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CHAPTER I

PRELIMINARIES

It is well-known that each real number is representable as a series expansion in many

different shapes. For example, representations of real numbers by Cantor’s series,

Lüroth series and Sylvester series, appeared in the Lecture Notes in Mathematics;

Representations of Real Numbers by Infinite Series, [5], and by series of reciprocals

of odd integers, by Oppenheim, [10]. Two kinds of expansions referred to here as the

Engel series (or ES) expansion and the Cohen-Egyptian fraction (or CEF) expansion

are considered.

It was proved, [11], that each nonzero real number A can be uniquely written as

an infinite Engel series expansion of the form

A = a0 +
∞∑
i=1

1

a1a2 · · · ai
,

where a1 ≥ 2, ai+1 ≥ ai for all i ≥ 1. Also well-known is the fact that an Engel

series expansion represents a nonzero rational number if and only if each digit in the

expansion is identical from certain point onward. In 1973, Cohen, [4], devised an

algorithm to uniquely represent each nonzero real number A as a sum of Egyptian

fractions, which we refer to as its Cohen-Egyptian fraction expansion,

A = n0 +
∞∑
k=1

1

n1n2 · · ·nk
,
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where n0 is a nonnegative integer, (n1, n2, . . .) is a non-decreasing sequence of positive

integers with n1 ≥ 2, and no term of the sequence appears infinitely often. Recently,

it has come to our attention that the shapes of both of these expansions for real

numbers seem remarkably similar yet are not exactly identical. This naturally leads

to a question whether the two expansions are related in any meaningful way.

The work of this thesis centers around these 3 topics; algorithms of CEF and ES

expansions, characterization of rationality and possible relationships between CEF

and ES expansions. In the first part of this work, the algorithms for constructing

CEF and ES expansions are given in discrete-valued non-archimedean fields in the

same spirit as that of the real case.

Regarding the relationship problem, we show in the last chapter that ES and CEF

expansions are indeed related. In the case of real numbers, we describe the similarity

and the distinction between ES and CEF expansions in Theorem 4.1. In the non-

archimedean situation, we show that the two series representations are identical, their

use to characterize rational elements depend significatly on the underlying nature of

each specific field. We end this thesis by providing criteria for rationality in our three

different non-archimedean fields.

We begin with basic definitions and results, given mainly without proofs, and give

brief background meterials needed in the work of this thesis ([9] and [1]). A principal

result is Theorem 1.12, which shows how to represent elements in the complete discrete

non-archimedean valued fields as formal Laurent series.

Throughout, we denote by K× the set of nonzero elements in a field K.

Definition 1.1. A valuation on K is a map | · | : K → R with the following

properties:

(i) ∀α ∈ K, |α| ≥ 0 and |α| = 0 if and only if α = 0,

(ii) ∀α, β ∈ K, |αβ| = |α||β|,
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(iii) ∀α, β ∈ K, |α + β| ≤ |α|+ |β|.

There is always at least one valuation on K, namely, that given by setting |α| = 1

if α ∈ K× and |0| = 0. This valuation is called the trivial valuation on K.

Definition 1.2. A valuation | · | on K is called non-archimedean if the condition

(iii) in Definition 1.1 is replaced by a stronger condition, called the strong triangle

inequality

∀α, β ∈ K, |α + β| ≤ max {|α|, |β|} .

Any other valuation on K is called archimedean.

A valued field (K, | · |) is a field K together with a prescribed valuation | · |. If the

valuation is non-archimedean, then K is called a non-archimedean valued field.

Examples of non-archimedean valuation are as follows:

Example 1.3.

(1) For K = Q, the usual absolute value | · | is an archimedean valuation.

(2) For K = Q, let p be a prime number. By the fundamental theorem of arith-

metic, each α ∈ Q× can be written uniquely in the form

α = pνp(α)a

b

where νp(α) ∈ Z, a, b ∈ Z (b > 0), (a, b) = 1 and p - ab.

Define | · |p : Q→ R by

|α|p =
(

1
p

)νp(α)

if α 6= 0 and |0|p = 0.

Then | · |p is a non-archimedean valuation on Q and called the p-adic valuation.
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(3) Consider the field F (x) of rational functions over a field F .

Let π(x) be an irreducible polynomial in F [x]. Any α ∈ F (x)× can be written

uniquely as

α = π(x)νπ(α)a(x)

b(x)

where νπ(α) ∈ Z, a(x) and b(x) are relatively prime elements of F [x], b(x) is a

nonzero monic polynomial and π(x) - a(x)b(x).

Define | · |π : F (x)→ R by

|α|π = c νπ(α) where 0 < c < 1 if α 6= 0 and |0|π = 0.

Then | · |π is a non-archimedean valuation on F (x) and called the π(x)-adic valua-

tion.

(4) Define | · |∞ on F (x) by, for all f(x), g(x) ∈ F [x] r {0} ,∣∣∣∣f(x)

g(x)

∣∣∣∣
∞

= cdeg g(x)−deg f(x) where 0 < c < 1 and |0|∞ = 0.

Then | · |∞ is a non-archimedean valuation on F (x) and called the degree valuation.

Theorem 1.4. Let (K, | · |) be a non-archimedean valued field and α, β ∈ K.

If |α| 6= |β|, then

|α + β| = max {|α|, |β|} .

Let b be a real number greater than one. From a non-archimedean valuation | · |,

we define ν : K → R ∪ {∞} by

ν(α) = −logb|α| if α 6= 0 and ν(0) =∞.

With the convention ∞ + a = ∞ = a +∞ for all a ∈ R ∪ {∞} and ∞ > a for all

a ∈ R, the properties of | · | translate to
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(i)
′ ∀α ∈ K, ν(α) ∈ R ∪ {∞} and ν(α) =∞ if and only if α = 0,

(ii)
′ ∀α, β ∈ K, ν(αβ) = ν(α) + ν(β),

(iii)
′ ∀α, β ∈ K, ν(α + β) ≥ min {ν(α), ν(β)} with equality when ν(α) 6= ν(β).

A mapping ν : K → R ∪ {∞} satisfies (i)
′ − (iii)

′
is called an exponential

valuation of K corresponding to the valuation | · |.

Definition 1.5. A non-archimedean valuation | · | is called a discrete valuation if

ν(K×) is a discrete subgroup of the additive group of real numbers, i.e., ν(K×) = {0}

or ν(K×) is an infinite cyclic subgroup of (R,+).

Two kinds of examples of discrete valuations are as follows:

Example 1.6.

(1) The p-adic valuation, | · |p, is a discrete non-archimedean valuation on Q.

(2) The π(x)-adic valuation, | · |π, and the degree valuation, | · |∞, are discrete

non-archimedean valuations on F (x).

The concepts of convergence and completeness of our mentioned fields are defined

in the usual ways.

Definition 1.7. Let (K, | · |) be a valued field. A sequence {an} of elements of K

converges to α in K if ∀ε > 0 ∃N such that ∀n > N, |an − α| < ε.

Definition 1.8. The field K is called complete with respect to the valuation | · | if

every Cauchy sequence in K, with respect to | · |, has a limit in K.

Definition 1.9. A field K̂ with valuation |̂ · | is a completion of K with | · | if

(1) K̂ is an extension of K,

(2) K̂ is complete with respect to |̂ · | which is a prolongation of | · | over K,

(3) every element of K̂ is a limit of some Cauchy sequence in K.
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Example 1.10.

(1) In the case of Q, with the usual absolute value, its completion is the field R

of real numbers.

(2) In the case of (Q, | · |p), its completion is the p-adic number field (Qp, | · |p).

(3) In the case of (F (x), | · |π) its completion is (F ((π(x))), | · |π) the field of formal

Laurent series in π(x).

(4) In the case of (F (x), | · |∞), its completion is (F ((1/x)), | · |∞) the field of

formal Laurent series in 1/x.

Definition 1.11. Let (K, | · |) be a non-archimedean valued field.

(1) The set O := {α ∈ K : |α| ≤ 1} is a ring, called the valuation ring of (K, |·|).

(2) The set P := {α ∈ K : |α| < 1} is the unique maximal ideal of O.

(3) The field O/P is called the residue class field of (K, | · |).

A representative of elements in a complete field is in the next theorem, see e.g.

[9].

Theorem 1.12. Let K be a complete field with respect to a discrete non-archimedean

valuation | · |. For each integer m let πm be an element of K such that ν(πm) = m.

Let A be a complete set of representatives in O of the elements of O/P, that is, A

consists of exactly one element from each of the residue classes of P in O. Then

every α ∈ K× can be written uniquely in the form

α =
∞∑
i=r

aiπi,

where r = ν(α), ai ∈ A for each i, and ar /∈ P.
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Example 1.13.

(1) In case πm = pm, m ∈ Z, p is a prime number and A = Z/pZ, we have a

unique representation of any element in the p-adic number field Qp of the form

∞∑
i=r

aip
i,

where r ∈ Z, ai ∈ Z/pZ for each i and ar 6= 0.

(2) An element πm = x−m in F ((1/x)) and the set A = F give a representation

of an element in F ((1/x)) of the form

∞∑
i=r

aix
−i,

where r ∈ Z, ai ∈ F for each i and ar 6= 0.

(3) An element πm = xm in F ((x)) and the set A = F give a representation of an

element in F ((x)) of the form
∞∑
i=r

aix
i,

where r ∈ Z, ai ∈ F for each i and ar 6= 0.



CHAPTER II

COHEN-EGYPTIAN FRACTION EXPANSIONS

In this chapter, an algorithm is given in the first section to construct series

representations of nonzero real numbers. We give detailed proofs of its convergence,

uniqueness and characterization of rational numbers. In the second section, we treat

the case of complete discrete non-archimedean valued fields.

2.1 The case of real numbers

According to the Egyptian legend ([3]), the evil god Seth damaged the eye of

Horus, son of Isis and Osiris. The Eye of Horus had mystical siginificance, as each

of its parts was associated with a fraction of the form 1/2n. Thoth, the benevolent

ibis-headed god, is credited with restoring the eye ‘by the touch of his finger’ making

it whole. This is interpreted as reference to the geometric sum

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
.

This sum is made whole (i.e., it sums to 1) by the addition of one more counting unit,

one more finger, 1/64. Frational expressions of this sort ocurred naturally within

the Egyptian system of arithmetic. The mathematician-scribes of dynastic Egypt

denoted rational numbers by strings of unit fractions (fractions whose numerators are

1), which has since been referred to as Egyptian fractions.
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There has been a good deal of works about Egyptian fraction expansions, see e.g.

[2], [3], [4] and [12]. We are here interested in the result of Cohen, see [4], where

an algorithm to uniquely represent each nonzero real number as a sum of Egyptian

fractions is obtained.

To construct such expansion, we proceed as in Cohen, [4], making use of the

following lemma.

Lemma 2.1. For any y ∈ (0, 1), there exist a unique integer n ≥ 2 and a unique

r ∈ R such that

1 = ny − r and 0 ≤ r < y.

Proof. Let y ∈ (0, 1). Define n = d1/ye ∈ N and r = ny − 1. Put 〈1/y〉 := n− 1/y ∈

[0, 1) and so

r = ny − 1 = y

〈
1

y

〉
∈ [0, y).

To prove the uniqueness, assume there exist integer m ≥ 2 and s ∈ R such that

1 = my − s and 0 ≤ s < y.

From ny − r = 1 = my − s, we get

1 +
1

y
> n =

1 + r

y
≥ 1

y
and 1 +

1

y
> m =

1 + s

y
≥ 1

y
.

Since there is only one integer with this property, we conclude that n = m and

consequently, r = s proving the lemma.
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Theorem 2.2. Each A ∈ R× is uniquely representable as a series expansion of the

form

A = n0 +
∞∑
k=1

1

n1n2 · · ·nk
,

with

n0 = bAc , n1 ≥ 2, nk+1 ≥ nk (k ≥ 1) (2.1)

and no term of the sequence appears infinitely often.

Moreover, each expansion terminates if and only if it represents a nonzero rational

number.

Proof. Let A ∈ R× and n0 = bAc. Define

r0 = A− n0 ∈ [0, 1).

If r0 = 0, then the process stops and we write A = n0. When r0 6= 0, by Lemma 2.1,

there are unique n1 ∈ N and r1 ∈ R such that

1 = n1r0 − r1, 0 ≤ r1 < r0, n1 ≥ 2.

Thus,

A = n0 + r0 = n0 +
1

n1

+
r1
n1

.

If r1 = 0, then the process stops and we write A = n0 + 1/n1. When r1 6= 0, by

Lemma 2.1, there are unique n2 ∈ N and r2 ∈ R such that

1 = n2r1 − r2, 0 ≤ r2 < r1, n2 ≥ n1;

the last inequality being followed from n1 = d1/r0e , n2 = d1/r1e and r1 < r0.
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Observe also that

A = n0 +
1

n1

+
1

n1n2

+
r2
n1n2

.

Continuing this process, we get

A = n0 +
1

n1

+
1

n1n2

+ · · ·+ 1

n1n2 · · ·nk
+

rk
n1n2 · · ·nk

,

with

1 = niri−1 − ri, 1 > ri−1 > ri ≥ 0 and 2 ≤ ni ≤ ni+1 for all i = 1, 2, . . . . (2.2)

If some rk = 0, then the process stops, otherwise the series convergence follows at

once from ∣∣∣∣ rk
n1n2 · · ·nk

∣∣∣∣→ 0 as k →∞.

To prove the uniqueness, let

n0 +
∞∑
k=1

1

n1n2 · · ·nk
= A = m0 +

∞∑
k=1

1

m1m2 · · ·mk

, (2.3)

with the restictions (2.1) on both digits ni and mj. Now

∑
k≥1

1

n1n2 · · ·nk
≤
∑
k≥1

1

2k
= 1. (2.4)

It is clear that the restrictions (2.1) imply the strict inequality in (2.4). This also

applies to the rightmost summand in (2.3). Equating integer and fractional parts in

(2.3), we get

n0 = m0,

∞∑
k=1

1

n1n2 · · ·nk
=
∞∑
k=1

1

m1m2 · · ·mk

=: w, say.
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Since nk+1 ≥ nk,

n1w − 1 =
1

n2

+
1

n2n3

+
1

n2n3n4

+ · · · ≤ 1

n1

+
1

n1n2

+
1

n1n2n3

+ · · · = w,

so 0 < n1− 1/w ≤ 1. But there is exactly one integer n1 satisfying these restrictions.

Then n1 = m1 and ∑
k≥2

1

n2 · · ·nk
=
∑
k≥2

1

m2 · · ·mk

.

Proceeding in the same manner, we conclude that ni = mi for all i.

Finally, we look at its rationality characterization. If A ∈ Q×, then r0 ∈ Q, say

r0 := p/q, where p, q ∈ N. From (2.2), we see that each ri is a rational number whose

denominator is q. Using this fact and the second inequality condition in (2.2), we

deduce that rj = 0 for some j ≤ p, i.e., the expansion terminates. On the other hand,

it is clear that each terminating series expansion represents a rational number. Now

suppose that A is irrational and there are a j and an integer n such that ni = n for

all i ≥ j. Then

A = n0 +

j∑
k=1

1

n1n2 · · ·nk
+

1

n1n2 · · ·nj

∞∑
k=1

1

nk
.

Since
∑

k≥1 1/nk = 1/(n− 1), it follows that A is rational, which is impossible.

Definition 2.3. A series expression as in Theorem 2.2 is called a Cohen-Egyptian

fraction expansion and abbreviated by a CEF expansion.

The following examples illustrate the CEF expansions of
34

13
and e, respectively.
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Example 2.4.

(1) We construct the CEF expansion of
34

13
as follows.

Observe that
34

13
= 2 +

8

13
. Since

⌈
13

8

⌉
= 2, we write

1 = 2 · 8

13
− 3

13
,

so

34

13
= 2 +

1

2
+

3/13

2
.

From

⌈
13

3

⌉
= 5, we obtain

1 = 5 · 3

13
− 2

13
,

and hence

34

13
= 2 +

1

2
+

1

2 · 5
+

2/13

2 · 5
.

Next, since

⌈
13

2

⌉
= 7, we get

1 = 7 · 2

13
− 1

13

and so

34

13
= 2 +

1

2
+

1

2 · 5
+

1

2 · 5 · 7
+

1/13

2 · 5 · 7
.

Therefore, the CEF expansion of
34

13
is

34

13
= 2 +

1

2
+

1

2 · 5
+

1

2 · 5 · 7
+

1

2 · 5 · 7 · 13
.

(2) By the same algorithm , Cohen ([4]) gave

e = 2 +
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+ · · ·+ 1

n!
+ · · · .
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2.2 The non-archimedean case

In this section, our algorithm of constructing CEF expansions of elements in

complete discrete non-archimedean valued fields is given.

Let K be a complete field with respect to a discrete non-archimedean valuation

| · | and A ⊆ O be a set of representatives of O/P . Let α ∈ K×. By Theorem 1.12,

α can be uniquely represented as

α =
∞∑
i=r

aiπ
i, (ar 6= 0)

where r ∈ Z, ai ∈ A and π ∈ K is a prime element which is usually normalized so

that |π| = 2−1. Define the exponential valuation ν(α) of α by

|α| = 2−ν(α) = 2−r and ν(0) :=∞.

The head part 〈α〉 of α is defined as the finite series

〈α〉 :=
0∑

i=ν(α)

aiπ
i if ν(α) ≤ 0 and 0 otherwise.

Denote the set of all head parts by

S :=
{
〈α〉 : α ∈ K×

}
.

To construct a Cohen-Egyption fraction, CEF, expansion, similar to Lemma 2.1,

we start with the following lemma.
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Lemma 2.5. For any α ∈ K× such that ν(α) ≥ 1, there exist a unique n ∈ S such

that ν(n) ≤ −1 and a unique r ∈ K such that

1 = nα− r and ν(r) ≥ ν(α) + 1 (i.e., 0 ≤ |r| < |α|).

Proof. Let α ∈ K× such that ν(α) ≥ 1. Define n = 〈1/α〉. Then

ν(n) = ν (1/α) = −ν(α) ≤ −1.

Putting r = nα− 1, we show now that ν(r) ≥ ν(α) + 1. Since n = 〈1/α〉, we have

1

α
= n+

∑
k≥1

ckπ
k,

where ck ∈ A, and so

nα− 1 = −α
∑
k≥1

ckπ
k.

Thus

ν(r) = ν(nα− 1) = ν(−α) + ν

(∑
k≥1

ckπ
k

)
≥ ν(α) + 1 > ν(α).

To prove the uniqueness, assume there exist n1 ∈ S such that ν (n1) ≤ −1 and r1 ∈ K

such that

1 = n1α− r1, 0 ≤ |r1| < |α| .

From nα−r = 1 = n1α−r1, we get (n−n1)α = r−r1. If n 6= n1, we have |n−n1| ≥ 1

since n, n1 ∈ S. Using |α| > |r − r1|, we deduce that

|r − r1| < |α| ≤ |n− n1||α| = |r − r1|,

which is a contradiction. Thus, n = n1 and so r = r1.
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We now prove that every nonzero element of a complete discrete non-archimedean

valued field has a CEF expansion. Furthermore, our proof is constructive and gives

an algorithm to construct such an expansion.

Theorem 2.6. Each α ∈ K× has a CEF expansion of the form

α = n0 +
∞∑
k=1

1

n1n2 · · ·nk
,

where

nk ∈ S, ν (nk) ≤ −k and ν (nk+1) ≤ ν (nk)− 1 (k ≥ 1). (2.5)

This series representation is unique subject to the digit condition (2.5).

Proof. Let α ∈ K×. Define n0 = 〈α〉 and r0 = α − n0. Then ν (r0) ≥ 1. If r0 = 0,

then the process stops and we write α = n0. When r0 6= 0, by Lemma 2.5, there are

n1 ∈ S and r1 ∈ K such that

n1 =

〈
1

r0

〉
, r1 = n1r0 − 1,

where ν (n1) ≤ −1 and ν (r1) ≥ ν (r0) + 1. So

α = n0 + r0 = n0 +
1

n1

+
r1
n1

.

If r1 = 0, then the process stops and we write α = n0 + 1/n1. When r1 6= 0, by

Lemma 2.5, there are n2 ∈ S and r2 ∈ K such that

n2 =

〈
1

r1

〉
, r2 = n2r1 − 1,
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where ν (n2) ≤ −1 and ν (r2) ≥ ν (r1) + 1. So

α = n0 +
1

n1

+
1

n1n2

+
r2
n1n2

.

Continuing this process, we generally obtain

nk =

〈
1

rk−1

〉
, rk = nkrk−1 − 1

α = n0 +
1

n1

+
1

n1n2

+ · · ·+ 1

n1n2 · · ·nk
+

rk
n1n2 · · ·nk

,

where

nk ∈ S, ν (nk) ≤ −1, ν (rk) ≥ ν (rk−1) + 1 for all k ≥ 1.

Thus,

ν (nk+1) = −ν (rk) ≤ −ν (rk−1)− 1 = ν (nk)− 1 for all k ≥ 1.

We observe that the process terminates if rk = 0.

Next, we show that ν (nk) ≤ −k for all k ≥ 1. By construction, we have ν (n1) ≤ −1.

Assume that ν (nk) ≤ −k. Then

ν (nk+1) ≤ ν (nk)− 1 ≤ −k − 1.

Regarding convergence, we consider

ν

(
rk

n1n2 · · ·nk

)
= −ν (n1)− ν (n2)− · · · − ν (nk) + ν (rk)

= −ν (n1)− ν (n2)− · · · − ν (nk)− ν (nk+1)

≥ 1 + 2 + · · ·+ k + (k + 1)→∞ as k →∞.
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It remains to prove the uniqueness. Suppose that α has two such expansions

n0 +
∑
j

1

n1n2 · · ·nj
= α = m0 +

∑
i

1

m1m2 · · ·mi

.

Since ν
(∑

j 1/n1n2 · · ·nj
)

= ν (1/n1) ≥ 1 and n0 ∈ S, we have n0 = 〈α〉.

Similarly, we obtain m0 = 〈α〉. These give n0 = m0 and so
∑

j≥1 1/n1n2 · · ·nj =∑
i≥1 1/m1m2 · · ·mi. Putting

ω :=
∑
j≥1

1

n1n2 · · ·nj
=
∑
i≥1

1

m1m2 · · ·mi

,

we have n1ω = 1 +
∑

j≥2 1/n2 · · ·nj and hence

1 = n1ω −
∑
j≥2

1

n2 · · ·nj
.

Thus

ν

(∑
j≥2

1

n2 · · ·nj

)
= ν

(
1

n2

)
= −ν (n2) ≥ −ν (n1) + 1 = ν (ω) + 1.

By Lemma 2.5, since n1 is the unique element in S with such property, we deduce

n1 = m1. Continuing in the same manner, we conclude that the two expansions are

identical.

Example 2.7.

(1) Consider the CEF expansion of
x5 + x4 + x3 + x2 + 1

x3 + x+ 1
in Q((1/x)) with re-

spect to the degree valuation, by the division algorithm, we have

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

−x2 − x+ 1

x3 + x+ 1
.
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Since

〈
x3 + x+ 1

−x2 − x+ 1

〉
= −x+ 1, we write

1 = (−x+ 1)

(
−x2 − x+ 1

x3 + x+ 1

)
− −3x

x3 + x+ 1
,

so

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

1

−x+ 1
+

(−3x)/(x3 + x+ 1)

−x+ 1
.

Next, since

〈
x3 + x+ 1

−3x

〉
= −1

3
x2 − 1

3
, we get

1 =

(
−1

3
x2 − 1

3

)(
−3x

x3 + x+ 1

)
− −1

x3 + x+ 1

and so

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

1

−x+ 1
+

1

(−x+ 1)

(
−1

3
x2 − 1

3

)
+

(−1)/(x3 + x+ 1)

(−x+ 1)

(
−1

3
x2 − 1

3

) .

Hence the CEF expansion of
x5 + x4 + x3 + x2 + 1

x3 + x+ 1
is

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

1

−x+ 1
+

1

(−x+ 1)

(
−1

3
x2 − 1

3

)
+

1

(−x+ 1)

(
−1

3
x2 − 1

3

)
(−x3 − x− 1)

.
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(2) In order to find the CEF expansion of −1 in Q5 with respect to the 5-adic

valuation, by direct calculation, we write

−1 = 4 + 4 · 5 + 4 · 52 + 4 · 53 + · · · .

Since

〈
1

4 · 5 + 4 · 52 + 4 · 53 + · · ·

〉
=

4

5
+ 4, we write

1 =

(
4

5
+ 4

)(
4 · 5 + 4 · 52 + 4 · 53 + · · ·

)
−
(
4 · 52 + 4 · 53 + 4 · 54 + · · ·

)
,

so

−1 = 4 +
1

4

5
+ 4

+
4 · 52 + 4 · 53 + 4 · 54 + · · ·

4

5
+ 4

.

Form

〈
1

4 · 52 + 4 · 53 + 4 · 54 + · · ·

〉
=

4

52
+

4

5
+ 4, we obtain

1 =

(
4

52
+

4

5
+ 4

)(
4 · 52 + 4 · 53 + 4 · 54 + · · ·

)
−
(
4 · 53 + 4 · 54 + 4 · 54 + · · ·

)
,

and hence

−1 = 4 +
1

4

5
+ 4

+
1(

4

5
+ 4

)(
4

52
+

4

5
+ 4

) +
4 · 53 + 4 · 54 + 4 · 54 + · · ·(

4

5
+ 4

)(
4

52
+

4

5
+ 4

) .

Next, since

〈
1

4 · 53 + 4 · 54 + 4 · 54 + · · ·

〉
=

4

53
+

4

52
+

4

5
+ 4, we get

1 =

(
4

53
+

4

52
+

4

5
+ 4

)(
4 · 53 + 4 · 54 + 4 · 54 + · · ·

)
−
(
4 · 54 + 4 · 55 + 4 · 56 + · · ·

)
,
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and so

−1 =4 +
1

4

5
+ 4

+
1(

4

5
+ 4

)(
4

52
+

4

5
+ 4

)
+

1(
4

5
+ 4

)(
4

52
+

4

5
+ 4

)(
4

53
+

4

52
+

4

5
+ 4

)
+

4 · 54 + 4 · 55 + 4 · 56 + · · ·(
4

5
+ 4

)(
4

52
+

4

5
+ 4

)(
4

53
+

4

52
+

4

5
+ 4

) .

Repeating in the same manner, we obtain the CEF expansion of −1 as follows

−1 =4 +
1

4

5
+ 4

+
1(

4

5
+ 4

)(
4

52
+

4

5
+ 4

)
+

1(
4

5
+ 4

)(
4

52
+

4

5
+ 4

)(
4

53
+

4

52
+

4

5
+ 4

)
+

1(
4

5
+ 4

)(
4

52
+

4

5
+ 4

)(
4

53
+

4

52
+

4

5
+ 4

)(
4

54
+

4

53
+

4

52
+

4

5
+ 4

) + · · · .



CHAPTER III

ENGEL SERIES EXPANSIONS

We begin this chapter by a construction in the real case.

3.1 The case of real numbers

Recall that following result, see e.g. Kapitel IV of [11], which asserts that

each nonzero real number can be uniquely represented as an infinite series expansion

described by the following theorem.

Theorem 3.1. Each A ∈ R× is uniquely representable as an infinite series expansion

of the form

A = a0 +
∞∑
i=1

1

a1a2 · · · ai
,

where

a0 =


bAc if A /∈ Z

A− 1 if A ∈ Z,
a1 ≥ 2, ai+1 ≥ ai (i ≥ 1). (3.1)

Moreover, A ∈ Q× if and only if ai+1 = ai (≥ 2) for all sufficiently large i.

Proof. Let A ∈ R×. Define A1 = A− a0. Then 0 < A1 ≤ 1. If Ai 6= 0 for all i ≥ 1

is already defined, put

ai = 1 +

⌊
1

Ai

⌋
(3.2)

and

Ai+1 = aiAi − 1. (3.3)



23

Observe that ai is the least integer > 1/Ai and

1

ai
< Ai ≤

1

ai − 1
.

We now claim that

0 < . . . ≤ Ai+1 ≤ Ai ≤ . . . ≤ A2 ≤ A1 ≤ 1. (3.4)

First, we show that Ai > 0 for all i ≥ 1 by induction. If i = 1, then we have seen

that A1 > 0. Assume now that Ai > 0 for i ≥ 1. By (3.2), we see that ai ∈ N. Since

Ai+1 = aiAi − 1 =

(
Ai −

1

ai

)
ai

and 1/ai < Ai, we have Ai+1 > 0. If there exists m ∈ N such that Am+1 > Am, then

amAm − 1 = Am+1 > Am

and so am − 1 > 1/Am, contradicting the minimal property of ai and the claim is

proved.

From (3.2) and (3.4), we deduce that a1 ≥ 2 and ai+1 ≥ ai for all i ≥ 1. Iterating

(3.3), we get

A1 =
1

a1

+
1

a1a2

+ · · ·+ 1

a1a2 · · · ai
+

Ai+1

a1a2 · · · ai
.

To establish the convergence, let

Bi =
1

a1

+
1

a1a2

+ · · ·+ 1

a1a2 · · · ai
for all i ≥ 1.

Since Ai > 0 and ai ∈ N for all i ≥ 1, the sequence of real numbers (Bi) is increasing
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and bounded above by A1. Thus, lim
i→∞

Bi exists and so

1

a1a2 · · · ai
→ 0 as i→∞.

By (3.4),

0 <
Ai+1

a1a2 · · · ai
≤ 1

a1a2 · · · ai
→ 0 as i→∞,

showing that any real number has an infinite series expansion. To prove the unique-

ness, we assume that A has two infinite such expansions

a0 +
∞∑
i=1

1

a1a2 · · · ai
= A = b0 +

∞∑
i=1

1

b1b2 · · · bi
, (3.5)

with the restrictions a0 ∈ Z, a1 ≥ 2, ai+1 ≥ ai for all i ≥ 1 and the same restrictions

also for the bi’s. From the restrictions, we note that

0 < A1 :=
∞∑
i=1

1

a1a2 · · · ai
≤ 1.

If A1 = 1, then by (3.5) we also have
∑

i≥1 1/b1b2 · · · bi = 1, forcing a0 = b0. If

0 < A1 < 1, then (3.5) shows that 0 <
∑

i≥1 1/b1b2 · · · bi < 1, forcing again a0 = b0.

In either case, cancelling out the terms a0, b0 in (3.5) we get

A1 :=
∞∑
i=1

1

a1a2 · · · ai
=
∞∑
i=1

1

b1b2 · · · bi
. (3.6)

Since ai+1 ≥ ai for all i ≥ 1,

a1A1 − 1 =
1

a2

+
1

a2a3

+
1

a2a3a4

+ · · · ≤ 1

a1

+
1

a1a2

+
1

a1a2a3

+ · · · = A1,

so 0 < a1−1/A1 ≤ 1. But there is exactly one integer a1 satisfying these restrictions.
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Thus, a1 = b1. Cancelling out the terms a1 and b1 in (3.6) and repeat the arguments

we see that ai = bi for all i.

Finally, we prove the rationality characterization. If its series expansion is infi-

nite periodic of period 1, then it clearly represents a rational number. To prove its

converse, let A = a/b ∈ Q×. Since

A1 = A− a0 =
a− ba0

b
,

we see that A1 is a rational number in the interval (0, 1] whose denominator is b. In

general, from (3.3), we deduce that for each i ≥ 1, Ai is a rational number in the

interval (0, 1] whose denominator is b. But the number of rational numbers in the

interval (0, 1] whose denominator is b is finite. This implies that there are two least

indices h, k ∈ N such that Ah+k = Ah. Thus, by (3.2), we have ah+k = ah. From

(3.1), we know that the sequence {ai} is increasing. We must then have k = 1 and

the assertion follows.

Definition 3.2. A series expression as in Theorem 3.1 is called a Engel series

expansion and abbreviated by a ES expansion.

Example 3.3. We give two examples of the ES expansions of
4

73
and
√

2, respectively.

(1) We construct the ES expansion of
4

73
as follows.

Observe that
4

73
/∈ Z, so we have a0 =

⌊
4

73

⌋
= 0 and A1 =

4

73
.

Since a1 = 1 +

⌊
1

A1

⌋
= 1 +

⌊
73

4

⌋
= 19, we get

A2 = 19 · 4

73
− 1 =

3

73
,
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so

4

73
= 0 +

1

19
+

3/73

19
.

From a2 = 1 +

⌊
1

A2

⌋
= 1 +

⌊
73

3

⌋
= 25, we obtain

A3 = 25 · 3

73
− 1 =

2

73
,

and hence

4

73
= 0 +

1

19
+

1

19 · 25
+

2/73

19 · 25
.

Since a3 = 1 +

⌊
1

A3

⌋
= 1 +

⌊
73

2

⌋
= 37, we get

A4 = 37 · 2

73
− 1 =

1

73
,

so

4

73
= 0 +

1

19
+

1

19 · 25
+

1

19 · 25 · 37
+

1/73

19 · 25 · 37
.

From a4 = 1 +

⌊
1

A4

⌋
= 1 +

⌊
73

1

⌋
= 74, we obtain

A5 = 74 · 1

73
− 1 =

1

73
,

and hence

4

73
= 0 +

1

19
+

1

19 · 25
+

1

19 · 25 · 37
+

1

19 · 25 · 37 · 74
+

1/73

19 · 25 · 37 · 74
.

Next, since a5 = 1 +

⌊
1

A5

⌋
= 1 +

⌊
73

1

⌋
= 74, we get

A6 = 74 · 1

73
− 1 =

1

73
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and so

4

73
= 0+

1

19
+

1

19 · 25
+

1

19 · 25 · 37
+

1

19 · 25 · 37 · 74
+

1

19 · 25 · 37 · 742
+

1/73

19 · 25 · 37 · 742
.

Note that ai = a4 = 74 for all i ≥ 5.

Therefore, the ES expansion of
4

73
is

4

73
= 0 +

1

19
+

1

19 · 25
+

1

19 · 25 · 37
+

1

19 · 25 · 37 · 74
+

1

19 · 25 · 37 · 742

+
1

19 · 25 · 37 · 743
+ · · · .

(2) By the same algorithm we have

√
2 = 1 +

1

3
+

1

3 · 5
+

1

3 · 5 · 5
+

1

3 · 5 · 5 · 16
+

1

3 · 5 · 5 · 16 · 18
+ · · · .

Remarks. In passing, we make the following observations.

(a) For i ≥ 1, we have

ai+1 = ai ⇐= Ai+1 = Ai ⇐⇒ aiAi−1 = Ai ⇐⇒ ai = 1+
1

Ai
⇐⇒ 1

Ai
∈ Zr{0}.

(b) If A ∈ R r Q, then Ai ∈ R r Q and so 1/Ai ∈ R r Q for all i ≥ 1.

(c) If A ∈ Z r {0}, then its ES expansion is

A = A− 1 +
1

2
+

1

22
+

1

23
+ · · · .



28

3.2 The non-archimedean case

Using the same notation as in Section 2.2, we recall the Knopfmachers’ series

expansion algorithm for series expansions in K×, [7]. For α ∈ K×, let

a0 := 〈α〉 ∈ S.

Define

A1 := α− a0.

If Ai 6= 0 for all i ≥ 1 is already defined, put

ai =

〈
1

Ai

〉
, Ai+1 =

(
Ai −

1

ai

)
si
ri

if ai 6= 0, where ri and si ∈ K× which may depend on a1, . . . , ai. Then for i ≥ 1

α = a0 + A1 = · · · = a0 +
1

a1

+
r1
s1

1

a2

+ · · ·+ r1 · · · ri−1

s1 · · · si−1

1

ai
+
r1 · · · ri
s1 · · · si

Ai+1. (3.7)

The process ends in a finite expansion if some Ai+1 = 0. If some ai = 0, then Ai+1 is

not defined. To take care of this difficulty, we impose the condition

ν (si)− ν (ri) ≥ 2ν (ai)− 1.

Thus

α = a0 +
1

a1

+
∞∑
i=1

r1 · · · ri
s1 · · · si

· 1

ai+1

.

When ri = 1 and si = ai, the algorithm yields a well-defined (with respect to the

valuation) and unique series expansion, termed ES expansion. Summing up, we have
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Theorem 3.4. Every α ∈ K× has a finite or an infinite convergent ES expansion of

the form

α = a0 +
∞∑
i=1

1

a1a2 · · · ai
,

where the digits ai are subject to the restrictions

a0 = 〈α〉 ∈ S , ai ∈ S, ν(ai) ≤ −i, ν(ai+1) ≤ ν(ai)− 1 (i ≥ 1).

Example 3.5.

(1) Consider the ES expansion of
x5 + x4 + x3 + x2 + 1

x3 + x+ 1
in Q((1/x)) with respect

to the degree valuation. Observe that

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

−x2 − x+ 1

x3 + x+ 1
,

so a0 = x2 + x and A1 =
−x2 − x+ 1

x3 + x+ 1
.

From a1 =

〈
1

A1

〉
=

〈
x3 + x+ 1

−x2 − x+ 1

〉
= −x+ 1, we write

A2 =

(
−x2 − x+ 1

x3 + x+ 1
− 1

−x+ 1

)
(−x+ 1) =

−3x

x3 + x+ 1
,

so

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

1

−x+ 1
+

−3x

(−x+ 1)(x3 + x+ 1)
.

Next, since a2 =

〈
1

A2

〉
=

〈
x3 + x+ 1

−3x

〉
= −1

3
x2 − 1

3
, we get

A3 =

(
−3x

x3 + x+ 1
− −3

x2 + 1

)(
−1

3
x2 − 1

3

)
=

−1

x3 + x+ 1
,
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and hence

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

1

−x+ 1
+

1

(−x+ 1)

(
−1

3
x2 − 1

3

)
+

−1

(−x+ 1)

(
−1

3
x2 − 1

3

)
(x3 + x+ 1)

.

Therefore, the ES expansion of
x5 + x4 + x3 + x2 + 1

x3 + x+ 1
is

x5 + x4 + x3 + x2 + 1

x3 + x+ 1
= x2 + x+

1

−x+ 1
+

1

(−x+ 1)

(
−1

3
x2 − 1

3

)
+

1

(−x+ 1)

(
−1

3
x2 − 1

3

)
(−x3 − x− 1)

.

(2) To construct the ES expansion of −1 in Q5 with respect to the 5-adic valuation,

by elementary calculation, we write

−1 = 4 + 4 · 5 + 4 · 52 + 4 · 53 + · · · ,

so a0 = 4 and A1 = 4 · 5 + 4 · 52 + 4 · 53 + · · · .

From a1 =

〈
1

A1

〉
=

〈
1

4 · 5 + 4 · 52 + 4 · 53 + · · ·

〉
=

4

5
+ 4, we write

A2 =

(4 · 5 + 4 · 52 + 4 · 53 + · · ·
)
− 1

4

5
+ 4

(4

5
+ 4

)

= 4 · 52 + 4 · 53 + 4 · 54 + · · · ,



31

so

−1 = 4 +
1

4

5
+ 4

+
4 · 52 + 4 · 53 + 4 · 54 + · · ·

4

5
+ 4

.

Next, since a2 =

〈
1

A2

〉
=

〈
1

4 · 52 + 4 · 53 + 4 · 54 + · · ·

〉
=

4

52
+

4

5
+ 4, we get

A3 =

(4 · 52 + 4 · 53 + 4 · 54 + · · ·
)
− 1

4

52
+

4

5
+ 4

( 4

52
+

4

5
+ 4

)

= 4 · 53 + 4 · 54 + 4 · 54 + · · · ,

and hence

−1 = 4 +
1

4

5
+ 4

+
1(

4

5
+ 4

)(
4

52
+

4

5
+ 4

) +
4 · 53 + 4 · 54 + 4 · 54 + · · ·(

4

5
+ 4

)(
4

52
+

4

5
+ 4

) .

By so doing, we have the general form of Am and am as follows:

Am = 4 · 5m + 4 · 5m+1 + 4 · 5m+2 + · · · , m = 1, 2, 3, . . . ,

am =
4

5m
+

4

5m−1
+ · · ·+ 4

5
+ 4, m = 1, 2, 3, . . . ,

and so the ES expansion of −1 is

−1 =4 +
1

4

5
+ 4

+
1(

4

5
+ 4

)(
4

52
+

4

5
+ 4

)
+

1(
4

5
+ 4

)(
4

52
+

4

5
+ 4

)(
4

53
+

4

52
+

4

5
+ 4

)
+

1(
4

5
+ 4

)(
4

52
+

4

5
+ 4

)(
4

53
+

4

52
+

4

5
+ 4

)(
4

54
+

4

53
+

4

52
+

4

5
+ 4

) + · · · .
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Observe that the digits am are of the form

am =
5m+1 − 1

5m
(m = 0, 1, 2, . . .) .

Based on the work of Grabner and Knopfmacher in [6], we will give more precise

result in Section 4.2 describing the digits am appeared in the ES expansion of rational

elements in the p-adic number field Qp.



CHAPTER IV

RATIONALITY CHARACTERIZATION

IN THE NON-ARCHIMEDEAN CASE

4.1 Relationships between CEF and ES expansions

In the first section, we investigate possible relationships between CEF and ES

expansions in the field of real numbers and in the complete discrete non-archimedean

valued fields.

In the case of real numbers, we show that for irrational numbers both kinds of

expansions are identical, while for rational numbers, their CEF expansions always

terminate, but their ES expansions are infinite, periodic of period 1.

Theorem 4.1. Let A ∈ R× and the notation be as set out in Theorems 2.2 and 3.1.

I. If A ∈ Q×, then its CEF expansion is finite, while its ES expansion is infinite

periodic of period 1. More precisely, for A ∈ Q r Z, let its CEF and ES expansions

be, respectively,

A = n0 +
∞∑
k=1

1

n1n2 · · ·nk
= a0 +

∞∑
i=1

1

a1a2 · · · ai
. (4.1)

If m is the least positive integer such that 1/Am ∈ Z, then

a0 = n0, a1 = n1, . . . , am−1 = nm−1, am = nm + 1, am = am+j (j ≥ 1)
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and the digits nj terminate at nm.

II. If A ∈ R r Q, then its CEF and its ES expansions are identical.

Proof. Both assertions follow mostly from Theorems 2.2, 3.1 and Remark (b) except

for the result related to the expansions in (4.1) which we show now.

Let A ∈ Q r Z and let m be the least positive integer such that 1/Am ∈ Z. We

treat two seperate cases.

Case m = 1. In this case, we have 1/A1 ∈ Z and a1 = 1 + b1/A1c = 1 + 1/A1.

Since r0 = A− n0 = A− bAc = A− a0 = A1, we get n1 = 1/A1 and so a1 = n1 + 1.

We have r1 = n1r0 − 1 = 0, and so the CEF expansion terminates. On the other

hand, by Remark (a) after Theorem 3.1, we have a1 = aj for all j ≥ 2.

Case m > 1. Thus, 1/A1 /∈ Z and A1 = r0. By Lemma 2.1, we have a1 = n1. For

1 ≤ j ≤ m− 2, we assume that Aj = rj−1 and aj = nj. Then

Aj+1 = ajAj − 1 = njrj−1 − 1 = rj.

Since 1/Aj+1 /∈ Z, again by Lemma 2.1, aj+1 = nj+1. This shows that a1 =

n1, . . . , am−1 = nm−1. Since 1/Am ∈ Z, we have am = 1 + b1/Amc = 1 + 1/Am

and thus

Am = am−1Am−1 − 1 = nm−1rm−2 − 1 = rm−1.

From the construction of CEF expansion, we know that nm = d1/rm−1e. Thus,

nm = 1/Am showing that am = nm+1. Furthermore, rm = nmrm−1−1 = 0, implying

that the CEF expansion terminates at nm, and by Remark (a) after Theorem 3.1,

am = am+j for all j ≥ 1.

For the non-archimedean case, from Section 2.2 and 3.2, after devising CEF and

ES expansions for nonzero elements in these fields, it is clear that the constructions
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of CEF and ES expansions are identical which implies at once that the two represen-

tations are exactly the same in the non-archimedean case.

4.2 Characterizations of rational elements

in the non-archimedean fields

In this section, we characterize rational elements in three different non-archimedean

valued fields, namely, the field of p-adic numbers and the two function fields, one

completed with respect to the π(x)-adic valuation and the other with respect to the

degree valuation.

The following characterization of rational elements by p-adic ES expansions is due

to Grabner and Knopfmacher, [6].

Theorem 4.2. Let x ∈ pZp r {0}. Then x is rational, x = α/β, if and only if either

the p-adic ES expansion of x is finite, or there exists an m and an s ≥ m, such that

am+j =
ps+j+1 − γ

ps+j
(j = 0, 1, 2, . . .),

where γ | β.

For the function fields, the word “rational elements” refers to elements in F (x).

Let F denote a field and π(x) an irreducible polynomial of degree d over F . There are

two types of valuations in the field of rational functions F (x), namely, the π(x)-adic

valuation | · |π, and the degree valuation | · |∞ defined as follows: from the unique

representation in F (x),

f(x)

g(x)
= π(x)m

r(x)

s(x)

where f(x), g(x) ∈ F [x] r {0}; r(x) and s(x) are relatively prime elements of F [x];

s(x) is a nonzero monic polynomial; π(x) - r(x)s(x) and m ∈ Z
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set

|0|π = 0,

∣∣∣∣f(x)

g(x)

∣∣∣∣
π

= 2−md; |0|∞ = 0,

∣∣∣∣f(x)

g(x)

∣∣∣∣
∞

= 2degf(x)−degg(x).

Recall from Example 1.10 that F ((π(x))) and F ((1/x)) are the completions of F (x),

with respect to the π(x)-adic and the degree valuations, respectively. The extension

of the valuations to F ((π(x))) and F ((1/x)) are again denoted by | · |π and | · |∞.

For a characterization of rational elements, we prove:

Theorem 4.3. The CEF expansion of nonzero α in F ((π(x))) or in F ((1/x)) ter-

minates if and only if α ∈ F (x)×.

Proof. Although the assertions in both fields F ((π(x))) and F ((1/x)) are the same,

their respective proofs are different. In fact, when the field F has finite characteristic,

both results have already been shown in Laohakosol, [8], and the proof given here is

basically the same.

We use the notation of Section 2.2 and 3.2 with added subscripts π or ∞ to

distinguish their corresponding meanings.

If the CEF expansion of α in either field is finite, then α is clearly rational. It

remains to prove the converse. We begin with the field F ((π(x))). Assume that

α ∈ F (x)×. Then α has the CEF expansion of the form,

α = n0 +
∞∑
k=1

1

n1n2 · · ·nk
,

where

nk ∈ S, ν (nk) ≤ −k and ν (nk+1) ≤ ν (nk)− 1 for all k ≥ 1.

By construction, each k ≥ 1, rk ∈ F (x) and so can be uniquely represented in the

form

rk = π(x)ν(rk)
pk(x)

qk(x)
, (4.2)
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where pk(x) and qk(x) are relatively prime elements of F [x], qk(x) is a nonzero monic

polynomial and π(x) - pk(x)qk(x). Since nk = 〈1/rk−1〉 ∈ Sπ and ν (nk) ≤ −k, it is of

the form

nk = sν(nk)(x)π(x)ν(nk) + sν(nk)+1(x)π(x)ν(nk)+1 + · · ·+ s−1(x)π(x)−1 + s0(x)

=: mk(x)π(x)ν(nk), (4.3)

where sν(nk)(x), . . . , s0(x) are polynomials over F , not all 0, of degree < d and mk(x) ∈

F [x]. Thus,

|nk|∞ ≤ max{
∣∣sν(nk)(x)π(x)ν(nk)

∣∣
∞ ,
∣∣sν(nk)+1(x)π(x)ν(nk)+1

∣∣
∞ , . . .

. . . ,
∣∣s−1(x)π(x)−1

∣∣
∞ , |s0(x)|∞}

≤ 2d−1.

This yields

|mk(x)|∞ ≤ 2d−dν(nk)−1. (4.4)

By construction, we have

rk = nkrk−1 − 1. (4.5)

Substituting (4.2) and (4.3) into (4.5) and using ν (rk−1) = −ν (nk) lead to

π(x)−ν(nk+1)pk(x)qk−1(x) = qk(x) (mk(x)pk−1(x)− qk−1(x)) . (4.6)

Since gcd
(
π(x)−ν(nk+1)pk(x), qk(x)

)
= 1, it follows that qk(x) | qk−1(x). Successively,

we have

|qk(x)|∞ ≤ |qk−1(x)|∞ ≤ · · · ≤ |q1(x)|∞ .
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Together with (4.6) yield

|pk(x)|∞ ≤ |π(x)|ν(nk+1)
∞ max {|mk(x)pk−1(x)|∞ , |q1(x)|∞} .

Using (2.5) and (4.4), we consequently have

|pk(x)|∞ ≤ 2d(ν(nk)−1) max
{

2d−dν(nk)−1 |pk−1(x)|∞ , |q1(x)|∞
}

≤ max

{
1

2
|pk−1(x)|∞ ,

|q1(x)|∞
2d(k+1)

}
.

This shows that |pk(x)|∞ ≤
1
2
|pk−1(x)|∞ for all large k which implies that from some

k onwards, pk(x) = 0, and so rk = 0, i.e., the expansion terminates.

Finally, for the field F ((1/x)), we assume that α = p(x)/q(x) ∈ F (x)×. Without

loss of generality, assume deg p(x) ≥ deg q(x). By the division algorithm, we have

α =
p(x)

q(x)
= N0(x) +

R0(x)

q(x)
:= n0 + r0,

where

n0 := N0(x) = 〈α〉 ∈ S∞, R0(x) ∈ F [x], 0 ≤ degR0 < deg q, and r0 =
R0(x)

q(x)
.

From the division algorithm,

q(x)

R0(x)
= N1(x) +

R1(x)

R0(x)
; N1(x), R1(x) ∈ F [x]; 0 ≤ degR1 < degR0 < deg q,

which is, in the terminology of Lemma 2.5,

1 = r0N1 +
R1

q
= r0n1 − r1.
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Again, from the division algorithm,

−q(x)

R1(x)
= N2(x)+

R2(x)

R1(x)
; N2(x), R2(x) ∈ F [x]; 0 ≤ degR2 < degR1 < degR0 < deg q,

or equivalently in the terminology of Lemma 2.5,

1 = r1N2 −
R2

q
= r1n2 − r2.

Repeating in the same manner, in general we have

rj = (−1)j
Rj

q
, 0 ≤ degRj < degRj−1 < · · · < degR1 < deg q.

There must then exist k ∈ N such that degRk = 0, i.e., Rk ∈ F×. Thus, the CEF

expansion of α is

α = n0 +
1

n1

+ · · ·+ 1

n1 · · ·nk
+

rk
n1 · · ·nk

= n0 +
1

n1

+ · · ·+ 1

n1 · · ·nk
+

1

n1 · · ·nknk+1

,

where nk+1 = (−1)kR−1
k q ∈ F [x], which is a terminating CEF expansion.



REFERENCES

[1] G. Bachman, Introduction to p-adic Numbers and Valuation Theory, Academic

Press Inc., New York, 1964.

[2] L. Beeckmans, The splitting algorithm for egyptian fractions, J. Number Theory

43(1993), 173-185.

[3] L. Brenton and A. Vasilu, Znam’s problem, Math. Mag. 75(2002), 3-11.

[4] R. Cohen, Egyptian fraction expansions, Math. Mag. 46(1973), 76-80.

[5] J. Galambos, Representations of real numbers by infinite series, Lecture Notes

in Mathematics, vol 502. Springer, Berlin Heidelberg New York, 1976.

[6] P.J. Grabner and A. Knopfmacher, Arithmetic and metric properties of p-adic

Engel series expansions, Publ. Math. Debrecen 63(2003), 363-377.

[7] A. Knopfmacher and J. Knopfmacher, Series expansions in p-adic and other

non-archimedean fields, J. Number Theory 32(1989), 297-306.

[8] V. Laohakosol, N. Rompurk and A. Harnchoowong, Characterizing rational ele-

ments using Knopfmachers’ expansions in function fields, Thai J. Math. 4(2006),

223-244.

[9] P.J. McCarthy, Algebraic Extension of Fields, Dover Publication Inc., New York,

1991.



41

[10] A. Oppenheim, Representations of real numbers by series of reciprocals of odd

integers, Acta Arithmetica 18(1971), 115-124.

[11] O. Perron, Irrationalzahlen, Chelsea, New York, 1951.

[12] H. Yokota, Denominators of egyptian fractions, J. Number Theory 28(1988),

258-271.



42

VITA

Name Miss Jittinart Rattanamoong

Date of Birth 18 March 1986

Place of Birth Ratchaburi, Thailand

Education B.Sc. (Mathematics) (Second Class Honors),

Kasetsart University, 2008

Scholarship Development and Promotion of Science

and Technology Talents Project (DPST)

supported by the Institute for the Promotion

of Teaching Science and Technology (IPST)


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Preliminaries
	Chapter II Cohen-Egyptian Fraction Expansions
	2.1 The case of real numbers
	2.2 The non-archimedean case

	Chapter III Engel Series Expansions
	3.1 The case of real numbers
	3.2 The non-archimedean case

	Chapter IV Rationality Characterization in the non-Archimedean Case
	4.1 Relationships between CEF and ES expansions
	4.2 Characterizations of rational elements in the non-archimedean fields

	References
	Vita

