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CHAPTER 1

INTRODUCTION

Mahalanobis distance learning is one of the most active research areas in
recent years (Tenenbaum et al., 2000; Roweis and Saul, 2000; Xing et al., 2003;
Cheng et al., 2004; He and Niyogi, 2004; Chen et al., 2005; Goldberger et al.,
2005; Saul et al., 2006; Hoi et al., 2006;" Weinberger et al., 2006; Yang et al.,
2006a; Sugiyama, 2006, 2007, Cai et al., 2007, Yan et al., 2007; Zhang et al.,
2007b; Torresani and Lee; 2007) The task of Mahalanobis distance learning is,
in fact, fundamental to.magchine learning. It contains well-established algorithms
such as support vector machines, perceptrons, principal ecomponent analysis and
Fisher discriminant analysis as important special cases. In this thesis, we focus

on improving further the framework of Mahalanobis distance learning.

One important disadvantage of all Mahalanobis distance learners is the in-
ability to learn a non-linear transformation. This limitation is due to the fact that
learning a Mahalanobis distance is equivalent to learning a linear map. In many
real-world applications, data indeed form several clusters and lie on a non-linear
subspace (manifold). In those cases, learners which are not able to discover a

non-linear subspace will perform poorly.

There is another disadvantage of Mahalanobis distance learners. As many
recent developments of Mahalanobis distance learners focus on prediction tasks, a
considerable number of labeled examples are required in order to achieve satisfiable
performance. In many real-world applications such as image classification, web
page classification and protein function prediction, a labeling process:is costly and
time consuming; in contrast, unlabeled examples can be easily obtained. There-
fore, in such situations, it can be beneficial to incorporate the information which
is. contained in.unlabeled examples into a learning problem. The task of learn-
ing from both labeled and unlabeled examples is recently promoted and generally
called semi-supervised learning (Chapelle et al., 2006). Nevertheless, only very

few semi-supervised Mahalanobis distance learners exist.



1.1 Objectives

In this thesis, general non-linearization and semi-supervised frameworks are
presented in order to extend a Mahalanobis distance learner to cope with a problem
where its data lie on a manifold and a problem where only a small number of

labeled examples are provided.
1.2 Structure of the Thesis
The remaining parts of this thesis consists of other seven chapters.

e In Chapter 2, general background on Mahanalobis distance learning is in-
troduced. Further,important specific examples namely support vector machines,
principal component.analysis, neighborhood component analysis, large margin near-

est neiwghbor and discriminant neighborhood analysis are given.

e In Chapter 3, non-linearization of Mahalanobis distance learners will be
considered. Standard frameworks, namely basis exrpansion and kernel trick, are
presented. Later, inspired from the kernel trick framework, the new framework
called KPCA trick is presented and compared to the others. In short, in con-
trast to the kernel trick, the KPCA trick does not require users to derive new
mathematical formulas. Also, whenever an implementation of an original learner
is available, users are not required to re-implement the kernel version of the orig-
inal learner. Moreover, the new framework avoids problems such as singularity in

eigen-decompesition and provides a convenient way to speed up a learner.

e In the kernel trick and KPCA trick frameworks, kernel selection is fun-
damental. In Chapter 4; the problem of efficient kernel selection is dealt with.
Firstly, we investigate the kernel alignment method proposed in previous works
(Lanckriet et al., 2004; Zhu et al., 2005) to see whether it is appropriate for a
kernelized Mahalanobis distance learner or not. New kernel alignment formulas
based on quadratic programming and linear programming are derived. Secondly,
we investigate a simple method which constructs an unweighted combination of
base kernels. A theoretical result is provided to support this simple approach.

Kernel constructions based on our two approaches require much shorter running



time when compared to the standard cross validation approach.

e In Chapter 5, we present a general semi-supervised dimensionality re-
duction framework which is able to employ information from both labeled and
unlabeled examples. Algorithms developed in our framework are able to discover
a nice (low-dimensional) subspace even when training examples of each class form
separate clusters of complicated non-linear manifolds. In fact, many previous
supervised and unsupervised algorithms can be‘easted as instances in our frame-
work. Moreover, recent-existing semi-supervised frameworks known to us (Li et al.,
2007; Sugiyama-et-al., 2008; Song et al., 2008) can be viewed as special cases of

our framework as well.

e In Chapter 6, practical performance of our semi-supervised learning frame-

work is given in details.

e In Chapter 7, three representer theorems in the context of Mahalanobis
distance learning are proven. Our theorems justify both the kernel trick and the
KPCA trick frameworks in general learning settings, including unsupervised learn-
ing, supervised learning and semi-supervised learning. Moreover, the theorems
validate kernelized algorithms learning a Mahalanobis distance in any separable
Hilbert space and also cover kernelized algorithins performing dimensionality re-
duction. These theorems are extensions of that of Scholkopfet al. (2001) which
cannot be applied to a general case of learning a countably-infinite dimensionality

linear map.

e In Chapter 8, we conclude the thesis by discussing promising research

directions in the future:
1.3 Publications

The main content of this dissertation are divided into two international jour-
nal papers and will be published on Neurocomputing, special issue on subspace

learning (Chatpatanasiri et al., 2010; Chatpatanasiri and Kijsirikul, 2010).
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CHAPTER II

BACKGROUND

Almost, if not all, machine learning algorithms solving the problems of clas-
sification, regression, clustering, ranking and novelty detection (Schélkopf and
Smola, 2001; Shawe-Taylor and Cristianini; 2004; Bishop, 2006) base their hy-
pothesis constructions on the information of Fuclidean distances among input
data. See Figure 2.1 for an example. In fact, a choice of a distance function plays
a crucial role on efficiency of these algorithms, and the use of the Euclidean dis-
tance function ismnot always-appropriate to some applications. For an example, an
object recognitionproblem where two images of one object can be very dissimilar,
with respect to their Euclidean distance, due to a direction and a position of a
camera. Therefore, the ability to learn the best distance function with respect to
a given training set can improve the performance of a learner. In this thesis, we
are interested im'the class of Mahalanobis distance functions on manifolds which

generalizes the Euclidean distance function.

Figure 2.1: The decision surface (the so-called woronoi diagram) created by the
nearest neighbor algorithm based on the Euclidean distance.

2.1 Mahalanobis Distance Learning

Let {x;,y;}i~; denote a training set of n labeled examples with inputs x; €

RP and corresponding class labels y; € {cy, ..., ¢, }. Here, we denote X = (x1, ..., X,)
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Since the PSD matrix M can be decomposed to AT A, we can equivalently restate



our problem as learning the best linear map, or matrix, A:

A* = argminf(ATA). (2.2)

AERdxD
To simplify the notation, we will simply write f(A) instead of f(ATA). Note that
d = D in the standard setting of learning a full-rank Mahalanobis distance; for
the purpose of dimensionality reduction we'can learn a low-rank projection by
restricting d < D. In conventional pattern recognition tasks, after learning the
best linear map A* A*will be used by kNN to compute the distance between two

points in the transformed.space as (x; — x;)7 M*(x; — x;) = ||A*x; — A*x;]|%.
2.2 Important Examples

Learning a Mahalanobis distance, or a linear map, has several important

special cases (Bishop, 2006).

e Many popular learners have their objectives to learn a hyperplane, which
is in fact a I-dimensional output linear map, also called a linear functional, A €
R™P Popular examples belonging to this elass include support vector machines,

perceptrons and least-square methods (Figure 2.3).

e There is also an important class of linear dimensionality reduction al-
gorithms which seek a weighted projection from a high-dimensional space R to
a low-dimensional space R? (Figure 2.4). These algorithms therefore learn a d-
dimensional output linear map A € R¥P. Prime examples of algorithms belonging
to this class are principal component analysis, Fisher diseriminant analysis and
their variations. In Chapter 5, we present a general framework generalizing many

popular dimensionality reduction algorithms.

e Recently, algorithms aiming to learn a full-rank linear map A € RP*P are
presented. An invention of an algorithm in this class'is now an active research area.
Popular/ learners include neighborhood component analysis (Goldberger et al:,

2005) and large margin nearest neighbor (Weinberger et al., 2006).



Figure 2.3: (Left) An example of a hyperplane obtained by the perceptron algo-
rithm. (Right) An example of a hyperplane obtained by the linear SVM classifier.
Learning a hyperplane is.in fact equivalent to learning the 1-dimensional linear
subspace which is orthogonal to the hyperplane (as illustrated by the red dashed-
dotted lines in“the two'examples).

10

Figure 2.4: Two projection examples on a data of two classes: the left projection
nicely separates the two classes while the right projection dees not.

2.2.1 Support Vector Machine (SVM)

SVM is an algorithm designed for solving a binary classification. problem.
SVM aims_to learn a hyperplane which can be used to classify data into their
proper classes, positive or negative. Although, before the invention of the SVM
algorithm, there were a number of algorithms proposed. to learn a hyperplane, the

unique feature of SVM is'that it is able to learn an optimal-margin hyperplanet.

Here, we avoid the misleading notion of “maximum margin” and follow (Scholkopf and Smola,
2001) to use the notion of “optimal margin” instead. Technically speaking, “maximum margin”
hyperplane does not really exist since, given any hyperplane, we can increase its margin by
simply multiplying the scale of the input space. What is really matter is the ratio of the margin
to the radius of the smallest ball containing all given examples, not the margin itself.
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Unlike other hyperplanes, it has been shown that an optimal-margin hyperplane
has a nice theoretical property to guarantee its prediction accuracy on unseen data

(Scholkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004).

Given a constant ¢ > 0, the objective function of SVM solving a binary

classification problem can be stated as
oM, b) = clw® £ = i ((w, xi) + b))
i=1

where [-]; denotes the standard hinge loss: [z]o = ma®m(2,0). We can restate the

optimization problem of SVM as shown in Figure 2.5.

Minibr?ize cwll® + >, &
y0,S8

Subject to: y;({(w,x;) +b) > 1—&,
&> 0, weRP, Wb cR

Figure 2.5: A QP formulation for the SVM algorithm.

This SVM formulation is an instance of the class of (positive definite) quadratic
programs (QP) (Boyd and Vandenberghe, 2004) and can be solved in a polynomial
running time. After an optimal vector (w,b) is obtained from solving a QP, an

unseen data x’ can be classified by using the following formula:

sign({w,x’) + b). (2.3)

2.2.2 Principal Component Analysis (PCA)

PCA is an algorithm for discovering a low-rank projection which best pre-
serves a certain geometrical structure of input data. A geometrical structure which
PCA attempts to preserve is the pairwise distance among each pair of the data.
It can be shown that preserving the pairwise distances.is equivalent to preserving
the statistical variance of the data.. Therefore, PCA is usually described. as an

algorithm which searches for a maximum-variance projection.

Denote the PCA objective function as fF4(A). To simplify the formula,
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we assume that training data are centered at the origin, i.e. )", x; = 0. Then

FREAA) = = llAx|. (2.4)
i=1
By adding the orthonormal projection constraint AAT = I, the PCA optimization
problem is
A* = argmin — || Axl]* = azgmax Y || Ax||?. (2.5)

It can be shown that 4*= (a®), .. jal)T where {a(j)}jzl is the top d eigenvectors
of the following eigenvalue problem with respect to the covariance matrix of the

data X X7 (Fukunaga,1990):

XXTdU = \aldai =1 A d. (2.6)

2.2.3 Fisher Diseriminant Analysis (FDA)

FDA (Fukunaga, 1990) is a dimensionality reduction algorithm attempting to
preserve a discriminative structure of a given set of data. Denote ¢ as the number
of classes in a given training set. Provided that training examples of each class lie
in a linear subspace and do not form several separate clusters, i.e. do not form
multi-modality, FDA is able to discover a low-dimensional linear subspace (with
at most ¢ — 1 dimensionality) which is efficient for classification. The objection

function of FDA can be stated as follows:
FEDA (A= = trace <(ASwAT)*1ASbAT).

where' S, and S, are standard between-class and within-class scatter matrices,

respectively:

Q
o
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— 1 n _ 1 g ; : ith
where pp = >0 X, ;= - > ;% X and n; is a number of examples in the i

class.

is the top d

It can be shown that A* = (a®,...,a®)T where {a(j)}jzl

eigenvectors of the following eigenvalue problem with respect to the matrix S, Sj:

S SpaBh =il | e W d. (2.7)

2.2.4 Neighborhood Component Analysis (NCA)

NCA (Goldberger et al., 2005) is an algorithm obtaining a full-rank linear
map for using with ' kNN. NCA attempts to optimize the leave-one-out (LOO)
performance -on training data. However, as the actual LOO classification error
of kNN is a non=smooth function of the matrix A, Goldberger et al. propose to

minimize a stochastic variant of the LOO kNN score which is defined as follows:
e LR ¥ (2.8)
i Yi=¢;
where

. exp(—||Ax; — Axj||) —
" Zk;ﬁi exp(~||Ax; — Ax|[?)’ ’

Optimizing. f¥Y94(.) can be done by applying a gradient based method such as
delta-bar-delta-or conjugate gradients. The formula of 0 f¥¢4 /9 A can be obtained

as follows:

8fNCA - -
YU —QAZ Di Zpikxikxik 1 Zpijxijxij
7 k J€Ec;
where for brevity we denote x;; = x; — x;. One major disadvantage of NCA,
however s that, fY¢(.).is not convex,and the-gradient based methods are thus

prone to local optima.
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Figure 2.6: (Weinberger et al. (2006)). This figure illustrates the main intuition
behind the LMNN-algorithm. -Before applying LMNN, data in the input space
may be positioned randomly, but after applying LMNN and obtaining a linear
transformationy,sdata in“the transformed space will be more ordered in the sense
that for each pointyits k-nearest neighbors always belong to the same class while
examples from different classes are separated by a large margin.

2.2.5 Large Margin Nearest Neighbor (LMNN)

As NCA, LMNN (Weinberger et al., 2006) is an algorithm obtaining a full-
rank linear map for using with' kNN. In LMNN, the output Mahalanobis distance is
optimized with the goal that for each point, its k-nearest neighbors always belong
to the same class while examples from different classes are separated by a large

margin (SeeFigure 2.6).

For each point x;, we define its k target neighbors as the k other inputs with
the same label y; that are closest to x; (with respect to the Euclidean distance
in the input space). We use w;; € {0,1} to indicate whether an input x; is a
target neighbor of an-input x;. For convenience, we define y;; € {0,1} to indicate
whether or not the labels y; and ¢; match. The objective function of LMNN is as

follows:

FEANY (), = ]l M €D @0 ) TL i 1l e sl -
] 0,50

The term ¢ > 0 is a positive constant typically set by cross validation. The

objective function above is convex and has two competing terms. The first term

penalizes large distances between each input and its target neighbors, while the
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second term penalizes small distances between each input and all other inputs that

do not share the same label.

The objective function above can be reformulated as an instance of semidef-
inite programs (SDPs) (Boyd and Vandenberghe, 2004) as shown in Figure 2.7.
Since SDP is an instance of convex programs, in contrast to fN4(.), the global
optimum of fEMNN(.) can be efficiently computed. A low-rank transformation
A € R™PD such that d < D can be achieved by applying the orthogonal decom-
position of M and retaining only the first-d eigenvectors corresponding to the

smallest d eigenvalues.

Minimize Ei,j wij(xi o Xj)TM(Xi N Xl) G CZi,j,l wm(l — yil)gijl
Subject to:

(1) (s =) MK ) 2.0, =i TGN, > W&t

(2) & > 0.

(3) M € S

Figure 2.7: An SDP formulation for the LMNN algorithm.

2.2.6 Discriminant Neighborhood Embedding (DNE)

As NCA and LMNN, DNE (Zhang et al., 2007b) is an algorithm obtaining
a linear map for using with kNN. Nevertheless, the purpose of DNE is to obtain
a low-rank linear map instead of a full-rank linear map. The main idea of DNE is
quite similar to LMNN. DNE seeks a linear transformation such that neighborhood
points in the same class are squeezed but those in different classes are separated
as much as possible. However, DNE does not care about the notion of margin; in
the case of LMNN, we want every point to stay far from points of other classes,
but for DNE, we want the average distance between two neighborhood points of
different ‘classes“to be large.” Another difference is that LMNN can learn a full
Mahalanobis distance, i.e. a general weighted linear projection, while DNE can

learn only an unweighted linear projection.

Similar to LMNN, we define two sets of k target neighbors for each point x;
based on the Euclidean distance in the input space. For each x;, let Neig’(i) be

the set of k nearest neighbors having the same label y;, and let Neig?(i) be the
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set of k nearest neighbors having different labels from y;. We define w;; as follows:

+1, if j € Neig'(i) Vi € Neig'(j),
wij = —1, if j € NeigF(i) Vi € Neigh(j),

0, otherwise.

The objective function of DNE is:

FRNECAY= > || Axp=rr}f?

ihj

which can be refermulated (up to a constant factor) to be
PV EAY S trace(A X B W) X5ATY,

where W is a’symmetric matrix with elements w;;, D is a diagonal matrix with
D;; = Zj w;; and X is the matrix of input points (x1,...;X;,). It is a well-known
result from spectral graph theory (von Luxburg, 2007) that D — W is symmetric
but is not necessarily PSD. To solve the problem by eigen-decomposition, the
constraint AAT = I is added (recall that A € R¥*? where d < D) so that we have

the following optimization problem:

A* = argmin trace(AX (D — W)X A"). (2.9)
AAT=]

d)

Then A* = (a®), ..., a®)T where the optimal vectors a’),...,a(¥ are the bottom

eigenvectors of the following eigenvalue problem (Fukunaga, 1990, Chapter 10):
X6D & ) 567 a a2 0t
As LMNN; the global optimum of DNE can be efficiently computed.

One advantage of DNE over LMNN and NCA is that, for DNE, we have a
deterministic rule to select the optimal.dimensionality d of the transformed space;

d will be the number of negative eigenvalues obtained from the above eigenvalue

problem (Zhang et al., 2007b).



CHAPTER III

NON-LINEARIZATION USING A KPCA TRICK

As learning a Malanobis distance is equivalent to learning a linear map, a
Malanobis distance may be still not appropriate for data lying in a manifold (a
non-linear subspace) as shown in Figure 3.1. Non-linearization is a technique which
allows a Malanobis distance learner to be able‘to learn-an appropriate distance on

a manifold.

A new framework introduced in this chapter is called a KPCA trick. We
will show subsequently in‘the chapter the advantages of KPCA trick over existing

frameworks.
q [ ]
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Figure 3.1: Two examples where data lie in non-linear manifold. Mahalanobis
distance learners do not” perform well on these examples. More discussions on
these two datasets can be found in Chapter 4.

3.1 Existing Frameworks

Three popular nen-linearization frameworks are the basis expansion approach,
neural networks, and the kernel trick (Hastie et al., 2001; Schélkopf and Smola,
2001; Shawe-Taylor and Cristianini, 2004; Bishop, 2006). In this dissertation we
are mainly interested in improving on the kernel trick framework, which is in fact
an improvement over.the-basis.expansion approach. Therefore, we explain here the
two relevant frameworks. The framework of neural networks will not be discussed

further in this dissertation.
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Figure 3.2: (Left) At the beginning, data lie in"their original input space. Note
that in this input space data are not linearly separable. (Right) After transforming
using the basis functions denoted by @(-), data now lie in a new space where data
become linearly separable.. Therefore, applying an existing hyperplane learner
in the transformed space.can- separate the training data. More concretely, by
denoting each point.by its'coordinate in the input space x = (21, 9@),2 the ellipse

formula which perfectly separates the data is in the form of % + w—lf = 1. By
expanding into a space of 2-degree polynomial of ¢(x) = (24, 22, 23) where z; = z7,
2y = w2 and 23 = 23179, the ellipse formula becomes linear with respect to the
new variables: 2 422 =1,

3.1.1 The Basis-Expansion Framework

The basis-expansion framework is the simplest method for non-linearization.

It can be described as a simple 2-step approach as follows:

(1) select a set of basis functions and apply it to given data so that the data are

transformed into a new space defined by the basis functions.

(2) apply an existing algorithm (e.g. algorithms described in Section 2.2) in the

new space.

This simple 2-step approach is illustrated in Figure 3.2. The main advantage
of this approach lies in its simplicity: after applying the selected basis funetions,
any existing algorithm can be applied to the transformed data without the need

of modification to the algorithm.

The choice of basis functions is crucial to this framework. The set of basis

functions should be flexible enough so that data, forming complicated patterns
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in an original space, have much more simpler sub-patterns in the transformed
space. In those cases, simpler sub-patterns may be extracted by, e.g., a low-rank
linear map in the transformed space. One common choice of basis functions is a
set of polynomial basis functions (Scholkopf and Smola, 2001). Although a set
of high-degree polynomial basis functions is powerful enough for any data, the
number of basis functions grows exponentially with respect to the polynomial
degree. As working in a high-dimensional space is computationally expensive,
generally speaking,~an application of high-degree polynomial basis functions is

practically infeasible.

In the next subsection, we describe the kernel trick framework which bril-

liantly solves this gomputational issue.
3.1.2 The kernel trick Framework

The kernel trick framework was first applied to pattern recognition and ma-
chine learning by Vapnik and co-authors (Vapnik, 1999). The framework reduces
the two steps of the basis-expansion framework into a magnificent single step. The
essence of the kernel trick lies in the property of the positive semidefinite (PSD)
kernel function and ‘representer theorems (Schélkopf and Smola, 2001). Unfor-
tunately, the existing representer theorems do not, in general, cover Mahalanobis
distance learners. The representer theorem in the context of Mahalanobis distance

learning will be discussed in Chapter 7.

Given a PSD kernel function k(:,-), by the Mercer theorem (Scholkopf and
Smola, 2001), we have

k(xi,%5) = (@(xi), ¢ (x;)) (3.1)

for some mapping ¢(-) which transforms data to a Hilbert space, often called a
feature space. Forsimplicity; we shall denote ¢y¢’ and ¢; instead of ¢ (x); ¢(x')
and ¢(x;), respectively. A (squared) Mahalanobis distance under a matrix M in

the feature space is

(¢z’ - ¢j)TM(¢i - ¢j) = (¢z‘ - ¢j)TATA(¢i - ¢j)- (3-2)
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As in Subsection 2.2.6, let A = (a®,...,a®)”. Denote a (possibly infinite-
dimensional) matrix of the mapped training data ® = (¢1,...,¢,). The main
idea of the kernel trick framework in the context of Mahalanobis distance learning

is to parameterize (see representer theorems Chapter 7)
AT = oUL, (3.3)
where U = (u®, ..., u™T_ Substituting Ain Eq.(3.2) by using Eq. (3.3), we have
(&= 0) M (¢ = ¢;) = (ki — *)TULU (ki — k),

where

K; =070, = ((B1, 6, s (b, 60)) (3.4)

Now our formula depends only on an inner-product (¢;, ¢;), and thus the appli-
cation of the Mercer theorem stating that k(xi,x;). = (¢, ¢;) can be applied.
Therefore, the problem of learning the best Mahalanobis distance in the feature
space is now reduced to a problem of learning the best (finite) linear transforma-

tion U of size d x n.

Once we find the matrix U, the Mahalanobis distance from a new test point

x’ to any input point x; in the feature space can be calculated as follows:
16" = @illis = (' = k) "'UTU (K" k), (3.5)

where k' = (k(x/sX1)s..., k(x',x,))T. kNN elassification in the feature space can

be/ performed based on Eq. (3.5).

At this point, we note that, in contrast to the basis-expansion framework,
there is no need to actually map the input datainte a new high-dimensional
space. By reformulating the problem using the kernel function, the kernel trick
creates a computational shortcut for the basis-expansion framework by changing
the optimized variable from A to U. There are many choices of valid PSD kernel

functions (Vapnik, 1999; Scholkopf and Smola, 2001). Here, we note that applying
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m-degree polynomial basis functions is equivalent to applying the kernel functions

k('? ) = <'= >m

Nonetheless, it often happens that an optimization with respect to a new
variable U is much more complicated than the original optimization problem of
with respect to a variable A in the input space, even their optimization problems
look similar as shown in Section 3.5. In the next chapter, a new non-linearization

framework which does not have this problem will be presented.
3.2 The KPCA trick Framework

In this seetion, we develop a KPCA trick framework which, compared to
existing frameworks, can be much more conveniently applied to non-linearize the
three learners. The KPCA trick is an improvement over the kernel trick and is

also based on the Mercer theorem and representer theorems.

The KPCA trick framework, in fact, take us back to a 2-step approach as the
basis-expansion framework. Nevertheless, unlike the basic-expansion framework
where the number of basis functions may grow exponentially (if users uncarefully
select a set of basis functions), the number of basis functions of the KPCA trick
framework is always bounded by the number of data points. Hence, the KPCA
trick framework has a computational running time in the same order as the kernel

trick framework.

Denote k(. -), ¢, ¢ and ¢ as in Subsection 3.1.2. The central idea of the
KPCA trick is.to represent each ¢; and ¢’ in a new “finite”-dimensional space,
without any loss of information. Within the framework, a new coordinate of each
example is computed “explicitly”’, and each example in the new coordinate is then
used as the 'input of any existing Mahalanobis distance learner. As a result, by
using the KPCA trick in place of the kernel trick, there is no need to derive new

mathematical formulas and no need to implement new algorithms:

To simplify the discussion of KPCA, we assume that {¢;} is linearly inde-
pendent and has its center at the origin, i.e. > . ¢; = 0 (otherwise, {¢;} can be
centered by a simple pre-processing step (Shawe-Taylor and Cristianini, 2004, p.
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115)). Since we have n total examples, the span of {¢;} has dimensionality n. Here
we claim that each example ¢; can be represented as ; € R™ with respect to a new
orthonormal basis {1;}"_; such that span({y;}" ) is the same as span({¢;}",)

without loss of any information. More precisely, we define

o= ((oagh ot Lladu)) = 070 (3.6)

where U = (¢4, ...,1¢y,). Note that although we may be unable to numerically
represent each 1;;.an inner-product-of (¢;,4;) can be eonveniently computed by
KPCA (or kernel.Gram-Schmidt (Shawe-Taylor and Cristianini, 2004)). Likewise,
a new test point ¢can be'mapped to ¢’ = UL #". Consequently, the mapped data

{¢i} and ¢ are finite-dimensional and can be explicitly computed.
3.2.1 Literature Notes

Historically, the name KPCA trick was first appeared in the paper of Chapelle
and Scholkopf (2001) who first applied this method to invariant support vector
machines. Recently, Li et al. (2008a) invent similar trick in the context of data
clustering. About the same time as our work, Zhang et al. (2009a) also propose
the KPCA-trick in the context of finite-dimensionality reduction. Nevertheless,
the applications of the KPCA-trick framework presented in Sect. 3.5 goes beyond
what were shown in the previous works since these works constrain their method
to the finite-dimensional cases. In contrast, learning a full Mahalanobis distance
sometimes involyes an infinite dimensional space. Thus, the new validation proof
of the KPCA trick is needed in the context of Mahalanobis distance learning (see
Theorem 1). Note that, parallel to our work, Jain et al. (2009) propose another

kernelization framework which is complimentary. to ours:
3.2.2 . The KPCA trick Algorithm

The KPCA trick algorithm consisting of three simple steps is shown in Fig-
ure 3.3. In the algorithm, we denote a Mahalanobis distance learner by maha
which performs the optimization process shown in Eq. (2.1) (or Eq. (2.2)) and
outputs the best Mahalanobis distance M* (or the best linear map A*).
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Input: 1. training examples: {(x1,91), ., (Xn,Yn)},
2. new example: x/,
3. kernel function: k(-,-)
4. Mahalanobis distance learning algorithm: maha
Algorithm:
(1) Apply kpca(k, {x;}, x') such that {x;} — {p;} and x' — ¢'.
(2) Apply maha with new inputs{ (¢4 v;)} to achieve M* or A*.
(3) Perform kNN based on the distance ||@; — ¢'||a+ or ||A*p; — A*¢||.

Figure 3.3: The KPCA trick algorithm.

NCA, LMNN and DNE described in Chapter 2 can all be kernelized by
this simple algorithm_as preved in Chapter 5. Besides NCA, LMNN and DNE,
most Mahalanobis distance learners we know to date can be kernelized by this
simple algorithm." For/examples, Zhang et al. (2008, 2009b) recently proposed
a general manifold learning framework called patch alignment containing many
existing Mahalanobis distance learners (each of which is in fact a linear version of
a manifold learner), including new learners such as Local Coordinates Alignment
and Discriminative Locality Alignment. Although these manifold learners are able
to learn non-linear subspaces without using the kernel-based frameworks, they do
not provide a coordinate in a manifold for a new test data point (the so-called
out-of-sample problem). Therefore, the KPCA trick can be applied to the patch
alignment framework to provide a non-linear manifold subspace together with
an out-of-sample mapping. Other learners whose kernel versions are previously
undeveloped (Yang et al.; 2006a; Xing et al., 2003; Li et al:; 2008b) can easily
apply the KPCA trick to get their non-linear versions as well.

3.3 Representer Theorems

Is it valid to represent an infinite-dimensional vector ¢ by a finite-dimensional
veetor p? In the'context of SVMs (Chapelle and Scholkepf, 2001), thisvalidity of
the KPCA trick is easily achieved. by straightforwardly extending a proof of classi-
cal representer theorems (Schélkopf et al., 2001; Kimeldorf and Wahba, 1971). In
the context of Mahalanobis distance learning, however, proofs provided in previous
works cannot be straightforwardly extended. The proof presented in Chapter 7
is a non-straightforward extension of Schélkopf and Smola’s work. Note that, in

the SVM case, what is learned is a hyperplane, a linear functional outputting a
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1-dimensional value. In our case, what is learned is a linear map which, in general,
outputs a countably infinite dimensional vector. Hence, to prove the validity of
the KPCA trick in our case, we need some mathematical tools which can handle
a countably infinite dimensionality. Below we state our versions of representer
theorems which prove the validity of the KPCA trick in the current context. The
proofs of the theorems, which also cover semi-supervised algorithms, will be given

in Chapter 7.

By our representer-theorems, it is the faet-that, given an objective function
f(-) (see Eq. (2.1)), the optimal value of f(-) based onthe input {¢;} is equal to
the optimal value of f(-)based on the input {y;}. Henee, the representation of ¢;
can be safely applied. We separate the problem of Mahalanobis distance learning
into two different cases.  The first theorem covers Mahalanobis distance learn-
ers (learning a full-rank linear transformation) while the second theorem covers
dimensionality reduction algorithms (learning a low-rank linear transformation).
n

Theorem 1. (Full-Rank Representer Theorem) Let {1@} be a set of points in
1

a feature space X such that Span({lzi}n ) = span({diti_,), and X and Y be sep-
=1
arable Hilbert spaces. For an-objective function f depending only on {(Ap;, Ap;)},

the optimization

mjn . f(<A¢1, A¢1>, ccoy <A¢z, A¢j>, . -, <A¢n, Aqf)n))

s.t. A: X — Y is a bounded linear map,

has the same optimal value as,

aming Fer AT Ao ol ANAG 1 g AT A,

- -
wherep; = (<¢i7¢1>7 e <¢ia¢n>> € R™.
Theorem 2., (Low-Rank Representer Theorem) Define {7]12}” and'©; as wn The-
=1

orem 1, f as an objective function depending only 'on {{Ap;, Ap;)}. The optimiza-
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tion

HlAiIl . f(<A¢1, A¢1>, N <A§Z5“ A¢j>, NP <A§Z5n, Aqbn))

s.t. A X = R is a bounded linear map,

has the same optimal value as,

Arglgl F(GTATA @y, P BT A G, ... AT A G,).

We note that Theorem 1 and Theorem 2 are more general than what is
necessary for the KRPCA trick: 'In fact, they justify. both the kernel trick (by
substituting ;= ¢; and hence @; = k;) and the KPOA trick (by substituting

Y; = 1; and hence/@; ='p;).
3.4 Remarks

1. Note that by Mercer theorem (Schélkopf and Smola, 2001, pp. 37), we
can either think of each ¢; € {5 or ¢; € RY for some positive integer N, and thus
the assumption of Theorem 1 that X, as well as ), is separable Hilbert space is

then valid. Also, both theorems require that the objective function of a learning

algorithm must depend only on {(Ad;, Ad;)};_, or equivalently {(¢;, M¢;)}],_,.
This condition is, actually, not a strict condition since learners in literatures have
their objective functions in this form (Chen et al., 2005; Goldberger et al., 2005;
Globerson and Roweis, 2006; Weinberger et al., 2006; Yang et al., 2006a; Sugiyama,
2006; Yan et al., 2007; Zhang et al., 2007b; Torresani and Lee, 2007; Pang et al.,

2006, 2008, 2009; Li‘etual., 2008b; Zhang et al:, 2008, 2009b).

2. Note that the two theorems stated in this section do not require {2@} to
be an orthonormal set. However,there is an advantage of the KPCA trick which

restricts i, = ¢; asin Bq. (3.6); this will be discussed in'Section 3.5.

3. The statement of classical representer theorems deals with the representation
of an optimal hyperplane (Scholkopf et al., 2001). In the same sense, our theorems

also imply the representation of an optimal linear map A* as shown in Chapter 7.
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4. A running time of each learner strongly depends on the dimensionality of
the input data. As recommended by Weinberger et al. (2006), it can be helpful to
first apply a dimensionality reduction algorithm such as PCA before performing a
learning process: the learning process can be tremendously speed up by retaining
only, says, the 200 largest-variance principal components of the input data. In the
KPCA trick framework illustrated in Figure 3.3, dimensionality reduction can be

performed without any extra work as KPCA"is already applied at the first place.
3.5 KPCA Trick versus Kernel Trick

To understand the advantages of the KPCA trick over the kernel trick, it
is best to derive a kernel trick formula for each algorithm and see difficulties of
implementing a kernel trick. Note-that their original papers do not show how to
kernelize these algorithms, and the material presented in this section is new. We
denote KNCA, KLMNN and KDNE as the kernel versions of NCA, LMNN and
DNE, respectively.

3.5.1 KNCA

As noted in Section 2.2.4, in order to minimize the objective of NCA and
KNCA, we need to derive gradient formulas, and the formula of 9f5N¢4/9A is
(Goldberger et al., 2005):

—QAZ <pi sz'kﬁbikqﬁgz; - sz'j¢z‘j¢iTj> (3.7)
i k JEc;

where. for brevity we denote ¢;; = ¢; — ¢;._ Nevertheless, since ¢; may lie in an
infinite dimensional space, the above formula cannot be always implemented in
practice. In order to implement the kernel trick version of KNCA, users need
to prove the following proposition which is not stated in the original work of

Goldberger et al. (2005).

Proposition 1. 9f5NC4/9A can be formulated as V®T where V depends on {¢;}
only in the form of (¢, ¢;) = k(x;, x;), and thus we can compute all elements of

V.



26

Proof. Define a matrix Bf = (0,0, ...,9,...,0,0) as a matrix with its i column
is ¢ and zero vectors otherwise. Denote k;; = k; — k;. Substitute A = UdT to
Eq. (3.7) we have

afKNCA - -
T A *QUZ (Pz‘ Zpikkik@k - Zpijkij@j)
i k J€c
—2uy (pi 3 pis (Bl — Bl
i k
kij kij
Zpij(Bz' — ))q)T
J€ci
=V o7,
which completes the proof. Il

Therefore, at the 7" iteration of an optimization step of a gradient optimizer,

we needs to update the current best linear map as follows:

8fKNCA

(1) & AG—1
A A e 6 54

A (U(i—l) o Ev(i—l))q)T

= = (3.8)

where € is a step size. The kernel trick formulas of KNCA are thus finally achieved.
However, we emphasize that the process of proving Proposition 1 and Eq. (3.8) is
not trivial and may be tedious and difficult for non-experts as well as practition-
ers who focus their tasks on applications rather than theories. Moreover, since
the formula of 9f%N°4/9A is significantly different from 0fV“4/0A, users are
required to re-implement KNCA (even they already possess an NCA implemen-
tation) which is again mot at all convenient.~In contrast, we note that all these
difficulties are disappeared if the KPCA trick algorithm consisting of three simple
steps:shown in Fig. 3.3 is applied instead of the kernel trick.

There is another advantage of using the KPCA trick:ons KNCA' By the
nature of a gradient optimizer, it takes a large amount of time for NCA and
KNCA to converge to a local solution, and thus a method of speeding up the

algorithms is needed. As remarked in Section 3.4, the learning process can be

'We slightly modify the code of Charless Fowlkes: http://www.cs.berkeley.edu/~fowlkes/software/nca/
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tremendously speed up by retaining only, says, the 100 largest-variance principal
components of the input data. In the KPCA trick framework, no extra work is

required for this speed-up task as KPCA is already applied at the first place.
3.5.2 KLMNN

Similar to KNCA, the online-available code of LMNN? employs a gradient
based optimization, and thus new gradient formulas in the feature space has to
be derived and new implementation has to be done in order to apply the kernel
trick®. On the other hand, by applying the KPCA trick, the original LMNN code

can be immediately used.

There is another advantage of the KPCA trick on LMNN: LMNN requires a
specification of w;; which'is usually based on the quantity ||x; —x;||. Thus, it makes

sense that w;; should'be based on-||o; —'¢; || = k(s x;) + k(x;,x;) — 2k(x;, ;)

with respect to the feature space of KLMNN, and hence, with the kernel trick,
users have to modify the original code in order to appropriately specify w;;. In
contrast, by applying the KPCA trick which restricts {¢;} to be an orthonormal

set as in Eq. (3.6), we have the following proposition.

Proposition 2. Let {¢;}; - be an orthonormal set such that span({i;}; ) =

span({¢:},) and i =({Bisti)y <. (i )" ER?, then |lp;—p;]* = |l¢: — 651
for each 1 <2y 3 < n.

Proof. Since we work on a separable Hilbert space X', we can extend the orthonor-
mal set {1;}7-to {1}, such that span({1;}22,) is X and (¢;, ;) = 0 for each
i=1,...,n and j> n. Then, by an application of the Parseval identity (Lewkeer-
atiyutkul, 2006),

l6: — 651> = X (6i — by, k) =D (bi — b5, ¥)
k=1 =1
= |l: Tl %

Zhttp://www.weinbergerweb.net/Downloads/LMNN.html

3There is a variation on LMNN called “large margin component analysis” (LMCA) (Torresani
and Lee, 2007) which proposes to optimize A instead of M; however, LMCA does not preserve
some desirable properties, such as convexity, of LMNN, and therefore the algorithm “Kernel
LMCA” presented there is different from “Kernel LMNN” presented in this chapter.
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The last equality comes from Eq.(3.6) and the fact that U7 (¢;—¢;) = (pi—p;). O

Therefore, with the KPCA trick, the target neighbors w;; of each point is

computed based on ||¢; — ¢;|| = [|¢; — ¢;|| without any modification of the original
code.
3.5.3 KDNE

By applying A = U®T and defining the gram matrix X = ®7®, we have the

following proposition.

Proposition 3. The kerneltrick formula of KDNE s the following minimization

problem.:

U* = arg min trace(U K (D — W)KUT). (3.9)
UKUT=I

Note thatthis kernel trick formula of KDNE involves a generalized eigenvalue
problem instead of a plain eigenvalue problem involved in DNE. As a consequence,
we face a singularity problem, i.e. if K is not full-rank, the constraint UKUT = I
cannot be satisfied. Using elementary linear algebra, it can be shown that K is
not full-rank if and only if {&;} is not linearly independent, and this condition
is not highlysimprobable. Sugiyama (2006), Yu and Yang (2001), and Yang and
Yang (2003) suggest methods to cope with the singularity problem in the context
of Fisher discriminant analysis which may be applicable to KDNE. Sugiyama
(2006) recommends to use the constraint U(K +I)UT = I instead of the original
constraint; however, an appropriate value of € has to be tuned by cross validation
which is time-consuming: Alternatively, Yu and Yang (2001) and Yang and Yang
(2003) propose more: complicated methods of directly minimizing an objective
function in the null space of the constraint matrix so that the singularity problem

is_explicitly avoided.

We note that a KPCA trick implementation of KDNE dees not have this
singularity problem as only a plain eigenvalue problem has to be solved. Moreover,
as in KLMNN, applying the KPCA trick instead of the kernel trick to KDNE

avoids the tedious task of modifying the original code to appropriately specify w;;
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in the feature space.
3.5.4 Practical Investigation

The representer theorems state that, in each learning problem, optimal
points of the two frameworks must have the same objective value. Neverthe-
less, for learners where their objective funetions are not convex (e.g. KNCA) or
not strictly-convex (e.g. KLMNN?), it is not“surprising that the two frameworks
may not result in an identical Mahalanobis distance. In the case of non-convexity
a learner itself does not-guarantee to find a global optimal solution, and in the
case of non-strict-convexity there are plenty of global optimal solutions so that an
obtained Mahalanobis distance does not depend on the KPCA trick or the kernel

trick, but on am initial condition and on an optimizer’s mechanism.

It is interesting to note that, in practice, even KDNE, which has a strictly
convex (quadratic) objective function, can sometimes have different results ob-
tained from the two kernelization frameworks. This is mainly because KDNE’s
involved matrices, K and K (D — W)K, can be ili-conditioned, i.e. their condi-
tion numbers (Demmel, 1997; Ng et al., 2001) are very high. See also Section
3.3 of Bach and Jordan ‘(2006). The ill-conditioned of the two matrices may
lead to inaccurate numerical computations on eigen-decomposition and general-
ized eigen-decomposition which are employed by the KPCA trick and the kernel

trick, respeetively.

Here, we show experimental results on standard datasets obtained from the
UCT repository (Asuncion and Newman, 2007) and a high-dimensional dataset
called M-USPS which is a modified version ofthe famous USPS dataset (Chapelle
et al.; 2006, Chapter 21). Figure 3.4 illustrates a situation where the two frame-
works iresult in very-slightly different subspaces where the condition number of
K(D —W)K is in the order of 10'®. The difference seems to be indistinguishable
by ‘human, and their accuracies on the test dataset are different by ‘only ‘one test
data. ' This example shows that matrices having condition numbers in the order
of 10'® are still not ill-conditioned with respect to the MATLAB’s eig function.

Figure 3.5 illustrates more examples about this usual indistinguishable-difference

4Because of the [-], function in its objective function.



Predicted labels are shown; training accuracy = 0.8000; testing—accuracy = 0.8339

-0.02
-0.01
oz fx
0.0t}
0.02

0.03F

0.04

30

Predicted labels are shown; training accuracy = 0.8000; testing—accuracy = 0.8306

o

AN
PR \

’ O ff-' IERE an ()35
ch
(2009))

0.01 0.02 0.03

NOSPHERE where the

t-in insignificantly-different

g points denote training

i_cted labels are shown.

remely high, differences
' out this distinguishable-

re the two frameworks

of K and K(D —W)K of
or GLASS. Investigations

“and of methods to improve

are beyond the scope of

ﬂUEJ’JVIEJVl‘SWEJ’]ﬂ‘E
ammmmummmaﬂ



q ﬁ“lﬁ%&fﬁﬁ%

31

Pima Indians Modified USPS
T T

0.75

0.7

Kernel Trick
o
(2]
a

0.6

0.8 0.85 0.9 0.95

0'53.55 0.6 .65 0. LN 0.7
- PC i i . " KPCA Trick
Figure 3.5: E ples of (S MA, and M- , which are not ill-
conditioned 1 respect to KD! & e, the tw orks result in usual
cases of indiffere or insignifican lifferent Mahalanobis distances similar to
that of Figure 3.4. Points il str > aCCUTaCie he two frameworks on experi-
ment settings varying from ¢ ,-‘ @ \ ymial-kernel degrees, d € {2,...,5},
n € {50,100, 150} and k €1 ..' ations are duced Chapter 2).

Glass

o
4 ©
© & =

IS4

=}

a
T

rnel Trick

Kernel Trick

o
-3

AENT

0. 85 0.9 1045 0.75
KPCA Trick KPCA Trick

mﬁmﬁ &y




CHAPTER IV

KERNEL SELECTION

The problem of selecting an efficient kernel function is central to all kernel
machines. All previous works on Mahalanebis distance learners use exhaustive
methods such as cross validation to select a kernel function. In this chapter, we
investigate a possibility to automatically construct a kernel which is appropriate

for a Mahalanobis distance learner.

In the first part of this chapter, we consider a popular method called kernel
alignment (Lanckriet et al., 2004; Zhu et al., 2005) which is able to learn, from a
training set, askerneldn the form of k(-,-) = >, a;ki(:, -) where ki(-,-), ..., kn (-, )
are pre-chosen base kernels. New kernel alignment formulas based on quadratic
programming (QP) and linear, programming (LP) are derived. As the previous
formulas are based on semidefinite programming (SDP) and quadratically con-
straint quadratic programming (QCQP), our formulas should be preferred. In
the second part, we investigate a simple method which constructs an unweighted
combination of base kernels; »_. k;(-,-) (henceforth referred to as an unweighted

kernel). A theoretical result-is provided to support this simple approach.

While accuracy performance is comparable, kernel constructions based on
our two approaches require much shorter running time when compared to the

standard cross validation approach.
4.1 Kernel Alignment

Kernel alignment is one of a popular technique for kernel selection (Goe-
nen and ‘AlpaydIn, 2010). Our kernel alignment formulation presented in this
section belongs to the class of quadratic programs (QPs) which can be solved
more efficiently than the formulations proposed by Lanckriet et al. (2004) and
Zhu et al. (2005) which belong to the class of semidefinite programs (SDPs) and
quadratically constrained quadratic programs (QCQPs), respectively (Boyd and
Vandenberghe, 2004).
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To use kernel alignment in classification problems, the following assumption
is central: for each couple of examples x;,x;, the ideal kernel k(x;,x;) is Y,

(Guermeur et al., 2004) where

+1, if y; = vy,
Yy = ¥
=1

) otherwise,

and p is the number of elasses.in the training-data. Denoting Y as the matrix
having elements of ¥;;, we then define the alignment between the kernel matrix

K and the ideal-kernel matrix Y as follows:

align(K ¥ )&+ — oo (4.1)
el give
where (-, -) p denotes the Frobeniusinner-product such that (K,Y)r = trace(K7Y)

and ||-|| is the Frobenius norm induced by the Frobenius inner-product.

Assume that we haye m kernel functions, ki (%, +), ..., kn (-, -), and Ky, ..., K,
are their corresponding Gram matrices with respect to the training data. Here,
the kernel function obtained from the alignment method is parameterized in the
form of k(-,-) =Y. a;k;(-,:) where a; > 0. Note that the obtained kernel function
is guaranteed to be positive semidefinite. In order to learn the best coefficients

a1, ...,y we solve the following optimization problem:
{ag, .., apn} = arg max align(K,Y), (4.2)
>

where K = > «;K;. Note that as K and Y are PSD, (K,Y)r > 0. Since both
the numerator and denominator terms in the alignment equation can be arbitrary
large, we can simply fix the numerator to 1. We then reformulate the problem as

follows:

argmax | align(K, Y) = cargmin ||K||g||Y |IF
@;i20,(KyY ) p=1 @i >00(K,Y ) p=1

= argmin ||K||%
@;>0,(K,Y) p=1

= arg min ;o (K, K p.
S, )

0;>0,5", 0 (K3, Y ) p= i
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Defining a vector b = ((K1,Y)r, ..., (K, Y) )T, a PSD matrix S whose elements
Sij = (K;, Kj)r, and a vector a = (ay, ..., )T, we then reformulate Eq. (4.2) as

follows:

a= argmin a’Sa. (4.3)
@;>0, aTb=1
This optimization problem is a QP and can be efficiently solved (Boyd and Van-
denberghe, 2004); hence, we are able to learnthe best kernel function k(-,-) =
> k(- -) efficiently.

Since the magnitudes of the optimal «; are varied due to || K|, it is conve-
nient to use k() =k;(:+*) /||Ki]|» and hence K, = K;/||K;||r in the derivation
of Eq. (4.3). We define S and b’ similar to S and b _except that they are based
on K instead of K;. Let

~ = argmin ~y'S'y. (4.4)
720, ¥yTb!=1
It is easy to see that the final kernel function k(:,+) =) . v:ki(-,-) achieved from
Eq. (4.4) is not changed from the kernel achieved from Eq. (4.3).

Note that we can further modify Eq. (4:3) to enforce sparseness of o and
improve a speed of an algorithm by minimizing an upper bound of || K||r instead
of minimizing the exact quantity so that the optimization formula belongs to the

class of linear programs (LPs) instead of QPs.

min | K||F < min ||vec(K)||1 (4.5)
a; >0,(K,Y)p=1 a; >0,(K,Y)p=1

where vec(-) denotes a standard. ‘ve¢” gperator converting a matrix to a vector
(Minka, 1997). By using a standard trick foran absolute-valued objective function
(Boyd and Vandenberghe, 2004),.Eq. (4.5) can be solyed by linear programining.
Note that the above optimization algorithm of minimizing the upper bound of a
desired objective function is similar to the popular support vector machines where

the hinge loss is minimized instead of the 0/1 loss.
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4.2 Unweighted Kernels

In this section, we show that a very simple kernel k'(-,-) = > . k;(-,-) is
theoretically efficient (based on the value of a given objective function), no less
than a kernel obtained from the alignment method. Denote ¢ as a mapped vector
of an original example x; by a map associated with a kernel k(-,-). The main idea

of the contents presented in this section is the following simple but useful result.

Proposition 4. Let {e} be a set of positive-coefficients, a; > 0 for each i, and
let ki(-,-), ..., km(:,+) be base PSD kernels and-k(:,-) = >, aki(-,-) and K'(-,-) =
S ki(s,+). Then, there-erists an invertible linear-map B such that B : ¢¥ — ¢F

for each 1.

Proof. Without loss of generality,.we will concern here only the case of m = 2;
the cases suchithat m > 2 can be proven by induction. Let H; ® H, be a direct
sum of H; and Hy where its inner product is defined by (-, ), + (-,-)3, and let
{qﬁf»j)} C H, denote a mapped training set associated with the ;" base kernel.
Then we can view ¢F = (\/Oc_lgbgl), \/@qﬁ?)) € H, @ H, since

( f, ¢f> = k(x))x;) Sk % a2k2(xi7xj)
= (arg\s /e ds Wag + (/azd, /az s Va,
= ((vare®, vazs?) . (Vaids 5/ ) o

Similarly, we can also view ¢f = (¢(1) ¢§2)) € Hy @ H,. Let I; be the identity

(]

map in H;. Then,

\/011[1 0
0 \/04212

» =

Since 0o > aq, @z > 0 and B is bounded (the operatornorm of B is max(y/aiy/@2)),
B is invertible. il

Now suppose we apply the kernel k(-,-) = > . a;k;(-,-) obtained from the
kernel alignment method to a Mahalanobis distance learner and an optimal trans-

formation A* is returned. Let f(-) be an objective function which depends only
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on an inner product (A¢;, Ag;) (as assumed in Theorems 1 and 2). Since, from

Proposition 4, (A*¢F, A*¢F) = (A*Bo¥ A*Bqﬁ?l), we have
= r{garel ateh)y) = 1 ({(a Bl a'Bo) }).

Thus, by applying a training set: {¢* } to a learner who tries to minimize f(-), a
learner will return a linear map with the objective value less than or equal to f*
(because the learner can at least return A*B). Netice that because B is invertible,
the value f* is in fact-optimal. Consequently, the following claim can be stated:
“there is no need-toapply the methods which learn {a;}; e.g. the kernel alignment
method, at least intheory, because learning with a simple kernel £/(-, -) also results
in a linear map haying the same optimal objective value”. However, in practice,
there can be some differences between using the two kernels & (-, -) and (-, ) due

to the following reasons.

e Existence of a local solution. As some optimization problems are not
convex, there is no guarantee that a solver is able to discover a global solution
within a reasonable time. Usually, a learner discovers only a local solution, and
hence two learners based on k(:;-) and £/(:;:) will not give the same solution.

KNCA belongs to this case.

e Non-existence of the unique global solution. In some optimization
problems, there can be many different linear maps having the same optimal values
f*, and henee there is no guarantee that two learners based-on k(-,-) and (-, )

will give the same solution. KLMNN"is an example of this case.

e Size constraints. Because of a size constraint such as AAT = I used
in KDNE, our arguments used in the previous subsection cannot be applied, i.e.,
givem that A*A*” = T, there is no guaranteed that (A*B)(A*B)T =1. Hence,

A* B may not be an optimal solution of a learner based on £'(-, ).

e Preprocessing of target neighbors. The hehavior of some learners de-
pends on their preprocesses. For example, before learning takes place, the KLMNN
and KDNE algorithms have to specify the target neighbors of each point (by spec-

ifying a value of w;;). In a case of using the KPCA trick, this specification is based
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on the Euclidean distance with respect to a selected kernel (see Subsection 3.5.2
and Proposition 2). In this case, the Euclidean distance with respect to an aligned
kernel k(-,-) (which already employs some information of a training set) is more

appropriate than the Euclidean distance with respect to an unweighted kernel

K ().

e Zero coefficients. In the above proposition we assume «; > 0 for all <.
Often, the alignment algoerithm returns a;*= 0for some i. Define A* and f* as
above. Following the-same-line of the proof-of Propesition 4, in the cases that the
alignment method gives a;= 0 for some 7, it can be easily shown that a learner
with a kernel &/(;y#) willreturn a linear map with its ebjective value better than
or equal to f*. Nevertheless, note that sometimes a better value of an objective

function canlead to.overfitting.

Since constructing k'(-;-) is extremely easy, k'(+,+) is a very attractive choice

to be used in kernelized algorithms.
4.3 Numerical Experiments

On page 8 of the LMNN paper (Weinberger et al., 2006), Weinberger et al.
gave a comment about KLMNN: ‘as LMNN [with a further application of kNN]
already yields highly nonlinear decision boundaries in the original input space,
however, it-is not obvious that “kernelizing” the algorithm will lead to significant
further improvement’. Here, before giving experimental results, we explain why
“kernelizing” the algorithm can lead to significant improvements. The main in-
tuition behind the kernelization of “Mahalanobis distance learners for the kNN
classification algorithm?” lies in the fact that non-linear boundaries produced by
kNN (with or without Mahalanobis distance) is usually helpful for problems with
multi-modalities; however, the non-linear boundaries of kNN is sometimes not
helpful when data of the same class stay on a low-dimensional non-linear manifold

as shown.in Figure 4.1.

In this section, we conduct experiments on NCA, LMNN, DNE and their
kernel versions on nine real-world datasets to show that (1) it is really the case that

the kernelized algorithms usually outperform their original versions on real-world
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Figure 4.1: Two synthetic examples where NCA, LMNN and DNE cannot learn
any efficient Mahalanobis distances for kNN."Note that in each example, data
in each class lie on.a simple non-linear 1-dimensional subspace (which, however,
cannot be discovered by the three learners). In contrast, the kernel versions of
the three algorithms (using the 2"¢-order polynomial kernel) can learn very effi-
cient distances, i.e., the non-linear subspaces can be discovered by the kernelized
algorithms.

Table 4.1: The average accuracy with standard deviation of NCA and their kernel
versions. On the bottom row, the win/draw/lose statistics of each kernelized
algorithm compared to its original version is drawn.

NAME NCA KNCA AKNCA UKNCA
BALANCE 0.89 + 0.03 || 0.92 + 0.01 (| 0.92 + 0.01 || 0.91 + 0.03
BREAST CANCER 0.95 + 0.01 || 0.97 + 0.01 || 0.96 + 0.01 || 0.96 + 0.02
GLASS 0.61 = 0.05 | 0.69 £ 0.02 || 0.69 = 0.04 || 0.68 £+ 0.04
IONOSPHERE 0.83 +=0.04 || 0.94 + 0.03 || 0.92 + 0.02 || 0.90 + 0.03
IRIS 0.96 + 0.03 || 0.96 £+ 0.01 0.95 + 0.03 0.96 + 0.02
Musk2 0.87 +0.02 || 0.90 £+ 0.01 || 0.88 + 0.02 || 0.87 £+ 0.02
Pima 0.68 &+ 0.02 || 0.71 + 0.02 || 0.67 = 0.03 | 0.69 + 0.01
SATELLITE 0.82 4+ 0.02 || 0.84 + 0.01 || 0.84 + 0.01 0.82 + 0.02
YEAST 0.47 &+ 0.02 || 0.50 &+ 0.01 || 0.49 £+ 0.02 0.47 + 0.02
WIN/DRAW/LOSE - 8/1/0 7/0/2 5/4/0

datasets, and (2) the performance of linearly combined kernels achieved by the
two methods presented in this chapter are acceptable compared to kernels which
are exhaustively selected, but the exhaustive selection method requires.much more

running time.

To measure the generalization performance of each algorithm, we use the
nine real-world datasets-obtained from the UCT repository (Asuncion and New-
man, 2007): BALANCE, BREAST CANCER, GLASS, [ONOSPHERE, IRIS, MUSK2,
PiMA, SATELLITE and YEAST. Following previous works, we randomly divide
each dataset into training and testing sets. By repeating the process 40 times, we

have 40 training and testing sets for each dataset. The generalization performance
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Table 4.2: The average accuracy with standard deviation of LMNN and their

kernel versions.

NAME LMNN KLMNN AKLMNN UKLMNN

BALANCE 0.84 £ 0.04 || 0.87 = 0.01 || 0.88 £ 0.02 || 0.85 £+ 0.01
BREAST CANCER 0.95 £ 0.01 || 0.97 £ 0.01 || 0.97 £ 0.00 || 0.97 £+ 0.00
GLASS 0.63 £ 0.05 |} 0.69 £+ 0.04 || 0.69 £ 0.04 || 0.66 £ 0.05
IONOSPHERE 0.88 + 0.02 || 0.95 + 0.02 || 0.94 £+ 0.02 || 0.94 + 0.02
IRrIS 0.95 £0.02 || 0.96 £+ 0.02 0.95 £ 0.02 0.97 £+ 0.01
Musk?2 0.80'£ 0.03 |} 0.93 £ 0.01 || 0.88 £ 0.02 || 0.86 £ 0.02
Piva 0.68 + 0.02 || 0.71 #+ 0.02 || 0.72 + 0.02 || 0.67 + 0.03
SATELLITE 0.81 £ 0.01 || 0.85 £ 0.01 || 0.84 £+ 0.01 || 0.83 £ 0.02
YEAST 0.47 £0.02 || 0.48 +0.02 || 0.54 + 0.02 || 0.50 + 0.02
WIN/DRrRAW /LOSE - 9/0/0 8/1/0 8/0/1

Table 4.3: The‘average'accuracy with standard deviation of DNE and their kernel

versions.

NAME DNE KDNE AKDNE UKDNE
BALANCE 0.79 £ 0.02. 0.90 = 0.01 || 0.83 £ .0.02 || 0.85 £+ 0.03
BREAST CANCER 0.96 &£ 0.01 || 0.97 £ 0.01 0.96 £ 0.01 0.96 £ 0.02
GLASS 0.65 £ 0.04 || 0.70 = 0.03 || 0.69 £+ 0.04 0.65 £ 0.03
IONOSPHERE 0.87 = 0.02|[.0.95 £ 0.02 || 0.95 £ 0.02 || 0.93 £+ 0.03
IRrIS 0.95 £ 0.02.f| 0.97 £ 0.02 | 0.96 + 0.02 || 0.96 £ 0.03
Musk?2 0.89 £ 0.02 || 0.91 £ 0.01 0.89 £ 0.02 0.84 + 0.03
Pima 0.67 £ 0.02 || 0.69 £ 0.02 || 0.70 £ 0.03 || 0.70 £ 0.02
SATELLITE 0.84 & 0.01 || 0.85 £ 0.01 || 0.85 £ 0.01 0.81 £ 0.02
YEAST 0.40.£ 0.05 || 0.48 £ 0.01 || 0.47 £ 0.04 || 0.52 £ 0.02
WIN/DRAW /LOSE - 9/0/0 7/2/0 5/2/2

of each algorithm is then measured by the average test accuracy over the 40 testing

sets of each dataset. The number of training data is 200 except for GLASS and

IrIS where we use 100 examples because these two datasets contain only 214 and

150 total examples, respectively.

Following previous works, we use the 1NN classifier in all experiments. In or-

der to kernelize the algorithms, three approaches are applied to select appropriate

kernels:

e COross validation (KNCA | KLMNN and KDNE).

e Kernel alignment (AKNCA, AKLMNN and AKDNE).

e Unweighted combination of base kernels (UKNCA, UKLMNN and UKDNE).
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For all three methods, we consider scaled RBF base kernels (Scholkopf and Smola,
2001, p. 216), k(z,y) = exp(—%) where D is the dimensionality of input

data. Twenty one based kernels specified by the following values of o are consid-
ered: 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100,
250, 500, 750, 1000. All kernelized algorithms are implemented by the KPCA trick
illustrated in Figure 3.3." As noted in Subsection 4.2, the main problem of using
the unweighted kernel to algorithms such as" UKLMNN and UKDNE is that the
Euclidean distance with respect to the unweighted kernel is not informative and
thus should not be used-to specify target neighbors of each point. Therefore, in
cases of UKLMNN and UKDNE, we employ the Euclidean distance with respect
to the input space to specify target neighbors. We slightly modify the original
codes of LMNN and DNE to fulfill this desired specification. YALMIP toolbox is
applied for implementing convex programs (Loefberg, 2004).

The experimental results are shown in Tables 4.1, 4.2 and 4.3. From the re-
sults, it is clear that the kernelized algorithms usually improve the performance of
their original algorithms. The kernelized algorithms applying cross validation ob-
tain the best performance: They outperform the original methods in 26 out of 27
datasets. The other two kernel versions of the three original algorithms also have
satisfiable performance. The kernelized algorithms applying kernel alignment out-
perform the original algorithms in 22 datasets and obtain an equal performance in
3 datasets. Only 2 out of 27 datasets where the original algorithms outperform the
kernel algorithms applying kernel alignment. Similarly, the kernelized algorithms
applying the unweighted kernel outperform the original algorithms in 18 datasets
and obtain an equal performance in 6 datasets. Only 3 out of 27 datasets where
the original algorithms outperform the kernel algorithms applying the unweighted

kernel.

We note that-although the cross validation method usually; gives the best
performance, the other two kernel construction metheds provide acceptable per-
formance in much shorter running time. In fact, the alignment method provides
comparable performance. For each dataset, a run-time overhead of the kernelized

algorithms applying cross validation is of several hours (on Pentium IV 1.5GHz,



41

Ram 1 GB) while run-time overheads of the kernelized algorithms applying aligned
kernels and the unweighted kernel are about minutes and seconds, respectively,
for each dataset. Therefore, in time-limited circumstance, it is attractive to apply

an aligned kernel or an unweighted kernel.

Note that the kernel alignment method is not appropriate for a multi-modal
dataset in which there may be several clusters of data points for each class since,
from Eq. (4.1), the funetion align(/K,Y") will.attain the maximum value if and
only if all points-ef -the-same class are collapsed-into a single point. This may
be one reason which explains why cross validated kernels give better results than
results of aligned kernels/in our experiments. Developing a new kernel alignment

algorithm which is suitable for multi-modality is currently an open problem.

Comparing generalization performance induced by aligned kernels and the
unweighted kernel, we found that algorithms applying aligned kernels perform
slightly better than algorithms applying the unweighted kernel. With little over-
head and satisfiable performance, however, the unweighted kernel is still attrac-
tive for algorithms, like NCA (in contrast to LMNN and DNE), which are not
required a specification of target neighbors w;;. Since Euclidean distance with
respect to the unweighted kernel is usually not appropriate for specifying w;;, a
KPCA trick application of algorithms like LMNN and DNE may still require some

re-programming,.

As noted in the previous section, aligned kernels usually do not use all base
kernels (o; = 0 for some 7); in contrast, the unweighted kernel uses all base kernels
(v = 1 for all 7). Hence, as described in Section 4.2, the feature space correspond-
ingto the unweighted kernel usually contains the feature space corresponding to
aligned kernels. Therefore, we may informally say that the feature space induced

by the unweighted kernel is “larger” than one induced by the aligned kernel.

Since a. feature space ‘which is too large can'lead to overfitting, one may
wonder whether or not using the unweighted kernel leads to overfitting. Figure 4.2
shows that overfitting indeed does not occur. For compactness, we show only the
results of UKDNE. In the experiments shown in this figure, base kernels are

adding in the following order: 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1,
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2.5, 5, 7.5, 10, 25, 50, 75, 100, 250, 500, 750, 1000. It can be observed from
the figure that the generalization performance of UKDNE is consistently non-
decreasing and will be eventually stable as we add more and more base kernels.
Also, It can be observed that 10 - 14 base kernels are enough to obtain stable

performance. It is interesting to further investigate an overfitting behavior of a

learner by applying method s a bias-variance analysis (James, 2003) or zone
iri et al / i whether it is appropriate or

" method (Breiman, 1998)

to improve the ‘Clgsyp‘ ficatios

learner.
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CHAPTER V

SPECTRAL SEMI-SUPERVISED LEARNING
FRAMEWORK: THEORY

In this chapter, a semi-supervised learning framework is developed for a spe-
cific class of Mahalanebis distance learners, namely, the class of spectral linear
dimensionality reduction algorithms. The framework naturally generalizes exist-
ing supervised, unsupervised.and semi-supervised-learning frameworks which ap-
ply the spectral decomposition. Algorithms derived under our framework are able
to employ both labeled and unlabeled examples and are able to handle complex
problems where data form separate clusters of manifolds. Our framework offers
simple views, explains relationships among existing frameworks and provides fur-
ther extensions which can improve existing algorithms. The KPCA trick extended

to semi-supervised learning frameworks is also presented.
5.1 Introduction

In many real-world applications, high-dimensional data indeed lie on (or
near) a low-dimensional subspace. The goal of dimensionality reduction is to
reduce complexity of input data while some desired intrinsic information of the
data is preserved. The desired information can be discriminative (Yan et al., 2007;
Zhang et al.; 2007b; Cai et al., 2007; Hoi et al., 2006; Chen et al., 2005; Cheng et al.,
2004), geometrical (Tenenbaum et al., 2000; Roweis and Saul, 2000; He and Niyogi,
2004; Saul et al., 2006) or both (Sugiyama, 2007). There are several advantages
of reducing the dimensionality of input data. First, working on a low-dimensional
space significantly saves both time and storage. Second; an intuitive visualization
is possible for low-dimensional data. Finally, and most importantly, working on
a low-dimensional subspace secures us from the curse.of dimensionality (Bishop,
2006); “learning” is possible even if we have only a relatively few number ‘of input
data. Note that, as described in Chapter 2, linear dimensionality reduction is a

special case of Mahalanobis distance learning.

Fisher discriminant analysis (FDA), introduced in Chapter 2, is the most
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popular method among all supervised dimensionality reduction algorithms. De-
note ¢ as the number of classes in a given training set. Provided that training
examples of each class lie in a linear subspace and do not form several separate
clusters, i.e. do not form multi-modality, FDA is able to discover a low-dimensional
linear subspace (with at most ¢ — 1 dimensionality) which is efficient for classifica-
tion. Recently, many works have improved the FDA algorithm in several aspects
(Sugiyama, 2007; Yan et al., 2007; Zhang et-al.; 2007b; Cai et al., 2007; Hoi et al.,
2006; Chen et al., 2005; Cheng et al., 2004). These-ertended FDA algorithms are
able to discover a nice low-dimensional subspace even when training examples of
each class lie in separate-elusters of complicated non-linear manifolds. Moreover, a

subspace discovered by these algorithms has no limitation of ¢ — 1 dimensionality.

Although the extended FDA algorithms work reasonably well, a considerable
number of labeled examples is required to achieve satisfiable performance. In many
real-world applications such as image classification, web page classification and
protein function prediction, a labeling process is costly and time consuming; in
contrast, unlabeled examples can be easily obtained. Therefore, in such situations,
it can be beneficial to incorporate the information which is contained in unlabeled
examples into a learning problem, i.e., semi-supervised learning (SSL) should be

applied instead of supervised learning (Chapelle et al., 2006).

One may have a question: why are unlabeled examples useful in supervised
learning? In“fact, the whole research on clustering devotes-itself to the problem
of constructing-a good classifier from unlabeled examples. As the research on
clustering have.shown promising results, we can expect that unlabeled examples
can help a learner improve the quality of a constructed hypothesis. Figure 5.1

illustrates an example of clustering.

In this chapter, we present a general semi-supervised dimensionality reduc-
tion framework which is able to employ information from both labeled and unla-
beled examples. As the extended FDA algorithms, algorithms developed in our
framework are able to discover a nice low-dimensional subspace even when training
examples of each class form separate clusters of complicated non-linear manifolds.

In fact, those previous supervised algorithms can be casted as instances in our
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Figure 5.1: Given a contour of data (higher a number of data, darker a color), a
rationale human can easily find a likely partition as one shown in the left and an
unlikely partition similar to one shown in the right.

framework. Moreover, recent existing semi-supervised frameworks known to us
(Li et al., 2007; Sugiyama et al.; 2008; Song et al., 2008) can be viewed as special

cases of our framework as-well.
5.2 Spectral Semi-Supervised Learning Framework

Let {x;,vy;}’y demote a training set of / labeled examples, with inputs
x; € R% generated from a fixed but unknown probability distribution Py, and

corresponding class labels y; € {1, ..., ¢} generated from Pyix- In addition to the

l4u

i—oyq denote a set of u unlabeled examples also gener-

labeled examples; let {x;

ated from Py. We define the following goal of SSL. dimensionality reduction.

Goal. Using the information of both labeled and unlabeled examples, we want
to embed an input space into a low-dimensional space, i.e. we want to map
(x € R®™) — (z/€ R?) where d < dp, such that in the embedded space Py, can
be accurately-estimated ( i.e., unknown labels are easy to predict) by a simple

classifier.

Here, following the previous works in the supervised setting (Sugiyama, 2007;
Yan et al., 2007; Zhang et al., 2007b), the nearest neighbor algorithm is used for
representing a,simple classifier mentioned in the goal. Note that important special
cases of SSL problems are transductive problems where we only want to predict

the labels {y;}:1¢,, of the given unlabeled examples.

In order to make use of unlabeled examples in the learning process, we make
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the following so-called manifold assumption, which is proven to be applicable in

many real-world data (Chapelle et al., 2006):

Semi-Supervised Manifold Assumption. The support of Py is on a low-
dimensional manifold. Furthermore, Py is smooth, as a function of x, with

respect to the underlying structure of the manifold.

In words, this assumption states that two nearby points on a high-density region
of Py are likely to be'in the same class where a high-density region is of a low-
dimensional manifold'strueture. Since unlabeled examples can be used to estimate

a high-density region of Py, they are also useful to predict the label of an example!.
5.2.1 The Framework

Let Z* = (21, ...,2,) € R, where n = £ + u, be the matrix of desired em-
bedded points. In our framework, we propose to cast the problem as a constrained

optimization problem:

7 = argmin f(Z) +yf4(2), (5.1)
ZEeZ

where f“(:) is an objective function which is based on label information, f*(-)
is an objective function based on unlabel information, v is a parameter which
controls the weights between the two objective functions-and Z is a constraint
set in R, Up to orthogonal and translational transformations, we can identify
embedded points viartheir pairwise distancesinstead of their individual locations?.
Therefore, we can base the objective functions on pairwise distances of embedded

examples. ‘Here; we define the objective functions to-be [inear with respect to

'n fact, beside the manifold assumption, here we make an additional assumption that avail-
able unlabeled examples are generated from a high-density region of Px. Nevertheless; this
additional assumption is not too strong as it is implied by the law of large number.

2As noted above, for all Mahalanobis distance learners considered in this dissertation, kNN
will be applied in the embedded space. kNN is translational and orthogonal invariance and thus
depends only on pairwise distances of examples.
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pairwise distances:

iz = Z cfj dist(z;,z;), f“(Z2)= Z ci; dist(zy,z;),
i,j=1 i,j=1

where dist(-,-) is an arbitrary distance function between two embedded points,
cfj and ¢j; are costs which penalize an embedded distance between two points ¢
and j. A specification of cfj is based on the label information and a specification
of ¢j; is based on the unlabel information-as deseribed and interpreted later in

Section 5.2.3.

If we restrictourselves to consider only the cases that (I) dist(-, ) is a squared
Euclidean distance function; i.e. dist(z;2;) = ||lz; = z;[°, (II) ¢/, and ¢ are
symmetric, and (II[)'Z € Z is in the form of ZBZ" =T where B is a posi-
tive semidefinite (PSD) matrix, Eq.(5.1) will result in a general framework which
indeed generalizes previous spectral-method frameworks as shown later in Sec-

tion 5.3. Define ¢;; = cfj +ncj;. We then can rewrite the weighted combination of

the objective funtions in Eq. (5.1) as follows:

fY2Z) +~fu(Z) = Z cfjdist(zi, Z. T8 Z ¢y dist(z;, z;)

D=t 1.j=1
n n
= Z (ij = ’YCZ-)diSt(Zi, Zj) = Z cijdist(zi, Zj)
i,j=1 b,j=1
n n
= GG Tl 2 ) Gy F.z;)
ij=1 6,j=1
n n
= 2trace( Z(zicijziT) - Z (zicijzjr))
ij=1 ij=1
n n n
= 2trace ( Z ZZ(Z Cij)ZzT i B Z (Zicijzf)>
=1 Ni=1 =1

= 2trace(Z(D — C)Z"),

where C'is a symmetric cost matrix with elements ¢;; and D is a diagonal-matrix
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with Dj; = >~ ¢;;°. Thus, the optimization problem (5.1) can be restated as

7Z* = argmin trace(Z(D — O)Z7). (5.2)

ZBZT=I
Note that the constraint ZBZT = I prevents trivial solutions such as every z; is a
zero vector. If B is a positive definite (PD) matrix, a solution of the above prob-
lem is given by the bottom d eigenvectors of the following generalized eigenvalue

problem (Fukunaga, 1990; von Luxburg, 2007)

D= C)z= )\ BzY); = Trvds (5.3)
Then we have the optimal embedded points represented by

A A & KR CAA (5.4)

Note that, in terms of solutions of Eq.(5.3), it is more convenient to represent Z

by its rows z(".€ R” than its columns z; € R<.
5.2.2 Linear Parameterization

Notice that, in fact, the optimal solution Z* obtained from Eq.(5.4) does
not completely solve our.goal because although the map x; — z; is given for each
training point, a map x’ — 2z’ for an unseen point x’ is unknown. Hence, ||z’ — z;]|
cannot be computed, and kNN classification in the obtained subspace cannot be
performed?. We propose to resolve this difficulty by parameterizing {z;}. One
of the simplest. parameterization approaches is the “linear” restriction of a map
x; — z; such that z; = Ax; where A € R¥%: A “non-linear” extension of this idea
will-be later presented in Section 5.2.4. From the linear parameterization, we have
7 = AX wheresX € R®*" js asmatrix of the input examples (x4, ...;x,). Now,
the original problem in Eq.(5.1) isichanged to a problem of finding a linear trans-

formation which minimizes a cost function. This new problem can be formally

3To simplify our notations, in this chapter whenever we define a cost matrix €’ having
elements cj;, we always define its associated diagonal matrix D" with elements Dj; = 3~ ¢;;.

4If we do not concern about an unseen example, e.g. in cases that we work in the transductive
setting, the optimal solution Z* is sufficient.
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stated as follows:

A* = argmin Z cijl| Ax; — Ax;|? (5.5)

ABAT=I 2
which, following the same lines of derivation of Eq.(5.2), can be restated as
A* = argmintrace(AX (D — €) X" A"). (5.6)
ABAT=]
If B is PD (see Remark 2..in Section'5.2.5), its.solution is provided by solving
XD HC)X 8D\ =\;Bay, e, d (5.7)
where A* = (al);".., a7 Moreover,

lz— || = || A% —"A"xY), (5.8)

so that kNN in the embedded space can be performed. Consequently, an algorithm

implemented under our framework consists of three steps as shown in Figure 5.2.

Input: 1. training examples: {(X1, Y1), -5 (X, Ye)y X1, -y Xou }
2. a new example: x’
3. a positive-value parameter: 7y
Algorithm:
(1) Constriict cost matrices, C*, C* and C = C* + 404,
and a constraint matrix B (see Section 5.2.3).
(2) Obtain an optimal matrix A* by solving Eq.(5.7) (see also Section 5.2.5).
(3) Perform kNN eclassification in the obtained subspace by using Eq.(5.8).

Figure 5.2: Our semi-supervised learning framework.

5.2.3 Specification of the Cost and Constraint Matrices

In this section, we present warious reasonable approaches of specifying the
two cost matrices, C¢ and %, and the constraint matrix, B, by using the label
and unlabel information. There are two important types of unlabel information
(Zhang, 2003), neighborhood information and side information. Here, we are not
interested in the side information, i.e. the information of a similarity between each

pair of examples, since the side information is usually not provided in real-world
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problems. Thus, we use the two words “unlabel information” and “neighborhood

information” interchangeably in this chapter.
5.2.3.1 The Cost Matrix C* and the Constraint Matrix B

Normally, based on the label information, classical supervised algorithms

usually require an embedded space to have the following two desirable conditions:

(1) two examples of the same class stay close to one another, and

(2) two examples of different classes stay far apart.

The two conditions are imposed in classical works such as FDA. However, the
first condition is.too restrictive to capture manifold and multi-modal structures of
data which naturally arise in some applications. Thus, the first condition should

be relaxed as follows.

(1*) two nearby ezamples of the same class stay close to one another

where “nearby examples”, defined by using the neighborhood information, are ex-
amples which should stay close to each other in both original and embedded spaces.
The specification of “nearby examples” has been proven to be successful in dis-
covering manifold and multi-modal structure (Sugiyama, 2007; Yan et al., 2007;
Zhang et al., 2007b; Cai et al., 2007; Hoi et al., 2006; Chen et al., 2005; Cheng
et al:, 2004; Goldberger et al.; 2005; Globerson and Roweis, 2006;  Weinberger
et al.; 2006; Yang et al., 2006a; Torresani and Lee, 2007). See Figure 5.3 for ex-

planations. In some cases, it is also appropriate to relax the second condition to

(2%) two mearby examples of different classes stay far apart.

In this section, we give three examples of cost matrices which satisfy the
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Figure 5.3: An example when data form a multi-modal structure. An algorithm,
e.g. FDA, which imposes the condition (1) will try to discover a new subspace
(a dashed line) which merges two clusters A and B altogether. An obtained
space is undesirable as data of the two classes are mixed together. In contrast,
an algorithm which impeses the condition” (1*) (instead of (1)) will discover a
subspace (a thick line) which does not merge the two clusters A and B as there
are no nearby examples (indicated by a link between a pair of examples) between
the two clusters:

conditions (1*) and (2)/(or (2*)). These three examples are recently introduced in
previous works, namely, Discriminant Neighborhood Embedding (DNE) (Zhang
et al., 2007b), Marginal Fisher Analysis (MFA) (Yan et al.; 2007) and Local Fisher
Discriminant Analysis (LFDA) (Sugiyama, 2007), with different presentations and

motivations but they can be unified under our general framework.

Firstly, to utilize neighborhood information, we construct two matrices C!
and CF based on Euclidean distance®. For each x;, let Neig! (i) be the set of
k nearest neighbors having the same label y;, and let NeigZ(i) be the set of k
nearest neighbors having different labels from %;. Define C! and C* as follows®:

let cfj = 05 = 0 if points x; and/or x; are unlabeled, and

P . Iy 5 . p
e (1, if j € Neig'(i) Vi € Neig'(j),
ij
\0’ otherwise, and
]
o |1 ifle Neig®@) Vi € Néig®(j),
0, otherwise.

\
Often, k< ( is applied in-order to make G sparse so that, hopefully, all involved

computations are efficient. By utilizing the neighborhood information, the speci-

®Any distance functions which are sensible to a given problem can be applied in place of
Fuclidean distance.

6In fact, specifications of C! and C* presented here are one of the simplest possibilities and
can be combined with the heat kernel described in the next subsection.
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fication ¢/, = 1 and c¢Z = 1 represent nearby examples in the conditions (1*) and
iJ iJ y

(2%). Next, C* and B of existing algorithms (Eq. (5.6) and Eq. (5.7)) are:

Discriminant Neighborhood Embedding (DNE)
ct=cl—-CF B =1 (an identity matrix)

Marginal Fisher Analysis (MFA)
Ct=-CF Bamde(P! — @) X T

Local Fisher Discriminant Analysis (LFDA)
Let nq,...,n. be the numbers of examples of classes 1, ..., ¢, respectively. Define

matrices C** and CV* as:

Igrsl 1 : L9 .
vl N7 et T R

Cill— and
— % . otherwise,
N fmn A
0, otherwise,
Cﬁ — Cbet B = X(Dwit . Cwit)XT

Within“our framework, relationships among the three previous works can be
explained. The three methods exploit different ideas in specifying matrices C*
and B to satisfy two desirable conditions in_an embedded space. It is easy to see
in the casestof DNE-and MFA . In|DNE; C%is designed to penalize an"embedded
space which does not satisfy the condition (1*) and (2*). In MFA, the constraint
matrix B is designed to satisfy the condition (1*) and C* is designed to penalize

an embedded space which does not satisfy the condition (2*).

Things are not quite obvious in the case of LFDA. In LFDA the constraint
matrix B is designed to satisfy the condition (1*) since elements C* are propor-
tional to C’; nevertheless, since weights are inversely proportional to 7y, elements

in a small class have larger weights than elements in a bigger class, i.e. a pair in
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a small class is more likely to satisfy the condition (1*) than a pair in a bigger

class. To understand C*, we recall that

trace(AX (D' — CHXTAT) = Z ol Ax; — Ax;||

1
\ Z ¢ HAXZ Axjl = Y [ Axi — Ax|
YiFY;j
1
= d— — [SoelfAx— Axjl|+ Y 1A%, — Axg|l |,
Yi=Y; vity;

where at the third equality we use the constraint AX BXT A" = I and hence

T

’ y C: -
t AX (DG P \XIA) = L0 T oo g
race(AX ( ) ) = nkH X; — Ax;|

Yi=Yj

= trace(I), =\d

Hence, we observe that every pair of labeled examples coming from different classes
has a corresponding cost of —%. Therefore, C* is designed to penalize an embedded
space which does mot satisfy the condition (2). Surprisingly, in LFDA, nearby

examples of the same class (having cfj = 1).also has a cost of —%. As a cost

proportional to —% is meant to preserve a pairwise distance between each pair
of examples (see Section 5.3:1). Thus, in contrast to DNE and MFA which try
to squeeze nearby examples of the same class to a single point, LEFDA tries to
preserve a local geometrical structure between each pair of niecarby examples of the

same class.

We note that other recent supervised methods for manifold learning can also
be presented and linterpreted in our framework with different specifications of C*,
for examples, Discriminant Locally Linear Embedding of 1i et al. (2008b) Local
Discriminant Embedding of Chen et al. (2005) and Supervised Nonlinear Local
Embedding of Cheng et al. (2004).

5.2.3.2 " The Cost Matrix C* and the Hadamard Power Operator

One important implication of the manifold assumption is that “nearby ex-

amples are likely to belong to a same class”. Hence, by the assumption, it makes
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sense to design C" such that it prevents any pairs of nearby examples to stay far

apart in an embedded space.

Among methods of extracting the neighborhood information to define C",
methods based on the heat kernel (or the gaussian function) are most popular. Be-
side using the heat kernel, other methods of defining C* are invented, see (Chapelle
et al., 2006, Chap. 15) and (von Luxburg, 2007) for more details. The simplest

specifications of nearby examples based on‘the heat kernel are:

gk — 5|

1 (5.9)

iy = exp( a
Each pair of nearby examples will be penalized with different costs depended on
their similarity; and a similarity between two points is based on the Euclidean
distance between them in the input space. Incidentally, with this specification of
C", the term f*(Z)iin Eq. (5.1) can be interpreted as an approximation of the
Laplace-Beltrami operator on a data manifold. A learner which employs C = C*

(i.e. C* = 0) isnamed Locally Preserving Projection (LPP) (He and Niyogi, 2004).

The parameter g is crueial as it controls the scale of a cost ¢j;. Hence, the
choice of o must be sensible. Moreover, an appropriate choice of o may vary across
the support of Py. Hence, the local scale g; for each point x; should be used. Let

x/ be the k' nearest neighbor of x;. A local scale is defined as
0y = ||x; — xl,

and a weight of each edge is then defined as

I3 = %11

. (5.10)

Cz.j'. = i

i = exp( =
Using this local scaling method is.proven to be efficient in previous experiments
(Zelnik-Manor and-Perona, 2004) on-clustering.-A specification-of -k to define the
local scale of each point is usually more convenient than a specification of ¢ since

a space of possible choices of k is considerably smaller than that of o.

Instead of proposing yet another method to specify a cost matrix, here we
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present a novel method which can be used to modify any existing cost matrix.
Let @ and R be two matrices of equal size and have ¢;; and r;; as their elements.
Recall that the Hadamard product P (Schott, 2005) between ) and R, P = QO R,
has elements p;; = ¢;;7;;. In words, the Hadamard product is a pointwise product

between two matrices. Here, we define the Hadamard o power operator as

« tzmes

@Q 00006180, (5.11)

. . o, . . . «@
Given a cost matrix C* and a-positive integer o, we define a new cost matrix C*

as

PRl ON
@C TRl (5.12)

where ||-||r denotes the Frobenius norm of a matrix. The multiplication of IICU)g C|'|FH

make [|C""||r = ||G¥||p. Note that if C* is symmetric and non-negative, C*" still

has these properties.

The intuition behind the: Hadamard operator is that, while preserving the
norm of the original cost matrix, the operator relatively strengthens high-cost
elements and weakens low-cost elements of the original cost matrix. It is beneficial
to use the operator provided that C" is roughly accurate in the sense that if
ci; > ¢y, theniexamples ¢ and j are more significant nearby examples than those
of i and k.| Experiments in the next chapter show that O can further improve
the quality of €* constructed by the local scaling method so that the classification

performance of-a semi-supervised learner is increased.

Any combinations of alabel cost /matrix O of those in previous works such
as DNE, MFA and LFDA with an unlabel cost matrix C" result in new SSL
algorithms, and we will call the new algorithms SS-DNE, SS-MFA and SS-LFDA.

5.2.4 Non-Linear Parameterization Using the KPCA 'Trick

By the linear parameterization described in Section 5.2.2, however, we can
only obtain a linear subspace of the original space. As described in Chapter 3,

learning a non-linear subspace can be accomplished by first non-linearly trans-
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forming examples {x;} into a feature space of {¢(x;)} and then learning a linear
subspace in the feature space. Nevertheless, a target feature space usually has
a high or even an infinite dimensionality so that straightforward learning in the
feature space can be intractable. To resolve the computational problem, the kernel
trick can be applied. However, applying the kernel trick can be inconvenient since,
usually, new mathematical formulas have to be derived and new implementation
have to be done separately from the existing linear implementation, described in
Section 5.2.2. By the same arguments as in Chapter 3, the KPCA trick can be
applied to the SSL framework instead of the kernel trick. We will formally prove
this fact in the next chapter.

5.2.4.1 The KPCA trick Algorithm

In this section, the KPCA trick-framework is extended to cover learners
implemented ander our semi-supervised learning framework presented in Sec-
tion 5.2.2. Let k(+,-) be a PSD kernel function associated with a non-linear func-
tion ¢(-) : R% — H such that k(x,x") = (¢(x), d(x')) (Schiélkopf and Smola,
2001). Denote ¢; for @(x;) forvi = 1,...,¢ + v and ¢ for ¢(x'). As in Chap-
ter 3, The central idea of the KPCA trick is to represent each ¢; and ¢’ in a new
“finite”-dimensional space, with dimensionality bounded by ¢ + u, without any
loss of information. Within the framework, a new coordinate of each example is
computed “explicitly”, and each example in the new coordinate is then used as the

input of any existing semi-supervised learner without any re-implementations.

As before, for simplicity, we assume that {¢;} is linearly independent and
has its center at the origin, i.e. >, ¢; = 0. Since we have n = {+u total examples,
thesspanof {¢;} has dimensionality” . Here we claim that-each-example ¢; can
be represented as p; € R™ with respect to a new orthonormal basis {#;}!_, such
that span({u;} ) is the same as span({¢$;}! ;) without loss of any information.

More precisely, we define

©or = <<¢z‘,¢1>a . - <¢z‘ﬂ/}n>> =0Tg;. (5.13)

where ¥ = (¢4, ..., ¢,). An inner-product of (¢;, ;) can be conveniently computed

"In cases that {¢;} is not linearly independent, this dimensionality is less than £ + u.
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by KPCA where each 1); is a principal component in the feature space. Likewise,

a new test point ¢’ can be mapped to ¢’ = UT¢/

The KPCA trick algorithm for semi-supervised learning consisting of three
simple steps is shown in Figure 5.4. All semi-supervised learners can be kernelized
by this simple algorithm. In the algorithm, we denote a semi-supervised learner
by ssl which outputs the best linear map A* (or the best embedded set of points
Z%).

Input: 1. training examples: {(X1,41), oo Xy Yt ), Xo415 -5 Xotu }
2. a new-example:x’
3. a kernel function; k(-,-)
4. alinear semi-supervised learning algorithm: ssl (see Figure 5.2)
Algorithm:
(1) Apply kpea(k, {x;}3¥ x') such that {x;} = {e;} and.x’ — '
(2) Apply ssl with' new inputs{ (@1, 41)s -5 (@r, Ye), Posi, - Priu}
to achieve A*.
(3) Perform kNN based on the distance ||[A*p; — A*¢/||.

Figure 5.4: The KPCA trick algorithm for semi-supervised learning.

5.2.4.2 Representer Theorems

In this section, two semi-supervised learning versions of the representer theo-
rem Scholkopf et al. (2001) are stated to validate the KPCA trick algorithm shown
in Figure 5.4.. They will be proven in the next chapter. The first theorem states
that, for a non-regularized learner, there exists A™ such that Ay, = A*¢; for
all 4. Therefore, as an alternative to some optimal A* (which can have huge or
infinitely many number of rows), we can obtain an equally optimal A™ (whose
number of rows is bounded by £ +- ). In contrast, the second theorem implies a
stronger result for a learner which employs a regularizer, e.g. SS-DNE__that every
optimal A* attaining the best objective value, its number of rows is bounded by
¢ 4+ u. Section 5.2.5 illustrates how the three algorithms, SS-MFA, SS-LFDA. and
SS-DNE, ebey the representer theorems.

We write a function f with inputs z1, ..., x, as f({xi}?:1>.

Theorem 3. (Weak Representer Theorem for SSL) For arbitrary objective func-

tion f which depends solely on inner products of linearly transformed examples,
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the optimization,

min £ ({{46., 46,1132,

sit. A:H — R is a bounded linear map,

has the same optimal valu (\K ///
r§ A/T '

In the statem 0] .> - ' ct, which will be proven
in Lemma 1 of Ch ‘ ‘ A0 7;)e; for some {r;}¢, C H and

) (Td7¢€+u>) +9g <Z”Tl|l> :

=1

Sie 4
Any optimal set of linear functional

onats

A
=

T « .
must admit thLJepresentation of T = Z? " uz'j'(/}j (1 J.u‘ o d).

ofEI‘u mmm:m a1 e

m 4. Note that from TheoFm 4, we can erte

QW"IMH?MHW]’JV]EJ']QEJ

where U is a matrix having elements u;;. Hence,

<A*¢zaA*¢j> = <U\IJT¢M U\IIT¢J> = <U90w U@]))
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and the result of Theorem 3 is obtained by renaming U to A™.

The kernel versions of algorithms such as DNE, MFA and KLFDA are called
KDNE, KMFA and KLFDA, and their SSL kernel versions are called SS-KDNE,
SS-KMFA and SS-KLFDA.

5.2.5 Remarks

1. The main optimization problem shown in Eq.(5.6) can be restated as follows:

Fukunaga (1990)

arg min grace ((ABAT)_IAX(D ~ C’)XTAT> :

AER<*do
Within this formulagion, the corresponding optimal selution is invariant under a
non-singular linear transformation; i.e., if A* is an optimal solution, then T'A* is
also an optimal solution for any non-singular T € R**¢ (Fukunaga, 1990, pp.447).
We note that four choices of 7" which assign a weight to each new axis are natural:
(1) T =1, (2) T is a diagonal matrix with T;, = m, i.e. T normalizes each
axis to be equally important, (3) T is a diagonal matrix with Tj; = v/A; as v/ \;

determines how well each axis a® fits the objective function a®” X (D —C)X"al®,

v

@] i.e. a combination of (2) and (3).

and (4) T is a diagonal matrix with Tj; =
Note that these four choices of 7' can also be applied to the solution of Eq.(5.2)

(applied to Z* instead of A*).

2. The matrix' B defined in Subsection 5.2.3 of the two algorithms, SS-MFA
and SS-LFDA, is guaranteed to be positive semidefinite (PSD) but may not be
positive definite (PD), i.e., B may not be of full rank. Tn this case, Bis singular
and we canmotimmediately apply Eq.(5.3) and Eq.(5.%)to solve the optimization
problems. One common way to_solve this difficulty is, instead of B, by using
(B 4+l ), for some value-of € >0, which is now guaranteed to be of full rank.
Since € acts in a role of regularizer, it makes sense to set € =y, the regularization
parameter specified in Section 5.2.3. Similar settings of € has also been used by

some existing algorithms, e.g. (Friedman, 1989; Sugiyama et al., 2008).
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Also, in a small sample size problem where X (D —C)X7 is not full-rank, the
obtained matrix A* (or some columns of A*) lie in the null space of X (D —C)X™.
Although this matrix does optimize our optimization problem, it usually overfits
the given data. One possible solution to this problem is to apply PCA to the
given data in the first place (Belhumeur et al., 1997) so that the resulted data
have dimensionality less than or equal to the rank of X (D — C)X”. Note that
in our KPCA trick framework this pre-process‘is automatically accomplished as

KPCA has to be applied to a learner as shown in Figure 3.3.

3. Recall that the'purpese of parameterization (using Eq. (5.6) instead of Eq.
(5.2)) is to handlesunseen data. However, in transduetive problems where we
already know-all examples to be tested {x; f;“;ﬂrl, we can directly use Eq. (5.2).
Nevertheless, it turns out that, in algorithms such as SS-LEDA and SS-MFA, the
same solution is obtained from both the direct method (Eq.(5.2)) and the kernel
method (Figure 5.4) provided that P = (¢1,...,4,) is fullrank. For example, to

see this for the case of SS-MFA, we have to solve the following equation:
PP LGP =7n s O PTa).

Since P is invertible by assumption, we have
(D —C)PTa¥) = )\;(D' — ¢")PTaV).

Finally, by changing the variable z0) = PTal) (this is valid because P? is full-
rank), we obtain Eq.(5.3).

4. Here, we show that the representer theorems do validate the three algorithms
presented in Section 5.2.3. Note that, by the methed of lagrange multiplier for
equality’ constraint, under a non-linear transform ¢(-), the optimization problem

shown in Eq.(5.6) can be restated as

arg min trace (A@(D - C)@TAT) + trace (A(ABAT - I)> :

AeRdXdO
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where A is a diagonal matrix of lagrange multipliers A\;. Therefore, now the opti-

mization has no constraint. Note that
trace (A(ABAT - I)) = Z \i (a(i)TBa(z‘) _ 1)

With this formulation, it is possible to show that Theorem 3 validates the use of the
KPCA trick applying to-the SS-MFA and SS-LFDA algorithms. By substituting
B and C' of the two algorithms, we have that the objective function depends
only on the quantities of {|a® ¢, — a®T ¢, (|2 for 7,7 =1, ..., £ +u. Since ||a®T¢p; —
alT ;|2 = (@, —a ;. a®T ¢, —aT¢;), the objective function then depends
only on the inner-produet of transformed examples. Hence, it is showed that the
applications of KPCA trick' with respect to. SS-MFA ‘and SS-LFDA are valid by
Theorem 3.

To validate the application of KPCA trick with respect to SS-DNE, it is
necessary to apply Theorem 4. Since we can caleulate a solution of SS-DNE

iteratively, for each @, the SS-DNE optimization can be restated as follows:

a’®(D - C)d"a

at® =arg min

acH() al|?
—al'®(D - C)dTa
—arg max -
aety(d) llall

where HV = {¢c H|p L a¥) j <i} and A = (al), .. a7,

Since it is recommended for the original version of DNE to consider only
eigenvectors with: negative eigenvalues-of matrices ®(D —C)®%. (Zhang et al.,
2007b) and discard all.other eigenvectors, without loss of generality, we.can regard
O(D — C)PT as negative definite and hence —®(D — C)®T as positive definite.

Then, the optimization can be further restated as follows:

al® =arg min laf*
acy® —al®(D —C)dTa
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or equivalently,

a® = arg min al?.
acHD aTd(D—-C)dTa=—1

Finally, we have

a(i) =g minf (aT(I)(D — C)@Ta) + H3.H27 (5'14)
acH @

where

(a7 B(D k] 2 0, ifal®(D—C)dTa=—1,

oo, ‘otherwise.

This formulation of SS-DNE obeys the condition of Theorem 4 (with g(||a|) =
|al|?), and henge the application of KPCA trick with respect to SS-DNE is valid.

5.3 Connection to Related Work

As we already described in Section 5.2.3, our framework generalizes vari-
ous existing supervised and unsupervised manifold learners (Sugiyama, 2007; Yan
et al., 2007; Zhang et al., 2007b; Cai et al., 2007; Hoi et al., 2006; Chen et al.,
2005; Cheng et al., 2004; von Luxburg, 2007; He and Niyogi, 2004; Zelnik-Manor
and Perona, 2004). The KPCA trick and the two representer theorems are new in

the field of semi-supervised learning.

There are some supervised manifold learners which cannot be represented in
our framework (Geldberger et al., 2005; Globerson and Roweis, 2006; Weinberger
et al:; 2006; Yang etal,, 2006a; Torresani and Liee; 2007; Tao et al:; 2009) because
cost functions of these algorithms are not linear with respect to distances among
examples. Extension of these algorithms to handle semi-supervised learning prob-

lems is an interesting future work.

Yang ‘et al. (2006b) presemt another semi-supervised learning framework
which solves entirely different problems to problems considered in this paper.
They propose to extend unsupervised algorithms such as ISOMAP Tenenbaum
et al. (2000) and Laplacian Eigenmap (Chapelle et al., 2006, Chapter 16) to cases
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in which information about exact locations of some points is available. Xu et al.
(2009) proposed a beautiful framework based on optimal reverse prediction which
unifies many existing algorithms. Nevertheless, given a new learner, a system-
atic method to find a corresponding reverse formula is not yet shown. Therefore,

practical uses of this framework are now limited.

To the best of our knowledge, there are currently four existing semi-supervised
dimensionality reduction frameworks in literatures which have similar goal to ours;
all of them are very recently proposed. Here,~we-subsequently show that these

frameworks can-be restated-as special cases of our framework.
5.3.1 Sugiyama et al./(2008)

Sugiyama et al. (2008) extends the LEDA algorithm to handle a semi-
supervised learning problem by adding the PCA objective function fF“4(A) (see
Chapter 2) into the objective function f“(A) of LFDA described in Section 5.2.3.
To describe Sugiyama et al.’s algorithm, namely ‘SELE’, without loss of generality,
we assume that training data are centered at the origin, i.e. >  x; = 0, and
then we can write fF4(A) = =3 ||Ax]|>. Sugiyama et al. propose to solve

the following problem:

¢ n

A* =argmin | Y [l Ax; — AxjlP— > ||l Axi|* | (5.15)
ABAT=I \; i=1

Interestingly, it can be shown that this formulation can be formulated in our

framework with unlabel cost ¢;; being negative, and hence our framework subsumes

SELF. To see thisylet ¢, = —1/2n, forall i, j =1, ..., n. Then, the objective f*(A)

is equivalent tor fF 4(A);

n

u 1 2 1
FLA) = D7 —5llAx = AP = —5 - 3 {Ax — Ax;, Ax; — Ax;)
7,j=1 7,j=1
1 E 2
= —% (2 Z]Z=1<AX“AX1> r 21j21<AXZ,AX]>>

- _% <2n2||AxiH2 - 2<A2xi,Aij>>
i=1 =1 J=1

= frNA),
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where we use the fact that Y., x; = 0. This proves that SELF is a special case

of our framework.

Note that the use of negative unlabel costs c}; = —1/2n results in an algo-
rithm which attempts to preserve a global structure of the input data and does not
convey the manifold assumption where only a local structure should be preserved.

Therefore, when the input unlabeled data'lie'in a complicated manifold, it is not

appropriate to apply fY(A4) = fFC4(A).
5.3.2 Song et al. (2008)

Song et al."propose to extend FDA and another algorithm named mazimum
margin criterion (MMC) (Li'et al;; 2006) to handle a semi-supervised learning
problem. Their idea of semi-supervised learning extension is similar to ours as they
add the term f*(-) into the objective of FDA and MMC (hence, we call them, SS-
FDA and SS-MMG, respectively). However, SS-FDA and SS-MMC cannot handle
problems where data of each class form a manifold or several clusters as shown in
Figure 5.3 because SS-FDA and SS-MMC satisfy the condition (1) but not (1%).
In fact, SS-FDA and SS-MMG can both be restated as instances of our framework.
To see this, we note that the optimization problem of SS-MMC can be stated as

A* = arg min- /trace(AS,;A%) — trace(ASpA%)+ v f(A), (5.16)
AAT=]

where S, and S,, are the standard between-class and within-class scatter matrices,

respectively (Fukunaga, 1990):

c

Z > #y — ;)" and’ S, = (e — p) (- p)"

i=1 jly;=i i=1

whete ' = 150 x;, p; = ni Yot x; and n; is the number of examples in the
i'" class. It can be verified that trace(AS,AT) = Z” Ll Ax; — Ax;||® and
trace(ASpA”). = ZU L | Ax; A%y || whete

Cij = and ¢;; =
1

- otherwise, 0, otherwise.
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Hence, by setting cfj =9c — cfj we finish our proof that SS-MMC is a special
case of our framework. The proof that SS-FDA is in our framework is similar to

that of SS-MMC.
5.3.3 Zhang et al. (2007a)

Zhang et al. (2007a) also recently proposed a learner called Semi Supervised
Dimensionality Reduction which is also a“special ease of ours. A proof showing
that it is a special case of our framework is similar to those of SELF and SS-MMC,

and therefore we omit the details.
5.3.4 Li et-al. (2007)

We found that/the transductive framework proposed by Li et al. (2007) is
similar to ours even though their framework has totally different representations
compared to our framework. -Similar to ours, Li et al.’s framework also has the
main goal to solve an optimization of the form of Eq. (5.1). However, our frame-

work is more general than theirs in three important aspects.

First, Li et al.’s framework does not generalize some existing manifold learn-
ing algorithms such as LFDA and MFA since, in contrast to our framework, their
framework does not allow a constraint of the form ZBZT = I (see Eq. (5.2)).
Therefore, the relations among existing algorithms which are characterized by the
conditions (1), (2), (1*) and (2*) presented in Section 5.2.3 cannot be established

under their framework.

Second, since Li et al.’s framework has been focused only on transductive
problems; it is:not clear how their framework can be msed in-a general semi-
supervised.learning problem where a new example is given. In contrast, we dedi-
cated Section 5.2.2 to explain about linear parameterization, and in Section 5.2.4
we developed the novel KPCA trick framework for mon-linear parameterization

which can be used for handling a general semi-supervised learning problem:

Third, the representer theorem proven in Li et al.’s work (Li et al., 2007,
Section 2.3) is more restrictive than ours, i.e. in order to use their framework, C*

and C*" must satisfy some strict conditions as stated in Theorem 4 of their paper,
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INN Accuracy —— LFDA:0.935 —— FDA:0.820 —— LPP:0.620 ——PCA:0.830
150 -

——=LFDA
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Figure 5.5: Thefirst toy example. The projection axes of three algorithms, namely
FDA, LFDA, LPP.and PCA; are presented. Big circles and big crosses denote
labeled examples while small circles and small crosses denote unlabeled examples.
Their percentage accuracy over the unlabeled examples are shown on the top.

and this prohibits a general use of their framework. Moreover, they prove their
representer theorem only in cases that the target dimensionality d is 1. On the
other hand, Theorem 3 and Theorem 4 proven in this paper allow d to be any

value which is not more than the input dimensionality d.

Since any cost matrices which can be used in Li et al.’s framework can also
be used in our framework; it can be viewed that our framework generalizes their
framework. Note that as Li et al.’s framework generalizes unsupervised manifold
learning framework such as Isometric Mapping (Tenenbaum et al., 2000), Locally
Linear Embedding (Roweis and Saul, 2000) and Laplacian Figenmap (Belkin and
Niyogi, 2003),-our framework generalizes these unsupervised frameworks as well,
i.e. there exists cost matrices C* which make a learner of our framework behaves

exactly like these unsupervised learners.
5.3.5. Improvement over Previous Frameworks

In this section, we explain why SELF and SS-EDA proposed by Sugiyama
et al. (2008) and Song et al. (2008) described above are not enough to solve
some semi-supervised learning problems, even simple ones shown in Figure 5.5

and Figure 5.6.

In Figure 5.5, four dimensionality reduction algorithms, FDA, LFDA, LPP
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INN Accuracy —— LFDA:0.644 —— FDA:0.385 —— LPP:0.963 ——PCA:0.667
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Figure 5.6: Thesecond tey example consisting of three elusters of two classes.

and PCA are performed on this dataset. Because of multi-modality, FDA cannot
find an appropriate projeetion. Since the two clusters do not contain data of the
same class, LPP which attempts to preserve the structure of the two clusters also
fails. Likewise, PCA fails because it does not take labeled data into account. In
this case, only LEFDA can find a proper projection since it can cope with multi-
modality and can take into account the labeled examples. Note that since SS-FDA
is a linearly combined algorithm of FDA and LPP, it can only find a projection
lying in between the projections discovered by EDA and LPP, and in this case SS-
FDA cannot find an efficient-projection, unlike LFDA and, of course, SS-LFDA

derived from our framework.

A similar argument can be given to warn an uncareful use of SELF in some
situations. In Figure 5.6, four dimensionality reduction algorithms, FDA, PCA,
LFDA and LPP are performed on this dataset. Because of multi-modality, FDA
and PCA cannot find an appropriate projection. Also, since there are only a few
labeled examples, LFDA fails to find a good projection as well..In this case, only
LPP can find a proper projection since it can cope with multi-modality and can
take the unlabeled examples into account. Note that since SELF is a linearly
combined_algorithm of LEDA and PCA, it can only find a projection lying in
between the projections discovered by LEDA and PCA, and in this case SELF
cannot find a correct projection, unlike a semi-supervised learner like SS-LFDA
derived from our framework which, as explained in Section 5.2.3, employs the LPP

cost function as its C*".
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Figure 5.7: (Top) The third toy example where only a semi-supervised learner is
able to find a good projection. (Bottom) An undirected graph corresponding to
the values of C" used by LPP and SS-LFDA. In this figure, a pair of examples ¢
and j has a link if and only if ¢i% > 0.1. This graph explains why LPP projects
the data in the axis shown in the top figure; LPP, which does not apply the label
information, tries to choose a projection axis which squeezes the two clusters as
much as possible. Note that we apply a local-scaling method, Eq.(5.10), to specify
c".

Since: a.semi-supervised manifold learner derived from our framework can
be intuitively thought of as a combination of a supervised learner and an unsu-
pervised learner. One may misunderstand that a semi-supervised learner cannot
discover a good subspace if neither is a supervised learner nor an unsupervised
learner able to discover a good subspace. The above two toy examples may also
mislead the readers to think in that way. In fact, that intuition is incorrect. Here,
we give another toy example shown in Figure 5.7 where only a semi-supervised
learner is.able to discover a good subspace but neither is its supervised and un-
supervised counterparts. Intuitively, a semi-supervised learner is able to exploit

useful information from both labeled and unlabeled examples.

69



CHAPTER VI

SPECTRAL SEMI-SUPERVISED LEARNING
FRAMEWORK: PRACTICE

In this chapter, classification performance of each algorithm derived from our
framework is demonstrated. A similar experimental setting as those in previous
works (Sugiyama et al., 2008; Chapelle et al., 2006, Chapter 21) is employed so

that our results can be-ecompared to them.
6.1 Experimental Setting

In all experiments, two semi-supervised learners, SS-LFDA and SS-DNE,
derived from our framework are compared to relevant existing algorithms, PCA,
LPP*, LFDA, DNE and SELF (Sugiyama et al., 2008). In contrast to the stan-
dard LPP which does not apply the Hadamard power operator explained in Sec-
tion 5.2.3, we denote LPP* as a variant of LPP applying the Hadamard power

operator.

Non-linear semi-supervised manifold learning is also experimented by apply-
ing the KPCA trick algorithm illustrated in Figure 5.4. Since it is not our intention
to apply the “best” kernel but to compare efficiency between a “semi-supervised”
kernel learner and its base “supervised” (and “unsupervised”) kernel learners, we

Qnd

simply apply the 2"%-degree polynomial kernel k(x,x’) = (x,x’)? to the kernel

algorithms in-all experiments.

By using the nearest neighbor algorithm on their discovered subspaces, clas-
sification accuracies of the experimented learners are measured on five standard
datasets shown on Table 6.1, the first two datasets are obtained from the UCI
repository (Asuncion and Newman, 2007), the next‘two datasets mainly designed
for testing a semi-supervised learner (Chapelle et al., 2006, Chapter 21). The final
dataset, extended Yale B (Georghiades et al., 2001), is a standard dataset of a
face recognition task. The classification performance of each algorithm on each

dataset is measured by the average test accuracy over 25 realizations of randomly
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Table 6.1: Details of each dataset: dy,c,?¢,u and ¢ denote the numbers of input
features, classes, a number of labeled examples, a number of unlabeled examples
and a number of testing examples, respectively. ‘*’ denotes the transductive set-
ting used in small datasets, where all examples which are not labeled are given as
unlabeled examples and used as testing examples as well. d, determined by us-
ing prior knowledge, denotes the target dimensionality for each dataset. “GOOD
NEIGHBORS” denotes a quantity:which measures a goodness of unlabeled data for
each dataset.

NAME dy ¢ lH+u+t % U d | GOOoD NEIGHBORS
LINEAR  KERNEL
IONOSPHERE | 34 .2 351 10 /3QUT4 2 0.866 0.843
BALANCE 4 —® 625 10/100- 300 | 1 0.780 0.760
BCI gy 2 400 TONL00, S 2 0.575 0.593
Usps 244 2 1500 10/100 300 | 10 | 0.969 0.971
M-EYALE P04 45 320 2004'00%, | 10 | 0.878 0.850

splitting each dataset into training and testing subsets.

Three parameters are needed to be tuned in order to apply a semi-supervised
learner derived from our framework (see Section 5.2.3): v, the regularizer, «, the
degree of the Hadamard power operator and &, the k*-nearest neighbor parameter
needed to construct the cost matrices. To make our learners satisfy the condition
(1*) described in Section 5.2.3, it is clear that & should be small compared to n.,
the number of training examples of class c. From experience, we found that semi-
supervised learners are quite insensitive to various small values of k. Therefore, in
all our experiments, we simply set k& = min(3,n.) so that only two parameters,
and «, are needed to be tuned. We tune these two parameters via cross validation.
Note that only « is needed to be tuned for LPP* and only ~ is needed to be tuned
for SELE.

The ‘GOOD NEIGHBORS’ score shown in Table 6.1is due to Sugiyama et al.
(2008). The score is simply defined as a training accuracy of the nearest neighbor
algorithm when all available data are labeled and are given to the algorithm. Intu-
itively, if a dataset gets a high score, unlabeled examples should be useful since it
indicates that each pair of examples having a high penalty cost ¢j; should belong
to the same class. Note that on Table 6.1 there are two scores for each dataset:

LINEAR is a score on a given input space while KERNEL measures a score on a
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feature space corresponding to the 2"%-degree polynomial kernel.
6.2 Numerical Results

Numerical results are shown in Table 6.2 for the case of ¢ = 10 (except M-
EYALE where ¢ = 20) and Table 6.3 for the case of ¢/ = 100. In experiments,
SS-DNE and SS-LFDA are compared their classification accuracies to their un-
supervised and supervised counterparts: LPP* and DNE for SS-DNE, and LPP*
and LFDA for SS-LEDA. SELF is also compared to SS-LFDA as they are re-
lated semi-supervised learners-originated from LFDA. Our two algorithms will be
highlighted if they are superior to their counterpart opponents. For comparison,
accuracies of a learner from a popular framework of Sindhwani et al. (Chapelle
et al., 2006, Chapter 12), namely Laplacian least-square (LapLS), is also demon-

strated on binary-elass datasets!.

From the resmlts, our two algorithms, SS-LEDA and SS-DNE, outperform
all their opponents in 32 out of 40 comparisons: in the first setting of small ¢
(Table 6.2), our algerithms outperform the opponents in 18 out of 20 comparisons
while in the second setting of large ¢ (Table 6.3), our algorithms outperform the
opponents in 14 out of 20 comparisons. Consequently, our framework offers a
semi-supervised learner which consistently improves its base supervised and un-

supervised learners.

Note that as the number of labeled examples increases, usefulness of unla-
beled examples decreases. We will subsequently discuss and analyze the results of

ecach dataset in details in the next subsections.
6.2.1 Tonosphere

IONOSPHERE is a real-world dataset of radar pulses passing through the
ionosphere which were collected by a system in Goose Bay, Labrador. The targets
were free electrons in the ionosphere. “Good” radar returns are those showing

evidence of some type of structure in the ionosphere. “Bad” returns are those

'LapLS does not naturally support multi-class problems. Although there are a number of
methods to wrap a binary classifier for multi-class problems, the results will be biased due to
the choice of a wrapping method. Selection of the best multi-class warping method is beyond
the scope of this dissertation.
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Table 6.2: Percentage accuracies of SS-DNE and SS-LFDA derived from our frame-
work compared to existing algorithms (¢ = 10, except M-EYALE where ¢ = 20).
SS-LFDA and SS-DNE are highlighted when they outperform their opponents
(LPP* and DNE for SS-DNE, and LPP*, LFDA and SELF for SS-LFDA). Super-
scripts indicate %-confidence levels of the one-tailed paired t-test for differences
in accuracies between our algorithms and their best opponents. No superscripts
denote confidence levels which below, 80%. The accuracy of LapLsS is also shown

for comparison.

LINEAR PCA LPP* DNE LEDA SELF SS-DNE SS-LFDA | LarLS
[OoNOSPHERE | 71+1.2  82+1.3 70£1.2 AT 1 70£1.5 75£1.0 78.1+.9 68+1.9
BALANCE 494+1.9  61%+1.9 63+£2.2 70+£272 69+2.3 71+1.8%9 73+2.380 -
BCI 49.84+.6 “58.4+.3  51.3+.6 52.6+.5 .52:1+5 | 57.1+.6%° 55.24+.399 | 53.1+.6
Usps 79+1.2.74+1.0....79.6+.6 80.6+.9 . 81.7+.8 | 81.84+.5%99 83.0+.5%° | 60+1.1
M-EvYALE 44.6+.7  67%1.1 66+1.2 = 71.6+1.0. 67.2+.8 | 76.94+.899 75.74+.999 -
KERNEL PCA LPP* DNE LFDA SELF SS-DNE SS-LFDA | LaprLS
IoNOSPHERE | 70+1.8 83.2£.9 . 70+1.6 71+£1.3 74£1.5 | 87.2+.999 88+1.0% | 71.4+.7
BALANCE 41.74+. 8447 949 F62+205 66+2.0 60+2.8 | 66+1.8%30  69+1.980 -
BCI 49.74.3 53.,7+.3 50.1 +£.4  50.3+.6  50.5+.4 53.84.3 54.1+.3%0 | 52.1+.4
Usps T7+1.1 6+ 140 79.9+.5 80.3+.8 80.9+.8 | 82.0+.4%9 83.74+.6%° | 61+1.4
M-EvaLe 42.1+9" 63.24.74 58i10+.9..1 60.3+18" % 58.8+.7| 69.9+.799 73.24.899 -

Table 6.3: Percentage accuracies of SS-DNE and SS-LFDA compared to existing
algorithms (£.= 100).

LINEAR PCA LPP* DNE LEDA SELF SS-DNE SS-LFDA | LapLS
IONOSPHERE | 72.8%.6 83.7+.6 77.9£.7 74£1.0 77.8+.5 | 84.5+.650 84.9+.4% | 82.3+.7
BALANCE 57+2.2 /80+1.3 = 86.4+.5 87.9+.3 - 87.2+.4 | 88.2+.599 86.34.6 -
BCI 49.5+.5 \ 54.9%.5, 53.1£.7. . 67.9+.5  67.6+.6 | 63.1+£.5%9 67.5+.6 61.7+.8
Usps 91.4+.3 " 75.7+.3 91.1£.3..89.3+.4 92.2+.3 | 92.2+.49 91.6+.3 71.2+.6
M-EvaLe 69.4+4 84.1+.4 92.3+.4  95.4+.3 94.3+.2 | 98.5+.49 95.7+.2 -
KERNEL PCA LPP* DNE LFDA SELF SS-DNE SS-LFDA | LaprLS
ToNOSPHERE | 79.8+.4 89.7+.5 78.7+.9 81.3£.7 81.1+.5 | 93.6+.2%9 93.7+.3%99 | 76.2+.6
BALANCE 42.5+.3  46.9+5° 84.0+.7 - 87.8+.7 79+1.6 | 86.5+.799 87.7+.9 -
BCI 49.7+.5 54.5+.4 51.6+£.6  51.0£.8 52.44+.6 | 57.6+.299 57.0+.4% | 53.8+.5
Usps 91.1+.3 81.5+.6 - 91.4-+.4 . 91.24+.4 92.7+.3 | 92.3+.3%9 91.9+.3 76+1.1
M-EvYALE 66.3+.3 81.9+.5- 91.2+.3 . 89.1+.5 85.8+.6 91.2+.3 94.3+.3% -

that do not. .Since we do not know the true decision boundary of IONOSPHERE,

we simply set_the target dimensionality d = ¢ = 2.

It can be observed that

non-linearization does improve the classification performance of all algorithms.

It can be.obhserved that LPP* is much.better. than PCA on this dataset, and

therefore, unlike SELE, SS-LFDA much improves LFDA. In fact, the main reason
that SS-LFDA, SS-DNE and LPP* have good classification performances are be-
cause of the Hadamard power operator. This is explained in Figures 6.1, 6.2.and

6.3. From Figures 6.1 and 6.2, defining “nearby examples” be a pair of examples

with a link (having ¢}, > 0.36), we see that almost every link connects nearby
examples of the same class (i.e. connects good nearby examples). This indicates

that our unlabel cost matrix C'" is quite accurate as bad nearby examples rarely
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Correct links are 394 from 408 (according to the threshold 0.36)
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Figure 6.1: The undirected graph correspondingto C" constructed on TONO-
SPHERE. Each link"eorresponds to a pair of nearby examples having ¢j; > 0.36.
The number ‘0.36’ isjust chesen for visualizability.

have links. In*fact, the ratio of good nearby eramples pertotal nearby examples
(shortly, the good-nearby-examples ratio) is 394/408 ~ 0.966. Nevertheless, if we
re-define “nearby examples™ be a pairs of examples having, e.g., ¢; > 0.01, the
same ratio then reduces to 0.75 as shown in Figure 6.3 (Left). This indicates that
many pairs of examples having small values of ¢, are of different classes (i.e. bad

nearby examples).

Since an algorithm derived from our framework minimizes the cost-weighted
average distances of every pair of examples (see Eq. (5.6) and its derivation), it is
beneficial to further increases the cost of a pair having large c¢j; (since it usually
corresponds to a pair of the same class) and decreases the cost of of a pair having
small ¢;. FromEq. (5.12), it can be easily seen that the effect of the Hadamard
power operator.is exactly what we need. The good-nearby-examples ratios after
applying the Hadamard power operator with e = 8 are illustrated in Figure 6.3
(Bottom). Notice that, after applying the operator, even pairs with'small values

of ¢;; are msnally of the same class.
6.2.2 Balance

BALANCE is an artificial dataset which was generated to model psycholog-
ical experimental results. Each example is classified as having the balance scale
tip to the right, tip to the left, or be balanced. The 4 attributes containing inte-

ger value from 1 to 5 are LEFT _WEIGHT, LEFT _DISTANCE, RIGHT _WEIGHT, and
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Correct links are 394 from 408 (according to the threshold 0.36)
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Figure 6.2: Zoom-in on the square area of Figﬁlf)é 6.2.

RIGHT DISTANCE. The eorrect way to find the class is the greater of (LEFT _DISTANCE
X LEFT_WEIGHT) and (RIGHT DISTANCE X RIGHT WEIGHT). If they are
equal, it is balaneed. Therefore, there are 5% = 625 total examples and 3 classes
in this dataset. Moreover, the correct decision surface is 1-dimensional manifold
lying in the feature space corresponding to the (-,+)* kernel so that we set the

target dimensionality d = 1.

This dataset illustrates another flaw of using PCA in a classification task.
After centering, the covariance matrix of the 625 examples is just a multiple of
I, the identity matrix. Therefore, any direction is a principal component with
largest variance, and PCA is just return a random direction! Hence, we cannot
expect much-about the classification performance of PCA in this dataset. Thus,
PCA cannot help SELF improves much the performance on LFDA, and sometimes
SELF degrades the performance of LFDA due to overfitting. In contrast, SS-LEFDA
often improves the performance of LEFDA. Also, SS-DNE is able to improve the

classification performance of DNE and LPP* in all settings.
6.2.3 BCI

This dataset originates from the development of a Brain-Computer Interface
where a single person performed 400 trials in each of which he imagined movements
with either the left hand (the 1° class) or the right hand (the 2"¢ class). In
each trial, electroencephalography (EEG) was recorded from 39 electrodes. An

autoregressive model of order 3 was fitted to each of the resulting 39 time series.
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Figure 6.3: For each number x in the the x-axis, its corresponding value on the

y-axis is the ratio between the number of good nearby examples (having ¢i; > x and
belonging to the same class) and the number of nearby exzamples (having c; > ).
The ratios with respect to C*" are demonstrated where (Top) a = 1 (the standard
LPP), and where (Bottom) o = 8 (LPP*).

The trial was represented by the total of 117 = 39*3 fitted parameters. The target
dimensionality is set to the number of classes, d = ¢ = 2. Similar to the previous
datasets, SS-LEDA and SS-DNE are usually able to outperform their opponents.
Again, PCA is not appropriate for this real-world dataset, and hence SELF is
inferior to SS-LFDA.

6.2.4 USPS

This benchmark is derived from the famous USPS dataset of handwritten
digit recognition. Foreach digit, 150 images are randomly drawn. The digits
2" and ‘5’ are assigned ‘to the first class, and all others form the second class.
To prevent a use of a domain knowledge, each example is rescaled, noise added,
dimension masked and pixel shuffled (Chapelle et al., 2006, Chapter 21). Although

there are only 2 classes in this dataset, the original data presumably form 10
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Figure 6.4: Extended Yale B Face dataset. 21 examples images from various
illumination conditions.

clusters, one for each digit. Therefore, the target dimension d is set to 10.

Often, SS-LFDA and SS-DNE outperform their opponents. Nevertheless,
note that SS-LFDA and SS-DNE do not improve much on LEDA and DNE when
¢ = 100 because 100 labeled examples are quite enough to discriminating the
data and therefore unlabeled examples offer relatively small information to semi-

supervised learners.
6.2.5 M-Eyale

This face recognition dataset is derived from extended Yale B Georghiades
et al. (2001), see Figure 6.4. There are 28 human subjects under 9 poses and
64 illumination conditions. In our M-EYALE (Modified Extended Yale B), we
randomly chose ten subjects, 32 images per each subject, from the original dataset

and down-sampling each example to be of size 21x24 pixels.

M-EYALE consists of 5 classes where each class consists of images of two
randomly-chosen subjects. Hence, there should be two separated clusters for each
class, and we should be able to see the advantage of algorithms employing the
conditions (1*)and (2*) explained in Section5.2:3. In this dataset; the mumber of
labeled examples of each class is fixed to E so that examples of all classes are ob-
served. Since this dataset should consist of ten clusters, the target dimensionality

is set to d = 10.

It is clear that LPP* performs much better than PCA in this dataset. Recall
that PCA captures maximum-variance directions; nevertheless, in this face recog-
nition task, maximum-variance directions are not discriminant directions but di-

rections of lighting and posing (Belhumeur et al., 1997). Therefore, PCA captures



78

totally wrong directions, and hence PCA degrades the performance of SELF from
LFDA. In contrast, LPP* much better captures local structures in the dataset
and discover much better subspaces. Thus, by cooperating LPP* with LFDA and
DNE, SS-LFDA and SS-DNE are able to obtain very good classification accuracies.
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CHAPTER VII

REPRESENTER THEOREM

In this chapter, three versions of the representer theorems will be proven
to validate all kernelized learners presented in this dissertation. This chapter is
technical. Readers can skip this chapter without sacrificing the main ideas of the

dissertation.
7.1 Introduction

A representer theorem, along with Mercer theorem, is a key ingredient for
validating the kernel trick widely used in pattern recognition and machine learning
(Scholkopf and Smela, 2001). However,.classical representer theorems which cover
only an algorithm learning a finite-dimensional linear map cannot be applied to
a general metric learning algorithm discovering a countably-infinite dimensional
linear map. In this chapter, we generalize the representer theorems given by
Kimeldorf and Wahba (1971) and Schélkopf et al. (2001) to cover the cases of

general metric learning.
7.2 Representer Theorem for Metric Learning

Let {x;}?, denote n examples in an input space®, x; € R?. Given a positive
semidefinite (PSD) kernel function k(-, -), Mercer theorem implies that there exists
a mapping ¢(-) : x; € RP — ¢(x;) € H where # is a separable Hilbert space such
that k(x;,x;)= (¢(x;), ¢(x;)). In this chapter, we simply denote ¢(x;) as ¢; for
brevity.

In machine learning literatures (Chen et al., 2005; Goldberger et al., 2005;
Globerson and Roweis, 2006; Weinberger et al., 2006; Yang et al., 2006a; Sugiyama,
20065 Yan. et al., 2007; .Zhang. et. al,, 2007b;. Torresani and.lee, 2007; Li.et al.,
2007), the task of metric learning is referred to as the task of learning a symmetric
PSD matrix M where the metric induced by M in the feature space is ||¢; —
dillv = /(¢ — ¢;)"M(¢; — ¢;). Since M can be decomposed to ATA, we also

'In the context of semi-supervised learning, n = £ + u as defined in Chapter 5
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have |6, — &5ll = | A¢i— Ay || = /(Ad; — 46,7 (Ad, — Ad;) where ||| denotes
the standard (Euclidean) norm of a separable Hilbert space, and we can consider
learning a bounded linear map A instead of M. Note that, according to Mercer
theorem, in general A maps from a countably-infinite dimensional input space to
a countably-infinite dimensional output space; however, the classical representer
theorem (Kimeldorf and Wahba, 1971; Schélkopf et al., 2001) cannot be applied
to this case of countably-infinite dimensional output. The essence of representer
theorem proved in-this chapter is to show-that the best linear map A can be
represented in terms of {¢;}¢ so that computational shortcuts of the kernel trick
are possible for metric learning. To be precise, we will show that M = ATA =
PGEDT where = (¢y,4", ¢y) and G € ST where ST denotes a space of n x n PSD
matrices; a practical learning process can now take place by obtaining the best

finite-dimensional matrix G instead of the best metric M or the best linear map

A.

The following lemma is useful for proving the theorem.

Lemma 1. Let X,Y be two Hilbert spaces and ) is separable, i.e. Y has a count-
able orthonormal basis {e;}ien. Any bounded linear map A : X — Y can be

uniquely decomposed as Y o {:,Ti)x€; for some {T;}ien C X.

Proof. As A'is bounded, the linear functional ¢ — (A9, €;),; is bounded for every
i since, by, Cauchy-Schwarz inequality, [(A¢,e)y| < {[4flle:|| < [|Alll¢[l. By
Riesz representation theorem, the map (A-, e;)y can be written as (-, 7;)x for a

unique 7; € X. Since {e;}ien is an orthonormal basis of ), for every ¢ € X,

Ap = Z?;(ACba €i>yei = Zil@, Ti>X6i- ]

For convenience, in our proof below we assume that {¢;},_, is linearly inde-

pendent?. Our main theorem can be stated as follows?.

Theorem 5. (Representer Theorem for Full-Rank Mahalanobis Distance-Learn-

ers)

2With more cumbersome notations, the proof can be straightforwardly extend to handle the
cases where {¢;};_, is not linearly independent.
3The theorem is more general than what we have discussed; see remark below.
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Let {zﬁz} be a set of points in a feature space X such that spcm({@zi} ) =
=1 i=1

1= 1=

span({¢i};_,), and X and Y be separable Hilbert spaces. For an objective function
[ depending only on {(A¢;, Ap;)}, the optimization

H}qin . f(<A¢1, A¢1>, “ ey <A¢“ A¢j>, ey <A¢n; A(bn>>

s.t. A X — ) is a bounded linear map,

has the same optimal walue as,
min f(GLEPL, 1, G CByy £ CPn),
esm
. # J T
where PYi = <<¢u 1/)1>7 > ) <¢ia ¢n>) eR™

Proof. To avoid complicated notations, we omit subscripts such as X', ) of inner
products. The proof will consist of two steps. In the first step, we will prove
the theorem by assuming that {zﬁz}j : is an orthonormal set. In the second
step, we prove the theorem in 'general cases where {z@z}nﬂ is not necessarily
orthonormal. The proof of the first step requires an applicatli;)n of Fubini theorem

(Lewkeeratiyutkul, 2006).

n

Step 1. Assume that {7,51} is an orthonormal set. Iet {¢;}2°, be an or-
i=1
thonormal basis of Y. For any ¢’ € X, we have, by Lemma 1,4¢" = > ,° (¢, 7¢)ex.

n

Hence, for each bounded linear map A : X — VY, and ¢, ¢" € span({@f)i}. ), we
have <A¢7 A¢/> T 220:1<¢7 Tk><¢l7 Tk>‘

Note that Each 7, can be decomposed as 7, + 7i- such that 7/ lies in

= n
span({wi} ) and 7~ is orthogonal to the span. These facts make (¢, 1) =
i=1

(¢, .y for every k. Moreover, 7, = ijl ukjiﬁj, for some {ugi, ..., ug,} C R™
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Hence, we have

oo oo

(Ap, Ad) = (. mi) (¢ i) = Zm W 7h)

£ P
= i zn:u,w Vi) Zum&
7 ; Zlukumzs Vi) (¢, )
(Fubini theoreiiisesplained belo®) Z (Z umm) CRTNCR
e,
S z_jl Gig{¢, hal{e', Vs
N

At the fourth equality, we apply Fubini theorem to swap the two summations. To
see that Fubini theorem can be applied at the fourth equality, we first note that

> ope, uf,; is finite for each i € {1...n} since

Zu’“ Z M’Z“kﬂ/}jﬂﬁiazukﬂzﬁ — || Ag;||* < .
k=1 j=1

J=1

Applying the above result together with Cauchy-Schwarz inequality and Fubini

theorem for mon-negative summation, we have

Z Z Iukzuk] o, ¢z><¢ ¢J | = Z Z |Ukzukj b, ¢z><¢ ¢J>‘

k=1 i,j=1 dy=1l [r=Il
= Z [, i) (&, )] (i |Ukiukj|>
7,7=1 k=1
S i|<¢?&z><¢/’¢j (g:uz><§:uj)
¢ -

Hence, the'summation converges absolutely and thus Fubini theoerem can be ap-
plied as claimed above. Again, using the fact that > .-, uf, < oo, we have that
each element of G, Gy; = Ziozl UgiUkj, is finite. Furthermore, the matrix G'is PSD

since each of its elements can be regarded as an inner product of two vectors in



83

2%

Hence, we finally have that (A¢;, Ap;) = pT G, for each 1 < 4,5 < n, and
whenever a map A is given, we can construct GG such that it results in the same
objective function value. By reversing the proof, it is easy to see that the converse
is also true. The first step of the proof is finished.

n

Step 2. We now prove the theorem without-assuming that {1@}_ is an or-
thonormal set. Let-all-notations bethe same as-in-Step 1. Let U’ ble_zhe matrix
(41, ...,10,). Define {)i};=q as an orthonormal set such that span({¢;}._,) =
span({@@i}é 1) andU = (1,7 1) and @; = UTp;. Then; we have that ¢); = Uc;

for some ¢; € R™ and W' ="VUC" where C = (ci, ..., €y). Moreover, since C' map

=

from an independent set {1} to another independent set {lZZ}, C' is invertible.
Denote F' = BT B as an optimal matrix obtained by the proof of Step 1. We then

have, for any F/,

) Fp; =97 B' B =l {CAT AC o,
= ¢! VCATA'CT I ¢,
s qs’_il’\Ile/TA/\I]/Tgbj
= QRAl A'¢; = 5] Go;.
Note that we can write BT = CAT since C is invertible. Hence, for any F we

have the matrix G which gives ¢ Gp; = ! Fp;. Using the same arguments as in

Step 1, we finish the proof of Step 2 and of Theorem 1. O

Theorem 6. (Representer Theorem for Dimensionality Reduction) For arbitrary
objective function frwhich depends only on inner products of linearly transformed

examples, the optimization,

H}}Il f({(A@',AQbJ') Zj=1>

st A:H —Ris a bounded linear map,
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has the same optimal value as

. 1T At
onin FUeT AT A9} 50).

Proof. Let {e;}_, be the canonical basis of R?. By Lemma 1, A¢;, = Zf_1<¢k, Ti)e;
for some 7, ...,7y € X. Each 7; can be decomposed as 7/ + 7' such that 7/ lies in
span {151, o ,wn} and 7:- is orthogonal tothespan. These facts make (¢, 7;) =
(¢r, 1) for every i. ‘We then have, for some;; € R,y 1 <:<d, 1 <j<n,

A¢k = Z ¢k7 Zuljwj Zez Zul] ¢k7’l/}j

U ff 17 <¢k7¢1>
F I e A58 ; =Uor .

Uq1r - Udn <¢k; @Zn>

Now, one can easily check that (A¢;, Ad;) = @i UTUyp; for i,j = 1,...,n. Hence,
whenever a map A is given, we can construct U such that it results in the same
objective function value. By reversing the proof, the converse is also true, and

thus the theorem is proven (by renaming U to A’). m

The stronger version.of Theorem 6 can be achieved by inserting a regularizer
into the objective function of a (kernelized) Mahalanobis distance learner as stated
in Theorem 7. For compact notations, we use the fact that A is representable by

{7;} as shown in Lemma 1.

Theorem 7. (Representer Theorem for Regularized Learners) Define {1@} and

=1

f bevas in Theorem 1. For monotonically inereasing functions g, let

d
h(Tl, vy Td, gbl, cevy gbn) = f(<’7'1, ¢1>, ceey <Ti7¢j>7 ey <Tn>¢d>) + ZgZ(HTLH)
=1

Any optimal set of linear functionals

argming., h(71, ..., 74, ¢1, .., On)

s.t. Vi ;0 X = R is a bounded linear functional



85

must admit the representation of T; = 2?21 uij@j (1=1,...,4d).

Proof. We prove by contrapositive. Consider a set of linear functionals {7;} such
that it is not in the span of ¢;s, i.e. 7, = 7/ + 7;~ where 7/ = Y77 u;;4; and

(ti5,95) =0 for all j = 1,....,£ + wand F;7;" # 0. Then (7;,v;) = (7/,4;). Thus,

FUoL ), (D0, Tk AP Ta)) S UDT 1) -5 (D0 T5)s - (P Ta))-

However,

9 (len\|> =9 (Z lrl? + IIT%H?) > (ZHT{II) :

using the fact that 3;7; # 0. Hence,

h(Tl, vy Tds ¢1, r ¢n) P h(’T{, "‘7Tc,l7¢17 ', ¢n)>

and thus {7;} cannot be an optimal solution. The proof is completed. [l

To apply Theorem 7 to our framework, we can simply view A = (7q, ..., 74)".

If each g; is the square function, then regularizer becomes .7 ||7]|> = || Allus
where ||| g5 is the Hilbert-Schmidt (HS) norm of an operator. If each 7; is finite-
dimensional, the HS norm is reduced to the Frobenius norm ||| . Here, we allow
the HS norm of a bounded linear operator to take a value of co. For the kernel
trick (by substituting 1; = ¢;), the result above states that any optimal {7;} must

be represented by {®u;}. Therefore, we have

‘igl(HﬂH) = Zd:HTZ-HZ = i u! ' du, = iu?Kui = trace(UKUT).

i=1 i=1 i=1 i=1
This regularizer is first appeared in the work of Gleberson and Roweis (2006).
Similarly, for. the KPOA trick (by substituting 5 = ®;), any optimal {7} must
be represented by { ¥, } and, using the fact that W7 ¥ = I, we have Y} ||n||> =
trace(UUT) = ||U||3.

By adding the regularizer, trace(UKUT) or ||U||%, into existing objective
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functions, we have a new class of learners, namely, reqularized Mahalanobis dis-
tance learners such as regularized KNCA (RKNCA), regularized KLMNN (RKLMNN)
and regularized KDNE (RKDNE). We plan to investigate effects of using various

types of regularizers in the near future.

Remarks. The three theorems require that the objective function of a learning
algorithm must depend only on {(Ad;, Ads)}; s or equivalently {(¢;, M¢;)}; ..
This actually is net-a-striet-condition sinee-metric-learners in literatures have
their objective funetions in-this form (Chen et al., 2005; Goldberger et al., 2005;
Globerson and Roweis, 2006; Weinberger et al., 2006; Yang et al., 2006a; Sugiyama,

2006; Yan et al., 2007; Zhang et al., 2007b; Torresani and Lee, 2007).

We note that the three theorems-are more general than what is needed by
the kernel trick. To apply the theorems to the usual kernel trick, we just substitute

1; = ¢; so that @; becomes:

T_

oi = ¢T¢i = (<¢17¢i>7 e <¢n,¢z>) o (k(xhxi)a ""7k(xn’xi))T =k;.

The notation k; is common in literatures and the matrix (ki, ..., k,) is the so-called

Gram matriz. Now we have a computational shortcut for ||¢; — ¢ ||

6 — dsllar =1/ (b1 — 8)TM (B — &) = 1/ (ke — PGk ).

Finally, we note that applications of the three theorems are not limited to
the kernel trick. - When restricting {1/71} to be an orthonormal set, Theorem 5
inspires ‘the KCPA ‘trick framework which has many advantages over the kernel

trick framework.on the tasks of metric learning as deseribed in Chapter 3.



CHAPTER VIII

FUTURE DIRECTIONS

In the previous chapters, we present a general framework for kernelization
and a spectral-based semi-supervised learning framework. These two frameworks
can be applied together as shown in Chapter.5. Many extensions of the frameworks
are already stated in each chapter. Here, we summarize them again before stating

other possible directions.

o Kernelized learners ean involve ill-conditioned computation as stated in
Chapter 3. It is important to develop a numerically stable techniques in order to
stabilize the kernelized learners so that the results gotten from the learners will

make sense.

e The kernel alignment method presented in Chapter 4 cannot deals with
a dataset where some class forming a shape of multi-modality. This limitation
severely affects its usefulness to.general real-world datasets. Hence, it is highly
important to develop a new efficient kernel selection algorithm which can deals
with multi-modality. Notethat some kernel selection methods can deal with multi-
modality, but they are not computationally efficient, e.g. those employing evolu-
tionary algorithms. The survey of efficient kernel selection algorithms can be found

in Goenen and Alpaydin (2010).

e There are some supervised manifold learners which cannot be represented
in our framework (Goldberger et al., 2005; Globerson and Roweis, 2006; Wein-
berger et.al., 2006; Yang et al., 2006a; Torresani and Lee, 2007;.Tao et al., 2009)
because cost functions of these algorithms are not linear with respect to distances
among examples. Extension of these algorithms to handle semi-supervised learn-

ing problems is an interesting future work as stated/in.Chapter 5.

e In Chapter 7, the class of regularized Mahalanobis distance learners are
introduced. It is interesting to see practical prediction abilities of these learners
when compared to non-regularized learners mainly concerned in this dissertation.

Also, we note that regularization usually improves a condition number of a problem
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so that it can also help to stabilize kernelized learners as mentioned above.
8.1 Learning a Mahalanobis Distance for SVM

Learning SVM is also based on Euclidean distance, and thus the use of the
Euclidean distance may not be appropriate for some learning problems. Being
able to learn the best (Mahalanobis) distance function with respect to a given

training set can improve the performance of.a learner in that problem.

In fact, for SVM, there is another explanation. Recall that the goal of SVM
is to find an optimal-margin-hyperplane. Let {X;,g;}/, be a given dataset. Note
that a representation of {x;} € RP can affect the margin of a hyperplane h. For
example, any change of scales of some attributes of {x;} will change a margin
of h. More precisely, let' A be a scaling matrix, the optimal-margin hyperplane
with respect to{x;} is not likely to-be the same as the optimal-margin hyperplane
with respect to {Ax;}. There are a number of situations such that a dataset is
recorded with seme inappropriate scales because an observer does not have enough
prior knowledge, for example, it is well known that the popular dataset named
WINE of the UCI repository (Asuncion and Newman, 2007) is recorded with some
inappropriate scales. More generally, besides a scaling matrix, A could be any
types of matrices which change the representation of {x;} to {Ax;}, i.e. a dataset
may be recorded as {Ax;} instead of its most appropriate form because of some

misunderstanding or some errors in observation and recordation.

Therefore, given a dataset, it is beneficial to learn the best linear transfor-
mation A* such that the margin of the optimal-margin hyperplane with respect to
{A*x;} is largest when eompared to other representations in the form of { Ax;} for
all A € RP*P It turns out thatthe problem of learning the best possible matrix
A cam also be formulated as the problem of learning the best possible Mahalanobis

distance matrix M € S.

In order to learn the best linear transformation A, together with the optimal-
margin hyperplane, a new formulation of SVM is required. One possible formula-

tion is shown in Fig. 8.1:
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Mjlnirbnéi_ze Cllwl?+>0, &
Sult,)j;e,ct to: y;((w, Ax;) +b) > 1 - &,
[Ax;[|> <1
& >0
weRP, beR,AcRP*P,

Figure 8.1: Our first formulation for SVM.

Using the property M = AT A, we can reformulate the problem in another

way as shown in Fig:-8.2.

Minimize Cw'Mw + > " &

Mowbe
Subjeet to:y; ((w, Mx;) +b) > 1= &,
XZTMXZ‘ S 1
& =0

weRP b e R M eS?.
Figure 8.2: Our second formulation for SVM.

Nevertheless, to our knowledge, it appears that the problem formulations
shown in Fig. 8.1 and Fig. 8:2'do not belong to the class of convex programming.
Hence, with these formulations the problem cannot be perfectly solved in the sense
that a globally optimal solution is not guaranteed to be found in the polynomial

running-time.

8.2 Other Directions

e In this dissertation, we consider only problems related to classification,
clustering and the combination of both, i.e. semi-supervised learning. From the
best of the author’s knowledge, a Mahalanobis distance learner for tasks related to
regression analysis have notybeen much concerned: Therefore; it is.one‘interesting
direction to develop a Mahalanobis distance learner to improve the performance
of an existing regressor such as least square, in the same sense as a distance
learner considered in this dissertation which improvesthe performance of the kNN

algorithm.

e Up to now, the main contents of this dissertation is of theory and of mod-
eling. What this dissertation lack of is about its applications to challenging real

world problems, not just, say, a UCI dataset. It is highly interesting to apply our
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methods to the high-dimensional real-world datasets such as those related to text
categorization, speech recognition, computer vision and financial data prediction.
Nevertheless, working on these real-world datasets is not straightforward. Some
certain issues such as time series analysis, spatial analysis, sparsity, sensitivity

and signal pre-processing are need  be carefully concerned. For example, in a

task of financial data predi :

AU INENINGINS
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