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CHAPTER I

INTRODUCTION

Functions of one complex variable have many nice and interesting proper-

ties that are not valid for function of real variables. One of such properties is

the rigidity phenomena; a condition that could be held by only a small group

(maybe unique) of functions. For example, The Identity Principle states that ze-

ros of a nonzero holomorphic function must be discrete on its (connected)domain.

Nevalinna’s Five Value Theorem states that two meromorphic functions that agree

at five points (ignoring multiplicity) must be identically equal. Indeed, these prop-

erties are not held by real valued functions. Another example of rigidity phenom-

ena is the equality part of the Schwarz’s lemma. In this thesis , we denote D ⊆ C
the unit disc in the complex plane. T denotes ∂D and C+ = {z ∈ C|Re(z) > 0}.
Classical Schwarz’s Lemma: If f : D→ D is holomorphic with f(0) = 0 then

|f(z)| ≤ |z|,∀z ∈ D and |f ′(0)| ≤ 1.

Furthermore, if |f(z)| = |z|, for some z ∈ D r {0} or |f ′(0)| = 1 then f(z) = λz

where λ is a unimodular constant.

Schwarz’s lemma, a simple consequence of the maximum modulus principle,

has many interesting generalizations and plays an important role in studying

geometric function theory. In 1938, Lars Ahlfors gave a geometric interpretation

of this theorem : A holomorphic function on the unit disc are distance decreasing

in Poincaré metric. One interesting consequence of this interpretation is a simple

proof of the great Picard’s theorem(see [7] ). Schwarz’s lemma can also be used

to classify the automorphisms on the unit disc (Aut(D)) which is used to define

Blaschke’s product. Another easy consequence of Schwarz’s lemma is that a non-

identity holomorphic function on the unit disc has exactly one fixed point inside
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the disc. Farkas and Ritt also gave a condition that the iteration of function will

converge to the fixed point (see [7]).

Our main interest is the conditions on the boundary. Löwner (see [10]) con-

ducted a study in this direction with a motivation from distortion theorems. In

1994 Burns and Krantz [3] significantly improved the result of Löwner by removing

many restrictive conditions in the theorem. They proved

Theorem 1.1 (Burns-Krantz’s Theorem). Let f : D→ D be holomorphic and

f(z) = 1 + (z − 1) + O(z − 1)4

as z → 1. Then f(z) ≡ z on the unit disc.

Roughly, this theorem says that if a holomorphic function on the unit disc has

a fixed point at the boundary and f approaches to that point at a certain rate

then f must be the identity map. They also provide an example to show that 4 in

this theorem is sharp. Also “1” in the theorem can be replaced by any points on

T. Note that it could be seen from the proof that O(z− 1)4 may be strengthened

to o(z − 1)3.

Burns-Krantz’s theorem has been generalized to the finite Blaschke’s prod-

uct (see [4]); D.Chelest gave a condition on the boundary that forces the func-

tion to be a finite Blaschke’s product. In [2] R.Tausaro and F.Vlacci gave the

same result under weaker condition that limr→1−
F (r)−r
(1−r)3

which is equivalent to

limz→1 ReF (z)−z
(1−z)3

= 0 where the limit is taken in Stolz angle (or nontangential

limit region, see Section 3.3.) with the vertex at point z = 1.

In this thesis, we present some new results on generalization of Burns-Krantz’s

theorem. In chapter III, we give the boundary rigidity for analytic functions

on more general simply connected domains with nice boundary and a result on

nontangential limit case and the case of the finite Blaschke’s product. We conclude

with some suggestions on future work.



CHAPTER II

PRELIMINARIES

In this section we summarized some results used in the next chapter. Their

proofs can be found in most standard analysis textbooks except Definition 2.10,

Definition 2.11 and Theorem 2.12 which are taken from [5]. We include the proof

of Theorem 2.7 which is taken from [6]. Firstly, we remark that a domain is a

connected open subset of C.

Definition 2.1 (Big-Oh Notation.). We write f(z) = O(g(z)), z → a to mean as

z → a, there is an constant C such that |f(z)| ≤ C|g(z)|.

Definition 2.2 (Little-Oh Notation.). We write f(z) = o(g(z)), z → a to mean

as z → a, f(z)
g(z)

→ 0.

Theorem 2.3 (Logarithm Function). If U is an open simply connected set in C

that does not contain 0. We can find an analytic function log : U → C such that

exp(log z) = z for all z ∈ U . The function log is unique up to addition of integer

multiple of 2πi.

Theorem 2.4 (Riemann Mapping Theorem). If Ω  C is a simply connected

domain then there exists a bijective function F : Ω → D such that F, F−1 are

holomorphic.We will call F a Riemann map of Ω.

Furthermore, for any z0 ∈ D, we can choose F so that F (z0) = 0.

Theorem 2.5 (Maximum Modulus Principle). Let ∅ 6= Ω ⊆ C.

MV P (Ω) = {f ∈ C(Ω) : ∀ω ∈ Ω,∃δ > 0s.t.∀0 6 r 6 δ, f(ω) =
1

2π

∫ 2π

0

f(ω+reiθ)dθ}

Note that f ∈ C(Ω) is harmonic if and only if f ∈ MV P (Ω) and that every

holomorphic function on Ω is harmonic on Ω.
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Maximum modulus principle states that if f ∈ MV P (Ω) then if ∃η ∈ Ω, |f(η)| ≥
|f(z)|∀z ∈ Ω, then f is a constant function.

Theorem 2.6 (Schwarz Reflection Principle). If Ω ⊆ C is a domain which is

symmetric with respect to the real axis and let Ω+ = Ω ∩ {z|Im(z) > 0} be the

part of Ω in the upper half plane. Let u(z) be a real-valued harmonic function on

Ω+ such that u(z) → 0 as z ∈ Ω+ tends to a point of Ω ∩ R. Then u(z) extends

to a harmonic function on Ω.

Consequently, an analytic function f defined on a domain Ω with free analytic

boundary arc (see Definitions 3.6-3.7) such that |f(z)| → 1, as z → ∂Ω could be

holomorphically extended to the boundary.

Theorem 2.7 (Pick’s Lemma). If f(z) is analytic and satisfies |f(z)| < 1 for

|z| < 1, then

|f ′(z)| ≤ 1− |f(z)|2
1− |z|2 , |z| < 1.

Furthermore, the equality holds if and only if f is a conformal self map of D.

Proof. This proof is taken from [6]. Fix z0 ∈ D and w0 = f(z0). Let g(z) and

h(z) be conformal self-maps of D mapping 0 to z0 and w0 to 0 respectively says,

g(z) =
z + z0

1 + z̄0z
, h(w) =

w − w0

1− w̄0w

∴ h ◦ f ◦ g maps 0 to 0. ∴ |(h ◦ f ◦ g)′(0)| = |h′(w0)f
′(z0)g

′(0)| ≤ 1. ∴ |f ′(z0)| ≤
1

|g′(0)||h′(w0)| . Substituting g′(0) = 1 − |z0|2, h′(w0) = 1
1−|w0|2 , we have |f ′(z0)| ≤

1−|f(z0)|2
1−|z0|2 . For the equality case, if f is a conformal self-map of D , then so is

h ◦ f ◦ g. Hence

|(h ◦ f ◦ g)′(0)| = |h′(w0)f
′(z0)g

′(0)| = 1.

Conversely, if the equality holds at one point z0 then by calculation above |(h ◦
f ◦ g)′(0)| = 1 . Then h ◦ f ◦ g ≡ λz, |λ| = 1, is a conformal self-map so f is a

conformal self map.
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Definition 2.8. Let X be a normed linear space. Let fn be a sequence in X∗.

The weak* convergence of fn to f ∈ X∗ means that fn(x) → f(x) pointwise as

n →∞ for every x ∈ X.

Theorem 2.9 (Banach-Alaoglu’s Theorem). If V is a neighborhood of 0 in a

topological vector space X and if K = {Λ ∈ X∗ : |Λx| ≤ 1∀x ∈ V } then K is

weak* compact.

Definition 2.10. Let B = C(T) then B∗ = M(T)(Borel measure on T.) The

Fourier coefficients of measures are called Fourier-Stieltjes coefficients. Fourier

series of measure is called Fourier-Stieltjes series.We say that a measure µ is

positive if µ(E) > 0 for every measurable set E or equivalently, if
∫

fdµ ≥ 0

whenever f ∈ C(T) is nonnegative. If µ is absolutely continuous, that is, µ =

1
2π

g(t)dt, g ∈ L1(T) (Radon-Nakodym’s Theorem) then µ is positive if and only if

g ≥ 0a.e.

Definition 2.11. A numerical sequence {an,n∈Z} is positive definit if for any

choice of complex numbers {zn}, we have

∑
n,m

an−mznz̄m > 0.

Theorem 2.12 (Herglotz). A numerical sequence {an,n∈Z} is positive definit if

and only if there is a positive measure µ ∈ M(T) such that an = µ̂(n) for all n.



CHAPTER III

MAIN RESULTS

In section 3.1, we present the idea that Burns and Krantz used in their paper

[3]. We present our main results in Section 3.2-3.4. In Section 3.2, we generalize

Burns-Krantz’s theorem to some kind of simply connected domain. In Sections

3.3 and 3.4, the condition with non-tangential limit is investigated. We conclude

with Section 3.5 for some suggestions on future work.

3.1 Burns-Krantz’s Theorem

The main tools in [3] is the following two theorems. Theorem 3.1 is a standard

result in partial differential equation. We give the proof of Theorem 3.2 following

the idea given in [7]. For a thorough treatment of Theorem 3.2, see [1].

Theorem 3.1 (Hopf’s Lemma). If u is a nonnegative nonconstant real-valued

harmonic function on D and γ ∈ ∂D be such that u is continuous at γ and u(z) ≥
u(γ) for all z∈ D. Then the outer normal derivative of u at γ is negative.

Theorem 3.2 (Herglotz’s Representation Theorem). If g is a holomorphic func-

tion from D to C+ = {z ∈ C|Re(z) > 0}. Then there is a positive measure µ on

[0, 2π) and a purely imaginary constant C such that

g(ζ) =
1

2π

∫ 2π

0

eiθ + ζ

e−iθ − ζ
dµ(θ) + C.

Proof. For 0< r < 1 we define Gr(e
iθ) = Re g(reiθ) which is positive and has mean

value g(0). Thus they form a bounded set in L1[0, 2π) ⊆ M [0, 2π) = C[0, 2π)∗.

Here C[0, 2π) is the space of all continuous functions from [0, 2π) to R and M [0, 2π)

is the space of real finite borel measure on [0, 2π). By Banach-Alaoglu’s theorem,
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there is a subsequence Grj
converging to a measure µ in M [0, 2π) in the weak*

topology. Now using Poisson’s kernel we get

Re g(ζ) = lim
j→∞

Re g(rjζ) = lim
j→∞

∫ 2π

0

Re g(rje
iθ)

eiθ + ζ

eiθ − ζ
dθ

=

∫ 2π

0

Re
eiθ + ζ

eiθ − ζ
dµ(θ).

Now
∫ 2π

0
eiθ+ζ
eiθ−ζ

dµ(θ) defines an analytic function having the same real part as g.

It follows that g =
∫ 2π

0
eiθ+ζ
eiθ−ζ

dµ(θ) + iK, K ∈ R.

The idea of proving Burns-Krantz’s theorem is to use the assumption on ap-

proaching rate to the fixed point at the boundary to construct a nonnegative

harmonic function whose normal derivative at the point is zero. Now we present

the idea of proving this theorem given in [3].

Proof of Theorem 1.1. Let g(ζ) = 1+f(ζ)
1−f(ζ)

. By Herglotz’s representation theorem

there is a positive measure µ on [0, 2π) and a purely imaginary constant C such

that

g(ζ) =
1

2π

∫ 2π

0

eiθ + ζ

eiθ − ζ
dµ(θ) + C.

Now using the hypothesis on g and geometric series expansion, we have

g(ζ) =
1 + ζ + O(ζ − 1)4

1− ζ −O(ζ − 1)4
=

1

1− ζ
(1 + ζ + O(ζ − 1)4)(1 + O(ζ − 1)3).

=
1 + ζ

1− ζ
+ O(ζ − 1)2.

Now write µ = δ0 + ν(where δ0 is 2π times Dirac mass at the origin), we can use

the above two equations to derive Fourier-Stieltjes expansion of δ0 + ν and apply

Herglotz’s criterion of positive measure (see [5]) to conclude the positivity of ν.

Taking real part , we have

O(ζ − 1)2 = Re(
1

2π

∫ 2π

0

eiθ + ζ

eiθ − ζ
dν(θ)).

Call the expression on the right h(θ) which is a positive harmonic function taking

minimum at 1 (since it is zero there) and is O(z− 1)2 there. Hopf’s lemma forces

h ≡ 0, that is ν ≡ 0. So f(z) ≡ z.
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Example 3.3. In [3] the authors claimed that φ(z) = z− 1
10

(1−z)3 maps D to D.

This means that 4 in the hypothesis of Theorem 1.1 couldn’t be replaced by 3. The

only thing that is nontrivial is that φ maps into D. By Maximum modulus principle

we consider only z = eit. By calculation, |f(eit)|2 = − 8
100

cos3(t) − 16
100

cos2(t) +

56
100

cos(t)+ 68
100

. It can be verified by standard calculus that the above expression has

modulus at most 1. Our technique is useful for verifying or creating these kinds

of examples.

3.2 Burns-Krantz’s Theorem on simply connected domain.

In this section we study Burns-Krantz’s theorem on a simply connected do-

main rather than the unit disc. It turns out that our main tool is that the Riemann

map (the map in Riemann Mapping Theorem) locally maps boundary to bound-

ary. Therefore we focus on the domain that its boundary is locally mapped to the

boundary of unit disc by the Riemann map.

Theorem 3.4. Let Ω ( C be a simply connected domain such that if F : Ω → D

is a Riemann map then it can be extended locally holomorphically to its boundary.

This means that for each a ∈ ∂Ω there is neighborhood B of a such that F can

be extended holomorphically to B ∩ ∂Ω and F maps B ∩ ∂Ω into the boundary of

disc. Now if f : Ω → Ω is holomorphic such that

f(z) = z + O(z − a)4

as z → a. Then f(z) ≡ z.

Proof. Suppose f : Ω → Ω is analytic and f(z) = z + O(z − a)4, z → a, a ∈
∂Ω. Let φ : Ω → D be the Riemann map such that φ(0) = 0. Hence φ can

be extended to a neighborhood of a. Now we have φ ◦ f ◦ φ−1 : D → D is

holomorphic. Now by differentiability of φ, we have φ(z+h) = φ(z)+O(h), h → 0.

Also φ is a conformal map, φ(0) = 0, φ−1(0) = 0 We have φ(h) = O(h) and

φ−1(x) − φ−1(y) = O(x − y), |x − y| → 0. Suppose that z → φ(a) ∈ ∂D then
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φ−1(z) → a ∈ ∂Ω. Therefore, as z → φ(a),

φ(f(φ−1(z))) = φ(φ−1(z)) + O((φ−1(z)− a)4)

= φ(φ−1(z)) + O((φ−1(z)− a))4.

= z + O(z − φ(a))4.

Invoking Burns-Krantz’s theorem on the unit disc, we have that φ◦f ◦φ−1(z) ≡ z

i.e. f(z) ≡ z.

Example 3.5. In case that Ω is the strip {z ∈ C,−1 < Re(z) < 1}. We can

explicitly construct a Riemann map F : D → Ω by F (z) = 2
π

log(i1−z
1+z

) − 1. Here

log is the logarithm with branch cut at negative imaginary axis and log(1) = 0.

(Note that 1−z
1+z

maps D to C+ and log maps the upper half plane to {z ∈ C|0 <

Im(z) < 1}. F can be extended holomorphically to F : D − {−1, 1} → Ω and F

maps the upper half of ∂D onto the left half of ∂Ω and maps the lower half of ∂D

onto the right half of ∂Ω. We indeed have Burns-Krantz’s theorem for analytic

functions on the strip.

Definitions 3.6, 3.7 are taken from [6].

Definition 3.6. Let Ω ⊆ C be a domain. An analytic curve(analytic arc) γ is a

curve γ such that for every point of γ, one has an open neighborhood U for which

there is a conformal map ζ 7→ z(ζ) of a disc D centered on the real line such that

image of D ∩ R coincides with U ∩ γ.

Definition 3.7. If Ω is a domain. An analytic arc γ ⊆ ∂Ω is a free analytic

boundary arc of Ω if every point of γ is contained in a disc U such that U\γ
has two components , one contained in Ω and the other disjoint from Ω.

Theorem 3.8. Let Ω 6= C be a simply connected domain in C whose the boundary

is free analytic boundary arc. Then the Riemann map φ of Ω onto D extends locally

analytically across any free analytic boundary arc of Ω.
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Proof. For each ε > 0 , the set {z ∈ Ω||φ(z)| ≤ 1 − ε} is a compact subset of

Ω , which is has positive distance from ∂Ω. Hence |φ(z)| → 1 as z → ∂Ω. Let

p ∈ ∂Ω. Note that there is exactly one point w ∈ Ω such that φ(w) = 0. Now

since φ is analytic on Ω, log |φ| is harmonic on Ω\l where l is the branch cut of

log |φ| that does not intersect p. To see this, let φ(z0) 6= 0, z0 ∈ Ω\l then there

is a δ > 0 such that f is nonzero on Bδ(z0).This means that there is an analytic

function g on Bδ(z0) such that φ ≡ eg so log |φ| ≡ Re(g) is harmonic on Bδ(z0).

Now apply Schwarz’s Reflection Principle for harmonic function to log |φ|, we have

that log |φ| extends harmonically across any free analytic boundary arc of Ω\l i.e.

φ extends analytically across any free analytic boundary arc of Ω\l. This means

that φ extends analytically locally at p.

Corollary 3.9. If Ω is a domain with free analytic boundary arc. Let f : Ω → Ω

is analytic and p ∈ ∂Ω. If f(z) = z + O(z − p)4, z → p then f(z) ≡ z.

3.3 Non-Tangential Limit Case.

We begin with the definition of non-tangential region (or Stolz region) taken

from [7]. Roughly, we say that a sequence zk converges non-tangentially if zk is

convergent and zk lies in the non-tangential region.

Definition 3.10 (non-tangential region ). Let eiθ ∈ ∂D, 1 < α < ∞, then define

the Stolz region (or nontangential approach region ) with vertex eiθ and aperture

α to be

Γα(eiθ) = {z ∈ D : |z − eiθ| < α(1− |z|)}.

Now we present the result of theorem 1.1 in the case of non-tangential limit. In

general domains, it is difficult to define non-tangential convergence. However, in

the case of domains with free analytic boundary arc, we have a Riemann map that

maps locally from boundary to boundary. We define non-tangential convergence

as follows.
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Figure 3.1: A Stolz region

Definition 3.11. Let Ω be a simply connected domain with free analytic boundary

arc and p ∈ ∂Ω. Suppose that zk → p ∈ ∂Ω. We say that zk → p non-tangentially

if there is a Riemann map φ : Ω → D that maps boundary to boundary locally at

p and φ(zk) → φ(p) ∈ ∂D in D non-tangentially.

First recall that O(z− 1)4 in the hypothesis of Theorem 1.1 could be replaced

by o(z − 1)3

Theorem 3.12. Let Ω be a simply connected domain with free analytic boundary

arc. If f : Ω → Ω is holomorphic and there is a sequence zk ∈ Ω, zk → p ∈ ∂Ω

nontangentially in the sense that if φ : Ω → D is a Riemann map then φ(zk) →
φ(p) ∈ ∂D nontangentially. Assume that f(zk) = zk + O(zk − p)4, k → ∞, then

f(z) ≡ z.

Proof. Let g = φ ◦ f ◦ φ−1 : D → D and φ(zk) → φ(p) ∈ ∂D nontangentially.

Without loss of generality, let φ(p) = 1. Firstly we follow idea in proving the

classical Julia’s theorem in [11]. For a ∈ D, let ϕa(z) = a−z
1−āz

∈ Aut(D)(which

interchanges a and 0). Define h(z) = ϕg(a) ◦ g ◦ ϕa, Hence h(0) = 0 and by the

classical Schwarz’s lemma, |ϕg(a)(g(ϕa(z)))| ≤ |z|. Since ϕa ◦ ϕa is the identity,
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we have |ϕg(a)(g(z))| ≤ |ϕa(z)|. Next, a straightforward calculation shows that

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− āz|2 .

Hence ∣∣∣∣∣
1− g(a)g(z)

1− |g(z)|2

∣∣∣∣∣ ≤
1− |g(a)|2
1− |a|2

|1− az|2
1− |z|2 . (3.1)

Take a = φ(zk). By the same method in the proof of theorem 3.4, we have

g(φ(zk)) = φ(zk)+O(φ(zk)−1)4. Hence 1±|g(φ(zk))| = 1±|φ(zk)|+O(φ(zk)−1)4.

Therefore we have 1− |g(φ(zk))|2 = 1− |φ(zk)|2 + O(φ(zk)− 1)4. So

1− |g(φ(zk))|2
1− |φ(zk)|2 = 1 + O(

(φ(zk)− 1)4

1− |φ(zk)| ) = 1 + O(φ(zk)− 1)3.

Note that we use the nontangential convergence assumption in the last equality.

Hence in equation (3.3.1), letting k →∞,we get

|1− g(z)|2
1− |g(z)|2 ≤

|1− z|2
1− |z|2 . (3.2)

Let ξ(z) = Re(1+g(z)
1−g(z)

− 1+z
1−z

) which is a nonnegative harmonic function (by (3.3.2)

since 1
2
(1+g(z)

1−g(z)
+ 1+g(z)

1−g(z)
− 1+z

1−z
− 1+z̄

1−z̄
) = 1−|g(z)|2

|1−g(z)|2 − 1−|z|2
|1−z|2 . We also have from the

assumption that |g(φ(zk))−φ(zk)|/|1−φ(zk)| < 1 for sufficiently large k. Therefore

by geometric series expansion,

1 + g(φ(zk))

1− g(φ(zk))
=

(1 + φ(zk) + g(φ(zk)))− φ(zk)/(1− φ(zk))

1− (g(φ(zk))− φ(zk))/(1− φ(zk))

=
(1 + φ(zk))/(1− φ(zk)) + (g(φ(zk))− φ(zk))/(1− φ(zk))

1− (g(φ(zk))− φ(zk))/(1− φ(zk))
.

=
1 + φ(zk)

1− φ(zk)

∞∑
n=0

(
g(φ(zk))− φ(zk)

1− φ(zk)

)n

+
∞∑

n=1

(
g(φ(zk))− φ(zk)

1− φ(zk)

)n

=
1 + φ(zk)

1− φ(zk)
+

2

1− φ(zk)

g(φ(zk))− φ(zk)

1− g(φ(zk))

=
1 + φ(zk)

1− φ(zk)
+

2

1− φ(zk)

O(φ(zk)− 1)4

1− φ(zk) + o(φ(zk)− 1)3

=
1 + φ(zk)

1− φ(zk)
+ o(φ(zk)− 1).

An application of Hopf’s lemma shows that ξ ≡ 0. Hence g(z) ≡ z and hence

f(z) ≡ z.
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3.4 Finite Blaschke’s Product and Non-Tangential Limit.

In this section, we discuss the study of boundary rigidity condition for Blascke’s

product (see theorem 4.2). First recall that Aut(D) = {ω z−λ
1−λz

, |ω| = 1, λ ∈ D}.

Definition 3.13 (finite Blaschke’s Product). The product of the form

n∏
j=1

ωj(
z − λj

1− λjz
), |ωj| = 1, λj ∈ D

is called the finite Blaschke’s product of degree n. It is an n to 1 function from D

onto D. Also the product has modulus 1 on T. In fact , a holomorphic on D which

can be extended holomorphically to D must be finite Blaschke’s product.

The following theorem is due to D.Chelest [4].

Theorem 3.14. If φ : D→ D be analytic and f is a finite Blaschke’s product i.e.

f : D→ D, f(z) =
n∏

k=1

(ωk
z − λk

1− λkz
), |ωk| = 1, |λk| < 1

Suppose that f equals τ ∈ ∂D on a finite set Af ⊆ D and if:

1) For a given γ0 ∈ Af , φ(z) = f(z) + O((z − γ0)
4), as z→ γ0 and,

2) For all γ ∈ Af − {γ0}, φ(z) = f(z) + O((z − γ)kγ ), kγ ≥ 2, as z→ γ

then φ ≡ f.

The idea of proving this theorem in [4] is to define a harmonic function similar

to the proof of theorem 3.12. Our main task is to show the positivity of this

function. The first step is to use the assumption to show that it is positive

everywhere (the main property of finite Blaschke’s product we used it that it is

analytic through D and has modulus 1 on T.) then we can use the compactness

property to show the positivity of the harmonic function. We investigate the

above theorem in the case n=1 with non-tangential convergence condition.

Theorem 3.15. If φ : D → D is analytic and suppose f(z) = ω λ−z
1−λ̄z.

equals

τ ∈ ∂D at γ ∈ ∂D. Let λ ∈ D∩ {z ∈ C : |z − γ
2
| ≥ 1

2
}, ω ∈ ∂D. Suppose there is a
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sequence zk ∈ D, zk → γ, non-tangentially such that

φ(zk) = ω
λ− zk

1− λ̄zk

+ O(zk − γ)4, k →∞.

Then φ(z) ≡ ω λ−z
1−λ̄z

.

Proof. Without loss of generality,we may assume τ = 1. Define a harmonic func-

tion on the unit disc g(z) = Re(1+φ(z)
1−φ(z)

)−Re(1+f(z)
1−f(z)

). In the view of equation 3.3.1,

we have
|1− φ(a)φ(f(z))|2

1− |φ(f(z))|2 ≤ 1− |φ(a)|2
1− |a|2

|1− āf(z)|2
1− |f(z)|2 . (3.3)

Now we have φ(zk) = f(zk) + O(zk − γ)4, k →∞. Then

1± |φ(zk)| = 1± |f(zk)|+ O(zk − γ)4.

So

1− |φ(zk)|2 = 1− |f(zk)|2 + O(zk − γ)4.

That is

1− |φ(zk)|2
1− |zk|2 =

1− |f(zk)|2
1− |zk|2 + O(

zk − γ

1− |zk|(zk − γ)3) =
1− |f(zk)|2

1− |zk|2 + O(zk − γ)3.

Now since f is an automorphism on the unit disc. Invoking the equality part of

Pick’s lemma (theorem 2.7), we have

|f ′(z)| = 1− |f(z)|2
1− |z|2 , z ∈ D. (3.4)

Now f ′(z) = |λ|2−1

(1−λ̄z)2
which is bounded by 1 as z → γ since λ ∈ D. Hence 1−|f(zk)|2

1−|zk|2

is bounded by 1 as zk → γ. It follows that

sup
k∈N

1− |φ(zk)|2
1− |zk|2 ≤ 1.

Hence substituing a = zk in equation 3.4.1 and let k →∞, we get

|1− φ(z)|2
1− |φ(z)|2 ≤

|1− f(z)|2
1− |f(z)|2 .

It follows that g(z) = Re(1+φ(z)
1−φ(z)

)−Re(1+f(z)
1−f(z)

) is a nonnegative harmonic function.

Now we claim that f(z) − 1 is not o(zk − γ), k → ∞. To see this, Suppose

f(zk)− 1 = o(zk − γ), consider a positive harmonic function

Re(1− f(z)).
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Note that f has a continuous extension to the boundary. Since f(zk) − 1 is

o(zk − γ), it has a minimum at z = γ. This contradicts Hopf’s lemma, and we

have the claim. Next, write h = φ− f , we have

g(z) = Re
2h(z)

(1− f(z)− h(z))(1− f(z))

Each term in the denominator is not o(zk − γ). Hence g is O(zk − γ)2, z → γ. By

Hopf’s lemma, we have g ≡ 0 i.e. φ ≡ f.

3.5 Conclusion.

In this section we will suggest some more work that could be done further

on our results. In section 3.2, we proved Burns-Krantz’s theorem on simply con-

nected domain that its Riemann map could be extended holomorphically. In [11]

it is proved a simply connected domain whose boundary is a Jordan’s curve has

a Riemann map that extended continuously that maps boundary to boundary.

Hence if we can strengthen the hypothesis from holomorphically extended to con-

tinuously extended. We would have the result on a larger class of domains. In

section 3.3 and we deals with non-tangential limit. It is interesting to ask if the

non-tangential condition is necessary. If we arbitrarily pick a sequence zk, zk → 1

and f(zk) = zk +O(zk−1)4,can we conclude that f(z) ≡ z? Finally we would like

to extend the result to the case of general finite Blaschke’s product.This would

follow if we can demonstrate that

sup
k∈N

1− |f(zk)|2
1− |zk|2 < ∞, zk → γ

when f is a finite Blaschke’s product, γ ∈ f−1(1). Furthermore, since infinite

Blaschke’s product has many properties similar to finite Blaschke’s product, we

expect a similar rigidity condition for infinite product as well. We summarize the

property of infinite product as follow.

Theorem 3.16 (Properties of Infinite Blaschke’s Product.). Let {αn} be a se-

quence in D with αn 6= 0 and
∑∞

n=1(1-|αn|) <∞. If k is a non-negative integer
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then

f(z) = zk

∞∏
n=1

αn − z

1− αnz

|αn|
αn

converges locally uniformly in D and defines an analytic function in D having

precisely the zeros αn (and at 0 if k >1)and no other zeros.We have |f(z)|=1 a.e.

on T.Conversely, if f is bounded analytic on D which is not identically zero. If

zeros of f are αn then Σ∞
n=1(1− |αn|) < ∞.

Note that if λ is a zero of f then 1
λ̄

is a pole of f outside D. In this case, we

have infinitely many zeros and the zeros couldn’t be accumulated. Hence zeros

will approach the boundary and then so is the pole. Thus in this case, we expect

a singularity at the boundary which ensures the difficulty of the problem.
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