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CHAPTER I

It is well-known t nberlis

different shapes. For example. _ Se \\\t"'-.

series expansion in many
mers by Cantor’s series,
Liiroth series and«Sylveste y ie ' appeaic | in the Lecture Notes in Mathematics;
Representations o p’ 51 Dty o and by series of reciprocals
of odd integers, by Oppenheéin | Ao : pansions referred to here as the

Engel series (or ES) expansion and the CohensBgyptian fraction (or CEF) expansion
are considered. \

It was proved, [11], that each 1 N7efo T ber A can be uniquely written as

an infinite Enge.l series expaui L'E,;?E:: ,:

J; J

where a; > 2, a;11 i. a; for all i« > 1. Also well-known 1s the fact that an Engel
-

| P |
series exﬁiﬁﬂeﬂa a ﬂ ﬂ)ﬁ Wﬂﬁ] ﬂr‘?ach digit in the
identica In 1973, Cohen

expansion q from certain point onward. , [4], devised an
ﬁ)ﬁﬁ 'qt@ resent each nonzero real ﬁﬁ u Mﬁyptian
rActions, w iﬁe ﬁoﬁ iﬁﬁtﬂ fretion ey iia

9

o0
1
A=ng+y ———,
Pt ning -+ - N



where ng is a nonnegative integer, (n1, no,...) is a non-decreasing sequence of positive
integers with ny > 2, and no term of the sequence appears infinitely often. Recently,

it has come to our attention that the shapes of both of these expansions for real

numbers seem remarkably similar ye > not exactly identical. This naturally leads
to a question whether the two expansions ). any meaningful way.
The work of this the [ ] ;algorithms of CEF and ES

expansions, charact tlonshlps between CEF

and ES expansions ithms for constructing

CEF and ES expausi rchimedean fields in the

Regarding the relationship & Wi ,7 : .’ chapter that ES and CEF

expansions are indeed re y £ , we describe the similarity

‘s

and the distinction be g 1 dCE g ans1 in Theorem 4.1. In the non-

archimedean situation, w hoi ‘._i?'i h,e..t epresentations are identical, their

use to characterize rational elemeénts depen

] catly on the underlying nature of
S L

each specific ﬁe'. WV oL at onahty in our three

different non-ar &ﬁ "-.

P

We begin with Eie definitions & esults, give inl)mithout proofs, and give

brief background met:imals needed in the wowf this thesis ([9] an A principal

o B TN AR

non—archmﬂiean valued fields as formal Laurent series.

ST TS AT A

properties:
(i) Va € K, |a| >0 and |o| =0 if and only if a = 0,
(i) Va,B € K, |ap| = |al|f],



(ii1) Vo, B € K, |+ B < |af +[5].

There is always at least one valuation on K, namely, that given by setting |a| = 1

4 -grchimedean if the condition

)y a strgnge called the strong triangle

if @ € K* and |0] = 0. This valuation isicalled the trivial valuation on K.

A valued field' P i it R{t ther with a pre ed valuation |-|. If the

valuation is non-arcl 115 .G ‘non-archimedean valued field.

(1) For K = Q, the usual absolute val g an archimedean valuation.
(2) For K U_ ' I 'tl theorem of arith-

S -
metic, each a €. 5}?"5 Y ) _

.lI
i |
¥

o =

- LUHANEN NGNS
JRIAIDIPUNAINNAY

Then | - |, is a non-archimedean valuation on Q and called the p-adic valuation.



(3) Consider the field F(x) of rational functions over a field F.
Let 7(z) be an irreducible polynomial in Flz]. Any a € F(z)* can be written

uniquely as

where v;(a) € Z, a(x 2 ati ) lements of F[z], b(x) is a

Theorem 1.4. l:‘ - and o, f € K.

If ol # 18], thew d' Y

lI ; I
‘ e A. d‘ . s |

o3 ) ()11 A
ARAINIRINTINENAE

With the convention oo +a =00 =a+ oo forall a € RU{oo} and co > a for all

a € R, the properties of | - | translate to



(i) Va€ K, v(a) € RU{oo} and v(a) = oo if and only if a =0,
(i) Vo, € K, v(af) = v(a) + (D),
(ii1) Vo, B € K, v(a+ 3) > min {v(a),v(8)} with equality when v(a) # v(3).

A mapping v : K — R U {co} satis (i) — (i) is called an exponential

valuation of K correspon

Two kinds of examples @

Example 1.6.

(1) The p-adic valuation himedean valuation on Q.

(2) The 7(x)-adic val valuation, | - |, are discrete

on,

-!l.-llJ

-

non-archimedean valuations ox ,E;u

TN
The concepts.of con 1) 'L comple mentioned fields are defined

in the usual wals. —————— -

Definition 1.7. E(K, 1) be

converges to « in K‘f Ve > 0 4N such tha ‘v’n >N, |a, — o] <e.

Deﬁmﬂluﬁl A0 mw Ehal T w13

every Cauc sequence in K, with Bespect to |-, has a limit in K.

e ma SDIUURIINYNRY.

K is an extension of K,

\"seque [j {a,} of elements of K

(2) K is complete with respect to | - | which is a prolongation of | - | over K,

(3) every element of K is a limit of some Cauchy sequence in K.



Example 1.10.
(1) In the case of Q, with the usual absolute value, its completion is the field R

of real numbers.

(2) In the case of (Q,]|-[,), its completi | is the p-adic number field (Q,, |- [,).

(3) In the case of (F
)

Laurent series in 7(z

(4) In the case the field of

stion 1OR(0L/2)), ] - o)
.

formal Laurent seri

|

] ' | < Myisafing, ca \ e valuation ring of (K, |-]).
(2) The set P := {i & s e u lideal of O.

Definition 1.11. 4K | _#.j__ a\\ 2 eld.
(1) The set O d t]

A representative of el 5 A cot s in the next theorem, see e.g.

[9].

Theorem 1.12..Jet K be a complete field with respect to a discrete non-archimedean
”ﬁ F

| AT ]
valuation | - |. For ea f Ksuch that v(my,) = m.
'
[

1
Let A be a compl set of representatives in O of the eler ts of O/P, that is, A

consists of exactly o ent from each of the residue classes of P in O. Then

oo UEARENINEINS
ama@mmﬁmmmaﬂ

where r=v(a), a; €A foreachi, and a, ¢ P.



Example 1.13.
(1) In case m,, = p™, m € Z, p is a prime number and A = Z/pZ, we have a

unique representation of any element in the p-adic number field Q, of the form

where r € Z, a; € Z/pZ
(2) An element T, give a representation

of an element in F'(

where r € Z, a; €

(3) An element 7, = (& 5 d ¢ : give a representation of an

where r € Z, a, V

I J.p

AULININTNEINS
AR TUNNINGAY



CHAPTER 11

uniqueness and ¢ sization/of rational numbers. In the'second section, we treat

the case of completeic 7

According to the Egyptia 4 ({3 evil god Seth damaged the eye of
Horus, son of Isis and Osiris. Tha It ye of ] s had mystical siginificance, as each
of its parts was associatéd with a fraction ™. TFhoth, the benevolent

ibis-headed god redited-withrrest ;‘ f his finger’ making
i ja *

it whole. This is iﬁpr il
ALY ANENTNENS

This sum is‘'made whole (i.e., it Sunr?to 1) by the addltlon of one more countlng unit,
RTINS IR
Egyptian system of arithmetic. The mathematician-scribe dynastic Egypt

denoted rational numbers by strings of unit fractions (fractions whose numerators are

1), which has since been referred to as Egyptian fractions.



There has been a good deal of works about Egyptian fraction expansions, see e.g.
[2], 3], [4] and [12]. We are here interested in the result of Cohen, see [4], where

an algorithm to uniquely represent each nonzero real number as a sum of Egyptian

fractions is obtained.
To construct such expansi hen, [4], making use of the

following lemma.

Lemma 2.1. For any ern > 2 and a unique

r € R such that

Proof. Let y € (0

[0,1) and so

To prove the uniqueness, ass > 2 and s € R such that

Bl
i l Yy— S, weg
W

A UETViHNS e

Since there is only one integer with this propertyg=we conclude thatms= m and

amamﬁmmfmma g o

Fromny —r =1
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Theorem 2.2. Fach A € R* is uniquely representable as a series expansion of the

form

with

(2.1)

and no term of the s

Moreover, each. ¢ ents a nonzero rational

number.

Proof. Let A € R

If ro = 0, then the proce DS dutl.w W When rq # 0, by Lemma 2.1,

9l

¥

AU INBYISHEINS

Ifr = 0 en the process stops and we write A = ng + 1/n;. When r; # 0, by

Wﬁﬁﬁﬂ?ﬂmmﬁ%maﬂ

L=mngori —ry, 0<ry <ry, ng 2> ng;

Thus,

the last inequality being followed from ny = [1/r¢], ny = [1/r1] and 1 < 7.
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Observe also that

Tk
‘ng
with
L=nmrin —7ri, all 1 =1,2,.... (2.2)
If some r, = 0, ; 0CG ::1 o ol , ie onvergence follows at

once from

' Y -
11 - g

Xl el

_ 77
To prove the uniqueness, Fﬁ

2T

(2.4)

It is clear that the restrictions (2.1) imply the striet, inequality in (2. bThiS also

SRR AR AR

, we get
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Since ngy1 > ny,

1 1 1 1 1 1
nw-—1=—+ + 4+ < — 4 + +--=w,
Ny NaNg NNy n]  MNg  NiNaNs

so 0 <n;—1/w < 1. But ther eXa :t] T @ 1 satisfying these restrictions.

Then ny = m; and

m; for all 1.

Finally, we look#at itssrationalify characterization Q¥ then ro € Q, say

denominator is ¢. Usilg this 1-the f \ condition in (2.2), we

N,
| terminates. On the other hand,

rational number whose

deduce that r; =0 '
it is clear that each tei s a rational number. Now

suppose that A is irrational a (d there a1 s ‘an integer n such that n; = n for

all 7 > j. Then

oS ol .
-

W, il

e

r

‘ k "rl
Since Y-, 1/n* = 1/(n — 1), it follows that A is rational, which is impossible. ~ [J

oo @RI D IALIA BN LA B e

fraction eﬂaansion and abbreviated by a CEF expansion.

ARHRIRTH HUATN Y AR
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Example 2.4.

34
(1) We construct the CEF expansion of 5 follows.

34 8
94 2
Observe that 3 + 3 Slnce

SO
1

From [33—‘ =5, we obain 4

and hence

13
Next, since [7—‘

and so

N j;'
2.5-7 2.5.7

2-5

I IEN NN
wwmninfwﬁ’mmaﬂ

By the same algorithm , Cohen ([4]) gave
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2.2 The non-archimedean case

In this section, our algorithm of constructing CEF expansions of elements in

N e \ .i"-._ .
where r € Z, a; € AFandim € a_D lement which is usually normalized so

that || =271 Define fhe gkponential vz

The head t f o is defined-as the fi
e head part () o als.e !

]

,I ‘i‘-id‘ .

H | . 4]
. |

.un‘

Denote the set of alf head parts by

AU INININGINS
VIRSTLIR N TNy T
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Lemma 2.5. For any o € K* such that v(a) > 1, there exist a unique n € S such

that v(n) < —1 and a unique r € K such that

l=na—r and ur) = v(a (i.e., 0 <|r| < lal).
Proof. Let o € K sucl *—i-‘-'i;;:”» 1. Defi
= (1/a), we have

Putting » = na

where ¢, € A, and so

Thus
v(r)=w vina—1) —v(-a)tv — Jeid > v(a).
v:_ ‘ ‘
To prove the uniqu .55, AsSU S'such that # (ny) < —landr, € K
W dF
such that
Fromna— =1=noa— rl,weget‘ﬂ ny)a=r— r Ifn;énl,wehav | —nq| >1

ﬁﬁﬁﬂ@ﬂﬁmﬂﬂﬁﬂﬂ NYINY

[r=n| <lal <n=mlla] = [r—mnl,

which is a contradiction. Thus, n = n; and so r = ry. O
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We now prove that every nonzero element of a complete discrete non-archimedean
valued field has a CEF expansion. Furthermore, our proof is constructive and gives

an algorithm to construct such an expansion.

Theorem 2.6. Fach o €

where

This series repres /0 nique Subjedt toithe digit condition (2.5).

Proof. Let a € K> v(rg) > 1. If rg =0,

then the process stop by Lemma 2.5, there are

nleSandrleKsuch ﬁ

LT

where v (n) < —l-a

ar . m-

I
' .un‘

ﬂ‘UEJ’JVIEmﬁWEJ’lﬂﬁ

Ifr = 0 en the process stops afd we write a = no + 1/n;. When r1 # 0, by

@Wﬂﬁﬁﬁ?ﬁ}d?ﬂﬁ%ﬂma d



where v (ng) < —1 and v (r2) > v (r1) + 1. So

--nk
where
ng € 11 k>1.
Thus,
v (nepr) = 20 () < —wlmt for all k> 1.

Next, we show that v ction, we have v (ny) <

1

|'d

v(ngs) <v(ng) — 1< —k—1.

- HEIRUNITNYING

NN TN Y

>1424+---+k+(k+1) 500 as k — oo.

17

—1.
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It remains to prove the uniqueness. Suppose that « has two such expansions

we have nqw =1

Thus

V( _ 7 A v(w)+ 1.
L7 Y

By Lemma 2.5, si 'I ny 18 the S with '” h property, we deduce

= m;. Continuing i &n the same manner, We conclude that the two expansions are

lde““"alﬂuEJ’JVIEmﬂ\IEJ’lﬂﬁ )

Example

o W’iﬂﬁ”ﬁ 0

quct to the degree valuation, by the division algorithm, we have

5 4 &4_2 u

e

P4t a2+l —?—x+1
=+ +——.
»+ar+1 »4+ar+1




3 1
Since S L —x + 1, we write
—?2—z+1

g

ARAINTUAWTINET

\ &)

19
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(2) In order to find the CEF expansion of —1 in Q5 with respect to the 5-adic

valuation, by direct calculation, we write

SO

4 4 A SR
1:<§+5+4 . i} ﬂ— < _(4.53_,_4.54_|_4.54_|_...)7
and hence :
il . AL5% +4.5% ...
—1=14 ‘.! ' il )
+é4+ 4+4 4+4—|—4 4+4 4—|—4—|—4
525 5 52 5

FUANE

Next, sinc L P ri 54 54

ammmmumﬁﬂmaa




and so

AUEINENINYINS
ARAINTUNMINAY
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CHAPTER III

;_ / NSIONS

We begin this chap

3.1 The case©

Recall that followi ult;, see e.g pitel IV 1], which asserts that
each nonzero real number ean'b iguely: ente \ an infinite series expansion

described by the following

Theorem 3.1. Fach A € R apquely e s an infinite series expansion

of the form

where

LAJ CTAYE ol

ag al >2 a1 >a; (i>1). (3.1)

‘4&1 if A€,

wnf) W8 NININLINS.o...

Proof LetAG]RX Define A; = A% ap. Then 0 <y < 1. If A, # 0 Gof all i > 1

almmnifuumfa J18

_1+{ J (3.2)

and

Ai—i—l = CLZ'Ai — 1. (33)
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Observe that a; is the least integer > 1/A; and

We now claim that

(3.4)
First, we show tha Ay fof Al > 1 i \. If 7 = 1, then we have seen
that A; > 0. Assuil ) t L 010 ige \L.\By, 2), we'see that a; € N. Since

and 1/a; < A;, we hay h that A,,,1 > A,,, then

Lt
and so a,, — 1 > /A

- |
~of a; and the claim is

i

proved. ..!
From (3.2) and .4) we deduce that a; > 2 and Qi1 > az for all 7 > 1. Iterating
. ﬁuﬂﬂ ﬂﬂﬂﬂ%ﬂﬁ
a1G2 - - - Gy a1G2 -
i__ —+---+——— forall i>1.
ay alaz alag - a;

Since A; > 0 and a; € N for all ¢ > 1, the sequence of real numbers (B;) is increasing
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and bounded above by A;. Thus, lim B; exists and so

By (3.4),

showing that any re

ness, we assume that

with the restrictions

also for the b;’s. From

If Ay = 1, thewby (3.5) we also have S 1 /brby ol forcing ag = by. If

Y
]
0 < A, <1, the -:;I‘-"- ¢; orcing again ag = by.

Ay

In either case, cane ing out the terms ao, by in (3.5) we ‘”"

ﬂuﬂﬂﬁﬂ%ﬁﬂﬁqﬂﬁ 69
ﬁWﬁﬂﬂ‘ﬁ'ﬁﬂJﬂmﬂﬂmaH

G1A1—1_— e <_+_ —Ala

a2 Q2a3 a2a3a4 a1 a1G2 a1a2a3

so 0 < a; —1/A; < 1. But there is exactly one integer a; satisfying these restrictions.
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Thus, a; = by. Cancelling out the terms a; and b; in (3.6) and repeat the arguments
we see that a; = b; for all 7.

Finally, we prove the rationality characterization. If its series expansion is infi-

we see that A; isar ‘ the interval (C whose denominator is b. In

general, from (3.3), wafdeduico that: f - cach ¢ >\ 1,\A; u\; rational number in the
interval (0,1] whodé dewbmifiator is b But the r ational numbers in the

interval (0, 1] whose denominator i fimite. This in i s that there are two least

indices h,k € N such ghat - Thus (3.2), we have apr = ap. From

(3.1), we know that the seque g} 35 il ing. We must then have k = 1 and
the assertion follows. O
Definition 3.‘. ; s Lalled a Engel series

expansion and. 5" : ] "' : ‘
- f"
ve two examples of the ES expansions of

Example 3.3. W and V2, respectively.

(1) We onstruct€}ﬁ8 ex[ansmn of & as follows.

f{fins
”Wn'mmaﬂ

Ay =19- ﬁ—1—73,

Observe -3 , SO we ha

TR
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SO

and hence

Since a3 =1 + {

SO
1/73
19-25-37

”mﬂqﬁﬁﬂﬂﬂfﬂﬂﬁﬂim
AL iU CaC
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and so

4 11 L, 1 . 1 L ym
37 19-25-37-74 19-25-37-742 ' 19-25.37 742

AR TR T IO CARTISL

Note that a; = a4 = 74 for a

Therefore, the ES expa

1
+19-25-37-742

(2) By the sam

2=1+- ..
V2 +3+. 9 5‘16-18+
Remarks. In passing, we mal ‘...' "J.'ﬁ'?,
(a) For ¢ > 1, we have
Y , 1
Qi1 = Gy _! PaE = — — — €7 {0}

(b) If A tg; . 91 .
QIZ > Uﬂchen 1tm eXpansmn is EJ ﬁ ﬁ
ﬂ
e
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3.2 The non-archimedean case

Using the same notation as in Section 2.2, we recall the Knopfmachers’ series

expansion algorithm for series expansions * [7]. For a € K*, let

Define

If A; #0 for all i >

a = Qg + Al = .Ai—i—l- (37)

- 3
The process ends T ﬁi;ﬁ a; =0, then A;;; is

{ J1] o).
condition
i

ﬂuﬂqwﬂﬂ?WHwnﬁ
aumaw%w TANYUR Y

When r; = 1 and s; = a;, the algorithm yields a well-defined (with respect to the

not defined. To '! are o
“y

valuation) and unique series expansion, termed ES expansion. Summing up, we have



29

Theorem 3.4. Fvery a € K* has a finite or an infinite convergent ES expansion of

the form

Example 3.5.
o ‘ r ¥ : - 4 _."'.';
(1) Consider the'E Siof of —— L N Q((1/z)) with respect

to the degree valuati )

soayp=ax>+z and A =

From a; = <

1oa + x + 17

W&ﬂ%ﬁﬂ%-
Ll ﬂ'ﬁ‘% AENERCE

N x3—l—x+1 m2—|—1 —gx—3 x3—l—x+1

SO




30

and hence

¥ F+at 4t a1 1 1
=
’ - 1 1
v+r+1 : z+1 (—:c+1)<——x2——>

Therefore, the ES expaunsi

24 2t 4 ’ /. g ‘_
B+ 77F VW 1, 1)

(2) To construct the ESexpa Aston-of —1 rith respect to the 5-adic valuation,

¥

by elementary calculation, we writ

so ag = 4 and A; ,-.!J -5+4-5

“Fﬁﬁ?f“
T ax{ﬁ*fmﬁm

=4.-524+4.-534+4.5* +




SO

and hence

and so the ES expansaan of —1is

, 4+FIUEJ'3YIEWI§WEJ’lﬂ§

—+4>< +§+4 =

4+4 4+4+4 4+4+4+4 4+4+4+4+4
5 52 5 52 52 5 5 5% 52 5

31
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Observe that the digits a,, are of the form

5m+1_1
am:5—m (m:0,1,2,)

Based on the work of Grabu V 6], we will give more precise

result in Section 4.2 desc i the ES expansion of rational

elements in the p-adic nunbs

4

AULININTNEINS
AR TUNNINGAY



CHAPTER IV

4.1 Relationshi en-CEF and ES expansions

In the first secti i oStioat c.possible \ ps between CEF and ES

\l ONns

) 1screte non-archimedean
#ld'-i

valued fields. 7 oo v [+ )

In the case of real'nuribers, wa Show that,for rational numbers both kinds of
expansions are identical,. r‘rﬂ Hhional ers, their CEF expansions always

terminate, but their ES exp f;,-_,;,.;r riodic of period 1.

Theorem 4.1. 'v.,',‘:"‘,:','f'" e a ,‘ ‘ eorems 2.2 and 3.1.

L If A e QX th -— 't C : ' S expansion is infinite

periodic of period More precisely, for A € Q N Z, let its "CEF and ES expansions

’ “”“ﬁumwmwmm

—n0+277—a0+

ANl AT ey

agp =MNg, A1 =N1, -y Q1 = N1, Ay = Ny + 1, Am = Amtj (]Zl)
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and the digits n; terminate at ny,.

II. If A€ R\ Q, then its CEF and its ES expansions are identical.

Case m = 1. In thig.edSe, e Ay €7 ' hay = 1+ |1/A;] =1+ 1/A;.
Since rg = A —ng = | - l/Al and so a; = nq + 1.
We have r; = nq1 E Al heiC F\e Hai sion, inates. On the other
‘ ‘ all j > 2.

Case m > 1. Thus 7 . B ." 1, we have a; = ny. For

%

1 <j<m—2, we assumie that-A; . Z18 k en

Since 1/A;14 - k v v —_.Iﬂ‘-', shows that a; =
_ DV vl _

Niyevnoy Q1 = Wy ,'I! /AmJ = 1+1/Am

and thus ‘ 7 Llj

A7‘_ m— 1Am 1—1—7’L —1Tm— 2_1_Tm 1-

o ikl HANLNIWEINT .. e

=1/A, showmg that ap, = nm, #1. Furthermor = N1 — 1 1mply1ng

QW@FMF]@E&H HRVTRE %@ﬁ"ﬁm“

= Qpy; forall j > 1.

For the non-archimedean case, from Section 2.2 and 3.2, after devising CEF and

ES expansions for nonzero elements in these fields, it is clear that the constructions
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of CEF and ES expansions are identical which implies at once that the two represen-

tations are exactly the same in the non-archimedean case.

In this section, we ch hree different non-archimedean

valued fields, namel “the two function fields, one

\

completed with resp ther with respect to the

degree valuation.

The following e ES expansions is due

to Grabner and Kn

Theorem 4.2. Let x L : \r 0Nk 3 a/B, if and only if either

the p-adic ES expansion s fimit o7 U Wists ' . and an s > m, such that

where 7 | (.

For the function ﬁelds the word “ratlonal elements” refers to elements in F'(z).

- ﬂfﬁﬂ 3N i) Wﬂ“’m? o
two type the 7(z)-adic
valuation | - |, and the degree val‘atlon - | defitied as follows: fromi.the unique

AN I Y SJWYW]EI’]Q d

9(55) 8(90)
where f(z), g(x) € Flz] ~ {0}; r(x) and s(x) are relatively prime elements of F[z];

s(x) is a nonzero monic polynomial; m(x){r(x)s(x) and m € Z
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set
0| =0, ‘M —9 md; 0] =0, ‘M gdegf(z)—degg(z)
" g(x) > 9(2) |
Recall from Example 1.10 that F(( ((1/z)) are the completions of F'(x)
with respect to the m(x)-ad 4 ns, respectively. The extension

Proof. Although the i both fields ((l/x)) are the same,
their respective proofs i L fact, when the field F' I as finite characteristic,
both results have alrt ol shoy ' it L 0l | and the proof given here is
basically the same. , J ' o
! A |
We use the notation ©f eption 2.2 an with added subscripts 7 or oo to

distinguish their correspondins e ATINES.

If the CEF cxpans " Gither! fie 0 ofiS clearly rational. Tt

L

remains to prove "the converse. V “((7(x))). Assume that

aGF(x)X.Thenﬂat : o .L'i
ﬂ‘LlEJ’J Tfﬂﬁ‘"ﬂﬂﬂ’lﬂi
Q‘W']Mﬂﬁ‘iﬁ% WRAANENE o

By construction, each k > 1, r, € F(z) and so can be uniquely represented in the

form

= (z) o BT (4.2)
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where pi(z) and gx(z) are relatively prime elements of F[z], gx(z) is a nonzero monic

polynomial and 7 (z) t pr(x)gx(z). Since ny = (1/rx—1) € Sy and v (ny) < —k, it is of

the form
k= Sufony (@) (@)r(@) + s0(a)
= my(z)m(x) (4.3)
where s,(,,) (1), . . . 2 Ly uor cr I, not all Oj0f degree < d and my () €
F[z]. Thus,

7] o

This yields

\ (4.4)
By constructio | F_ , i"
1 — (4.5)
H m ﬁ? 1l %Wi ‘5’( W EJ’] fT “fad ’
)~ ) py () g —Qk (mp(z k 1(7) = qrea(
%(e gcdf]( aﬂ‘ D wiqkw ult“o:&]s 3’5 !] &qlk’:]x auccesswely,
we have

|4k (2)|o < lak1(2)l < -+ < lan(2)]



Together with (4.6) yield

Pr(@)] o < Pr() 25 mase {fm(2) e ()] o ()]}

Using (2.5) and (4.4), we con

|pk($)|oo b hax (Hd— hﬁ:"""“!h ,|Q1( )| }

This shows that |py. ()] g #G2) forval Jlarge k'w jich plies that from some
k onwards, pg(x)
Finally, for the fie

loss of generality, assume de 2 k) S deg ] : \t‘\. ion algorithm, we have
‘=g + 7o,

where ;
4.

-
AY )

'! € SO0, 110 oo Ry < degq, and rg =
(] v

F”mﬁﬂﬂ”ﬂ“"fl HNINYINT

= Nl Ni(2)i Ry () € Flz]; 0«5 deg Ry < deg Ryg<pdeg g,

a%wmﬁmummmaﬂ

which is, in the terminology of Lemma 2.5,

Ro(.’IJ)

no = No(z) = @)

1 =r0N1+—1 =Tron; — 1.
q
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Again, from the division algorithm,

Ry(z)
Rl(fE)7

No(x), Ro(z) € Flz]; 0 < deg Ry < deg Ry < deg Ry < degq,

or equivalently in the terminolo

There must then exis 0., R € F*. Thus, the CEF

expansion of « is
1 1

R + ,
ny---Ng ny - NENkgy1

1
a:n0+_++
n]. nl...

- -' ahmh s i .
where nj41 = (! fyjpansion. O

A

AULININTNEINS
AR TUNNINGAY
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