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CHAPTER I

INTRODUCTION

Stochastic differential equation (SDE) models find applications in various areas

such as in economics and finance, civil and mechanical engineering, environmental

science, signal processing and filtering, chemistry and physics, population dynam-

ics and psychology, pharmacology and medicine. The mean-reverting square root

process [3] is an SDE which has found considerable use in mathematical finance as

an alternative to geometric Brownian motion. It is used as a model for volatility,

interest rate, and other financial quantities, and forms the stochastic volatility

component of Heston’s asset price model [4]. Moreover, it can be used for pricing

bonds and barrier options [6].

However, introducing a jump process into such process makes the model be-

come more realistic. The mean-reverting square root process with jumps on which

we focus in this work has the form

dS(t) = α(µ− S(t−))dt+ σ
√
S(t−)dW (t) + δS(t−)dÑ(t) (1.1)

where t ∈ [0, T ], S(t−) denotes lim
r→t−

S(r), W is a Wiener process and Ñ is a

compensated Poisson process. S(t) represents the spot price at time t. The

parameter µ is the long run equilibrium price or mean reversion level, α is the

mean reversion rate, σ is the degree of volatility around it caused by noise from

the Wiener process, and δ is the degree of jumps.

If we have the strong solution in explicit form of an SDE with jumps, we

can determine its expectation, variance and covariance functions or even higher-

order moments. Unfortunately, this SDE with jumps has no strong solution in

explicit form. Thus, we would like to find its numerical approximation. Note
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that even though all coefficient functions satisfy the linear growth condition, we

cannot directly apply the standard convergence theory for numerical simulations

to this model due to the non-Lipschitz diffusion coefficient which is the square

root function.

In this work, we study three different numerical methods: Euler-Maruyama

(EM) method, compensated split-step backward Euler (CSSBE) method, and

jump-adapted Euler (JAE) method by numerically investigating on their perfor-

mance as well as accuracy in solving this particular model in weak sense. Com-

putable error bounds in weak sense for EM and CSSBE methods will also be

provided.



CHAPTER II

PRELIMINARIES

In this chapter, we give some basic concepts in probability and summarize im-

portant definitions and theorems relating to SDEs with jumps. The proof will be

omitted but can be found in [2, 7, 8, 9]. We assume that readers have knowledge

in measure theory at graduate level.

2.1 Basic Probability Theory

Let (Ω,F , P ) be a probability space and (Y,Σ) a measurable space. A ran-

dom variable is a measurable function from Ω to Y . Typically, the measur-

able space (Y,Σ) is the measurable space over the real numbers (R,B), where

B is the Borel σ-algebra. Let X be a random variable. It can be shown that

a function µ : B → [0, 1] defined by µ(B) := P (X ∈ B) is a measure on

(R,B) and is called a distribution of X. A function F : R → [0, 1] defined

by F (x) := P (X ≤ x) = µ ((−∞, x]) is called a distribution function of X.

A discrete random variable is a random variable whose distribution function is

discrete. Similarly, a continuous random variable is a random variable whose

distribution function is continuous. If the distribution µ of a discrete random

variable X is absolutely continuous with respect to the counting measure N , then

a Radon-Nikodym derivative
dµ

dN
is called a probability mass function of X.

If the distribution µ of a continuous random variable X is absolutely continuous

with respect to the Lebesgue measure λ, then a Radon-Nikodym derivative
dµ

dλ
is

called a probability density function of X.

The expected value or mean of X, denoted by E[X] or just EX, is defined
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as E[X] :=

∫
Ω

XdP . If X is a discrete random variable with probability mass

function p(x), then the expected value becomes E[X] =
∑
xi

xip(xi). If the distri-

bution of X admits a probability density function f(x), then the expected value

can be computed as E[X] =

∫ ∞
−∞

xf(x)dx. If a random variable X has mean µ,

then the variance of X, denoted by V ar(X),is given by V ar(X) := E[(X −µ)2].

Two random variables X and Y are equal in distribution, denoted by X
d
=

Y , if they have the same distributions, i.e. P (X ∈ B) = P (Y ∈ B) for all B ∈ B,

and are independent if P (X ∈ B ∧ Y ∈ C) = P (X ∈ B)P (Y ∈ C) for all

B,C ∈ B. If X and Y are independent, then E[XY ] = E[X]E[Y ].

2.2 Stochastic Processes

Given a probability space (Ω,F , P ), a stochastic process with state space Y

is a collection of Y -valued random variables indexed by a set I, i.e. a stochastic

process X is a collection {Xt : t ∈ I} where each Xt is a Y -valued random

variable. For a fixed ω ∈ Ω, a function X(ω) : I → Y , X(ω)(t) := Xt(ω), is called

a realization, a trajectory, or a sample path of the process X. Usually, the state

space Y is R which comes with the Borel σ-algebra B, and the index set I is an

interval [0, T ] or [0,∞) on R. Two stochastic processes U = {Ut : t ∈ I} and

V = {Vt : t ∈ I} on the same probability space are independent if Us and Vt are

independent for all s, t ∈ I.

For a random variable Y , the σ-algebra generated by Y , denoted by σ(Y ),

is the smallest σ-algebra which makes Y measurable. For a stochastic process X =

{Xt : t ∈ I}, the σ-algebra generated by X, denoted by σ(X), is the smallest

σ-algebra which makes Xt measurable for all t ∈ I. A collection {Ft : t ∈ I} of σ-

algebras on Ω is called a filtration if Fs ⊆ Ft for all s ≤ t. A stochastic process

X = {Xt : t ∈ I} is said to be adapted to the filtration {Ft : t ∈ I} if σ(Xt) ⊆

Ft for all t ∈ I and we will call X an adapted process {Xt,Ft : t ∈ I}. Every

stochastic process X = {Xt : t ∈ I} is always adapted to the natural filtration
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generated by X: {Ft = σ({Xs : s ≤ t}) : t ∈ I}. If a stochastic process U is

adapted to the natural filtration generated by a stochastic process V , we say that

U is adapted to the stochastic process V . A filtration{Ft}t∈I is said to satisfy

the usual conditions if it is right-continuous, i.e.
⋂
ε>0

Ft+ε = Ft for all t ∈ I,

and F0 contains all the P -null sets in F .

A stochastic process X = {Xt : t ∈ I} is said to have stationary increments

if Xt − Xs
d
= Xt+h − Xs+h for all t, s ∈ I and h with t + h, s + h ∈ I, and

independent increments if for every choice of ti ∈ I with t1 < . . . < tn,

Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent random variables.

A normal distribution N(µ, σ2) with parameter µ ∈ R and σ2 > 0 is a

continuous distribution whose probability density function is of the form f(x) =

1√
2πσ

e−
(x−µ)2

2σ2 . A normal distribution N(µ, σ2) has mean µ and variance σ2.

An exponential distribution Exp(λ) with parameter λ > 0 is a continuous

distribution whose probability density function is of the form f(x) = λe−λx1x≥0.

An exponential distribution Exp(λ) has mean 1
λ

and variance 1
λ2

.

A Poisson distribution Poi(λ) with parameter λ > 0 is a discrete distribu-

tion whose probability mass function is of the form p(k) = e−λ
λk

k!
, k ∈ N∪{0}. A

Poisson distribution Poi(λ) has mean λ and variance λ.

Let (Ω,F , P ) be a probability space and {Ft}t≥0 a filtration. An adapted

stochastic process W = {Wt,Ft : t ≥ 0} is called Brownian motion or a Wiener

process if the following conditions are satisfied:

• W0 = 0 almost surely.

• It has stationary and independent increments.

• For every t > 0, Wt has a normal N(0, t) distribution.

• It has almost surely continuous sample paths.

Let {τi} be a sequence of independent exponential random variables with pa-

rameter λ and Tn =
n∑
i=1

τi. An adapted stochastic process N = {Nt,Ft : t ≥ 0}

defined by Nt :=
∑
n∈N

1t≥Tn = #{n ∈ N : Tn ≥ t} is called a Poisson process with
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intensity λ. Moreover, a Poisson process N with intensity λ satisfies the following

properties which show nicely what kind of sample path a Poisson process has:

• N0 = 0 almost surely.

• It has stationary and independent increments.

• For every t > 0, Nt has a Poisson Poi(λt) distribution.

• It has right continuous and piecewise constant sample paths which increase

by jumps of size 1.

An adapted stochastic process Ñ = {Ñt,Ft : t ≥ 0} defined by Ñt = Nt − λt

is called a compensated Poisson process.

An adapted stochastic process X = {Xt,Ft : t ∈ I} such that E|Xt| < ∞

for all t ∈ I is said to be a martingale if for every s, t ∈ I such that s < t,

E(Xt |Fs) = Xs almost surely. A Wiener process W and a compensated Poisson

process Ñ are martingales. Therefore, E[Wt] = 0 and E[Ñt] = 0 for all t ≥ 0.

2.3 Stochastic Integrals

In what follows, we will consider all processes on a fixed interval [0, T ]. First,

we introduce an appropriate class of Itô integrable processes. Let {Ft}t∈[0,T ] be

the natural filtration of a Wiener process on [0, T ]. Then, a stochastic process

C = {Ct : t ∈ [0, T ]} is said to be simple if there exists a partition Π: 0 = t0 <

t1 < . . . < tn−1 < tn = T and a sequence {Zi : i = 1, . . . , n} of random variables

such that the sequence {Zi} is adapted to {Fti−1
: i = 1, . . . , n}, E[Z2

i ] < ∞ for

all i, and Ct =
n∑
i=1

Zi1[ti−1,ti) + Zn1{T}.

The Itô stochastic integral of a simple process C on [0, T ] is given by∫ T

0

CsdWs :=
n∑
i=1

Cti−1
(Wti −Wti−1

) =
n∑
i=1

Zi(Wti −Wti−1
).

Also, for each t such that tk−1 ≤ t < tk, we define∫ t

0

CsdWs :=

∫ T

0

Cs1[0,t]dWs =
k−1∑
i=1

Zi(Wti −Wti−1
) + Zk(Wt −Wtk−1

),
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where
0∑
i=1

Zi(Wti −Wti−1
) := 0.

Now, we will introduce the definition of Itô stochastic integral of any general

process. Let C = {Ct : t ∈ [0, T ]} be a stochastic process which satisfies the

following conditions:

• C is adapted to a Wiener process on [0, T ].

• The integral

∫ T

0

E[C2
s ]ds is finite.

Then, there exists a sequence {C(n)} of simple processes such that∫ T

0

E[Cs − C(n)
s ]2ds→ 0.

For each n ∈ N, we can consider stochastic process

I(C)(n) =

{
It(C

(n)) =

∫ t

0

C(n)
s dWs : t ∈ [0, T ]

}
.

It can be shown that there exists a stochastic process I(C) = {It(C) : t ∈ [0, T ]}

to which the sequence
{
I(C(n))

}
of stochastic processes converges in mean square:

E

[
sup

0≤t≤T

[
It(C)− It(C(n))

]2]→ 0.

The mean square limit I(C) is called the Itô stochastic integral of the stochas-

tic process C, and for each t ∈ [0, T ], It(C) is denoted by

∫ t

0

CsdWs. It can be

shown that this definition of Itô stochastic integrals is well-defined, see [8, 9].

Next, we will define stochastic integrals with respect to compensated Poisson

random measure. The key of this definition is to construct a Poisson random

measure.

Let G ⊆ Rd and G the collection of Borel sets on G. A Radon measure on

(G,G ) is a measure µ such that µ(B) < ∞ for every compact Borel set B ∈ G .

Let (Ω,F , P ) be a probability space, G ⊆ Rd and µ a Radon measure on (G,G ).

A Poisson random measure on G with intensity measure µ is an integer-valued

random measure M : Ω× G → N such that

• For almost all ω ∈ Ω, M(ω, ·) is an integer-valued Radon measure on G.
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• For each B ∈ G , M(B) := M( · , B) is a Poisson random variable with

parameter µ(B).

• For disjoint sets B1, . . . , Bn ∈ G , the random variables M(B1), . . . ,M(Bn)

are independent.

It can be shown that for any Radon measure µ on G ⊆ Rd, there exists a Poisson

random measure M on G with intensity µ. We define the compensated Poisson

random measure M̃ by subtracting from M its intensity measure:

M̃(B) = M(B)− µ(B).

Now, consider a Poisson random measure M with intensity Lebesgue measure

on G = [0, T ] × R. We can define the stochastic integral with respect to

compensated Poisson random measure M̃ of a square integrable process X

which is adapted to a Poisson process N , denoted by

{∫ t

0

XsdÑs, t ∈ [0, T ]

}
, in

analogous way of defining the Itô stochastic integral, see [2].

Both Itô stochastic integral and stochastic integral with respect to compen-

sated Poisson random measure are martingales; hence, they have expectation zero

at any time t ∈ [0, T ].

2.4 SDEs with Jumps

We interpret a stochastic differential equation with jumps

dXt = f(t,Xt)dt+ g(t,Xt)dWt + h(t,Xt)dÑt, X0(ω) = Y (ω) (2.1)

where t ∈ I = [0, T ] or [0,∞) as the stochastic integral equation

Xt = X0 +

∫ t

0

f(s,Xs)ds+

∫ t

0

g(s,Xs)dWs +

∫ t

0

h(s,Xs)dÑs (2.2)

where the first integral on the right-hand side is a Lebesgue integral (or a Riemann

integral since the set of discontinuous points of the process has Lebesgue measure

zero), the second one is an Itô stochastic integral, and the last one is a stochastic

integral with respect to compensated Poisson random measure.
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There are two kinds of solutions of an SDE with jumps called strong and

weak solutions. A strong solution of the SDE with jumps (2.1), on the given

probability space (Ω,F , P ) and with respect to the fixed Wiener process W and

the compensated Poisson process Ñ and initial condition Y , is a process X =

{Xt : t ∈ I} with the following properties:

• X is adapted to the augmented filtration generated by the Wiener process

W , the compensated Poisson process Ñ and the initial condition Y .

• X0 = Y almost surely.

• The integrals occurring in (2.1) are well-defined as Lebesgue or Riemann in-

tegral, Itô stochastic integral and stochastic integral with respect to compensated

Poisson random measure, respectively, and (2.2) holds almost surely.

• X is a function of the underlying Wiener and compensated Poisson sample

paths and of the coefficient functions f(t, x), g(t, x) and h(t, x).

Thus, a strong solution of (2.1) is based on the paths of the underlying Wiener and

compensated Poisson processes. If we changed the Wiener and compensated Pois-

son processes by other Wiener and compensated Poisson processes, we would get

another strong solution which would be given by the same functional relationship,

but with the new Wiener and compensated Poisson processes in it. For a weak

solution, the path behavior is not essential. We are only interested in the distribu-

tion of X. The initial condition Y and the coefficient functions f(t, x), g(t, x) and

h(t, x) are given, and we have to find one Wiener process and one compensated

Poisson process such that (2.2) holds almost surely.

In this thesis, we only consider strong solutions of SDEs with jumps. We now

give sufficient conditions for the existence and uniqueness of such solutions. From

(2.1), suppose that the coefficient functions f(t, x), g(t, x) and h(t, x) satisfy the

Lipschitz and linear growth conditions:

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)|+ |h(t, x)− h(t, y)| ≤ K |x− y|,

|f(t, x)|2 + |g(t, x)|2 + |h(t, x)|2 ≤ K2
(
1 + |x|2

)
,
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for every t ∈ I, x ∈ R, y ∈ R where K is a positive constant. In addition,

the random variable Y is independent of the Wiener and compensated Poisson

processes and has finite second moment:

E|Y |2 <∞.

Then, there exists a unique strong solution of the SDE with jumps (2.1), see [7].



CHAPTER III

NUMERICAL SCHEMES

In this chapter, we present the three numerical schemes investigated in this thesis

and give the concept of strong and weak convergence of numerical solutions. From

now on, for a stochastic process X, we write X(t) in place of Xt and use the

subscript when we refer to a numerical solution.

First of all, we will talk about our assumptions for the mean-reverting square

root process with jumps. Throughout this thesis, let (Ω,F , P ) be a complete

probability space with a filtration {Ft : t ≥ 0} satisfying the usual conditions.

Let W be a Wiener process and N a Poisson process with intensity λ such that

Ñ(t) = N(t)−λt is the corresponding compensated process. Assume that W and

N are independent, and all of these processes are defined on this probability space.

This thesis considers (1.1) in which α, λ and σ are positive, µ is nonnegative,

α + λδ > 0, and S(0) > 0 almost surely.

For any given initial value S(0) = S0 > 0 almost surely, the condition α+λδ >

0 will force (1.1) to have a unique strong solution which will never become negative

with probability one, see [13]. The following theorem yields the expectation of

the solution of (1.1) for any time t.

Theorem 3.1. [13] For the equation (1.1),

ES(t)− µ = e−αt(ES0 − µ)

so that lim
t→∞

ES(t) = µ.

Now, we will focus on our three numerical schemes. We write sn to denote the

numerical approximation of (1.1) and simulate the model on a fixed finite interval

[0, T ].
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For the first method, we divide the interval [0, T ] into N parts with a fixed time

step ∆ = T
N

. Then, we acquire an equidistant time discretization {t0, t1, . . . , tN}

with tn = n∆. Then, we define the EM approximation to (1.1) by setting s0 = ES0

and forming

sn+1 = sn + α(µ− sn)∆ + σ
√
|sn|∆Wn + δsn∆Ñn

= (1− α∆)sn + αµ∆ + σ
√
|sn|∆Wn + δsn∆Ñn, (3.1)

where ∆Wn = W (tn+1) −W (tn), which is normally distributed with mean zero

and variance ∆, is a Wiener process increment and ∆Ñn = Ñ (tn+1)−Ñ(tn), which

has the distribution Poi(λ∆)− λ∆, is a compensated Poisson process increment.

Note that a numerical method that is directly applied to (1.1) may break down

due to negative values being supplied to the square root function. However, we

have known that the solution S(t) will never become negative almost surely. Thus,

the SDE with jumps (1.1) is equivalent to

dS(t) = α(µ− S(t−))dt+ σ
√
|S(t−)|dW (t) + δS(t−)dÑ(t)

which is a computationally safer problem. For this reason, we use |sn| instead of

sn under the square root function.

Next, with the same equidistant time discretization {t0, t1, . . . , tN}, the CSSBE

scheme for (1.1) introduced in [5] is defined by letting s0 = ES0 and forming

s∗n+1 = sn + α(µ− s∗n+1)∆,

sn+1 = s∗n+1 + σ
√
|s∗n+1|∆Wn + δs∗n+1∆Ñn

= sn + α(µ− s∗n+1)∆ + σ
√
|s∗n+1|∆Wn + δs∗n+1∆Ñn. (3.2)

We note here that s∗n+1 =
sn + αµ∆

1 + α∆
. For each step from sn to sn+1, this method

has two substeps. The first substep which is to find s∗n+1 concerns only with the

deterministic component, and the second substep which is to substitute s∗n+1 from

the first substep into the formula to obtain sn+1 deals with the random parts from

the Wiener process and the compensated Poisson process.
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Our last method based on time discretizations that include all jump times is

originally introduced in [11]. We adapt this method from [1] where a compound

Poisson process, which is a pure jump process, is used to be the jump process in

the model. Note that in this thesis, our jump process in the SDE with jumps is a

compensated Poisson process Ñ which is not a pure jump process but can be sep-

arated into a pure jump part N(t) and a nonjump part −λt. Recall that waiting

time between two consecutive jump times of a Poisson process with intensity λ is

exponentially distributed with parameter λ, which has mean 1
λ
. We construct a

jump-adapted time discretization by merging the old equidistant time discretiza-

tion with step size ∆ and the jump times {τ1, τ2, . . . , τM} generated by the Poisson

process N , and then orderly rename all points in this new jump-adapted time dis-

cretization, namely {t0, t1, . . . , tL}. Note that the jump times {τ1, τ2, . . . , τM} and

the number of jump times are random, so M and L is not a fixed number. More-

over, the jump-adapted time discretization {t0, t1, . . . , tL} may have different step

sizes, so we define ∆n = tn+1−tn and ∆Wn = W (tn+1)−W (tn), which is normally

distributed with mean zero and variance tn+1 − tn. The JAE scheme for (1.1) is

then given by setting s0 = ES0 and forming

sn+1− = sn + α(µ− sn)∆n + σ
√
|sn|∆Wn − λδsn∆n,

sn+1 =


sn+1− , if tn+1 is not a jump time;

sn+1− + δsn+1− , if tn+1 is a jump time.

(3.3)

For each step from sn to sn+1, this method has two substeps. The first substep

which is to find sn+1− deals with nonjump component, and the second substep

concerns only with pure jump part. Here, we break ∆Ñn into pure jump part

∆Nn and nonjump component −λ∆n. The nonjump part will be assigned to the

first substep, and for the second substep we add a jump of size δsn+1− ∗ 1 if it is a

jump time and do nothing if it is not a jump time because we have already known

which step is a jump time of the Poisson process N whose jumps have size 1.

A numerical solution sn with the grid size ∆ is said to converge strongly
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with order γ to S at time T if there exists a constant C, independent of ∆, such

that

E|S(T )− sn,T | ≤ C∆γ

for any ∆ sufficiently small, where sn,T denote the numerical solution at time T .

As one can notice from the definition of the strong error, strong schemes provide

pathwise approximations. Therefore, these methods are suitable for problems such

as filtering, scenario analysis and hedge simulation.

A numerical solution sn with the grid size ∆ is said to converge weakly

with order γ to S at time T if for each f ∈ C2(γ+1)
P there exists a constant C,

independent of ∆, such that

|Ef(S(T ))− Ef(sn,T )| ≤ C∆γ

for any ∆ sufficiently small, where sn,T denote the numerical solution at time

T and C
2(γ+1)
P denote the space of 2(γ + 1) continuously differentiable functions

which have polynomial growth. It is customary to choose the function f to be

the identity function when we simulate a model and measure the error in weak

sense. Weak schemes provide approximations of the probability measure and are

appropriate for problems such as derivative pricing and the evaluation of moments,

risk measures and expected utilities.



CHAPTER IV

ERROR BOUNDS

This chapter provides rigorous error bounds in weak sense for Euler-Maruyama

and compensated split-step backward Euler methods. The key ingredients of our

proof is the Fubini’s theorem and the Gronwall’s inequality. Let’s state these two

theorems in the versions that we will use in our proof.

Theorem 4.1. [12] If A and B are σ-finite measure spaces, and either∫
A

∫
B

|f(x, y)| dydx <∞ or

∫
B

∫
A

|f(x, y)| dxdy <∞,

then

∫
A

∫
B

f(x, y) dydx =

∫
B

∫
A

f(x, y) dxdy.

Theorem 4.2. [10] Let u, f, g and h be nonnegative continuous functions defined

on J = [a, b], and u(t) ≤ f(t) + g(t)

∫ t

a

h(s)u(s)ds for all t ∈ J . Then, for any

t ∈ J ,

u(t) ≤ f(t) + g(t)

∫ t

a

h(s)f(s)e
∫ t
s h(r)g(r)drds.

Recall here that E[∆Wn] = E[∆Ñn] = 0. Moreover, every Itô stochastic inte-

gral and stochastic integral with respect to compensated Poisson random measure

have expectation zero. These properties will be repeatedly used throughout this

chapter.

4.1 Euler-Maruyama Method

We will first deal with the EM method. Throughout this section, sn will de-

note the EM numerical solution of (1.1). Let us define the continuous-time EM

approximation

s(t) = s0 + α

∫ t

0

(µ− s̄(r))dr + σ

∫ t

0

√
|s̄(r)|dW (r) + δ

∫ t

0

s̄(r)dÑ(r) (4.1)
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where t ∈ [0, T ], and s̄(t) is the step function s̄(t) := sn for t ∈ [tn, tn+1). From

(3.1) and (4.1), we see that at each grid point t = tn, s̄(t) = sn = s(tn). This

yields that an error bound for s(t) will automatically imply an error bound for

our numerical solution sn. Hence, we will aim at the error bound for s(t).

Theorem 4.3. Esn − µ = (1− α∆)n(Es0 − µ).

Proof. First, notice that after we fix ∆, E|sn| is bounded due to the linear growth

condition of all coefficients and the finite number of time steps, and sn is inde-

pendent of ∆Wn and ∆Ñn thanks to the fixed time step ∆. Note that if the

time step is not fixed, sn may not be independent of ∆Ñn. Taking expecta-

tion in (3.1) yields that Esn+1 = (1 − α∆)Esn + αµ∆. Therefore, for each n,

Esn+1 − µ = (1− α∆)(Esn − µ); hence, this can lead to the desired result.

This theorem yields that lim
n→∞

Esn = µ for ∆ < 2
α

. Thus, the discrete approx-

imation of S(t) still keeps mean reversion when ∆ is sufficiently small. Note that

we usually choose ∆ so small that ∆ < 2
α

. From Theorem 3.1, we also immediately

obtain the following corollary.

Corollary 4.4. |ES(n∆)− Esn| =
∣∣ e−αn∆ − (1− α∆)n

∣∣ |ES0 − µ|.

It is worth remarking here that from the above corollary we can show that

when |1 − α∆| < 1 or equivalently ∆ < 2
α

, |ES(T ) − EsN | ≤ C∆ for some

constant C, where N is the number of time steps. Therefore, the order of weak

convergence for the EM numerical approximation when ∆ is sufficiently small is

1.0. To see this claim, we start at

|ES(T )− EsN | =
∣∣ (e−α∆)N − (1− α∆)N

∣∣ |ES0 − µ|

=

∣∣∣∣∣∣
(
∞∑
k=0

(−α∆)k

k!

)N

− (1− α∆)N

∣∣∣∣∣∣ |ES0 − µ|.

We will show that

(
∞∑
k=0

(−α∆)k

k!

)N

− (1 − α∆)N = A∆ for some constant A

which does not depend on N and ∆, and then set C = |A||ES0 − µ| in order to

obtain our desired result. Observe that
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(
∞∑
k=0

(−α∆)k

k!

)N

=

(
1− α∆ +

(−α∆)2

2!
+

(−α∆)3

3!
+ . . .

)N
= 1−Nα∆ +

[(
N

2

)
(−α∆)2 +

(
N

1

)
(−α∆)2

2!

]
+[(

N

3

)
(−α∆)3 +

(
N

1

)(
N − 1

1

)
(−α∆)3

2!
+

(
N

1

)
(−α∆)3

3!

]
+ . . .

and

(1− α∆)N = 1−Nα∆ +

(
N

2

)
(−α∆)2 +

(
N

3

)
(−α∆)3 + . . .+

(
N

N

)
(−α∆)N .

Then,

(
∞∑
k=0

(−α∆)k

k!

)N

− (1 − α∆)N has the form α∆
∞∑
k=1

fk(N)(α∆)k where

fk(N) is a polynomial over N of degree k. For each k, fk(N)(α∆)k does not

depend on N and ∆ but T and α, since we can eliminate N l where l ≤ k by

multiplying it by ∆l so that N l∆l = T l and also annihilate the remainder ∆k−l

by matching it with αk−l available from αk so that ∆k−lαk−l < 2k−l. Whatever

N is,
∞∑
k=1

fk(N)(α∆)k is still convergent. Hence, we have our claim. However, it

is hard to explicitly calculate such constant A. As we will see later, Theorem 4.7,

which is the main result of this section, will provides rigorous error bound of the

EM method for the mean-reverting square root process with jumps.

Lemma 4.5. E|s̄(t)| is bounded on [0, T ].

Proof. Observe that E|sn| is bounded, and for any t ∈ [tn, tn+1), s̄(t) = sn. Hence,

E|s̄(t)| = E|sn| is also bounded on [0, T ].

Lemma 4.6. |E[s(t)− s̄(t)]| ≤ D1(α,∆, S0, µ,N) for any t ∈ [0, T ] where

D1(α,∆, S0, µ,N) :=


α∆|ES0 − µ|, if |1− α∆| < 1,

α∆|ES0 − µ||1− α∆|N , if |1− α∆| ≥ 1

and N is the number of time steps.
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Proof. Let t ∈ [0, T ] and n =
⌊
t
∆

⌋
, the integer part of t

∆
. Since s̄(t) = sn = s(tn)

at each grid point t = tn, we have

s(t)− s̄(t) = α(µ− sn)(t− n∆) + σ
√
|sn| (W (t)−W (n∆))

+ δsn

(
Ñ(t)− Ñ(n∆)

)
.

Taking expectation through this equation and applying Theorem 4.3, we acquire

E[s(t)− s̄(t)] = αE(µ− sn)(t− n∆)

= α(1− α∆)n(µ− Es0)(t− n∆).

Taking absolution through this equation and noting that t− n∆ ≤ ∆, we obtain

that

|E[s(t)− s̄(t)]| ≤ α|1− α∆|n|ES0 − µ|∆.

Note that n can be any integer varied from 0 to N . If |1 − α∆| < 1, then we

have that |1 − α∆|n < 1; thus, we get the desired result. If |1 − α∆| ≥ 1, then

|1− α∆|n < |1− α∆|N ; hence, we acquire the desired result.

Remark that ∆ is usually so small that |1 − α∆| < 1; therefore, in this case,

we choose D1 = α∆|ES0 − µ| whose formula does not depend on the number of

time steps N .

Theorem 4.7. For any t ∈ [0, T ],

|E[S(t)− s(t)]| ≤ D1(α,∆, S0, µ,N)(eαT − 1),

where D1(α,∆, S0, µ,N) is defined as in Lemma 4.6.

Proof. Let t ∈ [0, T ]. From (1.1) and (4.1), we have

S(t)− s(t) =− α
∫ t

0

(
S(r−)− s̄(r)

)
dr

+ σ

∫ t

0

(√
S(r−)−

√
|s̄(r)|

)
dW (r) + δ

∫ t

0

(
S(r−)− s̄(r)

)
dÑ(r).
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Taking expectation through this equation and replacing r− by r will not have any

effect on the Lebesgue integrals yield

E[S(t)− s(t)] = −αE
∫ t

0

(S(r)− s̄(r)) dr.

Next, for the right hand side of the above equation, we will apply Theorem 4.1

in order to interchange the order between the expectation and the integral. Note

that the expectation is the integral with respect to the probability measure P

over the whole space Ω, and both Ω and [0, t] are σ-finite measure spaces. We will

verify that ∫ t

0

E|S(r)− s̄(r)|dr <∞.

Since the exact solution S(t) will never become negative with probability one,

|S(t)| = S(t) almost surely. Thus, E|S(r)| = ES(r) = µ + e−αr(ES0 − µ) which

is bounded on [0, t]. By Lemma 4.5, E|S(r) − s̄(r)| ≤ E|S(r)| + E|s̄(r)| is also

bounded on [0, t]. Therefore, the integral

∫ t

0

E|S(r)− s̄(r)|dr is bounded. Then,

we can interchange the order between the expectation and the integral as desired.

After that taking the absolution yields

|E[S(t)− s(t)]| = α

∣∣∣∣∫ t

0

E (S(r)− s̄(r)) dr
∣∣∣∣

≤ α

∫ t

0

|E (S(r)− s̄(r))| dr

≤ α

∫ t

0

|E (S(r)− s(r))| dr + α

∫ t

0

|E (s(r)− s̄(r))| dr

≤ α

∫ t

0

|E (S(r)− s(r))| dr + α

∫ t

0

D1dr (*)

= αD1t+ α

∫ t

0

|E (S(r)− s(r))| dr.

Note that we obtain the inequality in line (*) from Lemma 4.6. Now, we will

apply Theorem 4.2 to this inequality. Observe that we have to check only that

|E[S(t) − s(t)]| is continuous. Also, notice that ES(t) = µ + e−αt(ES0 − µ) and

the absolution are continuous. We claim that Es(t) is also continuous; hence, we

will acquire the desired condition for applying Theorem 4.2. To show our claim,
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we first note that for every measurable function f ,

∫ t

0

f(r)dr is continuous in t.

From (4.1),

Es(t) = Es0 + αE

∫ t

0

(µ− s̄(r))dr = Es0 + αµt− E
∫ t

0

s̄(r)dr.

Since E|s̄(t)| is bounded by Lemma 4.5, again, we can interchange the order

between the expectation and the integral and finally have

Es(t) = Es0 + αµt−
∫ t

0

Es̄(r)dr

which is continuous. Therefore, we can now apply Theorem 4.2 to the inequality

|E[S(t)− s(t)]| ≤ αD1t+ α

∫ t

0

|E (S(r)− s(r))| dr which yields

|E[S(t)− s(t)]| ≤ αD1t+ α

∫ t

0

αD1re
∫ t
r αdvdr

= αD1t+ α2D1

∫ t

0

reαt−αrdr

= αD1t+ α2D1

[
eαt

α2
− t

α
− 1

α2

]
(**)

= D1(eαt − 1)

≤ D1(eαT − 1).

Note that the equation in line (**) is obtained by integration by parts.

Note that there are other versions of Gronwall’s inequality which can yield the

error bound αTD1e
αT being greater than D1(eαT − 1). The Gronwall’s inequality

in Theorem 4.2 is a version giving the best result for Theorem 4.7 as we have

found from a lot of textbooks.

By Theorem 4.7, we see that the order of weak convergence for the EM nu-

merical solution when ∆ is sufficiently small is 1.0.

Recall that sn and s(t) agree on every grid point and Corollary 4.4 gives a

weak error at each grid point tn. Because the number of time steps is finite,

max
n
|e−αn∆ − (1 − α∆)n||ES0 − µ| is an error bound for our numerical solution

sn for every grid point. This differs from the error bound in Theorem 4.7 which
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provides the error for the continuous-time EM approximation s(t) for the whole

interval [0, T ]. Thus, the error bound from Theorem 4.7 can be used instead of

max
n
|e−αn∆ − (1 − α∆)n||ES0 − µ| for Corollary 4.4. Another good aspect of

the error bound in Theorem 4.7 is that it has a simple form which is easy to be

calculated.

4.2 Compensated Split-Step Backward Euler Method

Now, we work on the CSSBE method. Throughout this section, sn will denote the

CSSBE numerical solution of (1.1) which is obtained from (3.2). We now define

the continuous-time CSSBE approximation by

s(t) = s0 + α

∫ t

0

(µ− s̄(r))dr + σ

∫ t

0

√
|s̄(r)|dW (r) + δ

∫ t

0

s̄(r)dÑ(r), (4.2)

where t ∈ [0, T ], and s̄(t) is the step function s̄(t) := s∗n+1 for t ∈ [tn, tn+1). From

(3.2) and (4.2), we know that sn = s(tn) at every grid point t = tn. Like the EM

method, we will seek the error bound for s(t) in order to obtain an error bound

for our numerical solution sn. This section is very much like the previous section

so that some remarks and details of the proof will be omitted.

Theorem 4.8. Esn − µ = ( 1
1+α∆

)n(Es0 − µ).

Proof. Note that E|s∗n+1| is bounded. Taking expectation in (3.2) yields that

Esn+1 = Esn+αµ∆
1+α∆

. Therefore, Esn+1− µ = 1
1+α∆

(Esn− µ). Then, we will get the

desired result.

This theorem yields that lim
n→∞

Esn = µ for any size of ∆. Thus, the discrete

approximation sn still keeps mean reversion for any size of ∆. This makes the

CSSBE method seem better than the EM method.

Corollary 4.9. |ES(n∆)− Esn| =
∣∣ e−αn∆ − ( 1

1+α∆
)n
∣∣ |ES0 − µ|.

Lemma 4.10. E|s̄(t)| is bounded on [0, T ].
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The proof of the above lemma is similar to Lemma 4.5’s.

Lemma 4.11. |E[s(t)− s̄(t)]| ≤ D2(α,∆, S0, µ) for any t ∈ [0, T ] where

D2(α,∆, S0, µ) :=
α∆

1 + α∆
|ES0 − µ|.

Proof. Let t ∈ [0, T ] and n =
⌊
t
∆

⌋
, the integer part of t

∆
. From (3.2) and (4.2),

we acquire that

s(t)− s̄(t) = sn + α(µ− s∗n+1)(t− n∆) + σ
√
|s∗n+1| (W (t)−W (n∆))

+ δs∗n+1

(
Ñ(t)− Ñ(n∆)

)
− sn + µα∆

1 + α∆
.

Taking expectation through this equation, we have

E[s(t)− s̄(t)] =
α∆

1 + α∆
(Esn − µ) +

α(t− n∆)

1 + α∆
(µ− Esn)

=
α((n+ 1)∆− t)

1 + α∆
(Esn − µ).

Taking absolution on both sides of this equation, noting that (n + 1)∆ − t ≤ ∆

and applying Theorem 4.8, we obtain

|E[s(t)− s̄(t)]| ≤ α∆

1 + α∆

(
1

1 + α∆

)n
|Es0 − µ|

≤ α∆

1 + α∆
|Es0 − µ|

which completes the proof.

Theorem 4.12. For any t ∈ [0, T ],

|E[S(t)− s(t)]| ≤ D2(α,∆, S0, µ)(eαT − 1),

where D2(α,∆, S0, µ) is defined as in Lemma 4.11.

We can imitate the proof of Theorem 4.7 to prove this theorem by applying

Lemma 4.10 and Lemma 4.11 instead of Lemma 4.5 and Lemma 4.6, respectively.

From Theorem 4.12, since α∆
1+α∆

< α∆, we also have that

|E[S(t)− s(t)]| < α∆|ES0 − µ|(eαT − 1).
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Hence, the order of weak convergence for the CSSBE numerical solution is 1.0.

Observe that we can still imitate the package of proof from section 4.1 to find

error bounds for other methods that have a constant time step size. Unfortunately,

the JAE method has random time step sizes, so we cannot use the proof from

section 4.1 to show an error bound for this method. It is harder to find such

bound.



CHAPTER V

COMPUTATIONAL EXPERIMENTS

First, we show computable error bounds for EM and CSSBE methods acquired

from Theorem 4.7 and Theorem 4.12, respectively. Specifically, we demonstrate,

in Table 5.1, the bounds in the case α = 4, µ = 0.5, σ = 0.3, λ = 8, δ = 0.2, s0 = 1,

and T = 0.5 for a range of ∆ values.

EM CSSBE

∆ = 2−9 0.024957250386448 0.024763783329189

∆ = 2−8 0.049914500772896 0.049146585376390

∆ = 2−7 0.099829001545791 0.096803880286828

∆ = 2−6 0.199658003091583 0.187913414674431

∆ = 2−5 0.399316006183166 0.354947561051703

Table 5.1: Error bounds for EM and CSSBE methods when α = 4, µ = 0.5, σ =

0.3, λ = 8, δ = 0.2, s0 = 1, and T = 0.5.

Next, we simulate our model through MATLAB using the three methods. In

Figure 5.1 - 5.6, graphs that show the order of convergence in weak sense of our

three methods are presented. For each method, we generate 1,000,000 sample

paths with 5 different sizes of ∆ : 2−9, 2−8, 2−7, 2−6 and 2−5. Then, we measure

the error in weak sense: |ES(T ) − Esn,T |. Here, ES(T ) can be calculated from

Theorem 3.1, and we find Esn,T by averaging sn,T of all 1,000,000 paths. For

each graph, the x-axis is the size of ∆ and the y-axis represents the weak error

|ES(T )− Esn,T |. Here, we plot these graphs in log-log scale so that the slope of
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each line will represent the order of convergence in weak sense. The reference line

with slope of one is also plotted in dash. Note that for Figure 5.3 - 5.6, we fix

α = 6, µ = 0.5, σ = 0.5, δ = 0.1, s0 = 1 and T = 0.25 and vary λ over 4, 12, 36

and 108. For each λ, the expected number of jumps of sample paths is λT so that

we examine the cases when the expected numbers of jumps of sample paths are

1, 3, 9 and 27, correspondingly.

Figure 5.1: Weak error plots when α = 4, µ = 0.5, σ = 0.3, λ = 8, δ = 0.2, s0 = 1,

and T = 0.5.
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Figure 5.2: Weak error plots when α = 6, µ = 50, σ = 0.5, λ = 36, δ = 0.1, s0 =

100, and T = 0.25.
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Figure 5.3: Weak error plots when α = 6, µ = 0.5, σ = 0.5, λ = 4, δ = 0.1, s0 = 1,

and T = 0.25.
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Figure 5.4: Weak error plots when α = 6, µ = 0.5, σ = 0.5, λ = 12, δ = 0.1, s0 = 1,

and T = 0.25.



29

Figure 5.5: Weak error plots when α = 6, µ = 0.5, σ = 0.5, λ = 36, δ = 0.1, s0 = 1,

and T = 0.25.
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Figure 5.6: Weak error plots when α = 6, µ = 0.5, σ = 0.5, λ = 108, δ = 0.1, s0 =

1, and T = 0.25.
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Lastly, graphs that show weak error bounds for EM and CSSBE methods

coming from Theorem 4.7 and Theorem 4.12, respectively, together with the weak

error plots from corresponding simulation are illustrated. Figure 5.7 - 5.8 show the

relation between our theoretical error bounds and the errors from our simulation

in the case α = 4, µ = 0.5, σ = 0.3, λ = 8, δ = 0.2, s0 = 1, and T = 0.5. Here, we

use 5 different sizes of ∆ : 2−9, 2−8, 2−7, 2−6 and 2−5 so that we can obtain each

point of theoretical error bounds from Table 5.1. The reference line with slope of

one is also plotted in dash.

Figure 5.7: Theoretical error bound from Theorem 4.7 and weak error plot for

EM method when α = 4, µ = 0.5, σ = 0.3, λ = 8, δ = 0.2, s0 = 1, and T = 0.5.
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Figure 5.8: Theoretical error bound from Theorem 4.12 and weak error plot for

CSSBE method when α = 4, µ = 0.5, σ = 0.3, λ = 8, δ = 0.2, s0 = 1, and T = 0.5.



CHAPTER VI

DISCUSSION AND CONCLUSION

In this work, we have provided rigorous numerical error bounds in weak sense for

EM and CSSBE methods for the mean-reverting square root process with jumps.

The numerical investigations have also been done with both methods and also with

the JAE method. It is found numerically that all of three methods tend to have

order of weak convergence equal to 1.0. This coincides with the general theory for

SDEs with jumps with Lipschitzian coefficients. In fact, from the formulae of the

error bounds for EM and CSSBE methods in chapter 4, we know that the order

of weak convergence for both numerical schemes is exactly 1.0.

We notice that the formulae of error bounds for EM and CSSBE methods do

not depend on parameters σ, λ, δ. This is because these parameters relate to the

Wiener process and the compensated Poisson process which are martingales.

Comparing the formulae of error bounds for EM and CSSBE methods, we

see that the error bound of CSSBE method is slightly better than EM method’s.

This agrees with our computer simulation in many cases in which both of EM and

CSSBE plots are close together.

Although the JAE method should have a better numerical solution when it is

compared with EM and CSSBE methods for other models, it has been observed

from the experiments that the medthod gives higher errors in almost all cases of

our simulation. The most suspicious factor to this phenomenon is the parameters

concerning with jumps, which are λ and δ. However, δ represents the degree of

jumps and should be around 0.1 or 0.2 for instance. Thus, we shift out attention

to the effect of the number of jumps in sample paths to its accuracy. Figure

6.1 and 6.2 show some sample paths simulated by the JAE method with the
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same parameters used in Figure 5.6. The dash line in each picture represents the

expectation of the exact solution obtained from Theorem 3.1.

Figure 6.1: A sample path of JAE method that has a great number of jumps when

α = 6, µ = 0.5, σ = 0.5, λ = 108, δ = 0.1, s0 = 1, T = 0.25 and ∆ = 2−9.
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Figure 6.2: A sample path of JAE method that has a small number of jumps

when α = 6, µ = 0.5, σ = 0.5, λ = 108, δ = 0.1, s0 = 1, T = 0.25 and ∆ = 2−9.
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When the number of jumps is too low, in Figure 5.3, all methods will behave

indistinctively. The more the number of jumps, the more the difference of JAE

method to the other two schemes. If the number of jumps is too high, the JAE

method may create some paths, as in Figure 6.1, that have too many jumps or

might generate some paths, as in Figure 6.2, that have a small number of jumps

before they approach to the strike time T and go far off the expectation of the

exact solution at time T . This means that the JAE method has high volatility

when λ is too large and can affect its performance. Hence, we should use the

JAE method for the scenario having the reasonable expected number of jumps.

Anyway, this is just our hypothesis. The actual factors are still unknown. This

might need a theoretical error bound for JAE method and deep analysis which is

more complicated than the other two methods’ because of the nonconstant time

step size.
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