MIP and AL-MIP+GA are the models

formulated by Kamol and Krung[21] while MIP and GALMIP are our model in

this thesis.

According to the comparison between the number of iterations of AL-MIP and

MIP, using MIP+GA achieves an average of 3 to 48 percentage gains comparing

to the traditional MIP. For pattern A, the reduction is around 7-11 percentage.

For pattern B, the reduction is around 3-30 percentage . For pattern C, the

53

reduction is around 7-11 percentage. For pattern D, the reduction is around

14-48 percentage. For pattern B and D, the reduction percentage increases as

the number of rooms increase. This trend is different for patterns A and B, the

reductions of A and B are not stable as the problem size grows. Therefore, we

can conclude that the reduction of iterations depends on structural connectivity.

Since the depth from any two farthest nodes of pattern D has the least depth, the

path to the solution of this pattern is shorter than the other patterns. GA can

effectively find appropriate SOS than other patterns.

� The results of Special Order Set and its application

This part ilustrates the cadidate SOS obtained from our experiments which

vary from 4-7 rooms of patterns A, B, C and D presented by table 4.3 to 4.6.

Moreover, we implemented the SOS candidate into different sizes of rooms, we

discovered that it can be applied to rooms with the area sizes of 6 × 12, 7 × 14

and 10× 15 square meters which are shown in table 4.7, 4.8 and 4.9 .

54

Table 4.3: Illustrates 4 rooms candidate SOS variable pij and qij

Branching Order Pattern A Pattern B Pattern C Pattern D

1 q13 q24 q14 q13

2 p24 q24 q12 p23

3 q24 q23 p12 p13

4 p24 q13 p13 p14

5 q12 p35 p14 q14

6 p24 p12 q34 q13

7 q14 q14 p24 p13

8 p23 p23 q24

9 q24 p23 q23

10 p14 q14 q24

11 p14 p14 p24

12 q14 q34

13 p34

14

15

55

Table 4.4: Illustrates 5 rooms candidate SOS variable pij and qij

Branching Order Pattern A Pattern B Pattern C Pattern D

1 p35 q25 p34 q14

2 q14 p15 p25 q12

3 q35 q35 p12 q24

4 p13 q35 p14 p12

5 p13 q14 q13 p14

6 q25 p35 p13 q34

7 p25 p13 q24 q13

8 p13 p35 q15 p45

9 q13 q25 q25 p45

10 p12 p35 q35 q14

11 q15 q15 p35 p34

12 q15 q25 p34 q34

13 q32 q15 p25 q35

14 p13 p45 q35

15 q14 p35

16 p12

17 q15

18 q14

56

Table 4.5: Illustrates 6 rooms candidate SOS variable pij and qij

Branching Order Pattern A Pattern B Pattern C Pattern D

1 p12 p26 p46 q23

2 p23 p23 q46 q14

3 p34 q46 p26 q13

4 q36 q36 q12 p35

5 q13 q13 p45 q12

6 q15 p16 q26 p46

7 q13 q13 p36 q36

8 p35 p15 p16 q13

9 p24 q45 p24 q13

10 q16 p12 q24 q15

11 p36 p36 q26 q36

12 q24 p35 q45 q35

13 p14 p45 q25 q25

14 q36 p46 q14 p13

15 q15 p12 q16 p25

16 q35 q36 p34 p15

17 p45 q15 q15 q56

18 p56 p25 q13 p12

19 q14 q25 q36 q13

20 q25 q26 p34 q16

21 q35 q25 q45 p13

22 p56 q14 q24 p46

23 q16 q16 q15 q14

57

Branching Order Pattern A Pattern B Pattern C Pattern D

24 p46 p13 p15 p46

25 p14 p13 q46 p36

26 q46 q13 q35 q56

27 q36 q14 q36

28 q35 p16

29 q46

58

Table 4.6: Illustrates 7 rooms candidate SOS variable pij and qij

Branching Order Pattern A Pattern B Pattern C Pattern D

1 p12 p14 p14 q25

2 p23 p23 q27 q17

3 p34 q46 p35 q16

4 q36 q32 q16 p34

5 q17 q26 p45 q23

6 q15 p16 q14 p47

7 q13 q27 p37 q36

8 p35 p35 p16 q12

9 p24 q45 p67 q17

10 q16 p14 q34 q24

11 p36 p16 q23 q26

12 q27 p36 q16 q37

13 p14 p45 q17 q25

14 q36 p46 q15 p67

15 q15 p17 q16 p46

16 q35 q36 p34 p46

17 p45 q15 q34 q17

18 p57 p24 q25 p12

19 q14 q13 q15 q13

20 q25 q27 p34 q16

21 q35 q24 q46 p15

22 p56 q16 q27 p46

23 q16 q14 q15 q26

59

Branching Order Pattern A Pattern B Pattern C Pattern D

24 p46 p23 p15 p23

25 p14 p56 q46 p34

26 q46 q34 q35 q14

27 q36 q12 q14 q25

28 q21 q37 p27

29 q37 q17

30 q13

31 q25

60

Table 4.7: The result of applying the SOS candidate with the area room size of

6Ö12 sqm

Room no. Pattern Objective value MIP GALMIP

4 A 30 1310 1120

B 32 1760 1510

C 33 1619 1523

D 30 1269 1093

5 A 72 25629 24321

B 72 16594 9719

C 78 22827 20311

D 72 23619 19817

6 A 120 303890 287353

B 123 126562 72445

C 137 178424 135642

D 124 202209 195677

7 A 192 4693558 3885060

B 204 693251 592544

C 213 1060839 758441

D 193 4505278 4035278

61

Table 4.8: The result of applying the SOS candidate with the area room size of

7Ö14 sqm

Room no. Pattern Objective value MIP GALMIP

4 A 35 1254 1090

B 37 1714 1450

C 38 1527 1430

D 35 1184 1027

5 A 84 28214 15296

B 84 18837 9750

C 91 19340 12505

D 84 23439 17408

6 A 140 241198 177238

B 143 117644 71839

C 159 249450 92594

D 144 247578 201746

7 A 224 1338352 9095641

B 238 1223413 1012564

C 248 1915401 1021142

D 225 3080527 2388756

62

Table 4.9: The result of applying the SOS candidate with the area room size of

10× 15 sqm

Room no. Pattern Objective value MIP GALMIP

4 A 50 1235 1100

B 52 1654 1493

C 53 1534 1480

D 50 1338 1229

5 A 120 24750 20215

B 120 16348 9966

C 130 21535 19457

D 120 21409 17185

6 A 200 334583 292198

B 203 76541 71487

C 225 136069 105919

D 204 277729 218869

7 A 320 8897503 7200259

B 340 922959 759145

C 353 1338383 994356

D 321 1956657 1023065

CHAPTER V

CONCLUSION AND SUGGESTION

We use the mathematical model based on the model of Kamol and Krung in

2005 [21] in order to investigate the model and compare the number of iterations.

In [21], they used the point at the top left corner of the room to represent the

reference point. In a practical point at the center of the room is more common for

architects to design the buiding. In this thesis, we therefore change the reference

point to the center point referring to the work of Michealek in [22]. The model

using the reference point at the center called MIP. Then, we propose the model

called GALMIP in order to reduce the computational iterations that are produced

from MIP model.

5.1 Conclusion

From our experiments, the results can be concluded as follows.

1. The MIP model is easy to formulate the layout design problem.

2. The SOS candidate obtained from learning methodology can reduce the

search space and therefore the number of computational iterations are re-

duced. Similarly, we can conclude that GALMIP has a better performance

than MIP in terms of the number of iterations.

3. The reduction of iterations depends on the structural connectivity.

64

5.2 Application of the candidate SOS

Since the size of each room can be varied in real situation of layout designing

for building, we attempt to apply our candidate SOS to other room sizes. We

have found that the candidate SOS obtained from GA can be applied with some

patterns, meaning that the number of iterations of MIP can be reduced by using

the same candidate SOS. Nevertheless, the candidate can not be applied to every

room size. Therefore, we can conclude that the binary variables pij and qij might

not be suitable to be learned by GA. We might need to find other relations that

is suitable for GA.

5.3 Suggestion

Our approach can be further developed as a possible perspective direction to

improve an architectural layout design problem as the following suggests.

1. We can add new objectives or constraints to the model to improve optimiza-

tion behavior or quality of the layouts.

2. Since the shape of the layouts is not restricted, we can generalize them more

by using more complex shapes that are non-rectangular.

3. Since our thesis concentrates on only one floor of the layout design, we can

improve the model based on muliple-level floor in order to fit the layout

design for the real architect.

REFERENCES

[1] D. F. Wong and C. L. Liu. A new algorithm for floorplan design. Proceedings
of the 23rd ACM/IEEE Design Automation Conference (June 1986) : 101-
107.

[2] Y. C. Chang, Y. W. Chang, G. M. Wu and S. W. Wu. B*-trees:a new repre-
sentation for non-slicing floorplans. Proceedings of 37th Design Autiomation
Conference (June 2000) : 458-463.

[3] J. M. Lin, and Y. W. Chang. TGG : a transitive closure graph-based repre-
sentation for non-slicing floorplans. Proceedings of the 38th annual Design
Automation Conference (June 2001) : 764-769

[4] E. F. Y. Young, C. C. N. Chu, and Z. C. Shen. Twin binary sequences : a
nonredundant representation for general nonslicing floorplan. IEEE Transac-
tions on Computer-Aided Design of Intergrated Circuits and System 22 (April
2003) : 457-459.

[5] X. Hong,G. Huang,Y. Cai, J. Gu, S. Dong, and C. K. Cheng. Corner block list
representation and its application to floorplan optimization. IEEE Transac-
tions on Curcuit and Systems II:Express and Briefs 51 (May 2004) : 228-233.

[6] X. Hong,G. Huang,Y. Cai, J. Gu, S. Dong, and C. K. Cheng. Corner block list
: an effective and efficient topological representation of nonslicing floorplan.
Proceedings of the 2000 IEEE/ACM international conference on Computer-
aided design (2000) : 8-12.

[7] H. Onodera, Y. Taniguchi, and K. Tamaru. Branch-and-bound placement for
building block layout. Proceedings of the 28th ACM/IEEE Design Automa-
tion Conference (1991) : 433 - 439.

[8] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Ikjatani. Rectangular packing-
based module placement. Proceedings of IEEE/ACM international conference
on Computer-aided design (November 1995) : 472-479.

[9] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module placernent
on BSG-structure and IC layout application. Proceedings of IEEE/ACM in-
ternational conference on Computer-aided design (1996) : 484-491.

[10] P.N. Guo ,T. Takahashi ,C.-K. Cheng ,T. Yoshimura. Floorplanning Using a
Tree Representation. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 20 (February 2001) : 281289.

[11] P.N. Guo ,C.-K. Cheng ,T. Yoshimura. An O-tree Representation of Non-
slicing floorplan and its applications. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (1999) : 268-273.

66

[12] G. C. Armour and E. S. Buffa. A Heuristic Algorithm and Simulation Ap-
proach to Relative Location of Facilities. Management Science 9 (January
1963) : 294-309.

[13] P. H. Lavin. Use of graphs to decide the optimum layout of buildings. Arci-
tects’ Journal 14 (October 1964) : 809-815.

[14] D. J. Van Camp, M. W. Carter, and A. Vannelli. A Nonlinear Optimiza-
tion Approach for Solving Facility Layout Problems. European Journal of
Operational Research 57 (1992) : 174-189.

[15] D. M. Tate, A.E. Smith. Unequal-area facility layout by genetic search. IIE
Transactions 27 (April 1994) : 465-472.

[16] T. D. Thelma and P.M. Pardalos.Simulated annealing and genetic algorithms
for the facility layout problem: a survey. Computational Optimization and
Applications 7 (January 1997) : 111-126.

[17] R. D. Meller, V. Narayanan, and P. H. Vance. Optimal facility layout de-
sign.Operation Research 23 (1998) : 117.

[18] I-Cheng Yeh. Construction site layout using annealed neural network. Journal
of Computing in Civil Engineering 9 (July 1995) : 205 -208.

[19] R. Bausys and I. Pankrasovaite. Optimization of architectural layout by im-
proved genetic algorithm. Journal of civil engineering and management 11
(2005) : 13-21.

[20] C. J. Bloch and R. Krishnamurti. The counting of rectangular dissections.
Environment and Planning 2 (1978) : 207-214.

[21] K. Keatruangkamala and K. Sinapiromsaran. Optimization Architectural
Layout Design via Mixed Integer Programming. Proceeding in CAADFutures
(2005) : 175-184.

[22] J. Michalek and P. Y. Papalambros. Interactive layout design optimization.
Engineering Optimization 34 (February 2002) : 461-484.

[23] K. Keatruangkamala and K. Sinapiromsaran. Mixed Integer Programming
Model with Non-circular and Guided Constraints for Architectural Lay-
out Design Optimization. Songklanakarin Journal of Science and Technology
(2005) : 3-29.

[24] J. Michalek and P. Y. Papalambros. Architectural layout design optimization.
Engineering Optimization 34 (February 2002) : 461-484.

APPENDIX

68

Appendix

GAMS IDE model for MIP

This appendix section presents the GAMS IDE model for MIP methodology.

$ontext

——————————————————————————–

GAMS IDE model developed by Thitiya Theparot

——————————————————————————–

$Offtext

set ROOM;

ALIAS(ROOM,i);

ALIAS(ROOM,j);

ALIAS(ROOM,k);

set LINK(i,j)

CONNECT(i,j)

PARAMETERS

DELTA

PanelWidth

PanelHeight

Wmin(i)

Wmax(i)

Hmin(i)

Hmax(i);

PARAMETER WeightLeftCorner(i);

PARAMETERS WeightMinDistance

WeightMaxArea;

VARIABLE z;

69

POSITIVE VARIABLES

zx(i,j)

zy(i,j)

za(i);

POSITIVE VARIABLES

x(i)

y(i)

E(i)

N(i);

BINARY VARIABLES

p(i,j)

q(i,j);

E.lo(i) = Wmin(i)/2;

E.up(i) = Wmax(i)/2;

N.lo(i) = Hmin(i)/2;

N.up(i) = Hmax(i)/2;

EQUATIONS

obj Min

za width(i)

za height(i)

position x(i)

position y(i)

abs plus x(i,j)

70

abs minus x(i,j)

abs plus y(i,j)

abs minus y(i,j)

widthsize(i)

heightsize(i)

force ij left(i,j)

force ij bottom(i,j)

force ij right(i,j)

force ij top(i,j)

join ij left(i,j)

join ij bottom(i,j)

join ij right(i,j)

join ij top(i,j)

overlap Up(i,j)

overlap Down(i,j)

overlap Left(i,j)

overlap Right(i,j);

obj Min.. = e = sum(i,WeightLeftCorner(i) ∗ (x(i) + y(i)))

+WeightMinDistance ∗ sum(LINK(i, j), zx(i, j) + zy(i, j))

−WeightMaxArea ∗ sum(i, za(i));

za width(i).. za(i) = l = 2 ∗ E(i);

za height(i).. za(i) = l = 2 ∗N(i);

position x(i).. x(i)− E(i) = g = 0;

position y(i).. y(i)−N(i) = g = 0;

71

abs plus x(LINK(i,j)).. x(i)− x(j) = l = zx(i, j);

abs minus x(LINK(i,j)).. x(j)− x(i) = l = zx(i, j);

abs plus y(LINK(i,j)).. y(i)− y(j) = l = zy(i, j);

abs minus y(LINK(i,j)).. y(j)− y(i) = l = zy(i, j);

widthsize(i).. x(i) + E(i) = l = PanelWidth;

heightsize(i).. y(i) +N(i) = l = PanelHeight;

force ij left(LINK(i,j)).. x(i) + E(i) = l = x(j)− E(j)

+ PanelWidth*(p(i, j) + q(i, j));

force ij bottom(LINK(i,j)).. y(j) +N(j) = l = y(i)−N(i)

+ PanelHeight*(1+p(i, j)−q(i, j));

force ij right(LINK(i,j)).. x(j) + E(j) = l = x(i)− E(i)

+ PanelWidth*(1−p(i, j)+q(i, j));

force ij top(LINK(i,j)).. y(i) +N(i) = l = y(j)−N(j)

+ PanelHeight*(2−p(i, j)−q(i, j));

Overlap Up(CONNECT(i,j)).. 0 = g = y(i)−N(i) + DELTA - y(j)−N(j)

- PanelHeight*(q(i, j));

Overlap Down(CONNECT(i,j)).. 0 = g = y(j)−N(j) + DELTA - y(i)−N(i)

- PanelHeight*(q(i, j));

Overlap Left(CONNECT(i,j)).. 0 = g = x(i)− E(i) + DELTA - x(j)− E(j)

- PanelHeight*(1− q(i, j));

Overlap Right(CONNECT(i,j)).. 0 = g = x(j)−E(j) + DELTA - x(i)−E(i)

- PanelHeight*(1− q(i, j));

72

VITAE

Name Thitiya Theparod

Date of Birth 7 August 1984

Place of Birth Kalasin, Thailand

Education B.Sc. (Mathematics), Khonkaen University, 2006

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Motivation
	1.2 The research objective
	1.3 Overview of this thesis

	Chapter II Background knoeledge
	2.1 Mathematical programming model
	2.2 Introduction to Genetic Algorithm

	Chapter III Problem Methodology
	3.1 Mathematical model based on multi-objective func-tion
	3.2 Genetic Algorithm technique

	Chapter IV Experimental Design and Results
	4.1 Experimental design
	4.2 Parameters and design setting for a genetic algotithm
	4.3 The result of MIP and GALMIP

	Chapter V Conclusion and Suggestion
	5.1 Conclusion
	5.2 Application of the candidate SOS
	5.3 Suggestion

	References
	Appendix
	Vita

