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CHAPTER |
INTRODUCTION

Oxidation, which is the transfer of electrons from one atom to another,
represents an essential part of aerobic life and our metabolism, since oxygen is the
ultimate electron acceptor in the electron flow system that produces energy in the
form of ATP. However, problems may ariseswhen the electron flow becomes
uncoupled, generating free radicals. Examples of oxygen-centered free radical, known
as reactive oxygen species (ROS), include superoxide (O,%), peroxyl (ROQ®), alkoxyl
(RO"), hydroxyl (HO®) andnitric.oxide (NO®) (Pietta, 2000).

At high coneentrations, ROS carll be important mediators of damage to cell
structures, including lipids‘and membraries';-' proteins and nucleic acids. The harmful
effects of ROS are balanced by the antioil“dar!t action of non-enzymatic antioxidants
in addition to antioxidant enzymes. Desrl!iteJ the presence of the cell’s antioxidant
defence system t0 counteract oxidative :.'dxarn_age from ROS, oxidative damage
accumulates during the life cycle, and radi_cél-related damage to DNA, proteins and
lipids has been proposed to.play a key roié]rjji__he development of age-dependent
diseases such as cancer, arteriescierosts, arthfitijs, neurodegenerative disorders and
other conditions (Valko et af.,-20086). T

The growing Interest in natural antioxidants of plant erigin is due to the fact
that epidemiologiéal studies have indicated, although with some.controversial results,
that the dietary intake of phenolic compounds Is associated with a lower risk of age-
related health problems including cancer and coronary heart diseases. Also, the
demand for natural antiexidants has increased because of questions about the long-
term safety and negative consumer [perception 'of .the coammonly: used synthetic
antioxidants BHT (butylated hydroxytoluene) and BHA (butylated hydroxyanisol)
(Eklund et al., 2005). Over.the past decade evidence has been.accumulated that plant
polyphenols are an important class of defense antipxidants. These compaounds are
widespread virtually in all plant foods, often at high levels, and include phenols,
phenolic acids, flavonoids, tannins, and lignans (Pietta, 2000).

Herpes simplex viruses (both types, HSV-1 and-2) are pathogenic to humans.

Among HSV-related pathology, genital herpes is an important sexually transmitted



disease (STD) commonly caused by HSV-2, with the exception of a minority of cases
caused by HSV-1. The clinical manifestation of the disease exhibits different severity
in normal and immuno-competent hosts; in addition, several patients always
encounter recurrent attacks and in immuno-compromised patients and neonates. HSV
infections can cause serious systemic illnesses. Moreover, HSV-2 has been reported
to be a high risk factor for HIV infection. Therefore, the discovery of novel anti-HSV
drugs deserves great efforts (Khan et al., 2005).

Multidrug-resistant Staphylococcus atireus (MRSA) infections, particularly
those caused by methieillin-resistant S. aureus, have been a major threat to public
health in hospitals and the community during the past decade. In the UK, the number
of MRSA infections rose by nearly 5% between 2003 and 2004. Despite new
advances in antibiotic development, MRSA infections remain a considerable concern
owing to the anticipated resistance to these new drugs. In 2002, MRSA strains fully
resistant to vancamycinawerg isolated-in the US. Resistance 10 linezolid has also been
reported in some patients receiving proInged antibiotic treatment in the US.
Therefore, there is"an urgent need fo develop new classes of antibiotics to fight the
problem of drug resistance (Shiu ane-Gibbons, 2006).

Plants have a long histery of use ir-ffh'é‘treatment of cancer. There are more
than 3,000 plant species in Hartwell (1982) Ii;:ts tlf{at have reportedly been used in the
treatment of cancer, but in-many- instances, the -“,¢ancer” is undefined, or reference is
made to conditions such as “hard swellings”, abscesses, calluses, ¢corns, warts, polyps,
or tumors, to name a few. Such symptoms would generally apply to skin, “tangible”,
or visible conditions, and may indeed sometimes correspond to a cancerous condition,
but many of the claims for efficacy should be viewed with Some skepticism because
cancer, as_a specific'disease entity, is likely'to'be poorly defined in terms of folklore
and traditional medicine. Nevertheless, despite these observations, plants have played
an important role as a source of effective anti-cancer agents, and it is significant that
over 60% of currently used anti-cancer agents are derived in one way or another from
natural sources, including plants, marine organisms and micro-organisms (Cragg and
Newman, 2005).

The search for anti-cancer agents from plant sources started in earnest in the
1950s with the discovery and development of the vinca alkaloids, vinblastine and
vincristine, and the isolation of the cytotoxic podophyllotoxins. As a result, the United

States National Cancer Institute (NCI) initiated an extensive plant collection program



in 1960, focused mainly in temperate regions. This led to the discovery of many novel
chemotypes showing a range of cytotoxic activities including the taxanes and
camptothecins, but their development into clinically active agents spanned a period of
some 30 years, from the early 1960s to the 1990s. This plant collection program was
terminated in 1982, but the development of new screening technologies led to the
revival of collections of plants and other organisms in 1986, with a focus on the
tropical and sub-tropical regions of the world. l#1s interesting to note, however that no
new plant derived clinical anti-cancer agents have;as yet, reached the stage of general
use, but a number of agents are in preclinical development (Cragg and Newman,
2005).

The genuseDerris¢belongs to the family Leguminosae, the second-largest
family of floweringsplanis (Evans, 2002). This genus consists of about 80 species
generally distributed im'the tropical-regions of Asia and East Africa and is widely used
in cattle and sheep dips for the control of ticks and other ectoparasites (Thasana,
Chuankamnerdkarn and Ruchirawat, 2001): .

The species of Derfis in Thailand;-: according to Smitinand (2001), are as

follows.

Derris alborubra Hemsl. meﬂﬁ;i— i’hla__o tap la (Nakhon Ratchasima).

D. amoena Benth. eNUA AN :)@n_ sao kham (Peninsular); suziag
Ya-na-le (Malay-Narathiwat).

D. dalbergioides Baker aunu Khang ten (Prachuap Khiri Khan); @3 Di

(D. microphylla Hassk.) ngu (Surat Thani); 1seilu Praeng puen, uzuiu
978 Ma nam chai (Chumphon); #uue Phan tae
(Narathiwat); #219239 Ma-ta-ha-ching, uzinen
99 Ma-tae-ha-ching (Malay-Narathiwat).

D. elliptica (Roxb.) Benth. nzdunwiy Kalamispho (Phetchaburi)ien3e lrai

Khruea lai nam, wielviins Hang' lair daeng,
lva Lai, vaiin Lai nam (Northern); TnagIndn

Pho-ta-ko-sa (Karen-Mae Hong Son); 81a1i
Uat nam (Surat Thani); Tuba root, Derris.



D. indica Bennet.

D. kerrii Craib
D. malaccensis Prain
D. reticulata Craib

D. robusta (DC.) Benths

D. scandens (Roxb.) Benth.

D. thorelii Craib

D. thyrsiflora (Benth.) Benth.

D. trifoliate Lour.

(B. vliginosa. (Willd.)
Benth.)

ne Ka yi (Peninsular); EU?T Kha yi (CHumphon);
mizazahi Pho-da-pa-ki (Malay-Songkhla); 113
Pa-ri (Malay-Narathiwat); wzihd Ma-pa-ki

(Malay-Pattani); 511ea Ra yot (Pattani); %811 Yi
nam (Peninsular).

mauneaKang khi mot (Northern).
U nay Ya-na-lae (Malay-Narathiwat).
¥2ipu11e Cha em nuea (Kanchanaburi).

vidldds Khang sai chang,  Khu, 1aes Duea
khu.(Phitsanulok); Eﬁymﬂ Khi mot (Saraburi); ﬁy
i P;hjjchan, yzidu Malen (Chanthaburi); 5230
@) Ra-wit-tua-phu, 533adils Ra-wit-tua-mia,

179 L_a-wit (Chong-Chanthaburi, Trat); 81912
Hang'khao (Northern).

m%mﬁ'ﬁ{ Khruea khao nang, tn111la1 Thao ta
’ 'l-. . Y] =
pla- (Nakhon Ratchasima); ¥adilSee Thao

wan - priang: (Central); ww'lay Phan sanai
(Chumphon).

E4
9 1

Wi Khi chang thao, wa5oauila1 Khruea tap
pla (Northern); w3eainlar Khruea tap la, 130

Ia Khruea lai (Chiang Rai); eeage Ot o (Loei).
= Aganape thyrsiflara (Benth.) Polhill

unIunzia Khwaep thale, aauuouiit Thop thaep
pam, finuowPhak thaep (Central); Mauuaimsia
Thap thaep thale, (Phetchaburi); &417 Tuah am

(Narathiwat); siuttau Thap thaep (Samut
Songkhram).

Derris malaccensis Prain is a climber known in Thailand as “Haang-lai-khao,”

with its roots locally used as insecticidal and piscicidal agents (Thasana,



Chuankamnerdkarn, and Ruchirawat, 2001). It is found throughout Malaysia and
cultivated outside Malaysia in India, southern China and tropical America. It is a liana
up to at least 15 meters long. Root: grayish brown, young shoots adpressed pubescent.
Leaves: leaflets 5-9, glabrous above, adpressed pubescent beneath. Flowers: glabrous
pink calyx and whitish or pinkish corolla, standard with basal callosities, glabrous.
Fruits: oblong with a narrow wing along both sides, rarely without wings (Padua,
Bunyapraphatsara, and lemmens, 1999).

The genus Carissa (Apocynaceae) comprises about 35 species (Evans, 2002)
distributed in Africa, “Asia and Australia (Hooker, 1882). They are spinous, densely
branch and usually erect shiubs«Leaves are opposite, small and coriaceous. Flowers
are in terminal and axillary.peduncled 3-chotomous cymes. Calyx is 5-partite,
glandular within or.not, seoments acute. Corolla-tube is cylindric, throat naked and
lobes overlapping to the right (in the Indian species). Stamens are at the top of the
tube, included, anihers lanceolate, cells rounded at the base. Ovary has 2-celled, style
filiform, stigma fusiferm or celumnar, minuté-ly 2-fid, ovules 1-4 in each cell, rarely
more. Berry is ellipsoidior globose, 2-(or by abortion 1-) celled. Seeds are usually 2,
peltately attached to the septum, albumen fles_hy,'cotyledons ovate.

The species of Carissa in Thailand‘,'faibpording to Smitinand (2001), are as

follows.

Carissa carandas L. wzu gl Manao mairu ho  (Central);
uzulyi Manao ho (Peninsular); wum?jyuaﬂ
Nam khi haet (Chiang.4Mai); wuuas Nam
daeng (Bangkok); Carunda, Christ’s thorn

C. spinarum L. %yu,aﬂ Khi haet (Northern); wsu Phrom, wuu

(C. Cochinchinensis Pit.) Wsu-Nam phrom (Central).

(C. laotica Pitard var. fefruginea Kerr)

C. carandas L. is a shrub usually reaching 2-3.m in height, rich in white latex
and brancheossharp spines."The leaves are simple, opposite, ‘elliptic or-obovate, 3-7
em x 1.5-4.5 cm. The inflorescences develop in the axil of leaves. The color of the
corolla is white and that of the corolla tube is pale rose. Fruits are ellipsoid, purplish
black when ripe (Faculty of Pharmaceutical Sciences, Mahidol University. 1995).

C. spinarum L. is a shrub reaching 4-5 m with white latex and branched sharp

spines. The leaves are simple, opposite, elliptic, 2.5-4 cm x 1.5-2.5 cm. The



inflorescences develop in the terminal branch. The corolla tube is white. The flowers
are fragrant. Fruits are fusiform, purplish black when ripe (Faculty of Pharmaceutical
Sciences, Mahidol University. 1995).

A number of chemical investigations of D. malaccensis have shown the
presence of rotenoids (Thasana et al., 2001; Takashima et al., 2002) whilst lignans
and terpenoids were found in . carandas Pal, Kulshreshtha and Rastogi, 1975;

1. To isolate secondary.meta e (.. of D. malaccensis and the

3. To evaluai e wu ti-herpes simplex virus,
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Figure 2 Carissa carandas L.
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Figure 3 Carissa spinarum L.




CHAPTER Il

HISTORICAL

1. Chemical constituents of Derris spp.

been found (Table 1). '
Table 1 Distrib( us Derris

RN

‘ak$ﬂg
NN

Pla Reference

Derris araripensi

3,4,5,6-Tetra Nascimento and
furanoflavan [1]
Mors, 1981
0.
3,5,6-Trimethoxy r gy T Nascimento and

furanoflfavepef2} O
e Mors, 1981

‘r\;scimento and

Mors, 1981

8

%h“ﬂﬂﬂﬂﬂﬁﬂﬂ

(7 82", ") -chromenoflavone [3]‘




Table 1 (continued)

10

Plant and compound Category | Plant
part

Reference

3',4'-Methylenedioxy-3,5,6-trimethoxy- | Flavanone | Root
(7,8,2",3")-furanoflavanone [4]

3',4'-Methylenedioxy-3,6-' Root

6",6"-dimethyl-(7,8,2" 31~

chromenoflavone [¢

S

T
RS LNENT WD

(7,8,2",3")-furanoflavone [7]

W%‘N R INY

Nascimento and

Mors, 1981

Nascimento and

Mors, 1981

Nascimento and

Mors, 1981

gscimento and




Table 1 (continued)

1"

Plant and compound Category | Plant
part

Reference

3,4-Methylenedioxy-5'-hydroxy-2',3'- Chalcone | Root
methoxy-(3',4",2",3")-
furanodihydrochalcone [8]

3',4’-Methyle
methoxy-(7,8,2"
[9]

Nascimento and

Mors, 1981

Nascimento and

Mors, 1981

Derris elliptica

(-)-Deguoic acid [10] . e
7 [l e -

<>—ﬂ>'5ladﬁll’£| ‘VIEWI‘B'%@I B

Lu et al., 2009b

Qet al., 2009b

188




12

dihy

Table 1 (continued)
Plant and compound Category | Plant Reference
part
(6aR,12aR,4'R,5'S)-4',5'-Dihydro-4',5'- | Rotenoid | Root | Luetal,
dihydroxytephrosin [12] 2009b
Luetal.,
2008b
12-Deoxo-12a-acetoxyelliptone [14]
—
r 1 Luetal.,
2009b
| Me = | ]
2,5-Dihydroxymethyl-3,4- Imino- | Leaves | Welter and
i yrrolidine {15 gl ,
NP nE -
gy, 7 7 7 7 ‘ | - g - | - u
: Ql : '
ey um'spma d




Table 1 (continued)

13

4’ 5'-Dihydroxy-
dehydrodeguelir

X

\\\\\\\m

3

Plant and compound Category Plant Reference
part
2-Hydroxy-5-aminorotenonone [16] Rotenoid Root | Lu and Liang,
2009a

Lu et al., 2008a

Lu et al., 2008b

Lu et al., 2009b

188




Table 1 (continued)

14

Deguelin ‘W
~ "I

i
8

O. I O

Demethylvestltol [24]

1@' EW]TWEHF

Isofla\n

Plant and compound Category | Plant Reference

part
6-Hydroxy-6a,12a-dehydrodeguelin Rotenoid | Root | Luetal., 2009b
[20]

Lu et al., 2009b

Lu et al., 2008a

00t /| Luetal., 2008b

ROOt

Lu et al.;”2008a

88
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Dihydrodaidzein [25]

Prunetin [29] ;l

MeO. l
o .
¥
o
|
OH O
"

Rotenone [30]

By

Q==

TNENT

Rotengid,

Root

ﬁNﬂiﬂJ AN1INE

Plant and compound Category Plant Reference
part
Isoflavan Root | Lu et al., 2008a

Lu et al., 2009a

Lu et al., 2008a

Lu et al., 2008a

Lu et al., 2008a

9

Lu et w2008b;

GET)

2006
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OQ

3',4’-Methylenedio
oxo(2)benzopyra

y-10-methoxy-7-
(4,3-b)benzopyran

Flavone

Plant and compound Category | Plant Reference
part
Derris indica
2'-Methoxy-4',5"-methylenedioxy Flavone | Stem, | Koysomboon
(7,8:2",3")-furanoflavone [31]
o W) Root | etal., 2006

Rao et al., 2009

Rao et al., 2009

Koysomboon

ﬁl., 2006
188
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17

pyranoflavone [36

OAc

\\\OAC

7,4'-DimethoXy=5-

|
3

MeO. O.
R'. ‘-

< OH o

‘J"

3-Methoxy-7-hydroxy- |
methylenedioxyflavone

I

l

' 7]

ANYNTNY

r

RIRINTUNRING

Plant and compound Category | Plant Reference
part
3,7-Dimethoxyflavone [35] Flavone | Stem, | Koysomboon
Root | etal., 2006
MeO.
3-Methoxy-(3",4""-di Koysomboon
diacetoxy)-2",2
et al., 2006

Rao et al., 2009

Rao et al., 2009

9

188
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8,4'-Dimethoxy-7-O=yy=-
dimethylallylisoflavonef4¢

=

Plant and compound Category | Plant Reference
part
7-O-Methylchrysin [39] Flavone Root | Rao et al., 2009

Koysomboon

et al., 2006

Koysomboon

et al., 2006

Rao et al., 2009

Koysomboon

(ﬁl., 2006
188
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Plant and compound Category Plant Reference
part
Karanjin [44] Flavone Stem, | Koysomboon

et al., 2006;

Rao et al., 2009

Koysomboon

et al., 2006

Koysomboon

et al., 2006

Koysomboon

et al., 2006

Rao et al., 2009

19
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Stem,

naIme

Root

A

Plant and compound Category | Plant Reference
part
Pachycarin D [49] . Flavone | Stem, | Koysomboon
Root | et al., 2006
Koysomboon
et al., 2006;

Rao et al., 2009

Rao et al., 2009

Koysomboon

et al., 2006;

™ #Ra0 et al., 2009

M)

|

ilﬁvone Root

Rao et al., 2009

INEIMNI

N8 Y
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.>
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g ﬁ"; .

b |.| mw

ki §
AT T

B

I.'AL

o

Plant and compound Category | Plant Reference
part
Pongamol [54] Chalcone Root | Rao et al., 2009
O,

Rao et al., 2009

Rao et al., 2009

| | !""“‘ h
i ‘ .‘ .| — —
- T
[ " | % o

Derris mala “ nsi .J

2',4'-Dihydro
prenylchalcc .,..L

(6aR,124R,4'R 5'S)-4' 5'-Dihydro- | Rotenoid | Root
4' 5' dlhydroxytephrosm [12]

311 3N¢

i' Siripaisarnpipat,

Kongjinda and
Techasakul, 2007

Takashima et al.,

g g
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Table 1 (continued)

Plant and compound Category | Plant Reference
part
12a-Hydroxyelliptone [58] Rotenoid | Stem | Thasana,
° Chuankamnerdkarn

and Ruchirawat, 2001

12-Deoxo-12a-acetoxy Thasana et al., 2001

[14]

akashima et al.,

Takashima et al.,

ﬁsﬁna etal.,

2002

mwﬁwmé’ ]

OMe
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Rotenone [ ?9"

~/

Plant and compound Category Plant Reference
part
Dehydrorotenone [61] Rotenoid Root | Takashima et al.,

2002

Takashima et al.,

2002

Takashima et al.,

2002

Yo 'll akashima et al.,

2002: Sae-Yun,

et. al., 2006

19

Takashima et al.,

ne6) |
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Plant and compound Category Plant Reference
part
Toxicarol [65] Rotenoid Root | Takashima et al.,
2002
Derris reticule
2" 3""-Epox Mahidol et al.,
o 1997
Mahidol et al.,
1997

Mahidol et al.,

]




Table 1 (continued)

Plant and compound Category Plant Reference
part

Derris robusta

Derrone [69] Isoflavone | Seed | Chibber and

o[‘ioa;:jfhl€é§=!

— |
—

Sharma, 1980

Derrubone [70] East, Ollis and
v "y Wheller, 1967
.7/
i / flﬂf
Derrugenin [71 Chibber and

iﬁ
; B Sharma, 1979a

7

(L]
J‘f s o ol
o ° f OMe J

MeO™

Derrusnin [72

MeO. l O.

OMe OMe

Derrustone [73

veo : ’—:
'Dﬁﬁﬁg, 0

OMe

East et al., 1967

Isoflavone ——Rool [East et al., 1967

East et al., 1967

19
TR

Robutic acid [742) o
(uhid
U

OMe
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OH (¢]

Rubone [77] .

|

Derris scandens

3'-y-y-Dimethylall
[78] '

?;

Plant and compound Category | Plant Reference
part
Robustone [76] Isoflavone | Root | Eastetal., 1967
908

Chibber, Sharma

and Dutt, 1979c

Rao, Krupadanam

1994

aupattarakasem,

"::'-] ighton and Hoult,
o J

2004

njarakam
., 2004

YN

and Srimannarayana,
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4’ 5,7-Trihydroxybig
isoflavone [81

|
|
Lk

4-O-Methylsca

dinone [83]

=0
| Fare PR 2 5
S (%

[ ™
3
Q

R

S
=i

NING”

Isoflavone

t

=

ARIN

Plant and compound Category Plant Reference
part
4,4'-Di-O-methyl scandenin [80] | Coumarin | Stem | Rao et al.,1994

Rao et al., 2007

Rao et al.,1994

Rao et al., 2007

Rao et al., 2007

N9
YN
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dimethylchromeno(3',4:5"",6"") .
isoflavone [84]

7-O-a-Rhamno(1-—6)
glycosidegenistein |8

8-Hyd y
8-O-/-glucopyrano

OH
MeO.

e_2),

Chandalone

THEE
>

o)

Isoflavo&

A9

TN

Stem

Plant and compound Category Plant Reference
part
5-Hydroxy-2",2"—dimethyl Isoflavone | Stem | Mahabusarakam
chromeno-(6,7:5",6")-2""",2""-
et al., 2004

Rukachaisirikul

et al., 2002

Laupattarakasem

et al., 2004

| | Rukachaisirikul

et al., 2002

9

Mahaﬂyarakam

NeAeee
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Table 1 (continued)
Plant and compound Category Plant Reference
part
Derriscandenosides A [89] Isoflavone | Stem | Rukachaisirikul

Derriscanden

OH

HO’
HO:

HO!
o}
HO °
HO

44959 211 F48)

OMe

Derriscandenos

glycoside
. & o,

piipe

et al., 2002

Rukachaisirikul

etal., 2002

Rukachaisirikul

et al., 2002

Rukachaisirikul

et al., 2002

kachaisirikul

et al., 2002

A
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N,
4,_‘: e ""-.

O;
'7‘..

Derriscanosid

OH
HO
HO:

LT LR
Derr HHEJ [98

VY.,

Plant and compound Category Plant Reference
part
Derriscanosides A [94] Isoflavone | Stem | Rukachaisirikul
&‘% glycoside etal., 2002

Rukachaisirikul

et al., 2002

Mahabusarakam
et al., 2004;
Sekine et al.,
1999

Rao et al., 2007

Sekine et al.,

1999

jkine etal.,

1999 “.

dala o7




Table 1 (continued)

Plant and compound Category Plant Reference
part
Derrisisoflavone D [99] Isoflavone | Stem | Sekine et al.,

1999

3

Sekine et al.,

id

1999

N
N

Sekine et al.,

o
@

1999

/ OH o

Daidzein 7-O-[ a-rha pyranosyl- | - Stem .-+ Rukachaisirikul

1—6)]-#qglucopyranoside [10: B | A
( )°]” “ ———— ~—glycoside———— l al., 2002

lsﬁne et al.,

1999

NY1A Y




Table 1 (continued)

Plant and compound Category Plant Reference
part
Flemichapparin B [104] Pterocarpan | Stem | Mahabusarakam
O et al., 2004
/ N

Flemichapparin C [105] -  Pteroca an | Mahabusarakam

et al., 2004
Formononeti \ avone Rukachaisirikul
rhamnopyranosy!- " -
glucopyranoside etal., 2002
Formononetin 7-O-4 ot 21 Stem | Rukachaisirikul

et al., 2002

HO!

Genistein [ZB]E | em | Laupattarakasem
a/ et al., 2004;

]\@abusarakam

et al., 2004

AT M INGAY
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Plant and compound Category Plant Reference
part
Genistein 7-O-[a-rhamnopyranosyl- | Isoflavone | Stem | Rukachaisirikul
fol—>6)o]H-/3~qucopyran03|de [108] glycoside et al., 2002
ISOCD? ndalone [ Mahabusarakam
Q et al., 2004
=
Mahabusarakam
et al., 2004

Rao et al., 2007

Sekine et al.,
1999;
abusarakam

et al., 2004

WY




Table 1 (continued)

34

Plant and compound Category | Plant Reference
part
Lupinisoflavone G [113] Isoflavone | Stem | Sekine et al.,
1999
Lupinisol A [114] Sekine et al.,

1999

Mahabusarakam

| et al., 2004

Mahabusarakam

et al., 2004

Who F;J Rao et al., 2007

i

plant

"IN ﬂ(ﬁgﬂi“

Srimannarayana,

1994
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Plant and compound Category Plant Reference
part
Santal [117] Isoflavone | Stem | Mahabusarakam
MeO. O.
O | et al., 2004
OH [e]
Scandenal [118] Mahabusarakam
0.
Q etal., 2004
x ;
OH
Scandenin [119] Laupattarakasem
et al., 2004

Rao et al., 2007

Rao et al., 2007

Rao et al., 2007




Table 1 (continued)

Plant and compound Category Plant Reference
part
Scanderone [123] Isoflavone | Stem | Mahabusarakam

et al., 2004

Rao et al., 1994
; Sekine et al.,
1999;
Mahabusarakam

et al., 2004

Rao et al., 2007

Scandione [125] A Mahabusarakam

8| —-'.'. t al., 2004
"= ¥

Mahabusarakam

e
Mg aY
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Derris trifoliata

(6R,9R)-3-Ox0-0L3
glucopyranosic

(o}
HO' 0
HO

OH

&

(6S,9R)-Roseoside

Q
HO
HO

OH

AN

,,,,,///OH

o]

12a-Hydroxyellipto

.i' g
L 1|‘
OMe
OMe
: rﬁ(g) 3 i |
H

Plant and compound Category Plant Reference
part
Warangalone [127] Isoflavone | Stem Rao et al., 1994
|

em

B

U

YN Y™7

:
!

Takeda et al.,

2008

Takeda et al.,

2008

Tewtrakul,

heenpracha and

J

Karalai, 2009

T%rakul etal.,
|

o/

|18 2
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O,

6a,12a-Dehydro- a-~toxic
N

O.
o

6a,12a-Dehy II‘l"'_
y 4

§

Plant and compound Category Plant Reference
part
2,6-Dimethoxy-p-hydroquinone 1-O- | Phenolic | Leaves | Takeda et al.,
,B-D glucopyranoside [131] _

& alycoside 2008
2-Methyl-3- buten- e Prenyl | Leaves | Takeda et al.,
glucopyran03|d K, =

. /] 2008
6, Yenesew et al.,
2006

Tewtrakul et al.,

2009

Tewtrakul et al.,

2009

Tewtrakul et al.,
o/

TAE
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Plant and compound

Category

Plant
part

Reference

6aa,12aa-12a-Hydroxyelliptone
[137]

0, o 3

x

1
OH o

Y

OMe

Rotenoid

Ov

SR S

glycoside
, =1

NI

Stem

Ito et al., 2004

Yenesew et al.,

2005

Takeda et al.,

2008

Yenesew et al.,

2005

e | Ito et al., 2004;

3%

L3

Tewtrakul et al.,

2009

%eda etal.,

2008

TRY
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i

Plant and compound Category Plant Reference
part
Citroside A [143] Terpene | Leaves | Takeda et al.,
glycoside 2008
Terpene. | Leaves | Takedaetal.,
2008
Yenesew et al.,
2005
Ito et al., 2004;

Tewtrakul et al.,

2009

|
—

i)

Yenesew et al.,

12006

I}

]Iﬁt al.. 2004
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rhamnopyranesy
glucopyra
glucopyranoside

g
lI R )

Tlal)

glycoside

Y-l -3)-pD- =

X

I

NYNITNYNT

44

Plant and compound Category Plant Reference
part
Inamoside [145] Terpene | Leaves | Takedaet al.,
ﬁ\ glycoside 2008
N
Isotachioside [146] Takeda et al.,
2008
Xu et al., 2009
Kaempferol-3-O-a-L- /4 Aerial

Xu et al., 2009

188

2008
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Plant and compound Category | Plant Reference
part

Mauritianin [150] Flavonol | Leaves | Takeda et al.,

o O‘ O M _ glycoside 2008

n-Hexyl-3-D-glu Takeda et al.,
2008
Xu et al., 2009
Xu et al., 2009

(1—6)-4-D-glucopyranosyl-(1—3)--D-
glucopyranoside [}53]

glycoside
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Plant and compound

Category

Plant
part

Reference

Rotenoloid [154]

Spirohomooxarotenoid [156] /"« | .

Tachioside [156]

:‘N,'

Rotenoid

Phenohc

/

Seeds

}|
J.H

Leaves

HW%I’JVIEJ 1

Yenesew et al.,

2006

Yenesew et al.,

2005

Yenesew et al.,

2006

Ito et al., 2004;

Tewtrakul et al.,

2009

Yenesew et al.,

+1,2006

Takeda et al.,

o/

el
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Plant and compound Category Plant Reference
part
Tephrosin [64] Rotenoid Seed | Yenesew et al.,
S 2006
Ito et al., 2004;

Tewtrakul et al.,

2009

A

AULININTNEINS
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2. Chemical constituents of Carissa spp.

A number of chemical constituents isolated from the genus Carissa can be
divided into two groups, terpenes and lignans. In addition, other classes of natural
compounds such as cardiac glycosides and miscellaneous substances have been found
(Table 2).

Table 2 Distribution of ch \\ tuenis ig he genus Carissa

Plantand I ﬂ---;" Categon Plant Reference
part

Carissa carandas

3--Hydroxy-27-p-E Siddiqui et al.,
12-en-28-0ic acig
2002
Siddiqui et al.,
2002
Singh and

Rastogi, 1972

Ll

Rastogi, 1972

) 4

terpene
i

BINYNA Y
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[¢]

HO

Mixturelof cardenolides [164]

NYNINE
R8N T4

Plant and compound Category Plant Reference
part

Carinol [160] Lignan Root | Pal, Kulshreshtha
and Rastogi,
1975
Siddiqui et al.,
2002

Carissone [162] Singh and

Rastogi, 1972

es™ Pakrashi, Datta

Cardiac -

W)

and Ghosh-

Dastidar, 1968

Singh and

TR
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Table 2 (continued)
Plant and compound Category Plant Reference
part
Oleanolic acid [165] Triterpene | Leaves | Siddiqui et al.,

HO

F-Sitosterol [158]

HO

Carinol [160] il

b Q
a

HO'

e

Carissa spinarum

'!E:' TNEYINT

N5 UM

2002

Pakrashi et al.,
1968;
Siddiqui et al.,
2002

Root | Pakrashi et al.,

1968

Rao et al., 2005

gAY

LEER



Table 2 (continued)

Plant and compound Category Plant Reference
part
(—)-Carissanol [167] Lignan Stem | Rao et al., 2005

Rao et al., 2005

Rao et al., 2005

Rao et al., 2005

ATUANNINENAT

OH

Stem | Rao ew, 2005

HAERAT 4 Y 1] £ A B
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Plant and compound

Category Plant
part

Reference

Carenone [172]

poonF

Coniferaldehyde [173

CHO

OMe

Germacrenone

Y]

|
£ \\\\\

Pinoresinol f#75] |

@umml TINET

Sesquiterpene | Stem

Rao et al., 2005

Rao et al., 2005

Rao et al., 2005

Pakrashi et al.,

1968

o

o
Y
ri

i¥

Rao et al., 2005

J

19

ammniﬁuuwnwmaﬂ
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3. Traditional uses of Derris species and biological activities of their constituents

Plants of the genus Derris (Leguminosae) have been used as fish poisons and
insecticides (Thasana et al., 2001). They are also widely used in cattle and sheep dips
for the control of ticks and other ectoparasites. They are currently employed in
horticulture against aphids, caterpillars, sawflies, wasps, raspberry beetles and red
spiders (Tewtrakul et al., 2009).

D. elliptica Benth and D. malaccensis.Prain have been known as important
sources of pesticidal compounds due to ihe.presence of rotenone [30] and its
derivatives (Sae-yun et'al:; 2006). Moreover, a number of the rotenoids isolated from
D. malaccensis showed antibacierial activity against Helicobacter pylori (Takashima
et al., 2002).

Others Derris'species have alse been used traditionally. For example, different
parts of D. indica (Lam.) /Bennet.have been used in folk medicine for bronchitis,
whooping cough,sheumatic/jjoints and to-guench dipsia in diabetes. Flavonoids from
the stems and the roots of this plant such ‘as 3,4-methylenedioxy-10-methoxy-7-
oxo(2)benzopyrano(4,3-b)benzopyran {34}, . pachycarin [49] and pinnatin [50]
exhibited antimycobagterial activity against I\_/chbbacterium tuberculosis H37Ra with
minimum inhibitory congentration (MIC) beﬁNéQn 6.25 and 200 pg/mL (Koysomboon
et al., 2006). Chemical constituents of the root é&tract of D. indica such as 3,3',4'-
trihydroxy-4H-furo(2,3-h)ehromen=4-ore ~ [32] ~and.3',4'-dihydroxy-4H-furo(2,3-
h)chromen-4-one [33] displayed moderate intestinal a-glucosidase inhibitory activity
as well as free radical scavenging activity, while pongamol-[54] potently inhibited
intestinal a-glucosidase (Rao et al., 2009).

The stem of D. scandens, locally called “Thao-wan-priang”, is used in
Thailand-forsantidysentericy diuretic and for.relief of muscular, pain. (Sekine et al.,
1999). This plent/is reported to [possess|anti-inflammatory, free radical scavenging,
antibacterial, antihypertensive, immunomodulatory, anti-HIV properties and o-
glucosidase inhibitory-activity (Raa etialy, 2007):

D. trifoliata is known in Thai'as Tob=tab-nam. Its stem.has been used.for its
laxative, carminative and expectorant effect. The bark of this plant has been used in
the treatment of rheumatism and dysmenorrhea (Tewtrakul et al., 2009). The crude
methanol extract of its seeds showed potent larvicidal activity against second-instar

larvae of Aedes aegypti (Tewtrakul et al., 2009). Moreover, the ethanol extract of its
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leaves given orally at doses of 250 and 500 mg/kg significantly inhibited the acetic
acid-induced writhing in mice. The compounds isolated from D. trifoliata stems such
as 12a-hydroxyelliptone [9], deguelin [23], 12a-hydroxyrotenone [130] and o-
toxicarol [140] were considered responsible for the NO inhibitory effect (Tewtrakul et
al., 2009). The rotenoids deguelin [23] and a-toxicarol [140] have also been reported

to possess cancer chemopreventive properties (Ito et al., 2004).

4. Traditional uses of Carissa species and biolegical.aetivities of their constituents

Various plants of the genus Carissa are used medicinally in India and Asian
countries (Achenbach, Waibel-and Addae-Mensah, 1983). For example, in India,
roots of C. carandas arerused as a bitier stomachic and an anthelmintic while its
leaves are used forsremitiant fever (Pakrashi et al., 1968). In Thailand, its stem and
root have been traditionally used as-a bitter tonic although the use of its root use
should be cautioned duesto" the” presence of cardiac glycosides (Faculty of
Pharmaceutical Sciences, Mahidol University: 1995).

Another Carissa species that has been used in Indian and Thai folkloric
medicine is C. spinarum. The stem’ of this _p‘l_ant is used as a bitter tonic in Thailand
whereas its roots are used for putgative actio1n_i arldl as an antidote to snake-bite in India
(Pakrashi et al., 1968; Faculty—of Pharmaceutical Sciences, Mahidol University,
1995). -

C. edulis* (Forssk) Vahl is a thorny shrub widely distributed in Africa. In
Ethiopia, its pungent root iIs used for the treatment of chest complaints, rheumatism,
headache, gonorrhoea, syphilis, rabies and as a diuretic. The root wood extract
produced a significant increase in urine output at a dose of 50 mg/kg. Urinary
electrolyte excretion was“also_affected by the"extract. Chemical substances isolated
from this plant,“include 2-hydroxyacetophenone, “soluble/ phenolics, insoluble
proanthogyanidins, lignans predominantly (—)-nortrachelogenin [168], (—)-carinol
[160}.and (-)-carissanol J167}-and sesquiterpenes-such as carissene~{162] (Nedi,
Mekonnen and Urga, 2004);

In addition, the root extract of C. edulis showed activity against three viruses
including herpes simplex virus, Sindbis virus and poliovirus at a concentration of 12
ug/ml (Taylor et al., 1996). Moreover, the extract significantly inhibited the formation
of plaques in Vero EG6 cells infected with 1 wild type or resistant strain of HSV at 50
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ug/ml in vitro with minimal cell cytotoxicity (CCso = 480 ug/mL). When the extract
was examined for in vivo efficacy in a murine model using Balb C mice cutaneously
infected with wild type or resisitant strains of HSV, the extract at an oral dose of 250

mg/kg significantly delayed the onset of HSV infection by over 50% (Tolo et al.,
2006).

dF
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CHAPTER Il
EXPERIMENTAL

1. Source of plant materials

The roots of Derris malaccensis Prain were purchased from a drugstore in
Bangkok, Thailand in April 2005. Authenticaiion was-performed by comparison with
a herbarium specimen (BKE.No. 14659) at the National Park, Wildlife and Plant
Conservation Departmeniy™ Ministry  of Natural Resources and Environment. A
voucher specimen (Kl=042548) hasI been deposited at the Department of
Pharmacognosy amd Pharmaceutical Botany, Faculty of Pharmaceutical Sciences,
Chulalongkorn University. .

The stems of Carissa garandas I: and Carissa spinarum L. were collected
from the botanical garden of the Faculty é’f Pharmaceutical Sciences, Chulalongkorn
University, Bangkok, Thailand,. in Octot;ia_[., 2006 and June, 2008, respectively.
Authentications were performed by compf%_r-_iion with herbarium specimens at the
Museum of Natural Medicine,; Faculty of Pfha;r_p,aceutical Sciences, Chulalongkorn
University. Both voucher specimens (RW 1@2‘549 for C. carandas and RW 062551
for C. spinarum) have been-on deposit at',t"'héj-E)'epartment of Pharmacognosy and
Pharmaceutical “Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn

University.

2. General techniques

2.1 Analytical thin-layer chromatography. (TLC)

Technique : One dimension; ascending

Adsorbent ; Silica gel 60 Fs4 (E. Merck) precoated plate

L ayer.thickness : 0.2, mm

Distance ; 6cm

Temperature : Laboratory temperature (30-35°C)

Detection : 1. Ultraviolet light at wavelengths of 254 and 365 nm.

2. Anisaldehyde and heating at 105°C for 10 min.



54

2.2 Preparative thin-layer chromatography (TLC)

Technique : One dimension, ascending

Adsorbent : Silica gel 60 Fs4 (E. Merck) precoated plate

Layer thickness : 1 mm

Distance

Temperature 30-35°C)

Detection ths of 254 and 365 nm.

Adsorbent ; Slica gel ¢ ( : ize 0.063-0.200 nm

Packing method .

Sample loading & ¥ i iple Was dissolved in asmall amount of organic

Detection : Fr were examined by TLC under UV light at the

Adsorbent Silica gel particle size 0.055 nm (70 mesh ASTM)

1 o
packmﬂeuawai@%%’%ﬂni

Sample | dlng : The sample was dissolved in a small amount of organic
R AN ER Y.
column.
Detection : Fractions were examined in the same way as described

in section 2.2.1
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2.3.2.1 Reversed phase flash column chromatography

Column : C18 cartridge (40x75 mm, 45 — 75 um) (VerSaPak)
Flow rate : 7.35 mL/min

Mobile phase : Isocratic 40% methanol (MeOH) in water (H,0)
Sample preparation The sample was dissolved in a small amount of eluent

and filtered through filter paper before injection.

Injection volume 3 10 mL

Pump 2 SciLog (Accu™)

Detector and recorder : Jgledyne I;co UA-6 UV/Visible detector
Temperature : Room temperature

2.3'3'Nogmal phase colurlnn chromatography

Adsorbent : Silica gel 6(_) (N0.9385) particle size 0.040-0.063 nm
(70-230-mesh ASTM) (E. Merck)

Packing method ; Wet packingf_‘

Sample loading 4 1. The sam[.i!e was dissolved in a small amount of

organic 'solvent, « mixed with a small quantity of
adsarbent, trittga_ted, dried and then placed gently on
top-of the colun;m. 17
2 Thesample W§§jdi:SSO|VGd in a small amount of eluent
~~-and then appliéd gently on.top of the column.
Detection o — Fractions were examined-in-the Same way as described
in section 2.3.1
2.3.4 Gel filtration chromatography
Adsorbent ' : Sephadex LH 20 (Pharmacia) 7
Packing.method - Gel filter, was_ suspended. in the eluent.and left standing
to swell fori 24 hours prior to use.|It was then poured
into the column and allowed to set tightly.
Sample Jeading ; The sample,wasdissolved in assmall amount,of eluent
and then applied gentlyn top of the column.
2.3.5 High pressure liquid chromatography
Column : Shim-pack Prep-ODS No. 2025820
Flow rate : 2 mL/min
Mobile phase : 1. Isocratic 50% CH3CN in H,O
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2. Isocratic 60% CH3CN in H,O
3. Isocratic 40% MeOH in H,O
4. Isocratic 14% CH3CN and 9% MeOH in H,O
Sample preparation The sample was dissolved in a small amount of eluent
and filtered through Millipore filter paper before

injection.
Injection volume y 1mL
Pump ; L C-8A (Shimadzu)
Detector - SPD-10A Uv Deiector (Shimadzu)
Recorder : C<R6A Chromatopac (Shimadzu)
Temperature : Room temperature

2.4 Spectroscopy
2.4 Ulgraviolet (UV) absBerJt_ion spectra
UV (in methanol) speectra ;\Nere obtained on a Shimadzu UV-160A
UV/vis spectrophotometer (Pharmaceuticai.'__Res_earch Instrument Center, Faculty of
Pharmaceutical Sciences, Chulalongkori University).

2.4.2 Mass spectra =3/,

Mass spectra were recorded mr'é.fl\/licromass LCT spectrometer or a
Thermo-Finnigan Polaris Q mass spectrome‘tér-'(Ealepartment of Chemistry, Faculty of
Science, MahidoIVUniversity) or a Bruker microTOF mass ‘Spectrometer (National
Center for Genetic Engineering and Biotechnology) or a Micromass Q-TOF Global
Tandem mass spectrometer or a Thermo Navigator mass spectrometer (School of
Pharmacy, University of London, United Kingdom).

2.4.3 Proton. and carbon-13 fuclear. magnetic. resonance (*H and
B3C-NMR) spectra

'H NMR (300 MHz) and *C NMR (75 MHz) spectra were obtained
with.a Bruker, Avance.DPX-300 FT-NMR spectrometer, (Faculty .of Pharmaceutical
Sciences, Chulalongkorn University).

'H NMR (400 MHz) and **C NMR (100 MHz) spectra were obtained
with a Bruker AV-400 NMR spectrometer (School of Pharmacy, University of

London, United Kingdom).
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'H NMR (500 MHz) and *C NMR (125 MHz) spectra were

obtained with a Bruker AV-500 NMR spectrometer (National Center for Genetic
Engineering and Biotechnology or School of Pharmacy, University of London, United
Kingdom).

Solvents for NMR spectra were deuterated chloroform (CDCls),
deuterated acetone (acetone-ds), deuterated methanol (MeOH-d;) and deuterated
pyridine (pyridine-ds). Chemical shifts were reporied in ppm scale using the chemical

shift of the solvent as the reference signal.

2.5 Physical propertics
2.5 Optieal potation
Optieal rotations were measured on a Perkin Elmer Polarimeter 341
(Pharmaceutical Research: Instrumeni Céniér, Faculty of Pharmaceutical Sciences,

Chulalongkorn University) or a Perkin Elﬁe[_Polarimeter 343 (School of Pharmacy,
University of London, United Kingdom), and reported as specific rotations [a]2,
where [a]® = a /L x € (o= abserved optic-a| rotation, L = path length in decimeters,
C = concentration in g/mL). ZIA

2.5.2 Circulatdichroism (C@isb’éttra

CD spectra were recorded on a JASCO J-715 spectropolarimeter

(Pharmaceutical \Research Instrument Center,- Faculty of Pharmaceutical Sciences,
Chulalongkorn Uaiversity):

2.5 Solvents
Organic solvents.employed throughout; this work were of commercial grade

and were,redistilled prior to'use or were HPLC grade.

3. Extraction and isolation
3.1 Extraction andisolation’ of compounds from Derris malaccensis
3.1.1 Extraction
The dried roots of Derris malaccensis (4 kg) were chopped, ground and then
macerated with methanol (3x10 L) to give, after removal of the solvent, a methanol
extract (200 g, 5% based on dried weight of roots).
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3.1.2 Isolation

3.1.2.1 Isolation of compound DM1 (12-deoxo-12 a-acetoxyelliptone)

The methanol extract (45 g) was fractionated by vacuum liquid column
chromatography using a sintered glass filter column of silica gel (No.7734, 800 g).
Elution was performed in a polarity gradient manner with mixtures of hexane and
EtOAc (1:0 to 0:1). The eluates were collected 500 ml per fraction and examined by
TLC (silica gel, hexane-EtOAc = 7:3) to yield 54 fractions. Fractions with similar
chromatographic mannerwere combined to yield 1/ dractions: Dm A (540 mg), Dm B
(690 mg), Dm C (2.04 g), DmD (630 rmg), Dm E (1.46 g), Dm F (3.07 g), Dm G
(1.759), Dm H (3.8 g), Dm'I (4:.02 g), Dm J (1.85 g), Dm K (4.65 g), Dm L (830 mg),
Dm M (330 mg), Dm N.(4 0),Dm O (4.76 g), Dm P (1.04 g), Dm Q (4.7 g).

Fraction DimH (3:8 g) was further separated by flash column chromatography
(silica gel 60 No. 9385, 100 g; hexane-EtOAc (1:0 to 0:1) to EtOAc-methanol (1:0 to
0:1)). Forty fractions (50 ml per fraction) \7\}er9_ collected and eombined based on their
chromatographic paitern to give 4 fractions':r Dm H1 (780 mg), Dm H2 (260 mg), Dm
H3 (200 mg) and Dm H4 (1.8 g). dy &

Fraction Dm H1 (780 mg) was purifit_a,gi_on a Sephadex LH 20 column (MeOH)
to furnish compound DM as & yeHowish pov_yde(,'__(242.4 mg), namely 12-deoxo-12 -
acetoxyelliptone [14]. =

3.1.2.2_Isolation  of -compounds DM2 (i2a-hydroxyelliptone), DM3
(tephrosin), DM4 (dehydroelliptone), DMS5 (6-oxo-dehvdioelliptone) and DM6
(deguelin)

Fraction Dm L (830 mg) was divided into 8 portions. Each portion was
purified by RP18 HPLC (Shimadzu LC-8A, C18, column: Shim-pack Prep-ODS,
20x250mmg5 jum) with, UV 254 nm, detection, and eluted, with. CHsCN-H,0 = 1:1
(flow rate 2 mi/min) tofaffard 5 compounds including DM2 (44.5¢mg, tg=80 min),
DM3 (236.6 mg, tg=157.5 min), DM4 (52.1 mg, tg=216.7 min), DM5 (4.3 mg, tr=226
min)-and*DM$6, (742 mg; tg=2563 min). Compounds DM2: DM6,weresubsequently
Identified 'as.'12a-hydroxyelliptone [58], tephrosin [64], dehydroelliptone [176], 6-
oxo-dehydroelliptone [177] which is a new rotenoid, and deguelin [23], respectively.

3.1.2.3 Isolation of compound DM7 (elliptone)

Fraction Dm N (4 g) was divided into 20 portions. Each portion was purified
by RP18 HPLC (Shimadzu LC-8A, C18, column: Shim-pack Prep-ODS, 20x250 mm,
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5 um) with UV 254 nm detection and eluted with MeOH-H,0 = 7.5:2.5 (flow rate
2 ml/min) to yield 6 fractions: Dm N1 (16.1 mg), Dm N2 (35.8 mg), Dm N3 (73.9
mg, tg=48.8 min), Dm N4 (11.3 mg), Dm N5 (58.4 mg, tg=57.7 min), Dm N6 (36.5
mg, tg=79.2 min) and Dm N7 (5.8 mg). Fractions Dm N3 and Dm N6 were later
identified as DM2, 12a-hydroxyelliptone [58] and DM3, tephrosin [64], respectively.
Fraction Dm N5 (58.4 mg) was purified by RP18 HPLC (Shimadzu LC-8A,
C18, column: Shim-pack Prep-ODS, 20x250.mmy'5 um) with UV 254 nm detection
and eluted with CH3CN=H»0 = 3:2 (flow rate 2 mil/min) to give compound DM7 (24.8
mg, tg=71.8 min) as elliptone{63].

3.2 Extraction and iselation of compounds from Carissa carandas

3.2.1 Extraetion

The dried stems of Carissa carandés (2 kg) were chopped, ground and then
macerated with methane! (3x10 L) to give, after removal of the solvent, a methanol
extract (149.5 g, 7.48% hased on dried weight of stems).

3.2.2 Isolation '

3.2.2.1 Isolation of compounds CC1 {(6R,7S,8S)-7a-[(B-glucopyranosyl)
oxy]lyoniresinol}, CC2 {(68,7R,8R)-7a-[(,&gquppyranosyl)oxy]Iyoniresinol} and
CC3 (carandoside) =

The methanol-extract (30 g) was divided into 8 portions. Each portion was
separated by €18 flash column chromatography (columnzVerSa Pak, C18 Cartridge
(40x75 mm, 45=75um)) with UV 254 nm detection and isocratic elution MeOH-H,0O
= 4:6 (flow rate 7.35 ml/min) to yield 5 fractions: Cc A (19.8 g), Cc B (780 mg), Cc C
(790 mg), Cc D (530.mg) and Cc E (3.57 g).

Fraction' C(790"mg) was separately isclated on a Sephadex LH 20 column
(MeOH) to afford.zfractions: Cc.€1 (50 mg), Cc C2.(110 mg), Cc'C3 (230 mg), Cc
C4 (80 mg), Cc C5 (130 mg), Cc C& (70 mg) and Cc C7 (40 mg).

Fraction Cc C2 (110.mg) was further purified by RP18 HPLC (Shimadzu LC-
8A, C18, "column:” Shim-pack® Prep-ODS, 20x250 mm, 5 pm) with*UV"254 nm
detection and eluted with CH3CN-MeOH-H,0 = 1.4:0.9:7.7 (flow rate 2 ml/min) to
give 3 compounds, CS1 (22.9 mg, tg=85.4 min), CS2 (12 mg, tz=91.5 min) and CS3
(9.1 mg, tg=109.7 min). Compounds CS1, CS2 and CS3 were characterized as
6R,7S,8S)-7a-[(/-glucopyranosyl)oxy]lyoniresinol [178], a new lignan glucoside
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named ((6S,7R,8R)-7a-[(#-glucopyranosyl)oxy]lyoniresinol) [179] and a new
sesquiterpene glucoside named carandoside [180].

3.2.2.2 Isolation of compound CC4 [(-)-carissanol]

Fraction Cc C5 (130 mg) was divided into 3 portions. Each portion was
subjected to RP18 HPLC (Shimadzu l.C-8A, C18, column: Shim-pack Prep-ODS,
20x250 mm, 5 um) with UV 254 nm detection and eluted with MeOH-H,0 = 4.6
(flow rate 2 ml/min) to give 6 fractions: Ce C5A(35.mg), Cc C5B (14 mg), Cc C5C
(2 mg), Cc C5D (19 mg), €e C5E (21 mg) and Ce CSF (23 mg).

Fraction Cc C5D (19-m@) was fufther chromatographed on a silica gel column
(No. 9385), eluted withe€CH,€l,-MeOH gradient to yield compound CC4 (5.2 mg)
which was identified as«(=)-carissanol [167].

3.2.2.3.Jsolation oficompound CCS [(=)-nortrachelogenin]

Fraction CcgD (530,mg) was diyi'ded into 6 portions. Each portion was
fractionated on a Sephadex LH 20 column (MeOH) to give 7 fractions: Cc D1 (46
mg), Cc D2 (180 mg), Ce D3 (120 mag), Cc D4 (29 mg), Cc D5 (9 mg), Cc D6 (6 mg)
and Cc D7 (12 mg).

Fraction Cc D3 (120 mg) was sepa[éted into 2 portions which were further
purified by RP18 HPLC (Shimadzu LC-8A, €18, column: Shim-pack Prep-ODS,
20x250 mm, 5 pum) with UV 254, nm detectlon and eluted with MeOH-H,0 = 4:6
(flow rate 2 mi/fmin) to give 6 fractions: Cc D3A (13 mg), Cc B3B (14 mg), Cc D3C
(19 mg), Cc D3D-(3-mg);-Ce-D3E-(15-mg)-and-Ce-D3F(Li-my):

Fractions C¢ C5E (21 mg) and Cc D3D (13 mg) were combined according to
their TLC patterns (silica gel, CH,Cl,-MeOH = 9.6:0.4) and later purified on a silica
gel column (No. 9385), eluted with CH,Cl,-MeOH gradient to afford compound CC5
(25.3 mg). It.was identified @s (—)-nartrachelagenin [168].

3.3 Extraction and isolation of ggmpounds from.Carissa spinarum
3.3.1 Extraction
The dried stems of Carissa spinarum (2 kg) were chopped, ground and then
macerated with methanol (3x10 L) to give, after removal of the solvent, a methanol
extract (123 g, 6.15% based on dried weight of stems).
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3.3.2 Isolation

3.3.2.1 Isolation of compounds CS1 (6-methoxycoumarin) and CS2 [(-)-
nortrachelogenin]

The methanol extract (55 g) was divided into 13 portions. Each portion was
separated on a C18 flash column [column: VerSa Pak, C18 Cartridge (40x75 mm, 45-
75um)] with UV 254 nm detection and eluted with MeOH-H,0 = 4:6 (flow rate 7.35
ml/min) to yield 5 fractions: Cs A (37.8 g), Cs'B(2.8 g), Cs C (1.1 g), Cs D (800 mg)
and Cs E (9 g). '

Fraction Cs A (37.8.9) was di\;ided into 40 portions. Each portion was re-
fractionated on a Sephadex LiH 20 column (MeOH). The eluates (50 ml per fraction)
were examined By reversed phase’ TLC (C18, MeOH-H,O = 4:6), and combined
according to their FLC pattern to afford 6 fractions: Cs A1 (1.6 g), Cs A2 (11.5 g), Cs
A3 (16 g), Cs A4 (2.519), @5 AB (3')-and Cs A6 (253'mg).

Fraction €5 A3 (16'0) was furthéf chromatographed on a silica gel column
(No. 9385), eluted with CH,Cl>-MeOH gra'q_ient to give 8 fractions: Cs A3A (0.4 mg),
Cs A3B (7 mg), Cs A3C (326.:2:mg), Cs A3D (396.6 mg), Cs A3E (191.3 mg), Cs
A3F (243.1 mg), Cs A3G (2 g) and Cs A3H (4.7 g).

Fraction Cs A3C (326.2 mg) was divided jpto 16 portions which were purified
on preparative TLC (silica Gel No. 93815,': éHsz-MGOH = 9.8:0.2, double
development) to give compounds CS1 (15.2"-.rhgj‘jén'd €S2 (172.5 mg), subsequently
identified as scopoletin [181] and (—)-nortrachelogenin {1681, respectively.

3.3.2:241solation of compound CS3 [(-)-carissanol]

Fraction Cs/A3D (396.6 mg) was further purified on a silica gel column (No.
9385), eluted with CH,Cl,-MeOH gradient to afford compound CS3 (81.4 mg) as (-)-
carissanol [167].

3.3.2.3 Iselation of compoeund CS4 [(—)-carinol]

Fraction Cs A3E (191.3 mg) was divided into 8 portions which were then
separated | ofi, preparative =T LC " (silica) No. 9385, CH,Cl,-MeOH 9,5:0.4, triple
development) to give compounds €S2 (6 mg), CS3 (33.6 mg)-and CS4 (102:8 mg),
which were subsequentially identified as (=)-nortrachelogenin [168], (—)-carissanol

[167] and (—)-carinol [160], respectively.
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3.3.2.4 Isolation of compound CS5 [(+)-cycloolivil]

Fraction Cs A3F (243.1 mg) was purified on a silica gel column (No. 9385),
eluted with CH,Cl,-MeOH gradient to yield 2 pure compounds, CS4 (37.7 mg) and
CS5 (27.7 mg). They were later identified as (-)-carinol [160] and (+)-cycloolivil
[182], respectively.

3.3.2.5 Isolation of compound CS6 [(+)-8-hydroxypinoresinol]

Fraction Cs B (2.8 g) was divided" iat0 4 portions. Each portion was
fractionated on a Sephadex LH 20 column (MeQH).-Fhe eluates (50 ml per fraction)
were examined by reversed.phase TLC (C18, MeOH-H,O = 4:6), and combined
according to their TLC paitern.to afford 7 fractions: Cs B1 (63.1 mg), Cs B2 (1.07 g),
Cs B3 (1.3 g), Cs'B4 (96'8 mo), Cs B5(81.2 mg), Cs B6 (63.4 mg) and Cs B7 (3.2
mg). 7

Fraction Cs B3 (L3 g) was spliﬁéél into 3 portions. Each portion was re-
chromatographed‘on a solid phase exiraction (SPE) column (silica gel, particle size =
0.055 nm, CH,Cl,-MeOH gradient) . The el'uates were collected 50 ml per fraction and
examined by TLC (silica gel, CH,Cl,-MeQOH = 9.6:0.4) to give 8 fractions: Cs B3A
(20 mg), Cs B3B (42.8 mg), Cs B3€ (319:5 mg), Cs B3D (41.6 mg), Cs B3E (147.8
mg), Cs B3F (53.7 mg), Cs B3G (192.8 mé) ;n_gi__Cs B3H (226.6 mg). Fractions Cs
B3E and Cs B3F were identified as the corﬁpodﬁds (-)-(carissanol) [167] and (-)-
carinol [160], respectively: IO

Fraction Cs B3B (42.8 mg) was divided into 2 portions. Each was purified on
preparative TLC/(silica gel No. 9385, hexane-EtOAc = 1:1, double development) to
yield compound CS1 (29.9 mg) as scopoletin [181].

Fraction Cs B3C (319.5 mg) was separated into 10 portions. Each portion was
further separated onpreparative ELC (sHica-gelNe. 9385+CH>Cl,-MeOH = 9.6:0.4,
triple development) to afford compounds CS2 (222.7 mg) and CS6 (6 mg). These two
compounds were subsequently identified as (—)-nortrachelogenin [168] and (+)-8-
hydroxypinoresinal [183] arespectively:

3.3.2.6 Isolation of compound CS7/(-)-olivil]

Fraction Cs B3G (192.8 mg) was divided into 8 portions. Each portion was
purified by preparative TLC (silica gel No. 9385, CH,Cl,-Acetone-MeOH = 10:1:0.2,
quintuple development) to afford compound CS7 (18.1 mg) as (-)-olivil [169].



63
3.3.2.7 Isolation of compound CS8 [(-)-secoisolariciresinol]

Fraction Cs C (1.1 g) was divided into 3 portions. Each portion was
fractionated on a Sephadex LH 20 column (MeOH). The eluates (50 ml per fraction)
were examined by reversed phase TLC (C18, MeOH-H,O = 4:6), and combined
according to their TLC pattern to afford 7 fractions: Cs C1 (25 mg), Cs C2 (206 mg),
Cs C3 (120 mg), Cs C4 (556 mg), Cs C5 (5 mg), Cs C6 (36 mg) and Cs C7 (4 mg).

Fraction Cs C3 (120 mg) was further separated on an SPE column (silica gel,
particle size = 0.055 nm; €H,Cl>-MeOH gradient)..Fhe eluates were collected 50 ml
per fraction and examined by TLC (silrica gel, CH,Cl>-MeOH = 9.6:0.4) to give 6
fractions: Cs C3A (18.1.m0),.Cs C3B (8.2 mg), Cs C3C (24.9 mg), Cs C3D (15.2
mg), Cs C3E (11:7'mg).and Cs C3F (39.7 mg).

Fraction CsfC3C (24.9 mg) was purified by preparative TLC (silica gel No.
9385, CH,Cl,-MeOH'= 9:4:0.6, tripie d'ev'-élopment) to yield compounds CS3 (3.6
mg), CS4 (5.1 m@) and CS8 (2.3 ma), eGénguaIIy identified as (—)-carissanol [167],
(-)-carinol [160] and (—)-secoisolariciresin'é’l [170]; respectively.

Fraction Cs C4(556 mg) was divided into 2 portions. Each portion was re-
chromatographed on“an SPE column (silica 0.055 nm, CH,Cl,-MeOH gradient) to
give 5 fractions: Cs C4A (296.4.mg), Cs C4B (98.3 mg), Cs C4C (26 mg), Cs C4D
(19 mg) and Cs C4E (40.2 mg). = :

Fraction,Cs C4A (296.7 mg) was divided into 10 portions. Each portion was
further purified by _preparative T1 C (silica _gel No. 9385 -CH,Cl,-MeOH = 9.4:0.6,
triple development) to afford compounds CS2 (113.2 mg) and-€S3 (39.1 mg) which
was identified as (—)-nortrachelogenin [168] and (—)-carissanol [167], respectively.

Fraction Cs C4B (98.3 mg) was divided into 4 portions. Each portion was re-
purified“by preparative~TLC r(silica geltNo:+9385, CH>Cl>--MeOH = 9.4:0.6, triple
development)to afford compound.CS4 (67.2.mg) as (=)-carinol [160}.

3.3.2.8 Isolation of compeund CS9 [(+)-pinoresinol]

Fraction ,Cs “D" (800<.mg) ‘was ‘fractionated "Dy | vacuum: liguid 'column
chromatography using a sintered glass filter column ‘of silica ‘gel (No. 9385)=Elution
was performed in a polarity gradient manner with mixtures of CH,Cl, and MeOH (1:0
to 0:1). The eluates were collected 100 ml per fraction and combined according to
their chromatographic TLC pattern (CH,Cl,-MeOH = 9.4:0.6) to give 13 fractions: Cs
D1 (1.3 mg), Cs D2 (1.1 mg), Cs D3 (0.4 mg), Cs D4 (63.2 mg), Cs D5 (69.7 mg), Cs
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D6 (16.7 mg), Cs D7 (17.3 mg), Cs D8 (35.8 mg), Cs D9 (11.2 mg), Cs D10 (7.5

mg), Cs D11 (13.2 mg), Cs D12 (132.6 mg) and Cs D13 (375.2 mg).

Fraction Cs D4 (63.2 mg) was divided into 4 portions. Each portion was
purified by preparative TLC (silica gel No. 9385, CH,Cl,-MeOH = 9.6:0.4, triple
development) to afford compounds CS2 (17 mg) and CS9 (9.3 mg) as (-)-
nortrachelogenin [168] and (+)-pinoresinal [175], respectively.

Fraction Cs D5 (69.7 mg) was dividedsinie 4 portions. Each portion was then
purified by preparative  TLC (silica gel Ne: 9385, hexane-EtOAc = 3:7, triple
development) to give compound CS2 (43.9 mg) as (—)-nortrachelogenin [168].

Fraction Cs D8 .(35.8+mg) was divided into 2 portions. Each portion was
separated using preparative TLC (silica gel No. 9385, CH,Cl;-MeOH = 9.6:0.4, triple
development) to yield eompound CS3 (1_2.5 mg) which was identified as (-)-
carissanol [167]. -

3.3.2.94solation of compound 6310 (carissone)

Fraction Cs E (9. g) was fr!actionated by wvacuum liquid column
chromatography using @ sintered jglass filter column of silica gel (No. 9385). Elution
was performed in a polarity gradient manner with mixtures of CH,Cl, and MeOH (1:0
to 0:1). The eluates weré collected 300 ml per fraction and combined according to
their similar chromatographic THC patternf(CI;IZCIz-MeOH = 9.4:0.6) to give 8
fractions: Cs E1 (211.5:mg), Cs £2 (926.2 mg), Cs E3:(1.2 g). Cs E4 (469.4 mg), Cs
E5 (229 mg), €s-£6.(765.2.mg), Cs F7 (664.2. mg) and Cs F8 (2.9'g).

Fraction-Cs E2 (928.2 mg) was divided into 3 portions:“Each portion was re-
chromatographed on an SPE column (silica gel 0.055 nm, hexane-CH,Cl,-acetone
gradient) to afford 8 fractions: Cs E2A (21.4 mg), Cs E2B (98.1 mg), Cs E2C (113.3
mg), Cs*E2D:(107:9 mg);, Cs E2E+(125.3ym@g)s CsiE2F4(270:9 mg), €s:E2G (53.6 mg)
and Cs E2H (22.2mg).

Fraction Cs E2F (270.9 mg) was divided into 8 portions. Each portion was
purified-on preparativey TLC (Silica gel Moy 9385, CHzCl-MeOH = #918:0:2 triple
development) to give compound €510:(76.2 mg) as carissone [162].

3.3.2.10 Isolation of compound CS11 (digitoxigenin 3-O-4-D-
digitalopyranoside)

Fraction Cs E3 (1.2 g) was fractionated on a Sephadex LH 20 column [CHCl;-
MeOH gradient (1:0 to 0:1)]. The eluates (50 ml per fraction) were examined by TLC
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(silica gel No. 9385, CH,Cl,-MeOH = 9.6:0.4), and combined according to their

TLC pattern to give 9 fractions: Cs E3A (76.2 mg), Cs E3B (96.5 mg), Cs E3C (512.6
mg), Cs E3D (211.5 mg), Cs E3E (128.4 mg), Cs E3F (23.8 mg), Cs E3G (45.7 mg),
Cs E3H (93.6 mg) and Cs E3I (20.6 mg).

Fraction Cs E3D (211.5 mg)
0.055 nm, hexane-EtOAC gradi
as digitoxigenin 3-O-/-D-d \

as further separated on SPE column (silica

ol

) / ompound CS11 (6.8 mg) later identified

3.3.2.11 Isolatien.of Cor pound CS12 (Evemonoside)
Fraction Cs E (229 mg) was purified LH 20 column [CH,Cl,-
MeOH gradient (1:0 to 0; were examined by TLC
d according to their TLC

stlica gel No. 938 ‘/f? \
(silica gel No. 9385, f)ﬂk“\"\\“

pattern to yield compoung

OSI0C

F’T‘UEI’J‘VIEWI?WEI’]ﬂ‘i
QW’mﬁﬂ‘iﬂJﬂJWT}ﬂEﬂﬁﬂ
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MeOH extract (45 g) from roots of Derris malaccensis (4 kg)
VLC (silica gel; Hexane-EtOAc, gradient)

DmA-G DmH DmI-K  DmL DmM DmN Dm O-Q

(10.2 g) (3.809) (10 1 (830 mo); (330 mg) (49) (10.5q)

HPLC (RP18;

MeOH-H,0,

7.5:2.5)

Dm H1

(780 mg)

GF (Sephadex

DM1 (242.4 mg)

"Dm N6 Dm N7

I
1
[}

5m N3 DmN4  DmN5

(S”ﬁuﬁﬁwﬁm Enﬁ'“f

& CHsCN-H,0, DM3

QW']ﬁNﬂiflJ HNANYAY

DM7 (24.8 mg)

Dm N1-2

Scheme 1 Separation of the MeOH extract of the roots of D. malaccensis



67
MeOH extract (30 g) from stems of Carissa carandas (2 kg)

‘ FCC (RP18; MeOH-H,0, 4-6)

CcA CcB CcC Cc.D CcE

(19.8 g9) (780 mg) %) (530 mg) (3.57 9)

dex LH 20; MeOH)

cccCl ¥ ol | 34 5 Cc C6-7
(50 mg) 9) (110 mg)
HPLC (RP18;
MeOH-H,0,
4:6)
Cc C5A-C Cc C5F
(51 mg) EI 21 mg L: (28 mg)

"' = FCC (Siliwl;

AU INERTHEING

CC4 (5.3 mg) -

RN IUNRINYINY

Scheme 2 Separation of the MeOH extract of the stems of C. carandas
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Fraction Cc D

(530 mg)
GF (Sephadex LH 20; MeOH)

L
Cc D1-2 11 icqn Cc D4-7
S~z
(226 mg) (120 hg) (56 mg)
HD1 C (RP183: OH_HZO,
Cc D3A-C Cc D3E-F
(46 mg) (26 mg)

AULININTNEINS
AR TUNNINGAY

Scheme 3 Separation of fractions Cc C and Cc D from the MeOH extract
of the stems of C. carandas
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MeOH extract (55 g) from stems of Carissa spinarum (2 kg)

CsA CsB CsC CsD CsE

FCC (RP18; MeOH-H,0, 4:6)

(37.89) (2.89) ) (800 mg) (99)
‘ GF(Sephadex '*--.._ )

‘ " e - i

Cs Al-2

(13.19) \

C I|c “ | ) radlent)

Cs A3A-B f: A3g %3.- ’ ' A3F  CsA3G-H

7amg  @268mo)f  (396.6mg) 4 (101 (2431 mg) (6.7 g)

FCC

4 e e
TG
,9.8:0.2) éﬁ 9.6:0.4) CH,Cl,-MeOH,
E
'm gradient)

|
A

,Cl,-MeOH| (Silica gel,

C(

_*F-."'-lll'l_

%~ =
] | i
CS2 (6 mg)

ﬂuﬁl?ﬂﬂﬂiﬁﬂm‘i
ARIANN T AR IR Y

Scheme 4 Separation of fraction Cs A from the MeOH extract
of the stems of C. spinarum
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Fraction Cs B (2.8 g)

GF (Sephadex LH 20; MeOH)

Cs B4-7

(230 mg)
jel; CH,Cl,-MeOH, gradient)

CsB3A CsB3B o0 \\ B3 CsB3G CsB3H

(20 mg) (42.8 mg 9'5 mg. ; \ " ) | (192.8 mg) (236.6 mg)

Prep TLC Prep TLC

(Hexane-EtOAC (CH,Cl,-Acetone

1:1) -MeOH,

10:1:0.2)
CS1(29.9mg)

AULININTNEINS
ARIANTAUNM TN

Scheme 5 Separation of fraction Cs B from the MeOH extract
of the stems of C. spinarum
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Fraction Cs C (1.1 g)

‘ GF (Sephadex LH 20; MeOH)

CsC4 Cs C5-7

(231 mg) " (556 mg) (45 mg)
L PE (silica gel;. PE (silica gel;

,Cl,"MeOH, gradient) | CH,Cl,-MeOH, gradient)

.
Cs C3A-B g3 s C3l S C4A s C4B  Cs CAC-E

CsC1-2

(26.3 mg) 08.3 mQ) (85.2 mg)

Prep TLC
(CHZC|2-MeOH,

9.4:0.6)

113.2mg) CS 4 (67.2 mg)

ﬂ‘IJEI’JVIEWﬁWEJ’lﬂ‘i
ammnmumawmaa

Scheme 6 Separation of fraction Cs C from the MeOH extract
of the stems of C. spinarum
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Fraction Cs D (800 mg)
VLC (silica gel; CH,Cl,-MeOH, gradient)

Cs D1-3 Cs D4 s D6-7 Cs D8 Cs D9-13

(2.8 mg) (63.2 m (35.8 mg) (540.2 mg)

Prep TLC Prep TLC

(CH,Cl,-Me@ (CH,Cl,-MeOH,

9.6:0.4) 9.6:0.4)

¥

AULININTNEINS
AR TUNNINGAY

Scheme 7 Separation of fraction Cs D from the MeOH extract
of the stems of C. spinarum.
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Fraction CsE (9 g)
VLC (silica gel; CH,Cl,-MeOH, gradient)

E4 CsE5 Cs E6-8

CsEl CsE2

(211.5 mg) (229 mg) (4.379)

SPE (silica gel; .
hexane- CH,Cl,

-acetone, gradier GF (Sephadex LH 20;

CH,Cl,-MeOH,

gradient)

Cs E2A-E

(466 mg) (2

-
e

3 d’ (12.1 mg)

AULININTNEINS
ARIAINTUNIINGINY

Scheme 8 Separation of fraction Cs E from the MeOH extract
of the stems of C. spinarum
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DM1 12-deoxo- 3 tephrosin [64]
Ry =H, R, = OAeIR: = | OH

DM2 12a-hydrg ' ' deguelin [23]
Ry, R, =0, Ry=.€
DM? elliptofie [6
Ry, R, =0, R

- c-—ﬂ"’-—ﬁﬁih“m_;n_;ﬂ

f F I"" d

;‘i DM5 6-oxo-dehydroelliptone[177]
Rll RZ_

ﬂ‘IJEJ’J‘VIEWlﬁWEﬂﬂ‘i

ammﬂmum'awmaa

Figure 4 Structures of compounds isolated from D. malaccensis
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MeO. ‘\\\\\\\\OH
OH
oH ° OH
", - o
HO g
OMe I OH
MeO OMe MeO OMe

OH

CC1 (6R,7S,85)-7
glucopyranosyl)oxyi
esinol [178]

6S,7R,8R)-7a-[( 4
copyranosyl)oxy]lyonir

A UHIN EN NINEIRZ o
’Qﬁ”]ﬁﬂﬂ‘imuﬁﬂﬂmﬁﬂ

Figure 5 Structures of compounds isolated from C. carandas



OH

HO. 0. (o]
m
MeO

CS1 scopoletin [181]

CS8 (—)-se 'l'i solaric
i

ﬂuﬂqwﬂws
amamﬁﬁr YINYNA Y

CS11 digitoxigenin 3-O-3D-digitalopyranoside [ [184]; R=Me

CS12 evomonoside [185]; R=H

Figure 6 Structures of compounds isolated from C. spinarum
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4. Physical and Spectra data of isolated compounds

4.1 Compound DM1 (12-Deoxo-12a-acetoxyelliptone)

Compound DM1 was obtained as a yellowish powder, soluble in CH,Cl,
(242.4 mg, 6.06x10™ % based on dried weight of roots).

ESIMS
[

uv
IR

'H NMR
BC NMR

: [M+Na]* m/z 419.11; Figure 12
: —256.4 ° (¢ 0.055; MeOH)

- Amax "M (log €), in methanol; Figuie™10

250 (4:38)5:253-(4.41), 200 (4-19)

: vingeer s, KBrdisc; Figure 11

315072958¢2860; 1737, 1622, 1602, 1514,1480, 1221, 1088, 1046

: & ppl 300/MHZ in CDCl5; Figure 13, Table 3
1 0 ppmyS MHz, in.CDClg; Figure 14, Table 3

4.2 Compound DM2 (12a-Hydrexyelliptone)
Compound DM2 was obtained as a']'yel’fowish powder, soluble in CH,CI,
(118.4 mg, 2.96x10” % based on dried Welg'ht of roots)

ESIMS
[a]?

uv
IR

'H NMR
BCc NMR

1 +12.86 ° (c007IWeOH)

: [M+Na]" m/z 391 08 Flgure 18

4

> Amax "M (log s) in methanoI—Elgure 16

223 (4. 75) 240 (4:66), 260 (4.08)

i vmax cm™, KBr disc; Figure 17

3453 3124, 2936, 1679, 1614, 1510, 1465, 1217 1026, 746

18 ppm, 300 MHz, in CDCls; Figure 19, Table 4
;0 f)pm, 75 MHz, in CDCls; Figure 20, Table 4

4.3 Compound.BDM3 (Tephrasin)
Compound DM3was obtained @s a yellowish powder, solublein CH.Cl,
(273.1 mg, 6.82x10™ % based on dried weight of roots).

ESIMS
[a]f

uv

: [M+Na]" miz 433.33;/Figure 24
1 —31.67°(c0.06; MeOH)

. Amax NM (log €), in methanol; Figure 22

236 (4.41), 250 (4.39), 272 (4.46), 300 (4.05)

- vimax MY, KBr disc; Figure 23

3449, 3016, 2935, 1674, 1598, 1510, 1443, 1218, 1111, 1028, 755
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'H NMR : 6 ppm, 300 MHz, in CDCl3; Figure 25, Table 5

BCNMR  :8ppm, 75 MHz, in CDCls; Figure 26, Table 5

4.4 Compound DM4 (Dehydroelliptone)

Compound DM4 was obtained as a yellow powder, soluble in CH,Cl, (52.1
mg, 1.3x10™ % based on dried weight of roots).
HRESIMS  : [M+Na]" at m/z 373.0701 (calcd for CxH140sNa 373.0683)

EIMS : m/z (% relative intensity); Figure 30

349 ([M=H], 100), 334 (26), 307(22),:303 (34), 236 (15), 167 (10)
uv : Amax M (10g.&)in metﬁ;nol; Figure 28

233 (4.54)92701(4:29), 310 (4.13)
IR - Vinax calf K BF dist; Figure 29

3144, 2947, 2849 j1744,71633, 1508, 1450,1290, 1157, 763
IHNMR 5 ppil, 300 MHz in CDC"Ig;'.Figure 31, Table 6

BCNMR  :&'ppm 75 MHz, in CDC|3, Figure 32, Table 6

4.5 Compound DM5 (6-Oxo- dehy"droelllptone)

Compound DMS5 was obtained as ayellow amorphous solid, soluble in
CH,Cl; (4.3 mg, 1.08x10 2% based.on driéd)q_lgight of roots).
HRESIMS  : [M+H] /at m/z 365.0654 (calcd fgr, Ca0H1307 365.0656)

EIMS : m/z (% relative intensity) Fﬁwé 40
364 (M*; 100); 349 (18), 321 (43). 293/(19), 278 (16) 194 (12)
uv ~ 'xmax nm (log €), in methanol; Figtre 38—
“226 (3.48), 280 (3.19), 290 (3.22)
IR ! vimax cm, KB disc; Figure 39
2922,2852, 1739, 1645, 1463, 1293
'H NMR 15pPpm 500 MHzyin CDClgFigureid L; Table 7

B¢ NMR 20 ppm, 125 MHz,.in CDCl3;Figure 42, Table 7

4.6 Compound DM6 (Deguelin)

Compound DM was obtained as'atyellowish powder, soluble in"CH,CI; (7.2
mg, 1.8x10°9% based on dried weight-of roots).

ESIMS : [M+H]" m/z 395.16; Figure 50
[]? : —25.71 ° (¢ 0.04; MeOH)
uv . Amax NM (log €), in methanol; Figure 48

240 (4.42), 271 (4.44), 320 (4.04)
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IR : vimax MY, KBr disc; Figure 49
2974, 2932, 1731, 1673, 1598, 1512, 1442, 1214, 1112, 755
'H NMR : & ppm, 300 MHz, in CDCl3; Figure 51, Table 8

BC NMR : & ppm, 75 MHz, in CDCl3; Figure 52, Table 8

4.7 Compound DM7 (Elliptone)

Compound DM6 was obtained as a yellowish powder, soluble in CH,ClI; (24.8
mg, 6.2x10° % based on dried weight of roofs):

ESIMS . [M+H]} m/z 353.11; Figure 56
[]? 1 —18 ° (c.0:057 MeOH)
uv : AnaaM (l0g@°€)¢ 10 methanaol; Figure 54
237 (4485), 2804(4:21) .}
IR * Vmax Ci, KiBudisc: Figure 55
3046, 2935, 2856, 1646,1465, 1391, 1214, 1090, 761
'H NMR 5 ppm, 300 MHz;in CDCls; Figure 57, Table 9

®CNMR  :5ppm, 76 MHz, in CDCls; Figure 58, Table 9
4.8 Compound CC1 {(éR,:78,88)-7;[.(,59Iucopyranosyl)oxy]Iyoniresinol}
Compound CC1 was obtained as a ye1[6w amorphous solid, soluble in MeOH
(22.9 mg, 1.15x107 % based 6f dried Weightété'tjéims).

ESIMS : [M+Na]" m/z 605.9; Figure Y Syt =

[]? :#22.7 ° (c 0.04; MeOH) 7

CD : [0]214 -22594, [0]245 +15168, [0]273 +5828, [0]2s7-366; (C 3.44x107%;
MeOH); Figure 63

uv : Max nm (log €), in methanol; Figure 60
225 (4.52), 279 (3:83)

IR “vihaxcmi, KBr disc; Figure 61
3368, 2936, 1612, 1515, 1458, 1321, 1216, 1110

'HINVIR : 3 Ppn;"800:MHZ; in MeOH-dy;Figure,64; Mable 10

BCNMR! 18 ppm, 75 MHz, in'MeOH-d,; Figure'85, Table-10
4.9 Compound CC2 {(6S,7R,8R)-7a-[(#-glucopyranosyl)oxy]lyoniresinol}
Compound CC2 was obtained as a yellow amorphous solid, soluble in MeOH
(12 mg, 6x10° % based on dried weight of stems).
HRESIMS :[M+Na]" at m/z 605.2216 (calcd for CogH3gNaO13" 605.2210)
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ESIMS : [M+Na]* m/z 605.9; Figure 75

[a]?® : —46.9 ° (c 0.04; MeOH)

CD - [0]220 +13687, [0]244 ~16095, [0]274 -5076, [0]286 +993; (C 3.44x10™;
MeOH); Figure 63

uv - Amax M (log €), in

Compou ined as a yellow 8 id, soluble in MeOH

HRESIMS
ESIMS

[a]?

uv : ----'- 5
F / r’ v

13.2175)

IR

'H NMR

BCNMR aﬂm, . Tgm 12

4.11 Compound CC4 [(-)-Carissanol]

(5.2m ﬁﬁﬁjﬁ?ﬁﬂ%ﬁoﬁSﬁ %uble in MeOH

6
ESIMS ] : [M+Na]" m/z 399.9; Figure 98

asindngnay

280 (4.23), 300 (4.03)
IR : vmax cM*, KBr disc; Figure 97
3359, 2922, 1658, 1514, 1427, 1271, 1032
'H NMR : 6 ppm, 500 MHz, in acetone-ds; Figure 99, Table 13
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BCNMR  :&ppm, 125 MHz, in acetone-dg; Figure 100, Table 13

4.12 Compound CC5 [(-)-Nortrachelogenin]
Compound CC5 was obtained as a yellow amorphous solid, soluble in MeOH
(25.3 mg, 1.3x10 % based on dried weight of stems).

ESIMS : [M+Na]* m/z 397.8; Figure 111
[a]3 :-33.63 ° (¢ 0.1; MeOH)
uv : Amax NM(l0g €), In methanolFigtre 409
284 (4.29),'300(3.93) i
IR | VmaeMSKBLdise; Figure 110
335048972 #7068 41658} 1514, 1480;.12%4,.1032
'HNMR : & ppmg300MHZ,in acetone-ds; Figure 112, Table 14

BCNMR  :&ppm, 75 MHz, in acetonesds; Figure 113, Table 14

4.13 Compeund €51 (Scopoletin)__,

Compound CS4 was obtained as a ¥e|l0w amorphous solid, soluble in MeOH
(45.1 mg, 2.3x10° % based on dried weightiof stems).

ESIMS : [M+Na]" mfz 2155; Figure 116
uv : Amax "M (log €),4n methanole‘"lﬁgure 115
300 (4.22), B @T3) <
"HNMR  :8ppm, 500 MHz,in MeOH-_qZ_;_EEg_u(e 116, Table 15

BCNMR % ppm, 125 MHz, in MeOH-d,; Figure 117y Taigle 15

4.14 Compound CS2 [(-)-Nortrachelogenin] |

Compouhd CS2 was obtained as a brown amorphous-selid, soluble in MeOH
(575.3 mg, 2.88 x40 % based on dried weight of stems). It has physical and spectra
data identical with those-of compound CC5.

4,15 Compound CS3/[(—)-Carissanol]

Compound CS3 was obtained as a brown amorphous solid, soluble in MeOH
(318 mg, 1.59 x10™ % based on dried weight of stems)s It has physical and.spectra
dataidentical with thase of compound CC4.

4.16 Compound CS4 [(-)-Carinol]

Compound CS4 was obtained as a brown amorphous solid, soluble in MeOH
(266.5 mg, 1.33x10™ % based on dried weight of stems).
ESIMS : [M+Na]* m/z 401.6; Figure 124
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[a]? 1 —13.08 ° (¢ 0.13; MeOH)
uv . Amax NM (log €), in methanol; Figure 123
280 (4.23), 300 (3.92)
'H NMR : & ppm, 500 MHz, in MeOH-d,; Figure 125, Table 16

BCNMR 8 ppm, 125 MHz, in MeOH-d,; Figure 126, Table 16

4.17 Compound CS5 [(+)-Cycloolivil]

Compound CS5 was obtained as a yellowamarphous solid, soluble in MeOH
(27.7 mg, 1.39x107° % based on dried weight ofstems).

ESIMS : [M+Naj=m/z 399.6; Figure 135
[a]? : +29 24(€"0. LisMeOH)
uv : AmagliM (190 ) N methaiinol; Figure 134
288 (4422),800(3.99) % 4
'H NMR : 5 ppm, 400 MHZ, in-aceione-ds; Figure 136, Table 17

BCNMR 8 ppm, 100 MHz; in acetone-ds; Figure 137, Table 17

4.18 Compound CS6 [(+)-8—Hydré&ypir_]oresinol]

Compound CS6 was obt-éiri-ed asa yellﬁow amorphous solid, soluble in MeOH
(6 mg, 3x10°° % based on dried Weight of sfé‘fﬁ;): !

ESIMS . [M+Na] m/2887.6; Figure 146
[]?  +28.18 ° (021 MeOH) 1
uv < Amax NM (log €), in methanol; Figure 144
263 (411), 296 (3.80) ,,
'H NMR : 3 ppm, 500 MHz, in acetone-ds; Figure 146, Table 18

BCNMR  :8ppm, 125 MHz, in acetone-dg; Figure 147, Table 18

4.19 Compound-CS7 [(-)-Olivil]

Compound CS7 was obtained as a yeHow amorphous salid, seluble in MeOH
(18.1 mg,'9.05x10°° % based on dried weight of stems).

ESIMS . [M+Na]" m/z 399.6; Figure, 155
[a]? 1-31.82 2 (c0.1%; NieGOH)
uv . Amax NM (log €), in methanol; Figure 154
285 (4.17), 298 (3.76)
'H NMR : & ppm, 400 MHz, in CDClj; Figure 156, Table 19

BCNMR 8 ppm, 100 MHz, in CDCls; Figure 157, Table 19
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4.20 Compound CS8 [(—)-Secoisolariciresinol]
Compound CS8 was obtained as a yellow amorphous solid, soluble in MeOH
(2.3 mg, 1.15x10°® % based on dried weight of stems).

ESIMS : [M+Na]* m/z 385.6; Figure 165
[a]? : —12 °(c 0.05; MeOH)
uv . Amax NM (log €), in methanal; Figure 164

280 (4.17),.301 (3.95)
'HNMR : & ppm, 400 MHz, in Me©H-dz; Figure 166, Table 20
BCNMR  : 8 ppmgd00'MHz, in MeOH-dz; Figure 467, Table 20
4.21 Compound CS9(+)-Pinoresinol]
Compound CS9Was.obtained as a yellow amorphous solid, soluble in MeOH
(9.3 mg, 4.65x10:%% based on dried weight of stems).

ESIMS : [M#Na]"4n/z881.5; Figure 170
[ ]2 . +48 °(c 0.4; MeQH) ";J
uv . Miax NMK(logie), in methanol Figure 169
284 (4117)4303 (3.98) -
'H NMR : 5 ppm, 500 MHZ, in acetonéfﬂ_g'; Figure 171, Table 21

BC NMR : O ppm, 125 MHz, in acetone;fi}ﬁbure 172, Table 21

4.22 Compound CS10 (Carissone)

Compound CS10 was obtained as a yellow amorphous solid, soluble in MeOH
(76.2 mg, 3.81x10° % based on dried weight of stems). Y|

ESIMS : [M+Na]* m/z 259.6; Figure 179
[a]? : +113.08 ° (¢ 0.13; MeOH)
uv Amax;NM-(log €), in methanol; Figure 178
270 (3.64), 300 (3.50)
'H NMR : & ppm, 500 MHz, in CDCl3; Figure 180, Table 22

3G NMR . O ppmyl25-MHz, in GDCls; Rigute 181, Table22
4.23'Compound CS11 (Digitexigenin 3-Q-B-D-digitalopyranaside)
Compound CS11 was obtained as a yellow amorphous solid, soluble in MeOH
(6.8 mg, 3.4x10° % based on dried weight of stems).
ESIMS : [M+Na]" m/z 557.7; Figure 188

[]? : —20 ° (c 0.055; MeOH)
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uv . Amax NM (log €), in methanol; Figure 187
280 (4.11), 303 (4.29)
'H NMR : & ppm, 400 MHz, in CDCls; Figure 189, Table 23

BC NMR : & ppm, 125 MHz, in CDCl3; Figure 191, Table 23

4.24 Compound CS12 (Evomonoside)

Compound CS12 was obtained as a yellow amorphous solid, soluble in MeOH
(12.1 mg, 6.05x107° % based on dried weight of siems),

ESIMS : [M+Naj} " mi/z 543.9; Figure 201
ot
[]? : —18.33 °(6:0:42-:MeOH)
uv : Amax am(loge€) .in'methanal; Figure 200

280 (3490), 30344.05) |
'H NMR :09pm, 500 MHZ jin CDCl3; Figure 202, Table 24
BC NMR . & ppm, 125 MHz, in CDClg;lFigure 204, Table 24
:’ ;
5. Determination of freg radical scavenging activity (Likhitwitayawuid et al., 2006)

5.1 TLC screening assay -

The samples were loaded: as spot oﬁ'tTLC plate and developed with suitable
developing solvent. After drying, the TLC hiéitée’_iivas sprayed with 0.2% solution of
1,1-diphenyl-2-picrylhydrazyl (DPPH) in m@npl. After 30 min, active compounds
appeared as yellow spots ohitﬁ:er purple backgfo'ljﬁa: -

5.2 Free radical scavenging aciivity assay

5.2.1 Preparation of test sample

The ‘test compound (0.5 mg) was dissolved.in 1 ml of methanol (or
suitable solvent) and-diluted with methanol. until a suitable range of concentration
(mg/mL),  was = abtained. “The [ concentration’. was - expressed: @s, uM in final
concentration. Forexample, CC1"(MW 376) at'0.5 mg/ImL was equal to 1329 uM
(0.5 mg/ImL x 376). For each well, 20 pL of test selution was added togthe reaction
mixiure to furnish the tatal volume of 200 pl: The final concentration was calculated

by the formula below.

N1V1 = N2V2
N1 = Beginning concentration (uM)
\1 = Beginning volume (uL)

\P) = Final concentration (uM)
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V> = Final volume (L)
Thus, the final concentration of CC1 solution =1329 uM x 20 uL /200 pL
=132.9 uM

5.2.2 Preparation of DPPH solution (100 uM)

DPPH (2 mg) was dissolved in 100 mL of methanol, and the solution
was stirred for 30 min.

5.2.3 Measurement of activity

The test sample (20 pl) was adeed to 180 ul of DPPH solution (100
uM) in 96-well plate. Fhessolution mixture was incubated at 37°C for 30 min and then
the absorbance of eachwwell was measured at 510 nm on a SpectraMax M5 Microplate
reader (Pharmaceutical” Research /Instrument Center, Faculty of Pharmaceutical
Sciences, Chulalongkaom University). Thel. DPPH solution (180 pL) mixed with
methanol (20 uL) was used as negative cc;_ntrol and quercetin was used as a reference
compound. '-,
5.2.4 Caleulation ofpercent inhibition of DPPH scavenging activity

The percentage of DPPH rediy;c"tica)h was calculated as follows.

v ,-!
o Y

% DPPH feduction iA‘B) x100/A

A= The absorb'énce of DPPH s'ol-ution after incubation at 510 nm

B =-TFhe-absorbance-of the-reaction-mixture-after-incubation at 510 nm

For 1Csg.evaluation of pure compounds, a graph.showing concentration

versus % DPPH reduction was plotted. The 1€s9 was calculated from the graph.

6. Determination of Anti-HerpesSimplex Activity

6.1 Viruses and Cells

HSV ssirains used were® HSV=1 (KOS) and HSV-2 (Baylorl86). Vera cells
(ATCC CCL81) were grown and maintained in Eagle’s minimum medium
supplemented with 10% fetal bovine serum.
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6.2 Plaque Reduction Assay

Anti-HSV activity of the compound was determined by the plaque reduction
assay modified from the previously reported method (Chuanasa et al., 2008; Lipipun
et al., 2003). Briefly, in the post-treatment assay, Vero cells, in 96-well tissue culture
plate, were infected with 30 plaque forming units of HSV-1 (KOS) or HSV-2
(Baylor186). After 1 hr incubation at room temperature for virus adsorption, the cells
were added with overlay media containingvarious concentrations of the compound.
The infected cultures were Incubated at 37 °€ for.2-days. The infected cells were
fixed and stained, and then the number of plagues was counted. The 50% effective
concentration (ECsp) was.determined from the curve relating the plaque number to the
concentration of the compound: Acyclovir was used as a positive control. In the
inactivation assay,.each of 30 plague forming units of HSV-1 or HSV-2 was mixed
with various concentrations of compound‘ and incubated for 1 hour then the mixture
was added to Vero cells in 96-well tissue’iqul_ture plate. After 1 hour incubation for
virus adsorption, theioverlay media were added. The infected cultures were incubated
at 37 °C for 2 days. The infected. cells vvrerre fixed, stained, and the plaques were
counted. The 50% effective concentration (ECso) was determined.

7. Determination of antibacterial-activity

In this study, six strains of Staphyloc’oééus—'aureus were used, including ATCC
25943 (S. aurgus'standard strain), SA1199B (S. aureus which-Overexpresses the norA
gene encoding-the NorA MDR efflux pump), XU212 (S. aureus-tetracycline resistant
strain), RN4220 (S. aureus which possesses the MsrA macrolide efflux protein),
EMRSA15 and EMRSAL6 (S. aureus methicillin resistant strains) (Shiu and Gibbons,
2006). Briefly, all strains were. cultured on nutrient agar (Oxoid).and.incubated for 24
h at 37 °C prior. to MIC determination. Control antibiotic, norflorxaein, was obtained
from Sigma Chemical Co. Mueller-Hinton broth (MHB; Oxoid) was adjusted to
contain 20 and 10, mg/L .of Ca** and Mg’ respectivelys An inoculum density of
5x10% cfu of each bacterial 'straingwas prepared¢in ‘narmal salings (9 (g/L) by
comparison with a 0.5 MacFarland turbidity standard. All test compounds were
dissolved in DMSO before dilution into MHB for use in MIC determinations. The
inoculum (125 puL) was added to all wells and the microtitre plate was incubated at 37

°C for 18 h. For MIC determination, 20 uL of a 5 mg/mL methanolic solution of 3-
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[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT; Sigma) was
added to each of the wells and incubated for 20 min. Bacterial growth was indicated
by a color change from yellow to dark blue. The MIC was recorded as the lowest
concentration at which no growth was observed.

8. Determination of cytotoxic

Three cell lines wer ing two human cancer cell lines,
breast (MCF7) and lu “lung fibroblast lines, WI-38
(Gunaratnam et al., 2 _ | mellslwells) into the wells
of 96-well plates in s mod agle medium) and incubated
overnight as bef : cells were exposed to

freshly-made soluti ; trations of 0, 0.1, 1, 5

and 25 puM in quadr ours. Following this, the

cells were fixed i oa ’ | , w/v) for 30 min and
i \

stained with 0.4% '_m o aceti ] min. All incubations were

carried out at room te e (concentration required to inhibit cell
0 'the 5 a

growth by 50%) was de mlnedjﬁjcjﬁ:l’,‘ /1 nce at 540 nm for each

compound concentratio as a percentage of the absorbance of the control,

untreated well.

ﬂﬂﬂ’l'ﬂﬂ‘ﬂ‘ﬁﬂﬂ?ﬂ‘ﬁ
ammmmwnwmaﬂ



CHAPTER IV
RESULTS AND DISSCUSSION

Phytochemical investigations of Derris. malaccensis roots, Carissa carandas
stems and Carissa spinarum stems led to the solation of twenty-two pure compounds.
The structures of all of the isolates weresdetermined based on their UV, IR,
MS and NMR data and further confirmed by comparison with literature values. In
addition, the DPPH Tradical” scavenging, anti-HSV/, antibacterial and cytotoxic

activities of the isolated compounds were evaluated.

1. Structure determination of isolated compounds

1.1 Structure determination of compotind DM1
Compound DM1 was obtained as aryellowish powder. The UV spectrum
(Figure 7) displayed absorption bands at :'2_5.0,“253 and 290 nm. The IR spectrum
(Figure 8) suggested acetoxy (1737 1221, 1@88', and 1046 cm™) and aromatic (1602
and 1514 cm™) groups (Lin, Chen; and Kud,":igg?)). Maoreover, it showed an [M+Na]"
ion peak at m/z 419.11 in the"ESE.mass spectr;-lgri'j(l::igure 9), suggesting the molecular
formula Cz,H2007. £ _ :
The *H_NMR spectrum (Figure 10 and Table 3) exiibited signals for two
methoxy groupsat & 3.82 (6H, ), an acetyl group at & 1.72 (3H,7s) and four aromatic
protons as a paif” 0f doublets with ortho coupling (6 7.09 and 7.19 ppm) and two
singlets (6 6.67 and 6.42 ppm). It also exhibited the following signals due to aliphatic
protons on carbon atomssbearing oxygen atoms: 6 4.30 and 4.51 (H-6), 4.98 (H-6a),
and 6.41 (H-12) ppm. In addition, the characteristic signals of two benzofuranic
protons (@ 6.85 and 7.54 ppm) and a one-proton triplet (6 3.61, H-12a) were observed.
The structure of compound DM1 was further suppofiéd by the **C NMR'data (Figure
11 and Table 8)."Signals for the acetoxy appeared at & 170.0-and 21.0_.ppm.“The 'H
and *C NMR data of compound DM1 were in agreement with previously reported

values of 12-deoxo-12 a-acetoxyelliptone [14] (Lin et al., 1993; Thasana et al., 2001).
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From all of the above data, it was concluded that compound DM1 was 12-

deoxo-12 a-acetoxyelliptone [14]. It was first isolated from the roots of Derris
oblonga (Lin et al., 1993).

AULININTNEINS
AR TUNNINGAY
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Table 3 NMR spectral data of compound DM1 (CDCls) compared with 12-
deoxo-12 a-acetoxyelliptone (CDCls)

position Compound DM1 12-deoxo-12 a-acetoxyelliptone
1H 13C 1H 13C
(mult., J in Hz) (mult., Jin Hz)
1 6.67 (s) \“ ,l// 6.67 (s) 112.5
la Sk 109.0
2 144.0
3 149.0
4 101.0
4a 147.0
6 A 2,5.3) 64.5
6a By t-‘ 69.5
Moy
7a g R 149.5
8 | ,MEE' 1115
8 |
9 2% 157.0
10 @L 1 9 (d, 8.5) 105.5
11 7.09 (d, 8;9)7.%_ 126. 7.19 (d, 8.5) 127.0
L M
11a 7.194(dy 8.6} = = {18 - 117.5
12 -—f;—_—=§;==2?;;;;w 2] 67.0
12a s 37.0
4 361 (5. 6.85 (@ 4) 104.0
5’ 6. 35 (d, 1.8) 144, 1 7.55 (d, 2.4) 144.5
w Aok I et Ei”fﬂ Y o
CH3-CO (s 21.0
COOq'IYI 1.72 (s) 169.8 q.1"70.0
RAINATURII NN
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1.2 Structure determination of compound DM?2

Compound DM2 showed UV absorption maxima at 223, 240 and 280 nm
(Figure 13), and IR absorptions for chelated carbonyl (1679 cm™) and hydroxyl
groups (3453 cm™) (Figure 14) (Thasana et al., 2001). It has a molecular formula of
C20H1607, as indicated by the molecular ion peak at m/z 391.08 in the ESI mass
spectrum (Figure 15).

The *H NMR spectrum (Figure 16 and-Fable.4)showed four aromatic singlets
at 6 6.47 (H-4), 6.53 (H-1),.6:89 (H-4i) and 7.54 (H-5") ppm, two olefinic proton
signals at 6 7.15 (d, J =.8:7 Hz) (H-10) and 7.85 (d, J = 8.7 Hz) (H-11) ppm which
were reminiscent of 4,5.disubstituted berllzofuran ring, and two methoxy singlets at &
3.69 and 3.77 ppmsA pair of nonequivale_nt methylene proton signals at 6 4.70 (d, J =
12.2 Hz, H-6) and 4.53 (dy J = 12.2 Hz, H:B) ppm and a methine proton singlet at &
4.72 ppm (H-6a) are similar to an AB-C_S system of a O-CH»-CH-O segment. In
agreement with the/latter assignment, 13¢ NMR data of compound DM2 showed
methylene and mething carbon resonanceg'.gt C-6 (0 63.8 ppm) and C-6a (& 76.7
ppm), respectively. The *H NMR spectium bja-_c_pmpound DM2 is similar to compound
DML1, 12-deoxo-12 a-acetoxyeliptone [14], e?,(cég,t,for the absence of proton signals at
H-12 and H-12a. The structure of compoun@MZ was further supported by the *C
NMR spectrum (Figure 17 aid Table 4) which showed a quaternary oxygenated
carbon of C-12a.at 6 67.7 ppm.

Through«Comparison of the above spectroscopic data-with reported values
(Thasana et al., 2001), compound DM2 was identified as 12a-hydroxyelliptone [58],

which was first isdlated from the stems of Derris malaccensis.




Table 4 NMR spectral data of compound DM2 (CDCl3) compared with 12a-

hydroxyelliptone (CDClI5)
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position Compound DM2 12a-hydroxyelliptone
lH 13C 1H 13C
(mult., J in Hz) (mult., Jin Hz)
1 6.53(s) 6.56 (S) 109.4
la 108.7
2 144.0
3 151.2
4 101.2
4a 148.4
6 2.3) 64.0
6a 76.8
7a 156.0
8 112.0
9 160.7
10 dd, 8.6, 1.1) 107.1
11 7.57 (d, 8.6) 124.0
1la 117.5
12 —, 192.1
12a g 67.9
4 6.9 (dd,@, 1.1) 104.8
5 7 54 (s) 145.1 7.56 (d, 2.3) 145.0
o) 67 Sg 56.4/56.0
o] Y 850 9 &WZI WERIZEN Q) soaseo
OH- 12’ 4 53 (s)

’QW’W&Nﬂ‘iﬂJ TANINGTA Y
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1.3 Structure determination of compound DM3

Compound DM3 was obtained as a yellowish powder. It showed UV
absorptions at 236, 250, 272 and 300 nm (Figure 19), and IR absorptions at 1674 and
3449 cm™ (Figure 20), representing a chelated carbonyl and a hydroxyl group,
respectively (Thasana et al., 2001). A
from its [M+Na]" ion at m/z 433.3 7

lecular formula of Cy3H2,07; was deduced
4 ass spectrum (Figure 21).

The *H NMR spectrt ' Figure 2 5) showed two aromatic singlets
at 6 6.46 (H-4) and 6.54
6.44 (d, J = 8.7 w
signals at ¢ 3.69 an 3
characterized by tw
Hz, H-5') ppm fo

aromatic proton signals at 6
-11) ppm, and two methoxy
thy chromene system is well

1.42 ppm (Andrei eg@l., 2997). Furthermo data of compound DM3
(Figure 23 and ] 12a-hydroxyrotenoid
skeleton similar to_gompe M2! s indi firc quaternary sp® carbon at &
67.4 ppm (C-12a). G

The *H and * re in excellent agreement

with previously reported v yengi et al., 1994).

LA
ﬂﬂﬂ’)'ﬂﬂﬂﬁﬁﬂ?ﬂ‘i
amaﬂmmwnwmaa



Table 5 NMR spectral data of compound DM3 (CDCl3z) compared with
tephrosin (CDCls)

position Compound DM3 Tephrosin
lH 13C 1H 13C
(mult., J in Hz) (mult., Jin Hz)

1 6.54 (s) 6.56 (s) 109.3
la 104.0
2 144.0
3 151.9
4 101.0
4a 148.2
6 63.8
6a 76.2
7a 156.3
8 104.3
9 161.5
10 111.9
11 128.8
1l1a 112.4
12 190.1
12a 67.5
4' 1154
5 54 .L'j ).8) 1285
6 77. 9 8.0
Me- 28.3/28.5
ﬂu EI:J ﬂ ( Mﬁ gkﬁﬂ ‘j 55.8/56.3

’QW’mﬁﬂ‘iﬂJ UAIINYIAY
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1.4 Structure determination of compound DM4

Compound DM4 possesses the molecular formula CH140s, as indicated from
its [M+Na]" ion at m/z 373.0701 (CH1406Na, calcd. 373.0683) in the HRESI mass
spectrum. It showed UV absorption maxima at 223, 270 and 310 nm (Figure 25). IR
bands for C=0 and C=C functionalities were observed at 1634 and 1450 cm™,
respectively (Figure 26).

The *H NMR spectrum of compound DM4«(Figure 28 and Table 6) is similar
to that of compound DMZ2, 12a-hydroxyellipione [58}-except for the absence of the
proton signal for H-6a. This was suppoFted by-the *C NMR (Figure 29 and Table 6)
and DEPT spectra (Figure*30)swhich represented quaternary carbons at 6 156.1 and
112.5 ppm for C-6a and C+12a, respelctively. It was also confirmed by HMBC
correlations (Figuies 33 and Table 6) of H-6 signal at 6 5.08 (s) to those of C-12a, C-
4a and C-6a. In addition, the NOESY correlgtion (Figure 34) between H-4 and OMe-3
and between H-1and OMe-2 indicated th-_é methoxy signals at 6 3.85 and 3.95 ppm
for OMe-3 and OMe-2, respectively:. /i |

Therefore, compound--DM4  was identified as dehydroelliptone [176].
Although compound ' DM4 was earkier synipggized (Fukami, Sakata, and Nakajima,
1965) and reportedly detected. in Derris ellip;i,cé!(Zeng et al., 2002), its isolation and
NMR properties were not knowh. This stud;ﬂ?tk;e first report of its isolation from a
natural source. Moreover, ‘H-and *C NMR ég's'i'g'rfrhénts have heen obtained for [176]
for the first time through interpretation of the NOESY and HMBC spectra.

[176]



Table 6 NMR spectra data of compound DM4 (CDCls)

position Compound DM4 HMBC
H Bc (correlation with 'H)

(mult., J in Hz)

1 8.45 (s)

o : -1* and H-4

) NS ‘,-' H-4 and OMe-2
"H-1, H-4* and OMe-3
4 -

4a
6
6a
7a
. 7 Vi PN and H-5
9
10
11
11a
12
12a

4[ - v:‘-.ﬂ—-l\__'nm.lﬁ m——

.y,.‘

1% and H-6

5 . d, 2.(
OMe-2 AI: ()
OMe-3 3.85 (5),
r.-*.:._. £ | 0 ’ '] ‘ ‘T Y ’

55.9 'YE

ARIAINTUNIINGINY




97
1.5 Structure determination of compound DM5

Compound DM5 was obtained as a yellow amorphous solid. It had the
molecular formula C,0H;,07, as indicated from its [M+H]" ion at m/z 365.0654 (calcd
for CyoH1307, 365.0656) in the HRESI mass spectrum. In the EIMS, two prominent
ions, [M]" and [M-CHs]", were found at m/z 364 (100%) and 349 (18%). UV
absorption maxima at 226, 280 and 290 nm (Figure 35) were indicative of a
dehydrorotenoid skeleton, whereas IR bands fer adactone carbonyl and a conjugated
ketone were observed at-4739 and 1645 cm™, respeciively (Figure 36).

The *H NMR spectrum of compéund DMS5 (Figure 38 and Table 7) resembled
that of compound DM4, showing signals for two methoxy groups at & 4.01 and 4.08,
and six aromatic-and olgfinic/protons atIS 9.06 (s, H-1), 8.28 (d, J = 8.9 Hz, H-11),
7.84 (d, J=1.4 Hz,H-5),.7.68 (d, J=8.9 Hz, H-10), 7.40 (d, J=1.4 Hz, H-4") and 6.96
(s, H-4). However, it was noted that in';'i:ompound DMS5 each of these protons
appeared at a more downfield position tha'ﬁ their corresponding protons in compound
DM4, and no signals for the C-6 methylé_ne protons were observed for compound
DM5. Comparison of the  melecular fofrh,ula_— of compound DM5 with that of
compound DM4 indicated that compound D_M_5 had one more oxygen atom, but two
hydrogen atoms less than compeund DMA4. -_'_Fhé§§ data suggested the presence of a
carbonyl functionality for compaund DMS5, Wh:i(;h could be placed only at C-6. In
support of this, H-1 of compound DM5 Wés'-.’fbuﬁd'to resonate at a very downfield
position (3 9.062ppm), similar to that of 6-oxo-6a,12a-deftydrodeguelin, a 6-keto
dehydrorotenoid.previously isolated from Lonchocarpus utilis-and L. urucu (Fang and
Casida, 1999). The proposed structure of compound DM5 was further supported by
the signals of C-6 appearing as a lactone carbon at 6 156.0 ppm and C-6a at a more
upfield position in the-**C .NMR. spectrum-at . ,142.2 ,ppm. The remaining carbon
signals were| similar torthose of compound DMA4. (In! addition, the 'H-'H COSY,
HMQC and HMBC correlations (Figures 41-44) were consistent with the proposed
structure:

Thus, ;compound DM5!is & new. compound, and has been given the name 6-

oxo-dehydroelliptone [177].



Table 7 NMR spectr

position

- HMBC
rrelation with *H)

H5’

T B

7.68(d, 8.9) .

11 8.28 (d, 8.9 1222,
2

i?F:I‘UEI’JVIEJTIﬂNLEHﬂ‘i

WININD mnmwmaa

OMe-2 4.08 (s) 56.4
OMe-3 4.01 (s) 55.3

*Two-bond coupling
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1.6 Structure determination of compound DM6

Compound DM6 was obtained as a yellowish powder. The UV spectrum
showed absorption maxima at 240, 271, 320 nm (Figure 45). The IR spectrum
exhibited absorption bands at 1673 cm™ for C=O and 1442 cm™ for C=C
functionalities (Figure 46). The ESI mass spectrum (Figure 50) exhibited the [M+H]"
ion peak at m/z 395.16, corresponding to Co3H 20s.

The *H NMR spectrum (Figure 48 and.Table 8) showed two aromatic singlets
at 6 6.77 (H-1) and 6.43.(H-4) ppm, two aromati€ proten doublets at 6 6.43 (d, J = 8.7
Hz, H-10) and 7.73 (d, J = 8.7 Hz, H-113 ppm,-and two methoxy signals at & 3.75 and
3.79 ppm. In addition, the.presence of 2,2-dimethylpyrano was evident from 'H NMR
by two doublets at's 6.63%(d,J = 10.2 le, H-4") and 5.54 (d, J = 10.2 Hz, H-5") ppm
and two methyl singlets at 6 1.37 and 1.43 ppm. The chemieal shift value for H-1 at &
6.77 ppm showed the'Cis-B/C ring junctien""(s 6.4-6.8 ppm) for rotenoids (Yenesew,
Midiwo, and Waterman, 1998). The 13CTNI\J/I_R (Figure 49) and DEPT (Figure 50)
spectra displayed 23:carbon signals; corres'pohding to one carbonyl, nine quarternary,
six sp? methines, two sp® methines, one spg't_nethylene, two methoxy and two methyl
carbons. These *H and *C NMR data Wwere in good agreement with those reported for
deguelin [23], as shown in Table 8 (Andrei €t al., 1997). Deguelin [23] has been
considered as a chemopreventive agent fOT;‘te;ﬁy stage lung carcinogenesis in a

clinical lung cancer chemoprevention trial (L'e".é'ét-;a[l.; 2005).




Table 8 NMR spectral data of compound DM6 (CDCl3z) compared with
deguelin (CDCls)
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position Compound DM6 Deguelin
1H 13C 1H 13C
(mult., Jin Hz) (mult., Jin Hz)
1 6.77 (s) 6.72 (s) 110.7°
la ) 105.0
2 144.1
3 149.8
4 101.2
4a 147.7
6 ,3.2) 66.5
6a 72.7
7a 158.0
8 109.4
9 160.3
10 6.43 (dy 8.7 :ﬂ' e 111.7%
11 7.73 (d, 8. 7) : 7.67 (d, 8.8) 128.8°
11a ' 113.0
12 189.4
12a 44.7
4 116.0
5’ 5.54 (d 10.2) 128. 7b 5.48 (d, 10.0) 128.9°
77.9
Y,H‘IJEJ,Ilmlmwmﬂ‘i |
OMe-2 3.75/3.79 () (2821285 | 370/373() 'Y
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1.7 Structure determination of compound DM7
Compound DM7 was obtained as a yellow amorphous solid. The UV spectrum
(Figure 51) showed absorption bands at 237 and 280 nm. The IR spectrum (Figure 52)
exhibited C=0 stretching at 1676 cm™ and C=C stretching at 1465 cm™. The ESI
mass spectrum (Figure 53) displayed [M+H]" at m/z 353.11, suggesting the

1)

similar to those of compound DN\ | ) 79], except the presence of
two methines at & 5.06 (dd, J =4.2, 3. .70 (d, J = 4.2 Hz, H-12a)

molecular formula CooH160s.

able 9) of compound DM7 are

The chemical shift valug f L ‘ppm showed the eis-B/C ring junctions (8

6.4-6.8 ppm) for rg@ R and DEPT (Figure
56) spectra exhibitec yl, eight quarternary, six
sp® methines, tu no methoxy carbons
Compound DM7 w parison of it NMR data with
previously reported v Whiting, 1975; Birch,

AL INYRINYIN
RN TUNRINYINY
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Table 9 NMR spectral data of compound DM7 (CDCl3z) compared with
elliptone (CDCl5)

position Compound DM7 Elliptone
1H 13C 1H 13C
(mult., Jin Hz) (mult., Jin Hz)
1 6.75 (brs) R \i 6.77 (brs) 109.1
la - "‘“-J‘S 1048 103.0
2 : - 141.7
3 147.4
4 99.6
4a 145.2
6 65.1
3.1)
6a 71.8
7a 157.6
8 ; =’ 111.7
9 - 2k ) - 159.0
10 7.13 (dd, 8.8 0:9).7|.. 106 7.16 (dd, 8.8, 0.9) 104.9
11 7.88(d, 8.8 7.90 (d, 8.8) 121.9
11a gt 115.0
12 186.6
12a 44.0
& 91 (dd, 21,6 .4(d' 3,0.9) 103.0
5’ 754 , 2.1) | 7.57 (d, 2.1) 142.5
OMe 20 | @ 41377+ ) ¢ Q) fﬁ?ﬁ)i 54.9/55.5

[ "

0 L

ARIAINTUNIINGINY
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1.8 Structure determination of compound CC1

Compound CCL1 was obtained as a yellow amorphous solid. The UV spectrum
(Figure 57) showed absorption maxima at 225 and 279 nm. The IR spectrum (Figure
58) exhibited absorption bands at 1612 cm™ (C=C) and 3368 cm™ (hydroxyl). It has a
molecular formula of CagH3s023 as determined by [M+Na]* ion at m/z 605.9 in the
ESI mass spectrum (Figure 59).

The *H NMR spectrum (Figure 61; Table 20) revealed three aromatic protons
at 6 6.37 (2H, s, H-2' and H-6") and 6.51 (1H,s, H-4)sppm, four methoxy groups at 6
3.28 (3H), 3.68 (6H) and 3.78(3H) ppn; and an-anomeric proton of a sugar moiety at
§ 4.23 ppm. The C NMR (Figure 62; Table 10) and DEPT spectra (Figure 63)
showed twenty eight cagponsneluding elighteen carbons for basic structure of lignan
with four methoxy.@roups (o 3.28, 3.68 al_'ld 3.78 ppm) and six carbons of glucose at 6
62.8, 71.6, 75.1, 7749, 78.2 jand 104.7 ppm The coupling constant (7.5 Hz) for
anomeric proton.at o 4.23 ppmindicaied a-;ﬂ configuration of glucose. The location of
the glucosidic linkage at C7a was confirme’q by HMBC correlation from C-7a to H-1"
(Figure 68). In addition, the assignments of OMe-1 and OMe-3 were confirmed by
HMBC correlations from OMe-1 to C-1 and | from OMe-3 to C-3. The ROESY cross-
peaks (Figure 69) observed- for. H-6, H-7 i:_;i)nd H-8, indicated their relative
configurations as cis-form. Furthermore, thé__%bs-olute configuration (6R,7S,8S) was
established by the comparison of its GD déié-;ﬂ:;igme 60) with. previously reported
values (Sakakibara, Ina, and Yasue, 1974 Ohasht et al_~1994).

Based on'the above spectroscopic evidence, compound*CC1 was determined
as (6R,7S,85)-7a-[(/-glucopyranosyl)oxy]lyoniresinol [178] (Yang, Chang, and Wu,
2005).

[178]



Table 10 NMR spectral data of compound CC1 (MeOH-d;) compared with
(6R,7S,8S)-7a-[(#-glucopyranosyl)oxy]lyoniresinol (MeOH-ds)
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position Compound CC1 (6R,7S,8S)-7a- HMBC
[(5 (correlation with 'H)
glucopyranosyl)
\ ~ | oxy]lyoniresinol
H 7 :.""'-i ! /f : C
(mult, JinHz) .
1 — OMe-1
2 H-4
3 148 OMe-3
4 /.9 -5
5 2.62 (d ﬁ H-4 and H-6a
6 5 (m \ K; | H-5* and H-8
6a 3.50 (d6.0) H-5
7 3( | H-5and H-8*
Ta 3.39 (dd, 9.6, 3 H-8 and H-1"
3g8mf \
8 4.36 (d, 6.3 H-2' and H-6’
9 i H-4, H-5 and H-8*
10 H-5* and H-8
1 H-8*
2' H-8
3 1 2% and OMe-3'
& [ H2 and H-6'
5 F' -6"* and OMe-5'
6’ 106.9 106.9 n|lu -8
1" 4.23 (* 7.5) 104.7 104.8 H-2""*
2" 9 e u 5 '*
] Uod 1 8R4 D V) 1612
4 4 3.24 (m) 71.6 71.7 -3/
" 321 (m €4 779 P
WA $e IR = NEA S
3.76 (M)
OMe-1 3.28 (s) 60.2 60.2 -
OMe-3 3.78 (s) 56.6 56.6 -
OMe-3'/5' 3.68 () 56.9 56.8 -

*Two-bond coupling
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1.9 Structure determination of compound CC2

Compound CC2 was isolated as a yellow amorphous solid. The molecular
formula was determined as CogHsgO13 from [M+Na]* at m/z 605.2216 in the HRESI
mass spectrum. The UV (Figure 70) and mass (Figure 72) spectral data suggested that
it had a lignan structure similar to that of compound CC1, (6R,7S,8S)-7a-[(#
glucopyranosyl)oxy]lyoniresinol [178].

The *H and *C NMR data of compound.@€C2 (Figures 73 and 74; Table 11)
closely resembled those-ei compound CC1,“indieating that compound CC2 also
contained the lyoniresinol aglyeone conrnected to-a glucose moiety through the C-7a
to C-1" ether linkage. Nevertheless, several NMR spectral differences between these
two compounds were neticed. Fhe resonances for H-8 at 6 4.19 (d, J=6.3 Hz) ppm
and H-1" at 6 4.09°(d, J=7.9 Hz) ppm of c_ompound CC2 appeared at more upfield
positions than their gounterparts in compm]nd CC1, at 6 4.36 and 4.23 ppm (Table
10), respectively: Additionally, in the C NMR spectrum of compound CC2 for C-7a
(6 72.0 ppm) was found to absorb at a ﬁigher frequency than C-4" (& 71.5 ppm)
whereas the reverse was ftrue for compo&nd-tCCl. Despite the above-mentioned
spectral differences, compound CC1 and CC2 could not be distinguished by 2D-NMR
analysis as both showed similar patterns of HMBC correlations (Figures 78-79).
Moreover, the ROESY cross peaks (FiguréTfSO) obtained for H-6, H-7, and H-8
indicated that the relative configurations at 'C:-’G,_- C-?, and C-8.of both compounds
were identical Fhe *H and **C NMR assignments.of compound CC2 were obtained
by analysis of *M-*H COSY (Figure 76), HMQC (Figure 77)-and HMBC (Figures 78-
79) spectra.

However, compounds CC1 and CC2 were found to have opposite signs of
optical ffotation |([&]Z =%46/9° for compound ©CL Vs.| +22.7¢ for'compound CC2),

suggesting. the “enantiomeric nature for their aglycones. Conclusive evidence came
from the circular dichroism (CD) studies. It is known-that for this class ofilignans and
their glucasides, the sign of the'couplets at 287 and 273 am reflects the erientation of
the aryl substituent at C-8 (Sakakibara, Ina, and Yasue, 1974; Ohashi et al., 1994). In
this study, compound CC2 showed positive and negative peaks at 286 and 274 nm,
respectively (Figure 63), indicating the (6S,7R,8R)-absolute configuration.
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Hence, compound CC2 was elucidated as a new lignan glucoside,

(6S,7R,8R)-7a-[(/-glucopyranosyl)-oxy]lyoniresinol [179]. It is interesting to note
that compounds CC1 and CC2 are diastereomeric glucosides with enantiomeric

aglycones.

A
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Table 11 NMR spectral data of compound CC2 (MeOH-d,)

position Compound CC2 HMBC
H ¢ (correlation with *H)
(mult., J in Hz)

1 - 1475 OMe-1

2 - 3 8 H-4

3 - OMe-3

4 6.53 (s HES

5 2.63 (A1 7E and H-6a

6 6 H-5*, H-6a%and H-8

6a | H-5

7

7a

8

9 d H-8*

10

1

o

3 2'* and OMe -3’

4' doe’

5 6'* and OMe-5'

6’ 6

1 L9409(d,75) | 1042 | .o —So s

2 \7 X

3" |I 3.2 I

4" +3.27 (m) 715 H-37

5" ﬁzﬂ 8.5 4 H-6"*

6" :

AIUEEINBFINEINT
OMe-ﬂl 3.29 (s) ¢ 60.1 -
3 Sl S) g : o s u'

ke B BB U LRI VB & B

Two-bond coupling
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1.10 Structure determination of compound CC3

Compound CC3 was obtained as a yellow amorphous solid. The quasi-
molecular ion [M+H]" at m/z 413.2177 in the HRESI mass spectrum indicated a
molecular formula of C;1H3,0s, and the IR absorptions (Figure 82) at 3368 and 1650
cm™ suggested the presence of OH groups and a conjugated C=O functionality,
respectively.

The **C NMR (Figure 85 and Table’12) and DEPT (Figure 86) spectra
revealed the presence of.a glucose moiety, as-indicated by the resonances at 6 100.1
(C-1), 73.6 (C-2"), 77.4 and 7.0 (C-3')7and C-5%), 70.0 (C-4'), and 61.2 (C-6'). This,
together with the molecular formula, suggested that ecompound CC3 was a glucosidic
sesquiterpene. For the aglyceng part, the carbon signals observed for four methyl
groups at 3 9.7 (C#15), 222 (C-14), and 25.4 and 26.7 (C-12 and C-13), two olefinic
carbons at 6 127.4 (G=4) and 159.3 (C-5)7 a'r-i.d a keto-carbonyl group at 6 189.1 (C-3)
were reminiscent’of carissone (11-hydroiyeqdesma-4-en-3-one), an eudesmane-type
sesquiterpene previgusly dsolated from thi's plant (Singh and Rastogi, 1972) and C.
edulis (Achenbach, Waibel; and Addae-Mensah, 1985). This was also supported by
'H NMR signals (Figurre 84 and Fable 12) for. methy! groups at 5 1.83 (Me-15), 1.37
(Me-14), and 1.17 and 148 (Me-12 ar_1§_-i'-l\_4|_e_3-13), which correlated to their
corresponding carbons in the HMQC spectrum’(FfQure 88). However, compound CC3
differed significantly from CariSsone-in that ité-:C;-i'and C-2 resonated at much higher
frequencies, appgaring as an olefinic C-O and a C-H carbon signal at 56 180.3 and
103.3 ppm, respéectively. Their assignments were based on the' HMBC correlations
from Me-14 to C-1, and from H-2 to C-4 (Figures 89-91). This was also in agreement
with the y-effect observed for C-9 (4.5 ppm) in this compound as compared with its
counterpart in carissone-(Maatoog et als 1996)s The glucese unit should be attached
to C-1 of theaglycone, as evidenced by the three-bond coupling between H-1" and C-
1. The appearance of the anomeric_proton (H-1") (in DMSO-ds) as a doublet (J = 6.9
Hz) at & 4.72 ppm.indicated a’/~canfiguration.” The'rélative configuration at.C-7 and
C-10 'was'then determined-from the*"NOESY spectrum ‘(Figure 92), which-showed
cross peaks for the following pairs of H-atoms: H-7/H-8, H-7/H-9, H-8/H-9, H-6/Me-
14, and H-6/Me-15.

Based on the above spectroscopic data, compound CC3 was established as a

novel compound, 11-hydroxyeudesma-1,4-dien-3-on-1-yl f-glucoside and given the



trivial name carandoside [180].

Table 12 NMR spectra

data of compound CC3(N

HENSN

SN
AR

-d4 and DMSO-de)
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HMBC

(correlation with *H)

71.9

H-1"and H-14

H-15
H-2, H-6 and H-15*
H-14 and H-15

H-6* and H-9
H-6

il
433 | H2andH-6

N9

QY

70.0
77.0/77.4

position ﬂ}u
L
(mult., 12) '
in DMSO I
1
2
3
4
5 y
6 1.97 (brd, 12.9
2.84 (brd, 12.0
7
8 :
9 [ ]
2.16 12.6
10 E
. o N
12/1 1.40 4 / .
Pl Theh d VI LT W
15 177 (s) 1.83 (s) 9.7
1| 472,69 | ‘?) |
) 64 S udgonn
3" 33 (m) 32 (m)
& 3.35 (m) 3.32 (m)
5 3.35 (m) 3.32 (m)
6 3.70 (m) 3.73 (m)

61.2

3’ and 4'*

*Two-bond coupling
#) Hidden under solvent signal
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1.11 Structure determination of compound CC4

Compound CC4 was obtained as a yellow amorphous solid. It showed
UV absorption maxima at 280 and 300 nm (Figure 93), and IR absorption bands
(Figure 94) at 3359 and 1658 cm™ were attributable to hydroxyl and carbonyl group,
respectively. It exhibited an [M+Na]" peak at m/z 399.9 in the ESI mass spectrum
(Figure 95).

Compound CC4 appeared to be a mixiure.of two epimeric diarylbutanes with
hemiacetal structure. -By..comparison of ifs=*, G NMR and optical rotation
properties with previously reperted aata (Khamlach, Dhal and Brown, 1990),
compound CC4 was Identificd as (--)-carrisanol [167]. This compound was earlier
isolated from Carissa _edulis (Achenbalch, Waibel and Addae-Mensah, 1983), C.
carandas and C. spinarum (Raoetal., 2005). It has also been synthesized (Khamlach,
Dhal and Brown, 1990). .

The *H NMR spectulim of compoJ_r‘ld CC4 (Figure 96; Table 13) showed two
sets of proton signals, for example two rﬁfthine proton singlets at 6 5.15 and 4.92
ppm, each assignable to H-9’. The **C NMR spectrum (Figure 97; Table 13) revealed
forty carbons suggesting two lignan structi{g.gg. Each structure was composed of an
18-carbon skeleton with:a methoxy group. It a}sq@xhibited two sets of carbon signals,
for example, C-9 at 6 71.3 and 73.0 ppm and‘:é?f- at 6 40.1 and 43.8 ppm. The NMR
assignments were obtained for structures A‘and B by examination of *H-'H COSY
(Figure 99), HMQC (Figures 100-101) and HMBC specira«(Figures 102-104). In
addition, the relative configuration of H-9" of structure A was assigned as « from the
NOESY correlations from H-9" (6 5.15 ppm) to H-8 (6 2.29 ppm) (Figure 105).

Structure A Structure B
[167]
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Table 13 NMR spectral data of compounds CC4 (acetone-ds) compared with
(-)-carrisanol (acetone-ds)

positio Compound CS4 (-)-Carrisanol HMBC
n H B 1o 3¢ (correlation with
(mult., J in Hz) (mult., J in Hz) H)
1 - 1335 | H-7*
133.2
2 6.72 (m)? 113.0 | H-6 and H-7
6.81 (d,
3 OMe-3
4 H-6
5 6.7 -
6 6.59 (dd, 8 H-2 and H-7
6.65 (dd, 8.0,
7 251 H-6 and H-9
2.78 (m)*4
8 2.29 H-7* H-7', H-9*
2.60 ()" and H-9’
9 3.57 (t, 8.8 713 | H-7and H-9’
3.69 (m)*° 72.9
3.87 (t, 8.0)"
1 H-7"*
130.2
2 h;;m:::;;zf;;:;;:..—..z_;- E H-7
705(d.15° | )
3 B ﬁﬁ OMe-3'
147.8° 9
& 145.9° Qr 1459 | H-2'
1 3
AutdEminenng
115. 4" . a/
o WAL AT VIR TR'E
W7 2.78 (m)*® 438 2.63 (M) 401 | H-2’and H-9"
3.00 (d, 13.5)" 40.1° 43.9
8’ - 79.6% - 79.6 H-7, H-7"*, H-9
82.8" 82.8 | and H-9"*'
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Table 13 (continued)

position Compound CS4 (—)-Carrisanol HMBC

i B 1o 3C (correlation with
1
(mult., Jin Hz) (mult., Jin Hz) H)
o 5.15 (s)* 101.4% 5.15 (d, 3.9) 101.4 | H-7"and H-9
4.92 (s)° : 104.4
OMe-3 3.80° 56.2 |-

3.81°

OMe-3' 3.82°

OH-9'

*Two-bond couplings
*PNMR signal in structures
“YInterchangeable withis

*HMBC correlation 7
THMBC correlation only.in str
INMR signals of reference d

ﬂ‘IJEJ’J‘VIEWlﬁWEﬂﬂ‘i
ammﬂmumfmmaa
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1.12 Structure determination of compound CC5

Compound CC5 was obtained as a yellow amorphous solid. It showed UV
absorption maxima at 284 and 300 nm (Figure 106) and IR absorption peaks (Figure
107) at 3359 and 1658 cm™ attributable to hydroxyl and carbonyl groups,
respectively. Its molecular [M+Na]" ion at m/z 397.8 (Figure 108) was consistent with
the molecular formula C5oH2,07 '7

The 'H NMR s le 14) showed six aromatic
protons at 6 6.65 (d, J .9, 1.5Hz, H-6"),6.74 (d, J =
7.9 Hz, H-5), 6.75 (d, . 3 Hz, .76 (brs, H-2), and 6.81 (d, J = 1.5 Hz, H-2')
ppm. The *C NMR (Figu | able 14) and DEPT data (Figure 111) revealed
1.4 (C-7), 41.2 (C-7),

ernary carbinol carbon

carbonyl carbon
70.3 (C-9) ppm,

e [168] by analysis of
ith previously published data
). This compound was first

' 000
)

isolated from Trach e nba o

tal., 1983).

oot
AUEINYNINYINT
RN TUNRINYINY
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Table 14 NMR spectral data of compounds CC5 (acetone-ds) compared with

(-)-nortrachelogenin (*H in acetone-ds and *C in CDCls)

position Compound CC5 (-)-Nortrachelogenin
1H 13C 1H 13C
(mult., Jin Hz) ' (mult., J in Hz)
1 R, | £ . 130.2
2 6.76 ( | 79 (d, 2.0) 111.4
3 : 1475 4 ) _ 146.5
4 - 1454 1443
5 6.75 /154 . 8.0) 114.3
6 6.65 (dd, %8, 1258 % | 0, 2.0) 121.4
7 d ff 314 b 31.6
2 834, Y\ 86(m)°
8 ¥ OF i ST | 43.9
9 3.980(d, 28) & | 57 0,8.0) 70.1
3.98 (f7.8)0 4 pé /- d, 14.0, 8.0)
ik | .:Msz 126.0
2 6.81 (d .5):'__Ejfﬂ;g 83 (d, 2.0) 112.6
3 - ,;::-jé,, a - 145.0
4 : | ' \ 146.5
S , 114.5
6 6.67-dd, ,80,2.0) 123.1
7' 2:93 (d, 13.6) 41.2 2.95 (dﬁ.S) 421
3.131d,43.6) 3.15 (d, 13.5)
S'HNH’WIH‘FIQWMM
9’ 178.1 178.4
-Me 7 (s) 55.7° 379 (s v/
ﬁa 5l WA IR Y
Ar-OH 7.44 (brs) 7.44 (brs) -
Ar-OH’ - - 7.52 (brs) -
OH-8' 5.13 (brs) - 5.16 (brs) -

®Interchangeable within the same column

® Different signal superimposed
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1.13 Structure determination of compound CS1

Compound CS1 was obtained as a yellow amorphous solid. The ESI mass
spectrum (Figure 113) exhibited an [M+Na]® peak at m/z 215.5, suggesting the
molecular formula C1oHgO4. It had UV absorption maxima at 300 and 343 nm (Figure
112).

Hz, H-3), 6.68 (s, H-8); .01 (5, H-
NMR spectrum (W : Wbon signals due to one
carbonyl carbon at o 1 i efinic carbons including four quartenary

carbons at 6 111«

which were attacl func ion) an ( ne carbons at 6 104.3 (C-
8), 109.4 (C-5), 14¢ ethoxy group at & 56.7
(OMe-6) ppm. T ated this compound is
coumarin.

Compound CS in [181] by comparison of its *H and
BC NMR data wit and Cavaleiro, 1998). Its

HMBC correlation (Figure 1 _— ‘_“;o 3.88 ppm) to C-6 (5 148.5 ppm)
indicated that the attachmmfé?“"rpﬁl:ﬁm'xy up-at-C

AU INININYIN
QRIANTAUNRINSY



Table 15 NMR spectra data of compound CS1 (*H in MeOH-d,, *C in
MeOH-d, and CDCl3) as compared with scopoletin (CDClIs).

116

positio Compound CS1 Scopoletin HMBC
n H Bc Bc H Bc (correlation with *H)
(mult,, Jin | (MeOH- | (CDCl3) | (mult., Jin
Hz) dy) '
2 164.8 161.5 | H-3* and H-4
3 |6.10(d,9.3) 6 -
4 7.81(d, 9.3) H-5
5 H-4
6 OMe-6, H-8, H-5*
7 . H-5, H-8*
8 6.68 (s)
9 -5, H-8*
10 H-3, H-8
OMe-6 3.88(
OH-7 -

*Two-bond coupling

1.14 Structure determination-of compot
s A < 1y 13
Compound C 10wWed spectroscc H, -°C NMR, Mass, UV
it was identified as

and IR data) -«'_.f_;g::::.-...“’m_'*'"“"‘-""—'—* """"

@

(-)-nortrachelog

1.15 Structure etermlnatlon of compound CS3

: daﬂwﬁﬁm il 410V b

[167].
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1.16 Structure determination of compound CS4

Compound CS4 was obtained as a brown amorphous solid. The UV spectrum
(Figure 120) showed maximum absorption bands at 280 and 300 nm. Its ESI mass
spectrum (Figure 121) displayed a molecular ion [M+Na]® peak at m/z 401.6,
indicating its molecular formula as CooH2607.

The 'H (Figure 122 and Table 16) and ‘H-'H-COSY (Figure 125) spectra
indicated the presence of two sets of aromatie ABX proton systems. They were Six
aromatic protons observed.at § 6.65 (d, J = 8.0-Hz, H-5), 6.67 (dd, J = 8.0, 2.0 Hz, H-
6), 6.72 (d, J = 8.0 Hz, H-57),.6.77 (dd,j =8.0,2.0 Hz, H-6"), 6.80 (d, J = 1.5 Hz, H-
2) and 6.94 (d, J = 1.5 Hzy'H-2") ppm. The **C NMR (Figure 123 and Table 16) and
HMQC spectra (Figure 426)sshowed 20I carbons, analyzed for two methoxyls, four
methylenes, sevensmethines and seven quartenary carbons, and therefore suggested
that its structure consists of an 18-carbon ‘slgeleton of lignan with two methoxy group
substitutions. In addition, *H-"H COSY co?relgtions (Figure 125) from H-7 to H-8 and
H-8 to H-9 indicated the gonnection of C-7_",JC-8 and C-9. The carbon linkage between
C-8 and C-8' was confirmed by HMBC correlations (Figures 127-130) from C-8' to
H-7', H-9 and H-9’ and fram C-8 to-H-7, H‘-,"7;'*', H-9 and H-9'.

Compound CS4 was determined as (é)'ééaﬁinol [160], which was first isolated
from Carissa carandas (Pal et af:, 1975). Itsf—”s:pectral data were in good accordance
with literature values (Khamlach, Dhal and Browﬁ'1990)
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Table 16 NMR spectral data of compound CS4 (MeOH-d,) compared with

(-)-carinol (acetone-de)

ARIAINTDIUN

position Compound CS4 (-)-Carinol HMBC
H Bc H Bc (correlation with *H)
(mult., J in Hz) (mult., J in Hz)
1 - 134.0 | H-5and H-7*
2 6.80 (d, 1.5) 113.6 | H-6 and H-7
3 - 148.2 | H-2* and OMe-3
4 - H-2 and H-6
5 6.65(d, 8.0) | .
6 6.67 (dd, 8.0, 2.0 H-2 and H-7
7 2.54 (dd, 1855, H-2, H-6, H-8* and H-9
2.98 (dd, 13
8 1.6 ; H-7*, H-7', H-9* and
”1 H_gr
9 3.69 (d 3. 1 H-7
3.55(dd, 1 360
Iy 0 Ez; . H-5" and H-7"*
2’ 6.94 (d, ﬁ Jrall H-6' and H-7'
3 - erEts H-5" and OMe-3'
" i s = 1459 | H-2' and H-6'
5’ 6.72 (d, 8.0) 239 ﬁ:& j 1155 | -
6 6.77.(dd, 8.0, “1246 | 681 4.3 |.H-2" and H-7'
7 2293(s) 1418 | 293(s) 1415 | 42, H-6"and H-9'
g % A 4 2|7, H-9 and H-g
e 3.44311.3 H-7'
3.491(d, 11.3)
OMe-3 3.84 (§) o, 56.3 | -
ome-3 (L1 O 8823 !‘E] "F} "j’
*Two-bond Coupling)— T - - BN

o/

MINYIAY
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1.17 Structure determination of compound CS5

Compound CS5 was obtained as a yellow amorphous solid. The UV spectrum
(Figure 131) showed absorption maxima at 288 and 300 nm. The ESI mass spectrum
(Figure 132) exhibited the molecular ion at m/z 399.6, corresponding to the molecular
formula CyoH240-.

The *H NMR spectrum (Figure 133 and Table 17) showed six aromatic
protons at 6 6.18 (s, H-5"), 6.65 (s, H-2"), 6.66/(dd,"J = 8.0, 2.0 Hz, H-6), 6.78 (d, J =
1.5 Hz, H-2) and 6.78 (d;J = 8.0 Hz, H-5) ppm, thieesmethylene protons at 6 2.57 (d,
J = 16.4 Hz, H-7'), 3.22 (d,.d-=16.4 H;, H-77),:3.58 (2H, dd, J = 13.5, 4.3 Hz, H-9
and H-9'), 3.81 (m, H-99)"and:8.85 (m, H-9) ppm and two methine protons at 6 2.30
(m, H-8) and 4.05 (d, 1=11.6 Hz, H-7). The *C NMR (Figure 134 and Table 17) and
DEPT (Figure 138) spegtra indicated one quarternary at 6 74.1 ppm (C-8") and two
methylene carbons at'¢ 60.8 (C-9") and 691§'(C-9) ppm which were each connected to
an oxygen atom. Fromithe molecular forrf;ulag,; compound CS5 appeared to be similar
to compound CS4, (~)-carinal [160], exceﬁ;t_that this compound CS5 had two protons
less than compound C84. The *H-and “*C NMR data of compound CS5 were further
supported by *H-'H COSY (Figure 136) ahd. HMQC correlations (Figure 137). The
HMBC correlations from C:1’to-H:2", H-7 and H-7" were suggestive of a carbon
linkage between C-6" and C-7 (Figures 138-_@_}.'_Eu_rthermore, the assignments of C-
1 and C-1" were confirmed b;HMBC correlati-o;; from C-1 tg H-7 and C-1' to H-2',
H-7 and H-7". Itshiould be fioted that the **C NMIR data for C- (6 138.3 ppm) and C-
1" (8 133.5 ppmj were opposite to those of reference data [C-1\(6 133.7 ppm) and C-1
(6 138.4 ppm)] (Ghogomu-Tih et al., 1985).

Upon comparisen, of the spectral data and specific rotation value in the
literature (Ghogomu-Tih et al., 1985), the structure of compound CS5iwas determined
to be (+)=cycloolivil [182].
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Table 17 NMR spectral data of compound CS5 (acetone-ds) compared with

(+)-cycloolivil (MeOH-dy)

*Two-bond coupling.
angeable within the same column.

ab.CIntere

AMIAINTAUNIINY

position Compound CS5 (+)-cycloolivil HMBC
H Bc H Bc (correlation with 'H)
(mult., Jin Hz) (mult., J in Hz)
1 - 133.7 | H-7*
2 6.78 (d, 1.5) 1143 | H-7
3 - 149.2 | H-2*, H-5 and OMe-3
4 - H-2 and H-5*
5 6.78 (d, 8.0 .
6 6.66 (dd, 8.0, 2.0 ]
7 4.05 (dp11.6 H-1* H-1', H-2 and
H-9
8 H-7* and H-7’
9 3.58 (dd, -
1 H-2'*, H-7 and H-7'*
2 H-7
3 - H-5'
4 - H-2'
5 6.18 (s) ' 116.2 | -
6 6.77 (dd, 8.0, 2.0) 126.6 | H-5"* and H-7'
7 257 (d, 164) H-11*
g’ w A Ol ' -7"* and H-9"*
9 3.58 (dgaa 4. -
3.81(m)
OMe-3 3.77 G, -
w7l § b7 (o8 As
' ' v

o/

d
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1.16 Structure determination of compound CS6

Compound CS6 was obtained as a yellow amorphous solid. The UV spectrum
(Figure 141) exhibited absorption maxima at 283 and 296 nm. It showed a molecular
ion [M+Na]" peak at m/z 397.6 in the ESI mass spectrum (Figure 142), corresponding
to CoH207.

The '"H NMR spectrum (Figure 143 and Table 18) showed characteristic
signals for two ABX systems. The first systemwas comprised of signals at 6 6.80 (d,
J = 8.0 Hz, H-5), 6.90(dd, J = 8.0, 2.0 Hz, H-6" and-#08 (d, J = 2.0 Hz, H-2') ppm.
The other consisted of singals-at 4 6.78 Zd, J=8.3 Hz, H-5), 6.88 (dd, J = 8.3, 1.7 Hz,
H-6) and 7.06 (d, J = 1.Z.HZ, H2) ppm. The *C NMR (Figure 144 and Table 19) and
DEPT (Figure 145) specira also exhibiteoll six aromatic methine carbons at 6 111.1 (C-
2'), 112.4 (C-2), M52 (€-5) 1156 (C-5'), 120.1 (C-6') and 121.2 (C-6) ppm, two
oxygenated methylenes at & 71.9 (C-9‘).".and 75.9 (C-9) ppm, two oxygenated
methines at 6 86.8 (C-#") and 88.8 (C:7) me,and two methoxy groups at 6 56.3 ppm.
These proton and carbon assignments Wefg established by analysis of ‘*H-'H COSY
(Figure 146) and HMQC (Figure 147) speétra.*.The presence of tetrahydrofurofuran
ring was supported by HMBC cortelations (Figuyes 148-150) from C-7' to H-2', H-6/,
H-9" and H-9, and from C-7+t6-H<2, H-6 and H-9. Moreover, the assignments of C-3
and C-3' were confirmed by HMBC correlafi}?s from C-3 to H-5 and OMe-3 and C-
3'to H-5 and OMe-3 e

On the basis~of the-above spectral-analysis-and-comparison of NMR and
optical rotation data with literature values (Yeo et al., 2004), compound CS6 was

determined to be {+)-8-hydroxypinoresinol [183].
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2
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4
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5
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Table 18 NMR spectral data of compound CS6 (acetone-ds) compared with
(+)-8-hydroxypinoresinol (acetone-ds)

position Compound CS6 (+)8-hydroxypinoresinol HMBC
H Bc H BC | (correlation with *H)
(mult., Jin Hz) (mult., Jin Hz)
1 - ' 129.3 | H-5and H-7*
2 7.06 (d, 1.7) 112.3 | H-6 and H-7
3 - 147.9 | H-5 and OMe-3
4 - 146.9 | H-2 and H-6
5 6.78 (d, 8. .
6 6.88 (dd, 8.3, 1. H-2 and H-7
7 ' H-2, H-6, H-9 and
H-9’
8 - H-8'*, H-9* and H-9’
9 3.86 (¢ == H-7 and H-7"
1 ,.g;..rh_ H-5', H-7"* and H-8'
2 _‘E’:?' H-6' and H-7'
3 | LE:I;J ; H-5' and OMe-3'
4 - - 147.1 | H-2’ and H-6'
5 6.80 (d, 8.0 L 1155 | -
6 6.90 (dd, 8.0, 2.0) H-2' and H-7'
7 4,82 (d 78687 | 1 4 H-2', H-6', H-9 and
8 8, H-7"*, H-9 and H-9'*
(ddd, SE.B, 0 : ﬂ
S 3.73(dd,8.7,6.3) | 71.9 3.72(dd, 9.2, 6.2) 718 | H-7
4.45 (t8.7), 4.44 (dd, 9.2, 8.0)
OMe-
P VEED VERIVIEN I AN 3
*Two-bon ouplmg

’QW’W&Nﬂ‘iﬂJ UAIINYIAY
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1.17 Structure determination of compound CS7

Compound CS7 was a yellow amorphous solid. The UV spectrum displayed
abosorption bands at 285 and 298 nm (Figure 151). Its molecular ion [M+Na]" at m/z
399.6 in ESI mass spectrum (Figure 152) indicated the molecular formula CxoH2405.

The *H NMR spectrum (Figure 153 and Table 19) showed six aromatic

protons in two characteristic ABX Syste first system consisted of signals at &
6.77 (dd, J = 10, 1.2 Hz, \\I ' 6.87 (m, H-5'), and the other
system consisted of signai T % . d 7.01 (brs, H-2) ppm. The
presence of two oxygenated-me e %Qand 77.4 (C-9) ppm, a
: pM, one methine at & 59.2 (C-8) ppm, an oxygenated

\ nary carbon at 6 81.5 (C-8)

ppm was revealed M ure 154 3 able 19) and DEPT (Figure
155) data. Compoup s identified as ko) \ C “i\: comparison of the 'H,
C NMR spectra ical frotation with those previously published (Yeo et al.,

2004).

The 'H and *GINMR assighments of compound €S7 were confirmed by ‘H-
'H COSY (Figure 156), igure 157)a experiments (Figures 158-
160). :

ﬂumwﬂmwmm
Qﬁqﬂﬂﬂ‘im UAIINYIAY
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Table 19 NMR spectral data of compound CS7 (CDCl3) compared with (-)-

olivil (MeOH-d,)

position Compound CS7 (-)-olivil HMBC
H B¢ H B¢ (correlation with *H)
(mult., J in Hz) (mult., J in Hz)
1 - 136.2 | H-2*, H-5, H-6* and H-8
2 7.01 (brs) 112.4 | H-7
3 - 149.8 | OMe-3
4 - H-2 and OH-4*
5 OH-4
6 H-2 and H-7
7 H-8*, H-9 and H-9’
8 2.49 H-9*
9 3.83( | 3.69: -7 and H-8*
3.95 (¢ T —
1 : 1 -5’ and H-7"*
2 . ﬁ:... 8 H-6’ and H-7’
3 , Aoy OMe-3'
& & ..Lg'% i H-2', H-6' and OH-4'*
5 6.87 (m) ——6.68 OH-4'
6 | 6.77(dd, 10.0,1.2) %’?—‘ H-2' and H-7'
7 2.94 (d, 13.0) 414 | HO
A |

g e
o ]

OMe-3 3.88 (s) 56.1° -

OMe-3' 3.89 6*’4 56.2° 3.80.(8) 572 |-

A LEINENINEIND

OH-4" 60°(5)° : .

*Two-bond coupling.

qRTRnTad

¢

URIINYIAY
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1.18 Structure determination of compound CS8

Compound CS8 was obtained as a yellow amorphous solid. The UV spectrum
(Figure 161) exhibited absorption maxima at 280 and 301 nm. It showed a [M+Na]"
peak at m/z 385.6 in the ESI mass spectrum (Figure 162), suggesting the molecular
formula C5oH260s.

The *H NMR spectru

Table 20) revealed six aromatic
protons in two identical AB’ systems ¢ = 8.0, 1.6 Hz, H-6 and H-6"),
6.65 (d, J = 1.6 Hz, H ’
methylene protons at o 1 1 J = 13.6, 6.8 Hz, H-7 and H-
7)), 2.72 (dd, J = 13.6 T/ -7and 3. J = 4.2 Hz, H-9 and H-9")

z, H-5 and H-5") ppm, four

ppm and one methoxy.group & 3. [: e-3') ppm. The °C NMR

aen C-8 and C-8'.

(Figure 164 and. wed only ten carbon

signals, correspondi ae aromatic _hi es, tic quaternary carbons,

one oxygenated and one methoxyl.

Combining these g ould be a symmetrical

| 3
Compound vas identified as (=):secoisolariciresinol [170]. The *H and

3C NMR and optical ro tlo'qldaxé:df‘co '-‘J d €S8 agreed well with those reported
for (—)-secoisolariciresinol (W}gg )id .

ama\mmmmwmaa



126

Table 20 NMR spectral data of compound CS8 (MeOH-d,) as compared with

(-)-secoisolariciresinol (MeOH-d,)

position Compound CS8 (—)-Secoisolariciresinol
1H 13C 1H 13C
(mult., Jin Hz) (mult., J in Hz)
1 - - 133.9
2 6.65 (d, 1.6 4 (d, 1.9) 113.4
3 - 148.9 148.8
4 - 145.7 1455
5 6.71 115! [ 8.0) 115.8
6 6.60(dd, 80! 122.8 19) | 1227
7 | 2.61(dd, 136, 3\ 138,7.7) | 360
272 (ddf13. = 8,7.0)
8 964m) F I (42 6 44.1
9 3.64(t, e ) 62.1
1 / PRI - 133.9
2" 6.65(d, A ,1.9) 113.4
3 F E@za i 148.8
4 - *I:w - 145.5
5 7 i 115.8
6 ) 122.7
7 2.61+(dd, , 13.8, 7.7) 36.0
2.72dd, 13.6, 6.8) 2.61 (dd, 1338, 7.0)
g 1.96 (m) 423 0 1.86 (m) 44.1
AuBanpRINgNg =
OMe-3] | 3.79 (5) 56.3 3.68 (5) 56.2
Q‘% 79.(5) -y 368 ( 1562
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1.19 Structure determination of compound CS9

Compound CS9 was isolated as a yellow amorphous solid. The UV spectrum
(Figure 166) showed absorption at 284 and 303 nm. The ESI mass spectrum (Figure
167) showed an [M+Na]® ion at m/z 381.5, suggesting the molecular formula
Ca20H220e.

Although the molecular formula indicated 20 carbons for compound CS9,
there were only 10 carbon signals in the **C/NMR (Figure 169 and Table 21) and
DEPT (Figure 170) data, suggesting that eompound CS9 was symmetrical in
structure. Compound CS9 was identifieé as (+)-pinoresinol [175] by comparing its *H
and "*C NMR spectral datawith'reported values (Xie et al., 2003).

This compound eonsists of two phenylpropanoids. Each phenylpropanoid
exhibited three aromatic protens in 1,3,4|‘-trisubstituted benzene ring at 6 6.79 (d, J =
8.3 Hz, H-5 and H-5)/ 6.88 (dd,J'=8.3.2.0 Hz, H-6 and H-6") and 6.99 (d, J = 2.0
Hz, H-2 and H-2) ppm; a pairof oxygengteq_methylene proton signals at 6 3.81 (m,
H-0 and H-9') and 4.20 (dd,J = 9.0, 6.3 Hz, H-9 and H-9’) ppm, one oxygenated
methine proton at 6 4.67 (d, J =45 Hz, H-7 and H-7") ppm, one methine at 6 3.09
(dd, J = 6.3, 4.5 Hz, H-8 and H-8%) ppm a;wl'. one methoxy singlet at & 3.84 (OMe-3
and OMe-3') ppm in the *H'NMR spectrum (Figure 168 and Table 21). The proton
and carbon assignments were obtained by@ly_sis of 'H-'H COSY (Figure 171),
HMQC (Figure:172) and HMBC correlati;j.né-i-l':ig‘ures 173-174). The presence of
tetrahydrofurofufan-ring-was-supportea-ny-HiviBC-correlattons from C-7' to H-2', H-
6', H-9" and H-9, and from C-7 to H-2, H-6 and H-9. -
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Table 21 NMR spectral data of compound CS9 (acetone-ds) compared with

(+)-pinoresinol (MeOH-dy)

*Two-bond coupling. =" -

ARIAIN TN TNY

position Compound CS9 (+)-Pinoresinol HMBC
H Bc H Bc (correlation with 'H)
(mult., Jin Hz) (mult., J in Hz)
1 - 133.8 | H-5
2 6.99 (d, 2.0) 111.0 | H-6 and H-7
3 - H-5 and OMe-3
4 - H-2 and H-6
5 6.79 (d, 8. )
6 6.83 (dd, 8.3, 2. H-2 and H-7
7 4.67 (@ H-2, H-6 and H-9
8 3.09 (dd, 6 H-7%, H-7', H-9* and
' H-9'
9 3.81 H-7
4.20 (G
r | A3 : H-5'
2' ;1o.z-f -y H-6' and H-7"
3 - F ]ﬁ H-5" and OMe-3’
4 - 14¢ —— H-2’" and H-6'
5 6.79 (d, 8.3 1156 L 1161 | -
6 6.83 (dd, 8.3,2.0) | 1197 .| 120.1 | H-2' and H-7"
7 4,67 (d, 4 'ﬁ'f H-2', H-6" and H-9’
8 09 (dd, 6.3,45) | 553 | 3.12(m) 554 . H-7,H-7* H-9 and
(7 .
o ﬂm) 72@ H-7
4.20 ( 4.21 (dd, 8.9, 6.8)
OMe-3 384 = -
OMe- gl J .84 | i 6.4 ﬁ ﬁ
19

o/

d
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1.20 Structure determination of compound CS10

Compound CS10 was obtained as a yellow amorphous solid. The UV
spectrum (Figure 175) showed absorption peaks at 270 and 300 nm. The molecular
formula of compound CS10 was determined to be Ci5H240, from the [M+Na]" ion at
m/z 259.6 in the ESI mass spectrum (Figure 176).

The *H NMR spectrum (Figure 177 and Table 22) displayed resonances of
five methylenes at & 1.41 (m, H-7, H-8 and H-9), 1469 (m, H-8 and H-9), 1.87 (brt, J =
13.5 Hz, H-6), 2.35 (di;d = 17.0, 4.0 Hz, H-2);2.48 (m, H-2) and 2.83 (brd, J = 14.5
Hz, H-6) ppm, one methine at.o-1.41 (mf H-7,H-8 and H-9) ppm, and four methyls at
6 1.17 (H-14), 1.21 (H-12«0r H=13), 1.22 (H-12 or H-13) and 1.74 (H-15) ppm. The
13C NMR spectrum (Figuré 178 ancl Table 22) showed 15 carbon signals, which were
discriminated by DEPT specira/(Figure I‘179) into five quaternary carbons including
one carbonyl, five methylenes, one méth?ne, and four methyls. Three molecular
fragments of five" methylenes and one _Fnethine were assigned by 'H-'H COSY
correlation (Figure 480) from H-1+0 H-*2 H-6 to H-7 and from H-8 to H-9. Its
structure was also confirmed by HMQC (Flgure 181) and HMBC (Figures 182-183)
experiments. The substitugions of two methyl.-groups at C-4 and C-10 were suggested
by HMBC correlations from C 4 to H-6 and H 15 and from C-10 to H-6 and H-14,
respectively. — _

By analysis of above-spectroscopié:'fs't'[-xéies and comparison with reported
NMR data (Achepbach et al., 1985), compound CS10-was identified as carrisone
[162]. It is the }hain eudesmane-type sesquiterpene of Carissa edulis and has also
been found in C. Iénceolata, C. carandas and C. congesta. (Achenbach et al., 1985).
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Table 22 NMR spectral data of compound CS10 (CDClIs3) and carissone

(CDCly)
Posi- Compound CS10 Carissone HMBC
tion H Bc H BC | (correlation with *H)
(mult., J in Hz) (mult., J in Hz)
1 1.69 (m) 37.4 37.4 | H-2*and H-14
2 2.35 338 | -
(dt, 17.0,4.0) |+
n 2
16.0-17.0, 11.0
3 - X H-2* and H-15
4 - H-6 and H-15*
5 - H-6*, H-14 and H-15
6 1.87 (brty13.5) -
2.83 (brdj 14.5)
7 1.41 (m) H-6*, H-8%, H-9,
H-12 and H-13
8 1.41 (m) H-6 and H-9*
1.69 (m)
9 1.41 (m) 42.0 | H-8*and H-14
1.69 (m)
10 H-6 and H-14*
11 | H-6, H-12 and H-13*
12 I.:” H-13*
13 H-12*
14 22.6
15 1.74 (s) 11.0 1.79 (d, 1.0) -
254N eable '

terchan
*Two-b 0

*Not obseWIe ecause of overl

ithin tf
ling.

"Not reported.

AR1AIN TN

apping.

¢

NTNSNYINT
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1.21 Structure determination of compound CS11

Compound CS11 was obtained as a yellow amorphous solid. The UV
spectrum (Figure 184) showed maximal absorptions at 280 and 303 nm. The
molecular formula was determined as CzgHasOs (Figure 185) from its [M+Na]" peak
at m/z 557.7 in the ESI mass spectrum.

In the 'H NMR spectrum (Figure’ 186 and Table 23), the characteristic
methylene protons of H-21 appeared at 6 4.80/(d,Jd = 18.4 Hz) and 4.98 (d, J = 18.4
Hz) ppm, and the olefinic proton for a furan ring Weie observed at 6 5.87 (brs) ppm.
The *C NMR spectrum (Figure 188 gnd Table 23) and DEPT data (Figure 189)
which presented 30 carbens, inciuding an anomeric carbon of a sugar moiety at 6
101.4 ppm, indicated sthe spresence | of cardenolide glycoside structure. The
configuration of glycosidic linkage was alissigned to be S due to the value of coupling
constant (8.0 Hz) ofsthe anomeric protoﬁ J(.Table 23). The 'H NMR spectrum also
showed the H-17« signal at 6 2.80 pp% in pyridine-ds (Figure 187), suggesting
compound CS11 @ bhe a 17ﬂ~cardenol_"ige- (YYamauchi, Abe, and Wan, 1987).
Furthermore, the attaghment .of sugar unit'at; C-3 was assigned by the HMBC
correlation (Figure 192-194) between C-3‘,fimq, H-1". The configuration of the sugar
was confirmed by NOESY coirelations (Figufr«e',];;gl'_s).

Based on the above spectrat evidence and-by comparison of its *C NMR data
with previously publishedi‘\’lérlues (Cabrer.a: -'é;t";e_tlf, 1993), gempound CS11 was

identified as digitoxigenin-3-O-p-D-digitalopyranoside [184].




Table 23 NMR spectral data of compound CS11 (CDCls) and digitoxigenin 3-

O-4-D-digitalopyranoside (CDCls)

position Compound CS11 Digitoxigenin 3-O-4 HMBC
D-digitalopyranoside (correlation with *H)
lH 13C 13C
(mult., J in Hz)
1 1.76 (m) H-19
2 1.76 (m) -
3 4.04 (br H-1'
4 1.76 (m '
5 1.76 -3
6 1.76
7 1.76
8
9 1.76
10
11
12 -17 and H-18
13 - H-17* and H-18*
14 - H-17
15 1.76 (m) -
16 1.76 (m) -
17 2.77 (m)
18 _
19 T S S E— ——
20 ' ,H-21* and H-22*
21 4.809 18.4) 17 and H-22
4.98 (d, 18.4)
22 5 87 ( s)n. 117.9 1nv.o H-17 and H-21
2 fl e MBIV SN B N
v 8.0) 5
365(dd 8.0,10.2) 71(*' 708 3'*andH4
W RO HRITNYTRY
3.56 (d, 6.8) 70.6 70.6 H-6"*
6 1.35 (d, 6.4) 16.7 16.3 -
OMe-3' 3.52 (s) 57.7 56.6 H-3'

ab.¢ dnterchangeable within the same column.

*Two-bond coupling.
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1.22 Structure determination of compound CS12

Compound CS12 was obtained as a yellow amorphous solid. The UV
spectrum (Figure 197) showed maximal absorptions at 280 and 303 nm. The ESI mass

spectrum (Figure 198) showed the [M+Na]" ion at m/z 543.9, analyzed for CgH44Os.
The *H and **C NMR data (Figure 199 and 201; Table 24) of compound CS12
were similar to those of compound CS11, except for the absence of the methoxyl
group. From the molecular formula, compeund €812 had two hydrogen atoms and
one carbon less than compound CS11. The configuration at the glycosidic linkage was
assigned to be g due to the.eoupling Jconstant of the anomeric proton which was
observed to be 8 Hz in.GDCls The ‘*H NMR spectrum in pyridine-ds (Figure 200)
also showed the H-17 o signakal:6.2:81 ppm, suggesting compound CS12 to be a 174
cardenolide (Yamauchi et al.,-1987). The HMBC correlation (Figures 205-207)
between C-3 and H-1" indicaied that the sdéar was linked to the aglycone at C-3. In
conclusion, these data indigated that the a@lycone part of both compounds CS11 and
CS12 were identicaland they were differeﬁ; only in the sugar unit. The chemical shift
of C-3’ in compound CS12 (6.72.1 ppm) Wés lower than that in compound CS11 (&
83.0 ppm). s f

Compound CS12 was,identified as evomenoside [185]. All spectral analysis

data were comparable with those published in?ﬁe literature (Hyun et al., 1995).
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Table 24 NMR spectra data of compound CS12 (CDClI3) as compared with
evomonoside (pyridine-ds).

position Compound CS12 Evomonoside HMBC
H Bc H BC | (correlation with *H)
(mult., Jin Hz) (mult., Jin Hz)
1 1.90 (m) 30.2 | H-3and H-19
2 1.90 (m) 269 |-
3 4.06 (brs) 74.1 H-1'
4 1.90 (m) - 310 |-
5 1.90 (n H-3 and H-19
6 1.90 Tt — ) )
7 1.90 ™4 21 A\ -
8 1.90 (m : -
9 1.90 H-19
10 ' H-19*
11 1.9€ -
12 H-17 and H-18
13 H-17* and H-18*
14 H-18
15 1.90 ( -
16 1.90 (m) 27.3% | H-17*
17 2.77 (dd, 9.5, 5.5) H-18 and H-22
18 0.87 () -
19 . -
20 - i H-17*, H-21* and
s H-22*
21 4.80 (dtﬂ& 18.0 H-17 and H-22
4.98 (dd, 1.5, 18.5) 5.29 (dd, 1.5, 18.1)
22 5.87 (Q’ o | 1179 611.2/(brs) 117.7 | H-17 and H-21
23 u EJ ’J f-l jz w EI ’14f ? and H-22*
1 0) . H-2"* and H-5'
2' 3.67 (dd, 8.0, 3.5) 69.8, - 773
3
RN I | W]’J T8 Y
5’ 4.07 (d, 6.5) 70.1 70.1 H-6"*
6 1.25 (d, 6.5) 15.9 1.66 (d, 5.7) 18.7*° | H-5*

ab.¢ dnterchangeable within the same column.
*Not report.
*Two-bond coupling.
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2. Free Radical Scavenging Activity

In the TLC screening assay, the methanol extracts from the roots of Derris
malaccensis, from the stems of Carissa carandas and C. spinarum showed free
radical scavenging activity. Pure compounds isolated from D. malaccensis and C.
spinarum were initially tested at 100 ug/mL, whereas those from C. carandas were
first tested at 50 ug/mL. Compounds causing more than 50% inhibition were further
analyzed for their 1Cs values. Quercetin was.used as positive control. The results are

summarized in Table 25:

Table 25 Percentage of" free radical scavenging activity of pure compounds

isolated from'D. malaccensis, C. carandas and C. spinarum

Gompounds _ % Scavenging activity® | 1Cso (uM)
12-Deoxo-12 a-aceioxyelliptone [14] | 0.36 -
12a-Hydroxyelliptong [58] - 0.24" -
Tephrosin [64] 12.61° -
Dehydroelliptone [176] 4 4 473" -
6-Oxo-dehydroelliptone [177]  Jls 0.00° -
Deguelin [23] £ 5054 253.5
Elliptone [63] 1.82° -
(6R,7S,85)-7a=[( S glucopyranosyl) b
oxy]lyoniresingl-f78] 77.74° 21.48
(6S,7R,8R)-7a-[(4- glucopyranosyl)
oxy]lyoniresinol [179] 71.06° 42.96
Carandoside [180] 52.50° 116.50
(-) Cafissafol [167] 775 33.39
(-)-Nortrachelogefin [168] 86.25" 35.75
Scopoletin [181] 6.25° -
(2)-Carinol [160] 86/25" 20.24
(+)-Cycloolivil [182] 75.42° 33.21
(+)-8-Hydroxypinoresinol [183] 76.67° 69.50
(-)-Olivil [168] 84.17° 18.06
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Table 25 (continued)

Compounds % Scavenging activity® | 1Cso (uM)
(-)-Secoisolariciresinol [170] 72.92° 26.21
(+)-Pinoresinol [175] 75.83" 43.36
Carissone [162] 8.75" -
Digitoxigenin 3-O-4-D-digitalopyranoside 48.33" -
[184]

Evomonoside [185] 47.08" -
Quercetin 84.83° 4.6

%Compound with > 50%sinhibition were further analyzed for ICs, values.
®at 100 pg/mL
‘at 50 ug/mL

From Table 25; ong roteneid (degulelin [23]) and one sesquiterpene glucoside
(carandoside [183])showed weak free radi“cal scavenging activity whereas ten lignans
including ((6R,7S,8S)-7a-[(f-glucopyrariosyloxy]lyoniresinol [178], (6S,7R,8R)-7a-
[(~glucopyranosyl)oxy] Ayoniresinol [179]—,"’- earissanol [167], (-)-nortrachelogenin
[168], ()-carinol [160], (+)-tycloolivil [182], (+)-8-hydroxypinoresinol [183], (-)-
olivil [169], (-)-secoisolariciresinol [170] ands.(+)-pinoresinol [175]) showed
moderate activitys (<)-Olivil [169] exhibited the most potentactivity.

Base 0f the ICsy values of (—)-secoisolariciresinbl [170] and (-)-
nortrachelogenin T168], it seems that lignans with the butanédiol substructure is more
effective than the butyrolactone structure. Increasing the number of hydroxyl groups
might increase the saetivity, as seen "between (-)-carinol [160] and (-)-
secoisolariciresinol [170]. However, it/should be noted-that the nature of the hydroxyl
groups is far more important than the number of them. This is clearly observed in the
cases. of (+)-8-hydroxypinoresinol [183] and (+)-pinoresinol [175]. These results were

also supparted by previously published data (Eklund et ali; 2005).
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3. Anti-Herpes Simplex Activity

In this study, evaluations of anti-herpes simplex activity of pure compounds
and crude extracts were performed using the plaque reduction assay (Lipipun et al.,
2003; Chuanasa et al., 2008). At 25 pg/mL, the MeOH extract from the roots of D.
malaccensis showed 55% and 100% inhibition for HSV-1 and HSV-2, respectively, in
post-treatment assay. The MeOH extracts fram the stems of C. carandas and C.
spinarum at 12.5 pug/mL exhibited 100% .anhibition for both types of HSV in
inactivation-treatment assay. :

Pure compounds_from D. mala;;censis, C. carandas and C. spinarum were
tested for this anti-HS\/-actiwvity at the concentration of not more than 100 pg/mL.
Compounds exhibiting more£han 50% hibition, without cytotoxicity to vero cell at
100 pg/mL, weresftrtherevaluated for ICso values. Acyclovir was used as positive

control. The results afe summarized in Table 26.

Table 26 Anti-herpes simplex virus activity of pure compounds isolated from

D. malaccensis, C. carandas and €. spinarum.

: F

Compounds ~Anti-herpes simplex virus activity
~ (Cain pg/mL (uM)
Posl‘-t'rtlz'at'ﬁfn'ent—a Inactivation-treatment”
HSV-1 HSV-2 HSV-1 HSV-2

12-Deoxo-12 a-acetoxyelliptone [14] - - - -
12a-Hydroxyelliptone![58] = . - -

Tephrosin [64] 87.5(213.4) | 93.5(228.0) | 43.8 (106.8) | 68.8 (167.8)
Dehydroelliptone [176] - - - -
Elliptone [63] 62,5 (177.6)"| 62.5 (177.6) | 37.5(106.5) | 46.9 (133.2)

(6R,7S,85)-7a (B
glucopyranosyl)oxy]lyoniresinol [178] - - - -
(6S,7R,8R)-7a-[(#

glucopyranosyi)axy]lyoniresinol[179]
Carandoside [180] 1 L J =
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Table 26 (continued)

Compounds Anti-herpes simplex virus activity
ICsqin pug/mL (UM)
Post-treatment® Inactivation-treatment”
HSV-1 HSV-2 HSV-1 HSV-2

(-)-Carissanol [167]
(-)-Nortrachelogenin [168]
Scopoletin [181]

(-)-Carinol [160]
(+)-Cycloolivil [182]
(+)-8-Hydroxypinoresinol [183]
(-)-Olivil [169]

(+)-Pinoresinol [175]

Carissone [162]

Digitoxigenin 3-O-4-D=
digitalopyranoside j184]
Evomonoside [185] 3 : 62.5(120.2) | 87.5 (168.3)
Acyclovir 0.50'(2:2) - 0.63 (2.8) -

® Post-treatment assay: add sample after infected cell with Virus
®Inactivation-treatment assay: add sample With virus'
Not tested —

o

Among the compounds isolfated fron'j’D.r’ malaccensis roots, only tephrosin
[64] and elliptene [63] were active and showed moderate activity against both types
of HSV in pesi=_and inactivation-treatment_assays. Ethptoae {63] showed higher
activity against HSV-1 and HSV-2 than tephrosin [64] in both treatments, suggesting
that the presence of furan ring in rotenoid structure is more Important for the activity
than pyran ring.

The cardiac glycesiderevomonaside~[185] jsisolated~from, C=spinarum stems
displayed maoderate. activity. against both types of HSV but only_in inactivation-
treatment™assay. It should be noted that the structure of evomonoside [185] and
digitoxigenin 3-O44-D-digitalopyranaside [184] aresSimilarexcept«for theypresence of
a hydroxyl group instead of a-methoxyl group at C-3' 'of'sugar unit,“but the latter
compound had no activity. All compounds obtained from C. carandas exhibited no
anti-HSV activity. This result contrasts sharply with the preliminary result obtained
for the methanol crude extract of this plant. The active compounds might be in other

fractions and had not been found in this study.
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4. Antibacterial Activity
In this study, the antibacterial activity of each pure compound was determined
by minimum inhibitory concentration assay (Shiu and Gibbons, 2006). Five

12a-
hydroxyelliptone [58], tephrosin [64], dehydroelliptone [176] and elliptone [63]) and

compounds from D. malaccensis [12-deoxo-12a-acetoxyelliptone [14],

five compounds from C. spinarum ((~)-carissanol [167], (-)-nortrachelogenin [168],
scopoletin [181], (-)-carinol [160] and carissone [162]] were investigated. None of

these compounds showed antibacterial activity at-the‘concentration of 128 pg/mL.

5. Cytotoxic Activity

In this study, alifthe .compounds from D. malaccensis and C. spinarum that
were subjected _i0" antibacterial ‘assay were also evaluated for cytotoxicity by
sulphorhodamine B method (Gunaratnam etrjal., 2007). The results are summarized in
Table 27. \
Table 27 1Csy of cytotoxic: activity ofa-pure compounds isolated from D.

malaccensis and C. spinarumn

Compounds it dd ICso in pg/mL (uM)

1\545 MCF7 WI-38
12-Deoxo-12a-acetoxyelliptone [14]° 15.14(38.2) 12.13 (30.6) | >100 (>252.5)
12a-Hydroxyelliptane [58]* 4.66 (1—2.5) 11.50431.3) 86.89 (236.1)
Tephrosin [64] 4.00(9.8) 8.30420.2) 36.64 (89.4)
Dehydroelliptone-j176]* >100 (>285.7) | >100(>285.7) | >100 (>285.7)
Elliptone [63]° 2.55 (7.2) 3.87 (11.0) >100 (284.1)
(-)-Carissanol [167] 11 (29.2) 17.40 (46.2) 6.15 (16.3)
(-)-Nortrachelogenin [168] 29.0'(77.5) 88.30 (235.9) | >100 (>267.1)
Scopoletin [181]° $100 (5520.8) | >100 (3520'8)}| >100 (>520.8)
(-)-Carinol [160] <1 (<2.6) 1(2.6) <1 (<2.6)
Carissone [162] 38.55(163.3) | 62.10(263.1) | 85.11 (360.6)

®Cloudy solution

*Incompletely soluble

The results observed for elliptone [63] and dehydroelliptone [176] suggested

that the presence of a double bond at C-6a and C-12a is important for cytotoxicity of
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this group of rotenoids. Interestingly, elliptone [63] possessed selective toxicity

against cancerous cells (A549 and MCF7) as compared with the normal one (WI-38).
The most active compound was (-)-carinol [160]. This compound displayed
stronger activity than (—)carissanol [167] and (-)-nortrachelogenin [168]. This may

suggest that the butanediol structure is more effective than the butyrolactone structure.

AULININTNEINS
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CHAPTER V

CONCLUSION
In this study, a total of twenty-two natural compounds were isolated from
Derris malaccensis Prain, Carissa carandas L.. and C. spinarum L. These included

three new compounds and nineteen known cempounds as summarized in Table 28.

Table 28 Chemical constituents from Derris malaccensis, Carissa carandas, and

C. spinarum.
Classes of compounds Total
Plant Rotenoids Lignans Sesquiter- Cardiac Coumarin
& 4henes glycosides

Derris .
malaccensis 7 ' | F- - - 7
Carissa /
carandas - 4 o - - 5
Carissa o
spinarum i 8" s 2 1 12
Total 7 12 = - 2 1 24

“Two lignans were also isolated from C. carandas. ==

From thefroots of Derris malaccensis Prain, a new: roienoid named 6-oxo-
dehydroelliptone [177] was isolated along with six kKnown compounds, including 12-
deoxo-12 a-acetoxyelliptone [14], 12a-hydroxyelliptone [58], tephrosin [64],
dehydroelliptone [176],deguelin [23] and elliptone {63].;Chemieal examination of the
stem of Carissa carandas L. led to the iselation’of two new compounds, namely,
(6S,7R,8R)-7a-[(#-glucopyranosyl)oxy]lyoniresinol [179] and carandoside [180],
along with three kbownicempeunds. Thése Khown eompoundsiare(6R,7S,8S)-7a-[ (5
glucopyranosylhoxy]lyoniresinel {178}, (—)-carissanol[167] and (—)-nortrachelogenin
[168]. From the stems of C. spinarum L., twelve know compounds were isolated: (-)-
carissanol [167], (-)-nortrachelogenin [168], scopoletin [181], (-)-carinol [160], (+)-
cycloolivil  [182], (+)-8-hydroxypinoresinol  [183], (-)-olivil [169], (-)-



142

secoisolariciresinol [170], (+)-pinoresinol [175], carissone [162], digitoxigenin 3-O-4
D-digitalopyranoside [184] and evomonoside [185].

All of the isolated compounds were evaluated for their biological activities
such as free radical scavenging, anti-herpes simplex virus, antibacterial and cytotoxic

activities. These are summarized in Table 29.

Table 29 Biological activities of isolated:cempeunds from Derris malaccensis,

Carissa carandas, and C. spinarum.

Classes of compounds Total
Activity Rotenoids Lignans Sesquiter- Cardiac Coumarin
penes glycosides

Free radical
scavenging 1 10 1 - - 12
Anti-HSV 2 4 T 1 nd 3
Antibacterial - - i nd
Cytotoxicity 4 3 1k nd nd 8

nd not determined

For free radical scavenging activity, deguelin [23] and carandoside [180]
showed weak activity, whereas (6R,78,8S‘)-;7a-[(,8-gIucopyranosyl)oxy]Iyoniresinol
[178], (68,7R,8R)-7a—[(ﬁ-gIucopyranosyl)oxy]Iyé)'r'ﬁresinol [179], (-)-carissanol [167],
(-)-nortrachelogenin  [168},+- (=)-carinol - [160_],. (+)-cycloolivil [182], (+)-8-
hydroxypinoresinol [183], (-)-olivil [169], (-)-secoisolariciresinol [170] and (+)-
pinoresinol [175}'showed moderate activity. For anti-herpes simplex virus activity,
two compounds, tephrosin [64] and elliptone [63], exhibited Moderate activity against
HSV-1 and HSV-2 in post- and inactivation-treatment assays, whereas evomonside
[185] showed moderate-activity against bothi.types of virus but only in inactivation-
treatment assay. However, all compounds tested'had no antibacterial activity at a
concentration of 128 pug/mL. For cytotoxicity test, the most active compound was (-)-
carinol [160]. Interestingly, elliptone [63] was_selectively active against”cancerous
cell " lines ((A549 ' and . MCFY7). , 12-Deoxo-12 a-acetoxyelliptone + '[14], = 12a-
hydroxyelliptone [58], tephrosin [64], (-)-carissanol [167], (—)-nortrachelogenin [168]
and carissone [162] also showed cytotoxic activity. In contrast, dehydroelliptone

[176] and scopoletin [181] were not cytotoxic at a concentration of 100 pg/mL.
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Figure 125%H-  specirum of compound CS4 (MeOH-d)
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Figure 128 HMBC spectrum of compound CS4 (MeOH-d,)
[On 1.5-4.2 ppm, &¢ 20-90 ppm]
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Figure 132 ESI mass spectrum of compound CS5
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Figure 138 HMBC spectrum of compound CS5 (acetone-dg)
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Figure 140 HMBC spectrum of compound CS5 (acetone-dg)
[0 1.5-4.5 ppm, 8¢ 105-155 ppm]
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Figure 144 *C-NMR (125 MHz) spectrum of compound CS6 (acetone-dg)
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Figure 146 *H-'H COSY spectrum of compound CS6 (acetone-ds)
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Figure 156 *H-'H COSY spectrum of compound CS7 (CDCl5)



228

] 0 §
w — 7
4 50 B
/_ 60 F— /9'
' - ) g
78
' | 2
-9' 30
50
2
“pd '
Figlire L CS7 (CDCly)
A ¥
/és
| e A
él ‘n""‘ﬁi, =
a ;

A4
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Figure 160 HMBC spectrum of compound CS7 (CDCls)
[0n 6.5-7.4 ppm, 3¢ 100-155 ppm]
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Figure 170 *C-NMR (125 MHz) and DEPT spectra of compound CS9 (acetone-ds)
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Figure 174 HMBC spectrum of compound CS9 (acetone-dg)
[61 6.5-7.2 ppm, 6¢ 80-160 ppm]
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Figure 178 *C-NMR (125 MHz) spectrum of compound CS10 (CDCls)
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Figure 186 *H-NMR (400 MHz) spectrum of compound CS11 (CDCls)
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Figure 190 *H-'H COSY spectrum of compound CS11 (CDCls)
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Figure 192 HMBC spectrum of compound CS11 (CDClI5)
[0n 0.5-8 ppm, &¢ 10-190 ppm]
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Figure 194 HMBC spectrum of compound CS11 (CDClI5)
[6n 0.5-6.5 ppm, 6¢ 55-95 ppm]
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Figure 196 NOESY spectrum of compound CS11 (CDCls) [6y 2.5-4.5 ppm]
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Figure 202 *C-NMR (125 MHz) and DEPT spectra of compound CS12 (CDCl5)
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Figure 204 HMQC spectrum of compound CS12 (CDCls)
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