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CHAPTER I

INTRODUCTION

Mahalanobis distance learning is one of the most active research areas in

recent years (Tenenbaum et al., 2000; Roweis and Saul, 2000; Xing et al., 2003;

Cheng et al., 2004; He and Niyogi, 2004; Chen et al., 2005; Goldberger et al.,

2005; Saul et al., 2006; Hoi et al., 2006; Weinberger et al., 2006; Yang et al.,

2006a; Sugiyama, 2006, 2007; Cai et al., 2007; Yan et al., 2007; Zhang et al.,

2007b; Torresani and Lee, 2007) The task of Mahalanobis distance learning is,

in fact, fundamental to machine learning. It contains well-established algorithms

such as support vector machines, perceptrons, principal component analysis and

Fisher discriminant analysis as important special cases. In this thesis, we focus

on improving further the framework of Mahalanobis distance learning.

One important disadvantage of all Mahalanobis distance learners is the in-

ability to learn a non-linear transformation. This limitation is due to the fact that

learning a Mahalanobis distance is equivalent to learning a linear map. In many

real-world applications, data indeed form several clusters and lie on a non-linear

subspace (manifold). In those cases, learners which are not able to discover a

non-linear subspace will perform poorly.

There is another disadvantage of Mahalanobis distance learners. As many

recent developments of Mahalanobis distance learners focus on prediction tasks, a

considerable number of labeled examples are required in order to achieve satis�able

performance. In many real-world applications such as image classi�cation, web

page classi�cation and protein function prediction, a labeling process is costly and

time consuming; in contrast, unlabeled examples can be easily obtained. There-

fore, in such situations, it can be bene�cial to incorporate the information which

is contained in unlabeled examples into a learning problem. The task of learn-

ing from both labeled and unlabeled examples is recently promoted and generally

called semi-supervised learning (Chapelle et al., 2006). Nevertheless, only very

few semi-supervised Mahalanobis distance learners exist.
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1.1 Objectives

In this thesis, general non-linearization and semi-supervised frameworks are

presented in order to extend a Mahalanobis distance learner to cope with a problem

where its data lie on a manifold and a problem where only a small number of

labeled examples are provided.

1.2 Structure of the Thesis

The remaining parts of this thesis consists of other seven chapters.

• In Chapter 2, general background on Mahanalobis distance learning is in-

troduced. Further, important speci�c examples namely support vector machines,

principal component analysis, neighborhood component analysis, large margin near-

est neighbor and discriminant neighborhood analysis are given.

• In Chapter 3, non-linearization of Mahalanobis distance learners will be

considered. Standard frameworks, namely basis expansion and kernel trick, are

presented. Later, inspired from the kernel trick framework, the new framework

called KPCA trick is presented and compared to the others. In short, in con-

trast to the kernel trick, the KPCA trick does not require users to derive new

mathematical formulas. Also, whenever an implementation of an original learner

is available, users are not required to re-implement the kernel version of the orig-

inal learner. Moreover, the new framework avoids problems such as singularity in

eigen-decomposition and provides a convenient way to speed up a learner.

• In the kernel trick and KPCA trick frameworks, kernel selection is fun-

damental. In Chapter 4, the problem of e�cient kernel selection is dealt with.

Firstly, we investigate the kernel alignment method proposed in previous works

(Lanckriet et al., 2004; Zhu et al., 2005) to see whether it is appropriate for a

kernelized Mahalanobis distance learner or not. New kernel alignment formulas

based on quadratic programming and linear programming are derived. Secondly,

we investigate a simple method which constructs an unweighted combination of

base kernels. A theoretical result is provided to support this simple approach.

Kernel constructions based on our two approaches require much shorter running
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time when compared to the standard cross validation approach.

• In Chapter 5, we present a general semi-supervised dimensionality re-

duction framework which is able to employ information from both labeled and

unlabeled examples. Algorithms developed in our framework are able to discover

a nice (low-dimensional) subspace even when training examples of each class form

separate clusters of complicated non-linear manifolds. In fact, many previous

supervised and unsupervised algorithms can be casted as instances in our frame-

work. Moreover, recent existing semi-supervised frameworks known to us (Li et al.,

2007; Sugiyama et al., 2008; Song et al., 2008) can be viewed as special cases of

our framework as well.

• In Chapter 6, practical performance of our semi-supervised learning frame-

work is given in details.

• In Chapter 7, three representer theorems in the context of Mahalanobis

distance learning are proven. Our theorems justify both the kernel trick and the

KPCA trick frameworks in general learning settings, including unsupervised learn-

ing, supervised learning and semi-supervised learning. Moreover, the theorems

validate kernelized algorithms learning a Mahalanobis distance in any separable

Hilbert space and also cover kernelized algorithms performing dimensionality re-

duction. These theorems are extensions of that of Schölkopf et al. (2001) which

cannot be applied to a general case of learning a countably-in�nite dimensionality

linear map.

• In Chapter 8, we conclude the thesis by discussing promising research

directions in the future.

1.3 Publications

The main content of this dissertation are divided into two international jour-

nal papers and will be published on Neurocomputing, special issue on subspace

learning (Chatpatanasiri et al., 2010; Chatpatanasiri and Kijsirikul, 2010).
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CHAPTER II

BACKGROUND

Almost, if not all, machine learning algorithms solving the problems of clas-

si�cation, regression, clustering, ranking and novelty detection (Schölkopf and

Smola, 2001; Shawe-Taylor and Cristianini, 2004; Bishop, 2006) base their hy-

pothesis constructions on the information of Euclidean distances among input

data. See Figure 2.1 for an example. In fact, a choice of a distance function plays

a crucial role on e�ciency of these algorithms, and the use of the Euclidean dis-

tance function is not always appropriate to some applications. For an example, an

object recognition problem where two images of one object can be very dissimilar,

with respect to their Euclidean distance, due to a direction and a position of a

camera. Therefore, the ability to learn the best distance function with respect to

a given training set can improve the performance of a learner. In this thesis, we

are interested in the class of Mahalanobis distance functions on manifolds which

generalizes the Euclidean distance function.

Figure 2.1: The decision surface (the so-called voronoi diagram) created by the
nearest neighbor algorithm based on the Euclidean distance.

2.1 Mahalanobis Distance Learning

Let {xi, yi}ni=1 denote a training set of n labeled examples with inputs xi ∈

RD and corresponding class labels yi ∈ {c1, ..., cp}. Here, we denoteX = (x1, ...,xn)
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Figure 2.2: An example of a Mahalanobis distance.

as the matrix of input data. A distance function which belongs to the class of Ma-

halanobis distance can be represented by a symmetric positive semi-de�nite (PSD)

matrixM ∈ SD
+ . Here, we denote SD

+ as a space of D×D PSD matrices. Given two

points xi and xj, and a PSD matrix M , the Mahalanobis distance with respect to

M between the two points is de�ned as

||xi − xj||M =
√

(xi − xj)TM(xi − xj).

A Mahalanobis distance is indeed a generalization of the Euclidean distance.

Simply substituting M = I results in Euclidean distance. In general, all points

having equal distances from the origin form an ellipsoidal shape as shown in Fig-

ure 2.2. Note that in the case of the Euclidean distance this ellipsoidal shape

becomes spherical.

The goal of Mahalanobis distance learners is to �nd a PSD matrix M∗ that

minimizes a reasonable objective function f(·):

M∗ = argmin
M∈SD+

f(M). (2.1)

Since the PSD matrix M can be decomposed to ATA, we can equivalently restate
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our problem as learning the best linear map, or matrix, A:

A∗ = argmin
A∈Rd×D

f(ATA). (2.2)

To simplify the notation, we will simply write f(A) instead of f(ATA). Note that

d = D in the standard setting of learning a full-rank Mahalanobis distance; for

the purpose of dimensionality reduction we can learn a low-rank projection by

restricting d < D. In conventional pattern recognition tasks, after learning the

best linear map A∗, A∗ will be used by kNN to compute the distance between two

points in the transformed space as (xi − xj)
TM∗(xi − xj) = ||A∗xi − A∗xj||2.

2.2 Important Examples

Learning a Mahalanobis distance, or a linear map, has several important

special cases (Bishop, 2006).

• Many popular learners have their objectives to learn a hyperplane, which

is in fact a 1-dimensional output linear map, also called a linear functional, A ∈

R1×D. Popular examples belonging to this class include support vector machines,

perceptrons and least-square methods (Figure 2.3).

• There is also an important class of linear dimensionality reduction al-

gorithms which seek a weighted projection from a high-dimensional space RD to

a low-dimensional space Rd (Figure 2.4). These algorithms therefore learn a d-

dimensional output linear map A ∈ Rd×D. Prime examples of algorithms belonging

to this class are principal component analysis, Fisher discriminant analysis and

their variations. In Chapter 5, we present a general framework generalizing many

popular dimensionality reduction algorithms.

• Recently, algorithms aiming to learn a full-rank linear map A ∈ RD×D are

presented. An invention of an algorithm in this class is now an active research area.

Popular learners include neighborhood component analysis (Goldberger et al.,

2005) and large margin nearest neighbor (Weinberger et al., 2006).
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Figure 2.3: (Left) An example of a hyperplane obtained by the perceptron algo-
rithm. (Right) An example of a hyperplane obtained by the linear SVM classi�er.
Learning a hyperplane is in fact equivalent to learning the 1-dimensional linear
subspace which is orthogonal to the hyperplane (as illustrated by the red dashed-
dotted lines in the two examples).

Figure 2.4: Two projection examples on a data of two classes: the left projection
nicely separates the two classes while the right projection does not.

2.2.1 Support Vector Machine (SVM)

SVM is an algorithm designed for solving a binary classi�cation problem.

SVM aims to learn a hyperplane which can be used to classify data into their

proper classes, positive or negative. Although, before the invention of the SVM

algorithm, there were a number of algorithms proposed to learn a hyperplane, the

unique feature of SVM is that it is able to learn an optimal-margin hyperplane1.

1Here, we avoid the misleading notion of �maximum margin� and follow (Schölkopf and Smola,
2001) to use the notion of �optimal margin� instead. Technically speaking, �maximum margin�
hyperplane does not really exist since, given any hyperplane, we can increase its margin by
simply multiplying the scale of the input space. What is really matter is the ratio of the margin
to the radius of the smallest ball containing all given examples, not the margin itself.
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Unlike other hyperplanes, it has been shown that an optimal-margin hyperplane

has a nice theoretical property to guarantee its prediction accuracy on unseen data

(Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004).

Given a constant c > 0, the objective function of SVM solving a binary

classi�cation problem can be stated as

fSVM(w, b) = c∥w∥2 +
n∑

i=1

[1− yi(⟨w,xi⟩+ b)]+ ,

where [·]+ denotes the standard hinge loss: [z]+ = max(z, 0). We can restate the

optimization problem of SVM as shown in Figure 2.5.

Minimize
w,b,ξi

c∥w∥2 +
∑n

i=1 ξi

Subject to: yi(⟨w,xi⟩+ b) ≥ 1− ξi,
ξi ≥ 0, w ∈ RD, b ∈ R.

Figure 2.5: A QP formulation for the SVM algorithm.

This SVM formulation is an instance of the class of (positive de�nite) quadratic

programs (QP) (Boyd and Vandenberghe, 2004) and can be solved in a polynomial

running time. After an optimal vector (w, b) is obtained from solving a QP, an

unseen data x′ can be classi�ed by using the following formula:

sign(⟨w,x′⟩+ b). (2.3)

2.2.2 Principal Component Analysis (PCA)

PCA is an algorithm for discovering a low-rank projection which best pre-

serves a certain geometrical structure of input data. A geometrical structure which

PCA attempts to preserve is the pairwise distance among each pair of the data.

It can be shown that preserving the pairwise distances is equivalent to preserving

the statistical variance of the data. Therefore, PCA is usually described as an

algorithm which searches for a maximum-variance projection.

Denote the PCA objective function as fPCA(A). To simplify the formula,
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we assume that training data are centered at the origin, i.e.
∑n

i=1 xi = 0. Then

fPCA(A) = −
n∑

i=1

∥Axi∥2. (2.4)

By adding the orthonormal projection constraint AAT = I, the PCA optimization

problem is

A∗ = argmin
AAT=I

n∑
i=1

−∥Axi∥2 = argmax
AAT=I

n∑
i=1

∥Axi∥2. (2.5)

It can be shown that A∗ = (a(1), ..., a(d))T where
{
a(j)
}d
j=1

is the top d eigenvectors

of the following eigenvalue problem with respect to the covariance matrix of the

data XXT (Fukunaga, 1990):

XXTa(j) = λja
(j), j = 1, ..., d. (2.6)

2.2.3 Fisher Discriminant Analysis (FDA)

FDA (Fukunaga, 1990) is a dimensionality reduction algorithm attempting to

preserve a discriminative structure of a given set of data. Denote c as the number

of classes in a given training set. Provided that training examples of each class lie

in a linear subspace and do not form several separate clusters, i.e. do not form

multi-modality, FDA is able to discover a low-dimensional linear subspace (with

at most c − 1 dimensionality) which is e�cient for classi�cation. The objection

function of FDA can be stated as follows:

fFDA(A) = −trace
(
(ASwA

T )−1ASbA
T
)
.

where Sb and Sw are standard between-class and within-class scatter matrices,

respectively:

Sw =
c∑

i=1

∑
j|yj=i

(xj−µi)(xj−µi)
T and Sb =

c∑
i=1

(µ−µi)(µ−µi)
T ,
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where µ = 1
n

∑n
i=1 xi, µi =

1
ni

∑ni

i=1 xi and ni is a number of examples in the ith

class.

It can be shown that A∗ = (a(1), ..., a(d))T where
{
a(j)
}d
j=1

is the top d

eigenvectors of the following eigenvalue problem with respect to the matrix S−1
w Sb:

S−1
w Sba

(j) = λja
(j), j = 1, ..., d. (2.7)

2.2.4 Neighborhood Component Analysis (NCA)

NCA (Goldberger et al., 2005) is an algorithm obtaining a full-rank linear

map for using with kNN. NCA attempts to optimize the leave-one-out (LOO)

performance on training data. However, as the actual LOO classi�cation error

of kNN is a non-smooth function of the matrix A, Goldberger et al. propose to

minimize a stochastic variant of the LOO kNN score which is de�ned as follows:

fNCA(A) = −
∑
i

∑
yj=ci

pij, (2.8)

where

pij =
exp(−||Axi − Axj||2)∑
k ̸=i exp(−||Axi − Axk||2)

, pii = 0.

Optimizing fNCA(·) can be done by applying a gradient based method such as

delta-bar-delta or conjugate gradients. The formula of ∂fNCA/∂A can be obtained

as follows:

∂fNCA

∂A
= −2A

∑
i

(
pi
∑
k

pikxikx
T
ik −

∑
j∈ci

pijxijx
T
ij

)

where for brevity we denote xij = xi − xj. One major disadvantage of NCA,

however, is that fNCA(·) is not convex, and the gradient based methods are thus

prone to local optima.
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Figure 2.6: (Weinberger et al. (2006)). This �gure illustrates the main intuition
behind the LMNN algorithm. Before applying LMNN, data in the input space
may be positioned randomly, but after applying LMNN and obtaining a linear
transformation, data in the transformed space will be more ordered in the sense
that for each point, its k-nearest neighbors always belong to the same class while
examples from di�erent classes are separated by a large margin.

2.2.5 Large Margin Nearest Neighbor (LMNN)

As NCA, LMNN (Weinberger et al., 2006) is an algorithm obtaining a full-

rank linear map for using with kNN. In LMNN, the output Mahalanobis distance is

optimized with the goal that for each point, its k-nearest neighbors always belong

to the same class while examples from di�erent classes are separated by a large

margin (See Figure 2.6).

For each point xi, we de�ne its k target neighbors as the k other inputs with

the same label yi that are closest to xi (with respect to the Euclidean distance

in the input space). We use wij ∈ {0, 1} to indicate whether an input xj is a

target neighbor of an input xi. For convenience, we de�ne yij ∈ {0, 1} to indicate

whether or not the labels yi and yj match. The objective function of LMNN is as

follows:

fLMNN(M) =
∑
i,j

wij||xi − xj||2M + c
∑
i,j,l

wij(1− yil)
[
1 + ||xi − xj||2M − ||xi − xl||2M

]
+
.

The term c > 0 is a positive constant typically set by cross validation. The

objective function above is convex and has two competing terms. The �rst term

penalizes large distances between each input and its target neighbors, while the
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second term penalizes small distances between each input and all other inputs that

do not share the same label.

The objective function above can be reformulated as an instance of semidef-

inite programs (SDPs) (Boyd and Vandenberghe, 2004) as shown in Figure 2.7.

Since SDP is an instance of convex programs, in contrast to fNCA(·), the global

optimum of fLMNN(·) can be e�ciently computed. A low-rank transformation

A ∈ Rd×D such that d < D can be achieved by applying the orthogonal decom-

position of M and retaining only the �rst d eigenvectors corresponding to the

smallest d eigenvalues.

Minimize
∑

i,j wij(xi − xj)
TM(xi − xl) + c

∑
i,j,l wij(1− yil)ξijl

Subject to:
(1) (xi − xl)

TM(xi − xl)− (xi − xj)
TM(xi − xj) ≥ 1− ξijl.

(2) ξijl ≥ 0.
(3) M ∈ SD

+ .

Figure 2.7: An SDP formulation for the LMNN algorithm.

2.2.6 Discriminant Neighborhood Embedding (DNE)

As NCA and LMNN, DNE (Zhang et al., 2007b) is an algorithm obtaining

a linear map for using with kNN. Nevertheless, the purpose of DNE is to obtain

a low-rank linear map instead of a full-rank linear map. The main idea of DNE is

quite similar to LMNN. DNE seeks a linear transformation such that neighborhood

points in the same class are squeezed but those in di�erent classes are separated

as much as possible. However, DNE does not care about the notion of margin; in

the case of LMNN, we want every point to stay far from points of other classes,

but for DNE, we want the average distance between two neighborhood points of

di�erent classes to be large. Another di�erence is that LMNN can learn a full

Mahalanobis distance, i.e. a general weighted linear projection, while DNE can

learn only an unweighted linear projection.

Similar to LMNN, we de�ne two sets of k target neighbors for each point xi

based on the Euclidean distance in the input space. For each xi, let Neig
I(i) be

the set of k nearest neighbors having the same label yi, and let NeigE(i) be the
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set of k nearest neighbors having di�erent labels from yi. We de�ne wij as follows:

wij =


+1, if j ∈ NeigI(i) ∨ i ∈ NeigI(j),

−1, if j ∈ NeigE(i) ∨ i ∈ NeigE(j),

0, otherwise.

The objective function of DNE is:

fDNE(A) =
∑
i,j

wi,j||Axi − Axj||2

which can be reformulated (up to a constant factor) to be

fDNE(A) = trace(AX(D −W )XTAT ),

where W is a symmetric matrix with elements wij, D is a diagonal matrix with

Dii =
∑

j wij and X is the matrix of input points (x1, ...,xn). It is a well-known

result from spectral graph theory (von Luxburg, 2007) that D −W is symmetric

but is not necessarily PSD. To solve the problem by eigen-decomposition, the

constraint AAT = I is added (recall that A ∈ Rd×D where d ≤ D) so that we have

the following optimization problem:

A∗ = argmin
AAT=I

trace(AX(D −W )XTAT ). (2.9)

Then A∗ = (a(1), ..., a(d))T where the optimal vectors a(1), ..., a(d) are the bottom

eigenvectors of the following eigenvalue problem (Fukunaga, 1990, Chapter 10):

X(D −W )XTa(i) = λia
(i).

As LMNN, the global optimum of DNE can be e�ciently computed.

One advantage of DNE over LMNN and NCA is that, for DNE, we have a

deterministic rule to select the optimal dimensionality d of the transformed space;

d will be the number of negative eigenvalues obtained from the above eigenvalue

problem (Zhang et al., 2007b).



CHAPTER III

NON-LINEARIZATION USING A KPCA TRICK

As learning a Malanobis distance is equivalent to learning a linear map, a

Malanobis distance may be still not appropriate for data lying in a manifold (a

non-linear subspace) as shown in Figure 3.1. Non-linearization is a technique which

allows a Malanobis distance learner to be able to learn an appropriate distance on

a manifold.

A new framework introduced in this chapter is called a KPCA trick. We

will show subsequently in the chapter the advantages of KPCA trick over existing

frameworks.
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Figure 3.1: Two examples where data lie in non-linear manifold. Mahalanobis
distance learners do not perform well on these examples. More discussions on
these two datasets can be found in Chapter 4.

3.1 Existing Frameworks

Three popular non-linearization frameworks are the basis expansion approach,

neural networks, and the kernel trick (Hastie et al., 2001; Schölkopf and Smola,

2001; Shawe-Taylor and Cristianini, 2004; Bishop, 2006). In this dissertation we

are mainly interested in improving on the kernel trick framework, which is in fact

an improvement over the basis expansion approach. Therefore, we explain here the

two relevant frameworks. The framework of neural networks will not be discussed

further in this dissertation.
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Figure 3.2: (Left) At the beginning, data lie in their original input space. Note
that in this input space data are not linearly separable. (Right) After transforming
using the basis functions denoted by ϕ(·), data now lie in a new space where data
become linearly separable. Therefore, applying an existing hyperplane learner
in the transformed space can separate the training data. More concretely, by
denoting each point by its coordinate in the input space x = (x1, x2), the ellipse

formula which perfectly separates the data is in the form of
x2
1

a
+

x2
2

b
= 1. By

expanding into a space of 2-degree polynomial of ϕ(x) = (z1, z2, z3) where z1 = x21,
z2 = x22 and z3 = 2x1x2, the ellipse formula becomes linear with respect to the
new variables: z1

a
+ z2

b
= 1.

3.1.1 The Basis-Expansion Framework

The basis-expansion framework is the simplest method for non-linearization.

It can be described as a simple 2-step approach as follows:

(1) select a set of basis functions and apply it to given data so that the data are

transformed into a new space de�ned by the basis functions.

(2) apply an existing algorithm (e.g. algorithms described in Section 2.2) in the

new space.

This simple 2-step approach is illustrated in Figure 3.2. The main advantage

of this approach lies in its simplicity: after applying the selected basis functions,

any existing algorithm can be applied to the transformed data without the need

of modi�cation to the algorithm.

The choice of basis functions is crucial to this framework. The set of basis

functions should be �exible enough so that data, forming complicated patterns
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in an original space, have much more simpler sub-patterns in the transformed

space. In those cases, simpler sub-patterns may be extracted by, e.g., a low-rank

linear map in the transformed space. One common choice of basis functions is a

set of polynomial basis functions (Schölkopf and Smola, 2001). Although a set

of high-degree polynomial basis functions is powerful enough for any data, the

number of basis functions grows exponentially with respect to the polynomial

degree. As working in a high-dimensional space is computationally expensive,

generally speaking, an application of high-degree polynomial basis functions is

practically infeasible.

In the next subsection, we describe the kernel trick framework which bril-

liantly solves this computational issue.

3.1.2 The kernel trick Framework

The kernel trick framework was �rst applied to pattern recognition and ma-

chine learning by Vapnik and co-authors (Vapnik, 1999). The framework reduces

the two steps of the basis-expansion framework into a magni�cent single step. The

essence of the kernel trick lies in the property of the positive semide�nite (PSD)

kernel function and representer theorems (Schölkopf and Smola, 2001). Unfor-

tunately, the existing representer theorems do not, in general, cover Mahalanobis

distance learners. The representer theorem in the context of Mahalanobis distance

learning will be discussed in Chapter 7.

Given a PSD kernel function k(·, ·), by the Mercer theorem (Schölkopf and

Smola, 2001), we have

k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩ (3.1)

for some mapping ϕ(·) which transforms data to a Hilbert space, often called a

feature space. For simplicity, we shall denote ϕ, ϕ′ and ϕi instead of ϕ(x), ϕ(x′)

and ϕ(xi), respectively. A (squared) Mahalanobis distance under a matrix M in

the feature space is

(ϕi − ϕj)
TM(ϕi − ϕj) = (ϕi − ϕj)

TATA(ϕi − ϕj). (3.2)
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As in Subsection 2.2.6, let A = (a(1), ..., a(d))T . Denote a (possibly in�nite-

dimensional) matrix of the mapped training data Φ = (ϕ1, ..., ϕn). The main

idea of the kernel trick framework in the context of Mahalanobis distance learning

is to parameterize (see representer theorems Chapter 7)

AT = ΦUT , (3.3)

where U = (u(1), ...,u(d))T . Substituting A in Eq. (3.2) by using Eq. (3.3), we have

(ϕi − ϕj)
TM(ϕi − ϕj) = (ki − kj)

TUTU(ki − kj),

where

ki = ΦTϕi =
(
⟨ϕ1, ϕi⟩, ..., ⟨ϕn, ϕi⟩

)T
. (3.4)

Now our formula depends only on an inner-product ⟨ϕi, ϕj⟩, and thus the appli-

cation of the Mercer theorem stating that k(xi,xj) = ⟨ϕi, ϕj⟩ can be applied.

Therefore, the problem of learning the best Mahalanobis distance in the feature

space is now reduced to a problem of learning the best (�nite) linear transforma-

tion U of size d× n.

Once we �nd the matrix U , the Mahalanobis distance from a new test point

x′ to any input point xi in the feature space can be calculated as follows:

||ϕ′ − ϕi||2M = (k′ − ki)
TUTU(k′ − ki), (3.5)

where k′ = (k(x′,x1), ..., k(x
′,xn))

T . kNN classi�cation in the feature space can

be performed based on Eq. (3.5).

At this point, we note that, in contrast to the basis-expansion framework,

there is no need to actually map the input data into a new high-dimensional

space. By reformulating the problem using the kernel function, the kernel trick

creates a computational shortcut for the basis-expansion framework by changing

the optimized variable from A to U . There are many choices of valid PSD kernel

functions (Vapnik, 1999; Schölkopf and Smola, 2001). Here, we note that applying
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m-degree polynomial basis functions is equivalent to applying the kernel functions

k(·, ·) = ⟨·, ·⟩m.

Nonetheless, it often happens that an optimization with respect to a new

variable U is much more complicated than the original optimization problem of

with respect to a variable A in the input space, even their optimization problems

look similar as shown in Section 3.5. In the next chapter, a new non-linearization

framework which does not have this problem will be presented.

3.2 The KPCA trick Framework

In this section, we develop a KPCA trick framework which, compared to

existing frameworks, can be much more conveniently applied to non-linearize the

three learners. The KPCA trick is an improvement over the kernel trick and is

also based on the Mercer theorem and representer theorems.

The KPCA trick framework, in fact, take us back to a 2-step approach as the

basis-expansion framework. Nevertheless, unlike the basic-expansion framework

where the number of basis functions may grow exponentially (if users uncarefully

select a set of basis functions), the number of basis functions of the KPCA trick

framework is always bounded by the number of data points. Hence, the KPCA

trick framework has a computational running time in the same order as the kernel

trick framework.

Denote k(·, ·), ϕi, ϕ and ϕ′ as in Subsection 3.1.2. The central idea of the

KPCA trick is to represent each ϕi and ϕ′ in a new ��nite�-dimensional space,

without any loss of information. Within the framework, a new coordinate of each

example is computed �explicitly�, and each example in the new coordinate is then

used as the input of any existing Mahalanobis distance learner. As a result, by

using the KPCA trick in place of the kernel trick, there is no need to derive new

mathematical formulas and no need to implement new algorithms.

To simplify the discussion of KPCA, we assume that {ϕi} is linearly inde-

pendent and has its center at the origin, i.e.
∑

i ϕi = 0 (otherwise, {ϕi} can be

centered by a simple pre-processing step (Shawe-Taylor and Cristianini, 2004, p.
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115)). Since we have n total examples, the span of {ϕi} has dimensionality n. Here

we claim that each example ϕi can be represented as φi ∈ Rn with respect to a new

orthonormal basis {ψi}ni=1 such that span({ψi}ni=1) is the same as span({ϕi}ni=1)

without loss of any information. More precisely, we de�ne

φi =
(
⟨ϕi, ψ1⟩, . . . , ⟨ϕi, ψn⟩

)
= ΨTϕi. (3.6)

where Ψ = (ψ1, ..., ψn). Note that although we may be unable to numerically

represent each ψi, an inner-product of ⟨ϕi, ψj⟩ can be conveniently computed by

KPCA (or kernel Gram-Schmidt (Shawe-Taylor and Cristianini, 2004)). Likewise,

a new test point ϕ′ can be mapped to φ′ = ΨTϕ′. Consequently, the mapped data

{φi} and φ′ are �nite-dimensional and can be explicitly computed.

3.2.1 Literature Notes

Historically, the nameKPCA trick was �rst appeared in the paper of Chapelle

and Schölkopf (2001) who �rst applied this method to invariant support vector

machines. Recently, Li et al. (2008a) invent similar trick in the context of data

clustering. About the same time as our work, Zhang et al. (2009a) also propose

the KPCA-trick in the context of �nite-dimensionality reduction. Nevertheless,

the applications of the KPCA-trick framework presented in Sect. 3.5 goes beyond

what were shown in the previous works since these works constrain their method

to the �nite-dimensional cases. In contrast, learning a full Mahalanobis distance

sometimes involves an in�nite dimensional space. Thus, the new validation proof

of the KPCA trick is needed in the context of Mahalanobis distance learning (see

Theorem 1). Note that, parallel to our work, Jain et al. (2009) propose another

kernelization framework which is complimentary to ours.

3.2.2 The KPCA trick Algorithm

The KPCA trick algorithm consisting of three simple steps is shown in Fig-

ure 3.3. In the algorithm, we denote a Mahalanobis distance learner by maha

which performs the optimization process shown in Eq. (2.1) (or Eq. (2.2)) and

outputs the best Mahalanobis distance M∗ (or the best linear map A∗).
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Input: 1. training examples: {(x1, y1), ..., (xn, yn)},
2. new example: x′,
3. kernel function: k(·, ·)
4. Mahalanobis distance learning algorithm: maha

Algorithm:
(1) Apply kpca(k, {xi}, x′) such that {xi} 7→ {φi} and x′ 7→ φ′.
(2) Apply maha with new inputs {(φi, yi)} to achieve M∗ or A∗.
(3) Perform kNN based on the distance ∥φi − φ′∥M∗ or ∥A∗φi − A∗φ′∥.

Figure 3.3: The KPCA trick algorithm.

NCA, LMNN and DNE described in Chapter 2 can all be kernelized by

this simple algorithm as proved in Chapter 5. Besides NCA, LMNN and DNE,

most Mahalanobis distance learners we know to date can be kernelized by this

simple algorithm. For examples, Zhang et al. (2008, 2009b) recently proposed

a general manifold learning framework called patch alignment containing many

existing Mahalanobis distance learners (each of which is in fact a linear version of

a manifold learner), including new learners such as Local Coordinates Alignment

and Discriminative Locality Alignment. Although these manifold learners are able

to learn non-linear subspaces without using the kernel-based frameworks, they do

not provide a coordinate in a manifold for a new test data point (the so-called

out-of-sample problem). Therefore, the KPCA trick can be applied to the patch

alignment framework to provide a non-linear manifold subspace together with

an out-of-sample mapping. Other learners whose kernel versions are previously

undeveloped (Yang et al., 2006a; Xing et al., 2003; Li et al., 2008b) can easily

apply the KPCA trick to get their non-linear versions as well.

3.3 Representer Theorems

Is it valid to represent an in�nite-dimensional vector ϕ by a �nite-dimensional

vector φ? In the context of SVMs (Chapelle and Schölkopf, 2001), this validity of

the KPCA trick is easily achieved by straightforwardly extending a proof of classi-

cal representer theorems (Schölkopf et al., 2001; Kimeldorf and Wahba, 1971). In

the context of Mahalanobis distance learning, however, proofs provided in previous

works cannot be straightforwardly extended. The proof presented in Chapter 7

is a non-straightforward extension of Schölkopf and Smola's work. Note that, in

the SVM case, what is learned is a hyperplane, a linear functional outputting a
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1-dimensional value. In our case, what is learned is a linear map which, in general,

outputs a countably in�nite dimensional vector. Hence, to prove the validity of

the KPCA trick in our case, we need some mathematical tools which can handle

a countably in�nite dimensionality. Below we state our versions of representer

theorems which prove the validity of the KPCA trick in the current context. The

proofs of the theorems, which also cover semi-supervised algorithms, will be given

in Chapter 7.

By our representer theorems, it is the fact that, given an objective function

f(·) (see Eq. (2.1)), the optimal value of f(·) based on the input {ϕi} is equal to

the optimal value of f(·) based on the input {φi}. Hence, the representation of φi

can be safely applied. We separate the problem of Mahalanobis distance learning

into two di�erent cases. The �rst theorem covers Mahalanobis distance learn-

ers (learning a full-rank linear transformation) while the second theorem covers

dimensionality reduction algorithms (learning a low-rank linear transformation).

Theorem 1. (Full-Rank Representer Theorem) Let
{
ψ̃i

}n

i=1
be a set of points in

a feature space X such that span(
{
ψ̃i

}n

i=1
) = span({ϕi}ni=1), and X and Y be sep-

arable Hilbert spaces. For an objective function f depending only on {⟨Aϕi, Aϕj⟩},

the optimization

min
A

: f(⟨Aϕ1, Aϕ1⟩, . . . , ⟨Aϕi, Aϕj⟩, . . . , ⟨Aϕn, Aϕn⟩)

s.t. A : X → Y is a bounded linear map,

has the same optimal value as,

min
A′∈Rn×n

f(φ̃T
1A

′TA′φ̃1, . . . , φ̃
T
i A

′TA′φ̃j, . . . , φ̃
T
nA

′TA′φ̃n),

where φ̃i =
(
⟨ϕi, ψ̃1⟩, . . . , ⟨ϕi, ψ̃n⟩

)T
∈ Rn.

Theorem 2. (Low-Rank Representer Theorem) De�ne
{
ψ̃i

}n

i=1
and φ̃i as in The-

orem 1, f as an objective function depending only on {⟨Aϕi, Aϕj⟩}. The optimiza-
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tion

min
A

: f(⟨Aϕ1, Aϕ1⟩, . . . , ⟨Aϕi, Aϕj⟩, . . . , ⟨Aϕn, Aϕn⟩)

s.t. A : X → Rd is a bounded linear map,

has the same optimal value as,

min
A′∈Rd×n

f(φ̃T
1A

′TA′φ̃1, . . . , φ̃
T
i A

′TA′φ̃j, . . . , φ̃
T
nA

′TA′φ̃n).

We note that Theorem 1 and Theorem 2 are more general than what is

necessary for the KPCA trick. In fact, they justify both the kernel trick (by

substituting ψ̃i = ϕi and hence φ̃i = ki) and the KPCA trick (by substituting

ψ̃i = ψi and hence φ̃i = φi).

3.4 Remarks

1. Note that by Mercer theorem (Schölkopf and Smola, 2001, pp. 37), we

can either think of each ϕi ∈ ℓ2 or ϕi ∈ RN for some positive integer N , and thus

the assumption of Theorem 1 that X , as well as Y , is separable Hilbert space is

then valid. Also, both theorems require that the objective function of a learning

algorithm must depend only on {⟨Aϕi, Aϕj⟩}ni,j=1 or equivalently {⟨ϕi,Mϕj⟩}ni,j=1.

This condition is, actually, not a strict condition since learners in literatures have

their objective functions in this form (Chen et al., 2005; Goldberger et al., 2005;

Globerson and Roweis, 2006; Weinberger et al., 2006; Yang et al., 2006a; Sugiyama,

2006; Yan et al., 2007; Zhang et al., 2007b; Torresani and Lee, 2007; Pang et al.,

2006, 2008, 2009; Li et al., 2008b; Zhang et al., 2008, 2009b).

2. Note that the two theorems stated in this section do not require {ψ̃i} to

be an orthonormal set. However, there is an advantage of the KPCA trick which

restricts ψ̃i = ψi as in Eq. (3.6); this will be discussed in Section 3.5.

3. The statement of classical representer theorems deals with the representation

of an optimal hyperplane (Schölkopf et al., 2001). In the same sense, our theorems

also imply the representation of an optimal linear map A∗ as shown in Chapter 7.
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4. A running time of each learner strongly depends on the dimensionality of

the input data. As recommended by Weinberger et al. (2006), it can be helpful to

�rst apply a dimensionality reduction algorithm such as PCA before performing a

learning process: the learning process can be tremendously speed up by retaining

only, says, the 200 largest-variance principal components of the input data. In the

KPCA trick framework illustrated in Figure 3.3, dimensionality reduction can be

performed without any extra work as KPCA is already applied at the �rst place.

3.5 KPCA Trick versus Kernel Trick

To understand the advantages of the KPCA trick over the kernel trick, it

is best to derive a kernel trick formula for each algorithm and see di�culties of

implementing a kernel trick. Note that their original papers do not show how to

kernelize these algorithms, and the material presented in this section is new. We

denote KNCA, KLMNN and KDNE as the kernel versions of NCA, LMNN and

DNE, respectively.

3.5.1 KNCA

As noted in Section 2.2.4, in order to minimize the objective of NCA and

KNCA, we need to derive gradient formulas, and the formula of ∂fKNCA/∂A is

(Goldberger et al., 2005):

−2A
∑
i

(
pi
∑
k

pikϕikϕ
T
ik −

∑
j∈ci

pijϕijϕ
T
ij

)
(3.7)

where for brevity we denote ϕij = ϕi − ϕj. Nevertheless, since ϕi may lie in an

in�nite dimensional space, the above formula cannot be always implemented in

practice. In order to implement the kernel trick version of KNCA, users need

to prove the following proposition which is not stated in the original work of

Goldberger et al. (2005).

Proposition 1. ∂fKNCA/∂A can be formulated as V ΦT where V depends on {ϕi}

only in the form of ⟨ϕi, ϕj⟩ = k(xi, xj), and thus we can compute all elements of

V .
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Proof. De�ne a matrix Bϕ
i = (0, 0, ..., ϕ, ..., 0, 0) as a matrix with its ith column

is ϕ and zero vectors otherwise. Denote kij = ki − kj. Substitute A = UΦT to

Eq. (3.7) we have

∂fKNCA

∂A
= −2U

∑
i

(
pi
∑
k

pikkikϕ
T
ik −

∑
j∈ci

pijkijϕ
T
ij

)
= −2U

∑
i

(
pi
∑
k

pik(B
kik
i −Bkik

k ) −

∑
j∈ci

pij(B
kij

i −B
kij

j )
)
ΦT

= V ΦT ,

which completes the proof.

Therefore, at the ith iteration of an optimization step of a gradient optimizer,

we needs to update the current best linear map as follows:

A(i) = A(i−1) + ϵ
∂fKNCA

∂A
= (U (i−1) + ϵV (i−1))ΦT

= U (i)ΦT , (3.8)

where ϵ is a step size. The kernel trick formulas of KNCA are thus �nally achieved.

However, we emphasize that the process of proving Proposition 1 and Eq. (3.8) is

not trivial and may be tedious and di�cult for non-experts as well as practition-

ers who focus their tasks on applications rather than theories. Moreover, since

the formula of ∂fKNCA/∂A is signi�cantly di�erent from ∂fNCA/∂A, users are

required to re-implement KNCA (even they already possess an NCA implemen-

tation) which is again not at all convenient. In contrast, we note that all these

di�culties are disappeared if the KPCA trick algorithm consisting of three simple

steps shown in Fig. 3.3 is applied instead of the kernel trick.

There is another advantage of using the KPCA trick on KNCA1. By the

nature of a gradient optimizer, it takes a large amount of time for NCA and

KNCA to converge to a local solution, and thus a method of speeding up the

algorithms is needed. As remarked in Section 3.4, the learning process can be

1We slightly modify the code of Charless Fowlkes: http://www.cs.berkeley.edu/∼fowlkes/software/nca/
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tremendously speed up by retaining only, says, the 100 largest-variance principal

components of the input data. In the KPCA trick framework, no extra work is

required for this speed-up task as KPCA is already applied at the �rst place.

3.5.2 KLMNN

Similar to KNCA, the online-available code of LMNN2 employs a gradient

based optimization, and thus new gradient formulas in the feature space has to

be derived and new implementation has to be done in order to apply the kernel

trick3. On the other hand, by applying the KPCA trick, the original LMNN code

can be immediately used.

There is another advantage of the KPCA trick on LMNN: LMNN requires a

speci�cation of wij which is usually based on the quantity ∥xi−xj∥. Thus, it makes

sense that wij should be based on ∥ϕi − ϕj∥ =
√
k(xi,xi) + k(xj,xj)− 2k(xi,xj)

with respect to the feature space of KLMNN, and hence, with the kernel trick,

users have to modify the original code in order to appropriately specify wij. In

contrast, by applying the KPCA trick which restricts {ψi} to be an orthonormal

set as in Eq. (3.6), we have the following proposition.

Proposition 2. Let {ψi}ni=1 be an orthonormal set such that span({ψi}ni=1) =

span({ϕi}ni=1) and φi = (⟨ϕi, ψ1⟩, . . . , ⟨ϕi, ψn⟩)T ∈ Rn, then ∥φi−φj∥2 = ∥ϕi − ϕj∥2

for each 1 ≤ i, j ≤ n.

Proof. Since we work on a separable Hilbert space X , we can extend the orthonor-

mal set {ψi}ni=1 to {ψi}∞i=1 such that span({ψi}∞i=1) is X and ⟨ϕi, ψj⟩ = 0 for each

i = 1, ..., n and j > n. Then, by an application of the Parseval identity (Lewkeer-

atiyutkul, 2006),

∥ϕi − ϕj∥2 =
∞∑
k=1

⟨ϕi − ϕj, ψk⟩2 =
n∑

k=1

⟨ϕi − ϕj, ψk⟩2

= ∥φi − φj∥2.

2http://www.weinbergerweb.net/Downloads/LMNN.html
3There is a variation on LMNN called �large margin component analysis� (LMCA) (Torresani

and Lee, 2007) which proposes to optimize A instead of M ; however, LMCA does not preserve
some desirable properties, such as convexity, of LMNN, and therefore the algorithm �Kernel
LMCA� presented there is di�erent from �Kernel LMNN� presented in this chapter.
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The last equality comes from Eq.(3.6) and the fact thatΨT (ϕi−ϕj) = (φi−φj).

Therefore, with the KPCA trick, the target neighbors wij of each point is

computed based on ∥φi−φj∥ = ∥ϕi−ϕj∥ without any modi�cation of the original

code.

3.5.3 KDNE

By applying A = UΦT and de�ning the gram matrix K = ΦTΦ, we have the

following proposition.

Proposition 3. The kernel trick formula of KDNE is the following minimization

problem:

U∗ = argmin
UKUT=I

trace(UK(D −W )KUT ). (3.9)

Note that this kernel trick formula of KDNE involves a generalized eigenvalue

problem instead of a plain eigenvalue problem involved in DNE. As a consequence,

we face a singularity problem, i.e. if K is not full-rank, the constraint UKUT = I

cannot be satis�ed. Using elementary linear algebra, it can be shown that K is

not full-rank if and only if {ϕi} is not linearly independent, and this condition

is not highly improbable. Sugiyama (2006), Yu and Yang (2001), and Yang and

Yang (2003) suggest methods to cope with the singularity problem in the context

of Fisher discriminant analysis which may be applicable to KDNE. Sugiyama

(2006) recommends to use the constraint U(K+ ϵI)UT = I instead of the original

constraint; however, an appropriate value of ϵ has to be tuned by cross validation

which is time-consuming. Alternatively, Yu and Yang (2001) and Yang and Yang

(2003) propose more complicated methods of directly minimizing an objective

function in the null space of the constraint matrix so that the singularity problem

is explicitly avoided.

We note that a KPCA trick implementation of KDNE does not have this

singularity problem as only a plain eigenvalue problem has to be solved. Moreover,

as in KLMNN, applying the KPCA trick instead of the kernel trick to KDNE

avoids the tedious task of modifying the original code to appropriately specify wij
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in the feature space.

3.5.4 Practical Investigation

The representer theorems state that, in each learning problem, optimal

points of the two frameworks must have the same objective value. Neverthe-

less, for learners where their objective functions are not convex (e.g. KNCA) or

not strictly-convex (e.g. KLMNN4), it is not surprising that the two frameworks

may not result in an identical Mahalanobis distance. In the case of non-convexity

a learner itself does not guarantee to �nd a global optimal solution, and in the

case of non-strict-convexity there are plenty of global optimal solutions so that an

obtained Mahalanobis distance does not depend on the KPCA trick or the kernel

trick, but on an initial condition and on an optimizer's mechanism.

It is interesting to note that, in practice, even KDNE, which has a strictly

convex (quadratic) objective function, can sometimes have di�erent results ob-

tained from the two kernelization frameworks. This is mainly because KDNE's

involved matrices, K and K(D −W )K, can be ill-conditioned, i.e. their condi-

tion numbers (Demmel, 1997; Ng et al., 2001) are very high. See also Section

3.3 of Bach and Jordan (2006). The ill-conditioned of the two matrices may

lead to inaccurate numerical computations on eigen-decomposition and general-

ized eigen-decomposition which are employed by the KPCA trick and the kernel

trick, respectively.

Here, we show experimental results on standard datasets obtained from the

UCI repository (Asuncion and Newman, 2007) and a high-dimensional dataset

calledM-USPS which is a modi�ed version of the famous USPS dataset (Chapelle

et al., 2006, Chapter 21). Figure 3.4 illustrates a situation where the two frame-

works result in very-slightly di�erent subspaces where the condition number of

K(D −W )K is in the order of 1018. The di�erence seems to be indistinguishable

by human, and their accuracies on the test dataset are di�erent by only one test

data. This example shows that matrices having condition numbers in the order

of 1018 are still not ill-conditioned with respect to the matlab's eig function.

Figure 3.5 illustrates more examples about this usual indistinguishable-di�erence

4Because of the [·]+ function in its objective function.
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Figure 3.4: An example of usual experimental results on Ionosphere where the
KPCA trick (Left) and the kernel trick (Right) result in insigni�cantly-di�erent
subspaces (only one test data is di�erently classi�ed). Big points denote training
data and little points denote testing data where their predicted labels are shown.

situation. Nevertheless, when condition numbers are extremely high, di�erences

become distinguishable. Figure 3.6 illustrates examples about this distinguishable-

di�erence situation. There are few cases on Figure 3.6 where the two frameworks

provide totally di�erent accuracies. Condition numbers of K and K(D−W )K of

these cases are as high as 1032 for Ionosphere and 1035 for Glass. Investigations

of various numerical eigen-decomposition approaches and of methods to improve

the condition number of a matrix (e.g. Pan et al. (2009)) are beyond the scope of

this paper and are potential future works.
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Figure 3.5: Examples of datasets, Pima and M-USPS, which are not ill-
conditioned with respect to KDNE. Therefore, the two frameworks result in usual
cases of indi�erent or insigni�cantly-di�erent Mahalanobis distances similar to
that of Figure 3.4. Points illustrate accuracies for the two frameworks on experi-
ment settings varying from two di�erent polynomial-kernel degrees, d ∈ {2, ..., 5},
n ∈ {50, 100, 150} and k ∈ {1, ..., 5} (notations are introduced Chapter 2).
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Figure 3.6: Examples of datasets, Ionosphere and Glass, which are, in a few
cases, ill-conditioned with respect to KDNE (setting is the same as Figure 3.5):
the two frameworks occasionally give signi�cantly di�erent Mahalanobis distances.



CHAPTER IV

KERNEL SELECTION

The problem of selecting an e�cient kernel function is central to all kernel

machines. All previous works on Mahalanobis distance learners use exhaustive

methods such as cross validation to select a kernel function. In this chapter, we

investigate a possibility to automatically construct a kernel which is appropriate

for a Mahalanobis distance learner.

In the �rst part of this chapter, we consider a popular method called kernel

alignment (Lanckriet et al., 2004; Zhu et al., 2005) which is able to learn, from a

training set, a kernel in the form of k(·, ·) =
∑

i αiki(·, ·) where k1(·, ·), ..., km(·, ·)

are pre-chosen base kernels. New kernel alignment formulas based on quadratic

programming (QP) and linear programming (LP) are derived. As the previous

formulas are based on semide�nite programming (SDP) and quadratically con-

straint quadratic programming (QCQP), our formulas should be preferred. In

the second part, we investigate a simple method which constructs an unweighted

combination of base kernels,
∑

i ki(·, ·) (henceforth referred to as an unweighted

kernel). A theoretical result is provided to support this simple approach.

While accuracy performance is comparable, kernel constructions based on

our two approaches require much shorter running time when compared to the

standard cross validation approach.

4.1 Kernel Alignment

Kernel alignment is one of a popular technique for kernel selection (Goe-

nen and AlpaydIn, 2010). Our kernel alignment formulation presented in this

section belongs to the class of quadratic programs (QPs) which can be solved

more e�ciently than the formulations proposed by Lanckriet et al. (2004) and

Zhu et al. (2005) which belong to the class of semide�nite programs (SDPs) and

quadratically constrained quadratic programs (QCQPs), respectively (Boyd and

Vandenberghe, 2004).
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To use kernel alignment in classi�cation problems, the following assumption

is central: for each couple of examples xi,xj, the ideal kernel k(xi,xj) is Yij

(Guermeur et al., 2004) where

Yij =

+1, if yi = yj,

−1
p−1

, otherwise,

and p is the number of classes in the training data. Denoting Y as the matrix

having elements of Yij, we then de�ne the alignment between the kernel matrix

K and the ideal kernel matrix Y as follows:

align(K,Y ) =
⟨K,Y ⟩F

||K||F ||Y ||F
, (4.1)

where ⟨·, ·⟩F denotes the Frobenius inner-product such that ⟨K,Y ⟩F = trace(KTY )

and ∥·∥F is the Frobenius norm induced by the Frobenius inner-product.

Assume that we have m kernel functions, k1(·, ·), ..., km(·, ·), and K1, ..., Km

are their corresponding Gram matrices with respect to the training data. Here,

the kernel function obtained from the alignment method is parameterized in the

form of k(·, ·) =
∑

i αiki(·, ·) where αi ≥ 0. Note that the obtained kernel function

is guaranteed to be positive semide�nite. In order to learn the best coe�cients

α1, ..., αm, we solve the following optimization problem:

{α1, ..., αm} = argmax
αi≥0

align(K,Y ), (4.2)

where K =
∑

i αiKi. Note that as K and Y are PSD, ⟨K,Y ⟩F ≥ 0. Since both

the numerator and denominator terms in the alignment equation can be arbitrary

large, we can simply �x the numerator to 1. We then reformulate the problem as

follows:

argmax
αi≥0,⟨K,Y ⟩F=1

align(K,Y ) = argmin
αi≥0,⟨K,Y ⟩F=1

||K||F ||Y ||F

= argmin
αi≥0,⟨K,Y ⟩F=1

||K||2F

= argmin
αi≥0,

∑
i αi⟨Ki,Y ⟩F=1

∑
i,j

αiαj⟨Ki, Kj⟩F .
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De�ning a vector b = (⟨K1, Y ⟩F , ..., ⟨Km, Y ⟩F )T , a PSD matrix S whose elements

Sij = ⟨Ki, Kj⟩F , and a vector α = (α1, ..., αm)
T , we then reformulate Eq. (4.2) as

follows:

α = argmin
αi≥0, αTb=1

αTSα. (4.3)

This optimization problem is a QP and can be e�ciently solved (Boyd and Van-

denberghe, 2004); hence, we are able to learn the best kernel function k(·, ·) =∑
i αiki(·, ·) e�ciently.

Since the magnitudes of the optimal αi are varied due to ∥Ki∥F , it is conve-

nient to use k′i(·, ·) = ki(·, ·)/||Ki||F and hence K ′
i = Ki/||Ki||F in the derivation

of Eq. (4.3). We de�ne S ′ and b′ similar to S and b except that they are based

on K ′
i instead of Ki. Let

γ = argmin
γi≥0, γTb

′=1

γTS ′γ. (4.4)

It is easy to see that the �nal kernel function k(·, ·) =
∑

i γik
′
i(·, ·) achieved from

Eq. (4.4) is not changed from the kernel achieved from Eq. (4.3).

Note that we can further modify Eq. (4.3) to enforce sparseness of α and

improve a speed of an algorithm by minimizing an upper bound of ||K||F instead

of minimizing the exact quantity so that the optimization formula belongs to the

class of linear programs (LPs) instead of QPs.

min
αi≥0,⟨K,Y ⟩F=1

||K||F ≤ min
αi≥0,⟨K,Y ⟩F=1

||vec(K)||1 (4.5)

where vec(·) denotes a standard �vec� operator converting a matrix to a vector

(Minka, 1997). By using a standard trick for an absolute-valued objective function

(Boyd and Vandenberghe, 2004), Eq. (4.5) can be solved by linear programming.

Note that the above optimization algorithm of minimizing the upper bound of a

desired objective function is similar to the popular support vector machines where

the hinge loss is minimized instead of the 0/1 loss.
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4.2 Unweighted Kernels

In this section, we show that a very simple kernel k′(·, ·) =
∑

i ki(·, ·) is

theoretically e�cient (based on the value of a given objective function), no less

than a kernel obtained from the alignment method. Denote ϕk
i as a mapped vector

of an original example xi by a map associated with a kernel k(·, ·). The main idea

of the contents presented in this section is the following simple but useful result.

Proposition 4. Let {αi} be a set of positive coe�cients, αi > 0 for each i, and

let k1(·, ·), ..., km(·, ·) be base PSD kernels and k(·, ·) =
∑

i αiki(·, ·) and k′(·, ·) =∑
i ki(·, ·). Then, there exists an invertible linear map B such that B : ϕk′

i → ϕk
i

for each i.

Proof. Without loss of generality, we will concern here only the case of m = 2;

the cases such that m > 2 can be proven by induction. Let Hi ⊕Hj be a direct

sum of Hi and Hj where its inner product is de�ned by ⟨·, ·⟩Hi
+ ⟨·, ·⟩Hj

and let

{ϕ(j)
i } ⊂ Hj denote a mapped training set associated with the jth base kernel.

Then we can view ϕk
i = (

√
α1ϕ

(1)
i ,

√
α2ϕ

(2)
i ) ∈ H1 ⊕H2 since

⟨ϕk
i , ϕ

k
j ⟩ = k(xi,xj) = α1k1(xi,xj) + α2k2(xi,xj)

= ⟨
√
α1ϕ

(1)
i ,

√
α1ϕ

(1)
j ⟩H1 + ⟨

√
α2ϕ

(2)
i ,

√
α2ϕ

(2)
j ⟩H2

= ⟨
(√

α1ϕ
(1)
i ,

√
α2ϕ

(2)
i

)
,
(√

α1ϕ
(1)
j ,

√
α2ϕ

(2)
j

)
⟩H1⊕H2 .

Similarly, we can also view ϕk′
i = (ϕ

(1)
i , ϕ

(2)
i ) ∈ H1 ⊕ H2. Let Ij be the identity

map in Hj. Then,

B =

√α1I1 0

0
√
α2I2

 .
Since∞ > α1, α2 > 0 andB is bounded (the operator norm ofB is max(

√
α1,

√
α2)),

B is invertible.

Now suppose we apply the kernel k(·, ·) =
∑

i αiki(·, ·) obtained from the

kernel alignment method to a Mahalanobis distance learner and an optimal trans-

formation A∗ is returned. Let f(·) be an objective function which depends only
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on an inner product ⟨Aϕi, Aϕj⟩ (as assumed in Theorems 1 and 2). Since, from

Proposition 4, ⟨A∗ϕk
i , A

∗ϕk
j ⟩ = ⟨A∗Bϕk′

i , A
∗Bϕk′

j ⟩, we have

f ∗ ≡ f
({

⟨A∗ϕk
i , A

∗ϕk
j ⟩
})

= f
({

⟨A∗Bϕk′

i , A
∗Bϕk′

j ⟩
})

.

Thus, by applying a training set {ϕk′
i } to a learner who tries to minimize f(·), a

learner will return a linear map with the objective value less than or equal to f ∗

(because the learner can at least return A∗B). Notice that because B is invertible,

the value f ∗ is in fact optimal. Consequently, the following claim can be stated:

�there is no need to apply the methods which learn {αi}, e.g. the kernel alignment

method, at least in theory, because learning with a simple kernel k′(·, ·) also results

in a linear map having the same optimal objective value�. However, in practice,

there can be some di�erences between using the two kernels k(·, ·) and k′(·, ·) due

to the following reasons.

• Existence of a local solution. As some optimization problems are not

convex, there is no guarantee that a solver is able to discover a global solution

within a reasonable time. Usually, a learner discovers only a local solution, and

hence two learners based on k(·, ·) and k′(·, ·) will not give the same solution.

KNCA belongs to this case.

• Non-existence of the unique global solution. In some optimization

problems, there can be many di�erent linear maps having the same optimal values

f ∗, and hence there is no guarantee that two learners based on k(·, ·) and k′(·, ·)

will give the same solution. KLMNN is an example of this case.

• Size constraints. Because of a size constraint such as AAT = I used

in KDNE, our arguments used in the previous subsection cannot be applied, i.e.,

given that A∗A∗T = I, there is no guaranteed that (A∗B)(A∗B)T = I. Hence,

A∗B may not be an optimal solution of a learner based on k′(·, ·).

• Preprocessing of target neighbors. The behavior of some learners de-

pends on their preprocesses. For example, before learning takes place, the KLMNN

and KDNE algorithms have to specify the target neighbors of each point (by spec-

ifying a value of wij). In a case of using the KPCA trick, this speci�cation is based
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on the Euclidean distance with respect to a selected kernel (see Subsection 3.5.2

and Proposition 2). In this case, the Euclidean distance with respect to an aligned

kernel k(·, ·) (which already employs some information of a training set) is more

appropriate than the Euclidean distance with respect to an unweighted kernel

k′(·, ·).

• Zero coe�cients. In the above proposition we assume αi > 0 for all i.

Often, the alignment algorithm returns αi = 0 for some i. De�ne A∗ and f ∗ as

above. Following the same line of the proof of Proposition 4, in the cases that the

alignment method gives αi = 0 for some i, it can be easily shown that a learner

with a kernel k′(·, ·) will return a linear map with its objective value better than

or equal to f ∗. Nevertheless, note that sometimes a better value of an objective

function can lead to over�tting.

Since constructing k′(·, ·) is extremely easy, k′(·, ·) is a very attractive choice

to be used in kernelized algorithms.

4.3 Numerical Experiments

On page 8 of the LMNN paper (Weinberger et al., 2006), Weinberger et al.

gave a comment about KLMNN: `as LMNN [with a further application of kNN]

already yields highly nonlinear decision boundaries in the original input space,

however, it is not obvious that �kernelizing� the algorithm will lead to signi�cant

further improvement'. Here, before giving experimental results, we explain why

�kernelizing� the algorithm can lead to signi�cant improvements. The main in-

tuition behind the kernelization of �Mahalanobis distance learners for the kNN

classi�cation algorithm� lies in the fact that non-linear boundaries produced by

kNN (with or without Mahalanobis distance) is usually helpful for problems with

multi-modalities; however, the non-linear boundaries of kNN is sometimes not

helpful when data of the same class stay on a low-dimensional non-linear manifold

as shown in Figure 4.1.

In this section, we conduct experiments on NCA, LMNN, DNE and their

kernel versions on nine real-world datasets to show that (1) it is really the case that

the kernelized algorithms usually outperform their original versions on real-world
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Figure 4.1: Two synthetic examples where NCA, LMNN and DNE cannot learn
any e�cient Mahalanobis distances for kNN. Note that in each example, data
in each class lie on a simple non-linear 1-dimensional subspace (which, however,
cannot be discovered by the three learners). In contrast, the kernel versions of
the three algorithms (using the 2nd-order polynomial kernel) can learn very e�-
cient distances, i.e., the non-linear subspaces can be discovered by the kernelized
algorithms.

Table 4.1: The average accuracy with standard deviation of NCA and their kernel
versions. On the bottom row, the win/draw/lose statistics of each kernelized
algorithm compared to its original version is drawn.

Name NCA KNCA AKNCA UKNCA

Balance 0.89 ± 0.03 0.92 ± 0.01 0.92 ± 0.01 0.91 ± 0.03

Breast Cancer 0.95 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.02

Glass 0.61 ± 0.05 0.69 ± 0.02 0.69 ± 0.04 0.68 ± 0.04

Ionosphere 0.83 ± 0.04 0.94 ± 0.03 0.92 ± 0.02 0.90 ± 0.03

Iris 0.96 ± 0.03 0.96 ± 0.01 0.95 ± 0.03 0.96 ± 0.02
Musk2 0.87 ± 0.02 0.90 ± 0.01 0.88 ± 0.02 0.87 ± 0.02
Pima 0.68 ± 0.02 0.71 ± 0.02 0.67 ± 0.03 0.69 ± 0.01

Satellite 0.82 ± 0.02 0.84 ± 0.01 0.84 ± 0.01 0.82 ± 0.02
Yeast 0.47 ± 0.02 0.50 ± 0.01 0.49 ± 0.02 0.47 ± 0.02

Win/Draw/Lose - 8/1/0 7/0/2 5/4/0

datasets, and (2) the performance of linearly combined kernels achieved by the

two methods presented in this chapter are acceptable compared to kernels which

are exhaustively selected, but the exhaustive selection method requires much more

running time.

To measure the generalization performance of each algorithm, we use the

nine real-world datasets obtained from the UCI repository (Asuncion and New-

man, 2007): Balance, Breast Cancer, Glass, Ionosphere, Iris, Musk2,

Pima, Satellite and Yeast. Following previous works, we randomly divide

each dataset into training and testing sets. By repeating the process 40 times, we

have 40 training and testing sets for each dataset. The generalization performance
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Table 4.2: The average accuracy with standard deviation of LMNN and their
kernel versions.

Name LMNN KLMNN AKLMNN UKLMNN

Balance 0.84 ± 0.04 0.87 ± 0.01 0.88 ± 0.02 0.85 ± 0.01

Breast Cancer 0.95 ± 0.01 0.97 ± 0.01 0.97 ± 0.00 0.97 ± 0.00

Glass 0.63 ± 0.05 0.69 ± 0.04 0.69 ± 0.04 0.66 ± 0.05

Ionosphere 0.88 ± 0.02 0.95 ± 0.02 0.94 ± 0.02 0.94 ± 0.02

Iris 0.95 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.97 ± 0.01

Musk2 0.80 ± 0.03 0.93 ± 0.01 0.88 ± 0.02 0.86 ± 0.02

Pima 0.68 ± 0.02 0.71 ± 0.02 0.72 ± 0.02 0.67 ± 0.03
Satellite 0.81 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.83 ± 0.02

Yeast 0.47 ± 0.02 0.48 ± 0.02 0.54 ± 0.02 0.50 ± 0.02

Win/Draw/Lose - 9/0/0 8/1/0 8/0/1

Table 4.3: The average accuracy with standard deviation of DNE and their kernel
versions.

Name DNE KDNE AKDNE UKDNE

Balance 0.79 ± 0.02 0.90 ± 0.01 0.83 ± 0.02 0.85 ± 0.03

Breast Cancer 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.02
Glass 0.65 ± 0.04 0.70 ± 0.03 0.69 ± 0.04 0.65 ± 0.03
Ionosphere 0.87 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.93 ± 0.03

Iris 0.95 ± 0.02 0.97 ± 0.02 0.96 ± 0.02 0.96 ± 0.03

Musk2 0.89 ± 0.02 0.91 ± 0.01 0.89 ± 0.02 0.84 ± 0.03
Pima 0.67 ± 0.02 0.69 ± 0.02 0.70 ± 0.03 0.70 ± 0.02

Satellite 0.84 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.81 ± 0.02
Yeast 0.40 ± 0.05 0.48 ± 0.01 0.47 ± 0.04 0.52 ± 0.02

Win/Draw/Lose - 9/0/0 7/2/0 5/2/2

of each algorithm is then measured by the average test accuracy over the 40 testing

sets of each dataset. The number of training data is 200 except for Glass and

Iris where we use 100 examples because these two datasets contain only 214 and

150 total examples, respectively.

Following previous works, we use the 1NN classi�er in all experiments. In or-

der to kernelize the algorithms, three approaches are applied to select appropriate

kernels:

• Cross validation (KNCA, KLMNN and KDNE).

• Kernel alignment (AKNCA, AKLMNN and AKDNE).

•Unweighted combination of base kernels (UKNCA,UKLMNN andUKDNE).
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For all three methods, we consider scaled RBF base kernels (Schölkopf and Smola,

2001, p. 216), k(x, y) = exp(−∥x−y∥2
2Dσ2 ) where D is the dimensionality of input

data. Twenty one based kernels speci�ed by the following values of σ are consid-

ered: 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100,

250, 500, 750, 1000. All kernelized algorithms are implemented by the KPCA trick

illustrated in Figure 3.3. As noted in Subsection 4.2, the main problem of using

the unweighted kernel to algorithms such as UKLMNN and UKDNE is that the

Euclidean distance with respect to the unweighted kernel is not informative and

thus should not be used to specify target neighbors of each point. Therefore, in

cases of UKLMNN and UKDNE, we employ the Euclidean distance with respect

to the input space to specify target neighbors. We slightly modify the original

codes of LMNN and DNE to ful�ll this desired speci�cation. YALMIP toolbox is

applied for implementing convex programs (Loefberg, 2004).

The experimental results are shown in Tables 4.1, 4.2 and 4.3. From the re-

sults, it is clear that the kernelized algorithms usually improve the performance of

their original algorithms. The kernelized algorithms applying cross validation ob-

tain the best performance. They outperform the original methods in 26 out of 27

datasets. The other two kernel versions of the three original algorithms also have

satis�able performance. The kernelized algorithms applying kernel alignment out-

perform the original algorithms in 22 datasets and obtain an equal performance in

3 datasets. Only 2 out of 27 datasets where the original algorithms outperform the

kernel algorithms applying kernel alignment. Similarly, the kernelized algorithms

applying the unweighted kernel outperform the original algorithms in 18 datasets

and obtain an equal performance in 6 datasets. Only 3 out of 27 datasets where

the original algorithms outperform the kernel algorithms applying the unweighted

kernel.

We note that although the cross validation method usually gives the best

performance, the other two kernel construction methods provide acceptable per-

formance in much shorter running time. In fact, the alignment method provides

comparable performance. For each dataset, a run-time overhead of the kernelized

algorithms applying cross validation is of several hours (on Pentium IV 1.5GHz,
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Ram 1 GB) while run-time overheads of the kernelized algorithms applying aligned

kernels and the unweighted kernel are about minutes and seconds, respectively,

for each dataset. Therefore, in time-limited circumstance, it is attractive to apply

an aligned kernel or an unweighted kernel.

Note that the kernel alignment method is not appropriate for a multi-modal

dataset in which there may be several clusters of data points for each class since,

from Eq. (4.1), the function align(K,Y ) will attain the maximum value if and

only if all points of the same class are collapsed into a single point. This may

be one reason which explains why cross validated kernels give better results than

results of aligned kernels in our experiments. Developing a new kernel alignment

algorithm which is suitable for multi-modality is currently an open problem.

Comparing generalization performance induced by aligned kernels and the

unweighted kernel, we found that algorithms applying aligned kernels perform

slightly better than algorithms applying the unweighted kernel. With little over-

head and satis�able performance, however, the unweighted kernel is still attrac-

tive for algorithms, like NCA (in contrast to LMNN and DNE), which are not

required a speci�cation of target neighbors wij. Since Euclidean distance with

respect to the unweighted kernel is usually not appropriate for specifying wij, a

KPCA trick application of algorithms like LMNN and DNE may still require some

re-programming.

As noted in the previous section, aligned kernels usually do not use all base

kernels (αi = 0 for some i); in contrast, the unweighted kernel uses all base kernels

(αi = 1 for all i). Hence, as described in Section 4.2, the feature space correspond-

ing to the unweighted kernel usually contains the feature space corresponding to

aligned kernels. Therefore, we may informally say that the feature space induced

by the unweighted kernel is �larger� than one induced by the aligned kernel.

Since a feature space which is too large can lead to over�tting, one may

wonder whether or not using the unweighted kernel leads to over�tting. Figure 4.2

shows that over�tting indeed does not occur. For compactness, we show only the

results of UKDNE. In the experiments shown in this �gure, base kernels are

adding in the following order: 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1,
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2.5, 5, 7.5, 10, 25, 50, 75, 100, 250, 500, 750, 1000. It can be observed from

the �gure that the generalization performance of UKDNE is consistently non-

decreasing and will be eventually stable as we add more and more base kernels.

Also, It can be observed that 10 - 14 base kernels are enough to obtain stable

performance. It is interesting to further investigate an over�tting behavior of a

learner by applying methods such as a bias-variance analysis (James, 2003) or zone

analysis (Chatpatanasiri et al., 2009) and investigate whether it is appropriate or

not to apply an �adaptive resampling and combining� method (Breiman, 1998)

to improve the classi�cation performance of a supervised mahalanobis distance

learner.
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Figure 4.2: This �gure illustrates performance of UKDNE with di�erent numbers
of base kernels. It can be observed from the �gure that the generalization perfor-
mance of UKDNE is consistently non-decreasing and will be eventually stable as
we add more and more base kernels.



CHAPTER V

SPECTRAL SEMI-SUPERVISED LEARNING

FRAMEWORK: THEORY

In this chapter, a semi-supervised learning framework is developed for a spe-

ci�c class of Mahalanobis distance learners, namely, the class of spectral linear

dimensionality reduction algorithms. The framework naturally generalizes exist-

ing supervised, unsupervised and semi-supervised learning frameworks which ap-

ply the spectral decomposition. Algorithms derived under our framework are able

to employ both labeled and unlabeled examples and are able to handle complex

problems where data form separate clusters of manifolds. Our framework o�ers

simple views, explains relationships among existing frameworks and provides fur-

ther extensions which can improve existing algorithms. The KPCA trick extended

to semi-supervised learning frameworks is also presented.

5.1 Introduction

In many real-world applications, high-dimensional data indeed lie on (or

near) a low-dimensional subspace. The goal of dimensionality reduction is to

reduce complexity of input data while some desired intrinsic information of the

data is preserved. The desired information can be discriminative (Yan et al., 2007;

Zhang et al., 2007b; Cai et al., 2007; Hoi et al., 2006; Chen et al., 2005; Cheng et al.,

2004), geometrical (Tenenbaum et al., 2000; Roweis and Saul, 2000; He and Niyogi,

2004; Saul et al., 2006) or both (Sugiyama, 2007). There are several advantages

of reducing the dimensionality of input data. First, working on a low-dimensional

space signi�cantly saves both time and storage. Second, an intuitive visualization

is possible for low-dimensional data. Finally, and most importantly, working on

a low-dimensional subspace secures us from the curse of dimensionality (Bishop,

2006); �learning� is possible even if we have only a relatively few number of input

data. Note that, as described in Chapter 2, linear dimensionality reduction is a

special case of Mahalanobis distance learning.

Fisher discriminant analysis (FDA), introduced in Chapter 2, is the most
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popular method among all supervised dimensionality reduction algorithms. De-

note c as the number of classes in a given training set. Provided that training

examples of each class lie in a linear subspace and do not form several separate

clusters, i.e. do not form multi-modality, FDA is able to discover a low-dimensional

linear subspace (with at most c−1 dimensionality) which is e�cient for classi�ca-

tion. Recently, many works have improved the FDA algorithm in several aspects

(Sugiyama, 2007; Yan et al., 2007; Zhang et al., 2007b; Cai et al., 2007; Hoi et al.,

2006; Chen et al., 2005; Cheng et al., 2004). These extended FDA algorithms are

able to discover a nice low-dimensional subspace even when training examples of

each class lie in separate clusters of complicated non-linear manifolds. Moreover, a

subspace discovered by these algorithms has no limitation of c− 1 dimensionality.

Although the extended FDA algorithms work reasonably well, a considerable

number of labeled examples is required to achieve satis�able performance. In many

real-world applications such as image classi�cation, web page classi�cation and

protein function prediction, a labeling process is costly and time consuming; in

contrast, unlabeled examples can be easily obtained. Therefore, in such situations,

it can be bene�cial to incorporate the information which is contained in unlabeled

examples into a learning problem, i.e., semi-supervised learning (SSL) should be

applied instead of supervised learning (Chapelle et al., 2006).

One may have a question: why are unlabeled examples useful in supervised

learning? In fact, the whole research on clustering devotes itself to the problem

of constructing a good classi�er from unlabeled examples. As the research on

clustering have shown promising results, we can expect that unlabeled examples

can help a learner improve the quality of a constructed hypothesis. Figure 5.1

illustrates an example of clustering.

In this chapter, we present a general semi-supervised dimensionality reduc-

tion framework which is able to employ information from both labeled and unla-

beled examples. As the extended FDA algorithms, algorithms developed in our

framework are able to discover a nice low-dimensional subspace even when training

examples of each class form separate clusters of complicated non-linear manifolds.

In fact, those previous supervised algorithms can be casted as instances in our
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Figure 5.1: Given a contour of data (higher a number of data, darker a color), a
rationale human can easily �nd a likely partition as one shown in the left and an
unlikely partition similar to one shown in the right.

framework. Moreover, recent existing semi-supervised frameworks known to us

(Li et al., 2007; Sugiyama et al., 2008; Song et al., 2008) can be viewed as special

cases of our framework as well.

5.2 Spectral Semi-Supervised Learning Framework

Let {xi, yi}ℓi=1 denote a training set of ℓ labeled examples, with inputs

xi ∈ Rd0 generated from a �xed but unknown probability distribution Px, and

corresponding class labels yi ∈ {1, ..., c} generated from Py|x. In addition to the

labeled examples, let {xi}ℓ+u
i=ℓ+1 denote a set of u unlabeled examples also gener-

ated from Px. We de�ne the following goal of SSL dimensionality reduction.

Goal. Using the information of both labeled and unlabeled examples, we want

to embed an input space into a low-dimensional space, i.e. we want to map

(x ∈ Rd0) 7→ (z ∈ Rd) where d < d0, such that in the embedded space Py|z can

be accurately estimated ( i.e., unknown labels are easy to predict) by a simple

classi�er.

Here, following the previous works in the supervised setting (Sugiyama, 2007;

Yan et al., 2007; Zhang et al., 2007b), the nearest neighbor algorithm is used for

representing a simple classi�er mentioned in the goal. Note that important special

cases of SSL problems are transductive problems where we only want to predict

the labels {yi}ℓ+u
i=ℓ+1 of the given unlabeled examples.

In order to make use of unlabeled examples in the learning process, we make
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the following so-called manifold assumption, which is proven to be applicable in

many real-world data (Chapelle et al., 2006):

Semi-Supervised Manifold Assumption. The support of Px is on a low-

dimensional manifold. Furthermore, Py|x is smooth, as a function of x, with

respect to the underlying structure of the manifold.

In words, this assumption states that two nearby points on a high-density region

of Px are likely to be in the same class where a high-density region is of a low-

dimensional manifold structure. Since unlabeled examples can be used to estimate

a high-density region of Px, they are also useful to predict the label of an example1.

5.2.1 The Framework

Let Z∗ = (z1, ..., zn) ∈ Rd×n, where n = ℓ+ u, be the matrix of desired em-

bedded points. In our framework, we propose to cast the problem as a constrained

optimization problem:

Z∗ = argmin
Z∈Z

f ℓ(Z) + γfu(Z), (5.1)

where f ℓ(·) is an objective function which is based on label information, fu(·)

is an objective function based on unlabel information, γ is a parameter which

controls the weights between the two objective functions and Z is a constraint

set in Rd×n. Up to orthogonal and translational transformations, we can identify

embedded points via their pairwise distances instead of their individual locations2.

Therefore, we can base the objective functions on pairwise distances of embedded

examples. Here, we de�ne the objective functions to be linear with respect to

1In fact, beside the manifold assumption, here we make an additional assumption that avail-
able unlabeled examples are generated from a high-density region of Px. Nevertheless, this
additional assumption is not too strong as it is implied by the law of large number.

2As noted above, for all Mahalanobis distance learners considered in this dissertation, kNN
will be applied in the embedded space. kNN is translational and orthogonal invariance and thus
depends only on pairwise distances of examples.
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pairwise distances:

f ℓ(Z) =
n∑

i,j=1

cℓij dist(zi, zj), fu(Z) =
n∑

i,j=1

cuij dist(zi, zj),

where dist(·, ·) is an arbitrary distance function between two embedded points,

cℓij and cuij are costs which penalize an embedded distance between two points i

and j. A speci�cation of cℓij is based on the label information and a speci�cation

of cuij is based on the unlabel information as described and interpreted later in

Section 5.2.3.

If we restrict ourselves to consider only the cases that (I) dist(·, ·) is a squared

Euclidean distance function, i.e. dist(zi, zj) = ∥zi − zj∥2, (II) cℓij and cuij are

symmetric, and (III) Z ∈ Z is in the form of ZBZT = I where B is a posi-

tive semide�nite (PSD) matrix, Eq.(5.1) will result in a general framework which

indeed generalizes previous spectral-method frameworks as shown later in Sec-

tion 5.3. De�ne cij = cℓij + γcuij. We then can rewrite the weighted combination of

the objective funtions in Eq. (5.1) as follows:

f ℓ(Z) + γfu(Z) =
n∑

i,j=1

cℓijdist(zi, zj) + γ
n∑

i,j=1

cuij dist(zi, zj)

=
n∑

i,j=1

(cℓij + γcuij)dist(zi, zj) =
n∑

i,j=1

cijdist(zi, zj)

=
n∑

i,j=1

cij∥zi − zj∥2 = 2
n∑

i,j=1

cij(z
T
i zi − zTi zj)

= 2trace
( n∑

i,j=1

(zicijz
T
i )−

n∑
i,j=1

(zicijz
T
j )
)

= 2trace
( n∑

i=1

zi(
n∑

j=1

cij)z
T
i −

n∑
i,j=1

(zicijz
T
j )
)

= 2trace(Z(D − C)ZT ),

where C is a symmetric cost matrix with elements cij and D is a diagonal matrix
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with Dii =
∑

j cij
3. Thus, the optimization problem (5.1) can be restated as

Z∗ = argmin
ZBZT=I

trace(Z(D − C)ZT ). (5.2)

Note that the constraint ZBZT = I prevents trivial solutions such as every zi is a

zero vector. If B is a positive de�nite (PD) matrix, a solution of the above prob-

lem is given by the bottom d eigenvectors of the following generalized eigenvalue

problem (Fukunaga, 1990; von Luxburg, 2007)

(D − C)z(j) = λjBz
(j), j = 1, ..., d. (5.3)

Then we have the optimal embedded points represented by

Z∗ = (z(1), ..., z(d))T . (5.4)

Note that, in terms of solutions of Eq.(5.3), it is more convenient to represent Z

by its rows z(i) ∈ Rn than its columns zi ∈ Rd.

5.2.2 Linear Parameterization

Notice that, in fact, the optimal solution Z∗ obtained from Eq.(5.4) does

not completely solve our goal because although the map xi 7→ zi is given for each

training point, a map x′ 7→ z′ for an unseen point x′ is unknown. Hence, ∥z′− zi∥

cannot be computed, and kNN classi�cation in the obtained subspace cannot be

performed4. We propose to resolve this di�culty by parameterizing {zi}. One

of the simplest parameterization approaches is the �linear� restriction of a map

xi 7→ zi such that zi = Axi where A ∈ Rd×d0 . A �non-linear� extension of this idea

will be later presented in Section 5.2.4. From the linear parameterization, we have

Z = AX where X ∈ Rd0×n is a matrix of the input examples (x1, ...,xn). Now,

the original problem in Eq.(5.1) is changed to a problem of �nding a linear trans-

formation which minimizes a cost function. This new problem can be formally

3To simplify our notations, in this chapter whenever we de�ne a cost matrix C ′ having
elements c′ij , we always de�ne its associated diagonal matrix D′ with elements D′

ii =
∑

j c
′
ij .

4If we do not concern about an unseen example, e.g. in cases that we work in the transductive
setting, the optimal solution Z∗ is su�cient.
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stated as follows:

A∗ = argmin
ABAT=I

n∑
i,j=1

cij∥Axi − Axj∥2 (5.5)

which, following the same lines of derivation of Eq.(5.2), can be restated as

A∗ = argmin
ABAT=I

trace(AX(D − C)XTAT ). (5.6)

If B is PD (see Remark 2. in Section 5.2.5), its solution is provided by solving

X(D − C)XTa(j) = λjBa
(j), j = 1, ..., d (5.7)

where A∗ = (a(1), ..., a(d))T . Moreover,

∥z− z′∥ = ∥A∗x − A∗x′∥, (5.8)

so that kNN in the embedded space can be performed. Consequently, an algorithm

implemented under our framework consists of three steps as shown in Figure 5.2.

Input: 1. training examples: {(x1, y1), ..., (xℓ, yℓ),xℓ+1, ...,xℓ+u}
2. a new example: x′

3. a positive-value parameter: γ
Algorithm:
(1) Construct cost matrices, Cℓ, Cu and C = Cℓ + γCu,

and a constraint matrix B (see Section 5.2.3).
(2) Obtain an optimal matrix A∗ by solving Eq.(5.7) (see also Section 5.2.5).
(3) Perform kNN classi�cation in the obtained subspace by using Eq.(5.8).

Figure 5.2: Our semi-supervised learning framework.

5.2.3 Speci�cation of the Cost and Constraint Matrices

In this section, we present various reasonable approaches of specifying the

two cost matrices, Cℓ and Cu, and the constraint matrix, B, by using the label

and unlabel information. There are two important types of unlabel information

(Zhang, 2003), neighborhood information and side information. Here, we are not

interested in the side information, i.e. the information of a similarity between each

pair of examples, since the side information is usually not provided in real-world
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problems. Thus, we use the two words �unlabel information� and �neighborhood

information� interchangeably in this chapter.

5.2.3.1 The Cost Matrix Cℓ and the Constraint Matrix B

Normally, based on the label information, classical supervised algorithms

usually require an embedded space to have the following two desirable conditions:

(1) two examples of the same class stay close to one another, and

(2) two examples of di�erent classes stay far apart.

The two conditions are imposed in classical works such as FDA. However, the

�rst condition is too restrictive to capture manifold and multi-modal structures of

data which naturally arise in some applications. Thus, the �rst condition should

be relaxed as follows.

(1*) two nearby examples of the same class stay close to one another

where �nearby examples�, de�ned by using the neighborhood information, are ex-

amples which should stay close to each other in both original and embedded spaces.

The speci�cation of �nearby examples� has been proven to be successful in dis-

covering manifold and multi-modal structure (Sugiyama, 2007; Yan et al., 2007;

Zhang et al., 2007b; Cai et al., 2007; Hoi et al., 2006; Chen et al., 2005; Cheng

et al., 2004; Goldberger et al., 2005; Globerson and Roweis, 2006; Weinberger

et al., 2006; Yang et al., 2006a; Torresani and Lee, 2007). See Figure 5.3 for ex-

planations. In some cases, it is also appropriate to relax the second condition to

(2*) two nearby examples of di�erent classes stay far apart.

In this section, we give three examples of cost matrices which satisfy the
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Figure 5.3: An example when data form a multi-modal structure. An algorithm,
e.g. FDA, which imposes the condition (1) will try to discover a new subspace
(a dashed line) which merges two clusters A and B altogether. An obtained
space is undesirable as data of the two classes are mixed together. In contrast,
an algorithm which imposes the condition (1*) (instead of (1)) will discover a
subspace (a thick line) which does not merge the two clusters A and B as there
are no nearby examples (indicated by a link between a pair of examples) between
the two clusters.

conditions (1*) and (2) (or (2*)). These three examples are recently introduced in

previous works, namely, Discriminant Neighborhood Embedding (DNE) (Zhang

et al., 2007b), Marginal Fisher Analysis (MFA) (Yan et al., 2007) and Local Fisher

Discriminant Analysis (LFDA) (Sugiyama, 2007), with di�erent presentations and

motivations but they can be uni�ed under our general framework.

Firstly, to utilize neighborhood information, we construct two matrices CI

and CE based on Euclidean distance5. For each xi, let Neig
I(i) be the set of

k nearest neighbors having the same label yi, and let NeigE(i) be the set of k

nearest neighbors having di�erent labels from yi. De�ne C
I and CE as follows6:

let cIij = cEij = 0 if points xi and/or xj are unlabeled, and

cIij =

1, if j ∈ NeigI(i) ∨ i ∈ NeigI(j),

0, otherwise, and

cEij =

1, if j ∈ NeigE(i) ∨ i ∈ NeigE(j),

0, otherwise.

Often, k ≪ ℓ is applied in order to make Cℓ sparse so that, hopefully, all involved

computations are e�cient. By utilizing the neighborhood information, the speci-

5Any distance functions which are sensible to a given problem can be applied in place of
Euclidean distance.

6In fact, speci�cations of CI and CE presented here are one of the simplest possibilities and
can be combined with the heat kernel described in the next subsection.
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�cation cIij = 1 and cEij = 1 represent nearby examples in the conditions (1*) and

(2*). Next, Cℓ and B of existing algorithms (Eq. (5.6) and Eq. (5.7)) are:

Discriminant Neighborhood Embedding (DNE)

Cℓ = CI − CE B = I (an identity matrix)

Marginal Fisher Analysis (MFA)

Cℓ = −CE B = X(DI − CI)XT

Local Fisher Discriminant Analysis (LFDA)

Let n1, ..., nc be the numbers of examples of classes 1, ..., c, respectively. De�ne

matrices Cbet and Cwit as:

cbetij =

c
I
ij(

1
nk

− 1
n
), if yi = yj = k,

− 1
n
, otherwise,

and

cwit
ij =


1
nk
cIij, if yi = yj = k,

0, otherwise,

Cℓ = Cbet B = X(Dwit − Cwit)XT

Within our framework, relationships among the three previous works can be

explained. The three methods exploit di�erent ideas in specifying matrices Cℓ

and B to satisfy two desirable conditions in an embedded space. It is easy to see

in the cases of DNE and MFA. In DNE, Cℓ is designed to penalize an embedded

space which does not satisfy the condition (1*) and (2*). In MFA, the constraint

matrix B is designed to satisfy the condition (1*) and Cℓ is designed to penalize

an embedded space which does not satisfy the condition (2*).

Things are not quite obvious in the case of LFDA. In LFDA, the constraint

matrix B is designed to satisfy the condition (1*) since elements Cwit are propor-

tional to CI ; nevertheless, since weights are inversely proportional to nk, elements

in a small class have larger weights than elements in a bigger class, i.e. a pair in
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a small class is more likely to satisfy the condition (1*) than a pair in a bigger

class. To understand Cℓ, we recall that

trace(AX(Dℓ − Cℓ)XTAT ) =
∑
i,j

cℓij∥Axi − Axj∥

=
∑
yi=yj

cIij(
1

nk

− 1

n
)∥Axi − Axj∥ −

∑
yi ̸=yj

1

n
∥Axi − Axj∥

= d− 1

n

∑
yi=yj

cIij∥Axi − Axj∥+
∑
yi ̸=yj

∥Axi − Axj∥

 ,

where at the third equality we use the constraint AXBXTAT = I and hence

trace(AX(Dwit − Cwit)XTAT ) =
∑
yi=yj

cIij
nk

∥Axi − Axj∥

= trace(I) = d.

Hence, we observe that every pair of labeled examples coming from di�erent classes

has a corresponding cost of − 1
n
. Therefore, Cℓ is designed to penalize an embedded

space which does not satisfy the condition (2). Surprisingly, in LFDA, nearby

examples of the same class (having cIij = 1) also has a cost of − 1
n
. As a cost

proportional to − 1
n
is meant to preserve a pairwise distance between each pair

of examples (see Section 5.3.1). Thus, in contrast to DNE and MFA which try

to squeeze nearby examples of the same class to a single point, LFDA tries to

preserve a local geometrical structure between each pair of nearby examples of the

same class.

We note that other recent supervised methods for manifold learning can also

be presented and interpreted in our framework with di�erent speci�cations of Cℓ,

for examples, Discriminant Locally Linear Embedding of Li et al. (2008b) Local

Discriminant Embedding of Chen et al. (2005) and Supervised Nonlinear Local

Embedding of Cheng et al. (2004).

5.2.3.2 The Cost Matrix Cu and the Hadamard Power Operator

One important implication of the manifold assumption is that �nearby ex-

amples are likely to belong to a same class�. Hence, by the assumption, it makes
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sense to design Cu such that it prevents any pairs of nearby examples to stay far

apart in an embedded space.

Among methods of extracting the neighborhood information to de�ne Cu,

methods based on the heat kernel (or the gaussian function) are most popular. Be-

side using the heat kernel, other methods of de�ning Cu are invented, see (Chapelle

et al., 2006, Chap. 15) and (von Luxburg, 2007) for more details. The simplest

speci�cations of nearby examples based on the heat kernel are:

cuij = exp(
∥xi − xj∥2

σ2
). (5.9)

Each pair of nearby examples will be penalized with di�erent costs depended on

their similarity, and a similarity between two points is based on the Euclidean

distance between them in the input space. Incidentally, with this speci�cation of

Cu, the term fu(Z) in Eq. (5.1) can be interpreted as an approximation of the

Laplace-Beltrami operator on a data manifold. A learner which employs C = Cu

(i.e. Cℓ = 0) is named Locally Preserving Projection (LPP) (He and Niyogi, 2004).

The parameter σ is crucial as it controls the scale of a cost cuij. Hence, the

choice of σ must be sensible. Moreover, an appropriate choice of σ may vary across

the support of Px. Hence, the local scale σi for each point xi should be used. Let

x′
i be the k

th nearest neighbor of xi. A local scale is de�ned as

σi = ∥x′
i − xi∥,

and a weight of each edge is then de�ned as

cuij = exp(
∥xi − xj∥2

σiσj
). (5.10)

Using this local scaling method is proven to be e�cient in previous experiments

(Zelnik-Manor and Perona, 2004) on clustering. A speci�cation of k to de�ne the

local scale of each point is usually more convenient than a speci�cation of σ since

a space of possible choices of k is considerably smaller than that of σ.

Instead of proposing yet another method to specify a cost matrix, here we
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present a novel method which can be used to modify any existing cost matrix.

Let Q and R be two matrices of equal size and have qij and rij as their elements.

Recall that the Hadamard product P (Schott, 2005) between Q and R, P = Q⊙R,

has elements pij = qijrij. In words, the Hadamard product is a pointwise product

between two matrices. Here, we de�ne the Hadamard αth power operator as

α⊙
Q =

α times︷ ︸︸ ︷
Q⊙Q⊙ ...⊙Q . (5.11)

Given a cost matrix Cu and a positive integer α, we de�ne a new cost matrix Cuα

as

Cuα

=
α⊙
Cu ∥Cu∥F

∥
⊙αCu∥F

, (5.12)

where ∥·∥F denotes the Frobenius norm of a matrix. The multiplication of ∥Cu∥F
∥
⊙α Cu∥F

make ∥Cuα∥F = ∥Cu∥F . Note that if Cu is symmetric and non-negative, Cuα
still

has these properties.

The intuition behind the Hadamard operator is that, while preserving the

norm of the original cost matrix, the operator relatively strengthens high-cost

elements and weakens low-cost elements of the original cost matrix. It is bene�cial

to use the operator provided that Cu is roughly accurate in the sense that if

cuij > cuik then examples i and j are more signi�cant nearby examples than those

of i and k. Experiments in the next chapter show that Cuα
can further improve

the quality of Cu constructed by the local scaling method so that the classi�cation

performance of a semi-supervised learner is increased.

Any combinations of a label cost matrix Cℓ of those in previous works such

as DNE, MFA and LFDA with an unlabel cost matrix Cu result in new SSL

algorithms, and we will call the new algorithms SS-DNE, SS-MFA and SS-LFDA.

5.2.4 Non-Linear Parameterization Using the KPCA Trick

By the linear parameterization described in Section 5.2.2, however, we can

only obtain a linear subspace of the original space. As described in Chapter 3,

learning a non-linear subspace can be accomplished by �rst non-linearly trans-
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forming examples {xi} into a feature space of {ϕ(xi)} and then learning a linear

subspace in the feature space. Nevertheless, a target feature space usually has

a high or even an in�nite dimensionality so that straightforward learning in the

feature space can be intractable. To resolve the computational problem, the kernel

trick can be applied. However, applying the kernel trick can be inconvenient since,

usually, new mathematical formulas have to be derived and new implementation

have to be done separately from the existing linear implementation, described in

Section 5.2.2. By the same arguments as in Chapter 3, the KPCA trick can be

applied to the SSL framework instead of the kernel trick. We will formally prove

this fact in the next chapter.

5.2.4.1 The KPCA trick Algorithm

In this section, the KPCA trick framework is extended to cover learners

implemented under our semi-supervised learning framework presented in Sec-

tion 5.2.2. Let k(·, ·) be a PSD kernel function associated with a non-linear func-

tion ϕ(·) : Rd0 7→ H such that k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ (Schölkopf and Smola,

2001). Denote ϕi for ϕ(xi) for i = 1, ..., ℓ + u and ϕ′ for ϕ(x′). As in Chap-

ter 3, The central idea of the KPCA trick is to represent each ϕi and ϕ
′ in a new

��nite�-dimensional space, with dimensionality bounded by ℓ + u, without any

loss of information. Within the framework, a new coordinate of each example is

computed �explicitly�, and each example in the new coordinate is then used as the

input of any existing semi-supervised learner without any re-implementations.

As before, for simplicity, we assume that {ϕi} is linearly independent and

has its center at the origin, i.e.
∑

i ϕi = 0. Since we have n = ℓ+u total examples,

the span of {ϕi} has dimensionality7 n. Here we claim that each example ϕi can

be represented as φi ∈ Rn with respect to a new orthonormal basis {ψi}ni=1 such

that span({ψi}ni=1) is the same as span({ϕi}ni=1) without loss of any information.

More precisely, we de�ne

φi =
(
⟨ϕi, ψ1⟩, . . . , ⟨ϕi, ψn⟩

)
= ΨTϕi. (5.13)

where Ψ = (ψ1, ..., ψn). An inner-product of ⟨ϕi, ψj⟩ can be conveniently computed

7In cases that {ϕi} is not linearly independent, this dimensionality is less than ℓ+ u.
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by KPCA where each ψi is a principal component in the feature space. Likewise,

a new test point ϕ′ can be mapped to φ′ = ΨTϕ′.

The KPCA trick algorithm for semi-supervised learning consisting of three

simple steps is shown in Figure 5.4. All semi-supervised learners can be kernelized

by this simple algorithm. In the algorithm, we denote a semi-supervised learner

by ssl which outputs the best linear map A∗ (or the best embedded set of points

Z∗).

Input: 1. training examples: {(x1, y1), ..., (xℓ, yℓ),xℓ+1, ...,xℓ+u}
2. a new example: x′

3. a kernel function: k(·, ·)
4. a linear semi-supervised learning algorithm: ssl (see Figure 5.2)

Algorithm:
(1) Apply kpca(k, {xi}ℓ+u

i=1 , x
′) such that {xi} 7→ {φi} and x′ 7→ φ′.

(2) Apply ssl with new inputs {(φ1, y1), ..., (φℓ, yℓ), φℓ+1, ..., φℓ+u}
to achieve A∗.

(3) Perform kNN based on the distance ∥A∗φi − A∗φ′∥.

Figure 5.4: The KPCA trick algorithm for semi-supervised learning.

5.2.4.2 Representer Theorems

In this section, two semi-supervised learning versions of the representer theo-

rem Schölkopf et al. (2001) are stated to validate the KPCA trick algorithm shown

in Figure 5.4. They will be proven in the next chapter. The �rst theorem states

that, for a non-regularized learner, there exists A′∗ such that A′∗φi = A∗ϕi for

all i. Therefore, as an alternative to some optimal A∗ (which can have huge or

in�nitely many number of rows), we can obtain an equally optimal A′∗ (whose

number of rows is bounded by ℓ + u). In contrast, the second theorem implies a

stronger result for a learner which employs a regularizer, e.g. SS-DNE, that every

optimal A∗ attaining the best objective value, its number of rows is bounded by

ℓ+ u. Section 5.2.5 illustrates how the three algorithms, SS-MFA, SS-LFDA and

SS-DNE, obey the representer theorems.

We write a function f with inputs x1, ..., xn as f
(
{xi}ni=1

)
.

Theorem 3. (Weak Representer Theorem for SSL) For arbitrary objective func-

tion f which depends solely on inner products of linearly transformed examples,
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the optimization,

min
A

f
(
{⟨Aϕi, Aϕj⟩}ℓ+u

i,j=1

)
s.t. A : H → Rd is a bounded linear map,

has the same optimal value as

min
A′∈Rd×(ℓ+u)

f({φT
i A

′TA′φj}ℓ+u
i,j=1).

In the statement of the next theorem, we use the fact, which will be proven

in Lemma 1 of Chapter 7, that A =
∑d

i=1⟨·, τi⟩ei for some {τi}di=1 ⊆ H and

orthonormal set {ei}di=1 of Rd. Thus, A is representable by {τi}.

Theorem 4. (Strong Representer Theorem for SSL) For arbitrary monotonically

increasing functions g and objective functions f which depend solely on inner

products between an example ϕi and a linear functional τj. Let

h(τ1, ..., τd, ϕ1, ..., ϕℓ+u) = f(⟨τ1, ϕ1⟩, . . . , ⟨τi, ϕj⟩, . . . , ⟨τd, ϕℓ+u⟩) + g

(
d∑

i=1

∥τi∥

)
.

Any optimal set of linear functionals

argmin{τi} h(τ1, ..., τd, ϕ1, ..., ϕℓ+u)

s.t. ∀i τi : H → R is a bounded linear functional

must admit the representation of τi =
∑n

j=1 uijψ̃j (i = 1, . . . , d).

Although the statement of Theorem 4 is quite di�erent from the statement

of Theorem 3, it is the fact that we can achieve the result of Theorem 3 from

Theorem 4. Note that from Theorem 4, we can write

A∗ = (τ1, ..., τd)
T = UΨT ,

where U is a matrix having elements uij. Hence,

⟨A∗ϕi, A
∗ϕj⟩ = ⟨UΨTϕi, UΨ

Tϕj⟩ = ⟨Uφi, Uφj⟩,
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and the result of Theorem 3 is obtained by renaming U to A′∗.

The kernel versions of algorithms such as DNE, MFA and KLFDA are called

KDNE, KMFA and KLFDA, and their SSL kernel versions are called SS-KDNE,

SS-KMFA and SS-KLFDA.

5.2.5 Remarks

1. The main optimization problem shown in Eq.(5.6) can be restated as follows:

Fukunaga (1990)

argmin
A∈Rd×d0

trace
(
(ABAT )−1AX(D − C)XTAT

)
.

Within this formulation, the corresponding optimal solution is invariant under a

non-singular linear transformation; i.e., if A∗ is an optimal solution, then TA∗ is

also an optimal solution for any non-singular T ∈ Rd×d (Fukunaga, 1990, pp.447).

We note that four choices of T which assign a weight to each new axis are natural:

(1) T = I, (2) T is a diagonal matrix with Tii =
1

∥a(i)∥ , i.e. T normalizes each

axis to be equally important, (3) T is a diagonal matrix with Tii =
√
λi as

√
λi

determines how well each axis a(i) �ts the objective function a(i)TX(D−C)XTa(i),

and (4) T is a diagonal matrix with Tii =
√
λi

∥a(i)∥ , i.e. a combination of (2) and (3).

Note that these four choices of T can also be applied to the solution of Eq.(5.2)

(applied to Z∗ instead of A∗).

2. The matrix B de�ned in Subsection 5.2.3 of the two algorithms, SS-MFA

and SS-LFDA, is guaranteed to be positive semide�nite (PSD) but may not be

positive de�nite (PD), i.e., B may not be of full rank. In this case, B is singular

and we cannot immediately apply Eq.(5.3) and Eq.(5.7) to solve the optimization

problems. One common way to solve this di�culty is, instead of B, by using

(B + ϵI), for some value of ϵ > 0, which is now guaranteed to be of full rank.

Since ϵ acts in a role of regularizer, it makes sense to set ϵ = γ, the regularization

parameter speci�ed in Section 5.2.3. Similar settings of ϵ has also been used by

some existing algorithms, e.g. (Friedman, 1989; Sugiyama et al., 2008).
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Also, in a small sample size problem where X(D−C)XT is not full-rank, the

obtained matrix A∗ (or some columns of A∗) lie in the null space of X(D−C)XT .

Although this matrix does optimize our optimization problem, it usually over�ts

the given data. One possible solution to this problem is to apply PCA to the

given data in the �rst place (Belhumeur et al., 1997) so that the resulted data

have dimensionality less than or equal to the rank of X(D − C)XT . Note that

in our KPCA trick framework this pre-process is automatically accomplished as

KPCA has to be applied to a learner as shown in Figure 3.3.

3. Recall that the purpose of parameterization (using Eq. (5.6) instead of Eq.

(5.2)) is to handle unseen data. However, in transductive problems where we

already know all examples to be tested {xi}ℓ+u
i=ℓ+1, we can directly use Eq. (5.2).

Nevertheless, it turns out that, in algorithms such as SS-LFDA and SS-MFA, the

same solution is obtained from both the direct method (Eq.(5.2)) and the kernel

method (Figure 5.4) provided that P = (φ1, ..., φn) is full-rank. For example, to

see this for the case of SS-MFA, we have to solve the following equation:

P (D − C)P Ta(j) = λjP (D
I − CI)P Ta(j).

Since P is invertible by assumption, we have

(D − C)P Ta(j) = λj(D
I − CI)P Ta(j).

Finally, by changing the variable z(j) = P Ta(j) (this is valid because P T is full-

rank), we obtain Eq.(5.3).

4. Here, we show that the representer theorems do validate the three algorithms

presented in Section 5.2.3. Note that, by the method of lagrange multiplier for

equality constraint, under a non-linear transform ϕ(·), the optimization problem

shown in Eq.(5.6) can be restated as

argmin
A∈Rd×d0

trace
(
AΦ(D − C)ΦTAT

)
+ trace

(
Λ(ABAT − I)

)
,
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where Λ is a diagonal matrix of lagrange multipliers λi. Therefore, now the opti-

mization has no constraint. Note that

trace
(
Λ(ABAT − I)

)
=
∑
i

λi

(
a(i)TBa(i) − 1

)
With this formulation, it is possible to show that Theorem 3 validates the use of the

KPCA trick applying to the SS-MFA and SS-LFDA algorithms. By substituting

B and C of the two algorithms, we have that the objective function depends

only on the quantities of ∥a(i)Tϕi−a(i)Tϕj∥2 for i, j = 1, ..., ℓ+u. Since ∥a(i)Tϕi−

a(i)Tϕj∥2 = ⟨a(i)Tϕi−a(i)Tϕj, a
(i)Tϕi−a(i)Tϕj⟩, the objective function then depends

only on the inner-product of transformed examples. Hence, it is showed that the

applications of KPCA trick with respect to SS-MFA and SS-LFDA are valid by

Theorem 3.

To validate the application of KPCA trick with respect to SS-DNE, it is

necessary to apply Theorem 4. Since we can calculate a solution of SS-DNE

iteratively, for each a(i), the SS-DNE optimization can be restated as follows:

a(i) =argmin
a∈H(i)

aTΦ(D − C)ΦTa

∥a∥2

=argmax
a∈H(i)

−aTΦ(D − C)ΦTa

∥a∥2

where H(i) = {ϕ ∈ H|ϕ ⊥ a(j), j < i} and A = (a(1), ..., a(d))T .

Since it is recommended for the original version of DNE to consider only

eigenvectors with negative eigenvalues of matrices Φ(D − C)ΦT (Zhang et al.,

2007b) and discard all other eigenvectors, without loss of generality, we can regard

Φ(D − C)ΦT as negative de�nite and hence −Φ(D − C)ΦT as positive de�nite.

Then, the optimization can be further restated as follows:

a(i) =argmin
a∈H(i)

∥a∥2

−aTΦ(D − C)ΦTa



63

or equivalently,

a(i) = argmin
a∈H(i),aTΦ(D−C)ΦT a=−1

∥a∥2.

Finally, we have

a(i) = argmin
a∈H(i)

f
(
aTΦ(D − C)ΦTa

)
+ ∥a∥2, (5.14)

where

f
(
aTΦ(D − C)ΦTa

)
=

0, if aTΦ(D − C)ΦTa = −1,

∞, otherwise.

This formulation of SS-DNE obeys the condition of Theorem 4 (with g(∥a∥) =

∥a∥2), and hence the application of KPCA trick with respect to SS-DNE is valid.

5.3 Connection to Related Work

As we already described in Section 5.2.3, our framework generalizes vari-

ous existing supervised and unsupervised manifold learners (Sugiyama, 2007; Yan

et al., 2007; Zhang et al., 2007b; Cai et al., 2007; Hoi et al., 2006; Chen et al.,

2005; Cheng et al., 2004; von Luxburg, 2007; He and Niyogi, 2004; Zelnik-Manor

and Perona, 2004). The KPCA trick and the two representer theorems are new in

the �eld of semi-supervised learning.

There are some supervised manifold learners which cannot be represented in

our framework (Goldberger et al., 2005; Globerson and Roweis, 2006; Weinberger

et al., 2006; Yang et al., 2006a; Torresani and Lee, 2007; Tao et al., 2009) because

cost functions of these algorithms are not linear with respect to distances among

examples. Extension of these algorithms to handle semi-supervised learning prob-

lems is an interesting future work.

Yang et al. (2006b) present another semi-supervised learning framework

which solves entirely di�erent problems to problems considered in this paper.

They propose to extend unsupervised algorithms such as ISOMAP Tenenbaum

et al. (2000) and Laplacian Eigenmap (Chapelle et al., 2006, Chapter 16) to cases
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in which information about exact locations of some points is available. Xu et al.

(2009) proposed a beautiful framework based on optimal reverse prediction which

uni�es many existing algorithms. Nevertheless, given a new learner, a system-

atic method to �nd a corresponding reverse formula is not yet shown. Therefore,

practical uses of this framework are now limited.

To the best of our knowledge, there are currently four existing semi-supervised

dimensionality reduction frameworks in literatures which have similar goal to ours;

all of them are very recently proposed. Here, we subsequently show that these

frameworks can be restated as special cases of our framework.

5.3.1 Sugiyama et al. (2008)

Sugiyama et al. (2008) extends the LFDA algorithm to handle a semi-

supervised learning problem by adding the PCA objective function fPCA(A) (see

Chapter 2) into the objective function f ℓ(A) of LFDA described in Section 5.2.3.

To describe Sugiyama et al.'s algorithm, namely `SELF', without loss of generality,

we assume that training data are centered at the origin, i.e.
∑n

i=1 xi = 0, and

then we can write fPCA(A) = −
∑n

i=1∥Axi∥2. Sugiyama et al. propose to solve

the following problem:

A∗ = argmin
ABAT=I

(
ℓ∑

i,j=1

cℓij∥Axi − Axj∥2 − γ
n∑

i=1

∥Axi∥2
)

(5.15)

Interestingly, it can be shown that this formulation can be formulated in our

framework with unlabel cost cuij being negative, and hence our framework subsumes

SELF. To see this, let cuij = −1/2n, for all i, j = 1, ..., n. Then, the objective fu(A)

is equivalent to fPCA(A):

fu(A) =
n∑

i,j=1

− 1

2n
∥Axi − Axj∥2 = − 1

2n

n∑
i,j=1

⟨Axi − Axj, Axi − Axj⟩

= − 1

2n

(
2

n∑
i,j=1

⟨Axi, Axi⟩ − 2
n∑

i,j=1

⟨Axi, Axj⟩

)

= − 1

2n

(
2n

n∑
i=1

∥Axi∥2 − 2⟨A
n∑

i=1

xi, A

n∑
j=1

xj⟩

)
= fPCA(A),
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where we use the fact that
∑n

i=1 xi = 0. This proves that SELF is a special case

of our framework.

Note that the use of negative unlabel costs cuij = −1/2n results in an algo-

rithm which attempts to preserve a global structure of the input data and does not

convey the manifold assumption where only a local structure should be preserved.

Therefore, when the input unlabeled data lie in a complicated manifold, it is not

appropriate to apply fu(A) = fPCA(A).

5.3.2 Song et al. (2008)

Song et al. propose to extend FDA and another algorithm named maximum

margin criterion (MMC) (Li et al., 2006) to handle a semi-supervised learning

problem. Their idea of semi-supervised learning extension is similar to ours as they

add the term fu(·) into the objective of FDA and MMC (hence, we call them, SS-

FDA and SS-MMC, respectively). However, SS-FDA and SS-MMC cannot handle

problems where data of each class form a manifold or several clusters as shown in

Figure 5.3 because SS-FDA and SS-MMC satisfy the condition (1) but not (1*).

In fact, SS-FDA and SS-MMC can both be restated as instances of our framework.

To see this, we note that the optimization problem of SS-MMC can be stated as

A∗ = argmin
AAT=I

γ′trace(ASwA
T )− trace(ASbA

T ) + γfu(A), (5.16)

where Sb and Sw are the standard between-class and within-class scatter matrices,

respectively (Fukunaga, 1990):

Sw =
c∑

i=1

∑
j|yj=i

(xj − µi)(xj − µi)
T and Sb =

c∑
i=1

(µ− µi)(µ− µi)
T ,

where µ = 1
n

∑n
i=1 xi, µi =

1
ni

∑ni

i=1 xi and ni is the number of examples in the

ith class. It can be veri�ed that trace(ASwA
T ) =

∑ℓ
i,j=1 c

w
ij∥Axi − Axj∥2 and

trace(ASbA
T ) =

∑ℓ
i,j=1 c

b
ij∥Axi − Axj∥2 where

cbij =

( 1
nk

− 1
n
), if yi = yj = k,

− 1
n
, otherwise,

and cwij =


1
nk
, if yi = yj = k,

0, otherwise.
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Hence, by setting cℓij = γ′cwij − cbij we �nish our proof that SS-MMC is a special

case of our framework. The proof that SS-FDA is in our framework is similar to

that of SS-MMC.

5.3.3 Zhang et al. (2007a)

Zhang et al. (2007a) also recently proposed a learner called Semi Supervised

Dimensionality Reduction which is also a special case of ours. A proof showing

that it is a special case of our framework is similar to those of SELF and SS-MMC,

and therefore we omit the details.

5.3.4 Li et al. (2007)

We found that the transductive framework proposed by Li et al. (2007) is

similar to ours even though their framework has totally di�erent representations

compared to our framework. Similar to ours, Li et al.'s framework also has the

main goal to solve an optimization of the form of Eq. (5.1). However, our frame-

work is more general than theirs in three important aspects.

First, Li et al.'s framework does not generalize some existing manifold learn-

ing algorithms such as LFDA and MFA since, in contrast to our framework, their

framework does not allow a constraint of the form ZBZT = I (see Eq. (5.2)).

Therefore, the relations among existing algorithms which are characterized by the

conditions (1), (2), (1*) and (2*) presented in Section 5.2.3 cannot be established

under their framework.

Second, since Li et al.'s framework has been focused only on transductive

problems, it is not clear how their framework can be used in a general semi-

supervised learning problem where a new example is given. In contrast, we dedi-

cated Section 5.2.2 to explain about linear parameterization, and in Section 5.2.4

we developed the novel KPCA trick framework for non-linear parameterization

which can be used for handling a general semi-supervised learning problem.

Third, the representer theorem proven in Li et al.'s work (Li et al., 2007,

Section 2.3) is more restrictive than ours, i.e. in order to use their framework, Cℓ

and Cu must satisfy some strict conditions as stated in Theorem 4 of their paper,
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Figure 5.5: The �rst toy example. The projection axes of three algorithms, namely
FDA, LFDA, LPP and PCA, are presented. Big circles and big crosses denote
labeled examples while small circles and small crosses denote unlabeled examples.
Their percentage accuracy over the unlabeled examples are shown on the top.

and this prohibits a general use of their framework. Moreover, they prove their

representer theorem only in cases that the target dimensionality d is 1. On the

other hand, Theorem 3 and Theorem 4 proven in this paper allow d to be any

value which is not more than the input dimensionality d0.

Since any cost matrices which can be used in Li et al.'s framework can also

be used in our framework, it can be viewed that our framework generalizes their

framework. Note that as Li et al.'s framework generalizes unsupervised manifold

learning framework such as Isometric Mapping (Tenenbaum et al., 2000), Locally

Linear Embedding (Roweis and Saul, 2000) and Laplacian Eigenmap (Belkin and

Niyogi, 2003), our framework generalizes these unsupervised frameworks as well,

i.e. there exists cost matrices Cu which make a learner of our framework behaves

exactly like these unsupervised learners.

5.3.5 Improvement over Previous Frameworks

In this section, we explain why SELF and SS-FDA proposed by Sugiyama

et al. (2008) and Song et al. (2008) described above are not enough to solve

some semi-supervised learning problems, even simple ones shown in Figure 5.5

and Figure 5.6.

In Figure 5.5, four dimensionality reduction algorithms, FDA, LFDA, LPP
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Figure 5.6: The second toy example consisting of three clusters of two classes.

and PCA are performed on this dataset. Because of multi-modality, FDA cannot

�nd an appropriate projection. Since the two clusters do not contain data of the

same class, LPP which attempts to preserve the structure of the two clusters also

fails. Likewise, PCA fails because it does not take labeled data into account. In

this case, only LFDA can �nd a proper projection since it can cope with multi-

modality and can take into account the labeled examples. Note that since SS-FDA

is a linearly combined algorithm of FDA and LPP, it can only �nd a projection

lying in between the projections discovered by FDA and LPP, and in this case SS-

FDA cannot �nd an e�cient projection, unlike LFDA and, of course, SS-LFDA

derived from our framework.

A similar argument can be given to warn an uncareful use of SELF in some

situations. In Figure 5.6, four dimensionality reduction algorithms, FDA, PCA,

LFDA and LPP are performed on this dataset. Because of multi-modality, FDA

and PCA cannot �nd an appropriate projection. Also, since there are only a few

labeled examples, LFDA fails to �nd a good projection as well. In this case, only

LPP can �nd a proper projection since it can cope with multi-modality and can

take the unlabeled examples into account. Note that since SELF is a linearly

combined algorithm of LFDA and PCA, it can only �nd a projection lying in

between the projections discovered by LFDA and PCA, and in this case SELF

cannot �nd a correct projection, unlike a semi-supervised learner like SS-LFDA

derived from our framework which, as explained in Section 5.2.3, employs the LPP

cost function as its Cu.
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Undirected Graph of the LPP Cost Matrix

Figure 5.7: (Top) The third toy example where only a semi-supervised learner is
able to �nd a good projection. (Bottom) An undirected graph corresponding to
the values of Cu used by LPP and SS-LFDA. In this �gure, a pair of examples i
and j has a link if and only if cuij > 0.1. This graph explains why LPP projects
the data in the axis shown in the top �gure; LPP, which does not apply the label
information, tries to choose a projection axis which squeezes the two clusters as
much as possible. Note that we apply a local-scaling method, Eq.(5.10), to specify
Cu.

Since a semi-supervised manifold learner derived from our framework can

be intuitively thought of as a combination of a supervised learner and an unsu-

pervised learner. One may misunderstand that a semi-supervised learner cannot

discover a good subspace if neither is a supervised learner nor an unsupervised

learner able to discover a good subspace. The above two toy examples may also

mislead the readers to think in that way. In fact, that intuition is incorrect. Here,

we give another toy example shown in Figure 5.7 where only a semi-supervised

learner is able to discover a good subspace but neither is its supervised and un-

supervised counterparts. Intuitively, a semi-supervised learner is able to exploit

useful information from both labeled and unlabeled examples.



CHAPTER VI

SPECTRAL SEMI-SUPERVISED LEARNING

FRAMEWORK: PRACTICE

In this chapter, classi�cation performance of each algorithm derived from our

framework is demonstrated. A similar experimental setting as those in previous

works (Sugiyama et al., 2008; Chapelle et al., 2006, Chapter 21) is employed so

that our results can be compared to them.

6.1 Experimental Setting

In all experiments, two semi-supervised learners, SS-LFDA and SS-DNE,

derived from our framework are compared to relevant existing algorithms, PCA,

LPP*, LFDA, DNE and SELF (Sugiyama et al., 2008). In contrast to the stan-

dard LPP which does not apply the Hadamard power operator explained in Sec-

tion 5.2.3, we denote LPP* as a variant of LPP applying the Hadamard power

operator.

Non-linear semi-supervised manifold learning is also experimented by apply-

ing the KPCA trick algorithm illustrated in Figure 5.4. Since it is not our intention

to apply the �best� kernel but to compare e�ciency between a �semi-supervised�

kernel learner and its base �supervised� (and �unsupervised�) kernel learners, we

simply apply the 2nd-degree polynomial kernel k(x,x′) = ⟨x,x′⟩2 to the kernel

algorithms in all experiments.

By using the nearest neighbor algorithm on their discovered subspaces, clas-

si�cation accuracies of the experimented learners are measured on �ve standard

datasets shown on Table 6.1, the �rst two datasets are obtained from the UCI

repository (Asuncion and Newman, 2007), the next two datasets mainly designed

for testing a semi-supervised learner (Chapelle et al., 2006, Chapter 21). The �nal

dataset, extended Yale B (Georghiades et al., 2001), is a standard dataset of a

face recognition task. The classi�cation performance of each algorithm on each

dataset is measured by the average test accuracy over 25 realizations of randomly
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Table 6.1: Details of each dataset: d0, c, ℓ, u and t denote the numbers of input
features, classes, a number of labeled examples, a number of unlabeled examples
and a number of testing examples, respectively. `*' denotes the transductive set-
ting used in small datasets, where all examples which are not labeled are given as
unlabeled examples and used as testing examples as well. d, determined by us-
ing prior knowledge, denotes the target dimensionality for each dataset. �Good
Neighbors� denotes a quantity which measures a goodness of unlabeled data for
each dataset.

Name d0 c ℓ+ u+ t ℓ u d Good Neighbors
linear kernel

Ionosphere 34 2 351 10/100 * 2 0.866 0.843
Balance 4 3 625 10/100 300 1 0.780 0.760
BCI 117 2 400 10/100 * 2 0.575 0.593
Usps 241 2 1500 10/100 300 10 0.969 0.971
M-Eyale 504 5 320 20/100 * 10 0.878 0.850

splitting each dataset into training and testing subsets.

Three parameters are needed to be tuned in order to apply a semi-supervised

learner derived from our framework (see Section 5.2.3): γ, the regularizer, α, the

degree of the Hadamard power operator and k, the kth-nearest neighbor parameter

needed to construct the cost matrices. To make our learners satisfy the condition

(1*) described in Section 5.2.3, it is clear that k should be small compared to nc,

the number of training examples of class c. From experience, we found that semi-

supervised learners are quite insensitive to various small values of k. Therefore, in

all our experiments, we simply set k = min(3, nc) so that only two parameters, γ

and α, are needed to be tuned. We tune these two parameters via cross validation.

Note that only α is needed to be tuned for LPP* and only γ is needed to be tuned

for SELF.

The `Good Neighbors' score shown in Table 6.1 is due to Sugiyama et al.

(2008). The score is simply de�ned as a training accuracy of the nearest neighbor

algorithm when all available data are labeled and are given to the algorithm. Intu-

itively, if a dataset gets a high score, unlabeled examples should be useful since it

indicates that each pair of examples having a high penalty cost cuij should belong

to the same class. Note that on Table 6.1 there are two scores for each dataset:

linear is a score on a given input space while kernel measures a score on a
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feature space corresponding to the 2nd-degree polynomial kernel.

6.2 Numerical Results

Numerical results are shown in Table 6.2 for the case of ℓ = 10 (except M-

Eyale where ℓ = 20) and Table 6.3 for the case of ℓ = 100. In experiments,

SS-DNE and SS-LFDA are compared their classi�cation accuracies to their un-

supervised and supervised counterparts: LPP* and DNE for SS-DNE, and LPP*

and LFDA for SS-LFDA. SELF is also compared to SS-LFDA as they are re-

lated semi-supervised learners originated from LFDA. Our two algorithms will be

highlighted if they are superior to their counterpart opponents. For comparison,

accuracies of a learner from a popular framework of Sindhwani et al. (Chapelle

et al., 2006, Chapter 12), namely Laplacian least-square (LapLS), is also demon-

strated on binary-class datasets1.

From the results, our two algorithms, SS-LFDA and SS-DNE, outperform

all their opponents in 32 out of 40 comparisons: in the �rst setting of small ℓ

(Table 6.2), our algorithms outperform the opponents in 18 out of 20 comparisons

while in the second setting of large ℓ (Table 6.3), our algorithms outperform the

opponents in 14 out of 20 comparisons. Consequently, our framework o�ers a

semi-supervised learner which consistently improves its base supervised and un-

supervised learners.

Note that as the number of labeled examples increases, usefulness of unla-

beled examples decreases. We will subsequently discuss and analyze the results of

each dataset in details in the next subsections.

6.2.1 Ionosphere

Ionosphere is a real-world dataset of radar pulses passing through the

ionosphere which were collected by a system in Goose Bay, Labrador. The targets

were free electrons in the ionosphere. �Good� radar returns are those showing

evidence of some type of structure in the ionosphere. �Bad� returns are those

1LapLS does not naturally support multi-class problems. Although there are a number of
methods to wrap a binary classi�er for multi-class problems, the results will be biased due to
the choice of a wrapping method. Selection of the best multi-class warping method is beyond
the scope of this dissertation.
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Table 6.2: Percentage accuracies of SS-DNE and SS-LFDA derived from our frame-
work compared to existing algorithms (ℓ = 10, except M-Eyale where ℓ = 20).
SS-LFDA and SS-DNE are highlighted when they outperform their opponents
(LPP* and DNE for SS-DNE, and LPP*, LFDA and SELF for SS-LFDA). Super-
scripts indicate %-con�dence levels of the one-tailed paired t-test for di�erences
in accuracies between our algorithms and their best opponents. No superscripts
denote con�dence levels which below 80%. The accuracy of LapLS is also shown
for comparison.

Linear PCA LPP* DNE LFDA SELF SS-DNE SS-LFDA LapLS

Ionosphere 71±1.2 82±1.3 70±1.2 71±1.1 70±1.5 75±1.0 78.1±.9 68±1.9
Balance 49±1.9 61±1.9 63±2.2 70±2.2 69±2.3 71±1.899

73±2.380 -

BCI 49.8±.6 53.4±.3 51.3±.6 52.6±.5 52.1±.5 57.1±.699
55.2±.399 53.1±.6

Usps 79±1.2 74±1.0 79.6±.6 80.6±.9 81.7±.8 81.8±.599
83.0±.590 60±1.1

M-Eyale 44.6±.7 67±1.1 66±1.2 71.6±1.0 67.2±.8 76.9±.899
75.7±.999 -

Kernel PCA LPP* DNE LFDA SELF SS-DNE SS-LFDA LapLS

Ionosphere 70±1.8 83.2±.9 70±1.6 71±1.3 74±1.5 87.2±.999
88±1.099 71.4±.7

Balance 41.7±.8 47.9±.9 62±2.5 66±2.0 60±2.8 66±1.880
69±1.980 -

BCI 49.7±.3 53.7±.3 50.1 ±.4 50.3±.6 50.5±.4 53.8±.3 54.1±.380 52.1±.4
Usps 77±1.1 76±1.1 79.9±.5 80.3±.8 80.9±.8 82.0±.499

83.7±.699 61±1.4
M-Eyale 42.1±.9 63.2±.7 58.0±.9 60.3±.8 58.8±.7 69.9±.799

73.2±.899 -

Table 6.3: Percentage accuracies of SS-DNE and SS-LFDA compared to existing
algorithms (ℓ = 100).

Linear PCA LPP* DNE LFDA SELF SS-DNE SS-LFDA LapLS

Ionosphere 72.8±.6 83.7±.6 77.9±.7 74±1.0 77.8±.5 84.5±.680
84.9±.495 82.3±.7

Balance 57±2.2 80±1.3 86.4±.5 87.9±.3 87.2±.4 88.2±.599 86.3±.6 -

BCI 49.5±.5 54.9±.5 53.1±.7 67.9±.5 67.6±.6 63.1±.599 67.5±.6 61.7±.8
Usps 91.4±.3 75.7±.3 91.1±.3 89.3±.4 92.2±.3 92.2±.495 91.6±.3 71.2±.6
M-Eyale 69.4±.4 84.1±.4 92.3±.4 95.4±.3 94.3±.2 93.5±.495

95.7±.2 -

Kernel PCA LPP* DNE LFDA SELF SS-DNE SS-LFDA LapLS

Ionosphere 79.8±.4 89.7±.5 78.7±.9 81.3±.7 81.1±.5 93.6±.299
93.7±.399 76.2±.6

Balance 42.5±.3 46.9±.5 84.0±.7 87.8±.7 79±1.6 86.5±.799 87.7±.9 -

BCI 49.7±.5 54.5±.4 51.6±.6 51.0±.8 52.4±.6 57.6±.299
57.0±.499 53.8±.5

Usps 91.1±.3 81.5±.6 91.4±.4 91.2±.4 92.7±.3 92.3±.395 91.9±.3 76±1.1
M-Eyale 66.3±.3 81.9±.5 91.2±.3 89.1±.5 85.8±.6 91.2±.3 94.3±.399 -

that do not. Since we do not know the true decision boundary of Ionosphere,

we simply set the target dimensionality d = c = 2. It can be observed that

non-linearization does improve the classi�cation performance of all algorithms.

It can be observed that LPP* is much better than PCA on this dataset, and

therefore, unlike SELF, SS-LFDA much improves LFDA. In fact, the main reason

that SS-LFDA, SS-DNE and LPP* have good classi�cation performances are be-

cause of the Hadamard power operator. This is explained in Figures 6.1, 6.2 and

6.3. From Figures 6.1 and 6.2, de�ning �nearby examples� be a pair of examples

with a link (having cuij ≥ 0.36), we see that almost every link connects nearby

examples of the same class (i.e. connects good nearby examples). This indicates

that our unlabel cost matrix Cu is quite accurate as bad nearby examples rarely
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Figure 6.1: The undirected graph corresponding to Cu constructed on Iono-

sphere. Each link corresponds to a pair of nearby examples having cuij ≥ 0.36.
The number `0.36' is just chosen for visualizability.

have links. In fact, the ratio of good nearby examples per total nearby examples

(shortly, the good-nearby-examples ratio) is 394/408 ≈ 0.966. Nevertheless, if we

re-de�ne �nearby examples� be a pairs of examples having, e.g., cuij ≥ 0.01, the

same ratio then reduces to 0.75 as shown in Figure 6.3 (Left). This indicates that

many pairs of examples having small values of cuij are of di�erent classes (i.e. bad

nearby examples).

Since an algorithm derived from our framework minimizes the cost-weighted

average distances of every pair of examples (see Eq. (5.6) and its derivation), it is

bene�cial to further increases the cost of a pair having large cuij (since it usually

corresponds to a pair of the same class) and decreases the cost of of a pair having

small cuij. From Eq. (5.12), it can be easily seen that the e�ect of the Hadamard

power operator is exactly what we need. The good-nearby-examples ratios after

applying the Hadamard power operator with α = 8 are illustrated in Figure 6.3

(Bottom). Notice that, after applying the operator, even pairs with small values

of cuij are usually of the same class.

6.2.2 Balance

Balance is an arti�cial dataset which was generated to model psycholog-

ical experimental results. Each example is classi�ed as having the balance scale

tip to the right, tip to the left, or be balanced. The 4 attributes containing inte-

ger value from 1 to 5 are left_weight, left_distance, right_weight, and
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Figure 6.2: Zoom-in on the square area of Figure 6.2.

right_distance. The correct way to �nd the class is the greater of (left_distance

× left_weight) and (right_distance × right_weight). If they are

equal, it is balanced. Therefore, there are 54 = 625 total examples and 3 classes

in this dataset. Moreover, the correct decision surface is 1-dimensional manifold

lying in the feature space corresponding to the ⟨·, ·⟩2 kernel so that we set the

target dimensionality d = 1.

This dataset illustrates another �aw of using PCA in a classi�cation task.

After centering, the covariance matrix of the 625 examples is just a multiple of

I, the identity matrix. Therefore, any direction is a principal component with

largest variance, and PCA is just return a random direction! Hence, we cannot

expect much about the classi�cation performance of PCA in this dataset. Thus,

PCA cannot help SELF improves much the performance on LFDA, and sometimes

SELF degrades the performance of LFDA due to over�tting. In contrast, SS-LFDA

often improves the performance of LFDA. Also, SS-DNE is able to improve the

classi�cation performance of DNE and LPP* in all settings.

6.2.3 BCI

This dataset originates from the development of a Brain-Computer Interface

where a single person performed 400 trials in each of which he imagined movements

with either the left hand (the 1st class) or the right hand (the 2nd class). In

each trial, electroencephalography (EEG) was recorded from 39 electrodes. An

autoregressive model of order 3 was �tted to each of the resulting 39 time series.



76

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold of CuR
at

io
 o

f g
oo

d 
ne

ig
hb

or
s 

pe
r 

al
l n

ei
gh

bo
rs

 s
at

is
fy

in
g 

th
e 

th
re

sh
ol

d

Ionosphere: Alpha = 1

0.36

0.966

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Ionosphere: Alpha = 8

R
at

io
 o

f g
oo

d 
ne

ig
hb

or
s 

pe
r 

al
l n

ei
gh

bo
rs

 s
at

is
fy

in
g 

th
e 

th
re

sh
ol

d

Threshold of Cu

Figure 6.3: For each number x in the the x-axis, its corresponding value on the
y-axis is the ratio between the number of good nearby examples (having cuij > x and
belonging to the same class) and the number of nearby examples (having cuij > x).
The ratios with respect to Cuα

are demonstrated where (Top) α = 1 (the standard
LPP), and where (Bottom) α = 8 (LPP*).

The trial was represented by the total of 117 = 39*3 �tted parameters. The target

dimensionality is set to the number of classes, d = c = 2. Similar to the previous

datasets, SS-LFDA and SS-DNE are usually able to outperform their opponents.

Again, PCA is not appropriate for this real-world dataset, and hence SELF is

inferior to SS-LFDA.

6.2.4 USPS

This benchmark is derived from the famous USPS dataset of handwritten

digit recognition. For each digit, 150 images are randomly drawn. The digits

`2' and `5' are assigned to the �rst class, and all others form the second class.

To prevent a use of a domain knowledge, each example is rescaled, noise added,

dimension masked and pixel shu�ed (Chapelle et al., 2006, Chapter 21). Although

there are only 2 classes in this dataset, the original data presumably form 10
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Figure 6.4: Extended Yale B Face dataset. 21 examples images from various
illumination conditions.

clusters, one for each digit. Therefore, the target dimension d is set to 10.

Often, SS-LFDA and SS-DNE outperform their opponents. Nevertheless,

note that SS-LFDA and SS-DNE do not improve much on LFDA and DNE when

ℓ = 100 because 100 labeled examples are quite enough to discriminating the

data and therefore unlabeled examples o�er relatively small information to semi-

supervised learners.

6.2.5 M-Eyale

This face recognition dataset is derived from extended Yale B Georghiades

et al. (2001), see Figure 6.4. There are 28 human subjects under 9 poses and

64 illumination conditions. In our M-Eyale (Modi�ed Extended Yale B), we

randomly chose ten subjects, 32 images per each subject, from the original dataset

and down-sampling each example to be of size 21×24 pixels.

M-Eyale consists of 5 classes where each class consists of images of two

randomly-chosen subjects. Hence, there should be two separated clusters for each

class, and we should be able to see the advantage of algorithms employing the

conditions (1*) and (2*) explained in Section 5.2.3. In this dataset, the number of

labeled examples of each class is �xed to ℓ
c
so that examples of all classes are ob-

served. Since this dataset should consist of ten clusters, the target dimensionality

is set to d = 10.

It is clear that LPP* performs much better than PCA in this dataset. Recall

that PCA captures maximum-variance directions; nevertheless, in this face recog-

nition task, maximum-variance directions are not discriminant directions but di-

rections of lighting and posing (Belhumeur et al., 1997). Therefore, PCA captures
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totally wrong directions, and hence PCA degrades the performance of SELF from

LFDA. In contrast, LPP* much better captures local structures in the dataset

and discover much better subspaces. Thus, by cooperating LPP* with LFDA and

DNE, SS-LFDA and SS-DNE are able to obtain very good classi�cation accuracies.



CHAPTER VII

REPRESENTER THEOREM

In this chapter, three versions of the representer theorems will be proven

to validate all kernelized learners presented in this dissertation. This chapter is

technical. Readers can skip this chapter without sacri�cing the main ideas of the

dissertation.

7.1 Introduction

A representer theorem, along with Mercer theorem, is a key ingredient for

validating the kernel trick widely used in pattern recognition and machine learning

(Schölkopf and Smola, 2001). However, classical representer theorems which cover

only an algorithm learning a �nite-dimensional linear map cannot be applied to

a general metric learning algorithm discovering a countably-in�nite dimensional

linear map. In this chapter, we generalize the representer theorems given by

Kimeldorf and Wahba (1971) and Schölkopf et al. (2001) to cover the cases of

general metric learning.

7.2 Representer Theorem for Metric Learning

Let {xi}ni=1 denote n examples in an input space1, xi ∈ RD. Given a positive

semide�nite (PSD) kernel function k(·, ·), Mercer theorem implies that there exists

a mapping ϕ(·) : xi ∈ RD 7→ ϕ(xi) ∈ H where H is a separable Hilbert space such

that k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩. In this chapter, we simply denote ϕ(xi) as ϕi for

brevity.

In machine learning literatures (Chen et al., 2005; Goldberger et al., 2005;

Globerson and Roweis, 2006; Weinberger et al., 2006; Yang et al., 2006a; Sugiyama,

2006; Yan et al., 2007; Zhang et al., 2007b; Torresani and Lee, 2007; Li et al.,

2007), the task of metric learning is referred to as the task of learning a symmetric

PSD matrix M where the metric induced by M in the feature space is ∥ϕi −

ϕj∥M =
√
(ϕi − ϕj)TM(ϕi − ϕj). Since M can be decomposed to ATA, we also

1In the context of semi-supervised learning, n = ℓ+ u as de�ned in Chapter 5
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have ∥ϕi−ϕj∥M = ∥Aϕi−Aϕj∥ =
√
(Aϕi − Aϕj)T (Aϕi − Aϕj) where ∥·∥ denotes

the standard (Euclidean) norm of a separable Hilbert space, and we can consider

learning a bounded linear map A instead of M . Note that, according to Mercer

theorem, in general A maps from a countably-in�nite dimensional input space to

a countably-in�nite dimensional output space; however, the classical representer

theorem (Kimeldorf and Wahba, 1971; Schölkopf et al., 2001) cannot be applied

to this case of countably-in�nite dimensional output. The essence of representer

theorem proved in this chapter is to show that the best linear map A can be

represented in terms of {ϕi}ni=1 so that computational shortcuts of the kernel trick

are possible for metric learning. To be precise, we will show that M = ATA =

ΦGΦT where Φ = (ϕ1, ..., ϕn) and G ∈ Sn
+ where Sn

+ denotes a space of n×n PSD

matrices; a practical learning process can now take place by obtaining the best

�nite-dimensional matrix G instead of the best metric M or the best linear map

A.

The following lemma is useful for proving the theorem.

Lemma 1. Let X ,Y be two Hilbert spaces and Y is separable, i.e. Y has a count-

able orthonormal basis {ei}i∈N. Any bounded linear map A : X → Y can be

uniquely decomposed as
∑∞

i=1⟨·, τi⟩X ei for some {τi}i∈N ⊆ X .

Proof. As A is bounded, the linear functional ϕ 7→ ⟨Aϕ, ei⟩Y is bounded for every

i since, by Cauchy-Schwarz inequality, |⟨Aϕ, ei⟩Y | ≤ ∥Aϕ∥∥ei∥ ≤ ∥A∥∥ϕ∥. By

Riesz representation theorem, the map ⟨A·, ei⟩Y can be written as ⟨·, τi⟩X for a

unique τi ∈ X . Since {ei}i∈N is an orthonormal basis of Y , for every ϕ ∈ X ,

Aϕ =
∑∞

i=1⟨Aϕ, ei⟩Yei =
∑∞

i=1⟨ϕ, τi⟩X ei.

For convenience, in our proof below we assume that {ϕi}ni=1 is linearly inde-

pendent2. Our main theorem can be stated as follows3.

Theorem 5. (Representer Theorem for Full-Rank Mahalanobis Distance Learn-

ers)

2With more cumbersome notations, the proof can be straightforwardly extend to handle the
cases where {ϕi}ni=1 is not linearly independent.

3The theorem is more general than what we have discussed; see remark below.
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Let
{
ψ̃i

}n

i=1
be a set of points in a feature space X such that span(

{
ψ̃i

}n

i=1
) =

span({ϕi}ni=1), and X and Y be separable Hilbert spaces. For an objective function

f depending only on {⟨Aϕi, Aϕj⟩}, the optimization

min
A

: f(⟨Aϕ1, Aϕ1⟩, . . . , ⟨Aϕi, Aϕj⟩, . . . , ⟨Aϕn, Aϕn⟩)

s.t. A : X → Y is a bounded linear map,

has the same optimal value as,

min
G∈Sn+

f(φ̃T
1Gφ̃1, . . . , φ̃

T
i Gφ̃j, . . . , φ̃

T
nGφ̃n),

where φ̃i =
(
⟨ϕi, ψ̃1⟩, . . . , ⟨ϕi, ψ̃n⟩

)T
∈ Rn.

Proof. To avoid complicated notations, we omit subscripts such as X ,Y of inner

products. The proof will consist of two steps. In the �rst step, we will prove

the theorem by assuming that
{
ψ̃i

}n

i=1
is an orthonormal set. In the second

step, we prove the theorem in general cases where
{
ψ̃i

}n

i=1
is not necessarily

orthonormal. The proof of the �rst step requires an application of Fubini theorem

(Lewkeeratiyutkul, 2006).

Step 1. Assume that
{
ψ̃i

}n

i=1
is an orthonormal set. Let {ei}∞i=1 be an or-

thonormal basis of Y . For any ϕ′ ∈ X , we have, by Lemma 1, Aϕ′ =
∑∞

k=1⟨ϕ′, τk⟩ek.

Hence, for each bounded linear map A : X → Y , and ϕ, ϕ′ ∈ span(
{
ψ̃i

}n

i=1
), we

have ⟨Aϕ,Aϕ′⟩ =
∑∞

k=1⟨ϕ, τk⟩⟨ϕ′, τk⟩.

Note that Each τk can be decomposed as τ ′k + τ⊥k such that τ ′k lies in

span(
{
ψ̃i

}n

i=1
) and τ⊥k is orthogonal to the span. These facts make ⟨ϕ′, τk⟩ =

⟨ϕ′, τ ′k⟩ for every k. Moreover, τ ′k =
∑n

j=1 ukjψ̃j, for some {uk1, ..., ukn} ⊂ Rn.
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Hence, we have

⟨Aϕ,Aϕ′⟩ =
∞∑
k=1

⟨ϕ, τk⟩⟨ϕ′, τk⟩ =
∞∑
k=1

⟨ϕ, τ ′k⟩⟨ϕ′, τ ′k⟩

=
∞∑
k=1

⟨ϕ,
n∑

i=1

ukiψ̃i⟩⟨ϕ′,

n∑
i=1

ukiψ̃i⟩

=
∞∑
k=1

n∑
i,j=1

ukiukj⟨ϕ, ψ̃i⟩⟨ϕ′, ψ̃j⟩

(Fubini theorem: explained below) =
n∑

i,j=1

(
∞∑
k=1

ukiukj

)
⟨ϕ, ψ̃i⟩⟨ϕ′, ψ̃j⟩

=
n∑

i,j=1

Gij⟨ϕ, ψ̃i⟩⟨ϕ′, ψ̃j⟩

= φ̃TGφ̃′.

At the fourth equality, we apply Fubini theorem to swap the two summations. To

see that Fubini theorem can be applied at the fourth equality, we �rst note that∑∞
k=1 u

2
ki is �nite for each i ∈ {1 . . . n} since

∞∑
k=1

u2ki =
∞∑
k=1

⟨ψ̃i,

n∑
j=1

ukjψ̃j⟩⟨ψ̃i,

n∑
j=1

ukjψ̃j⟩ = ∥Aψ̃i∥2 <∞.

Applying the above result together with Cauchy-Schwarz inequality and Fubini

theorem for non-negative summation, we have

∞∑
k=1

n∑
i,j=1

|ukiukj⟨ϕ, ψ̃i⟩⟨ϕ′, ψ̃j⟩| =
n∑

i,j=1

∞∑
k=1

|ukiukj⟨ϕ, ψ̃i⟩⟨ϕ′, ψ̃j⟩|

=
n∑

i,j=1

|⟨ϕ, ψ̃i⟩⟨ϕ′, ψ̃j⟩|
( ∞∑

k=1

|ukiukj|
)

≤
n∑

i,j=1

|⟨ϕ, ψ̃i⟩⟨ϕ′, ψ̃j⟩|

√√√√( ∞∑
k=1

u2ki

)( ∞∑
k=1

u2kj

)
<∞.

Hence, the summation converges absolutely and thus Fubini theorem can be ap-

plied as claimed above. Again, using the fact that
∑∞

k=1 u
2
ki < ∞, we have that

each element of G, Gij =
∑∞

k=1 ukiukj, is �nite. Furthermore, the matrix G is PSD

since each of its elements can be regarded as an inner product of two vectors in
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ℓ2.

Hence, we �nally have that ⟨Aϕi, Aϕj⟩ = φ̃T
i Gφ̃j, for each 1 ≤ i, j ≤ n, and

whenever a map A is given, we can construct G such that it results in the same

objective function value. By reversing the proof, it is easy to see that the converse

is also true. The �rst step of the proof is �nished.

Step 2. We now prove the theorem without assuming that
{
ψ̃i

}n

i=1
is an or-

thonormal set. Let all notations be the same as in Step 1. Let Ψ′ be the matrix

(ψ̃1, ..., ψ̃n). De�ne {ψi}ni=1 as an orthonormal set such that span({ψi}ni=1) =

span(
{
ψ̃i

}n

i=1
) and Ψ = (ψ1, ..., ψn) and φi = ΨTϕi. Then, we have that ψ̃i = Ψci

for some ci ∈ Rn and Ψ′ = ΨC where C = (c1, ..., cn). Moreover, since C map

from an independent set {ψi} to another independent set
{
ψ̃i

}
, C is invertible.

Denote F = BTB as an optimal matrix obtained by the proof of Step 1. We then

have, for any F ,

φT
i Fφj = φT

i B
TBφj = φT

i CA
′TA′CTφj

= ϕT
i ΨCA

′TA′CTΨTϕj

= ϕT
i Ψ

′A′TA′Ψ′Tϕj

= φ̃T
i A

′TA′φ̃j = φ̃T
i Gφ̃j.

Note that we can write BT = CA′T since C is invertible. Hence, for any F we

have the matrix G which gives φ̃T
i Gφ̃j = φT

i Fφj. Using the same arguments as in

Step 1, we �nish the proof of Step 2 and of Theorem 1.

Theorem 6. (Representer Theorem for Dimensionality Reduction) For arbitrary

objective function f which depends only on inner products of linearly transformed

examples, the optimization,

min
A

f
(
{⟨Aϕi, Aϕj⟩}ni,j=1

)
s.t. A : H → Rd is a bounded linear map,
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has the same optimal value as

min
A′∈Rd×(ℓ+u)

f({φT
i A

′TA′φj}ni,j=1).

Proof. Let {ei}di=1 be the canonical basis of Rd. By Lemma 1, Aϕk =
∑d

i=1⟨ϕk, τi⟩ei
for some τ1, . . . , τd ∈ X . Each τi can be decomposed as τ ′i + τ⊥i such that τ ′i lies in

span
{
ψ̃1, . . . , ψ̃n

}
and τ⊥i is orthogonal to the span. These facts make ⟨ϕk, τi⟩ =

⟨ϕk, τ
′
i⟩ for every i. We then have, for some uij ∈ R, 1 ≤ i ≤ d, 1 ≤ j ≤ n,

Aϕk =
d∑

i=1

⟨ϕk,
n∑

j=1

uijψ̃j⟩ei =
d∑

i=1

ei

n∑
j=1

uij⟨ϕk, ψ̃j⟩

=


u11 · · · u1n
...

. . .
...

ud1 · · · udn



⟨ϕk, ψ̃1⟩

...

⟨ϕk, ψ̃n⟩

 = Uφk .

Now, one can easily check that ⟨Aϕi, Aϕj⟩ = φT
i U

TUφj for i, j = 1, ..., n. Hence,

whenever a map A is given, we can construct U such that it results in the same

objective function value. By reversing the proof, the converse is also true, and

thus the theorem is proven (by renaming U to A′).

The stronger version of Theorem 6 can be achieved by inserting a regularizer

into the objective function of a (kernelized) Mahalanobis distance learner as stated

in Theorem 7. For compact notations, we use the fact that A is representable by

{τi} as shown in Lemma 1.

Theorem 7. (Representer Theorem for Regularized Learners) De�ne
{
ψ̃i

}n

i=1
and

f be as in Theorem 1. For monotonically increasing functions gi, let

h(τ1, ..., τd, ϕ1, ..., ϕn) = f(⟨τ1, ϕ1⟩, . . . , ⟨τi, ϕj⟩, . . . , ⟨τn, ϕd⟩) +
d∑

i=1

gi(∥τi∥).

Any optimal set of linear functionals

argmin{τi} h(τ1, ..., τd, ϕ1, ..., ϕn)

s.t. ∀i τi : X → R is a bounded linear functional
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must admit the representation of τi =
∑n

j=1 uijψ̃j (i = 1, . . . , d).

Proof. We prove by contrapositive. Consider a set of linear functionals {τi} such

that it is not in the span of ψjs, i.e. τi = τ ′i + τ⊥i where τ ′i =
∑n

j=1 uijψj and

⟨τ⊥i , ψj⟩ = 0 for all j = 1, ..., ℓ+ u and ∃iτ
⊥
i ̸= 0. Then ⟨τi, ψj⟩ = ⟨τ ′i , ψj⟩. Thus,

f(⟨ϕ1, τ1⟩, . . . , ⟨ϕi, τj⟩, . . . , ⟨ϕℓ+u, τd⟩) = f(⟨ϕ1, τ
′
1⟩, . . . , ⟨ϕi, τ

′
j⟩, . . . , ⟨ϕℓ+u, τ

′
d⟩).

However,

g

(
d∑

i=1

∥τi∥

)
= g

(
d∑

i=1

√
∥τ ′i∥2 + ∥τ⊥i ∥2

)
> g

(
d∑

i=1

∥τ ′i∥

)
,

using the fact that ∃iτ
⊥
i ̸= 0. Hence,

h(τ1, ..., τd, ϕ1, ..., ϕn) > h(τ ′1, ..., τ
′
d, ϕ1, ..., ϕn),

and thus {τi} cannot be an optimal solution. The proof is completed.

To apply Theorem 7 to our framework, we can simply view A = (τ1, ..., τd)
T .

If each gi is the square function, then regularizer becomes
∑d

i=1∥τi∥2 = ∥A∥HS

where ∥·∥HS is the Hilbert-Schmidt (HS) norm of an operator. If each τi is �nite-

dimensional, the HS norm is reduced to the Frobenius norm ∥·∥F . Here, we allow

the HS norm of a bounded linear operator to take a value of ∞. For the kernel

trick (by substituting ψ̃i = ϕi), the result above states that any optimal {τi} must

be represented by {Φui}. Therefore, we have

d∑
i=1

gi(∥τi∥) =
d∑

i=1

∥τi∥2 =
d∑

i=1

uT
i Φ

TΦui =
d∑

i=1

uT
i Kui = trace

(
UKUT ).

This regularizer is �rst appeared in the work of Globerson and Roweis (2006).

Similarly, for the KPCA trick (by substituting ψ̃i = ψi), any optimal {τi} must

be represented by {Ψui} and, using the fact that ΨTΨ = I, we have
∑d

i=1∥τi∥2 =

trace
(
UUT ) = ∥U∥2F .

By adding the regularizer, trace(UKUT ) or ∥U∥2F , into existing objective
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functions, we have a new class of learners, namely, regularized Mahalanobis dis-

tance learners such as regularized KNCA (RKNCA), regularized KLMNN (RKLMNN)

and regularized KDNE (RKDNE). We plan to investigate e�ects of using various

types of regularizers in the near future.

Remarks. The three theorems require that the objective function of a learning

algorithm must depend only on {⟨Aϕi, Aϕj⟩}ni,j=1 or equivalently {⟨ϕi,Mϕj⟩}ni,j=1.

This actually is not a strict condition since metric learners in literatures have

their objective functions in this form (Chen et al., 2005; Goldberger et al., 2005;

Globerson and Roweis, 2006; Weinberger et al., 2006; Yang et al., 2006a; Sugiyama,

2006; Yan et al., 2007; Zhang et al., 2007b; Torresani and Lee, 2007).

We note that the three theorems are more general than what is needed by

the kernel trick. To apply the theorems to the usual kernel trick, we just substitute

ψ̃i = ϕi so that φ̃i becomes:

φ̃i = ΦTϕi =
(
⟨ϕ1, ϕi⟩, ..., ⟨ϕn, ϕi⟩

)T
=
(
k(x1,xi), ..., k(xn,xi)

)T ≡ ki.

The notation ki is common in literatures and the matrix (k1, ...,kn) is the so-called

Gram matrix. Now we have a computational shortcut for ∥ϕi − ϕj∥M :

∥ϕi − ϕj∥M =
√
(ϕi − ϕj)TM(ϕi − ϕj) =

√
(ki − kj)TG(ki − kj).

Finally, we note that applications of the three theorems are not limited to

the kernel trick. When restricting
{
ψ̃i

}
to be an orthonormal set, Theorem 5

inspires the KCPA trick framework which has many advantages over the kernel

trick framework on the tasks of metric learning as described in Chapter 3.



CHAPTER VIII

FUTURE DIRECTIONS

In the previous chapters, we present a general framework for kernelization

and a spectral-based semi-supervised learning framework. These two frameworks

can be applied together as shown in Chapter 5. Many extensions of the frameworks

are already stated in each chapter. Here, we summarize them again before stating

other possible directions.

• Kernelized learners can involve ill-conditioned computation as stated in

Chapter 3. It is important to develop a numerically stable techniques in order to

stabilize the kernelized learners so that the results gotten from the learners will

make sense.

• The kernel alignment method presented in Chapter 4 cannot deals with

a dataset where some class forming a shape of multi-modality. This limitation

severely a�ects its usefulness to general real-world datasets. Hence, it is highly

important to develop a new e�cient kernel selection algorithm which can deals

with multi-modality. Note that some kernel selection methods can deal with multi-

modality, but they are not computationally e�cient, e.g. those employing evolu-

tionary algorithms. The survey of e�cient kernel selection algorithms can be found

in Goenen and AlpaydIn (2010).

• There are some supervised manifold learners which cannot be represented

in our framework (Goldberger et al., 2005; Globerson and Roweis, 2006; Wein-

berger et al., 2006; Yang et al., 2006a; Torresani and Lee, 2007; Tao et al., 2009)

because cost functions of these algorithms are not linear with respect to distances

among examples. Extension of these algorithms to handle semi-supervised learn-

ing problems is an interesting future work as stated in Chapter 5.

• In Chapter 7, the class of regularized Mahalanobis distance learners are

introduced. It is interesting to see practical prediction abilities of these learners

when compared to non-regularized learners mainly concerned in this dissertation.

Also, we note that regularization usually improves a condition number of a problem
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so that it can also help to stabilize kernelized learners as mentioned above.

8.1 Learning a Mahalanobis Distance for SVM

Learning SVM is also based on Euclidean distance, and thus the use of the

Euclidean distance may not be appropriate for some learning problems. Being

able to learn the best (Mahalanobis) distance function with respect to a given

training set can improve the performance of a learner in that problem.

In fact, for SVM, there is another explanation. Recall that the goal of SVM

is to �nd an optimal-margin hyperplane. Let {xi, yi}ni=1 be a given dataset. Note

that a representation of {xi} ⊂ RD can a�ect the margin of a hyperplane h. For

example, any change of scales of some attributes of {xi} will change a margin

of h. More precisely, let A be a scaling matrix, the optimal-margin hyperplane

with respect to {xi} is not likely to be the same as the optimal-margin hyperplane

with respect to {Axi}. There are a number of situations such that a dataset is

recorded with some inappropriate scales because an observer does not have enough

prior knowledge, for example, it is well known that the popular dataset named

wine of the UCI repository (Asuncion and Newman, 2007) is recorded with some

inappropriate scales. More generally, besides a scaling matrix, A could be any

types of matrices which change the representation of {xi} to {Axi}, i.e. a dataset

may be recorded as {Axi} instead of its most appropriate form because of some

misunderstanding or some errors in observation and recordation.

Therefore, given a dataset, it is bene�cial to learn the best linear transfor-

mation A∗ such that the margin of the optimal-margin hyperplane with respect to

{A∗xi} is largest when compared to other representations in the form of {Axi} for

all A ∈ RD×D. It turns out that the problem of learning the best possible matrix

A can also be formulated as the problem of learning the best possible Mahalanobis

distance matrix M ∈ SD
+ .

In order to learn the best linear transformation A, together with the optimal-

margin hyperplane, a new formulation of SVM is required. One possible formula-

tion is shown in Fig. 8.1:
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Minimize
A,w,b,ξi

C∥w∥2 +
∑n

i=1 ξi

Subject to: yi(⟨w, Axi⟩+ b) ≥ 1− ξi,
∥Axi∥2 ≤ 1
ξi ≥ 0
w ∈ RD, b ∈ R, A ∈ RD×D.

Figure 8.1: Our �rst formulation for SVM.

Using the property M = ATA, we can reformulate the problem in another

way as shown in Fig. 8.2.

Minimize
M,w,b,ξi

CwTMw+
∑n

i=1 ξi

Subject to: yi(⟨w,Mxi⟩+ b) ≥ 1− ξi,
xT
i Mxi ≤ 1
ξi ≥ 0
w ∈ RD, b ∈ R,M ∈ SD

+ .

Figure 8.2: Our second formulation for SVM.

Nevertheless, to our knowledge, it appears that the problem formulations

shown in Fig. 8.1 and Fig. 8.2 do not belong to the class of convex programming.

Hence, with these formulations the problem cannot be perfectly solved in the sense

that a globally optimal solution is not guaranteed to be found in the polynomial

running-time.

8.2 Other Directions

• In this dissertation, we consider only problems related to classi�cation,

clustering and the combination of both, i.e. semi-supervised learning. From the

best of the author's knowledge, a Mahalanobis distance learner for tasks related to

regression analysis have not been much concerned. Therefore, it is one interesting

direction to develop a Mahalanobis distance learner to improve the performance

of an existing regressor such as least square, in the same sense as a distance

learner considered in this dissertation which improves the performance of the kNN

algorithm.

• Up to now, the main contents of this dissertation is of theory and of mod-

eling. What this dissertation lack of is about its applications to challenging real

world problems, not just, say, a UCI dataset. It is highly interesting to apply our
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methods to the high-dimensional real-world datasets such as those related to text

categorization, speech recognition, computer vision and �nancial data prediction.

Nevertheless, working on these real-world datasets is not straightforward. Some

certain issues such as time series analysis, spatial analysis, sparsity, sensitivity

and signal pre-processing are needed to be carefully concerned. For example, in a

task of �nancial data prediction, the philosophy of the complexity-accuracy trade-

o� may be di�erent from the other prediction tasks as accuracy in the �nancial

prediction is very crucial, e.g. 0.1% of error can be unacceptable.
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