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CHAPTER I 

 
INTRODUCTION 

 

Porosity is an important reservoir parameter for oilfield development. If the 

porosity in a reservoir is high, it is likely that the reservoir has a lot of void to contain 

fluid. On the other hand, if the porosity is low, the reservoir has a little void. In oil and 

gas reserve calculations, porosity is one of several parameters to be concerned. 

Porosity data are generally collected and analyzed in order to design the development 

plan of a field. 

In practice, only a few wells are drilled in a reservoir because the cost of 

drilling is very expensive. As a result, porosity data obtained in the field of interest is 

limited. When designing a development plan, drilling wells in the areas which lack 

porosity data poses a problem that challenges petroleum engineers. In the past, invert 

distance and polygon methods were used to find those missing data. However, these 

two methods may not give satisfying results because of the assumptions involved. 

Later, geostatistics was introduced to estimate data at unsampled locations 

using a relationship between distance and variogram value, which is calculated from 

the summation of the squares of the difference between each pair of data, which are 

far apart from each other at a particular distance, divided by the number of pairs. This 

technique uses the variogram to find the influential range of data to a location of 

interest. There are two approaches to generate distribution of reservoir properties, 

which are kriging and simulation. Kriging provides a single realization of the spatial 

distribution, while simulation gives many realizations at equal probability due to the 

uncertainty of data.  

To evaluate reservoir performance, reservoir parameters such as permeability 

or porosity are needed in reservoir simulation. When these parameters are combined 

with other parameters such as fluid properties, production plan, etc., reservoir 

simulation study can be carried out to forecast reservoir performance. 



2 

1.1 Problem Statement 

In general, there may be a numerous number of realizations generated for 

reservoir property such as porosity when Stochastic Simulation is used. Every 

realization resulting from Stochastic Simulation can possibly represent the real 

structure of the reservoir with the same probability. It is difficult to pinpoint which 

one is more accurate than others until the reservoir has produced for a certain period 

and the production profile is historically matched. It would be better, if there is a 

method to choose the realization which best represents the real structure as the 

reservoir model in reservoir simulation. To find the best representative model, similar 

realizations have to be grouped and the realization to which most realizations are 

similar should be the best representative of the reservoir. 

Unfortunately, generated realizations have little similarity among them since 

there are a lot of small-scale heterogeneities. So, the grouping does not give a proper 

result. In order to solve this problem, realizations of porosity distribution need to be 

smoothed first, i.e., getting rid of local variations. 

Denoising is a technique that can be used to find the smooth structure of 

reservoir porosity, making it easier to compare similarities among realizations. The 

technique used in this study is developed from multiresolution wavelet analysis. 

When the multiresolution analysis is applied to a realization, the realization is 

decomposed to several layers. At this stage, the denoising algorithm determines which 

components are small-scale variations and which are the main structure. By 

suppressing the local variations and reconstructing the realization, a smoother or 

denoised realization is obtained. By doing this, the denoised realization still possesses 

the same underlying structure. 

The value that is used to determine the degree of similarity among realizations 

is correlation between each pair of realizations. Based on the computed correlations, 

these realizations will be grouped and the best representative realization will be 

determined from the biggest group. 
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1.2 Outline of Approach 

To find the best representative of the realizations estimated from geostatistics 

using wavelet analysis, the following approach can be taken: 

1. A data set of porosity is constructed in the same nature as the real field data 

such as the spacing of wells. In this study, the raw data, which are 47 

porosity sampling data from 35 regular wells and 3 horizontal wells, are 

artificially created. In addition, the study area covers 10,240 feet in north-

south direction and 10,240 feet in east-west direction. 

2. In practice, it is hard to find directional variograms from porosity data 

because the number of data is not enough due to high cost. As a result, an 

omnidirectional variogram model, a variogram model representing all 

directions, is used to examine the correlation between the data set and 

distance among data.  

3. 60 realizations of porosity field are generated by Sequential Gaussian 

Simulation. 

4. To make it easier to compare among realizations, each realization needs to 

be denoised. The soft thresholding method in wavelet analysis is used. The 

chosen wavelet function is Daubechies 4, which is the most frequently used 

function. The threshold values are calculated from universal thresholding 

method presented by Donoho and Johnstone (1994). 

5. All denoised realizations are compared based on the correlation between 

each pair. A pair that has a high correlation value means that they have a 

high degree of similarity between them. However, a cut-off correlation 

value is to be specified to eliminate realizations that have a small degree of 

similarities before they are grouped. 

6. The grouping criterion in this study is that members of a group are chosen 

from the highest to lowest correlation values. In addition, in case that the 

next realization, which is chosen by the order of correlation value, does not 

match with all the previous members, it cannot be a member of the group. 



4 

All of the procedure can be divided into 3 parts, which are geostatistical 

modeling, denoising via wavelet analysis, and grouping. GSLIB software is used in 

the modeling part while MATLAB program is used for other two parts. 

1.3 Dissertation Outline 

Chapter II presents previous works concerning with this study. 

Chapter III introduces the methodology used in this study including 

geostatistics, wavelet analysis, and correlation analysis. This chapter is divided into 3 

sections, which are presented as follows: 

- Section 3.1 discusses the geostatistics analysis. The theory of geostatistics is 

first presented. After that, a procedure to determine the relationship among the set of 

data and the separating distance is introduced in term of variogram analysis. The last 

topic of this chapter is Sequential Gaussian Simulation, explaining how to estimate 

the variable value at each location of interest. All of the topics in this chapter can be 

applied to any variable of interest that exhibit a certain spatial relationship, including 

porosity, permeability, water saturation, and etc. 

- Section 3.2 introduces the wavelet analysis. It presents a brief theory of 

wavelet transform and introduces multiresolution analysis. A procedure of data 

denoising is then discussed. This part includes threshold value calculation, which 

plays an important role in denoising. 

- Section 3.3 presents the correlation analysis used to find similarity between 

two denoised realizations. 

Chapter IV presents the approach taken in this study including generating raw 

data, simulating realizations from the data using Sequential Gaussian Simulation, 

denoising generated realizations by applying wavelet analysis, and finally grouping 

similar denoised realizations using correlation. 

Chapter V summarizes the results from the study. The conclusions and 

recommendations are also presented. 



CHAPTER II 

 
LITERATURE REVIEW 

 

Since geostatistics and denoising techniques have been introduced to 

petroleum industry for many years, applications of these techniques appear in several 

studies. Most of the studies on geostatistics focused on finding possible structures of 

interested parameters such as permeability, porosity, and thickness of the reservoir 

rock. On the other hand, studies on denoising techniques give us several alternatives 

to smooth raw data and upscale reservoir properties. 

In this study, Sequential Gaussian Simulation is used to determine possible 

distributions of porosity in an artificial field and then these distributions are denoised 

using multiresolution wavelet analysis to find smooth small-scale variations in these 

distributions. 

2.1 Previous Work on Geostatistics 

Aasum, Kelkar, and Gupta (1991) studied the application of geostatistics and 

fractal geometry to examine 2D reservoir characterizations, porosity distribution and 

permeability distribution in a dolomitic layered-cake reservoir. Their study 

accommodated both hard data such as core data and soft data such as geophysical data 

to perform conditional simulation and Monte Carlo simulation to characterize rock 

properties. The hard data are 100 to 200 values of permeability and porosity. The 

authors constructed both ergodic and nonergodic indicator variograms to find the 

correlation structure of each layer of the study area. They found that the nonergodic 

variogram gives better results than the ergodic one because the nonergodic variogram 

is less restrictive. After that the conditional simulation was performed. Hence, some 

realizations were generated from the simulation because of the uncertainty of the data. 

In this study, reservoir simulation was not conducted.  

Poquioma, Intevep, and Kelkar (1994) applied geostatistics to forecast 

performance of waterflooding in an oilfield. The field studied was sandstone field. 
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There were log data from 13 wells, core data from 3 wells, and a single well test. The 

data set was used to forecast distributions of porosity, permeability, net oil thickness, 

initial water saturation, and top of the structure, using geostatistical methods. They 

first carried out both conventional and nonergodic variograms and finally discovered 

that the nonergodic variogram gave better results because it accounted for biased 

sampling in the data sets. After that, all distributions of variables were found by 

applying both conventional kriging and Sequential Indicator Simulation to the data 

sets. The result from Sequential Indicator Simulation gave good results, while kriging 

technique gave too smooth results. When the results come from both techniques were 

put into flow simulation, they found that the Sequential Indicator Simulation results 

could construct much more realistic reservoir description than the other one. 

Hand et. al. (1994) studied the integration of geological, petrophysical, and 

outcrop data for evaluation of gravity drainage infill drilling at Prudhoe Bay. The field 

studied, Romeo zonation in Prudhoe Bay was 6,600 X 8,874 ft2 in size in which 41 

conditioning wells were located. The authors obtained zonation pick, facies 

association picks from 39 conditioning wells, and log and core permeability and 

porosity data from 37 conditioning wells. Since the authors chose truncated Gaussian 

simulation to generate 3D facies association maps, data had to be transformed to 

proper forms. Hence, facies associations were transformed into indicator variables, 

and permeability and porosity data were transformed into normal score distributions. 

After that, an experimental variogram of each facies association were performed in 

the vertical direction. For lateral direction, two experimental variograms were 

implemented in principle and minor directions, which were determined by trial and 

error. After the facies association variograms were constructed, the permeability and 

porosity variograms were then built. To find lateral variograms, the authors assumed 

that the variogram model and sill of the lateral variogram equaled to vertical 

variogram for each facies variogram. Then, the authors implemented truncated 

Gaussian simulation, combining indicator variables and Sequential Gaussian 

Simulation used to distribute 3D porosity and permeability separately within each 

facies association, to find the 3D facies associational model. The 3D facies 
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association description generated using this methodology was judged by geologists to 

represent a very reasonable geological picture of the studied area. 

2.2 Previous Work on Wavelet Denoising 

Wavelet analysis has been used in many fields such as signal processing, 

image analysis, or data compression. The principle of wavelet analysis is that it can 

break down a signal or function to approximation and detail components. 

Furthermore, it can recombine approximation and detail components back to the 

original signal using wavelet multiresolution analysis. By applying these analyses to 

an interested signal, image, or data, researchers are allowed to diagnose their data. 

The following previous works are applications of wavelet analysis. 

Donoho and Johnstone (1993) studied ideal spatial adaptation by wavelet 

shrinkage. The authors described the principle for spatially-adaptive estimation, 

selective wavelet reconstruction, comparing with other spatially-adaptive estimators 

and developed a practical spatially-adaptive method, RiskShrink, which works by 

shrinkage of empirical wavelet coefficients. In their experience, the empirical wavelet 

coefficients at the finest scale were pure noise. Naturally, there was an upward bias 

estimation due to the presence of some signal at that level. However, this method can 

control the bias effectively. Finally, the authors introduced optimal thresholds 

calculated from various types of threshold such as soft and hard, oracle type 

(projection, shrinkage), and universal. These thresholds are used to cut off noise when 

performing wavelet denoising. 

Chu, Shatzinger, and Tham (1998) presented an application of wavelet 

analysis to upscale rock properties. Due to the limitation of computational power, 

reservoir simulation cannot be run at fine scale. However, reservoir property obtained 

from geostatistical technique is available at fine scale. Thus, the reservoir properties 

have to be scaled up to coarse scale before they can be used to run reservoir 

simulation. The researchers noticed that although numerous upscaling techniques are 

reported in the literature, reasonably accurate equivalent rock properties from the data 

at finer scale remain challenging and there is no method that can be used consistently 

for both single and multiphase-flow conditions. Hence, the authors introduced 
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multiresolution wavelet analysis, to scale up the fine scale properties to coarse scale 

properties. The decomposition of multiresolution wavelet analysis is the step that 

transforms the original reservoir property distribution into approximations and details 

at different resolutions. By applying one level of the decomposition to the original 2-

dimensional distribution, the number of grid blocks in the approximation can be 

reduced by a factor of four, making the approximation coarser than the original one. 

To upscale reservoir property distributions, the authors performed decomposition 

using standard Daubechies wavelet function. After that, both upscaled distributions 

and original distribution were then used in flow simulation to compare the results. The 

authors found that the original distribution and its approximation gave almost the 

same result of flow simulation. 

Kikani and Meiqing (1998) studied analysis of long-term pressure data using 

wavelet methods. Since the pressure is measured in a long-term fashion, the data can 

be used to characterize or improve reservoir models. Unfortunately, the data are huge 

in volume and prone to uncertainty. Hence, the data have to be preprocessed before 

they can be used in reservoir characterization process. In this study, a processing 

procedure is denoising, upscaling, and event detection. The denoising and upscaling 

stages were implemented using multi-resolution wavelet analysis. The authors 

denoised the data using the Haarlet in the decomposition and reconstruction. 

Moreover, they compared the efficiency of data denoising using Butterworth filter and 

wavelet and found that the wavelet gave a better result. The next stage is upscaling the 

denoised data to the reservoir simulation scale. In their study, they chose Daubechies 

4 wavelet as a wavelet function to scale up the denoised data. They concluded that the 

upscaling using wavelet technique could preserve the structure of data. 

Athichanagorn, Horne, and Kikani (1999) proposed using wavelet analysis to 

process long-term data obtained from permanent downhole pressure gauges. In their 

study, there were enormous pressure data, which could be useful in characterizing 

reservoir. However, the data may include unexpected measurements because they are 

measured in operational conditions. Hence, the data had to be processed before they 

can be used to characterize the reservoir. In their study, outliers in the data were first 

removed by applying wavelet analysis. After outlier data were eliminated, the noise of 
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the data was the next target. The authors used a hybrid thresholding method, which 

combines the advantages of the hard and soft thresholding methods to denoise the 

data. As a result, the denoised data were ready for interpretation. 

In summary, stochastic simulation of geostatistical method is often used to 

determine reservoir property distributions such as permeability, net oil thickness, top 

of reservoir structure, and porosity because it gives a better result comparing with 

other methods. Indicator simulation is chosen to find distributions of facies while 

Gaussian simulation is often chosen to find distributions of porosity and permeability. 

Some previous works composed 3D models of reservoir property using indicator 

simulation in the vertical direction and Gaussian simulation in the horizontal 

direction. 

Regarding wavelet analysis, it was used to process data such as upscaling, 

denoising. Upscaling uses multiresolution wavelet analysis to decompose data to 

coarser levels. As a result, the output from upscaling using wavelet analysis exhibits 

the same structure as the original data. Denoising also uses multiresolution wavelet 

analysis to decompose data into approximation and detail components. However, 

there is a process, which is wavelet thresholding, to eliminate noise in the data in the 

detail parts before reconstructing the data back to the original level. In theory, the soft 

thresholding method gives good results at continuous part of data while the hard 

thresholding method does at the area of discontinuities in the data. In practice, there is 

a hybrid thresholding method that combines the advantages of the hard and soft 

thresholding methods. 



CHAPTER III 

 
METHODOLOGY 

 

This chapter presents the theory and technique used in grouping similarities 

among geostatistical realizations of reservoir properties using multiresolution wavelet 

analysis. It involves three steps, which are geostatistical simulation, wavelet analysis, 

and correlation analysis. 

3.1 Geostatistics 

This section discusses the theory and some applications of geostatistics. The 

most important characteristic of geostatistics lies in its ability to incorporate the 

spatial variability structure of variables into its simulation model. It is specially 

designed for variables of which their values vary with the change of distance and 

direction, which are called spatial variables. Due to shortcoming of the classical 

statistics in characterizing the phenomenon of spatial variables, geostatistics technique 

is widely applied for the modeling of the spatial variables. Most of petrophysical 

properties such as permeability, water saturation, thickness, and porosity can be 

categorized into spatial variables. 

3.1.1 Theory of Geostatistics 

Geostatistics plays an important role in describing the phenomenon of spatial 

variables. Its application has been widely applied to data in many fields such as soil 

science data, mineral assays data, forestry inventories, environmental science data and 

petroleum data, etc. Geostatistics was first introduced in the mining industry in the 

early fifties by D.G. Krige who was a mining engineer to estimate the ore reserve. The 

estimator is known as Kriging estimation. In the late fifties, the theory of 

Regionalized Variables, which was developed from kriging concepts, was formulated 

by George Matheron. After that, geostatistics has been applied into many industries 

which are concerned with spatial variables. 
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3.1.1.1 Theory of Regionalized Variables 

A Regionalized Variable is any variable distributed in space or sometime time. 

Any measurement of Regionalized Variable can be viewed as a realization of random 

function. The theory introduces four definitions, which are Regionalized Variables 

(ReV), Realization ( )iZ x , Random Variable (RV), and Random Function (RF). 

Regionalized Variables are measurable quantities which characterize the natural 

phenomena such as porosity of rock, ore grade, level of ground surface, etc. 

Realization is defined as a collected value of the Regionalized Variables. Random 

Variable is defined as a variable that takes a certain number of numerical values 

according to a certain probalility distribution or in specific a univariate distribution 

function. And, Random Function is the set of auto-correlated random variables or in 

specific a multivariate distribution function with n Random Variables ( n D∈ ; D = 

study domain). From the definition of Random Function, the phenomenon of study 

domain is completely described by RF. In reality, it is impossible to have a complete 

data to characterize natural phenomena. However, it can be said that the Random 

Function model is an effective way to characterize uncertainty inherited in the model. 

The spatial variability structure can be found from the Random Function model. 

In practice, the spatial variability structure is quantified by variogram analysis. 

Hence, variogram tool was introduced to find the spatial variability structure of a 

Regionalized Variable of interest. 

3.1.2 Variogram Analysis 

Variogram is a graphical display that helps analysts to find the spatial 

variability structure of ReV at a specified distance and direction. As it was introduced, 

the variogram function depends only on the separation vector, h
w

, not on the locations. 

The variogram equation is defined as: 

2

1

1( ) [ ( ) ( )]
2 ( )

N

i i
i

h Z x Z x h
N h

γ
=

= − +∑
v v

     (3.1) 
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where 

( )hγ
v

   = variogram value at distance h
v

 

( )N h    = number of data pair 

[ ( ) ( )]i iZ x Z x h− +
v

 = the difference in value between two sample  

          points separated by distance h
v

. 

The above equation is used to calculated the variogram value at any distance 

( h ) and direction. The plot of variogram values against distance (h
v

) along a specific 

direction presents the spatial variability structure of that variable. In another word, the 

spatial variability structure of variable is captualized by variogram model. Fig. 3.1 

shows the basic components of a variogram model. 
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Figure 3.1: Basic components of a variogram. 

As seen in Fig. 3.1, three major components of variogram model are sill, 

range, and nugget. Sill is the maximum variance of variable and is equal to the data 

variance. Range is the maximum distance in which data still have correlation. Nugget 

represents the variation at small scale and should be zero at zero distance. But in 

practice, nugget value comes from two sources, measurement error and small scale 

variation. 
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To find the structure of a variable, we start with the calculation of 

experimental variogram values at given distances using Eq. 3.1. Then, the standard 

variogram model is fitted to the points of variogram values. The rule of thumb is that 

the standard models have to fit the points of variogram values as much as possible and 

is observed by visual inspection. In general, they may be one or more standard models 

(nested structure) that can be best matched to the variogram plot. Some examples of 

these standard models are power model, spherical model, exponential model, and 

gaussian model. The equation and characteristics of these models are described as 

follows: 

(i) Power Model 

 The power model is called non-transition model with an absence of a sill in the 

increasing of variogram values, its equation is defined as: 

0( ) ah C whγ = +      (3.2) 

where 

0C  = nugget value  

w  = slope at origin 

a  = a real number 

h  = distance 

Fig. 3.2 shows the power model at different values of a . In addition, the 

power model is called linear model when a  equals to one. 
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Figure 3.2: Power model. 

 (ii) Spherical Model 

Based on the behavior at the origin and the presence of sill in the increasing of 

variogram values, the spherical model is called transitional model. Some other models 

that are defined as transitional model are exponential model and gaussian model. The 

equation and its definition of spherical model is as follows: 

3
0 1

0 1

1.5( ) 0.5( )
( )

h hC C when h a
h a a

C C when h a
γ

  + − ≤  =  
 + >

  (3.3) 

where 

0C  = nugget value 

1C   = sill value 

a   = range 

h   = distance 

Fig. 3.3 presents the spherical model. The nugget ( 0C ) is defined as the ( )hγ  

at zero distance. The sill is defined at the transition of variogram values when they 

become stable. The range is defined at the distance where the variogram becomes 

stable, Fig. 3.3. 
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Figure 3.3: Spherical model. 

 

(iii) Exponential Model 

Exponential model is a transitional model where the transition of the 

variogram value takes a longer distance comparing to other models as can be seen in 

Fig. 3.4. The equation and definitions of the exponential model is as follows: 

0 1

0 1

1 exp( )
( )

hC C when h a
h a

C C when h a
γ

  + − − ≤  =  
 + >

  (3.4) 

where 

0C  = nugget value 

1C   = sill value 

a   = range 

h   = distance 
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(iv) Gaussian Model 

Gaussian model is a transitional model with the S-curve behavior at the origin 

as shown in Fig. 3.4. The equation and definition of gaussian model is: 

2

0 1 2

0 1

1 exp( )
( )

hC C when h a
h a

C C when h a
γ

  
+ − − ≤  =   

 + >

  (3.5) 

where 

0C  = nugget value 

1C   = sill value 

a   = range 

h   = distance 

 

 

Figure 3.4: Exponential and gaussian model. 

 

Shown in Fig. 3.4, 1( )GC  is the sill value of gaussian model and 1( )EC  is the sill 

value of exponential model. 
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In practice, a spherical model is frequently used to describe the spatial 

variability structure of regionalized variables. Nevertheless, a model, which mixes 

between two or more models, is sometimes used to get the best fit to the variogram 

plot. 

Basically, 2D variograms are calculated in 4 major directions, which are N-S, 

E-W, NE-SW, and NW-SE. However, an omnidirection variogram, which is the 

variogram that represents all directions, is calculated for the studied area that has 

symmetrical structure. 

The variogram calculation depends largely on sample distribution. Two 

parameters which are angle and lag distance are introduced to calculate variogram 

values in less restrictive way. Angle is the direction of variogram calculation as 

discussed earlier. Lag distance is the distance ( h ) for variogram calculation. This 

process can be applied well to regularly spaced data but not the irregularly spaced 

data because there are few pairs of data in irregularly spaced data that have the same 

distance. Hence, tolerance angle, bandwidth, and lag tolerance are introduced to find 

the more number of calculated pairs. Tolerance angle is an angle which deviates from 

the observed direction. However, at a large distance, the direction of interest loses its 

consistency. Therefore, another parameter, which is bandwidth, is introduced. 

Bandwidth is the offset of the direction of interest. It keeps the pairs of sample that 

are located between the direction vector and bandwidth lines. To find the variogram 

value at any distances, lag distance is specified first and the real distance is then 

calculated from the average distance in each lag. The three parameters are graphically 

shown in Fig. 3.5. 
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Figure 3.5: Variogram parameters (angle tolerance, lag distance, and bandwidth). 

 

In general, variogram is a significant tool to find the spatial variability 

structure of Regionalized Variables by calculating variogram values at varying 

distances in directions of interest and then modeling the variogram function for each 

direction. The next section describes the estimation process by using the variogram 

function.  

3.1.3 Geostatistical Simulation 

There are two forms in geostatistical prediction which are estimation and 

simulation. In estimation, the best estimated values are obtained by using the method 

of Kriging estimation. Kriging estimation is based on the knowledge of spatial 

variability structure of variable and sample distribution surrounding the location to be 

estimated. It has been well documented that Kriging estimation is a reproduction of 

variogram model. Therefore, the statistics of original data are preserved to some 

extent. The major drawback of Kriging estimation is that the estimated values tend to 

get closer to the mean values, therefore reducing the overall variance. This effect is 

known as “Smoothing Effect”. 

In contrary to geostatistical prediction, conditional simulation aims to simulate 

the real condition of natural phenomena. It involves the building of alternatives, 

equally probable and high resolution models of spatial variability structure. Each 

model represents the reality of natural phenomena in global sense. In geostatistical 

simulation, the study starts with the finding of spatial variability structure of variable. 
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And, this structure is used as conditional information together with available samples 

to construct the conditional probability distribution function (pdf) at every location. 

Then, the simulated values are uniformly drawn from these estimated pdf. Finally, 

many realization maps are then generated. Each realization map is different from the 

other and conditioned to the available samples and the previously simulated data. The 

most important aspect in geostatistical simulation is that the statistics of original data 

are preserved, and hence the spatial distributions of realization maps are the same as 

sample data. Sample realization maps generated from geostatistical simulation in 

comparision to Kriging map are shown in Fig. 3.6. 

 

 

Figure 3.6: Geostatistical simulation maps and Kriging map 

(Deutsch and Journel, 1992). 
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3.1.3.1 Gaussian Simulation 

Consider the distribution over a field A  of one or more attribute(s) 

( )z u ,u A∈ . Geostatistical simulation makes the alternatives, which are equally 

probable and high-resolution models of the spatial distribution of ( )z u . To implement 

Sequential Gaussian Simulation, some related algorithms, which are normal score 

transform, checking for bivariate normality, and Simple Kriging (Deutsch and 

Journel, 1992), need to be explained. 

(i) Normal Score Transform 

The assumption of Gaussian Simulation states that the study variable has to 

follow standard normal distribution with zero mean and unit variance. The process of 

transforming original data to standard normal data is carried out using normal score 

transform function. 

Let Z and Y  be the two data sets and their cdf (Cumulative Distribution 

Function) are ( )ZF z and ( )YF y , respectively. The transform ( )Y Zϕ=  identifies the 

cumulative probabilities, which correspond to the Z  and Y  p-quantiles: 

[ ]( ) ( ) , 0,1Y P Z pF y F z p p= = ∀ ∈     (3.6) 

Thus, 

1( ( ))Y Zy F F z−=      (3.7) 

with 1( )YF
− ⋅ being the inverse cdf, or quantile function, of Y data set: 

[ ]1( ), 0,1p Yy F p p−= ∀ ∈        (3.8) 

In case that Y  is standard normal with cdf ( ) ( )YF y G y= , the transform 

1( ( ))ZG F− ⋅  is the normal score transform. Fig. 3.7 presents the graphical 

transformation from real data set to normal score data. 
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Figure 3.7: Graphical display of normal score transform. 

 

(ii) Checking for Bivariate Normality 

To perform the simulation, the bivariate cdf of any pair of values 

( )Y u , ( )Y u h+ , h∀ , has to be normal. In fact, there are several ways to check the 

bivariate normality of a normal score data set but the famous method is comparing the 

experimental bivariate cdf of any set of data pairs { }( ), ( ), 1,..., ( )y U y U h N hα α α+ =  

with covariance function ( )YC h  , which is shown as follows: 

{ }
2arcsin ( )

2

0

1Prob ( ) , ( ) exp( )
2 1 sin

YC h
p

p p

y
Y u y Y u h y p dθ

π θ
≤ + ≤ = + −∫

+
  

(3.9) 
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where 1( )py G p−=  is the standard normal p-quantile and ( )YC h  is the covariance 

function of the standard normal random function of ( )Y u . 

However, the bivariate probability of the above equation is the non-centered 

indicator covariance for the threshold py : 

{ } { }Prob ( ) , ( ) ( ; ) ( ; ) ( ; )p p IY u y Y u h y E I u p I u h p p h pγ≤ + ≤ = ⋅ + = −  

(3.10) 

where 

( ; )I u p  = 1; if ( ) pY u y≤ , 

  = 0; otherwise. 

( ; )I h pγ  = the indicator variogram for the p-quantile threshold py . 

(iii) Simple Kriging 

Simple Kriging uses the basic linear regression algorithm and corresponding 

estimator: 

[ ]*

1
( ) ( ) ( ) ( ) ( )

n

SKZ u m u u Z u m uα α α
α

λ
=

 − = −∑     (3.11) 

where 

( )Z u    = the random variable model at location u . 

uα    = the n data locations. 

{ }( ) ( )m u E Z u=  = the location-dependent expected value of random  

        variable ( )Z u . 
* ( )SKZ u   = the linear regression estimator, which is called Simple  

        Kriging. 

The Simple Kriging weights ( )uαλ  are calculated from the following Simple 

Kriging system: 
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1
( ) ( , ) ( , ), 1,...,

n
u C u u C u u nβ β α α

β
λ α

=
= =∑    (3.12) 

In the Simple Kriging system, it is required that the means of ( )m u  and 

( ), 1,...,m u nα α =  must be known. In addition, the ( 1)n +  by ( 1)n +  covariance 

matrix ( , ), , 0,1,...,C u u nα β α β =   with 0u u=  are required in conducting the Simple 

Kriging. However, when the random function of ( )Z u  is stationary with constant 

mean m , and covariance function ( ) ( , ),C h C u u h u= + ∀ , Eq. 3.11 can be reduced to: 

*

1 1
( ) ( ) ( ) 1 ( )

n n

SKZ u u Z u u mα α α
α α

λ λ
= =

 = + −∑ ∑  
   (3.13) 

with the Simple Kriging variance: 

2

1
( ) (0) ( ) ( )

n

SK u C u C u uα α
α

σ λ
=

= − −∑          (3.14) 

where 2 ( )SK uσ  is Simple Kriging variance. 

In a nutshell, the mean and variance of conditional probability distribution are 

calculated using Simple Kriging system by which the kriged estimated values 

represent the means and the Kriging variances represent the variances. 

3.1.3.2 Sequential Gaussian Simulation Procedure 

Sequential Gaussian Simulation is an estimation model defined under 

multigaussian assumption. The conditional probability distribution functions are fully 

characterized by their means and variances given by Simple Kriging System. The 

estimated means and variances honor both available data and simulated data. The 

procedure to execute the simulation is presented as follows: 

1. Transform the data set into a standard normal distribution. 

2. Check for Bivariate Normality of the normal score data. If the data do not 

meet the condition, other simulation should be considered. 

3. Construct variograms analysis and fit a proper model for the data set. 
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4. Select grid node at random. 

5. Perform Simple Kriging to estimate the mean and variance values at the 

visited node location. 

6. Draw a simulated data from that distribution, and add the simulated data 

to the data set. 

7. Select another grid node at random and repeat the procedure for Simple 

Kriging until all grid nodes are simulated. 

8. Back transform the simulated data to the original space, and the 

realization map is created. 

9. Provide different random number sequences for random visited nodes and 

repeat the same procedure for additional realization maps. 

In summary, Sequential Gaussian Simulation is a high performance tool to 

estimate values at unsampling data locations using the concepts of geostatistical 

simulation. The flowchart of Sequential Gaussian Simulation procedure is depicted in 

Fig. 3.8. In practice, this technique involves a lot of calculation so it is impossible to 

perform it by hand. As a result, computer takes an important role in this part, because 

the computation time depends on the performance of computer. 
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Figure 3.8: Sequential Gaussian Simulation process. 
 

Geostatistical method is an effective way to estimate reservoir parameters such 

as permeability, net oil thickness, and porosity. In practice, the procedure of 

geostatistical estimation or simulation involves these steps of work: (1) data 

preparation and statistical analysis of the variable of interest; (2) structural analysis in 
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finding variogram model for the variable; (3) kriging estimation or stochastic 

simulation method selections. 

3.2 Denoising using Wavelet Analysis 

This section presents the principle of wavelet transform, multiresolution 

analysis, and denoising. Wavelet transform and multiresolution analysis can be used 

to break down a complex signal into approximated and detailed components via signal 

decomposition. The signal at original scale can be rebuilt from the decomposed 

approximated and detailed components via signal reconstruction. The denoising 

technique that is based on wavelet multiresolution analysis is applied during signal 

reconstruction to get rid of local variations in the data. 

3.2.1 Wavelet Transform 

Both Fourier transform and wavelet transform can be used to analyze signal or 

data but the advantage of wavelet transform is that the amount of localization in time 

and frequency is automatically adapted. As a result, the wavelet analysis is widely 

applied to many data analysis such as signal processing, image analysis, data 

compression, etc. 

The definition of wavelet transform at time x k=  and dilation j  is shown as 

follows: 

1( , ) ( ) ( )x kWf j k f x dx
jj

ψ∞
−∞

−
= ∫     (3.15) 

The function ( )xψ is called a wavelet, which is a function that waves through 

the x -axis. The definition of wavelet function is presented as follows: 

( ) 0x dxψ∞
−∞ =∫       (3.16) 

There are many wavelet functions that can be used in wavelet transform such 

as Haar wavelet, Biorthogonal wavelet, Meyer wavelet, Daubechies wavelet. To 

illustrate the principle of wavelet analysis, Haar wavelet may be a good example. 
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Although Haar function is not often used in practice, it is a simple function that helps 

us understand wavelet. 

Haar wavelet was introduced in 1910 (Haar, 1910). The Haar function can be 

written as follows: 

11, 0
2

1( ) 1 1
2

0,

x

x x

otherwise

ψ

 ≤ <

= − ≤ <




    (3.17) 

From the equation, a sketch of the function is shown in Fig. 3.9. 

 

 
 

Figure 3.9: The Haar function (Ogden, 1997). 

The function, ψ , is called a mother wavelet. The mother wavelet gives a 

family of wavelets by dyadic dilations and integer translations. Let j  be a dilation 

index and k  be translation index. Hence, each wavelet family is indexed by both of 

these indices. The family wavelets can be written as: 

2
, ( ) 2 (2 )

j
j

j k x x kψ ψ= −     (3.18) 
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for integer value j  and k . Dilation by larger j  compresses the function on x -axis 

and changing k  shifts the function along the x -axis. As it was mentioned before that 

wavelet can describe both time-localized and frequency-localized information, a small 

value of j  is used to analyze high-frequency information while a large value of j  is 

used to capture low-frequency information. Some of these dilated and translated 

wavelet functions are depicted in Fig. 3.10. 

 

Figure 3.10: Haar wavelet examples (Ogden, 1997). 

Another important function is the scaling function, ( )xφ , or father wavelet 

function. In data analysis by wavelet, this function captures low-frequency 

information while wavelet function captures high-frequency contents. The result of 

this analysis is described in the next section. Eq. 3.19 presents a simple form of 

scaling function, the Haar scaling function. 

1, 0 1
( )

0,
x

x
otherwise

φ
≤ <

= 


    (3.19) 

The dilated and translated scaling function is shown as the following equation: 

2
, ( ) 2 (2 )

j
j

j k x x kφ φ= −      (3.20) 

In summary, there are two important functions, wavelet function and scaling 

function, which are used in wavelet analysis. These two functions can adjust the 

frequency of analysis by adjusting parameter j  and location of analysis by adjusting 
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parameter k . The wavelet function captures the high-frequency contents while the 

scaling function captures the low-frequency contents. 

3.2.2 Multiresolution Analysis 

The principle of multiresolution analysis, MRA, is to separate an original 

signal or function into two components, which are approximation part and detail part, 

and to recombine the approximation component and its detail component to the 

original signal or function. This analysis can be performed using wavelet function and 

scaling function. The process of separating is called decomposition. The combining 

process is called reconstruction. The reconstruction equation at level 0j  is shown as 

follows: 

0 0
0

, , , ,( ) ( ) ( )j k j k j k j k
k j j k

f x c x d xφ ψ
≥

= +∑ ∑ ∑    (3.21) 

where 

( )f x    = a signal or function 

0 0, , ( )j k j k
k
c xφ∑   = approximation part at level 0j  

0
, , ( )j k j k

j j k
d xψ

≥
∑ ∑  = detail part at level 0j  

0 ,j kc    = coefficients of scaling function at level 0j  

,j kd    = coefficients of wavelet function at level j  

The coefficient of scaling function and wavelet function can be calculated as 

follows: 

, , ,, ( ) ( )j k j k j kc f f x x dxφ φ
∞

−∞
= 〈 〉 = ∫     (3.22) 

, , ,, ( ) ( )j k j k j kd f f x x dxψ ψ
∞

−∞
= 〈 〉 = ∫     (3.23) 

In Eq. 3.21, when j  decreases, the approximation signal is coarser. The 

coarsest level is 0j . On the other hand, when j  increases, the approximation signal is 

finer. The parameter k  in Eq. 3.21 is the location of the data. In decomposition 
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framework, original signal or function is first decomposed to an approximation and a 

detail part at level one. The approximation part of level one can then be decomposed 

again to an approximation, which is coarser than the previous one, of level two and 

detail of level two. An approximation can be decomposed as many times as desired 

and the approximation at the next level is coarser than the previous level. The 

following figure shows approximations of a signal decomposed using decompostion 

process. 

 
Figure 3.11: Approximations of a signal decomposed by wavelet 

decomposition (Ogden, 1997). 

Depicted in Fig. 3.11, the upper most signal is the original signal and the 

second signal is its approximation at the next level. Likewise, the next lower signals 

are approximations of the upper ones. Fig. 3.12 shows the detail part of the signal 

decomposed in Fig. 3.11. 
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Figure 3.12: Details of a signal decomposed by wavelet decomposition 

(Ogden, 1997). 

The uppermost signal in Fig. 3.12 is the original signal and the bottom signal 

is the approximation at the last level of decomposition in Fig. 3.11. The signals in 

between are detail components at different levels of decomposition. 

In the reconstruction part, an approximation at any level can be reconstructed 

using Eq. 3.21 from a coarser approximation and detail components. This process can 

be implemented until the original signal is obtained. 

Fig. 3.13 and 3.14 sketch the mathematical principle of decomposition 

algorithm and reconstruction algorithm, respectively. 
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Figure 3.13: Schematic representation of the decomposition algorithm. 

 

 
Figure 3.14: Schematic representation of the reconstruction algorithm. 

Fig. 3.13 shows the decomposition of a signal from level mj  to 0j , i.e., from 

the finest resolution to the coarsest one. The detail components represented by the 

symbol d  with a subscript j  and the approximation components represented by the 

symbol c  with a subscript j  are decomposed from the previous approximation 

component. As seen in the figure, 
1mj

c
−

 and 
1mj

d
−

 are separated from the approximation 

component 
mj
c . In the next decomposition, 

2mj
c

−
 and 

2mj
d

−
 are separated from the 

approximation component 
1mj

c
−

. This process goes on until the level 0j . Fig. 3.14 

shows the reconstruction of a signal. The reconstruction process starts from 

combining the coarsest approximation component 
0j
c  and detail component 

0j
d  to 

form the approximation component 
1j
c . When the approximation component 

1j
c  and 

detail component 
1j
d  are combined, the result is approximation component 

2j
c . This 

reconstruction process is performed until the approximation component 
mj
c  is 

composed. 

Roughly speaking, multiresolution analysis finds the representation of a signal 

or function at different scales while preserving the underlying features of the original 
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signal via a decomposition algorithm. On the other hand, it can reconstruct the 

original signal from an approximation and its detail components via a reconstruction 

algorithm. Being able to separate detail components from the underlying features of 

the signal allows us to denoise the signal, which is discussed in the next section. 

3.2.3 Denoising 

In practice, noise generally exists in data collection process. Hence, it may 

deviate the results of data analysis. Thus, before doing any analysis, noise should be 

eliminated. There are many methods to exclude noise but one of the most effective 

methods is wavelet thresholding method. 

The principle of wavelet thresholding is to choose appropriate wavelet 

coefficients to represent the underlying structures in the signal. In general, large 

wavelet coefficients should be included in a selective reconstruction while small 

coefficients should not. Thus, a threshold value must be specified to get rid of the 

coefficients which are lower than the desired value. The principle of hard thresholding 

method is that the random noise contains in the small coefficients is eliminated while 

the large coefficients are kept. However, the principle of the soft thresholding method 

is that each wavelet coefficient consists of both a signal portion and a noise portion. 

So, it is desirable to isolate the signal portion by removing the noisy part. The 

following equations are the keep or kill detail coefficient of hard thresholding and soft 

thresholding, respectively. 

, ,
,

,

0,
j k j k jH

j k

d if d
d

otherwise

λ >= 


    (3.24) 

, ,

, ,

, ,

,
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,

j k j j k j

S
j k j k j

j k j j k j

d if d

d if d

d if d

λ λ

λ

λ λ

− >
= ≤
 + < −

   (3.25) 

where 

 ,
H
j kd  = detail coefficient of hard thresholding at level j  
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 ,
S
j kd  = detail coefficient of soft thresholding at level j  

 jλ  = threshold value at level j  

In the hard thresholding method (Eq. 3.24), detail coefficients larger than the 

absolute threshold value λ  are kept the same while coefficients smaller than the 

absolute threshold value are set to zero. On the other hand, in the soft thresholding 

method (Eq. 3.25), detail coefficients larger than the absolute threshold value are 

shrunken by the absolute threshold value and coefficients smaller than the absolute 

threshold value are set to zero. Fig. 3.15 graphically shows the hard and soft 

thresholding functions. 

 

 
Figure 3.15: The hard and soft thresholding functions (Ogden, 1997). 

 

Fig. 3.15 depicts the functions used in the hard and soft thresholding methods. 

The x -axis is the detail coefficient before denoising and the y -axis is the value of 

detail coefficient after denoising. Show in the hard thresholding function in Fig. 3.15, 

the absolute detail coefficients are set to zero if the coefficients are smaller than the 

absolute threshold value and are kept the same if the coefficients are larger than the 

absolute threshold value. Shown in the soft thresholding function in Fig. 3.15, the 

absolute detail coefficients are set to zero if the coefficients are smaller than the 

absolute threshold value and are shrunken by the absolute threshold if the coefficients 

are larger than the absolute threshold value. 
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The advantage of the hard thresholding method is that it can preserve the 

signal sharpness in the region of discontinuities in the signal. However, it cannot 

suppress a few noisy points in the continuous area of the signal while the soft 

thresholding method can. 

 

 
Figure 3.16: Decomposition of a signal using Daubechies 4 for 2 levels. 

 

Fig. 3.16 illustrates the decomposition of a signal using Daubechies 4 wavelet. 

In Fig. 3.16, s  is an original signal and 2a  is an approximation at levels 2 of 

decomposition. 1d  and 2d  are the detail signals of the original signal at level 1 and 2, 

respectively. In reconstruction process, 2a  and 2d  can be used to reconstruct an 

approximation at level 1 ( 1a ). The approximation at level 1 ( 1a ) and 1d  then can be 

combined to reconstruct the original signal. In case of denoising, some coefficients of 
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which magnitudes are lower than the threshold value, of detail parts at both levels 1 

and 2 are set to zero in both soft and hard thresholding methods and the coefficients 

whose magnitudes are higher than the threshold value are shrunken in the soft 

thresholding method. The graphical display of the thresholding is shown in Fig. 3.17. 

 

 
 

Figure 3.17: Thresholding detail signals. 
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Fig. 3.17 shows detail components at levels 1 and 2. The denoising of a signal 

is done by specifying threshold values for detail coefficients seen as dashed lines in 

the figure. The coefficients having absolute values less than the thresholds, i.e., those 

lying between the dashed lines, are set to zero. The coefficients having absolute 

values higher than the threshold, i.e., those lying above the dashed lines, are shrunken 

in the soft thresholding method or set to zero in the hard thresholding method. After 

detail coefficients are adjusted, approximation and adjusted details are then combined 

using signal reconstruction. Fig. 3.18 shows the original signal and its denoised 

signal. 

 

 

Figure 3.18: Original and denoised signals. 

The red signal in Fig. 3.18 is the original signal and the yellow signal is the 

denoised one. One can see that the yellow signal is smoother than the red one but still 

preserves the main structure of the original. However, the yellow signal shows a 

fluctuation in the discontinuity part of the original signal, shown in the left of Fig. 

3.18, due to the flaw of the soft thresholding method. The threshold value is an 

important parameter because the amount of noise eliminated depends on that value. In 

case that the threshold value is high, much of noise is ruled out but parts of the signal 

may be smeared out. If the threshold value is low, little of noise is eliminated. 

In practice, there is a rule for calculating the threshold values. The equation 

according to Kikani, J. and He, M. (1998) is expressed as 

ˆ 2 log nλ σ=      (3.26) 

where 

σ̂  = the median of absolute deviation (MAD) 

n  = the number of data 
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In Eq. 3.26, the median of absolute deviation (MAD) is the median of absolute 

deviation of all detail coefficients which can be calculated by Eq. 3.27 (Donoho and 

Johnstone, 1995). The number of data n  and the median of absolute deviation (MAD) 

are different for different levels of decomposition because of the change in resolution. 

Therefore, the thresholding value is different for different levels of decomposition. 

( )( )( ) ( )
1, 1,

ˆ
0.6745

n n
J k J kmedian d median d

σ
− −−

=    (3.27) 

where 2log ( )J n= . 

Briefly speaking, inherent noise in a data set can be eliminated by performing 

wavelet multiresolution analysis to decompose the data into an approximation 

component and detail components. Then, threshold values are specified to keep or kill 

the detail coefficients before reconstructing the new and smooth signal. As a result, 

the features of the data are preserved while noise is taken out. In practice, there are 

two techniques for denoising, hard and soft thresholding methods. The advantage of 

hard thresholding method is that it can preserve the signal sharpness at discontinuities 

in the signal. However, it cannot suppress a few noisy points in the continuous area of 

the signal while the soft thresholding method can. The drawback of the soft 

thresholding method is that the denoised signal may be too smooth. 

3.3 Correlation Analysis 

Correlation analysis concerns with the relation between X  and Y  in two-

dimensional random variables ( X ,Y ). Let’s consider a set of variable consisting of n  

ordered pairs of values 1 1( , ),..., ( , )n nx y x y . The sample means, variances and 

covariance are shown respectively as follows: 

- sample means 

1

1 n

j
j

x x
n =

= ∑      (3.28) 
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1

1 n

j
j

y y
n =

= ∑      (3.29) 

where 

x  = mean of variable x  

y  = mean of variable y  

- sample variances 

2 2

1

1 ( )
1

n

x j
j

S x x
n =

= −∑
−

     (3.30) 

2 2

1

1 ( )
1

n

y j
j

S y y
n =

= −∑
−

     (3.31) 

where 

 2
xS  = variance of variable x  

2
yS  = variance of variable y  

 

- sample covariance 

1

1 ( )( )
1

n

xy j j
j

S x x y y
n =

= − −∑
−

    (3.32) 

where 

 xyS  = covariance of variable x  and y  

The sample correlation coefficient is 

xy

x y

S
r
S S

=      (3.33) 

where 

 r  = correlation coefficient of variable x  and y  

As shown in the above equations, both xyS  and r  measure the interrelation 

between the X  and Y  values. However, r  has the advantage that it does not change 

under a multiplication of these values by a factor. 
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Correlation analysis is a way to measure degree of similarity between two 

variables. The principle of this analysis is to compare between covariance of two 

variables and multiple of each variable variance. In this study, correlation analysis is 

used to find the degree of similarity between realizations generated from Sequential 

Gaussian Simulation. 



CHAPTER IV 

 

SIMULATIONS AND RESULTS 
 

This chapter composes of four topics, which are generating raw data, 

simulation of realizations, denoising of realizations, and grouping of similar denoised 

realizations. In this study, the raw data, which are 47 porosity sampling data from 35 

vertical wells and 3 horizontal wells, were artificially created. The study area covers 

10,240 feet in north-south direction and 10,240 feet in east-west direction. After the 

raw data had been composed, 60 realizations (2D) maps were generated using 

Sequential Gaussian Simulation (SGS). The next step is denoising the realizations, 

which are performed by wavelet functions in MATLAB program. Finally, grouping 

similar denoised realizations are conducted by MATLAB program. 

4.1 Generating raw data 

To study the phenomenon of realizations in two-dimension from geostatistics 

simulation, a data set is needed. Since valuable data are confidential, artificial data set 

was generated for this study. There are two principles in generating the data, which 

are well spacing and value of variable of interest, which is porosity. In this study, a 

geological condition of sandstone formation located onshore is chosen to be the case 

study of this thesis because petroleum is mostly found in this kind of formation. The 

well spacing for onshore drilling is generally closer than offshore drilling due to the 

cost of drilling, which facilitates the examination of the porosity spatial structure. In 

general, well spacing of onshore drilling is about 500 meters or more and porosity 

value of fine to medium grain size sandstone is between 0.05 and 0.32, which is close 

to the real data according to Hand et. al. (1994). The study domain has a square area 

of which each side can be divided into 2n  sections because the area will then be 

analyzed by multiresolution wavelet analysis in the denoising step, which requires the 

number of grid cells to be 2n , where n  is an integer. The geology condition of this 

study is that reservoir formation is fine to medium grain size sandstone having no 
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major direction of influence because, in reality, the influence ranges are difficult to 

find due to well spacing limitation. Since variogram values at small distances are 

crucial in variogram modeling step, data pairs with distance smaller than the well 

spacing are required. Therefore, horizontal wells having the shorter distance between 

data than well spacing, are included in this data set. From these principles, 47 porosity 

sampling data from 35 regular wells and 3 horizontal wells are made up within the 

study area of 10,240x10,240 ft2 in north-south and east-west direction respectively, 

which can be divided into 256x256 blocks with the size of 40x40 ft2. The following 

data are the initial data for this study. 

Table 4.1: The locations and porosity values of raw data. 

 

X-coordinate Y-coordinate X-coordinate Y-coordinate 
(Feet) (Feet) 

Porosity values
(Feet) (Feet) 

Porosity values 

4,260 10,020 0.31 4,420 1,740 0.13 
1,340 9,260 0.26 9,540 1,460 0.23 
4,820 9,580 0.22 1,420 7,260 0.32 
8,940 9,940 0.14 3,260 6,140 0.18 
2,620 8,540 0.31 5,620 4,540 0.20 
6,140 8,740 0.16 7,220 5,220 0.17 
7,540 8,420 0.20 8,820 8,140 0.16 
3,060 7,980 0.07 4,500 8,140 0.12 
9,140 7,140 0.29 3,260 2,260 0.17 
5,180 6,460 0.27 9,500 4,020 0.24 
6,900 6,660 0.05 4,260 3,420 0.05 
8,900 6,660 0.20 1,420 4,140 0.10 
1,900 5,620 0.05 7,420 8,220 0.26 
4,140 5,060 0.16 7,140 8,060 0.26 
8,300 4,140 0.12 6,940 8,020 0.19 
9,940 4,940 0.16 5,140 6,660 0.29 
3,140 3,940 0.21 5,140 7,060 0.17 
6,260 3,100 0.16 5,140 7,260 0.21 
1,540 2,820 0.17 4,260 3,220 0.07 
5,460 2,500 0.26 4,260 3,020 0.09 
7,220 2,980 0.26 4,260 2,820 0.11 
8,900 2,660 0.22 7,220 1,740 0.21 

10,220 2,740 0.30 6,540 780 0.14 
   7,220 10,220 0.11 
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Table 4.1 depicts 47 porosity data at different locations. The X Y−  

coordinates shown in the table are measured from the origin at the bottom left of the 

study area. Figure 4.1 shows the location map of the data set. 
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Figure 4.1: Location map of porosity data. 

 

As seen in Fig. 4.1, vertical wells scatter around the study area and three 

horizontal wells are drilled around the middle part of the area, which can be 

recognized from close data locations. 

Table 4.2 gives a statistical analysis of the porosity data set. The mean of the 

data is 0.186 and variance and standard deviation are 0.006 and 0.075, respectively. 

The minimum and maximum value of the data set are 0.050 and 0.320, respectively. 

The first, second, and third quartiles are 0.127, 0.180, and 0.245, respectively. 

Coefficient of variation, skewness, and kurtosis are 0.40, -0.051, and 2.160, 

respectively. 
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Table 4.2: Statistics of porosity data. 

 
Parameters values 

Mean 0.186 

Variance 0.006 

Std. Dev 0.075 

Minimum 0.050 

25th % 0.127 

Median 0.180 

75th % 0.245 

Maximum 0.320 

Coefficient of variation 0.40 

Skewness -0.051 

Kurtosis 2.160 

 

The following figure is the histogram of porosity data. 
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Figure 4.2: Histogram of porosity data. 
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Fig. 4.2 shows the histogram of porosity data in the study area. As seen in the 

figure, values of the data spread from 0.05 to 0.32 and have a high frequency at 

around 0.15 to 0.19. The coefficient of variation records lower than one (0.40) 

indicates no presence of some erratic high sample values that may have significant 

impact to the simulation process. The rather small negative skewness describes the 

sample distribution with a few small values presence at the left of the histogram. It 

can be said that the histogram is approximately symmetric with the skewness (-0.051) 

close to zero and the median (0.180) is close to the mean (0.186). The positive 

kurtosis of 2.160 indicates a peaked distribution. 

This 2D porosity data is used as an input in performing Sequential Gaussian 

Simulation, which will be carried out in the next step. 

4.2 Simulation of realizations 

This part presents the procedure of conducting the geostatistics simulation of 

the porosity data generated from the previous step. In this study, Sequential Gaussian 

Simulation is chosen because it gives good results for homogeneous variable such as 

porosity, and it is widely used to estimate porosity. This simulation was also 

presented in Hand et. al. (1994) to find porosity distribution for each facie of Romeo 

zonation in Prodhoe Bay. 

The simulation process can be divided into 2 steps, which are finding the 

spatial variability structure of porosity variable (known as variogram model), and 

conducting the simulation. The first step, constructing the variogram model, is 

executed by Variowin computer program, which is a good graphic display computer 

program that can show analysts to see how fit of a model in comparison with the 

calculated variogram values. The second step is performing the Sequential Gaussian 

Simulation, which is implemented by GSLIB program. 

4.2.1 Constructing the variogram model 

To perform the Sequential Gaussian Simulation, the sample values have to be 

transformed to normal score data before further analysis due to its assumption of 
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multigaussian distribution. In this study, the data are transformed by GSLIB program. 

The normal score data is tabulated in Table 4.3. 

 

Table 4.3: The locations, porosity values, and normal score values. 

 

X coordinate Y coordinate 

(Feet) (Feet) 
Porosity values Normal score 

values 

4,260 10,020 0.31 1.615 

1,340 9,260 0.26 0.691 

4,820 9,580 0.22 0.441 

8,940 9,940 0.14 -0.625 

2,620 8,540 0.31 1.853 

6,140 8,740 0.16 -0.383 

7,540 8,420 0.20 0.161 

3,060 7,980 0.07 -1.306 

9,140 7,140 0.29 1.306 

5,180 6,460 0.27 1.088 

6,900 6,660 0.05 -1.853 

8,900 6,660 0.20 0.215 

1,900 5,620 0.05 -1.615 

4,140 5,060 0.16 -0.441 

8,300 4,140 0.12 -0.761 

9,940 4,940 0.16 -0.270 

3,140 3,940 0.21 0.382 

6,260 3,100 0.16 -0.326 

1,540 2,820 0.17 -0.161 

5,460 2,500 0.26 0.834 

7,220 2,980 0.26 0.761 

8,900 2,660 0.22 0.500 

10,220 2,740 0.30 1.443 

4,420 1,740 0.13 -0.691 

9,540 1,460 0.23 0.562 

1,420 7,260 0.32 2.303 

3,260 6,140 0.18 0.000 

5,620 4,540 0.20 0.107 

7,220 5,220 0.17 -0.215 
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Table 4.3: The locations, porosity values, and normal score values (continued). 

 

X-coordinate Y-coordinate Porosity values Normal score 
values 

4,500 8,140 0.12 -0.834 

3,260 2,260 0.17 -0.053 

9,500 4,020 0.24 0.625 

4,260 3,420 0.05 -2.303 

1,420 4,140 0.10 -1.088 

7,420 8,220 0.26 0.996 

7,140 8,060 0.26 0.912 

6,940 8,020 0.19 0.053 

5,140 6,660 0.29 1.190 

5,140 7,060 0.17 -0.107 

5,140 7,260 0.21 0.270 

4,260 3,220 0.07 -1.443 

4,260 3,020 0.09 -1.190 

4,260 2,820 0.11 -0.996 

7,220 1,740 0.21 0.326 

6,540 780 0.14 -0.562 

7,220 10,220 0.11 -0.912 

 

Table 4.3 shows the normal score values in the fourth column of the table of 

the original data at all locations. 

Table 4.4 shows the statistics of the normal score data, which were 

transformed from the original porosity data. The new data have a mean of zero and 

variance and standard deviation of one, which are the characteristics of standard 

normal distribution. The minimum and maximum values are -2.300 and 2.303, 

respectively. The first, second, and third quartiles are -0.709, 0.000, and 0.642, 

respectively. Coefficient of variation, skewness, and kurtosis are 0, 0, and 2.718, 

respectively. 

 

 



 48

Table 4.4: The statistical analysis of the normal score data. 

 

Parameters values 

Mean 0.000 

Variance 0.994 

Std. Dev 0.997 

Minimum -2.300 

25th % -0.709 

Median 0.000 

75th % 0.642 

Maximum 2.303 

Coefficient of variation 0 

Skewness 0 

Kurtosis 2.718 
 

The plot of histogram of the normal score porosity data is shown in Fig. 4.3. 
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Figure 4.3: Histogram of the normal score porosity data. 
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Fig. 4.3 shows the histogram of the normal score porosity data. As it can be 

observed, the normal score porosity follows the standard normal distribution. 

After the normal score data were prepared, variogram calculations of these 

data and a variogram modeling are constructed using the Variowin program. Since 

there are a few data due to large well spacings, variogram analysis in many directions 

may give improper results. Therefore, this study used omnidirectional variogram 

which can represent variogram in all directions. Fig. 4.4 illustrates the plot of the 

experimental variogram values at difference distances and its model. 

 

experimental variogram value

variogram model

experimental variogram value

variogram model

 
 

Figure 4.4: The omnidirectional variogram plot and its variogram model for normal 

score data. 

 

Fig. 4.4 shows the experimental variogram values and its model of normal 

score data. The parameters used to calculate this variogram plot are: 900 feet of lag 

spacing, 450 feet of lag tolerance, 5 lags, 0 degree of direction, 90 degree of angular 

tolerance, and no limits of maximum bandwidth. In Fig. 4.4, the numbers shown near 

the black dots are the number of pairs that are used in the calculation for each lag 

distance and the black solid line is the variogram model. The result of fitting the 

variogram model is shown in the Table 4.5. 
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Table 4.5: Variogram model parameters of normal score data. 

 

Parameters Values 

Model Spherical 

Nugget 0.03 

Range 1,570 feet 

Sill 0.97 
 

Table 4.5 shows the model parameters of variogram, which are spherical 

model with 0.03 nugget, 1,570 feet range, and 0.97 sill. 

The variogram model exhibits a small nugget effect, with the nugget value of 

0.03 which is approximately 3 percent of the sill value. The normal score porosity 

data yields a correlation distance of 1,570 feet defined within the range distance and 

represented all direction. The sill value (0.97) almost equals to the normal score 

porosity data variance (1.00). In overall, this variogram model represents the spatial 

variability structure of the transform porosity data, and it will be used as the 

conditioning information in the simulation process. 

In reality, variogram calculation is an important step because the accuracy of 

the estimated values or realizations mostly depends on the variogram model. Hence, 

many variogram models were tried when fitting the variogram plot to find the best fit 

model. After a variogram model is found, there is a condition that the data set has to 

meet the bivariate normal distribution before conducting Sequential Gaussian 

Simulation. 

4.2.2 Checking for Bivariate Normality 

Before applying Sequential Gaussian Simulation to this data set, there is a 

condition that the data set has to follow bivariate normal distribution. Therefore, the 

process of checking for Bivariate Normality is necessary. In practice, the checking 

process is carried out by comparing the theoretical variogram of Bivariate Gaussian 

model with experimental indicator variogram at several cut-off values, such as second 

quartile, median, and third quartile. In this study, the median is chosen to be the cut-
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off value to examine the Bivariate Normality around the average of data set. In the 

checking process, the experimental indicator variogram corresponding to a specific 

cut-off, median cut-off in this case, is compared to the theoretical variogram 

calculated from Eq. 3.9. The procedure for this check can be elaborated as follows: 

1. Calculating an experimental indicator variogram at median cut-off, which is 

0.18 for this study. 

2. Calculating the theoretical indicator variogram of Bivariate Gaussian model 

at median cut-off using Eq. 3.9. 

3. Comparison of the two indicator variograms, which obtain from procedure 

number one and two. 

In the comparison of these two variograms, some parameters for variogram 

calculation are specified as shown in Table 4.6. 

 

Table 4.6: Variogram parameters using for checking Bivariate Normality. 

 

Parameters Values 

Number of lag 40 

Lag spacing 100 

Cut-off 0.18 
 

Table 4.6 shows parameters used in variogram calculation, which are set to be 

the same for both experimental and gaussian model indicator variograms. The cut-off 

porosity value is equal to median, which is 0.18. 

Fig. 4.5 shows the experimental and gaussian model indicator variograms 

corresponding to the second quartile, median. As seen in the figure, there is a good 

correspondence between experimental indicator variogram at median cut-off and 

theoretical indicator variogram of Bivariate Gaussian model. That means Sequential 

Gaussian Simulation can be used for this data set. 
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Figure 4.5: Experimental indicator variogram and gaussian model-derived indicator 

variogram at median cut-off. 

 

4.2.3 Sequential Gaussian Simulation 

Sequential Gaussian Simulation can generate many realizations at equal 

probability from the same data set. The probability distribution (ccdf) of the random 

visited node is constructed by Simple Kriging process, conditioned to the original data 

and previously simulated data. Then, the realization at the visited node is generated 

using the random number generator and the constructed ccdf. In practice, several 

realizations are generated to examine the spatial variability structure of a data set. As 

a result, it takes a lot of time and uses a lot of resources to perform reservoir 

simulation for multiple realizations. The number of realizations generated in this 

study are sixty. This is because the comparison process needs many realizations to 

demonstrate the grouping technique. In this study, 60 realization maps are generated 

by Sequential Gaussian Simulation of GSLIB program executed in Fortran 

PowerStation 4.0. The following figure is the parameters file used in simulation. 
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Figure 4.6: Parameters file of the Sequential Gaussian Simulation. 

The parameters shown in Fig. 4.6 provide information that the simulation will 

simulate 60 realization maps of data set read from “data.dat” file for 256×256 blocks 

with the size of 40×40 ft2 in X  and Y  dimension. The Simple Kriging subroutine is 

used to calculate the mean and variance of the probability function. The searching 

subroutine is defined as two parts search, which means the data and previously 

simulated grid nodes are searched separately with 1,570 feet of maximum search 

radius. The variogram model used in this simulation is omnidirectional variogram 

with a nugget effect of 0.03, range of 1,570 feet, and sill of 0.97. The maximum data 

and simulated nodes used in each node estimation are both 10. 

The results of 60 realization maps of porosity data are shown in  Fig. 4.7 

through 4.14. 
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Figure 4.7: Realizations number 1-8. 
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Figure 4.8: Realizations number 9-16. 
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Figure 4.9: Realizations number 17-24. 
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Figure 4.10: Realizations number 25-32. 
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Figure 4.11: Realizations number 33-40. 
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Figure 4.12: Realizations number 41-48. 
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Figure 4.13: Realizations number 49-56. 
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Figure 4.14: Realizations number 57-60. 

In global scale, the trend of these 60 realization maps is that there are high 

porosity values concentrated around the top right and bottom left of the study area and 

the low porosity values concentrated around the middle of the area. However, there 

are many differences among these realizations in local scale due to local spatial 

variation. Therefore, it is very difficult to compare and group similar realizations 

visually. The next step is to denoise the realizations and then try to group the similar 

realizations together. 

4.3 Denoising of realizations 

At this stage, all realizations are denoised using the soft thresholding method. 

The wavelet function used in this study is Daubechies 4, since it is a prominent 

function frequently used in data analysis. The threshold values can be calculated from 

Eq. 3.26. The realizations were denoised by thresholding the three detail components 

which are horizontal, vertical, and diagonal components. Table 4.7 shows the median 
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absolute deviation of the horizontal, vertical, and diagonal components and the 

threshold values at each level of decomposition. 

Table 4.7: Calculation of threshold values at each level of decomposition. 

 

Median absolute deviation Threshold 
Realization level 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

1 1.247 1.209 1.111 3.870 3.752 3.448 

2 2.018 2.046 1.497 5.859 5.940 4.346 

3 4.342 3.854 2.739 11.671 10.359 7.362 
1 

4 7.301 6.236 5.003 17.914 15.301 12.276 

1 1.221 1.210 1.095 3.790 3.755 3.399 

2 2.116 2.050 1.456 6.143 5.952 4.227 

3 4.602 3.775 2.770 12.370 10.147 7.445 
2 

4 7.064 5.961 5.819 17.333 14.626 14.278 

1 1.228 1.218 1.070 3.811 3.780 3.321 

2 1.963 2.006 1.427 5.699 5.824 4.143 

3 4.363 4.576 2.677 11.727 12.300 7.195 
3 

4 6.951 6.235 6.142 17.056 15.299 15.071 

1 1.203 1.191 1.076 3.734 3.697 3.340 

2 2.078 2.018 1.397 6.033 5.859 4.056 

3 4.340 4.130 2.737 11.665 11.101 7.357 
4 

4 6.368 5.640 4.916 15.625 13.839 12.062 

1 1.242 1.232 1.091 3.855 3.824 3.386 

2 2.155 2.079 1.477 6.256 6.036 4.288 

3 4.694 4.284 2.818 12.617 11.515 7.574 
5 

4 6.152 6.226 5.215 15.095 15.277 12.796 

1 1.298 1.276 1.155 4.029 3.960 3.585 

2 2.023 2.133 1.570 5.873 6.193 4.558 

3 4.447 4.630 2.863 11.953 12.445 7.695 
6 

4 6.420 8.059 5.236 15.753 19.774 12.848 

M  M  M  M  M  M  M  M  
1 1.270 1.272 1.096 3.942 3.948 3.402 

2 2.113 2.187 1.529 6.135 6.349 4.439 

3 4.481 3.886 2.891 12.044 10.445 7.771 
60 

4 7.376 5.188 4.745 18.098 12.730 11.643 
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In this study, many levels of denoising were conducted by trial and error to 

find the appropriate denoising level of these realizations. Fig. 4.15 shows an example 

of realization number 1 and its denoised images reconstructed from different levels of 

decomposition. 

5

10

15

20

25

30

35
Original realization number 001

50 100 150 200 250

50

100

150

200

250
0

5

10

15

20

25

30

35

40
Denoised realization number 001 at level 1

50 100 150 200 250

50

100

150

200

250

  

0

5

10

15

20

25

30

35

40
Denoised realization number 001 at level 2

50 100 150 200 250

50

100

150

200

250
0

5

10

15

20

25

30

35

40
Denoised realization number 001 at level 3

50 100 150 200 250

50

100

150

200

250

  

0

5

10

15

20

25

30

35

40
Denoised realization number 001 at level 4

50 100 150 200 250

50

100

150

200

250
0

5

10

15

20

25

30

35

40
Denoised realization number 001 at level 5

50 100 150 200 250

50

100

150

200

250

 

Figure 4.15: Original realization number 1 and its denoised maps reconstructed from 

5 different levels of resolution. 

As can be seen from Fig. 4.15, the denoised images reconstructed from higher 

levels are smoother than those reconstructed from lower ones. However, the denoised 
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realization at level 5 is not much smoother than that at level 4. As a result, level 4 of 

denoising seems to be an appropriate one to use.  

In this study, denoising was done using wavelet function in MATLAB 

program. Fig. 4.16 shows an example of the denoising process in MATLAB program. 

 

 
 

Figure 4.16: Denoising a realization using MATLAB program. 

Shown in Fig. 4.16 are the original image of realization number 1 and its 

denoised image. The letters L with subscript 1 to 4 refer to levels 1 to 4 of the 

decomposition, respectively. The twelve histograms shown in Fig. 4.16 are the 

histograms of detail coefficient at each level and direction of decomposition, which 

are 4 levels in horizontal, vertical, and diagonal direction. The threshold value at each 

level can be entered into the program by filling the numbers in the boxes located at 

the middle right or moving the dash lines in the small charts. As seen in the figure, the 

denoised image is smoother than the original one but still preserves the main structure 
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of the original image. Some denoised realizations, which are denoised realizations of 

realizations number 1, 10, 30, and 50, are shown in Fig. 4.17. 
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Figure 4.17: Examples of denoised realizations. 

After all realizations were denoised, they would then be compared one by one 

to find similarity among them. The next step is finding the similarity among 

realizations and grouping these realizations based on correlation between each pair. 

4.4 Grouping similar denoised realizations 

To compare similarity between two realizations, correlation between 

properties at the same location of the two realizations is used. The correlation can be 

calculated from Eq. 3.32. Since 60 realizations are used in this study, the total number 

of correlations are 3,600 (60 of them are autocorrelation). If the correlation of two 

denoised realizations is high, it is likely that these two realizations have a high degree 

of similarity. On the other hand, if the correlation is low, it implies that these two 
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realizations have a small degree of similarity between them. Tables 4.8 and 4.9 show 

some examples of the 3,600 correlations and their statistics, respectively. 

Table 4.8: Correlation of realizations. 

 

Realization Correlation 

First Second Original realizations Denoised realizations 

1 1 1.000 1.000 

1 2 0.216 0.273 

1 3 0.412 0.507 

…
 

…
 

…
 

…
 

1 59 0.250 0.316 

1 60 0.106 0.142 

2 1 0.216 0.273 

2 2 1.000 1.000 

2 3 0.255 0.317 

…
 

…
 

…
 

…
 

2 59 0.193 0.244 

2 60 0.173 0.217 

…
 

…
 

…
 

…
 

59 1 0.250 0.316 

59 2 0.193 0.244 

59 3 0.353 0.440 

…
 

…
 

…
 

…
 

59 59 1.000 1.000 

59 60 0.249 0.311 

60 1 0.106 0.142 

60 2 0.173 0.217 

60 3 0.161 0.207 

…
 

…
 

…
 

…
 

60 59 0.249 0.311 

60 60 1.000 1.000 

 

Table 4.8 shows both correlations of original and denoised realizations. The 

correlation of original realizations shown in the third column is the correlation 

between a pair of realizations shown in the first and the second columns. Likewise, 
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the correlation of denoised realizations shown in the fourth column is the correlation 

between a pair of denoised realizations shown in the first and the second columns. As 

seen in the table, the correlations between denoised realizations are higher than 

correlations between original realizations for the same pair of realizations. This means 

that the degree of similarity between denoised realizations is higher than that of the 

original ones. 

Table 4.9: Statistical analysis of correlation values. 

 

Parameters Original realizations Denoised realizations 

Mean 0.226 0.284 

Variance 0.05 0.07 

Std. Dev 0.069 0.083 

Minimum -0.015 -0.012 

25th % 0.178 0.226 

Median 0.228 0.286 

75th % 0.274 0.343 

Maximum 0.474 0.569 

 

In Table 4.9, the parameter values in “Original realizations” column are 

statistics of the 3,540 correlations paired up from 60 realizations excluding the pairs 

of the same realization generated by stochastic simulation. The values in “Denoised 

realizations” column are statistics of the 3,540 correlations paired up from 60 

denoised realizations excluding the pairs of the same realization. As seen in the table, 

the mean of the correlations between pairs of denoised realizations is higher than that 

of the original realizations because the degree of similarity increases. The variance of 

the correlations between pairs of denoised realizations is higher than that of the 

original realizations because the correlations between pairs of the denoised 

realizations have wider range of values than those of the original realizations. 

Fig. 4.18 and 4.19 display the histograms of the correlations for 3,540 pairs of 

the original realizations and the correlations for 3,540 pairs of denoised realizations, 

respectively. 
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Figure 4.18: Histogram of correlation values between 3,540 pairs of original 

realizations. 
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Figure 4.19: Histogram of correlation values between 3,540 pairs of denoised 

realizations. 
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As depicted in Fig. 4.18 and 4.19, the distributions of correlations between 

original and denoised realizations are close to normal distribution but the histogram of 

the correlations between denoised realizations shifts to the right side comparing with 

the histogram of the correlations between original realizations. The span of the 

histogram of the correlations between denoised realizations is wider than that of the 

original ones. Since the mean of the correlation between denoised realizations is 

higher, it is better to group denoised images rather than original realizations. 

To group the realizations based on the correlation, 60 groups of realizations 

are composed. There are two criteria used for the grouping process. The first criterion 

is to specify a cut-off value to eliminate pairs of realizations having a small 

correlation value. The second principle is that an image with a higher correlation 

value has a higher priority to be the member of a group than the lower one and the 

new member of the group has to have correlations with all the previous members of 

the group not lower than the cut-off value. The procedure of grouping is shown as 

follows: 

1. Calculate correlations of pairs of realizations as shown in Table 4.8. 

2. Specify a cut-off value to eliminate pairs that have small correlations. 

3. Starting with realization 1, determine realizations that are highly correlated 

to it (realization that yields a correlation greater than the cut-off value). 

4. Rank the realizations that are highly correlated with the base realization 

based on the correlation values. 

5. Check if the correlation between the second most correlated realization and 

the most correlated realization is higher than the threshold. If it is, include the second 

most correlated realization as a group member. If not, exclude it. Then, check if the 

correlation between the third most correlated image and the most correlated image 

and the correlation between the third most correlated image and the second most 

correlated image are both higher than the cut-off value. If they are, include the third 

most correlated realization as a group member. If not, exclude it. Then, perform the 

same kind of checking for all realizations ranked in step 4. 

6. Then continue to find similar realizations based on the same cut-off for 

realizations 2, 3, 4, …, and 60, respectively. 
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7. Vary cut-off correlation values and do the grouping. 

To clarify the procedure of grouping, grouping of 4 images is presented as an 

example. The procedure of finding images similar to the base image A is presented as 

follows: 

Table 4.10: Correlation values among 4 images: A, B, C and D. 

 

Images Correlation Images Correlation Images Correlation Images Correlation 
A-A 1.00 B-B 1.00 C-C 1.00 D-D 1.00 
A-B 0.20 B-A 0.20 C-A 0.40 D-A 0.30 
A-C 0.40 B-C 0.25 C-B 0.25 D-B 0.10 
A-D 0.30 B-D 0.10 C-D 0.35 D-C 0.35 

  

1. The correlation among the four images are calculated and tabulated in Table 

4.10. 

2. A cut-off value of 0.19 is used.  

3. The pairs of images having correlation values lower than cut-off value are 

eliminated. In this case, images B, C, D all have correlation with A higher than 0.19. 

Thus, none is eliminated. 

4. The chosen images are ordered according to their ranks as image C, D, B. 

5. Image C is a member of the group automatically because it has the highest 

correlation value with base image A. 

Then, check whether the correlation value between image D (the second most 

correlated image) and image C (the most correlated image) is higher than the cut-off 

value. In this example, image D can be a member of this group because the 

correlation value between images D and C is 0.35 which is higher than the specified 

cut-off value. 

Then, check whether the correlation value between image B (the third most 

correlated image) and image C (the most correlated image) and the correlation value 

between image B (the third most correlated image) and image D (the second most 

correlated image) are higher than the cut-off value. In this case, correlation values 

between images B and C and images B and D are 0.25 and 0.10, respectively. Since 
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the correlation value between images B and D is lower than the cut-off value, image B 

cannot be a member of the group. 

 

Table 4.11: Ranking of highly correlated denoised realizations 

with a cut-off value of 0.35. 

 

Realization that is highly correlated with the base realization 
Base 

Realization Most 
correlated 

2nd most 
correlated

3rd most 
correlated

4th most 
correlated

5th most 
correlated

6th most 
correlated 

7th most 
correlated

1 3 15 9 - - - - 
2 36 46 22 - - - - 
3 1 38 29 - - - - 
4 35 36 12 58 52 - - 
5 17 - - - - - - 
6 19 23 - - - - - 
7 34 24 22 36 27 - - 
8 59 23 22 3 36 - - 
9 30 35 52 4 - - - 

10 15 22 12 - - - - 
11 28 38 - - - - - 
12 51 36 11 20 22 27 3 
13 17 51 59 36 27 - - 
14 31 36 - - - - - 
15 23 8 22 3 12 - - 
16 40 51 37 11 - - - 
17 13 51 59 36 27 - - 
18 58 30 52 4 35 - - 
19 23 6 - - - - - 
20 22 24 36 27 - - - 
21 54 14 - - - - - 
22 36 27 20 3 11 51 12 
23 8 15 12 22 3 - - 
24 7 22 34 27 36 - - 
25 10 58 - - - - - 
26 52 22 9 15 - - - 
27 22 23 3 59 11 36 - 
28 11 38 - - - - - 
29 3 36 22 23 - - - 
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Table 4.11: Ranking of highly correlated denoised realizations 

with a cut-off value of 0.35 (continued). 

 
Realization that is highly correlated with the base realization 

Base 
Realization Most 

correlated 
2nd most 

correlated
3rd most 

correlated
4th most 

correlated
5th most 

correlated
6th most 

correlated 
7th most 

correlated
30 18 52 4 58 35 - - 
31 36 13 55 - - - - 
32 53 - - - - - - 
33 23 49 3 - - - - 
34 7 4 36 22 - - - 
35 4 36 58 30 52 - - 
36 22 46 45 - - - - 
37 51 59 11 - - - - 
38 11 3 22 51 - - - 
39 57 - - - - - - 
40 16 37 51 11 - - - 
41 51 13 56 12 - - - 
42 60 30 - - - - - 
43 51 59 - - - - - 
44 58 18 - - - - - 
45 46 36 22 - - - - 
46 36 45 47 - - - - 
47 49 3 36 12 51 - - 
48 7 - - - - - - 
49 47 46 51 36 - - - 
50 4 58 12 52 18 - - 
51 12 41 13 56 - - - 
52 1 18 12 15 - - - 
53 8 - - - - - - 
54 21 12 - - - - - 
55 13 36 31 - - - - 
56 51 41 13 12 - - - 
57 39 - - - - - - 
58 18 52 4 30 35 - - 
59 8 3 22 23 36 - - 
60 30 4 36 58 35 - - 
 

Table 4.11 shows the ranking of highly correlated denoised realizations when 

a cut-off value of 0.35 is used. The denoised realization shown in the first column is 

the base realization for the group. The first member of each group is the denoised 

realization that has the highest correlation with the base realization. The rest of the 
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members of the group are selected by the same principle with additional constraint 

that the new member of the group has to have correlations with all the previous 

members of the group not lower than the cut-off value. For example, at cut-off value 

of 0.35, realization number 22 has 7 realizations that are similar to it which are 

realization number 36, 27, 20, 3, 11, 51, and 12. Realization number 12 also has 7 

similar realizations which are realization number 51, 36, 11, 20, 22, 27, and 3. 

Although both realization 22 and realization 12 have 8 members in its group, 

realization 22 has a higher average correlation between the base realization and its 

members. Thus, realization 22 can be considered as the most representative 

realization among the 60 realizations used in the comparison. 

In this study, the cut-off correlation value was varied from zero until the 

number of members of the biggest group equals to two to examine the results of 

grouping using original and denoised realizations. Tables 4.12 and 4.13 show the 

grouping of original and denoised realizations using different cut-off values, 

respectively. The first column of both tables is the cut-off values and the order of 

groups is from the biggest group to smaller groups. This study focuses on only the big 

groups so these tables show only the first four biggest groups. The grouping result of 

original realizations at a cut-off of 0.0 shows that the biggest group is the group of 

base realization number 36. 

As can be observed from Tables 4.12 and 4.13, the grouping shows static 

results at a certain range of cut-off values. For original realizations, the biggest groups 

are the same for cut-off values between 0.06 and 0.09 and between 0.31 and 0.34. For 

denoised realizations, the biggest groups are the same for cut-off values between 0.02 

and 0.06 and between 0.25 and 0.30 and between 0.34 and 0.38. The denoised 

grouping shows a more static result. For original realizations, the cut-off values 

between 0.06 and 0.09 are too low, comparing to the rest of correlation values and the 

cut-off values between 0.31 and 0.34 are very high, which means that only a few 

realizations are included in the grouping, comparing to the rest of correlation values. 

For denoised realizations, the static result between cut-off values of 0.02 and 0.06 is 

not suitable because these values are too low. For the static result at cut-off value of 

0.28 (around the median of the correlation values), realization number 4 is the 
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realization with the biggest member (a total of 16 including the base realization). 

Members of this group are shown in Fig. 4.20 and 4.21. As seen in the figures, there 

are still some realizations that have a certain degree of dissimilarity. 

Table 4.12: Grouping of original realizations using different cut-off values. 
 

0.00 36 22 4 12
0.01 36 22 4 12
0.02 4 12 23 56
0.03 4 12 23 58
0.04 4 51 59 56
0.05 22 4 51 56
0.06 36 22 12 4
0.07 36 22 58 52
0.08 36 22 47 5
0.09 36 23 49 7
0.10 42 36 22 12
0.11 26 36 22 12
0.12 12 34 24 22
0.13 22 4 12 34
0.14 15 52 47 22
0.15 15 47 4 18
0.16 52 15 46 1
0.17 52 4 18 35
0.18 36 4 18 35
0.19 36 18 35 9
0.20 47 36 4 30
0.21 4 36 30 18
0.22 4 58 36 30
0.23 4 36 58 18
0.24 21 4 36 58
0.25 27 35 9 4
0.26 45 27 46 60
0.27 22 4 58 18
0.28 22 58 30 18
0.29 11 4 22 58
0.30 22 4 18 58
0.31 18 58 30 34
0.32 18 58 30 36
0.33 18 58 30 24
0.34 18 58 30 60
0.35 36 22 46 23
0.36 36 22 46 45
0.37 36 22 35 4

Cut-off

Base 
realization of 
the biggest 

group

Base 
realization of 
the second

biggest group

Base 
realization of 

the third
biggest group

Base 
realization of 

the fourth
biggest group
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Table 4.13: Grouping of denoised realizations using different cut-off values. 

0.00 22 36 12 4
0.01 22 36 12 4
0.02 12 4 23 59
0.03 12 4 23 59
0.04 12 4 23 59
0.05 12 23 4 3
0.06 12 23 4 3
0.07 22 30 8 54
0.08 22 4 51 52
0.09 22 36 23 30
0.10 8 25 20 10
0.11 36 13 34 17
0.12 36 56 34 49
0.13 36 34 17 42
0.14 12 27 50 22
0.15 34 12 15 36
0.16 12 47 4 34
0.17 47 12 15 1
0.18 15 47 52 46
0.19 51 15 47 1
0.20 49 52 15 46
0.21 52 15 46 4
0.22 18 52 15 46
0.23 36 18 35 9
0.24 36 4 18 35
0.25 4 36 30 18
0.26 4 36 30 18
0.27 4 36 18 58
0.28 4 58 36 18
0.29 4 36 58 30
0.30 4 36 58 45
0.31 27 22 36 4
0.32 27 29 23 45
0.33 45 46 22 4
0.34 22 30 23 58
0.35 22 12 27 4
0.36 22 4 18 23
0.37 22 18 58 30
0.38 22 18 30 58
0.39 18 30 58 36
0.40 18 30 58 13
0.41 18 30 58 4
0.42 30 58 18 36
0.43 36 22 46 23
0.44 36 22 46 23
0.45 46 45 36 22
0.46 36 22 35 4

Base 
realization of 

the third
biggest group

Base 
realization of 

the fourth
biggest group

Cut-off

Base 
realization of 
the biggest 

group

Base 
realization of 
the second

biggest group
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 Figure 4.20: The first 8 members of group number 4 using denoised realizations at 

cut-off value of 0.28 (denoised realization number 4, 35, 36, 12, 30, 34, 18, and 58). 
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Figure 4.21: The other 8 members of group number 4 using denoised realizations at 

cut-off value of 0.28 (denoised realization number 52, 56, 22, 47, 26, 23, 59, and 46). 
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Figure 4.22: The 8 members of group number 22 using denoised realizations at  

cut-off value of 0.35 (denoised realization number 22, 36, 27, 20, 3, 11, 51, and 12). 
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For the static result at a cut-off value of 0.35 which is around the third quartile 

of total correlation values, the members of the group shown in Fig. 4.22 look quite 

similar. The main structures of these denoised realizations are the same, having high 

value of porosity at the top and the bottom right of the images and low value of 

porosity at the bottom left. Therefore, we will use the correlation value at the third 

quartile as the cut-off value. Having chosen this criteria, realization number 22 is 

selected as the most representative of all 60 realizations. 

However, there is another criterion we can use to find the most representative 

realization, which is focusing on the number of members of the biggest group. The 

result of this method depends on the desired number of members of the biggest group. 

In practice, the proper number of members comes from judgment of analysts who 

belive that the group, which has this amount of members, is the perfect group having 

enough degree of similarity. Tables 4.14 and 4.15 show the number of members of the 

first four biggest groups resulting from original realization and denoised realization 

grouping at different cut-off values, respectively. The first column of both tables is 

the cut-off values and the order of groups is from the biggest group to smaller groups. 

This study focuses on only the big groups, so these tables show only the first four 

biggest groups. The grouping result of original realizations at a cut-off of 0.0 shows 

that the number of members of the biggest group is 57, which is the number of 

members of base realization number 36 as can be observed in Table 4.12. 

To find the most representative number of realization in this method, the 

number of members of the biggest group has to be specified. If the desired number of 

the members is 9, the most representative realization among original realizations is 

realization number 45 because it is the base realization of the group that is the biggest 

group of 9 members at cut-off value of 0.26 (see Tables 4.14 and 4.12). For the same 

number of members, the most representative realization among denoised realizations 

is realization number 45 as well because it is the base realization of the group that is 

the biggest group of 9 members at cut-off value of 0.33 (see Tables 4.15 and 4.13). 

However, if the desired number of the members is 7, the most representative 

realization among original realizations is realization number 22 or 11 because they are 

the base realizations of the groups that are the biggest groups of 7 members at cut-off 
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value of 0.28 and 0.29, respectively (see Tables 4.14 and 4.12) and the most 

representative realization among denoised realizations is realization number 22 

because it is the base realization of the group that is the biggest group of 7 members at 

cut-off value of 0.36 (see Tables 4.15 and 4.13). 

In summary, 60 porosity realizations were generated from a data set using 

Sequential Gaussian Simulation. After that, the realizations were denoised using soft 

thresholding method of wavelet analysis. Then, these denoised realizations were 

paired to find a correlation between them. After that 60 groups of realizations were 

compared using a cut-off value to eliminate realizations that are not highly correlated. 

In this study, cut-off values were varied to observe the less sensitive result of the 

biggest group. Finally, there are two methods to find the most representative of these 

60 realizations, which are focusing on the static results of grouping at different cut-off 

values and on the proper number of members that is believed to have an appropriate 

degree of similarity. For the first method, a representative of these 60 realizations, 

chosen from the biggest group showing less sensitive result, is realization number 22 

because it has the highest number of similar realizations at a certain cut-off values. 

For the second method, the most representative can be any realizations depending on 

the specified number of members of the biggest group. 
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Table 4.14: The number of grouping members of original realizations. 

0.00 57 57 57 57
0.01 57 57 57 57
0.02 57 57 57 57
0.03 56 56 56 56
0.04 55 55 55 55
0.05 52 52 52 52
0.06 50 50 50 50
0.07 49 49 49 49
0.08 46 46 46 46
0.09 43 43 43 43
0.10 40 39 39 39
0.11 37 36 36 36
0.12 35 35 35 34
0.13 34 34 34 34
0.14 32 32 32 31
0.15 30 30 29 29
0.16 28 28 28 28
0.17 25 24 24 24
0.18 23 23 23 23
0.19 21 21 21 21
0.20 20 19 19 19
0.21 17 17 17 17
0.22 16 16 15 15
0.23 14 14 14 14
0.24 12 11 11 11
0.25 11 11 11 10
0.26 9 9 9 9
0.27 8 7 7 7
0.28 7 7 7 7
0.29 7 6 6 6
0.30 6 5 5 5
0.31 5 5 5 5
0.32 5 5 5 4
0.33 5 5 5 4
0.34 5 5 5 4
0.35 3 3 3 3
0.36 3 3 3 3
0.37 2 2 2 2

No. of members
of

the fourth
biggest group

Cut-off
No. of members

of
 the biggest group

No. of members
of

the second
biggest group

No. of members
of

the third
biggest group
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Table 4.15: The number of grouping members of denoised realizations. 

0.00 59 59 59 59
0.01 57 57 57 57
0.02 57 57 57 57
0.03 57 57 57 57
0.04 57 57 57 57
0.05 55 55 55 55
0.06 55 55 55 55
0.07 54 54 54 54
0.08 51 51 51 51
0.09 50 50 50 50
0.10 49 49 49 49
0.11 45 45 45 45
0.12 43 43 43 43
0.13 40 40 40 40
0.14 38 38 38 37
0.15 36 35 35 34
0.16 35 35 34 34
0.17 34 33 33 33
0.18 32 32 31 31
0.19 29 29 29 29
0.20 29 28 28 28
0.21 28 28 28 27
0.22 24 24 24 24
0.23 22 22 22 22
0.24 21 21 21 21
0.25 19 19 19 19
0.26 17 17 17 17
0.27 17 17 17 17
0.28 16 16 15 15
0.29 13 13 13 12
0.30 12 12 12 12
0.31 11 10 10 10
0.32 10 10 9 9
0.33 9 9 8 8
0.34 8 7 7 7
0.35 8 8 7 6
0.36 7 6 6 6
0.37 6 6 6 6
0.38 5 5 5 5
0.39 5 5 5 4
0.40 5 5 5 4
0.41 5 5 5 3
0.42 4 4 4 3
0.43 3 3 3 3
0.44 3 3 3 3
0.45 3 3 2 2
0.46 2 2 2 2

No. of members
of

the fourth
biggest group

Cut-off
No. of members

of
 the biggest group

No. of members
of

the second
biggest group

No. of members
of

the third
biggest group

 



 

CHAPTER V 

 
CONCLUSIONS AND RECOMMENDATIONS 

 

A procedure to group geostatistical realizations of reservoir properties using 

wavelet analysis and correlation analysis has been developed in this study base on 

artificial data. In practice, the procedure can be divided into three steps: geostatistical 

simulation, denoising of realizations using wavelet analysis, and grouping realizations 

that have similar underlying structures. For the stochastic simulation, a variogram 

model representing the relationship between the data value and the distance between 

the estimated data and sampled data is created and used as a conditioning information 

in simulation process. After that, a certain number of realizations which are equally 

probable are generated by Sequential Gaussian Simulation. In the second step, 

realizations are denoised in order to find the main feature of the realizations. Finally, 

these denoised realizations are then compared one by one by correlation analysis. 

From the analysis, pairs of denoised realizations that have high correlation values are 

grouped together. The biggest group is the best representative of the realizations 

simulated from geostatistical simulation. 

In this study, 47 porosity sampling data from 35 regular wells and 3 horizontal 

wells in 10,240x10,240 ft2 of domain area were made up. Then, the variogram model, 

which is spherical model with nugget of 0.03, range of 1,570 ft, and sill of 0.97,of 

normal score data of the data set was determined as the spatial variability structure of 

the data set. Sequential Gaussian Simulation technique was used to generate 60 

realizations at equal probability using variogram model obtained previously. All 

realizations then were denoised by soft thresholding method applied from 

multiresolution wavelet analysis using Daubechies 4 wavelet function for 4 levels. 

These 60 denoised realizations were paired to find the degree of similarity in term of 

correlation values. Some cut-off values of correlation values were used to find the 

grouping result. 
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Important remarks on the geostatistical simulation are presented as follows: 

1. The directional variograms cannot be performed due to a small number of 

sampled data, which is the same as in real situations. 

2. There are many variogram models that can fit the variogram plot. However, 

the spherical model is often used to represent the reservoir property 

relationship. 

In the second part, important points on denoising of realizations using wavelet 

analysis can be summarized as follows: 

1. In this study, the Daubechies 4 wavelet function, which is a famous 

function, was used to decompose porosity distributions. The number of 

decompositional levels, which is 4 in this study, comes from trial and error 

to find the best result for this study. 

2. The soft thresholding method is used in the denoising step because it gives 

a good result for continuous variable. In addition, the threshold values are 

calculated from the equation, ˆ 2 log nλ σ= , where n  = the number of 

data, and σ̂  = the median of absolute deviation (MAD). 

The method and results for grouping denoised realizations can be summarized 

as follows: 

1. The correlation values among denoised realizations are higher and have 

wider range than those among the original realizations. Therefore, it is 

better to group denoised realizations since they are correlated at a higher 

degree. 

2. All denoised realizations are compared one by one using correlation 

analysis. A high correlation coefficient value of a pair of realizations means 

high degree of similarity between the realizations. The criterion used in the 

comparison and grouping is that a cut-off value is specified to select highly 

correlated realizations. The realization that has the largest number of 

similar realizations based on a certain cut-off value of correlation was 

chosen as the most representative realization. 
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3. In this study, the cut-off values of the correlation were varied to examine 

the output of the grouping. However, from the statistical analysis of the 

correlation values, the proper cut-off value for the particular set of data 

used in this study is close to the third quartile of the correlation value of all 

denoised realizations. Therefore, the cut-off value at the third quartile of the 

correlation value should be a good choice for future study concerning with 

this type of problem. 

4. Another method of finding a representative from the grouping results is 

specifying the desired number of members of the biggest group. The best 

representative of realizations is chosen from the base realization of the 

biggest group that has the number of members equals to the specified 

number. However, the chosen representative depends on the specified 

number of the members. 

In this study, results of the grouping at different cut-off values come from only 

a data set and the proper cut-off value is found around the third quartile of the 

correlation values of all denoised realizations. Hence, performing the same process to 

different data sets will require different proper cut-off values. Moreover, it is worth to 

point out that the distributions of realizations may be different for the same data set if 

the parameters used in Sequential Gaussian Simulation process change. Therefore, 

changing the simulation parameters may change the grouping results. 
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