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CHAPTER I

A é the standard definition to

———

use is that of recussi W ' ¢ will quickly rey We begin with these

iii. The projection f A 49" {a ) =@ for all 1 < ¢ < n and
ay, )
and the following rules for }r;.f:-ﬂ’aﬁ g NEW ' from given functions:

iv. composition: given | a*i- et (T4, )y R (T, T,

obtain th i

,...,xn)),

.u-'

v. primitive recklrsmn given functlons h(z1,...,T,) and k(xy,...,Tpya), Ob-

Wﬁﬂ?ﬂﬂﬂﬁﬂﬂﬂﬂi

IL'1,..

QW']ﬂﬁﬂ‘imﬁJﬁWﬂﬁl'lﬂﬂ

v1 restricted minimization: given a function hA(xy,...,2,,y) such that for
any zi,...,r, there exists a y such that h(zi,...,z,,y) = 0, obtain the

function ¢ satisfying

g1, .. xn) = py(h(zy, ..., 20,y) = 0),



where py(h(xy, ..., x,,y) = 0) denote the least y such that h(xq, ..., z,,y) =

0.
A function is said to be recursiv d only if it can be obtained from the initial
functions by any finite numl gomposition, primitive recursion

If we wish to extend “definiti T arsiveness, a very general target to
consider is to extendsit t st ord otice that there is no obvious

. : J \
way to do so, sinceho gifive ou and restricted minimization depend

on certain propertiegof ral pnumbers. | Alte ‘\«\
is one for whichfwe c Y, “prog: \i fe. A

culus only deals with symbols, wi out an mptions about their meanings,

a computable function
good, mathematically

Since the lambda cal-

it is a good tool to help: ' ; f€ COI putability to functions on

an arbitrary first-order structure="T ater expressive power, we will use a

lambda calculus with-patterns; created b jjajiva-{5][6], which we will
briefly descri IR guammmemenna : o
Y h AY )

Assume tlre

iﬁ are g tinet symbols, called vari-
: £l
ables, and a set of symbols which are distinct from the variables, called con-

GV ) AL RTe

arlable and constant 1s a pattern.

N M@ﬂ”‘i‘ﬁd LTSI B G B

occurs in both P, and Py, then (P P,) is a pattern.
Then, the set of terms is defined inductively as follows.

T1. Each variable and constant is a term, called an atom.



T2. If M and N are any terms, (M N) is a term, called an application.

T3. If P is any pattern and @ is any term, (AP.QQ) is a term, called a simple

abstraction.

T4. If P is any pattern - m, d abstraction, ((AP.Q) | A) is

a term, called a CQ

An abstractl — M. For example,

(Ax.z) represents a N ) represents applying
a function représenf 7, 0 " e ‘ ented by N. For example, if
we let 0 be a te ' nting th ural o | nber | . ((Az.z)0) represents
applying an ident] dction to (0. whig in 0. Avoiding complex
technical details for the % : - W Se f | \ \ > to represent the idea of
“computing”. In thvi's nofation: 18 procods | l ¢ can be written as ((Az.x)0)>
0. Here is a more t-“-=r" SR let S be a constant representing

the successor uncti n and 4@ be-a constan ating any natural number a,

then ((10.0) ¥} ] ' ; 777::{.‘ maps 0 — 0, i.e.

(A0.0) | (ASz.z))Sa) > a.

(((20.0) | ()\Sx.' ] r

The general idea of how to extend the concept of ¢émputable functions to

:ifﬁ [EJEL LN ok | FIFAY3 A

as in the ambda calculus with patterns, using Econstants all of symbols
RLARGI ﬁ%ﬁ"&l%ﬂ’%‘l‘lﬂ%ﬂ Ba s
‘computable relative to 2 if and only if there is a term G such that for all
ai,...,a,,a € |2A| we have Gay ...a, > a, whenever g(aq,...,a,) = a. Informally
speaking, a function on |2| is computable relative to 2 if and only if it can be

represented by a term which captures all its functionalities. The interpretations



of the elements of £ in the structure 2 are captured by adding a new congruence,
=g, called congruence in a structure, to identify two syntactically different terms

that represent the same element of

e domain |2|. For example, SO =g 1, since

The remainderlor lis. thesis : , ows. In Chapter II, we begin

with definition of \PH@ i prelinti emmas fro T previous work. Chapter

structure, and proo ;. of a S1G1 ertie a\.\ \ ows that our extension

satisfies all the SicProj 1c8- of« the '--. al lambda calculus with patterns,

omputablhty relative to a

word “computable”, we

SN 7= 3\
will lay the groundy for & \ \ e natural numbers N is
. dd_r

o o $ k he standard structure for
N. We will show that egery recursive total’ nct on N is computable relative
T .
to M in Chapter V. In pre h P o the converse, in Chapter VI, we
— — ,
will construct a Godel coe f*?y’ erins 1 bda calculus with patterns and

investigate hew to perform v arious steps 1 n the reduction o __;-‘ encoded term using

recursive functions.

ﬂ‘lJEJ’JVIEWIﬁWEJ’]ﬂi
QW]Nﬂ‘iﬂJﬂJW]’mEI']ﬁH



CHAPTER I1

[5][6] with some a, first-or suage and 2 a structure

for £. We use |

2.1 MP-terms’ /7 N\
) .ﬂl

Definition 2.1.1. , letha a listinct symbol that is not

in £. We call all the né h all of the symbols a and

two additional disti; ct s\ and F- tant 5. Assume also that an infinite

sequence of distinct symb ariables is given. Patterns and

pp J
AP-terms are expres 10 ;-f'ik ricted U 2 symbols, as follows.
The set: u-': bterns is the smallest set ol eXpressionss Satisfying the follow-

L7

" Tﬁ%ﬂ@“ﬂ fﬁ‘f FHNHARG e

LRI L

4 If P is a pattern that is not a variable, () is any pattern, and no variable

ing.

P1. All variabl

occurs in both P and @, then (PQ) is a pattern.

The set of AP-terms is divided into sets of atoms, applications, and abstractions,

and is defined to be the smallest set of expressions satisfying the following.



T1. All variables and constants are AP-terms (these are the atoms).

T2. If P and @ are any A\P-terms, then (PQ) is a AP-term (these are the appli-

cations).

T3. If P is any pattern.an “pemt then (AP.Q) is a AP-term (called

T4. If P is any p any abstraction, then

(PQ) | A) i b (el comy raction).
An abstraction i und abstraction.

Notation.
1. Parentheses wil ; on of association to the left.

ii. AP.MN will abbrevi

iii. We may simply writé "

iv. Syntacti S ,‘-H‘ That is, M = N if

and only ifﬂis exa » of symbols 'j'l N.

i

Definition 2.1.2. ﬁmcurrence of a variable x in a term M is bound if it is in

S DI T2

has at leﬂt one free occurence in J\/[ it is called a free variable of M the set of

Wﬁqﬂﬁﬂ?m%ﬁﬂ NYR -

eﬁnltlon 2.1.3. Let Mand N = Ny,...,Np, k> 1 betermsandx = x1,...,x
be distinct variables. The result of substituting N; for all free occurrences of
xiyi=1,2,... k, in M, denoted by [Ny/x1,..., Ny/xx|M or [N/z]M, is defined

as follows.



a. [N/z]z; = N; for all 1 <i < k;

b. [N/z]a = a for all atoms a such that a ¢ {xy,...,zx};

c. [N/z)(PQ) = ([N/z]P

d. [N/z](AP.Q) =

7 i {xila cee ,.Z'im};
[N/z](AP.Q
if {xla ) = I
f. [N/z)(AP.Q)
if {z4, Ny) # @, where y is the
first variable in F'V(P) 4. =0 d z is chosen to be the first variable

&
o) .
sstraction A\P.QQ in a term

e act of repla -‘:.Li A by Ay/z|P.ly/z]Q

Definition 2

]
M. Let v € FV(P) and y ¢ FV(PQ).

is called a change ‘f“und variable omjan a-step in M.

ﬁ WHAA AP A oo

from M a single-step change of bound varlable

, N is ogtamedﬂ ;L ; a M |pOSSIb;y Em tyl sequence ;f changes of

bound variables.



2.2 Preliminary Lemmas from Previous Work

The following lemmas and notes are from [5], of which the corresponding result

number will be included in brackets the case of reading.

Lemma 2.2.1. [Coro' A ] )] ‘. k,k > 1, be distinct vari-
= V, QJ@ abstraction.

a. If {x1,... x4}
[Nil/xiu--' N,

i

a. IfM = MlMQ, .“ 7

0

5 - -

’ -
A o

'.I_ i
Py ¥
rsome te ~and Ny, where M; =, N;,

i=1,2; ’

b if M = APQ, and no. vafiahle in: P

=

changed, then N = AP.QQ" for

M)

some term.

T e e e et e e

\Z% o

c. if M = (\P.G abstractions A\P'.QQ" and

' [
) il
A" where \P.Q) E )\P' Q and A=, A’ .

Lem“FfﬁEi“’iamW]‘iW El’lﬂi

a. For a terms M and N, if ]\@_a N, then FV

&mwmmumm@mw

that M =, M’ and none of x1,...,x, is bound in M'.

Lemma 2.2.4. [Lemma 2.2.6] Let = and v be distinct variables, and V' and M

be terms. If v ¢ FV (M), then [V/v][v/x]M =, [V/x]M



Lemma 2.2.5. [Lemma 2.2.7] Let x = x1,..., 2,k > 1 be distinct variables,
and N = Ny,...,Ny, N' = Nj,...,N] be terms such that N; =, N] for all

1 <1< k. For any terms M and M

=, M', then [N/z]M =, [N'/x]M'.

AULININTNEINS
AR TUNNINGAY



CHAPTER III

COMPUTABILITY RI IVE TO A STRUCTURE

In this chapter, we will ¢

to a structure, a

enoted by =4, is defined

C2. For any r=ary f ‘symbol f in fya, in 2

|

ori
I J
i Al

C3. For any n-ary Eelatlon symbol r in ,C and any ay,...,a, in |2,

Fi‘LlEJ’;lVI EJT{Ivﬁ‘W 4R

other

ammmmum'mmaa

M =19 N if N =19 M by C1, C2, or C3.

C5. Let P be any pattern; A be any abstraction; and M, N, and () be any terms

such that M =19 N. Then
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iii. AP.M =19 AP.N.

For any terms M and Al by C1, C2, C3, or CA4.

If L is an occus =0y N, the act of

replacing L by S
Note 3.1.2.
a. f M =19 N w 2l . | | o not atomic, then M #y N
b. If M =9 N and

c. If M =19 N but M £y Ny -then M- )
b2/ A

are of the same form.

d. For any variable

Definition ?(_ F“»‘n in A to
B I

N, denoted by ;‘I o N, 1t there S 4 —u--‘:j,i M= M,...,M, =

N,n >1, such thai]fo ach 1 <i <n, 19[ M.

Filde AREN WHARG o

replacm with N is called an 91—conversmn in Q

Wﬂﬂﬂﬂ‘im UNIINYA Y

. If M =y N and M contains an abstraction then M and N are of the same

f

o

form.

b. If My My =9 N; N5 with no E(l)m in the sequence of congruences, then M; =g N

and M2 =9 NQ.
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Lemma 3.1.5. For any terms M and N, if M =19 N, then N =19 M.

Proof. Let M and N be terms. We induct on M. From Definition 3.1.1, we can

aining are similar. Assume
ad O such that M; =19 N;. By

the induction hyp : Ve N Q= MiQ=M. O

Proof. Tt is clear the ‘ exive and trs sitive. By Corollary 3.1.6 we have

that =g is symmetric. H ‘ =g 454 A1), @) ce relation. U

-" gl o ol . -
Remark. Note that =;geissymn m\-d._:.;r eflexive nor transitive.

é-_____ ] _i. ‘

151 =

Proof. This cang eaSily provec

Lemma 3.1.9. Le‘f“a k-ary function Symbol and My, ..., My, N be terms. If

o 15 BV 8 AR AT e o

N; suchﬂat either M; = N; or % = N;, 1 < 2 <k.

TN FRUMIINH BB -

hen fM; =19 N = fN; for some term N; such that M; =19 N;. Suppose k > 1.

Then (fM ... My_1)M; =19 N = N'Nj, for some terms N’ and Ny.

Case 1. N' = (fM;y... My_4).

Then Mk =12 Nk, so N = (fMl e Mk—l)Nk-
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Case 2. N, = M. Then fM; ... Mj_1 =19 N'.
By induction, N' = fNj ... Ny_; for some terms N; such that either M; = N;

or M; =19 N;, 1 <i1<k-—1, le...Nk. O

If fMy...M, =« ith — ‘ congruences, then N =

Proof. This foll O
Lemma 3.1.1 uence of terms a =
M,....M,=b A

Proof. We will pué v ‘_ i et k be the least even number such

thatC_LEMl,... k—1 =19 MkEB

s

Case 1. Mj_, = ¢ for some coi ;;,i:.u_..i:.,' nbo

Since M_1 = ¢ Z n fact £ > 2. Now consider
My_9 =19t M1 = ¢. We must have M, Lo = a;p fo rsome ap in |A|. Thus
e ——— -
\ - o L
a= M1, it that k is the least such

even numb: I' ‘

ﬁﬁ&lﬁﬂ“ﬁlﬂ*ﬁﬁﬁﬁﬁ?“

Smce a is not of the same form as fb; .. lnby Note 3.1.2, Wmt 41

A WHANATHE ARG E R

and M,,.1 =9 My_1 = fby...b, with no = —12( in the sequence of congruence,

by Lemma 3.1.10, M,,.1 = fa;...a, and M,, = a, for some ag,ay,...,a,
in 2| such that b; = @;, 1 < i < n. Since a = M,,..., M,, = ao and

m < k, m must be odd. Let K; = My, for 1 < j <k —m+ 1. Then
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o = My, = K1,...,Kj_mms1 = M, = b. Since k —m + 1 is even, this

contradicts the fact that k is the least such even number. O

Since M_o = ¢, M #e2 ap fo ap in |A|. Thus a =
k / ; A 0

ea=ag=D0.

Case 2. My_1 = fbyh. . by f | ction 8 X f and some by,...,b, in
F r-.. ." % VR

|21]. Since a is 0o .. : ... by, by Note 3.1.2, M; =0y M1y

for some 1 < j % — 17 Fp gest 7 ch j. Since M, =0y M, 11

and M,,11 = o in the sequence of congruence,

ome ag,ay, ..., a0,

by Lemmnie

in |2 t@ffgﬁfﬁf ]

(2.1) m =E’

Then a ibﬁzl Gy = My, .. 3 My = fby...b, =0y b with no other

ﬂ%J%Je?JuéFI A AL ’ml@zﬂ ction v

—bfora111<z<2 soa=f al,.. an)— (by, .. ﬂb} ) =b.
Thena—Ml,... My, = ag =y far...an = Mypy1, ..., My = b.
induction we have ¢ = ag = b. O

Lemma 3.1.13. Let P be a pattern with FV(P) = {x1,...,zx},k > 1, and U =

Uy, ..., U, V. =Vi, ..., Vi be terms. Let ¢ = xy,...,x5. If [U/z]P =g [V /2]P,
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then U; =9 V; for all1 <1 < k.

Proof. Assume [U/z|P =g [V /x]P. Induct on P.

Case 1. P = ;.

Then Uy = [Uy /x

Case 2. P =P P,.

Let [U/z]P = K,...,K, =
[V /z]P
(2.1)
=y [V /2]P,. By
(2.2)
Let n be t 8 =la Kot1, K, = faq...a, and
K, = a for ’fg"ﬁa?} .a:e | f. and some a,ay,...,a, € |2,

7;- ot of the same form
1-‘"»" +1 <7 <s. Let

Ve =

C \ A m

b and Ky = gby ... b,

for somefugmon symbol g, an s me b, by,...,b. € |A]|,r > 1. Since a

AN SN -

Wlth K; 2% Kjn for all 1 < j < n, by induction on ¢, the pattern

ARRITLS: 00 yjméf g

=Ky =9 K =b0=% gby...b, = fby...b,, by Lemma 3.1.12, we

have f*(ay,...,a,) = a=b= f*by,...,b.). Since f is in a pattern,
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f* is one-to-one, so ¢ = r and a; = b; for all 1 < j < g. Then

[U/z]P = K, =y K,, = fa .. .4,

= Km+1 = Ks = [K/Q]Pa

+1 < j < s. Hence by

Case 2.1 U, =g Vdor <13 - O

Lemma 3.1.14.

[y/x]Q =1 Q,; t

les. If y ¢ FV(Q) and
t Q" = [z/y]Q".

Proof. Assume y

Case 1. x ¢ FV(Q). 4
Since y ¢ FV of)osition 3.1.8, we have

y ¢ FV(Q). Theg

Case 2. z € FV(Q).

We will ind

(2.1) Q F'

Since v'I € FV(Q), Q = .

en y = [y/x]x =y/r]Q =19 Q', which is

1mpossft‘eﬂlerefore this caseféahnot occur.

ﬂ&ﬁ?m&niﬂﬂ’lﬂi

Ylhen p/siuly/riees /o1 =190, Since €

RN TR VAR AR E~

= Q' ]y/z]Q2 for some term Q) such that [y/x]Q1 =19 Q). Then by

induction, Q1 =19 Q] = [x/y]Q] for some term Q7. Sincey ¢ FV(Q),
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we have y ¢ FV(Qs).

Then Q = Q1Q2 =12 Q1Q2 =4 [2/y]Q1Q2

Since = & FY(Q).# ‘¢ 4+VAP) and, v-. Ql) Then [y/x]Q =

ly/ , fy ¢ FV(P), other-
/ N L

wise 2 i fve u{ 0 /(PQ1)e S0 Q' = \[z/y|P.Q} where

/ale/ i Fia” QB o lave [/5)Q1 =10 @ =

[/4]Q} for gome * 5 and Qo QU =., [y/2]Q" for some term
QY. Note that >\ e, 'v_- \[2/y] P.[2/y][y/][x/y]Q} because
»=yify ¢ FV(P), and otherwise 2 ¢ FV(Rly, Aenia). O
Th s )

..I
i

_lQl )\P Q/lll '.I.Il“

ﬂu&ﬁ ENTNYINT

AR A REET A NS
= [z/y]\[z/y|P.Q} (since {z,y} N FV([z/y|P) = @)

We are done with Q" = AP.QY".
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(2.4) Q@ = (AP.Q1 | A) for some pattern P, some term )1, and some ab-

straction A.

The proof for this case is si ar to Case 2.2. O

Lemma 3.1.15. Let M, N, and N* be. feas® iV =1, N = N', then M =q

Proof. Assume M{ \ A ' '-'-. abstraction in M which

gets replaced b 0 M la-converts to'N, where z € FV(P)

and y ¢ F'V(DP( Ains simple abstraction,

Then A[y/]P. 4 L) A o4, Ay/z]P.Q' form some
term ' where [ 10 4305 (a1t Rince © c FV(P) and y ¢
PV(Pla/y)Q), we hive ABufylQhmm Aly/o) Ply/al[2/4)Q. Since = ¢
FV(y/2]0) and-gfi1 =i 0, by Proposition. 3.1.8, we have o ¢ FV(QY).

Then b |:lnfﬂ-:i.‘-"_.ﬂ.lﬂ.llll-ﬁiii.ull-c---1:;-’ ce y ¢ FV(Q) and

1y/21Q =1 "

that Q" =z /y]Q. Let M’ = AP.Q". Then M =

Aut Ingningans
RIANITUNEITNENY

=N’

A
) ﬂt; or some term Q" such

l
”J PQ =19 \P.Q" = M,

Case 2. M = AL.M; for some pattern L and some term Mj.

Since M =1, N, N = AL.N; for some term N7 such that M; =, N;. Since
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N =194 N', N' = AL.Nj for some term Nj such that N; =19 Nj. Since
My =14 Ny =19 Ny, by induction we have M; =19 M| =, Nj for some term

M. Then M = AL.M; =,

Case 3. M = M, M, for somi s Vi, A A ’ L
Without loss of ¢ (. rality, o ; : Smce MM, =M =, N,

. Note that N; contains

. Since N1 My =

=, AL.Nj = Nj. Choose M' = AL.M;.

e M1 _1Q[M = N/ for

some term M. Bhen M = M, z_aNMQ . Choose

(3.2) N' = Ny M} for e term My ) =12 Mj,

= N'. Choose M’ = M;Mj.

Case 4. M = ( 1 {"“; d some abstraction
. s

A. . !
v u-]

This can be proved in the same Way as Case 3.

o 11 BIHEART -

for some term M'.

QPWW FERTERRIINYAY -

emma 3.1.17. Let x = x4, ..., x, k > 1, be distinct variables and M, N, and

O

U="U,...,Ug be terms. If M =19 N then [U/x]M =194 N’ for some term N’

such that N' =, [U/z|N.



20

Proof. Assume M =19 N. If {z} N FV(M) = @, by Proposition 3.1.8 {z} N

FV(N) = &, s0 [U/z]M = M =194 N = [U/z]N, and we are finished. Now

assume {z} N FV(M) # @, and in by Corollary 2.2.1(a) we may assume

that {z} C FV(M). ote that since M =;9 N and

FV (M) # @, by Note 3.1

Then N = =19 N;. Then by
term N;. Let m =

O then

Now v_ "?d.' NEV(U;...U)

'
and z be l first variable

p

also the ﬁrst‘!f ble which is not , FV(PN,U) since M; =19 Ny, so

ﬁ”ﬂ%@ﬂﬁﬂﬁﬁﬂ’mﬁ s =

o [2/y] Ny for some term N{'. Then by the subsidiary 1nduct10n hy-

q " a%ﬁ‘f e

ot In FV(1Q). Note that z is
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N'. Hence

[U/z]M = [U/x]\[z/y]P.[z/y|M

Then N . CI s and V. loss of generality,
assume M / id Ms-= r !. n we have [U/z|M; =1y
Ni =, 7 /

b J-:"

)
.!I
& i

HWA WW‘WU fl B

Corol 3.1.18. Letx = x1,..., x5,k > 1, be distinct v

ﬁﬁqaﬁﬁ’ﬁmﬁﬁ”‘ﬁﬂﬂ’iﬁw

Proof. This follows from Corollary 3.1.16 and Lemma 3.1.17. O
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3.2 Contractions and Reductions

Most of the definitions and lemmas in this section are based on the lambda calculus

with patterns [5] with some adjustme f ost of the lemmas are unaffected by
not be given. Only a few need
e we will show the details
of those parts th

e corresponding result

number from [5

Definition 3. =x,..., 0,k >1

(respectively P Bern] N, il there exist terms N =
Ni, ..., N; such th \ , ;chen for any term @,
(AP.Q)N is called a erm [N /z]Q (respectively
Q) is called its B-c

Let R be an oc et ; fi e ) tr M. If we replace R by its
(B-contractum, and the re .,4!3:5{.; _ e [', then we say M (B-contracts

to M’, which w

We extend the def

ll mcongruence ‘=g

Definition 3.2.2. Eor any terms M and ]\‘Jwe say M (B-reduces to M’, denoted

byMﬂﬁJ%l@%S%ﬂ%ﬁW”ﬁ’“’mfﬁ et

such thﬂfor each 1 <i<n, M; l>15 ir1, My =4 M, or M,

PRGN ﬂd%ﬂ‘%’ﬁ%‘lﬂﬂ H‘”“h

fin free variables y = y1,...,Ym,m > 1 (respectively N has no free variables).
will call (AP.Q | A)N a v-redex with «y-contractum S if one of the following

two conditions holds:

a. the term (AP.Q)N is a (-redex, in which case S = (AP.Q)N; or
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b. for all terms U = Uy, ..., U, and all terms N’ such that [U/y]N g N’ (respec-

tively N >g N'), the term (AP.Q)N' is not a f-redex, in which case S = AN.

denoted by M =5 M, , "-. e S M = M,....,M, =

or Mz =9 Mi—l—l'

Definition 3.2.5..L A Dea] | abstraction and NV a term with

m free Variablesgz W i 1 (fegpect vely N has no free variables). We

will call (A\P.Q | A)N o d-redest with & cum S if one of the following

two conditions holds:

; or

a. the term &" Q)

b. for all ternis Tt - T/y|N>gy N’ (respec-

I |
tively N bgy "!, the term (AP.QJ)N" 1s not a (-redex; i which case § = AN.

_guiinadvera

'’ which we denote by M >15

AN NANANANAY .

noted by M >gs M’ if there exists a sequence of terms M = M,..., M, =
M’ ;n > 1, such that for each 1 <i <mn, M;>15 M1, M;>15 Mgy, M; =, M,

or M; =y M; 1. We call such a sequence of terms a 3d-reduction.
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Definition 3.2.7. For any abstraction A and any term N, AN is called a po-

tential redex.

Remark. Unless expliCitlyfSpecifie lerwise, a “reduction” means a“Fd-reduction”.

\
\' or MDlé‘ N”.
Note 3.2.10. [Notes2.31- For afiy fi _ ¥ V, if M55 N and R is the
ed L ( >1816 N, then

O

a. if M = MM, s o me terms N; and Ny such

\
that either M1 D116 NV, and M2 >1816 NQ,

b. if M = AP.Q then = APQ for som such that @ >1s15 Q'

4.
S
i J erm @' and some

c. if M = :y,._—‘—r

abstraction fﬁmh hat e

Corollary 3.2. ll,ﬂ@ollary 2.3.15] Howrany term M, if M >gs N, then N is

aterﬂﬂﬂ?ﬂﬂﬂﬁﬂﬂﬂﬂi

a. if M MM, and M g5 N‘y a sequence oﬂrms M=K, g,K, =N,

QWA 3R AT REA ab.

contracted and K; 3_'51% ir1 then N = Ny Ny for some terms Ny and Ny such

= A I"Q =@ and Apigs A

that M; >gs Ni, 1=1,2;

b. if M = AP.Q, and no variable in P has been changed when M >gs N then

N = AP.Q)" for some term Q' such that Q>gs Q';
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c. if M = (AP.Q | A) then N = (AP'.Q" | A") for some abstractions AP'.Q)" and
A" such that AP.Q >gs AP'.QQ" and Apgs A'.

Proof. This follows from Lemms 2, Notes 3.1.2, and Notes 3.2.10, . 0

Lemma 3.2.12. [Lemma \ o i / k > 1, be distinct variables,

N = Ny, ..., Ny be N/x|P is a potential redex,

then P = x; for

zables N =DNq,...,N,

be terms, P be a pat : o' potefitial rede 15 i [N /z] P, then S is

Proof. Assume S4s i . .-. !n:;r_ nduct o Note that since a pattern
erwise S is in [N/z]P = P,

a contradiction. In facty by €orolary 2.2 we may assume that {z} € FV(P).
B e v i .

Case 1. P = ;.

Then [N

Case 2. P =P P,.

Then [N /ﬂj [N/z|P\[N/x]Ps. Smce P is not a variable, by Lemma

Al N1} Eliﬂmﬂ:m R

1<t<k: U

Ly Ml AN AN ANNRY,

{:vl,.. ,xr}, k > 1, and N be a term such that A\P.QQ =, N. Then N =
My /1,y /x| P.Q for some distinct variables yi, ..., yx and some term Q'

such that {y1,...,ys} N FV(AP.Q) = @ and Q' =, [y1/x1, ..., yr/x]|Q
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Lemma 3.2.15. [Lemma 3.1.4] Let P and P’ be patterns with FV(P) C
{z1,...,2x}, k > 1, and P' = [y1/x1,...,yx/xk|P for some distinct variables

Y1, .-, Yk and let Q and N be term

f(AP.Q)N s a B-redez, then

(AP . QU Juy, ..., Up[um|N is )Js 1) 3 frodl r any distinct variables uy, . .., Uy,

Lemma 3.2.16. [L-e 4R = P@Q) be a B-redex, x = 11, ..., Ty,
k > 1, be distinct ‘ = . he terms. If R3S, then
[U/z]Rvg [U/z]S. Cibdl if 1 S, then. ‘n R >3 S* for some term
S*, where S* =, ‘ )

Lemma 3.2.1... be a d-reder, x =

Ty, Tp, k> 1 be terms. If R15 .S,

Lemma 3.2.18. [Co - f’i{ .:E oo Tk > 1, be distinct vari-

! — " f.-_ e ‘;I
ables and M, ‘ y Q ,#ﬂ , .!l_,

a. IfM [>,85 ) !‘-,M_l-l;-—nu-ul-b::;-—n_u;;-ﬁ- -

E— X

b. If R is a conﬁctib e re : r;j
!

Lemma 3.2.19. mma 3.1.9] Let Ab(m abstraction, A" and N be terms

tﬂ B BN EHA E*Jﬂﬂﬁﬁ

Lemma .2.20. [Lemma 3.1. 1@- Let P be a pattem with FV (P

%Wﬂ’ﬂiﬂﬂ‘?’fﬂﬁ%ﬂ@ V"rﬂl@ﬁﬂt’m

_91 [V /z|P for some terms V. = Vi,..., Vi such that U;>ps V; for all1 <i < k.
Proof. Assume [U/x]P>gs N. Induct on P.

Case 1. P = x;.

Let Vi =N. Then N = V; = [Vi/21|P and Uy = [Uy/x1]P s N = V.
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Case 2. P = P\ D,.

Let [U/x]P>gs N by a sequence of terms [U/z]P = K;,..., K, = N,n > 1.

(2 1) K 7_é1Q[ i+1 for all | :?. (
By Lemma 3.2.12 : ’ is not a potential redex. Since
(U /z) P, [U /) llary 3.2.11, N = NN, for

some termsMmandy : ') P; N;yi = 1,2. Since FV(P) =

{z1,.. 4 hout loss of generality,

I

assume

(2.1.1) FV N
' \‘»., ] 1 >gs N1, by induction
‘ ' , Vi, where U; bgs V; for
,‘ 7 [U/x] P2 >gs No. In fact

Py =y N  contal abstractions. Hence

= [V/z)(P1 )

Ay y,aﬁﬂmm

( 2

CL‘JP

WA ﬁ?ﬁﬁ”ﬂs PV ihinthi

SkYand {iy,....in0{J1,..., 5} = @. By Corollary 2.2.1(a),
[Q/&]Pl = [Uil/l‘il, Ce ,Uim/l‘im]Pl and [Q/&]PQ =
U, /xj,, ..., Uj, Jx; | Pa. By induction, Ny =g [V;, /x4y, ..., Vi, /@i, | Py

and Ny =y [V} /..., V), /x;,] P for some terms V; ,....V;

im>)



28

Vii,.o.,Vj,, where U, bgs Vi for all 1 <7 < k. Let V.=V,..., Vi

Hence

‘/}1/1"3'17 ceey ]p/xjp]P2
(2.2) K;
Let k be firsg stuch 7. _Then 2| Pegs Ky, with K; £y Kj
for a [V /z]P for some
terms 1, iy - !‘- j forall 1 < j < k. Since
Ky =]y . _ _ ‘ A hen, since Ky >gs N, by
Note 3.2.9, i =g Ne-Hence- o [V /2] P. 0
§fainds

Lemma 3.2.21. [Lemms g;;;:_; et A abstraction, and N be a term such

that AN is m“ opti .
A

a. For any te ractible redex.
(4L

[
W
b. For any term N’ such that N 1515 N, AN’ is a contractible redex.

s B HIRUNRINEINT -

Lemma 3.2.22. [Lemma 3.1.12] Let A be ansabstraction, and Nyand N’ be

FRAAF U HARY

" such that N' =y N"” and AN" is a contractible redex.

Proof. Assume AN is contractible. Let N >gs N’ by a sequence of terms N =
Ni,...,Ny = N', k> 1. We will induct on k. If K =1 then N = N; = N/, so

AN’ is contractible and we are finished. Now assume & > 1. Then by induction
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there exists a term N;_, such that N, =¢ N/_, and AN, _, is a contractible

redex.

Case 1.

Case 2.

Case 3.

Nk—l =9 N'.

Since Ny, =a Ni.— = ntractlble we are finished with

1 =a Nk 1 _Q[N for

some ter woarf i WSk C - by Lemma 3.2.21(a),

(3.1) A= APQ. fors ) ] some term Q).

& ‘ his is a contradic-
Byt

i1
. ')
t‘smceap , annot contain an actlon

(3.1.2) FV@’E{xl,.. , @, } for gome variables z = z,..., z,

Fi LB 39N T

U="0U,...,0, Smce U/J:P_N,’CI_Q[ Nj— 1l>1515N by

R N TN TN IR,

contractible.

(3.2) A= (AP.Q | B) for some pattern P, some term (), and some abstrac-

tion B.



30

If AN, is contractible, since Nj_;>1515 N', by Lemma 3.2.21(b), AN’
is contractible and we are finished. Now suppose (AP.QQ | B)Ny_;

is not contractible. Then since N;_; =a Ni_1, by Corollary 3.1.18,

(AP.Q | B)Nj_ P.Q | B)Nj_, is contractible
(AP.Q)N]_, iS'eontrac an be finished much like in
Case 3.1./-! - S — O

Lemma 3.2.23. stible redex, and R' and S

be terms such th *« ive Rp>15 S), then R >3 S’

(respectively R >15

Proof. We use Lemma in the original proof in

[5]. The rest of the proof 1 ains i anged. . A\ , O
Lemma 3.2.24. [Coro

a. Let M,M', and N be tér 1SS 1-....,.; M. If M >3 N (respectively

"
ﬁ’ J ha!"
M >5 N), then M" or some term N’, where
N' =, “= — -
b. If Ris a conﬁtible edes 2 such that 'J o R, then R is also

a contractible re

. @ummnmmm
NI aE

in L together with T and F, such that for all ay,...,a,,a € ||, we have
G(_ll...(inbﬁgc_b

whenever g(ay,...,a,) = a.
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Definition 3.3.2. Let r be an n-ary relation on [24|. We say r is computable
relative to 2 if and only if there is a term R, using only variables and symbols

in £ together with T and F, such tha all aq,...,a, € ||, we have

r, and

4

AULININTNEINS
AR TUNNINGAY



CHAPTER IV

the original one to e

Definition 4.1.1 .0 et R an _ . ces htractible redexes in a term
M. When R is:cont.

The contraction-residus \\ are occurrences of
I 0

potential redexes in

Case 1. R and S are non-overla;

Then contracti o R-leaves S 'his unchanged S in M’ is the

contrac O, ﬂl-ml-llrn;:-

Case2. R=S

) L

Then contracténg R is the same as contractmg S. We say S has no contraction-

Wﬂﬂ?ﬂﬂﬂﬁﬂﬂ?ﬂi

Case 3. Rmpart of Sand R # S

| ﬁerm Z 1sI GIEEG n A;orl 1n| 1 Ihea colnlrac ng anges S to

S’, where S = A’N’ for some abstraction A" and some term N’ such that
either Apyg; A’ and N = N  or A = A" and N g5 N'. This S’ is the

contraction-residual of S.
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Case 4. S'is part of R and S # R.

There are cases and subcases as follows.

ontracting R leaves S

idual of S.

e Nl,...,Nk and Rl>1ﬁ

‘ !'I. either S or some substitution

n-residual of S.

(4.1.2.2) S is i N bl L 20

.~4 Then S isin [N/x|P. By Lemma 3.2.13;-$ is in /N, for some

F- : ce dc in each N, substi-

)
,1! uted for an occurrence of x; in (). These are the contraction-

siduals of S. (Note thatsS may have many or no contraction-

ﬂ‘LlEJe‘WIEJVIﬁWEJ’]ﬂ‘J

= (AP.Q| A)N. g

QW']@A%@P@WNWTJV]EI']QEI

If Sisin @ or N, then contracting R leaves S unchanged, and this
is the contraction-residual of S in M’. If S is in A, then S has no

contraction-residuals in M’.

(4.2.2) Riys AN,
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If Sisin A or N, then this unchanged S in A or N is the contraction-

residual of S'in M’. If S'is in @, then S has no contraction-residuals

dtion—residual.

in M’.

Note 4.1.2.

as 9. IRl
. ; 1
?

@

LM %ﬂ Wi i
¥

when M =9 M’ are

ely as follows. Note that

\d M’ are of the same form.

Casel. M = R.
If M’ s« aversion-residual of

R, other%

Case 2. M # R.

AUHANENINYINT

ThlS unchanged R is the 1Ql—conver31on—r681dual of R.

9 RIBNTUNAINA L

(2.2.1) M = M; M, for some term M; and Ms.
Then R is in M; for some i € {1,2}. The 12-conversion-residual
of R with respect to M; is the 1%(-conversion-residual of R with

respect to M.
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(2.2.2) M = AP.N for some pattern P and some term N.
Then R is in N. The 12(-conversion-residual of R with respect to

N is the 1%d-conversion-residual of R with respect to M.

Note 4.1.4.

te either a “contraction-

residual” or a “1%-con E;r dua is no ambiguity.

Definition 4.1.5. If #Z = rygn' , ' 1, > 0, is a set of occurrences of
potential redexes i : mal (with respect to %)

- -t
if it properly‘ - | ‘! en#Z =, ie, M

contains no potﬁial redex.

Let Zy = {ﬁ 1 <i<n}n>0, be a set of occurrences of contractible

S LA A

1ned from M* by a minimal complete development (MCD) of

LA Aiar M D

First contract any minimal R;; without loss of generality let ¢ = 1. By

)

Definition 4.1.1, this leaves n—1 contraction-residuals, R}, R, ..., R!. Then make
as many 12d-conversions as you like (possibly none), this leaves at most n — 1 12-

conversion-residuals among Ry, RY, ..., R]. Again, contract any minimal R} and
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make 12-conversions. This leaves at most n — 2 residuals. Repeat this process

until no contraction-residuals are left. Then make as many 12-conversions as you

like. Finally, make as many a-steps as you like.

b. For any contractib beaM of %y, a-steps, where L ¢ %,
tracted then L >,,cq N

such that L' =g L,

Proposition 4. \ ed N =ot N’ then M >peq

N'.

Proof. This follows directly fz oIt "g« rolla

O
eI
Lemma 4.1.8. [Lemma 3:2.5] F " if M >cq N, then N is a term

-5
_.,u'

erms =K ...,K, =N,
"4l

n > 1, such that for each 1 < i < n, K 18 not the potential redex which is

UL Emwm 1 A
SLabNeLE oy

c. if M = (AP.Q| A) then N = (AP.Q" | A’) for some abstractions A\P'.QQ" and A’

and

such that AP.Q >,,cq AP'.QQ" and Avcq A’

Proof. This follows from Notes 3.1.2, 3.2.10, and Lemma 2.2.2. O
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Lemma 4.1.9. [Lemma 3.2.6] Let P be a pattern with FV (P) = {x1,...,xx}, k >
1, and N, U =Uy,...,Uy be terms. Let x = x1,...,x%. If [U/x]P >pea N, then

, Vie such that U;bp,eq Vi forall1l < i < k.

Proof. This can be proved i h e ma 3.2.20. O

Lemma 4.1.10. [Lemina ﬁand M, if M>pea N and

N =y [V/z]P for some terms V. = |

M =, M, then

Lemma 4.1.11. [ T, k> 1,

\ SL =T1y...,

and any terms ) V Smed N and U; >ea Vi

foralll <i <

Proof. As in the ial of of ‘thesety S b nma 3.2.7 and 3.2.8 in
[5]), they are provedsim a . ction on M, and additionally we may
assume that the MCD, and {z} € FV(M). The proof
remains unchanged exceptr or the case W \[ = MM, which is rewritten as
Zhy o K

follows. Let W ’ LK, =N, n>1.

ﬂ ﬂﬂmﬂmﬂ Ei:m%fm’““““
aWﬁmnmwm NYNDL:

some terms M} and MY such that M >,,.q MY and My ©y,.q MY, both
without a-steps, and MY My >155 N° with MY MY being the potential

redex contracted, for some term N° such that N® =y N.
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Proof of 4.1.10.

Since M =, M’, we have that M’ = M{M) for some terms

M and M} s hat M! =, M,;,i = 1,2. By induction,

/Dmchik and MéDmCdM;, both

e i‘}dl* and M;, where M =,

VIS a M g and M{)MQO [>1515 NO,

some term M*, where
M ME >1515 M* =, N°.

2 149 13816 «

Ny

b) M’ is contractible.

VY =4 N, by Proposition

p i3 \
JURT S _..._ med M, by induction [U /x| M;>ycq
:ﬂ..
f &l 7 | x| M; >y M, without a-steps,
F" ”

f ot i e J zrpé [ * :Ot [K/]MZO’Z = 1,2. Since

S OO N by Temmas 3916 and 3247 [V /2] (MO M )>1 516
\Z v
— o \Z/Z]N°. Since My M; =,

.'I
|
Wi

[V /z](MOMY), by Lemma 3.2.23 5 >1g1s M* for some

such that

ﬂumm;ﬁm
ammmmum%waa

=, N*

= [V/z]N°

Since M is contractible, by Corollary 3.2.18(b), [U/x]M is
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contractible. By Note 4.1.6(b) [U/z]M tpeq [V /2] N°. Since

NY =o N, by Proposition 3.1.18 [V /x]N® =y N’ for some

term N’ such tha = [V/x]N Then by Proposition 4.1.7

Let k& be the fir ' £ ,V;._ K foralll <j <k.

Then, since Ky >peq N, it

A’ hen by Proposition 4.1.7

Proof of 4.1.11. \
By Casge 1 %6 h¢ '7" ‘ o [V /2] K. Since K =y N, by
Propositior j V' for some term N’ such that
A [N. Then by Proposition 474U (] M >ycq [V /2] N

)

4.2 The Chuiich-Rosser Theo em for Bd-Reduction

el ) ANYNIHYINT oo

done, then use it to prove the Chiirch-Rosser the&m for 36- reduct1

FR ANF GG A FAUAN Y

07" any terms L, M, and N, if L>peqg M and L >,0.q N, then there exists a term

T such that M >0 T and N Dppeq 1.

Proof. Let L, M, and N be terms such that L >,,.q M and L >,,.,q N. Then M

(respectively N) is obtained from L by the given MCD of a set %), (respectively
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Zy). By Lemma 4.1.10, it is sufficient to consider the case in which the given
MCD’s have no a-steps. Induct on L.

i. L is an atom.

Since Lyeq M and L>p,0q N i

by choosing T'= M. ,.

il L= AP.QM—— | —
Since Liy,0q M anv itho it = A\P.QM and N = \P.QV

,_., o)\ )My [>mcd QN. By induction,

for some terms

there exists a térm Qi'sug (! ] .L_‘, Q*. Let T = AP.Q".
Then M = AP.Q¢T,, N2 8) N>, .

ii. L=0\PQ@|A)
Since L bymeg M and Bt N, both withot Steps M = (AP.QM | AM) and
N = (AP.QV | AV} for gome : nd some abstractions A and

j 1y
AN such that Q >y, QY €= 7 and A,,.q AY. By induction,

there exist terms QQ* and-A " such QN >pea QF, AM >, 0 A, and

AN D>med A*. By Lemm: A 4.1.6. A" 1S aiso an abstraction.- ::', = ()\PQ* | A*)

(o N
Then M = ()'\ WIAEly, N oppeq T
¢ :
iv. L= l'.!‘

- guinaningns
RN T AN A

subcases as follows.

Since L € Zy and (AP.Q)Ly = L yeq M, without a-steps, L bpeq
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(AP.QM)LY for some terms QM and LY such that Qvy,eqa @, Lo >mea

LY and (AP.QM)LY b5 M® =y M, with (AP.QM)L)" being the (-

(211) L€ By. o \1 / |
imilae " m@@’ for some terms Q" and

iy and (AP. QN)LY >3 N? =o N,

..n t racted, for some term N°.

\\‘H * such that QM >peq QF,

, )[>1,3 NO MO QM
= MDmch*~ SOMDmch*-

..:_'.;.' we h >med . S0 we are finished with

{‘a’ >15 N, there exist
Vi il! h that [U/z]P = LY

V/:L‘ = LY, MY = [U/z]QM, and N° = [V /z]QN. Since

AL ALY b iy imis e

V! sucll that U b Uldemd Ve V7 for alld < i < k.

QRAH T IEERE
1 <i<k, Ul =9 V/. ThenUpp,.qU; and since Vi>p,qV, = U],

by Proposition 4.1.7, V; byeq Ul for all 1 < ¢ < k. Let W =

Uj,...,U]. Thus by Lemma 4.1.11 M =g M° = [U/z]Q™ > ppeq

(W /z]Q* and N =¢ N° = [V /z]QY >pea [W/2]Q*. So we are
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finished with 7' = [V /z]Q*.
(2.1.2) L ¢ Zn.

Since (A\P.Q)L, = V, without a-steps, N =y (AP.QN)LY

for some terms aithat QpegQY and Lybp,. LY. By

all f f ,l
induction, th ISt terii ) w80 b* such that QY by, Q* and
LY D -',m“-" ithout a- beps, and Q™ g Q* and LY >4 L.
(2.1.2.1)
e, 7= L,. Then L, contains

actually Ly =y LY, and

0 '.1.6(b) N bt Q.
. = QM >med Q*a S0

Wea

(2.1.2.2) ﬁxgﬂ ={a1,...

AU E!;:iihmﬁ Woang
oL mﬂ e AT G,

is contractible, there exist terms W = Wy, ..., W} such that
[W/z]P = L,. Then since Ly bpeq LY, by Lemma 4.1.9,
LY =y [W'/z]P for some terms W' = Wj ..., W/,. Again

since LY >eq L, we have Ly =y [W"/z]P for some terms
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wW" =W/, ...,W/ such that W/ >,,.q W/ for all 1 < ¢ < k.
Since [W" /z]P =g Ly =y [V /2] P, by Lemma 3.1.13, W/ =y

7

Viforall 1 <1

f”

ctible, by Note 4.1.6(b) and
Iso, by Lemma 4.1.11, we

z]Q*, so we are finished

22) L= (\PQ| A)
Si!, . ca M. without a-steps,
-i,‘; ‘;‘ LY and some ab-
strac '—Hh AMg »,‘. , Lo >peq L , and

Ll .|.|-'

(AP.Q éAM VLM b5 MO =y M with (AP.QY | AM)LY being the

ﬂﬂm“ﬂ Em*s‘w I
AN Nﬁﬁﬂmﬁaﬁﬁﬂﬂﬁﬂm

Ly bpea LY, and (AP.QN | AN)LY >15 NO =o N, with (AP.QY |
ANYLY being the d-redex contracted, for some term N°. By in-
duction, there exist terms Q*, A* and L} such that QM b,,.q Q*,

N M N M N
Q >med Q*v A Pimed A*7 A >med A*, L2 Pmed Lé, and L2 >rmed L;
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(2.2.1.1) AP.QM | AMYLY 15 (AP.QM)LA.
Then (AP.QM)LY is a B-redex and M° = (AP.QM)L). Since
LY >peq Ly, by Lemmas 3.2.15 and 3.2.22 and Note 4.1.6(a)
there ,L | 1 t Ly =y LY and (AP.QN)LY is
edex. Si & we have that LY >gs L9,

9% MLY f1s ANLY . Since

OLe //:/ hat N® = (AP.QVN)LY.
NY

)\PQ Ly and N =g
0] _;J" S '* ‘, “) L5 so we are finished with T' =
SOn0 |
(2.2.1.2) APQV A% e
Sullbog ’ LIV ( 1 7 A ince LY tpeq Ly, an ar-
F ' J 2 \ '
gument sinvilar-to-the above shows that (AP.QM)LY is a
Yadndinn s o 2]

ﬁ—rdex' or_some. term ich that L =g LY. Since LY b4

g’ R
=or Loy Weth ;*ff_ 9, and thus L3 >4, L3. Hence
e (QAPOM A AMYEM f  AMPM - contradiction. So (AP.QV)LY
\E P) 4
"%k A ir >1s N N = ANLN
ﬂThus M =AMLY beq A*Ly and N = “j NLY bmea A*Lj so we

&mhed with T =

ﬂ%&kﬂﬂﬁ]ﬂﬁﬂﬁl’lﬂ‘i

Since (AP.Q | A)Ls = L>pea N, out a-steps, N W)\P QN |
AR %J@WW“W%@ &) s
that Q Pped @Y, A >pmea AN, and Ly >preq L . By induction, there
exist terms Q*, A*, and L3, such that QY >,,,.0 Q*, AN >0 A*, and
LY >peq Ly, all without a-steps, and QM >,,.q Q*, AM 1,04 A%, and

LY >,0q L. Note that A* is an abstraction by Lemmas 3.2.14 and
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4.1.8.
(2.2.2.1) AP.QM | AM)LY 515 (AP.QM)LM.

redex and M° = (AP.QM)L}!. Since

Then (AP.QM) LY isja 3

LY such that Lj =y LY and

PO | AL

757 e | 1

,,,,, =

ned( AP.Q) LY and No,,.q(AP.Q*)LY,
ol

:I Then by F

We are finished with T (AP.Q*)LS.

ﬁﬁﬂ?%ﬂ TNYINT

Suppose ( )\PQ ANVLy fsA*L;. Then (AP.Q*)Lg is a (-

R4 miﬁu Oy e

., Ug. Since LY>,,.q L5, we have that L >55L5. By Corol-
lary 3.2.18(a), [U/z]L3" pgs [U/2] L3, so [U/z]Ly" bs, [U/z] L3
Since the relation >y, is transitive, [U/z]Ly bg, Ly. Since

(AP.Q*)Ly is a B-redex, (A\P.QM)LJ is also a 3-redex. Hence
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AP.QM | AMYLYM g5 AMLYM  a contradiction. Thus (AP.Q* |
AL b1s A*L5. Hence M =g M® = AMIM o A*L3 and

Dined (AP.Q* | A*) L5 >15 A*L3 so we are

Proof. Using t gng ; A =N and a ole =g is an >4, the

proof remains the O

4.3 [Bd6-No

Definition 4.3.1. For any a -w--‘f. oil A*afld any term N, AN is called a con-
i .I'!r (o "'J '

tractible redex if AN is € 'F-ﬂ— r A O-redex.

tible redexes is called a

‘:ﬂ N is a Bé-normal

Definition 4.3
Bd-normal n?;;
form, then N isﬁled a (36 VI, -‘

Lemma 4.3.3. L‘;m 3.1.15] For any Bo-normal form M and any term N,

Wﬂu@ PR 117

Proof. The essence of the proof femains unchanged. By inducting o the length

RS WA T B oI

y Corollary 3.1.16, we can rearrange =g’s and =,’s in any order.

Corollary 4.3.4. [Corollary 3.3.3] For any term L, if L has 5d-normal forms

M and N, then M =9 M' =, N for some term M'.
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Proof. Let L, M, and N be terms such that L>gs M and L>gs N, and M and N
are 3d-normal forms. By Theorem 4.2.2, there exists a term 7" such that M >gs T’

and N >gs T. Then by Lemma 4. M =g M' =, T =, N' =y N for some

terms M’ and N’. So by Cor lary 3. 164 have M =9 T' =, N for some term
7. O

All other theorems:: 1 ' ormal forms and Bd-equality in
[5] can be stated au ued similar, fashion “using the fact that the new
>gs allows =g, and dle 2 ' ome A LT 3 may require some minor

A

AULININTNEINS
AR TUNNINGAY



CHAPTER V

To justify the w Ttable % 1 L_ 10 our new computability
relative to a strict z / ursivene suG | the standard structure
N = (N, {7} g e figuage. of natural nimbesiC = {S, 0}, we will
show that every gofa Scufsige : o1 \ ca putable relative to .

The proof of the conver ] 6 discrisghd he 1 xt -.{ apter. We begin by first

f

n-. "'J g

LT 7

The definitions concern ‘ecursive funct ection are summarized from

5.1 Recursive |

3. S

Definition 5.IE The follo e called ini L'j functions.

1. The zero fun&ln g(a) =0 for all @& N.

HUE2NENTNEINT
ATREITI S I ve ey -

Definition 5.1.2. The function ¢ is said to be obtained by composition from

the functions h(y1,. .., Ym), k1(z1, ..., 2n), . km(21, ... xp) if

g(x1, .. xn) = h(ki(z1, .. xn), o k(T x)).
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Definition 5.1.3. The function g is said to be obtained by primitive recursion

from the functions h(zy,...,x,) and k(xq, ..., Tpo) if

! w’cha’c for any x1,..., 2,

"- denote the least y such

oo,

g1, ..

Definition 5.1.4.
there exists a y such
that h(xq,..., 25, y)

The fun 4iS ] hbe obtai ' ; restricted minimization from

h(xla s 7xn7y) ,. 9

Definition 5.1. if and only if it can be

obtained from the init anctions: by any finite \ r of applications of com-
position, primitive recursion, AR Te Ct lini ion.
5.2 Recussiveness Implies'C ity Relative to M

In order to show the ] o table relative to

N, we will first that the mitial ‘tions on N are con putable relative to 1,

and then that the ab ove rules for obtaining mew recursive functions preserve the

eompuﬁwwamw g1
QSW'TM?’WW UNIINYA Y

i. The zero function, g(a) = 0 for all a € N.
Consider the term G' = A\z.0. Since 0™ = 0, for any a € N, Ga = (A\z.0)a >1g
0 = 0, so we have Ga>gs 0. Hence the zero function is computable relative

to . O
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ii. The successor function, g(a) =a+ 1 for all a € N.
Consider the term S. Since for any a € N,S$”(a) = a+ 1, we have that Sa =n

e the successor function is computable

a+1, and thus Sargs a+ 1. He

relative to 91.

we have Gajas . .. fion function is computable

relative to . U

5.2.2 Comp A

l il
Let g(xq,. .. I a total function on N obtained by composition from the func-

<€ m as follows,

“°“”ﬁumw I3
SLACN s NP

respectively. Let ay,...,a, € N, and a = g(a, .. . Then
h(kl(al,...,an),...,km(al,...,an)) = a. Suppose ki(ay,...,a,) = b; for some

b € N;1 < i < m. Then K;a;...a, >gs b; for all 1 < i < m. Also we have
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h(bi,...,bm) = a, so Hby ...b,, >s; a. Now consider the term

G=Mry.... e, H(Kyxy . ..xy) ... (K .. @) Since

Gay...a, = ()\:1:1. C AT, [( £
>1g [a1/ 2] __:'

we have Gajas . .. a, > mputability relative to

Nn. U
5.2.3 Primitive Rec

ﬁﬁ'
Let g(z1,. .. -_r”i 1) be a total function on N obtained by ,‘,-_* ive recursion from

\
the functions. 7 . ‘

H | il
1I . (i
g -

(951,.. , T, 0) = hxl,...,:z:

Fmtl ?ﬂﬂﬂ‘ﬁﬂ’ﬂ‘]ﬂ‘ﬁ

where h d k are computable r atlve to M. Then there exist terms H and K

blnator and P = Af.\zy.. )\wn )\0 Hzxy...x, | ASy.Kzy ... xpy(foy .. :Eny))

*A fixed-point combinator Y is a term such that YX g X (YX) for any term
X. An example of such term by Alan M. Turing is Ymuing = ZZ where Z =
Azz.x(zzx). See [1].
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Then for any term M we have

Gay...a,M =YPa,...a,Mv>g PYP)a;...a,M = PGa, ...a,M

have Ha, .

)

-l i3 "’zm@ s reming
QRN ITUUMIN AL
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tion hypothesis, we have Gaj .. .a,p >gs b. Now since

Gay...anm=Ga...ayp+ 1 =0 Gay...a,(Sp) (~-S™(p)=p+1)

... any))(SP)

we have Gay...a, that Ga, ...a,mpg; a for

all m. Hence pri elative to N O

Let g(xq,...,2,) ) _" ion- o ned by restricted minimization

from h(z1,. . .empiy) as follows:

—II g\x
il
where h is comput@laelatlve to M. Th here exists a term H corresponding

w81 m}m‘ PG o

G = G' here G’ = YP and

QW?%@H?MO&IWW HHIRE

Case 1. a=0.

Then h(ay,...,a,,0) = 0. Since H corresponds to h, we have Haj . .. a,0>g5



o4

0 =5 0. Then

Gay...a,=G0a,...a,

so we have Ga

Case 2. a # 0. ‘!ﬂ,
Thena:_ for some b e 1 a ,...,an)— we have h(ay, ..., an,a) =

0, and for all? b,h(ay,...,an,x Slnce H corresponds to h, we have

Al @%‘WEWI %Wﬂr’ﬂeﬂ“ i
9 AINIUURIINENAE



25

Hay . ..a,T tps 0 =0 0 for all z < b. Then

Gay...a,=G0a,...a,

>1s ()\0 &)0

AUE INENTHYIN

have Gay ...Gan>ps a

TAGRI FUURIIREIRY -

5.2.5 Recursive Functions

Since the initial functions are all computable relative to 9t and the applications of

composition, primitive recursion, and restricted minimization to total functions all
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preserve computability relative to 91, we have that every total recursive function

on N is computable relative to 1.

AULINENTNEINS
AR TUAMINYAE



CHAPTER VI

ARITHMETIZATION

computable rele
of the theorem holds, we'ha ot &\ 7- LOWR o~ et. Nevertheless, the
ation, i.e., Godel coding of
terms and reduction$ (agin e - 0 ' ompleteness Theorem,
see [3]). Therefore, / £ 3 " 6del coding for each
element of the lam y ‘some auxiliary relations

and functions. Then we wi g wtial of of the converse and point out
£ o

where the problems ar oY e the standard structure for

6.1 Godel’Coding
- . -
In order to codeﬂuction sequences, we start by assigni 3

S

n odd positive integer

to eachFTnbol thén @ode terms and reduétions.

‘lJEJ’JVIEJVI‘iWEJ’lﬂ?

6.1.1 ymbols

RARGALL ‘ﬁle%J AV B

fof u, represented by g(u

Case 1. Basic symbols:

9(0)=3,90)=5,9(,) =7,9() =9,9(A) = 11,9(|) = 13,9(2) = 15.
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Case 2. Contraction symbols:

g(>18) = 17,9(>14) = 19, g(>15) = 21.

Case 3. Congruence symbols:

9(=1a) = 23,9(=:

Case 4. Constants:
g(0) = 31,
and g(k)

Case 5. Variables: g(v )= 5+ 8(/ \\\\§ .
Then the Goédel nun ol *m %r ’ 1 ntegers Moreover, when

divided by 8, g(u) leayes « ,ﬂ, cr of 5w ,' : \ ariable, and a remainder
of 7 when v is an indivi al .1"" ant.|“Not at | ere is no specific reason for
choosing the number § ot ‘F?,.otu ,,to_ -r} del’s convention. We could have

" "

choosen the Godel number ATTa stants such that when divided b
Sr 0] y

4, g(u) leaves a ren : & ainder of 3 when u

is an individ ﬂy’xiﬁ*ﬁ*ﬁ* it ujf unaffected.

Also by ( ydel’s cor VeTy Sy rT"n as an odd positive

integer, and Wlll co e express1ons and sei ences of expressmns in our case, re-

AnAn T -
%Wmmm UNIINYIAY

We code an expression M = uqus ... u; by

g(M) = 29300 paten)
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where each wu; is a symbol, and p; denotes the k™ prime number. Note that the

Godel number of an expression is an even positive integer and the exponent of 2

in its prime power factorization is odc

For convenience in codi : e.the symbols of a term as a rooted
binary tree. We firs g £t pty tre hen resent a nonempty tree
L nd R are the left and
Y

right subtrees of the ‘Tespectl _ * Note that a is represented by a tree

rariable or a constant.

Case 2. Application: (M

Represented by (--m. n) where m and n are the ,--;;':,;, esentations for the

terms

Case 3. Simple abstractlon (A\P.Q)

Fw A gy
TRIRSTIRANANIALL.

abstraction M and a is the tree representation for the abstraction A.

The Godel number of a nonempty tree can be defined inductively as follows:

g((u, L, R)) = 99(u)39(L)r9(R)
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We then code a term by coding its tree representation. Note that the legal symbols

for the root of a non-empty tree are a constant, a variable, -, A, or |.

mbol, and p; denotes

is an even positive

integer, but unlike T a fe e ] ) i1 its prime power factorization
is even.

6.2 Primitive usive Rel and Functions

Using basic arithmetie; propositional ¢ont 1 bounded quantifiers, which
are all know i"-.'--“ DE b VOGS ﬁT"m-:i iary relations and

functions and show

!I

elatlcfland Functions-from Previous Work
Recall

MEANEVAWENA.., .. ..

be obtalned from the initial fur‘tlons by any fiflite number of appliéations of

4 FIRIRIUURIINEAR &

and only if its characteristic function is primitive recursive [3]. Each of the
following relations and functions is primitive recursive (see [3] for proofs). We

repeat the definitions here for reference.

(a) z+y
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(b) -y

(c) av¥

(d) z!

(e) The bounded

wy < zR(xl,..'.

if such y exists,

otherwise.

DR(x1,. .., Zn,Y).

(f) Let p(z) be We shall write p,

instead of p(x).

(g) Every positive integer & Has zation into prime powers:

Ak

...pk

x = pg°py’ . a; in this factorization.
It = 1,(z); = 0 for all j. If 2 = 0. we arbitrarily let (r), = 1 for all j.

"

(h) If the numb Iy =

W
integers ay, al, ..

»sent the sequence of positive
Ll
i¥ |

,ay, and y = 2030 pm represents

e sequence of positive

ﬁﬁﬂﬁﬂﬂmﬁwsﬂni

THY = 2a03a1 D pkz+1pk+2 pk+1—|—m

RARLATREHYIAD Ve e

posing the two sequences. The function * is primitive recursive, called the

juxtaposition function.

(i) Relations obtained from primitive recursive relations by means of the propo-

sitional connectives and the bounded quantifiers are also primitive recursive.
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6.2.2 Auxiliary Relations and Functions

In this subsection we will define various functions and relations that will ultimately

be used to prove that every tofe

i n_on N computable relative to M is
recursive. For that proof | d only 4 elation, IsRed0f. However, the
simplest way to define IsR 10F anc ‘ at pecursive is to define a sequence
of auxiliary functio— L is relatively simple to define
and easily seen to bewe lation 1 we will give a verbal
description, followeg ch recursiveness will be

clear.

IsConst(x): x is the Godel numl wher of a

.r‘f. i e 2
E|k<x(x—31+8k Ertdi2id

Num(x): The Géde
71+ .yg
IsSym(x): x iSB Godel number of a symbol.

s =g(( \/a"—d) WVr=g(G)Vrgg(-)Ve=g(\) Ve =g x = g(9)

ﬂ%ﬂ%‘ﬂﬁm‘iw gANT

IsROp(x) z is the Godel numbet of a la- convergion or a contractiom symbol.
N WH A E-R W E 18 &

9

IsTreeRoot (x): x is the Gddel number of a symbol that can be the root of a

tree.

cx=g()Ve=g\)Va=yg(|)VIsVar(z)V IsConst(x)
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IsTree(x): z is the Godel number of a tree.
v = g(@) VvV Iulr < z(z = 2“3'5" A IsTreeRoot(u) A IsTree(l) A

IsTree(r))

Root (x): The Gédel number of the ot of a'teé with Godel number z.
t (@)o
Remark. If ).is still defined but its value
is of no intere ila: , “ b ' \ 2 SubT(x), and Tree(u,l,r).
LSubT(x): The.God : '_ 1 § an npty tree with

RSubT(x): The GodglFnumber of the-rig btre a nonempty tree with
Godel number x. |

: (.’1))2

IsLeaf (x): 2 i§ th

) .
. IsTree() ,;i‘d

B r|
IsSubT(x,y): 1I the Godel number of a subtree of a tregwith Godel number Y.

: IsTree(x Iﬁee )

ﬂ%&mwmwmm

Tree (u,l,r) The Godel numbér of a tree for which the Godel nuihbers of its

q R N AR 1R E

. 2u3lyr

IsVarTerm(x): x is the Godel number of a term consisting of a single variable.

: IsLeaf(z) A IsVar(Root(x))
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IsConstTerm(x): x is the Godel number of a term consisting of a single constant.

: IsLeaf(z) A IsConst(Root(z))

IsAtom(x): z is the Godel numby al atomic term.

IsVnTree(x,y): ‘ drmg in a tree with Godel

number y.

: IsVar(x
A ((IsVa 7

IsPat(x): z is: ;

A IsPat (RSubT )

LM\ L '
A —3In < a( ﬂj 2 nTree(n, RSubT(z)))]

The rel; ’yr ' 7 I'r n are defined recur-

sively and simul :i 1eously @
!

IsApp(x): x is theﬂﬁl number of an a‘))icatlon

HTHEJ’%%EWI?W g1

erm LSubT /\ IsTeém RSubT

%st}ﬁ@ﬂﬁﬁ% N%Wt%%ﬂ Y

IsTree /\ Root

A IsPat(LSubT(z)) A IsTerm(RSubT(x))

IsCAbst(x): z is the Godel number of a compound abstraction.

: IsTree(z) A Root(x) = g(])



65

A IsSAbst(LSubT(z))

A (IsSAbst(RSubT(z)) V IsCAbst(RSubT(z)))

IsTerm(x): z is the Godel numbe

IsFV(x,n): z is i term with

FV (2, RSubT(n))]

IsSubst (y,ns%,m):y s the Godel nun t of-substituting a term

A (T ' v ( f{-“ /RSUBT(n))1}

with "v— er 1 tor : “_:;l'_-"dx ith Godel number

T in a ternt

I ith € > unde the assumption that

I

¥
n is free fo :c in m.

fingmsnenng

V [IsFV(z,m ) A {[Is&tom(m ) Ay = nl

QW]Nﬂ‘ﬁH%WW%&ﬂﬁH

A IsSubst(LSubT(y), n, z, LSubT(m

A IsSubst(RSubT(y), n, z, RSubT(m))]}} }

Subst (n,x,m): The Godel number of the result of substituting a term with Godel

number n for all free occurences of a variable with Godel number z in a term



66

with Godel number m.

D py < (Pam!)"(IsSubst(y,n,x,m))

IsOneA(m,n): m is the Godel nu term which is obtained from a term

with Godel number . b ing ! / .

: IsTerm(m) A TsTerm(/

A {[(IsApp

A ({LS m '» ""” RSubT(n))}

gg?’ 't_ ' y,‘RSubT(n))
= ed T(n))

Ir /, v, LSubT(n)),

S .‘p;‘:v{ Y, T, RSubT(n))]})} }

’R

iF |

IsOneACon(x): z @tﬁ(}odel number of ‘jlngle step a-conversion.

AREINBNTHEINT

IsOneB (m n): m is the Godel nuinber of a term hich is obtamed om a term

QW@@@WQ’EW%M@’W]EI']Q d

: A definition showing that IsOneB is primitive recursive has not yet been

found.

IsOneBCon(x): x is the Godel number of a (G-contraction.

 Ju, v < 2 = 2% % 29¢18) % 2Y) A IsOneB(v, u)
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IsOneG(m,n): m is the Godel number of a term which is obtained from a term
with Godel number n by a y-contraction.

: A definition showing that IsOneG is primitive recursive has not yet been
found. \\ , ‘

IsOneGCon(x): x is t

s u, v < x(r =

IsOneD(m,n): ‘ [ a term w obtained from a term
with God
: A definiti 7 § that TsOneD is | cursive has not yet been

found.

IsOneDCon(x): x is

D Jdu, v < z(xr =

IsOneN(m,n): m is the God

pr——
P‘..P.!; M PE]

Bt

with Gode , single s W §

. A definition showing tha I‘iu,ﬁ e has not yet been

found. El 7

IsOneNCon(x): z i§'t e, Godel number of @ single step 9-conversion.

f U ANENFHENT

IsOneRed(x) z is the Godel number of a “singlesstep” reduction.

q RPN AN 5} G

IsRedOf (x,m,n): x is the Godel number of a reduction from a term with Godel

{

number m to a term with Godel number n.
: IsTerm(m) A IsTerm(n)

ATu,y < z(z =2"%2" xy A IsROp(u)
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A {[IsOneRed(z) Ay = 2"]

V [3k < y(IsRed0f(y, k,n) A IsOneRed(2™ * 2 x 2¥))]})

IsOneB, IsOnegG,
these, we expect that thesdnes for ¢ it ~.o aL -contraction, IsOneG and
IsOneD, will be the
quite similar. If we gan susshowi V ‘ UY Of these relations are

recursive then we can'prove (

Theorem 6.3.1. If an n-ary Wction o N s co putable relative to N,

then g is recursive.

Proof. Assume that g is co *‘“",.'-1;--"' . Let G be a term representing
.H- -

g and let v be the Goc -ary relation Rg on N by

o
b _ _ _
J GT1ZTo. .. TnDps §.

{

ﬁ L RN NG

so Rqg i 1s cursive. Let uq, uo, .. gln € N. Suppo&g UL, Uy vy Up,) ﬁfor some

YRR U NN Elﬂ“ﬂ Beue
130de1 number of the above reduction. Then Rg(uq,us, ..., uy,, u, s) holds. Hence
for any x4, x9,...,x, there exists y € N such that Rg(x1, 22, ..., 20, (¥)o, (¥)1)
holds. Since g(z1, @2, ..., 2,) = (uy[Ra(z1, 22, . .., Zn, (¥)o, (y)l)])o and

wy[Ra(x1, o, . .., Tn, (Y)o, (y)1)] is recursive, we see that g is recursive. O
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@ons on an arbitrary first-

In doing so, we added

We have extended th
order structure usi
ed to preserve all the

a new congruen

basic properties he Church-Rosser the-

orem. It is interes s using the non-logical
symbols from a lang 1ch represent one-to-one
functions are allowed i 1St aint is neccessary for the validity

of the Church-Rosse hod . otiexa 0 R i e e allowed to use the symbol
A, which represents the litio ._‘ unctic he natural numbers, in patterns,
then (AAzy.z)2 =o (AAzy.x)(ALl) > Azy.z)2 =9 (AAzy.x)(A02) >4 0,
but 1 and 0 0

0 rch-Rosser theorem

would fail to @F

For the stﬁiard struete for t fura num% we have shown that

every recursive tot%l. function on N is cona)’table relative to M, in other words,

it can ﬁﬁﬁdlﬁa 371 Ejnﬂ ﬁ%ﬂ deﬁmtlojye represent a

recurswq!)artla nction? One p0551b111ty is thr cases. Since

mmmmm R

recurswe partial function if at all inputs for which the function value is defined
the term applied to those inputs reduces to the corresponding result, and at all
inputs for which the function value is not defined the term applied to those inputs

reduces to co. We can do this by adding the undefined input case as the last case
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of a compound abstraction, i.e., (AP1.Q1 | (AP2.Qa | (- | (AP,.Q, | Az.00)))).
Of course, this idea needs proper definitions and further investigation to verify.

As we have explained in Sectio

6.3, another challenging task that remains
is to find a recursive relatiQ ~ de; ~sidalta contractions. Suppose we have
a compound abstracti s and*s . When trying to decide
whether (AP.Q)M rédu c a Tacti ox, we must find a way to tell
when we can stop and ;_ the com ' action reduces to (AM).

\ try contractlng only a finite
number of times, ol 7 D t -' h ve an upper bound for
our search. Such he 0 ‘* ctlons needed, would
surely depend on F nd \ \ \ re of patterns and the
limited number of non  . bols i = .‘ of arithmetic, i.e., only 0

and S, it may be possible find a forn (to be precise, a recursive function

of the Godel codings of P 2 'E:* -'ﬁ--o ca, g such a maximum number. The
J‘E.H IR .
readers are encouraged to-atteinpt m_u- nula, which would enable us to

finish the Gade L& CON 7"::7::::?1:;“_;_‘_;:::;51 n would complete
L]

our proof of {he equi opt ability relative to a

structure. ‘ 1

ﬂ‘lJEJ’JVIEJVI‘iWEJ’]ﬂi
QW']Nﬂ‘ifUﬂJWTW]EI']ﬁH
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