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CHAPTER I

INTRODUCTION

1.1 Introduction.

A ring of quadratic integers is a subring of a quadratic field which plays the

same roles as the ring of integers Z in the field Q. Infact, a ring of quadratic

integers is an integral domain. Some of them are principal ideal domains but

some are not. Greg Dresden and Wayne M. Dymacek[1] studied about factors

of quotient rings over the Gaussian integers Z [i]. They generalized the idea of

quotient rings of integers to Gaussian integers. So we generalize their idea to the

general quadratic integers, in case that they are principal ideal domains.

The Euler φ−function on the set of positive integers is defined to be the number

of unit elements in the quotient ring of integers. James T. Cross[2] extended

this function to the ring of Gaussian integers.We will study this function on our

quadratic integer rings.

In Section 1.2, we give definitions, examples and also investigate some basic

properties of the rings of quadratic integers.

In Chapter 2, we study factors of the quotient rings and Euler φ−function over

the ring of Eisenstein integers Z
[
−1+

√
−3

2

]
. Moreover we determine the irreducible

elements of the ring of Eisenstein integers.

Lastly, we generalize this idea to the general quadratic integers, in case they

are principal ideal domains in Chapter 3.

We give some examples of these rings in the next section.
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1.2 Definitions and Basic Properties.

A quadratic field is a field extension of Q of degree 2. Let K be a quadratic

field. Then |K : Q| = 2 and K = Q [α] where α is a root of a monic irreducible

polynomial of degree 2, say f(x) = x2+ax+b where a, b ∈ Q, i.e. α =
(−a±

√
a2−4b)

2
.

Since a, b ∈ Q, a2 − 4b = d1

d2
=

(
d1d2

d2
2

)
for some d1, d2 ∈ Z and then there exist

d, c ∈ Z such that d1d2 = c2d where d is a square free integer. Hence K = Q [α] =

Q
[√

a2 − 4b
]

= Q
[√

d1d2

]
= Q

[√
d
]

for some square free integer d.

Definition 1.2.1. Define ω = 1+
√

d
2

in case d ≡ 1(mod 4) and ω =
√

d in case

d ≡ 2, 3(mod 4).

Definition 1.2.2. (i) If ω is as in Definition 1.2.1, then the conjugate of ω is

ω̄ = 1−
√

d
2

in case d ≡ 1(mod 4) and ω̄ = −
√

d in case d ≡ 2, 3(mod 4).

(ii) If a + bω ∈ Q [ω], then (a + bω) (a + bω) is the norm of a + bω. We will use

the notation N (a + bω) for the norm of a + bω.

Theorem 1.2.3. Let a + bω ∈ Z [ω].

(i) If d ≡ 2, 3(mod 4), then N (a + bω) = a2 − b2d.

(ii) If d ≡ 1(mod 4), then N (a + bω) = a2 + ab + b2
(

1−d
4

)
.

Proof. (i) Suppose d ≡ 2, 3(mod 4). Then ω̄ = −
√

d, and so ω+ ω̄ = 0, ωω̄ = −d.

Thus N (a + bω) = (a + bω) (a + bω) = a2 + ab(ω + ω̄) + b2ωω̄ = a2 − b2d.

(ii) Suppose d ≡ 1(mod 4). Then ω̄ = (1−
√

d)/2, and so ω + ω̄ = 1, ωω̄ = 1−d
4

.

Thus N (a + bω) = (a + bω) (a + bω) = a2 + ab(ω + ω̄) + b2ωω̄ = a2 + ab +

b2
(

1−d
4

)
.

We next state some results about units, conjugates, and norm. The proofs are

all straightforward.

Theorem 1.2.4. (i) For any α ∈ Z [ω], α is a unit if and only if N (α) = ±1.

(ii) If α and β are elements of Q [ω], then N (αβ) = N (α) N (β) .
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(iii) If u and u
′
are units, then so are uu

′
and 1

u
.

(iv) If α and β are elements of Z [ω], then αβ = αβ.

(v) If α |β in Z [ω], then N (α) |N (β) in Z.

(vi) For any α ∈ Z [ω], if N (α) = ±p, where p is a prime integer, then α is an

irreducible element in Z [ω].

In Chapter 3 we will consider only quadratic integers which are PID and we

know that if an integral domain is a Euclidean domain, then it is a PID. So we

will give some examples of Euclidean quadratic integer rings.

Example 1.2.5. If d = −3,−2,−1, 2, 3, 5, 13, 17, 21 then Z [ω] is Euclidean do-

main.

Proof. Define θ : Z [ω] → Z+
0 by θ(a + bω) = |N (a + bω)|.

Clearly θ is function, θ(a + bω) ≥ 0 and ker θ = {0}.

Let a1+a2ω, b1+b2ω be nonzero elements in Z [ω]. By Theorem 1.2.4 (ii), N((a1+

a2ω)(b1 + b2ω)) = N(a1 + a2ω)N (b1 + b2ω) . Then θ((a1 + a2ω)(b1 + b2ω)) =

θ(a1 + a2ω)θ(b1 + b2ω) and θ((a1 + a2ω)(b1 + b2ω)) ≥ θ(a1 + a2ω).

Consider a1 +a2ω, b1 + b2ω ∈ Z [ω] and b1 + b2ω 6= 0. There exists q1 + q2ω ∈ Q [ω]

such that a1+a2ω = (b1+b2ω)(q1+q2ω). Let s1, s2 ∈ Z be the best approximations

to q1, q2, respectively, that is,

|q1 − s1| ≤ 1
2

and |q2 − s2| ≤ 1
2
.

Given r1 + r2ω = a1 + a2ω − (b1 + b2ω)(s1 + s2ω) ∈ Z [ω]. Thus a1 + a2ω =

(b1 +b2ω)(s1 +s2ω)+r1 +r2ω and θ(r1 +r2ω) = θ(a1 +a2ω− (b1 +b2ω)(s1 +s2ω)).

Case 1. d ≡ 1(mod 4). Since a1 + a2ω = (b1 + b2ω)(q1 + q2ω),

θ(r1 + r2ω) = θ((b1 + b2ω)(q1 + q2ω)− (b1 + b2ω)(s1 + s2ω))

= θ((b1 + b2ω)((q1 − s1) + (q2 − s2)ω))

= θ(b1 + b2ω)θ((q1 − s1) + (q2 − s2)ω)

= θ(b1 + b2ω)
∣∣(q1 − s1)

2 + (q1 − s1)(q2 − s2) + (q2 − s2)
2(1−d

4
)
∣∣

≤ θ(b1 + b2ω)
∣∣1
4

+ 1
4

+ 1
4
(1−d

4
)
∣∣

= θ(b1 + b2ω)
∣∣9−d

16

∣∣.
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We have if
∣∣9−d

16

∣∣ < 1 then Z [ω] is Euclidean domain with the Euclidean valuation

θ. Hence for d ≡ 1(mod 4), if d = −3, 5, 13, 17, 21, then Z [ω] is Euclidean domain.

Case 2. d ≡ 2, 3(mod 4). Since a1 + a2ω = (b1 + b2ω)(q1 + q2ω),

θ(r1 + r2ω) = θ((b1 + b2ω)(q1 + q2ω)− (b1 + b2ω)(s1 + s2ω))

= θ((b1 + b2ω)((q1 − s1) + (q2 − s2)ω))

= θ(b1 + b2ω)θ((q1 − s1) + (q2 − s2)ω)

= θ(b1 + b2ω) |(q1 − s1)
2 − (q2 − s2)

2d|

≤ θ(b1 + b2ω)
∣∣1
4
− (1

4
)d

∣∣
= θ(b1 + b2ω)

∣∣1−d
4

∣∣.
We have if

∣∣1−d
4

∣∣ < 1 then Z [ω] is Euclidean domain with the Euclidean valuation

θ. Hence for d ≡ 2, 3(mod 4), if d = −2,−1, 2, 3, then Z [ω] is Euclidean domain.

In [3], Ratinan Boonklurb gave all imaginary quadratic integer rings which are

Euclidean domain.

Example 1.2.6. [3](Ratinan Boonklurb,1998) For d < 0, Z [ω] is Euclidean

domain if and only if d = −11,−7− 3,−2,−1.

Theorem 1.2.7. Let D be a PID.

(i) Every nonzero nonunit element of D is prime if and only if it is irreducible.

(ii) For any π ∈ D, 〈π〉 is a maximal ideal if and only if 〈π〉 is a prime ideal.

(iii) For any π ∈ D, π is prime if and only if D/ 〈π〉 is a field.

Theorem 1.2.8. Let D be a PID, a1, a2, ..., an ∈ D such that for i 6= j,

〈ai〉+ 〈aj〉 = D. Then

D/ 〈a1a2...an〉 ∼= D/ 〈a1〉 ⊕D/ 〈a2〉 ⊕ ...⊕D/ 〈an〉 .



CHAPTER II

FACTORS OF QUOTIENT RINGS OVER EISENSTEIN

INTEGER RINGS

In this chapter, we study factors of the quotient rings over the ring of Eisenstein

integers Z [ω] = {a + bω |a, b ∈ Z}, where ω = (−1 +
√
−3)/2. The field of frac-

tions of Eisenstein integers is the field Q
[√
−3

]
. We prove that it is a Euclidean

domain in Chapter 1, so it is a principal ideal domain and a unique factorization

domain. For any ideal 〈a + bω〉 of Z [ω], we will find the structure of the quotient

ring Z [ω] / 〈a + bω〉.

2.1 Factors of Quotient Rings over Ring of Eisenstein In-

tegers

First, we have ω̄ =
(
−1−

√
−3

)
/2, ω + ω̄ = −1, ωω̄ = 1 and ω2 + ω + 1 = 0.

Lemma 2.1.1. If k is a positive integer, then c+dω belongs to the ideal 〈ak + bkω〉

if and only if k(a2 − ab + b2) divides both ac + bd− cb and ad− cb.

Proof. Let k be a positive integer. Then for any c + dω ∈ Z [ω],

c + dω

ak + bkω
=

(c + dω) (ak + bkω)

(ak + bkω) (ak + bkω)

=
(ack + bdk − cbk)

k2 (a2 − ab + b2)
+

(adk − cbk) ω

k2 (a2 − ab + b2)

=
(ac + bd− cb)

k (a2 − ab + b2)
+

(ad− cb) ω

k (a2 − ab + b2)
.

Thus c + dω ∈ 〈ak + bkω〉 if and only if k(a2 − ab + b2) divides both ac + bd− cb

and ad− cb.
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Lemma 2.1.2. For a nonzero element a + bω ∈ Z [ω], there exists a unit u ∈

{±1,±ω,±ω2} such that (a + bω)u = x + yω where x and y are positive integers.

Proof. Let a + bω ∈ Z [ω] and a + bω 6= 0.

Case 1. a, b ∈ Z−
0 . Then (a + bω)(−1) = −a− bω where −a,−b ∈ Z+.

Case 2. a ∈ Z− and b ∈ Z+. Then (a+bω)(−ω) = −aω−bω2 = −aω−b(−ω−1) =

(−a + b)ω + b where (−a + b), b ∈ Z+.

Case 3. a ∈ Z+ and b ∈ Z−. Then

(a + bω)(−ω2) = (a + bω)(ω + 1)

= aω + bω2 + a + bω

= aω + b(−ω − 1) + a + bω

= aω − b + a for a, a− b ∈ Z+.

Case 4. a, b ∈ Z+
0 . Then (a + bω)(1) = a + bω for a, b ∈ Z+.

Hence for a + bω ∈ Z [ω], there exists a unit u ∈ {±1,±ω,±ω2} such that (a +

bω)u = x + yω where x and y are positive integers.

Lemma 2.1.3. If a is a positive integer larger than 1 ,then Z [ω] / 〈a〉 ∼= Za [ω].

Proof. Define φ : Z [ω] → Za [ω] by φ (x + yω) = [x]a + [y]a ω. It is obvious

from the definition of φ that φ is onto. Next, we will show that φ is a ring

homomorphism. Let x1 + y1ω, x2 + y2ω ∈ Z [ω]. Then

φ ((x1 + y1ω) + (x2 + y2ω)) = φ ((x1 + x2) + (y1 + y2) ω)

= [x1 + x2]a + [y1 + y2]a ω

= [x1]a + [x2]a + [y1]a ω + [y2]a ω

= ([x1]a + [y1]a ω) + ([x2]a + [y2]a ω)

= φ (x1 + y1ω) + φ (x2 + y2ω).

Also, φ ((x1 + y1ω) · (x2 + y2ω)) = φ (x1x2 + (x2y1 + x1y2) ω + y1y2ω
2)

= φ (x1x2 + (x2y1 + x1y2) ω − y1y2 (ω + 1))

= φ((x1x2 − y1y2) + (x2y1 + x1y2 − y1y2) ω).
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= [x1x2 − y1y2]a + [x2y1 + x1y2 − y1y2]a ω

= [x1x2]a + [x2y1 + x1y2]a ω − [y1y2]a (1 + ω)

= [x1x2]a + [x2y1 + x1y2]a ω + [y1y2]a ω2

= ([x1]a + [y1]a ω) · ([x2]a + [y2]a ω)

= φ (x1 + y1ω) · φ (x2 + y2ω).

Hence φ is a surjective ring homomorphism. Since φ (a) = [a]a = [0]a , 〈a〉 ⊆ ker φ.

Next, let x + yω ∈ ker φ. Then [0]a = φ (x + yω) = [x]a + [y]a ω, i.e. both x

and y are congruent to 0 modulo a, so we can write x = ax′ and y = ay′ for

some x′, y′ ∈ Z. Then x + yω = ax′ + ay′ω ∈ 〈a〉. Thus ker φ ⊆ 〈a〉. Therefore

ker φ = 〈a〉 and so Z [ω] / 〈a〉 ∼= Za [ω].

Definition 2.1.4. For any x+yω ∈ Z [ω], define the norm of x+yω by N (x + yω) =

(x + yω) (x + yω̄) = x2 + xy(ω + ω̄) + y2ωω̄ = x2 − xy + y2.

Lemma 2.1.5. Let a + bω ∈ Z [ω] where a and b are relatively prime and s =

N (a + bω) = a2 − ab + b2. Then Z [ω] / 〈a + bω〉 ∼= Zs. Consequently if s is a

prime number, then a + bω is irreducible.

Proof. Let a+bω ∈ Z [ω], where a and b are relatively prime and s = N (a + bω) =

a2−ab+b2. By Lemma 2.1.2, we can assume without loss of generality that a and

b are both positive. Since (a, b) = 1, (a2, b) = 1. Then (b, s) = (b, a2−ab+b2) = 1,

so b−1 exists in Zs. Since a2− ab + b2 ≡ 0(mod s), (ab−1)
2 ≡ ab−1− 1(mod s). To

show that Z [ω] / 〈a + bω〉 ∼= Zs, define φ : Z [ω] → Zs by

φ (x + yω) = [x− (ab−1) y],

where [t] = [t]s.

For any m ∈ Z, φ (m) = [m− (ab−1) 0] = [m] , so φ is surjective.

Let x1 + y1ω and x2 + y2ω ∈ Z [ω]. Thus

φ((x1 + y1ω) + (x2 + y2ω)) = φ((x1 + x2) + (y1 + y2) ω)

= [(x1 + x2)− (ab−1)(y1 + y2)]
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= [x1 − (ab−1) y1] + [x2 − (ab−1) y2]

= φ (x1 + y1ω) + φ (x2 + y2ω), and

φ((x1 + y1ω)(x2 + y2ω)) = φ(x1x2 + (y1x2 + x1y2)ω + y1y2ω
2)

= φ(x1x2 + (y1x2 + x1y2)ω + (−ω − 1)y1y2)

= φ((x1x2 − y1y2) + (y1x2 + x1y2 − y1y2)ω)

= [(x1x2 − y1y2)− (ab−1)(y1x2 + x1y2 − y1y2)]

= [x1x2 + (ab−1 − 1) y1y2 − (ab−1) (y1x2 + x1y2)]

=
[
x1x2 + (ab−1)

2
y1y2 − (ab−1) (y1x2 + x1y2)

]
= [x1 − (ab−1) y1] [x2 − (ab−1) y2]

= φ (x1 + y1ω) φ (x2 + y2ω).

Then φ is a ring homomorphism.

Moreover, since φ (a + bω) = [a− (ab−1) b] = [0], 〈a + bω〉 ⊆ ker φ. Next, let

c + dω ∈ ker φ. Then
c + dω

a + bω
=

(c + dω) (a + bω)

(a + bω) (a + bω)

=
ac + adω + cbω̄ + bdωω̄

a2 − ab + b2

=
ac + bd− cb + (ad− cb) ω

a2 − ab + b2

=
(ac + bd− cb)

a2 − ab + b2
+

(ad− cb) ω

a2 − ab + b2
.

Since φ (c + dω) = [c− ab−1d] = [0] , [ad− cb] = [c− ab−1d] [−b] = [0]. By

[ad− cb] = [0], we have [ab2c− a2bd] = [ad− cb] [−ab] = [0]. Then [ac− a2b−2bd]

= [ab2c− a2bd] [b−2] = [0]. Since (ab−1)
2 ≡ ab−1 − 1(mod (a2 − ab + b2) ),

[ac− (ab−1 − 1) bd] = [0]. Then [ac− ad + bd] = [0], and so [ac− bc + bd] = [0].

Thus a + bω |c + dω and c + dω ∈ 〈a + bω〉. Hence ker φ ⊆ 〈a + bω〉 and so

ker φ = 〈a + bω〉. Then Z [ω] / 〈a + bω〉 ∼= Zs. Consequently if s is a prime num-

ber in Z then Z [ω] / 〈a + bω〉 is a field. Hence σ = a+bω is an irreducible element

in Z [ω] .
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Lemma 2.1.6. Let p be a prime number. Then Zp [ω] ∼= Zp [x] / 〈x2 + x + 1〉 .

Consequently x2 + x + 1 has no root in Zp if and only if Zp [ω] is a field.

Proof. Define ϕ : Zp [x] → Zp [ω] by

ϕ (f(x)) = f(ω).

Clearly that ϕ is a surjective ring homomorphism.

Next, we will show that ker ϕ = 〈x2 + x + 1〉 . Since ϕ (x2 + x + 1) = 0, 〈x2 + x + 1〉

⊆ ker ϕ. Let f (x) ∈ ker ϕ, so f (ω) = 0. Since p is prime, Zp is a field.

There exists mZp (x) which is a minimal polynomial of ω over Zp. Since ω /∈ Zp

and ω2 + ω + 1 = 0, mZp (x) is a polynomial with degree 2. Thus x2 + x +

1 = bmZp (x) for some b ∈ Zp, and f (x) = g (x) mZp (x) for some g (x) ∈

Zp [x] such that deg(f (x)) =deg(g (x)) + 2. Then f (x) = g (x) (b−1b)mZp (x) =

g (x) b−1 (bmZp (x)) = g (x) b−1(x2 + x + 1). Thus f (x) ∈ 〈x2 + x + 1〉 and ker

ϕ ⊆ 〈x2 + x + 1〉 . Hence kerϕ = 〈x2 + x + 1〉. By the standard isomorphism

theorem, Zp [x] / 〈x2 + x + 1〉 ∼= Zp [ω] . Since x2 + x + 1 has no root in Zp, it is

irreducible in Zp [x]. Hence 〈x2 + x + 1〉 is a maximal ideal in Zp [x] if and only if

Zp [ω] is a field.

Next, we will determine the irreducible elements of the ring of Eisenstein

integers.

Theorem 2.1.7. Up to association, the irreducible elements in Z [ω] are exactly

the followings:

(i) σ = a + bω and σ̄ = a + bω̄, where N (σ) = N (σ̄) is a prime number in Z

and N (σ) , N (σ̄) ≡ 1(mod 6),

(ii) 2 + ω, where N (2 + ω) = 3 and 〈3〉 = 〈2 + ω〉2,

(iii) π, where π is prime in Z such that π ≡ 5(mod 6),

(iv) 2.

Proof. (i) and (ii) follow by Lemma 2.1.5.

(iii) Let π be a prime in Z such that π ≡ 5(mod 6). Thus (2x + 1)2 ≡ −3(mod
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π) and hence x2 + x + 1 has no root in Zπ. By Lemma 2.1.6, Zπ [ω] is a field.

By Lemma 2.1.3, Z [ω] / 〈π〉 ∼= Zπ [ω]. Hence 〈π〉 is a maximal ideal and so π is

irreducible.

(iv) Since x2 + x + 1 has no root modulo 2, by Lemma 2.1.6, Z2 [ω] is a field. By

Lemma 2.1.3, Z [ω] / 〈2〉 ∼= Z2 [ω], so 〈2〉 is a maximal ideal in Z [ω]. Hence 2 is

irreducible.

Conversely, let β be an irreducible element in Z [ω].

Case 1. β = π ∈ Z+. Since π is an irreducible in Z [ω], π is a prime integer. For

odd prime π, by Lemma 2.1.3 and Lemma 2.1.6,

Z [ω] / 〈π〉 ∼= Zπ [ω] ∼= Zπ [x] / 〈x2 + x + 1〉.

Thus Zπ [x] / 〈x2 + x + 1〉 is a field. Then x2 + x + 1 ≡ 0(mod π) has no solution.

Thus (2x + 1)2 ≡ −3(mod π) has no solution. By [4, page131], π ≡ 5 (mod 6).

Case 2. β = a + bω ∈ Z+ [ω] . By Lemma 2.1.5, Z [ω] / 〈a + bω〉 ∼= ZN(a+bω) Then

N (a + bω) is a prime integer. We have N (a + bω) ≡ 1 or 3 or 5(mod 6).

Suppose that N (a + bω) ≡ 5(mod 6). By (iii), N (a + bω) is irreducible. It

contradicts N (a + bω) = (a + bω) (a + bω̄). So N (a + bω) ≡ 1 or 3(mod 6).

If N (a + bω) ≡ 3(mod 6), then 3 |N (a + bω) . Since N (a + bω) is a prime integer,

N (a + bω) = 3. One of these is a + bω = 2 + ω. For N(a + bω) ≡ 1(mod 6), we

have N (a + bω) = (a + bω) (a + bω̄) = N (a + bω̄). We will show that β and β̄

are not associated, suppose they are. Then 〈a + bω〉 = 〈a + bω̄〉, i.e.

a + bω = u(a + bω̄) for some unit u ∈ {±1,±ω,±ω2}

= ua + ubω̄

= ua + ub(−ω − 1)

= (ua− ub)− ubω.

Thus a = (ua − ub) and b = −ub, so u = −1 and b = 2a. Hence N (a + bω) =

a2 − ab + b2 = a2 − 2a2 + 4a2 = 3a2, it contradics the fact that N (a + bω) is a

prime integer. Thus β and β̄ are not associated.
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Theorem 2.1.8. If a, b and k are positive integers such that a and b are relatively

prime, then

Z [ω] / 〈ak + bkω〉 =
{[

x
′
+ y

′
ω
]

: 0 ≤ x
′
< k, 0 ≤ y

′
< k (a2 − ab + b2)

}
.

Proof. Let [x + yω] ∈ Z [ω] / 〈ak + bkω〉. Since (a, b) = 1, there exist integers s

and t such that as + bt = 1. Then aks + bkt = k. Thus k + (ak + bkω)(−s +

ωt) = (akt− bks− bkt) ω. Then k ≡ (akt− bks− bkt) ω(mod 〈ak + bkω〉). Let

m = akt− bks− bkt. Then

k ≡ mω(mod 〈ak + bkω〉). (1)

Since k (a2 − ab + b2) ω = (ak + bkω)(a + bω)ω,

k (a2 − ab + b2) ω ≡ 0(mod 〈ak + bkω〉). (2)

Thus [x + yω] =
[
n1k + x

′
+ yω

]
where x = n1k + x

′
such that 0 ≤ x

′
< k

=
[
x
′
+ n1mω + yω

]
by (1)

=
[
x
′
+ (n1m + y)ω

]
=

[
x
′
+ (n2k (a2 − ab + b2) + y

′
)ω

]
where n1m + y = n2k(a2 − ab

+b2) + y
′
such that 0 ≤ y

′
< k(a2 − ab + b2)

=
[
x
′
+ y

′
ω
]

by (2).

Hence [x + yω] =
[
x
′
+ y

′
ω
]
, with 0 ≤ x

′
< k, 0 ≤ y

′
< k (a2 − ab + b2) .

Let x1, y1, x2, y2 ∈ Z such that 0 ≤ x1, x2 < k, 0 ≤ y1, y2 < k (a2 − ab + b2) and

[x1 + y1ω] = [x2 + y2ω]. Then (x2 − x1) + (y2 − y1)ω ∈ 〈ak + bkω〉. Appealing to

Lemma 2.1.1, we conclude that k (a2 − ab + b2) |a(x2 − x1) +b(y2−y1)−b(x2−x1)

and k (a2 − ab + b2) |a(y2 − y1) − b(x2 − x1). Therefore

k (a2 − ab + b2) |a(a(x2 − x1) + b(y2 − y1)− b(x2 − x1)) + (−b) (a(y2 − y1)− b (x2 − x1)) ,

and so k |x2 − x1 . Since 0 ≤ x1, x2 < k, x1 = x2. Then k (a2 − ab + b2) |b(y2 − y1)

and k (a2 − ab + b2) |a(y2 − y1) . We have

a(y2 − y1) = k (a2 − ab + b2) l1 and

b(y2 − y1) = k (a2 − ab + b2) l2 for some l1, l2 ∈ Z.

Since (a, b) = 1, there exist integers s and t such that as + bt = 1. Then
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a(y2 − y1)s = k (a2 − ab + b2) l1s and

b(y2 − y1)t = k (a2 − ab + b2) l2t.

Thus y2 − y1 = (y2 − y1)(as + bt) = k (a2 − ab + b2) (l1s + l2t). Hence

k (a2 − ab + b2) |y2 − y1. Since 0 ≤ y1, y2 < k (a2 − ab + b2), y1 = y2.

From Theorem 2.1.7 and Z [ω] is a UFD, for any nonzero Eisenstein integer

a + bω, we have

a + bω ∼ 2t
∏

σui
i ·

∏
σ̄vi

i ·
∏

πei
i · (2 + ω)n,

where ui, vi, ei, t, n ∈ Z+
0 .

Theorem 2.1.9. Let a + bω ∈ Z [ω] \ {0} be such that

a + bω ∼ 2t
∏

σui
i ·

∏
σ̄vi

i ·
∏

πei
i · (2 + ω)n,

where ui, vi, ei, t, n ∈ Z+
0 , s1 =

∏
N(σui

i ), s2 =
∏

N(σ̄vi
i ), k = 2t ·

∏
πei

i and

Rn = Z [ω] / 〈(2 + ω)n〉. Then Z [ω] / 〈a + bω〉 ∼= Zs1 ⊕ Zs2 ⊕ Zk [ω] ⊕ Rn, where

Rn
∼= Z3m [ω] when n = 2m and Rn

∼= Z [x] / 〈3mx, 3m+1, x2 + 3x + 3〉 when n =

2m + 1.

Proof. Let a and b be integers, not both zero, such that

a + bω ∼ 2t
∏

σui
i ·

∏
σ̄vi

i ·
∏

πei
i · (2 + ω)n,

s1 =
∏

N(σui
i ), s2 =

∏
N(σ̄vi

i ), k = 2t ·
∏

πei
i , and Rn = Z [ω] / 〈(2 + ω)n〉.

Applying Theorem 1.2.8, we arrive at

Z [ω] / 〈a + bω〉 ∼= Z [ω] / 〈
∏

σui
i ·

∏
σ̄vi

i · 2t ·
∏

πei
i · (2 + ω)n〉

∼= Z [ω] / 〈
∏

σui
i 〉 ⊕ Z [ω] / 〈

∏
σ̄vi

i 〉

⊕Z [ω] / 〈2t ·
∏

πei
i 〉 ⊕ Z [ω] / 〈(2 + ω)n〉.

Consider
∏

σui
i = c + dω. Thus s1 =

∏
N(σui

i ) = N(
∏

σui
i ) = N(c + dω) =

c2 − cd + d2. Clearly 2, 3 and any prime π in Z such that π ≡ 5(mod 6) cannot

divide c + dω, and any prime q in Z with q ≡ 1(mod 6) we have q = σhσ̄h

for some h, whence q cannot divide c + dω. Thus (c, d) = 1. By Lemma 2.1.5,

Z [ω] / 〈
∏

σui
i 〉 = Z [ω] / 〈c + dω〉 ∼= Zc2−cd+d2

∼= Zs1 . Similarly, Z [ω] / 〈
∏

σ̄vi
i 〉 ∼=
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Zs2 . By Lemma 2.1.3, Z [ω] / 〈2t ·
∏

πei
i 〉 ∼= Zk [ω].

For even n, let n = 2m where m > 0. We have 〈(2 + ω)n〉 =
〈
(−3ω2)

m〉
= 〈3m〉.

Thus Z [ω] / 〈(2 + ω)n〉 = Z [ω] / 〈3m〉 ∼= Z3m [ω] . Hence Z [ω] / 〈a + bω〉 ∼= Zs1 ⊕

Zs2 ⊕ Zk [ω]⊕ Z3m [ω].

For odd n, let n = 2m + 1 where m ≥ 0. We will show that

R2m+1 = Z [ω] /
〈
(2 + ω)2m+1〉 ∼= Z [x] / 〈3mx, 3m+1, x2 + 3x + 3〉.

First, we have (2 + ω)2m+1 = (2 + ω) (2 + ω)2m

= (2 + ω)((2 + ω)2)m

= (2 + ω)(4 + 4ω + ω2)m

= (2 + ω)(4 + 4ω − ω − 1)m

= (2 + ω)(3 + 3ω)m

= (2 + ω)(3(1 + ω))m

= (2 + ω)(3(−ω2))m

= (2 + ω)(3(−ω2))m

= (2 + ω) 3m(−1)mω2m.

Then (2 + ω)2m+1 ∼ (2 + ω) 3m, so
〈
(2 + ω)2m+1〉 = 〈2 · 3m + 3mω〉. By Theorem

2.1.8,

R2m+1 = Z [ω] / 〈2 · 3m + 3mω〉 =
{

[a + bω] : 0 ≤ a < 3m and 0 ≤ b < 3m+1

}
.

Define φ : Z [x] → Z [ω] / 〈2 · 3m + 3mω〉 by φ (f (x)) = [f (ω − 1)]. Let [a + bω] ∈

Z [ω] / 〈2 · 3m + 3mω〉, then [a + bω] = [a + b (ω − 1) + b] = φ (a + bx + b). Thus

φ is a surjective function. Next, let f1 (x) , f2 (x) ∈ Z [x] .

φ (f1 (x) + f2 (x)) = [f1 (ω − 1) + f2 (ω − 1)]

= [f1 (ω − 1)] + [f2 (ω − 1)]

= φ (f1 (x)) + φ (f2 (x)), and

φ (f1 (x) · f2 (x)) = [f1 (ω − 1) · f2 (ω − 1)]

= [f1 (ω − 1)] · [f2 (ω − 1)]

= φ (f1 (x)) · φ (f2 (x)).

Hence φ is a surjective ring homomorphism.
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We will show that ker φ = 〈3mx, 3m+1, x2 + 3x + 3〉. Since

φ (3mx) = [3m (ω − 1)]

= [ω (2 · 3m + 3mω)]

= [0],

φ (3m+1) = [3m+1]

= [3m (2 + ω) (2 + ω)]

= [(2 · 3m + 3mω) (2 + ω)]

= [0] and

φ (x2 + 3x + 3) = [(ω − 1)2 + 3(ω − 1) + 3]

= [ω2 + ω + 1]

= [0],

〈3mx, 3m+1, x2 + 3x + 3〉 ⊆ ker φ. Let p (x) ∈ ker φ. Since x2 + 3x + 3 is monic,

p (x) = (x2 + 3x + 3) q (x) + r (x) for some q (x) and r (x) = r0 + r1 (x + 1) in

Z [x]. Hence r (x) ∈ ker φ, i.e. [r0 + r1ω] = [0], so r0 + r1ω ∈ 〈2 · 3m + 3mω〉.

Therefore r0 + r1ω = (u + vω) (2 · 3m + 3mω) = (2 · 3mu− 3mv) + (3mv + 3mu) ω

for some u + vω ∈ Z [ω] . Then r (x) = r0 + r1 (x + 1) = (2 · 3mu− 3mv) +

(3mv + 3mu) (x + 1) = 3m+1u + 3m (u + v) x. Thus p (x) = (x2 + 3x + 3) q (x) +

3m+1u+3m (u + v) x ∈ 〈3mx, 3m+1, x2 + 3x + 3〉. Then ker φ ⊆ 〈3mx, 3m+1, x2 + 3x + 3〉 ,

Hence ker φ = 〈3mx, 3m+1, x2 + 3x + 3〉. Then R2m+1
∼= Z [x] / 〈3mx, 3m+1, x2 + 3x + 3〉 .

Example 2.1.10. 88 + 110ω = 22(4 + 5ω)

= 22(6 + 7ω + 2(−ω − 1))

= 22(6 + 7ω + 2ω2)

= 2 · 11(3 + 2ω)(2 + ω).

We have N(3 + 2ω) = 7 ≡ 1(mod 6) and 11 ≡ 5(mod 6).

Thus Z [ω] / 〈88 + 110ω〉 = Z [ω] / 〈2 · 11(3 + 2ω)(2 + ω)〉
∼= Z7 ⊕ Z22 [ω]⊕ Z [ω] / 〈2 + ω〉
∼= Z7 ⊕ Z22 [ω]⊕ Z [ω] / 〈x, 3, x2 + 3x + 3〉. �
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2.2 The Euler φ−function for Eisenstein Integers.

In this section we will consider the Euler φ−function over the ring of Eisenstein

integers. For β ∈ Z [ω], we denote the set of all units of the quotient ring Z [ω] / 〈β〉

by ΦZ[ω] (β) which forms a multiplicative group. We denote Euler φ−function of β

over Z [ω] by φZ[ω] (β) which is the order of the group ΦZ[ω] (β). In this section, we

denote the types of irreducible elements in Z [ω] as in Theorem 2.1.7 and N (σ) = q

where σ as in (i).

Lemma 2.2.1. The equivalence classes of Z [ω] modulo a power of an irreducible

element are given as follows:

(i) Z [ω] / 〈σn〉 = {[x] : 0 ≤ x < qn},

(ii) Z [ω] / 〈πn〉 = {[x + yω] : 0 ≤ x, y < πn},

(iii) Z [ω] / 〈(2 + ω)2m〉 = {[x + yω] : 0 ≤ x, y < 3m},

(iv) Z [ω] / 〈(2 + ω)2m+1〉 = {[x + yω] : 0 ≤ x < 3m, 0 ≤ y < 3m+1},

(v) Z [ω] / 〈2n〉 = {[x + yω] : 0 ≤ x, y < 2n}.

Proof. (i) Let 0 ≤ x, y < qn be such that [x]〈σn〉 = [y]〈σn〉. Then x− y ∈ 〈σn〉, so

σn |x− y and σn |x− y . Since σn and σn are not associated and qn = N(σn) =

σnσn, qn |x− y . Thus x = y. Next, let σn = u− vω where u, v ∈ Z, so that vω ≡

u(mod 〈σn〉). Suppose that (q, v) 6= 1, then q |v . Then σσ |v , so σ |v . Since vω ≡

u(mod 〈σn〉), σ |u . Thus σ |u . Since (σ, σ) = 1, σσ |u , i.e. q |u . Hence q |v and

q |u , then q |σn . It contradicts q = σσ - σn. Therefore (q, v) = 1, and so (qn, v) =

1. Then there is r ∈ Z such that rv ≡ 1(mod qn), then rv ≡ 1(mod 〈σn〉). Thus

rvω ≡ ru(mod 〈σn〉) and so ω ≡ ru(mod 〈σn〉). Since qn ≡ 0(mod 〈σn〉), for any

a, b ∈ Z, [a + bω]〈σn〉 = [a + bru]〈σn〉 = [x]〈σn〉 where 0 ≤ x < qn is the remainder

when dividing a+ bru by qn. Thus Z [ω] / 〈σn〉 = {[x] : 0 ≤ x < qn}. By Theorem

2.1.8, Z [ω] / 〈ak + bkω〉 = {[x + yω] : 0 ≤ x < k, 0 ≤ y < k (a2 − ab + b2)} where

(a, b) = 1. Thus

Z [ω] / 〈πn〉 = {[x + yω] : 0 ≤ x, y < πn}.

From the proof of Theorem 2.1.9, we have 〈(2 + ω)2m〉 = 〈(−3ω2)m〉 = 〈3m〉 and
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〈(2 + ω)2m+1〉 = 〈3m(2 + ω)〉 = 〈2 · 3m + 3mω〉, so

Z [ω] / 〈(2 + ω)2m〉 = {[x + yω] : 0 ≤ x, y < 3m}, and

Z [ω] / 〈(2 + ω)2m+1〉 = {[x + yω] : 0 ≤ x < 3m, 0 ≤ y < 3m+1}.

Finally, Z [ω] / 〈2n〉 = {[x + yω] : 0 ≤ x, y < 2n}.

Lemma 2.2.1 implies that Z [ω] / 〈σn〉 has qn elements, Z [ω] / 〈πn〉 has π2n

elements, Z [ω] / 〈(2 + ω)n〉 has 3n elements, and Z [ω] / 〈2n〉 has 22n elements.

Now we are ready to identify the unit group of these quotient rings.

Theorem 2.2.2. (i) ΦZ[ω] (σ
n) = {[x] : 0 ≤ x < qn and (q, x) = 1},

(ii) ΦZ[ω] (π
n) = {[x + yω] : 0 ≤ x, y < πn and (π, x) = 1 or (π, y) = 1},

(iii) ΦZ[ω] ((2 + ω)2m) = {[x + yω] : 0 ≤ x, y < 3m and 3 - (x− y)},

(iv) ΦZ[ω] ((2 + ω)2m+1) = {[x + yω] : 0 ≤ x < 3m, 0 ≤ y < 3m+1 and 3 - (x− y)},

(v) ΦZ[ω] (2
n) = {[x + yω] : 0 ≤ x, y < 2n and (2, x) = 1 or (2, y) = 1}.

Proof. Let α, β ∈ Z [ω] . Then [α] is a unit in Z [ω] / 〈β〉 if and only if [α] [γ] = [1]

in Z [ω] / 〈β〉, for some γ ∈ Z [ω] . Then [α] is a unit in Z [ω] / 〈β〉 if and only

if αγ ≡ 1(mod β) if and only if βδ + αγ = 1 for some δ ∈ Z [ω] if and only if

(α, β) = 1.

(i) Let x ∈ Z such that 0≤ x < qn. Then

x = x̄ and so [x]〈σn〉 ∈ ΦZ[ω] (σ
n) if and only if (x, σn) = 1

if and only if σ - x

if and only if σ - x and σ̄ - x

if and only if σσ̄ - x

if and only if q - x

if and only if (q, x) = 1.

Thus ΦZ[ω] (σ
n) = {[x] : 0 ≤ x < qn and (q, x) = 1}.

(ii) Let x, y ∈ Z such that 0≤ x < πn. Then

[x + yω]〈πn〉 ∈ ΦZ[ω] (π
n) if and only if (x + yω, πn) = 1

if and only if π - x + yω

if and only if π - x or π - y
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if and only if (π, x) = 1 or (π, y) = 1.

Thus ΦZ[ω] (π
n) = {[x + yω] : 0 ≤ x, y < πn and (π, x) = 1 or (π, y) = 1}.

(iii),(iv) Consider (x + yω, (2 + ω)n) = 1 if and only if 2 + ω - x + yω. By Lemma

2.1.1, 2 + ω - x + yω if and only if 3 - (x− y). Thus

ΦZ[ω] ((2 + ω)2m) = {[x + yω] : 0 ≤ x, y < 3m and 3 - (x− y)} and

ΦZ[ω] ((2 + ω)2m+1) = {[x + yω] : 0 ≤ x < 3m, 0 ≤ y < 3m+1 and 3 - (x− y)}.

(v) Let [x + yω]〈2n〉 ∈ Z [ω] / 〈2n〉. We have [x + yω]〈2n〉 ∈ ΦZ[ω] (2
n) if and only if

(x + yω, 2n) = 1 if and only if 2 - x + yω if and only if (2, x) = 1 or (2, y) = 1.

Thus

ΦZ[ω] (2
n) = {[x + yω] : 0 ≤ x, y < 2n and (2, x) = 1 or (2, y) = 1}.

Remark By Theorem 2.2.2, φZ[ω] (σ
n) = qn − qn−1, φZ[ω] (π

n) = π2n−2(π2 − 1),

φZ[ω] ((2 + ω)2m) = 2 · 32m−1, φZ[ω] ((2 + ω)2m+1) = 2 · 32m, φZ[ω] (2
n) = 3 · 22n−2.

Theorem 2.2.3. ΦZ[ω] (σ
n) ∼= Zqn−qn−1 .

Proof. By Theorem 2.2.2, ΦZ[ω] (σ
n) = {[x] : 0 ≤ x < qn, (q, x) = 1} . Then [x]〈σn〉 ∈

ΦZ[ω] (σ
n) if and only if [x]qn ∈ ΦZ (qn). Define f : ΦZ (qn) → ΦZ[ω] (σ

n) by

f([x]qn) = [x]〈σn〉. Let [x1]qn , [x2]qn ∈ ΦZ (qn) be such that [x1]qn = [x2]qn . Then

x1 ≡ x2(mod qn), so x1 ≡ x2(mod σn). Therefore [x1]〈σn〉 = [x2]〈σn〉. Thus f is a

function. Clearly f is onto.

Let [x1]qn , [x2]qn ∈ ΦZ (qn) such that f([x1]qn) = f([x2]qn), i.e. [x1]〈σn〉 = [x2]〈σn〉 .

Thus σn |x1 − x2 , so σ̄n |x1 − x2 . Since qn = σnσ̄n and σn and σ̄n are not associ-

ated, qn |x1 − x2 . Then [x1]qn = [x2]qn . Thus f is one to one function.

Let [x1]qn , [x2]qn ∈ ΦZ (qn). Then f([x1]qn) + f([x2]qn) = [x1]〈σn〉 + [x2]〈σn〉 =

[x1 + x2]〈σn〉 = f([x1 + x2]qn) = f([x1]qn + [x2]qn). Next, f([x1]qn) · f([x2]qn) =

[x1]〈σn〉 · [x2]〈σn〉 = [x1 · x2]〈σn〉= f([x1 · x2]qn) = f([x1]qn · [x2]qn). Hence f is a

ring isomorphism. The unit group of the ring Zqn is cyclic of order qn − qn−1, i.e.

ΦZ (qn) ∼= Zqn−qn−1 [5, pages 46 − 51](EthanD.Bolker, 1970). Thus ΦZ[ω] (σ
n) ∼=

Zqn−qn−1 .
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Lemma 2.2.4. (i) (1 + pω)pk

≡ 1 + ωpk+1(mod pk+2) where p is an odd prime

number.

(ii) (1 + 2ω)2k

≡ 1 + 2k+1(mod 2k+2).

(iii) (1 + 4ω)2k

≡ 1 + ω2k+2(mod 2k+3).

Proof. Let β ∈ Z [ω], r be a prime integer and k be a positive integer. Define

ρ = (1 + βr)rk
. Then

ρ = 1 + rkβr + rk(rk−1)
2

(βr)2 + rk(rk−1)(rk−2)
6

(βr)3 + rk(rk−1)(rk−2)(rk−3)
24

(βr)4 + ....

Given β = ω and r = p, then

2
∣∣pk − 1, 3

∣∣pk(pk − 1)(pk − 2), 4
∣∣pk(pk − 1)(pk − 2)(pk − 3).... Thus

ρ = 1 + pkωp + pk(pk−1)
2

(ωp)2 + pk(pk−1)(pk−2)
6

(ωp)3 + pk(pk−1)(pk−2)(pk−3)
24

(ωp)4 + ...

ρ = 1 + ωpk+1 + αpk+2 for some α ∈ Z [ω], so

ρ ≡ 1 + ωpk+1(mod pk+2).

Hence (1 + pω)pk ≡ 1 + ωpk+1(mod pk+2).

Given β = ω and r = 2 then

2
∣∣2k − 2, 3

∣∣(2k − 1)(2k − 2), 4
∣∣2k(2k − 1)(2k − 2)(2k − 3), ... . Thus

ρ = 1 + 2k+1ω + 2k(2k−1)
2

(2ω)2 + 2k(2k−1)(2k−2)
6

(2ω)3 + 2k(2k−1)(2k−2)(2k−3)
24

(2ω)4 + ...

ρ = 1 + ω2k+1 + 2k(2k−1)
2

(2ω)2 + 2k(2k−1)(2k−2)
6

(2ω)3 + α2k+2 for some α ∈ Z [ω].

Then ρ ≡ 1 + ω2k+1 + ω2(2k − 1)2k+1(mod 2k+2)

≡ 1 + ω2k+1 + (−ω − 1)(2k − 1)2k+1(mod 2k+2)

≡ 1 + ω2k+1 − ω(2k − 1)2k+1 − (2k − 1)2k+1(mod 2k+2)

≡ 1 + ω2k+1 − ω22k+1 + ω2k+1 − 22k+1 + 2k+1(mod 2k+2)

≡ 1 + ω2k+2 + 2k+1(mod 2k+2).

Hence (1 + 2ω)2k ≡ 1 + 2k+1(mod 2k+2).

Given β = 2ω and r = 2 then

ρ = 1 + 2k+2ω + 2k(2k−1)
2

(4ω)2 + 2k(2k−1)(2k−2)
6

(4ω)3 + 2k(2k−1)(2k−2)(2k−3)
24

(4ω)4 + ...

ρ = 1 + 2k+2ω + 2k+3(2k − 1)ω2 + (2k−1)(2k−2)
3

2k+5ω3 + ...

ρ ≡ 1 + 2k+2ω(mod 2k+3).

Hence (1 + 4ω)2k ≡ 1 + 2k+2ω(mod 2k+3).

Lemma 2.2.5. (i) The order of [1 + pω] in ΦZ[ω] (p
n) is pn−1, where p is an odd
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prime number.

(ii) The order of [1 + 2ω] in ΦZ[ω] (2
n) is 2n−1.

(iii) The order of [1 + 3ω] in ΦZ[ω] ((2 + ω)2m) is 3m−1.

(iv) The order of [1 + 3ω] in ΦZ[ω] ((2 + ω)2m+1) is 3m.

(v) The order of [1 + 4ω] in ΦZ[ω] (2
n) is 2n−2.

Proof. (i) Given k = n− 1 and k = n− 2 in Lemma 2.2.4 (i). Then

(1 + pω)pn−1 ≡ 1 + ωpn(mod 〈pn+1〉)

≡ 1(mod 〈pn〉),

(1 + pω)pn−2 ≡ 1 + ωpn−1 ≡ 1(mod 〈pn〉).

Thus the order of [1 + pω] in ΦZ[ω] (p
n) is pn−1.

(ii) Given k = n− 1 and k = n− 2 in Lemma 2.2.4 (ii). Then

(1 + 2ω)2n−1 ≡ 1 + 2n(mod 〈2n+1〉)

≡ 1(mod 〈2n〉),

(1 + 2ω)2n−2 ≡ 1 + 2n−1 ≡ 1(mod 〈2n〉).

Thus the order of [1 + 2ω] in ΦZ[ω] (2
n) is 2n−1.

(iii) Given k = m− 1 and k = m− 2 in Lemma 2.2.4 (i). Then

(1 + 3ω)3m−1 ≡ 1 + ω3m(mod 〈3m+1〉)

≡ 1(mod 〈3m〉),

(1 + 3ω)3m−2 ≡ 1 + ω3m−1 ≡ 1(mod 〈3m〉).

Thus the order of [1 + 3ω] in ΦZ[ω] ((2 + ω)2m) is 3m−1.

(iv) Let α = 2 + ω. Then α2 = −3ω2 and α2m+1 = (−3ω2)m(2 + ω), so 〈α2m+1〉 =

〈3mα〉. Since 3m+1 = 3m · 3 = 3m(−α2ω−2), 3m+2 = 3m+1(−α2ω−2), 〈3m+2〉 =

〈3m+1α2〉.

Given k = m and k = m− 1 in Lemma 2.2.4 (i). Then

(1 + 3ω)3m ≡ 1 + ω3m+1(mod 〈3m+2〉)

≡ 1 + ω3m(−α2ω−2)(mod 〈3m+2〉)

≡ 1 + ω3m(−α2ω−2)(mod 〈3m+1α2〉)

≡ 1 + ω3m(−α2ω−2)(mod 〈3m+1α〉)

≡ 1(mod 〈3mα〉).
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Then (1 + 3ω)3m ≡ 1(mod 〈α2m+1〉),

(1 + 3ω)3m−1 ≡ 1 + ω3m(mod 〈3m+1〉)

≡ 1 + ω3m(mod 〈3mα2〉)

≡ 1(mod 〈3mα〉).

Then (1 + 3ω)3m−1 ≡ 1(mod 〈α2m+1〉).

Thus the order of [1 + 3ω] in ΦZ[ω] (α
2m+1) is 3m.

(v) Given k = n− 2 and k = n− 3 in Lemma 2.2.4 (iii). Then

(1 + 4ω)2n−2 ≡ 1 + 2nω(mod 〈2n+1〉)

≡ 1(mod 〈2n〉),

(1 + 4ω)2n−3 ≡ 1 + 2n−1ω(mod 〈2n〉)

≡ 1(mod 〈2n〉).

Thus the order of [1 + 4ω] in ΦZ[ω] (2
n) is 2n−2.

Lemma 2.2.6. (i) In ΦZ[ω] (2
n), [1 + 4ω]k〈2n〉 6= [x]〈2n〉 , [xω]〈2n〉 and [xω2]〈2n〉 for

all x ∈ Z.

(ii) In ΦZ[ω] ((2 + ω)n), [1 + 3ω]k〈(2+ω)n〉 6= [x]〈(2+ω)n〉 , [xω]〈(2+ω)n〉 and [xω2]〈(2+ω)n〉

for all x ∈ Z.

(iii) In ΦZ[ω] (π
n), [1 + πω]k〈πn〉 6= [x]〈πn〉 , [xω]〈πn〉 and [xω2]〈πn〉 for all x ∈ Z.

Proof. Let c ∈ Z [ω] be called special if [c]〈2n〉 = [x]〈2n〉 , [xω]〈2n〉 or [xω2]〈2n〉 for

some x ∈ Z. Let B denote the set of all b such that (1 + 4ω)b ≡ c(mod 2n)

where 0 < b < 2n−2. Note that if b ∈ B, then bt ∈ B for all t ∈ Z+. First, we

show that 2n−3 /∈ B. Put k = n− 3 in Lemma 2.2.4 (iii), we have (1 + 4ω)2n−3

≡

1 + 2n−1ω(mod 2n). Then c ≡ 1 + 2n−1ω(mod 2n), so 1 + 2n−1ω− c ≡ 0(mod 2n).

If c = x ∈ Z, then 2n |2n−1 , a contradiction. If c = xω, then 2n |1, a contradiction.

If c = xω2, then

1 + 2n−1ω − xω2 ≡ 1 + 2n−1ω + x(ω + 1)(mod 2n)

≡ (x + 1) + (2n−1 + x)ω(mod 2n), so

2n |2n−1 + x and 2n |1 + x . Thus x = k2n−1 for some k ∈ Z, so 2n |2n−1 + k2n − 1,

2n |2n−1 − 1, a contradiction. Then 2n−3 /∈ B. Let L ∈ B be the least element.

Dividing 2n−2 by L we have 2n−2 = Ld + r where 0 ≤ r < L. If r = 0, then
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L = 2t for some t such that 0 < t < n − 3. Then [1 + 4ω]2
n−3

〈2n〉 = [1 + 4ω]L2n−3−t

〈2n〉 .

Since L ∈ B, 2n−3 ∈ B, it is an impossible. Then r 6= 0. Since the order of

[1 + 4ω]〈2n〉 in ΦZ[ω] (2
n) is 2n−2, [1]〈2n〉 = [1 + 4ω]Ld+r

〈2n〉 = [1 + 4ω]Ld
〈2n〉 [1 + 4ω]r〈2n〉 =

[s]〈2n〉 [1 + 4ω]r〈2n〉 some special s. Let s = x, xω or xω2 for some x ∈ Z. Since

[s] ∈ ΦZ[ω] (2
n), x is odd. Then there is y ∈ Z such that [yx]2n = [1]2n in

ΦZ (2n) . Thus [yx]〈2n〉 = [1]〈2n〉 in ΦZ[ω] (2
n) . Then [y]〈2n〉 = [ys]〈2n〉 [1 + 4ω]r〈2n〉 in

ΦZ[ω] (2
n) . Since s = x, xω or xω2 for some x ∈ Z, r ∈ B. But r < L, a contradic-

tion. Thus [1 + 4ω]k〈2n〉 6= [x]〈2n〉 , [xω]〈2n〉 and [xω2]〈2n〉 for all x ∈ Z. In the same

way, [1 + 3ω]k〈(2+ω)n〉 6= [x]〈(2+ω)n〉 , [xω]〈(2+ω)n〉 and [xω2]〈(2+ω)n〉 for all x ∈ Z and

[1 + πω]k〈πn〉 6= [x]〈πn〉 , [xω]〈πn〉 and [xω2]〈πn〉 for all x ∈ Z.

Next, we will consider the structure of ΦZ[ω] (π
n) , ΦZ[ω] ((2 + ω)n) and ΦZ[ω] (2

m).

Theorem 2.2.7. ΦZ[ω] (π
n) ∼= Zπn−1 × Zπn−1 × Zπ2−1.

Proof. Let H be generated by [1 + πω]〈πn〉 . Then the order of H is πn−1.

Define f : ΦZ (πn) → ΦZ[ω] (π
n) by f ([x]πn) = [x]〈πn〉 . Since ΦZ (πn) is cyclic

and φZ (πn) = πn−1 (π − 1) , there is some [a]πn in ΦZ (πn) which has order πn−1.

Then f ([a]πn) = [a]〈πn〉 ∈ ΦZ[ω] (π
n) has order πn−1. Let K =

〈
[a]〈πn〉

〉
. Then

the order of K is πn−1. By Lemma 2.2.6, H ∩ K = {[1]}. Next, since π is

prime in Z [ω] , Z [ω] / 〈π〉 is a field and ΦZ[ω] (π) is cyclic order π2 − 1. Given

ΦZ[ω] (π) =
〈
[β]〈πn〉

〉
. Then βπ2−1 ≡ 1(mod π) in Z [ω] and βπ2−1 = 1+γπ for some

γ ∈ Z [ω] . Then (βπ2−1)πn−1
= (1+γπ)πn−1 ≡ 1(mod πn) and (βπn−1

)π2−1 ≡ 1(mod

πn) in Z [ω]. Since the order of [β]〈πn〉 ∈ ΦZ[ω] (π) is π2− 1 and (πn−1, π2− 1) = 1,

the order of [βπn−1
]〈πn〉 ∈ ΦZ[ω] (π

n) is π2 − 1. Set R =
〈
[βπn−1

]〈πn〉

〉
. Then the

order of R is π2 − 1. Now since every member of HK has order a power of π,

HK ∩R = {[1]}, and the order of HKR is πn−1πn−1 (π2 − 1) = φZ[ω] (π
n). Thus

ΦZ[ω] (π
n) = HKR ∼= Zπn−1 × Zπn−1 × Zπ2−1.

Theorem 2.2.8. (i) ΦZ[ω] ((2 + ω)2m) ∼= Z3m−1 × Z3m−1 × Z3 × Z2.

(ii) ΦZ[ω] ((2 + ω)2m+1) ∼= Z3m × Z3m−1 × Z3 × Z2.
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Proof. Let α = 2 + ω.

(i) Define µ : ΦZ (3m) → ΦZ[ω] (α
2m) by µ([a]3m) = [a]〈α2m〉. Since ΦZ (3m) is cyclic

and φZ (3m) = 2 · 3m−1, there is some [β]3m ∈ ΦZ (3m) has order 3m−1.

Let K =
〈
[β]〈α2m〉

〉
in ΦZ[ω] (α

2m) , R =
〈
[−1]〈α2m〉

〉
and I =

〈
[ω]〈α2m〉

〉
. Set

H =
〈
[1 + 3ω]〈α2m〉

〉
. Then the order of H is 3m−1. By Lemma 2.2.6, H ∩K =

{[1]} and the order of HK is 32m−2. Since every member of HK has order a

power of 3, HK ∩ R = {[1]} . By Lemma 2.2.6, [ω]〈α2m〉 /∈ H. It is obvious

that [ω]〈α2m〉 /∈ K ∪ R. Thus HKR ∩ I = {[1]} . Since the order of HKIR is

3m−1 · (2 · 3m−1) · 3 = φZ[ω] (α
2m), ΦZ[ω] (α

2m) = HKIR.

(ii) Define µ : ΦZ (3m) → ΦZ[ω] (α
2m+1) by µ([a]3m) = [a]〈α2m+1〉. Since ΦZ (3m) is

cyclic and φZ (3m) = 2 · 3m−1, there is some [β]3m ∈ ΦZ (3m) has order 3m−1. Let

K =
〈
[β]〈α2m+1〉

〉
in ΦZ[ω] (α

2m+1) , R =
〈
[−1]〈α2m+1〉

〉
and I =

〈
[ω]〈α2m+1〉

〉
. Set

H =
〈
[1 + 3ω]〈α2m+1〉

〉
. Then the order of H is 3m. By Lemma 2.2.6, H ∩ K =

{[1]} and the order of HK is 32m−1. Since every member of HK has order a

power of 3, HK ∩ R = {[1]} . By Lemma 2.2.6, [ω]〈α2m+1〉 /∈ H. It is obvious

that [ω]〈α2m+1〉 /∈ K ∪ R. Thus HKR ∩ I = {[1]} . Since the order of HKIR is

3m · (2 · 3m−1) · 3 = φZ[ω] (α
2m+1) , ΦZ[ω] (α

2m+1) = HKIR.

Theorem 2.2.9. ΦZ[ω] (2
n) ∼= Z2n−1 × Z2n−2 × Z3 × Z2.

Proof. Let H =
〈
[1 + 2ω]〈2n〉

〉
, K =

〈
[1 + 4ω]〈2n〉

〉
, I =

〈
[ω]〈2n〉

〉
, and R =〈

[−1]〈2n〉

〉
. Then the order of H is 2n−1 and the order of K is 2n−2.

(1) We will show that H∩K = {[1]} . Suppose that [1 + 4ω]k1

〈2n〉 = [1 + 2ω]k2

〈2n〉 . By

Lemma 2.2.6, since (1 + 2ω)2 = −3, k2 is odd number. Then ([1 + 4ω]k1

〈2n〉)
2n−2

=

([1 + 2ω]k2

〈2n〉)
2n−2

= ([1 + 2ω]2
n−2

〈2n〉 )k2 . Since (1 + 2ω)2n−2

≡ 1 + 2n−1(mod 2n),

(1 + 2ω)2n−2·k2 ≡ (1 + 2n−1)
k2(mod 2n). Thus ((1+4ω)k1)2n−2 ≡ (1 + 2ω)2n−2·k2 ≡

(1 + 2n−1)
k2 ≡ 1 + k22

n−1(mod 2n), it contradicts Lemma 2.2.5. Then H ∩K =

{[1]} and the order of HK is 22n−3. Since every member of HK has order a power

of 2, HK ∩ I = {[1]}.

(2) We will show that [−1]〈2n〉 /∈ H∪K∪I. By Lemma 2.2.6, we have [−1]〈2n〉 /∈ K.

It is obvious that [−1]〈2n〉 /∈ I. Suppose that [−1]〈2n〉 = [1 + 2ω]k〈2n〉for some k ∈ Z.
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Then −1 ≡ (1 + 2ω)k(mod 2n), (−1)2 ≡ (1 + 2ω)2k(mod 2n), 1 ≡ (1 + 2ω)2k(mod

2n). By Lemma 2.2.5, 2n−1 |2k , so 2n−2 |k . Then k = t2n−2 for some t ∈ Z. Thus

−1 ≡ (1 + 2ω)k ≡ (1 + 2ω)t2n−2

≡ (1 + 2n−1)
t ≡ 1+t2n−1+t (t− 1) 22n−3+...(mod

2n). Then 0 ≡ 2 (1 + t2n−2)(mod 2n), it is a contradiction. Hence [−1]〈2n〉 /∈ H,

thus HKI ∩R = {[1]} . Since the order of HKIR is 2n−1 · 2n−2 · 3 · 2 = φZ[ω] (2
n),

ΦZ[ω] (2
n) = HKIR ∼= Z2n−1 × Z2n−2 × Z3 × Z2.

Theorem 2.2.10. Let β1, β2 ∈ Z [ω] with (β1, β2) = 1. Define f : ΦZ[ω] (β1) ×

ΦZ[ω] (β2) → Z [ω] / 〈β1β2〉 by f ([η1] , [η2]) = [η] , where η ≡ ηi(mod βi) for i = 1, 2.

Then f is a ring monomorphism and Imf = ΦZ[ω] (β1β2).

Proof. Let β1, β2 ∈ Z [ω] with (β1, β2) = 1.

Define f : ΦZ[ω] (β1) × ΦZ[ω] (β2) → Z [ω] / 〈β1β2〉 by f ([η1] , [η2]) = [η], where

η ≡ ηi(mod βi) for i = 1, 2. Let ([µ1] , [µ2]) , ([θ1] , [θ2]) ∈ ΦZ[ω] (β1) × ΦZ[ω] (β2)

and ([µ1] , [µ2]) = ([θ1] , [θ2]). Then µi ≡ θi(mod βi) for i = 1, 2. The Chinese

Remainder Theorem implies that there is a unique λ such that λ ≡ µi ≡ θi(mod

βi) for i = 1, 2. Thus f ([µ1] , [µ2]) = f ([θ1] , [θ2]), f is a function. For i = 1, 2,

if η ≡ ηi(mod βi) where ηi ∈ ΦZ[ω] (βi) and (ηi, βi) = 1, then (η, βi) = 1, thus

(η, β1β2) = 1. Thus Imf = ΦZ[ω] (β1β2), and we have kerf = {0}.

Let ([µ1] , [µ2]) , ([θ1] , [θ2]) ∈ ΦZ[ω] (β1)×ΦZ[ω] (β2), then f ([µ1] , [µ2])+f ([θ1] , [θ2]) =

µ + θ where µ ≡ µi(mod βi) and θ ≡ θi(mod βi) for i = 1, 2. Thus µ +

θ ≡ µi + θi(mod βi) for i = 1, 2. Then f ([µ1] , [µ2]) + f ([θ1] , [θ2]) = µ + θ =

f ([µ1 + θ1] , [µ2 + θ2]) = f ([µ1] + [θ1] , [µ2] + [θ2]) = f(([µ1] , [µ2]) + ([θ1] , [θ2])),

f preserves an addition. We have f ([µ1] , [µ2]) f ([θ1] , [θ2]) = µθ such that µ ≡

µi(mod βi) and θ ≡ θi(mod βi) for i = 1, 2. Thus µθ ≡ µiθi(mod βi) for i = 1, 2.

Then f ([µ1] , [µ2]) f ([θ1] , [θ2]) = µθ = f ([µ1θ1] , [µ2θ2]) = f ([µ1] [θ1] , [µ2] [θ2]) =

f (([µ1] , [µ2]) ([θ1] , [θ2])), f preserves a multiplication. Hence f is a ring monomor-

phism and Imf = ΦZ[ω] (β1β2).
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Example 2.2.11. −72− 27ω = 45ω + 72(−ω − 1)

= 45ω + 72ω2

= 9ω(5 + 8ω)

= 32ω(9 + 12ω + 4(−ω − 1))

= 32ω(9 + 12ω + 4ω2)

= (2 + ω)4(3 + 2ω)2.

We have N(3 + 2ω) = 7.

Thus ΦZ[ω] (−72− 27ω) = ΦZ[ω] ((2 + ω)4(3 + 2ω)2)

∼= ΦZ[ω] ((2 + ω)4)× ΦZ[ω] ((3 + 2ω)2)

∼= Z3 × Z3 × Z3 × Z2 × Z42. �

Example 2.2.12. 19ω = (5 + 3ω)(2− 3ω)ω.

We have N(5 + 3ω) = N(2− 3ω) = 19 ≡ 1(mod 6).

Thus ΦZ[ω] (19ω) = ΦZ[ω] ((5 + 3ω)(2− 3ω))

∼= ΦZ[ω] (5 + 3ω)× ΦZ[ω] (2− 3ω)

∼= Z342 × Z342. �



CHAPTER III

FACTORS OF QUOTIENT RINGS OVER QUADRATIC

INTEGER RINGS

In this chapter, we will generalize the idea in chapter 2 to obtain factors of

the quadratic integer rings Z [ω] = {a + bω |a, b ∈ Z} for ω =
√

d where d is a

square free integer such that d ≡ 2, 3(mod 4) or ω = (1 +
√

d)/2 where d is a

square free integer such that d ≡ 1(mod 4), which is a principal ideal domain.

Let d be a square free integer, and

ω =


√

d , if d ≡ 2, 3(mod 4),

(1 +
√

d)/2 , if d ≡ 1(mod 4).

Then the minimal polynomial of ω over Q is

m(x) =

x2 − d , if d ≡ 2, 3(mod 4),

x2 − x + 1−d
4

, if d ≡ 1(mod 4).

If d ≡ 2, 3(mod 4), then ω = −
√

d and so ω + ω = 0, ωω = −d and ω2 − d = 0.

If d ≡ 1(mod 4), then ω = (1 −
√

d)/2 and so ω + ω = 1, ωω = 1−d
4

and

ω2 − ω +
(

1−d
4

)
= 0.

For any a + bω ∈ Z [ω], define the norm of a + bω to be N(a + bω) = (a + bω)(a +

bω) = a2 + ab(ω + ω) + b2ωω.

Then N(a + bω) =

a2 − b2d , if d ≡ 2, 3(mod 4),

a2 + ab + b2 1−d
4

, if d ≡ 1(mod 4).
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3.1 Factors of Quotient Rings over Ring of Quadratic In-

tegers.

Lemma 3.1.1. Let a and b be relatively prime integers, then

m + nω belongs to the ideal 〈ak + bkω〉 if and only if kN (a + bω) divides both

ma + mb + nb
(

1−d
4

)
and an −mb if d ≡ 1(mod 4) and kN (a + bω) divides both

ma− nbd and an−mb if d ≡ 2, 3(mod 4).

Proof. Let a and b be relatively prime integers.

Case 1. d ≡ 1(mod 4). For any m + nω ∈ Z [ω], we have

m + nω

ak + bkω
=

(m + nω) (ak + bkω)

(ak + bkω) (ak + bkω)

=
mak + ankω + mbkω̄ + nbkωω̄

k2N (a + bω)

=
mak + mbk + nbk

(
1−d
4

)
k2N (a + bω)

+
(ank −mbk) ω

k2N (a + bω)

=
ma + mb + nb

(
1−d
4

)
kN (a + bω)

+
(an−mb) ω

kN (a + bω)
.

Thus m + nω ∈ 〈ak + bkω〉 if and only if kN (a + bω) divides both ma + mb +

nb
(

1−d
4

)
, and an−mb.

Case 2. d ≡ 2, 3(mod 4). For any m + nω ∈ Z [ω], we have

m + nω

ak + bkω
=

(m + nω) (ak + bkω)

(ak + bkω) (ak + bkω)

=
mak + ankω + mbkω̄ + nbkωω̄

k2N (a + bω)

=
mak − nbdk

k2N (a + bω)
+

(ank −mbk) ω

k2N (a + bω)

=
ma− nbd

kN (a + bω)
+

(an−mb) ω

kN (a + bω)
.

Thus m+nω ∈ 〈ak + bkω〉 if and only if kN (a + bω) divides both ma−nbd, and

an−mb.
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Lemma 3.1.2. If a is a positive integer larger than 1, then Z [ω] / 〈a〉 ∼= Za [ω] .

Proof. Define φ : Z [ω] → Za [ω] by φ (x + yω) = [x]a+[y]a ω. It is obvious from the

definition of φ that φ is onto. Next, we will show that φ is a ring homomorphism.

Let x1 + y1ω, x2 + y2ω ∈ Z [ω]. Then

φ (x1 + y1ω + x2 + y2ω) = φ ((x1 + x2) + (y1 + y2) ω)

= [x1 + x2]a + [y1 + y2]a ω

= ([x1]a + [y1]a ω) + ([x2]a + [y2]a ω)

= φ (x1 + y1ω) + φ (x2 + y2ω) .

Case 1. d ≡ 1(mod 4). Then

φ ((x1 + y1ω) (x2 + y2ω)) = φ((x1x2 − y1y2 (1− d) /4) + (x2y1 + y1y2 + x1y2) ω)

= [x1x2 − y1y2 (1− d) /4]a + [x2y1 + y1y2 + x1y2]a ω

= [x1]a [x2]a − [y1]a [y2]a (1− d) /4

+([x2]a [y1]a + [y1]a [y2]a + [x1]a [y2]a) ω

= [x1]a [x2]a + [y1]a [y2]a (ω − (1− d) /4)

+ ([x2]a [y1]a + [x1]a [y2]a) ω

= ([x1]a + [y1]a ω) ([x2]a + [y2]a ω)

= φ (x1 + y1ω) φ (x2 + y2ω).

Case 2. d ≡ 2, 3(mod 4). Then

φ ((x1 + y1ω) (x2 + y2ω)) = φ (x1x2 − y1y2d + (x2y1 + x1y2)ω)

= [x1x2 − y1y2d]a + [x2y1 + x1y2]a ω

= [x1]a [x2]a + [y1]a [y2]a d + ([x2]a [y1]a + [x1]a [y2]a) ω

= ([x1]a + [y1]a ω) ([x2]a + [y2]a ω)

= φ (x1 + y1ω) φ (x2 + y2ω).

Hence φ is a surjective ring homomorphism. Since φ (a) = [a]a = [0]a , a ∈ ker φ.
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Then 〈a〉 ⊆ ker φ. Let x + yω ∈ ker φ. Then [0]a = φ (x + yω) = [x]a + [y]a ω, i.e.

both x and y are congruent to 0 modulo a, so we can write x = ax
′
and y = ay

′

for some x
′
, y

′ ∈ Z. Then x + yω = ax′ + ay′ω ∈ 〈a〉. Thus ker φ ⊆ 〈a〉. Then

ker φ = 〈a〉. Hence Z [ω] / 〈a〉 ∼= Za [ω].

Lemma 3.1.3. Let a+ bω ∈ Z [ω] where a and b are relatively prime integers and

s = N (a + bω). Then Z [ω] / 〈a + bω〉 ∼= Zs. Consequently if s is a prime number,

then a + bω is irreducible.

Proof. Let a + bω ∈ Z [ω] where a and b are relatively prime integers.

Case 1. d ≡ 2, 3(mod 4). Then s = N (a + bω) = a2 − b2d. Since (a, b) = 1,

(a2, b) = 1. Then (b, s) = (b, a2 − b2d) = 1, so b−1 exists in Zs. Since a2 − b2d ≡

0(mod s), a2b−2 − b2b−2d ≡ 0(mod s). Thus (ab−1)
2 ≡ d(mod s). To show that

Z [ω] / 〈a + bω〉 ∼= Zs, define φ : Z [ω] → Zs by

φ (x + yω) = [x− (ab−1) y]

where [t] = [t]s.

For any m ∈ Z, φ (m) = [m− (ab−1) 0] = [m] , so φ is surjective.

Next, let x1 + y1ω and x2 + y2ω ∈ Z [ω]. Thus

φ ((x1 + y1ω) + (x2 + y2ω)) = φ ((x1 + x2) + (y1 + y2) ω)

= [(x1 + x2)− (ab−1) (y1 + y2)]

= [(x1 − (ab−1) y1) + (x2 − (ab−1) y2)]

= [x1 − (ab−1) y1] + [x2 − (ab−1) y2]

= φ (x1 + y1ω) + φ (x2 + y2ω), and

φ ((x1 + y1ω) (x2 + y2ω)) = φ((x1x2 + dy1y2) + (y1x2 + x1y2) ω)

= [x1x2 + dy1y2 − (ab−1) (y1x2 + x1y2)]

=
[
x1x2 + (ab−1)

2
y1y2 − (ab−1) (y1x2 + x1y2)

]
= [(x1 − (ab−1) y1) · (x2 − (ab−1) y2)]

= φ (x1 + y1ω) φ (x2 + y2ω).
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Thus φ is a surjective ring homomorphism.

Moreover, since φ (a + bω) = [a− (ab−1) b] = [0], 〈a + bω〉 ⊆ ker φ. Next, let

m + nω ∈ ker φ, then

m + nω

a + bω
=

(m + nω) (a + bω)

(a + bω) (a + bω)

=
ma− nbd + (an−mb) ω

N (a + bω)

=
ma− nbd

N (a + bω)
+

(an−mb) ω

N (a + bω)

=
ma− nbd

s
+

(an−mb) ω

s
.

Since [0] = φ (m + nω) = [m− ab−1n] , [an−mb] = [0]. By [mb− an] = [0], we

have [mab2 − na2b] = [ab] [mb− an] = [0] . Then [ma− na2b−2b] = [b−2] [mab2 − na2b]

= [0]. Since (ab−1)
2 ≡ d( mod s), [ma− dbn] = [0]. Thus a + bω |m + nω

and m + nω ∈ 〈a + bω〉. Hence ker φ ⊆ 〈a + bω〉 and so ker φ = 〈a + bω〉.

Then Z [ω] / 〈a + bω〉 ∼= Zs. Consequently, if s is a prime number in Z then

Z [ω] / 〈a + bω〉 is a field. Hence σ = a + bω is irreducible in Z [ω].

Case 2. d ≡ 1(mod 4). Then s = N (a + bω) = a2 + ab + b2
(

1−d
4

)
. Since

(a, b) = 1, (a2, b) = 1. Then (b, s) = (b, a2 + ab + b2
(

1−d
4

)
) = 1, so b−1 exists in

Zs. Since a2 + ab + b2
(

1−d
4

)
≡ 0( mod s), a2b−2 + abb−2 + b2b−2

(
1−d
4

)
≡ 0(mod

s). Thus (ab−1)
2 ≡ −ab−1 −

(
1−d
4

)
(mod s). To show that Z [ω] / 〈a + bω〉 ∼= Zs,

define φ : Z [ω] → Zs by

φ (x + yω) = [x− (ab−1) y]

where [t] = [t]s.

For any m ∈ Z, φ (m) = [m− (ab−1) 0] = [m], so φ is surjective.

Next, let x1 + y1ω and x2 + y2ω ∈ Z [ω]. Thus

φ ((x1 + y1ω) + (x2 + y2ω)) = φ ((x1 + x2) + (y1 + y2) ω)

= [(x1 + x2)− (ab−1) (y1 + y2)]
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= [(x1 − (ab−1) y1) + (x2 − (ab−1) y2)]

= φ (x1 + y1ω) + φ (x2 + y2ω), and

φ ((x1 + y1ω) (x2 + y2ω)) = φ((x1x2 −
(

1−d
4

)
y1y2) + (y1x2 + x1y2 + y1y2) ω)

=
[
x1x2 −

(
1−d
4

)
y1y2 − (ab−1) (y1x2 + x1y2 + y1y2)

]
=

[
x1x2 +

(
−ab−1 −

(
1−d
4

))
y1y2 − (ab−1) (y1x2 + x1y2)

]
=

[
x1x2 + (ab−1)

2
y1y2 − (ab−1) (y1x2 + x1y2)

]
= [(x1 − (ab−1) y1) · (x2 − (ab−1) y2)]

= φ (x1 + y1ω) φ (x2 + y2ω).

Thus φ is a ring homomorphism.

Moreover, since φ (a + bω) = [a− (ab−1) b] = [0], 〈a + bω〉 ⊆ ker φ.

Next, let m + nω ∈ ker φ, then

m + nω

a + bω
=

(m + nω) (a + bω)

(a + bω) (a + bω)

=
ma + anω + mbω̄ + nbωω̄

N (a + bω)

=
ma + mb + nb

(
1−d
4

)
+ (an−mb) ω

N (a + bω)

=
ma + mb + nb

(
1−d
4

)
s

+
(an−mb) ω

s
.

Since [0] = φ (m + nω) = [m− ab−1n] , [an−mb] = [m− ab−1n] [−b] = [0] .

By [mb− an] = [0], we have [mab2 − na2b] = [mb− an] [ab] = [0]. Then

[ma− na2b−2b] = [mab2 − na2b] [b−2] = [0]. Since (ab−1)
2 ≡ −ab−1 −

(
1−d
4

)
(mod

s),
[
ma + an +

(
1−d
4

)
bn

]
=

[
ma−

(
−ab−1 −

(
1−d
4

))
bn

]
= [0], then[

ma + mb +
(

1−d
4

)
bn

]
= [0] . Thus a+bω |m + nω and m+nω ∈ 〈a + bω〉. Hence

ker φ ⊆ 〈a + bω〉 and so ker φ = 〈a + bω〉. Then Z [ω] / 〈a + bω〉 ∼= Zs. Con-

sequently, if s is a prime number in Z then Z [ω] / 〈a + bω〉 is a field. Hence

σ = a + bω is irreducible in Z [ω].
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In the next lemma we use Legendre symbol so we will give the definition.

Definition 3.1.4. Let p be an odd prime number and a ∈ Z such that p - a.

Define the Legendre symbol as follows:

(
a

p

)
=

1 , if x2 ≡ a(mod p) has a solution in Z,

−1 , otherwise.

Lemma 3.1.5. Let p be an odd prime number.

Let m(x) be the polynomial obtained from reducing the coefficients of m(x) modulo

p. Then m(x) is irreducible in Zp [x] if and only if
(

d
p

)
= −1.

In which case, Zp [ω] ∼= Zp [x] / 〈m(x)〉 is a field.

Proof. Suppose
(

d
p

)
= −1. Then x2 ≡ d(mod p) has no solution in Z. Suppose

that m(x) has a root a in Zp.

Case 1. d ≡ 2, 3(mod 4). Then m(a) = a2 − d = 0, i.e. a2 ≡ d(mod p), a

contradiction.

Case 2. d ≡ 1(mod 4).

4m(x) = 4(x2 − x + 1−d
4

) = (2x + 1)2 − d.

Since a is a root of m(x), (2a + 1)2 = d, i.e. (2a+1)2 ≡ d(mod p), a contradiction.

Hence m(x) has no root in Zp, so m(x) is irreducible over Zp.

Conversely, assume that
(

d
p

)
= 1. Hence there exists an integer a such that

a2 ≡ d(mod p).

Case 1. d ≡ 2, 3(mod 4). Then m(x) = x2 − d ≡ x2 − a2 = (x− a)(x + a)(mod

p), i.e. m(x) is not irreducible in Zp [x].

Case 2. d ≡ 1(mod 4). Then 4m(x) = 4x2 − 4x + 1 − d = (2x − 1)2 − d ≡

(2x− 1)2 − a2 = (2x− 1− a)(2x− 1 + a)(mod p), so 4m(x) is not irreducible in

Zp [x].

Finally when m(x) is irreducible in Zp [x], we have Zp [ω] ∼= Zp [x] / 〈m(x)〉 is a

field.



32

Lemma 3.1.6. For d ≡ 1(mod 4), let m(x) be the polynomial obtained by reducing

all coefficient of m(x) modulo 2. Then m(x) has no solution in Z2 if and only if

d ≡ 5(mod 8). In which case, Z2 [ω] ∼= Z2 [x] / 〈m(x)〉 is a field.

Proof. d ≡ 5(mod 8) if and only if 1−d
4

is an odd integer

if and only if m(x) ≡ x2 − x + 1−d
4
≡ x2 − x− 1(mod 2)

if and only if m(x) has no solution in Z2,

and when this happens m(x) is irreducible in Z2 [x]. Hence Z2 [ω] ∼= Z2 [x] / 〈m(x)〉

is a field.

Lemma 3.1.7. (i) For any odd prime integer q, 〈q〉 = 〈α〉2 for some α ∈ Z [ω]

if and only if q |d.

(ii) 〈2〉 = 〈α〉2 for some α ∈ Z [ω] if and only if d ≡ 2, 3(mod 4).

Proof. (i) Let 〈q〉 = 〈α〉2 for some α ∈ Z [ω].

Case 1. d ≡ 2, 3(mod 4). By Lemma 3.1.5, Zq [x] /
〈
x2 − d

〉 ∼= Zq [ω] ∼=

Z [ω] / 〈q〉 ∼= Z [ω] / 〈α〉2. We have α + 〈α〉2 is nonzero nilpotent, then there exists

a monic polynomial x+a in Zq [x] such that (x + a)+
〈
x2 − d

〉
∈ Zq [x] /

〈
x2 − d

〉
is nonzero nilpotent. Thus

(
k
) (

x2 − d
)

= (x + a)2 for some k ∈ Zq [x] such that

k is a polynomial with degree 0. Since q is a prime in Z, k is a unit of Zq [x]

such that kk
′

= 1. Thus
(
x2 − d

)
= k

′

(x + a)2 = k
′

x2 + 2k
′

ax + k
′

(a)2 . Thus

k
′

= 1, a = 0, 0 = (a)2 = −d. Hence q |d.

Case 2. d ≡ 1(mod 4). By Lemma 3.1.5, Zq [x] /
〈
x2 − x +

(
1−d
4

)〉 ∼= Zq [ω] ∼=

Z [ω] / 〈q〉 ∼= Z [ω] / 〈α〉2. We have α + 〈α〉2 is nonzero nilpotent, then there ex-

ists a monic polynomial x + a in Zq [x] such that (x + a) +
〈
x2 − x +

(
1−d
4

)〉
∈

Zq [x] /
〈
x2 − x +

(
1−d
4

)〉
is nonzero nilpotent. Thus (k)(x2−x+(1−d

4
)) = (x + a)2

for some k ∈ Zq [x] such that k is a polynomial with degree 0. Since q is a

prime in Z, k is a unit of Zq [x] such that kk
′

= 1. Thus (x2 − x + (1−d
4

)) =

k
′

(x + a)2 = k
′

x2 + 2k
′

ax + k
′

(a)2. Thus k
′

= 1, 2a = −1, (a)2 =
(

1−d
4

)
, then

1 = 4 (a)2 = 4
(

1−d
4

)
= 1− d. Hence q |d .

Next, suppose that q |d . Then x2 − d ≡ x2(mod q) if d ≡ 2, 3(mod 4), and
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4
(
x2 − x +

(
1−d
4

))
≡ 4x2−4x+1−d = (2x− 1)2(mod q) if d ≡ 1(mod 4). Hence

there exists a nonzero f(x) ∈ Zq [x] such that f(x)2 + 〈m(x)〉 = 〈m(x)〉. Since

Zq [x] / 〈m(x)〉 ∼= Zq [ω] ∼= Z [ω] / 〈q〉, there exists α ∈Z[ω] such that (α + 〈q〉)2 =

〈q〉, i.e. 〈α〉2 = 〈q〉.

(ii) Suppose that d ≡ 2, 3(mod 4). By Lemma 3.1.5, Z2 [x] /
〈
x2 − d

〉 ∼= Z2 [ω] ∼=

Z [ω] / 〈2〉. Since d = 0 or 1 then x2 − d is a square in Z2 [x]. Therefore Z [ω] / 〈2〉

has nonzero nillpotent elements, so 〈2〉 = 〈α〉2 for some α ∈ Z [ω].

Conversely, suppose there exists α ∈ Z [ω] such that 〈α〉2 = 〈2〉. Since Z [ω] / 〈2〉 ∼=

Z2 [ω] ∼= Z2 [x] / 〈m(x)〉 where m(x) ∈ Z [x] is minimal polynomial of ω, there ex-

ists a nonzero f(x) = x − a ∈ Z2 [x] such that 〈x− a〉2 = 〈m(x)〉. Thus m(x)

is square in Z2 [x]. Suppose m(x) = x2 − x − (d−1
4

) is square in Z2 [x]. Then

x2 − x − (d−1
4

) = m(x) = (x − a)2 = x2 − a2 which is a contradiction. Hence

m(x) = x2 − d, and so d ≡ 2, 3(mod 4).

Next, we will determine the irreducible elements of the ring of the quadratic

integers.

Theorem 3.1.8. Up to association, the irreducible elements in Z [ω] are exactly

the followings:

(i) σ = a + bω, σ = a + bω where |N (σ)| = |N (σ)| is a prime number and

〈σ〉 6= 〈σ〉,

(ii) α = a + bω, α = a + bω where |N (α)| = |N (α)| is a prime number and

〈α〉 = 〈α〉,

(iii) π where π is an odd prime number in Z such that π - d and ( d
π
) = −1,

(iv) 2 where d ≡ 5(mod 8).

Proof. (i) and (ii) follow from Theorem 1.2.4 (vi).

(iii) Let π be an odd prime number in Z such that π - d and ( d
π
) = −1. By Lemma

3.1.2 and Lemma 3.1.5, Z [ω] / 〈π〉 ∼= Zπ [ω] is a field. Hence π is an irreducible

element.

(iv) Suppose d ≡ 5(mod 8). By Lemma 3.1.2 and Lemma 3.1.6, Z2 [ω] ∼= Z [ω] / 〈2〉
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is a field. Hence 2 is an irreducible element.

Conversely, let β be an irreducible element in Z [ω].

Case 1. β = 2. Since Z [ω] / 〈2〉 ∼= Z2 [ω] and 2 is irreducible , Z2 [ω] is a field.

By Lemma 3.1.6, we have d ≡ 5(mod 8).

Case 2. β = π is odd prime integer. Since Z [ω] / 〈π〉 ∼= Zπ [ω] and π is irreducible,

Zπ [ω] ∼= Zπ [x] / 〈m(x)〉 is a field. By Lemma 3.1.5, ( d
π
) = −1.

Case 3. β = a + bω. Let q = N (a + bω) be a prime number. Since β is

an irreducible element, a and b are relatively prime and Z [ω] / 〈β〉 is a field.

By Lemma 3.1.3, Z [ω] / 〈β〉 ∼= Zq so q is a prime number. If β � β̄ , then

q = N (β) = ββ̄ = N
(
β̄
)

so 〈q〉 = 〈β〉
〈
β̄
〉

where 〈β〉 6=
〈
β̄
〉
. If β ∼ β̄, then

q = N (β) = ββ̄ = uβ2 for some unit u ∈ Z [ω] so 〈q〉 = 〈β2〉 = 〈β〉2 where

〈β〉 =
〈
β̄
〉
.

For a nonzero quadratic integer a + bω, we have

a + bω ∼ 2t ·
∏

σui
i ·

∏
σvi

i ·
∏

πei
i ·

∏
αki

i

where ui, vi, ei, ki, t ∈ Z+
0 .

Theorem 3.1.9. If a, b, k are positive integers such that a and b are relatively

prime, then

Z [ω] / 〈ak + bkω〉 =
{[

x
′
+ y

′
ω
]

: 0 ≤ x
′
< k |N (a + bω)| , 0 ≤ y

′
< k

}
.

Proof. Assume that a, b, k are positive integers such that a and b are relatively

prime.

Case 1. d ≡ 1(mod 4). Let [x + yω] ∈ Z [ω] / 〈ak + bkω〉. Since (a, b) = 1,

there exist integers s and t such that as + bt = 1. Then aks + bkt = k. Therefore

kω − (ak + bkω)ωs − (ak + bkω)t + (ak + bkω)s = bks
(

1−d
4

)
− akt + aks. Then

kω ≡ bks
(

1−d
4

)
− akt + aks(mod 〈ak + bkω〉), so

kω ≡ m(mod 〈ak + bkω〉) for m = bks
(

1−d
4

)
−akt+aks ∈ Z. (1)

And k |N (a + bω)| = |(ak + bkω)(a + bω)| ∈ 〈ak + bkω〉, then

k |N (a + bω)| ≡ 0(mod 〈ak + bkω〉). (2)



35

Thus [x + yω] =
[
x + (n1k + y

′
)ω

]
where y = n1k + y

′
such that 0 ≤ y

′
< k

=
[
x + n1kω + y

′
ω
]

=
[
x + n1m + y

′
ω
]

by (1)

=
[
n2k |N (a + bω)|+ x

′
+ y

′
ω
]

where x + n1m = n2k |N (a + bω)|

+x
′
such that 0 ≤ x

′
< k |N (a + bω)|

=
[
x
′
+ y

′
ω
]

by (2).

Hence [x + yω] =
[
x
′
+ y

′
ω
]
, with 0 ≤ x

′
< k |N (a + bω)| , 0 ≤ y

′
< k.

Case 2. d ≡ 2, 3(mod 4). Let [x + yω] ∈ Z [ω] / 〈ak + bkω〉. Since (a, b) = 1,

there exist integers s and t such that as + bt = 1. Then aks + bkt = k. Therefore

kω − (ak + bkω)ωs− (ak + bkω)t = −bksd− akt. Then kω ≡ −bksd− akt(mod

〈ak + bkω〉), so

kω ≡ m(mod 〈ak + bkω〉) for m = −bksd−akt ∈ Z. (3)

And k |N (a + bω)| = |(ak + bkω)(a + bω)| ∈ 〈ak + bkω〉, then

k |N (a + bω)| ≡ 0(mod 〈ak + bkω〉). (4)

Thus [x + yω] =
[
x + (n1k + y

′
)ω

]
where y = n1k + y

′
such that 0 ≤ y

′
< k

=
[
x + n1kω + y

′
ω
]

=
[
x + n1m + y

′
ω
]

by (3)

=
[
n2k |N (a + bω)|+ x

′
+ y

′
ω
]

where x + n1m = n2k |N (a + bω)|

+x
′
such that 0 ≤ x

′
< k |N (a + bω)|

=
[
x
′
+ y

′
ω
]

by (4).

Hence [x + yω] =
[
x
′
+ y

′
ω
]
, with 0 ≤ x

′
< k |N (a + bω)| , 0 ≤ y

′
< k.

Next, Let x1, y1, x2, y2 ∈ Z such that 0 ≤ x1, x2 < k |N (a + bω)| , 0 ≤ y1, y2 < k

and [x1 + y1ω] = [x2 + y2ω]. Then (x2 − x1) + (y2 − y1)ω ∈ 〈ak + bkω〉.

Case 1. d ≡ 1(mod 4). By Lemma 3.1.1, we have kN (a + bω) |a(x2 − x1) +

b(y2−y1)
(

1−d
4

)
+b(x2−x1) and kN (a + bω) |a(y2−y1)−b(x2−x1). Thus kN (a + bω) |

b(a(x2 − x1) + b(y2 − y1)
(

1−d
4

)
+ b(x2 − x1)) + b(a(y2 − y1)− b(x2 − x1))

+a(a(y2 − y1)− b(x2 − x1)), then k |y2 − y1 . Since 0 ≤ y2, y1 < k, y2 = y1.

Thus kN (a + bω) |(a + b) (x2 − x1) , kN (a + bω) |−b(x2 − x1) . Since (a, b) = 1, (a+

b,−b) = 1. Then kN (a + bω) |x2 − x1 . Since 0 ≤ x2, x1 < k |N (a + bω)|, x2 = x1.
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Case 2. d ≡ 2, 3(mod 4), we have kN (a + bω) |a(x2 − x1) − bd(y2 − y1) and

kN (a + bω) |a(y2 − y1) − b(x2 − x1). Thus

kN (a + bω) |b(a(x2 − x1) − bd(y2 − y1)) + a(a(y2 − y1)− b(x2 − x1)),

then k |y2 − y1 . Since 0 ≤ y2, y1 < k, y2 = y1.

Therefore kN (a + bω) |a(x2 − x1) and kN (a + bω) |−b(x2 − x1). Since (a,−b) =

1, kN (a + bω) |x2 − x1. Since 0 ≤ x2, x1 < k |N (a + bω)|, x2 = x1.

Theorem 3.1.10. Let a + bω ∈ Z [ω] \ {0} be such that

a + bω ∼ 2t ·
∏

σui
i ·

∏
σvi

i ·
∏

πei
i ·

∏
αki

i

where ui, vi, ei, ki, t ∈ Z+
0 , s1 =

∏
N(σui

i ), s2 =
∏

N(σvi
i ), s3 = 2t ·

∏
πei

i , and

R = Z [ω] /
〈∏

(αi)
ki

〉
. Then Z [ω] / 〈a + bω〉 ∼= Zs1 ⊕ Zs2 ⊕ Zs3 [ω]⊕R.

Proof. Let a and b be integers, not both zero, such that s1 =
∏

N(σui
i ),

s2 =
∏

N(σvi
i ), s3 = 2t ·

∏
πei

i , and R = Z [ω] /
〈∏

(αi)
ki

〉
. Since

a + bω ∼ 2t ·
∏

σui
i ·

∏
σvi

i ·
∏

πei
i ·

∏
αki

i

〈a + bω〉 =
〈∏

σui
i ·

∏
σvi

i · 2t ·
∏

πei
i ·

∏
αki

i

〉
. (1)

By Theorem 1.2.8, and Z[ω] is a principal ideal domain, we arrive at

Z [ω] / 〈a + bω〉 ∼= Z [ω] /
〈∏

σui
i ·

∏
σvi

i · 2t ·
∏

πei
i ·

∏
αki

i

〉
∼= Z [ω] / 〈

∏
σui

i 〉 ⊕ Z [ω] / 〈
∏

σvi
i 〉

⊕Z [ω] / 〈2t ·
∏

πei
i 〉 ⊕ Z [ω] /

〈∏
αki

i

〉
. (2)

Consider
∏

σui
i = m + nω. We will show that Z [ω] / 〈m + nω〉 ∼= ZN(m+nω).

Clearly, πi does not divide m + nω for all i. Next, in case d ≡ 5(mod 8), 2 is

irreducible then 2 does not divide m + nω. Finally, for any prime q ∈ Z such that

q 6= πi for all i. Since N (q) = q2, up to associated q = ab where a, b are irreducible

elements of Z [ω] .

If q = αiβ for some i and nonzero nonunit β ∈ Z [ω] . Then q - m + nω.

If q = πiβ for some i and nonzero nonunit β ∈ Z [ω] . Then q - m + nω.

If q = σ
′
iβ for some i and nonzero nonunit β ∈ Z [ω] . Then q - m + nω.

If q = σiβ for some i and nonzero nonunit β ∈ Z [ω] . Then q2 = N (q) = N (σiβ) =



37

N (σi) N (β) . Thus q = N (σi) = σiσi. Hence q does not divide m+nω. Therefore

(m, n) = 1. By Lemma 3.1.3, Z [ω] / 〈
∏

σui
i 〉 ∼= Z [ω] / 〈m + nω〉 ∼= ZN(m+nω)

∼=

Z∏
N(σ

ui
i )

∼= Zs1 . Similarly, the second term in (2) is isomorphic to Zs2 . Thanks

to Lemma 3.1.2, the third term is isomorphic to Zs3 [ω] . Hence Z [ω] / 〈a + bω〉 ∼=

Zs1 ⊕ Zs2 ⊕ Zs3 [ω]⊕R.

Example 3.1.11. Let d = 5 then d ≡ 1 (mod 4).

By Theorem 3.1.7, up to association, the irreducible elements in Z [ω] are ex-

actly the followings:

(i) σ = a + bω, σ = a + bω where |N (σ)| = |N (σ)| is a prime number and

〈σ〉 6= 〈σ〉,

(ii) α = 2 + ω, α = 2 + ω where |N (2 + ω)| = |N (2 + ω)| = 5 and 〈2 + ω〉 =

〈2 + ω〉,

(iii) π where π is an odd prime number in Z such that π ≡ 2, 3(mod 5),

(iv) 2.

We have −224 + 28ω = 28(−8 + ω)

= 28(−9 + ω + 1)

= 28(−9 + ω2)

= 7 · 22(3 + ω)(−3 + ω)

= 7 · 22(3 + ω)(2 + ω)(2− ω).

Next, we will show that 〈3 + ω〉 6= 〈3 + ω̄〉, We have 3 + ω̄ = 4 − ω and

N(3 + ω) = N(4 − ω). Suppose that 〈3 + ω〉 = 〈4− ω〉, then 3 + ω = u(4 − ω)

for some unit u ∈ Z [ω]. Thus u = −1 and 4u = 3, it is a contradiction.

Hence 〈3 + ω〉 6= 〈3 + ω̄〉 and N(3 + ω) = 11. Since 2 − ω is a unit of Z [ω],

〈−224 + 28ω〉 = 〈7 · 22(3 + ω)(2 + ω)〉.

Thus Z [ω] / 〈−224 + 28ω〉 = Z [ω] / 〈7 · 22(3 + ω)(2 + ω)〉
∼= Z11 ⊕ Z28 [ω]⊕ Z [ω] / 〈2 + ω〉. �
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3.2 The Euler φ−function for the Ring of Quadratic Inte-

gers.

In this section we will consider the Euler φ−function over the ring of quadratic

integers. For β ∈ Z [ω] , we denote the unit group of the ring of Z [ω] / 〈β〉 by

ΦZ[ω] (β). We denote Euler φ−function of β over Z [ω] by φZ[ω] (β) is defined to be

the order of multiplicative group of ΦZ[ω] (β). In this section, we denote irreducible

element in Z [ω] as in the last section.

Note. N (α) = q where α is as in Theorem 3.1.8 (ii).

Theorem 3.2.1. The equivalence classes of Z [ω] modulo a power of irreducible

are given as follows :

(i) Z [ω] / 〈σn〉 = {[x] : 0 ≤ x < N (σ)n},

(ii) Z [ω] / 〈πn〉 = {[x + yω] : 0 ≤ x, y < πn},

(iii) Z [ω] / 〈α2m〉 = {[x + yω] : 0 ≤ x, y < qm},

(iv) Z [ω] / 〈α2m+1〉 = {[x + yω] : 0 ≤ x < qm+1, 0 ≤ y < qm},

(v) Z [ω] / 〈2n〉 = {[x + yω] : 0 ≤ x, y < 2n}.

Proof. Let σn = m + nω. Claim Z [ω] / 〈σn〉 = {[x] : 0 ≤ x < N (σ)n} We have

−nω ≡ m(mod m + nω). Suppose that (N (σ) , n) 6= 1, then N (σ) |n. Then

(m + nω) (m + nω) |n , (m + nω) |n , (m + nω) |m and

(m + nω) (m + nω) |m , N (m + nω) |m . Thus N (m + nω) |m + nω but N (m + nω)

= (m + nω) (m + nω), it is impossible. Thus (N (σ) , n) = 1. Therefore

(N (m + nω) , n) = 1. Then there is r ∈ Z such that rn ≡ 1(mod N (m + nω)),

then rn ≡ 1( mod m + nω). Thus −rnω ≡ rm( mod m + nω),−ω ≡ rm(mod

m + nω). Hence if [a + bω] ∈ Z [ω] / 〈σn〉 then [a + bω] = [x] where 0 ≤ x <

N (m + nω),

Z [ω] / 〈m + nω〉 = {[x] : 0 ≤ x < N (m + nω)}.

Next, Let [x] = [y] in {[x] : 0 ≤ x < N (m + nω)} . Then x−y ∈ 〈m + nω〉 . There-

fore m+nω |x− y and m+nω |x− y . Since m+nω and m+nω are not associated,
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N (m + nω) |x− y . Thus x = y. Hence Z [ω] / 〈σn〉 = {[x] : 0 ≤ x < N (σ)n}. By

Theorem 3.1.9, Z [ω] / 〈ak + bkω〉 = {[x + yω] : 0 ≤ x < k |N (a + bω)| , 0 ≤ y < k}

where (a, b) = 1. Thus

Z [ω] / 〈πn〉 = {[x + yω] : 0 ≤ x, y < πn},

Z [ω] / 〈α2m〉 = {[x + yω] : 0 ≤ x, y < qm},

Z [ω] / 〈α2m+1〉 = {[x + yω] : 0 ≤ x < qm+1, 0 ≤ y < qm},

Z [ω] / 〈2n〉 = {[x + yω] : 0 ≤ x, y < 2n}.

This theorem implies that Z [ω] / 〈σn〉 has N (σ)n elements, Z [ω] / 〈πn〉 has

π2n elements, Z [ω] / 〈αn〉 has qn elements, and Z [ω] / 〈2n〉 has 22n elements.

Now we are ready to identify the units of the rings in Theorem 3.2.1.

Theorem 3.2.2. (i) ΦZ[ω] (σ
n) = {[x] : 0 ≤ x < N (σ)n and (N (σ) , x) = 1},

(ii) ΦZ[ω] (π
n) = {[x + yω] : 0 ≤ x, y < πn and (π, x) = 1 or (π, y) = 1},

(iii) In case d ≡ 1(mod 4), let α = u + vω and N(α) = q,

ΦZ[ω] (α
2m) = {[x + yω] : 0 ≤ x, y < qm and q -

(
xu + xv + yv

(
1−d
4

))
or

q - (yu− xv)},

In case d ≡ 2, 3(mod 4), let α = u + vω and N(α) = q,

ΦZ[ω] (α
2m) = {[x + yω] : 0 ≤ x, y < qm and q - (xu− yud) or q - (yu− xv)}

(iv) In case d ≡ 1(mod 4), let α = u + vω and N(α) = q,

ΦZ[ω] (α
2m+1) = {[x + yω] : 0 ≤ x < qm+1, 0 ≤ y < qm and q -

(
xu + xv + yv

(
1−d
4

))
or q - (yu− xv)},

In case d ≡ 2, 3(mod 4), let α = u + vω and N(α) = q,

ΦZ[ω] (α
2m+1) = {[x + yω] :0 ≤ x < qm+1, 0 ≤ y < qm and q - (xu− yud) or

q - (yu− xv)},

(v) ΦZ[ω] (2
n) = {[x + yω] : 0 ≤ x, y < 2n and (2, x) = 1 or (2, y) = 1}

Proof. Let a, b ∈ Z [ω]. Then [a] is a unit in Z [ω] / 〈b〉 if and only if [a] [c] = [1]

in Z [ω] / 〈b〉, for some c ∈ Z [ω] . Then [a] is a unit in Z [ω] / 〈b〉 if and only if

ac ≡ 1(mod b) if and only if be + ac = 1 for some e ∈ Z [ω] if and only if

(a, b) = 1.
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Consider ΦZ[ω] (α
2m), let α = u+vω and x+yω ∈ Z [ω] / 〈α2m〉. If d ≡ 2, 3(mod 4)

by Lemma 3.1.1, (u + vω, x + yω) = 1 if and only if u+vω - x+yω if and only if q -

(xu− yud) or q - (yu− xv) . If d ≡ 1(mod 4) by Lemma 3.1.1, (u + vω, x + yω) =

1 if and only if u + vω - x + yω if and only if q -
(
xu + xv + yv

(
1−d
4

))
or

q - (yu− xv). Hence if d ≡ 1(mod 4),

ΦZ[ω] (α
2m) = {[x + yω] : 0 ≤ x, y < qm and q -

(
xu + xv + yv

(
1−d
4

))
or

q - (yu− xv)},

if d ≡ 2, 3(mod 4),

ΦZ[ω] (α
2m) = {[x + yω] : 0 ≤ x, y < qm and q - (xu− yud) or q - (yu− xv)}.

In the same way, we have

if d ≡ 1(mod 4),

ΦZ[ω] (α
2m+1) = {[x + yω] : 0 ≤ x < qm+1, 0 ≤ y < qm and q -

(
xu + xv + yv

(
1−d
4

))
or q - (yu− xv)},

if d ≡ 2, 3(mod 4),

ΦZ[ω] (α
2m+1) = {[x + yω] :0 ≤ x < qm+1, 0 ≤ y < qm and q - (xu− yud) or

q - (yu− xv)},

ΦZ[ω] (σ
n) = {[x] : 0 ≤ x < N (σ)n and (N (σ) , x) = 1},

ΦZ[ω] (π
n) = {[x + yω] : 0 ≤ x, y < πn and (π, x) = 1 or (π, y) = 1},

ΦZ[ω] (2
n) = {[x + yω] : 0 ≤ x, y < 2n and (2, x) = 1 or (2, y) = 1}.

Example 3.2.3. In Z
[
(1 +

√
5)/2

]
, N(4 + ω) = 19 is a prime integer.

Since 17 + 9ω = (4 + ω)2,

ΦZ[ω] (17 + 9ω) = ΦZ[ω] ((4 + ω)2)

= {[x] : 0 ≤ x ≤ 192 = 361 and (x, 361) = 1}.

Thus φZ[ω] (17 + 9ω) = 192 − 19 = 342. �
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