CHAPTER 11
EQUATION OF STATE

2.1 Literature review

Vinod et al. (1994) have.developed a generalized four - parameter quartic EOSs for
nonpolar fluids. The objective of their research was to obtain a new set of regressed
coefficients for polar and nompolar fluids using the generalized EOSs.

The performance of the generalized quartic EOSs in evaluating various physical
and thermodynamic properties of polar fluids was demonstrated . A comparison was
made between the generalized quartic EOS and the Peng - Robinson EOS for prediction
of various thermodynamic propeities.

Cubic EOSs have received much_attention in natural gas and chemical industries
since the first practical equation of state was introduced by van der Waals (Rowlinson,
1988) in (1873) . After the van der Waals equation was used for several decades,
Redlich and Kwong (1949) modified the attractive pressure term of the van der Waals
equation of state.The-Redlich - Kwong EOS was widely popular and“was used in the
place of the van der Waals equation in industry.Soave (1972) and Peng and Rebinson
(1976) proposed EOSs that are able to more accurately predict the vapor pressure,
liquid density ; and"equilibrium ratios than the Redlich - kwong'equation'.-However,
these cubic equations are not accurate at high densities , predict a' fixed value of the
critical compressibility factor for all compounds, and haye,limited applicability. to
polar’compounds .

Perturbed hard - sphere EOSs are a comparatively recent and highly promising

development . Several EOSs based on perturbed hard - sphere EOSs have been proposed,



.One foot of this equation has no physical significance , because it is always less
than the close packed volume of the fluids . The behavior of the remaining three
roots is equivalent to that of three roots of a cubic EOS. Thus , the resulting equation
retains the advantages of the cubic EOS, existence of analytical solutions and accuracy,
the resulting equation only requires three properties of nonpolar fluids; the critical
temperature , ihe properties of nonpolar fluids ; the critical temperature , the critical
volume , and :the acentric factor. Mbyeover, it marks a“significant improvement over

the Peng - Robinson EOS in the supercritical and condensed phase regions.

2.2 NEW QUARTIC EQUATION OF STATE
2.2.1 PURE NONPOUAR FLUIDS

A matheir.atically sirhple, hard-sphere equation jvas used to meodel the repulsive

interaction between molecules. To keep the equation of state a quartic in volume.

Zhs = V % EkIV

V-k,B) ok By @.1)

where B is the molar hard-sphere volume. Regression oi the MD results led to
values of and of 1.2864 and 2.8225 ,respectively. Equation 2.1 was used to
represent the -repulsive pressure in the new equation of state. Because of its
aigebraic simplicity. Eq2.1 could.«be used to develop a quaftic equation of state.
The attractive forces were 'modeled using ‘an empirical equation. The following
approach was used|to develop the attractive term: usihé real fluid data for argon
and hard-sphere compressibility calculated ffom Eq2.1 , plots-ef Zatt vs. Reduced
density "were prepared. for ‘various reduced temperatures:

Zatt = Zexp - Zhs 2.2)
where Zatt is the attractive contribution to the compressibility,

Zexp is the experimental comressibility value,

and Zhs is the hard-sphere contribution given by Eq 2.1
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Plots of Zatt vs. Reduced density were constructed for different reduced temperatures
and fit with an empirical equation for Zatt.

Zatt given by

Zatt = - aVz+ koBcV

(V+e)( V- k, B)RT 2.3)

where e is constant, and a_and ¢ are temperature- dependent, gave the best resulits.

Combining Eqs 2.1 and2:3 ,thesresulting equation of state can be written as :
P = RT 4% B er/f “avi: kBe

(V-5,B) #v-1,0B) | " vevte) (V- B | (2.4)

The equation of state can/ be written as a guartic:

V4 q,V+q,V+qVhq, | = 0 : \ (2.5)
where  q, =(2kB+e-RT) (2.6)
| P

6 =RTAB ( k-k)o+ kBaB2e > 2 @.7)

P ' P
q =elk, BRT BC K -k )+l k Bea) 2.8)

P P
o= kB @.9)
g |

Most equation of state determine the hard-sphere volume of a fluid by using ;the
critical pressure . Such an approach requires that the critical ‘compressibility-of the
fluid be know or specific by an empirical equation. If the critical volume is used,
however , the critical compre‘ssibility does not have to be specific. The hard-sphere
volumes of the fluids at the critical tempcerature were fixed to 0.165 times the critical

volume of the fluid. A temperature dependence was incorporated into B according to

[4,]



B = Be {exp[-0.03125 In (Tr) - 0.0054[ In (TO)]'}}’ (2.10)
where Bc =0.165 Vc . A temperature dependence was incorporated into a and
¢ in the following manner:
a = a0l (Tr) (2.11)
where for Tr < 1
OL(Tr) = [1+X2(1- Tr')+X3(1-Tr) +X4(1-Tr)’|’ 2.12)

and for Tr > 1

QL(Tr) = [1+X2(1- TrH+X50-T +X6(1-Tr) |’ (2.13)
Finally,

. = () (2.14)
and

c(Tr) = [+x70- ) , (2.15)

where X2,X3,X4,X5,X6 and X7 are constants. The equation of state was extended
to nonspherical fluids with the introduction of the acentric factor,( ,as the third
property to characterize the fluid. The parameters a;cand e, and the constants X1
throudh X7 were made functions of the acentric factor. The parameters a_,c and e were

defined and related to the acentric factor as shown in Eqgs. 2.16-2.21.

a, =aRTdp, | (2.16)
¢, =c¢RTe/P, (2.17)
e, =e/p, (2.18)
a, =a,(I+a,® +a,®") (2.19)
¢, =c,(l+eqWOrte M) 2.20)
e, = e (lte, 0 #e W) (2.21)

where a, and ¢, are the values of a and' ¢ at the critical temperature. Equation
2.19-2.21 were required- to ‘keep~the-critical compressibility, calculated "by the
equation of state,dependent on the nature of the fluid. The constants to were
made function of (M as:

Xi =Xil+Xi2 @ for i =2,3,4,5,6,7 (2.22)

A multiproperty nonlinear regression analysis was employed using data from 16

nonpolar fluids to determine all of the constants necessary to specily the cquation of



state. Second virial coefficient data, high- temperature residual enthalpy data, and
density data were used for parameter evaluation. Accurate equation of state were
used: to generate the database whenever possible. Pure component physical properties ,

Tc ,P¢, and () ,used in the regressions were obtained from Reid et. al .(1987). The
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Figure 2.2 Vapor pressure calculations for n-nonane

Data of Vargaftik (1974)
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Figure 2.4 Comparison of saturated liquid calculations for propane

Smoothed data of Younglove and Ely (1987)
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2.2.2 PURE POLAR FLUIDS

To apply the quartic equation of state to polar compounds, the parameters a
and c are assumed -to be functions of the acentric factor and the dipole moment of the
fluid . Also, to express the parameters of the quartic equation in dimensionless form, the
reduced dipole moment (LL*) is used, as shown below:

QL = 0.357 LL : (2.23)
(RTcve)? ‘

where Ll is the dipole moment of the polar fluid in debye units Thus, when
investigating polar fluids, the regressed ceefficients X2 through X7 were made linear
functions of the acentric factorgand quadratic functions of the reduced dipole mbment.
The regressed cons:tants and _gwerey made  guartic function of acentric factor and

the reduced dipole moment. Equations2.19,2.21,and2.22 were rewritten in the following

4

forms:
Xi = Xil+Xi2 @+ Xi3[l* +Xidpl* (2.24)
a, =a,(1+a, 0 +a,®O B+ a,, l.,l.*‘+ a,, ]J.*z) (2.25)
c, =c¢,(1+c, ® +c O ¥ + C A c“]J,*z) (2.26)

Replacing Egs. 2.19,2.21 and 2.22 by Eqs.;2.24,2.25 and 2.26 ,the constants of the generalized
quartic equation of polar fluids are expressed by Egqs. 2.1 through 2.22. Hence, ohly
requiring four properties-of the fluid (the critical temperature, the critical volume, the
acentric factor, and the diptle-moment)-the-generalized-quartic-lEOS-is-€xtended to predict
the behavior of polar fluids. If the dipole momeht of the fluid is zero, then the entire
system is reduced to the nonpol‘ar fluid system. The new generalized quartic EOS has been
applied to calculate thermodynamic. properties of 30 polar compounds, such as refrigerants,
esters , ethers , ketone , alcohqls,and so on. The parameters in the generalizedA quartic EOS
are expr-cssed by the nondimensional forms. Thus, the reduced dipole moment, expressed in
terms of the critical teinperature, the critical volume, and the‘dipole moment, is used to
represent.the dipole moment,of the 1:luid. The applicability and_ flexibility of most ‘cubic
EOSs are limited to certain regions when dealing with pure polar compounds. in order to

overcome this advantage, the gencralized quartic EOS has been extended to polar fluids

over a wide range of states and for a wide varities of properties ,such as



pressure - volume - temperature relations, vapor pressure, saturated vopour density , enthalpy
of vaporization etc. Fiqure 2.5-2.10,the systems for water ,ammonia ,hydrogen sulfide,
ethylbenzene, 1-1 difluoroethane ,toluene were demonstrated the ability of the generalized

quartic EOS for polar fluids and compared with Peng- Robinson EOS .
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TABLE 2.1 QUARTIC EQUATION OF STATE COEFFICIENTS OBTAINED

BY NONLINEAR REGRESSIONS FOR 30 PURE POLAR COMPOUND DATA
(Vinod and Bienkowski, 1994)

Regressed Cocfficients Regress-ed Coclficients

a, 1.84713 Xy, 0.14988
a, -0.05218 25 0.97848
a, 1.06446 Xy -0.32379
c= 1.78336 X33 1.84591
e -1.29690 Vi 0.14833
| C g 2.78945 ¥, -3.46693
e, 0.63189 . 0.11048
€, -0.81660 Xey 0.57743
ol 3252860 xg 0.02581
k, 1:28650 " P -0.02700
Kk, 2.82250F Xqy -0.77357
a, -0.027304 " -1.45342
a, 9.02048 X43 -0.39170
¢ 0.07000 Xeq <0.01597
<, 0.01188 Xg3 0.41218
X, -0.01390| Xeq -0.10676
%34 0.02928 X¢3 0.38327
X33 0.39338 X4 -0.09008
Xy -0.25483 3 -0.04725
Xyq -0.09669
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2.3 Peng - Robinson Equation of state

The original Redlich-Kwong equation and modifications by Wilson and Soave

. have a common shortcoming .i.e., they predict poor liquid densities and an unrealistic

stances. To alleviate this
:l form:

,‘/’ (2.46)

| ——

as follows /

universal critical compressibility factor of 1/3

shortcoming, Peng and Robinsion modifie

-}
il
~
-
1<

P = ﬂ-
V-b

or

P= RT -

V-b o [V(@2TH)
Eq. 2.48 can be expressed i e fo ‘ omiz A erms of
compressibility factor,

Z’ - (1-B)Z’ + (A-2B-3B )Z ¢ (AB-B-B (2:49)

where

-

g

=

. oi07j79m1 # | ﬁ.sn
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; = ac, Qi (2.53)

(=2
]

aci = 0457235 R Tci (2.54)
Pci

ai® = 1+m,(1-Tr,"") (2.55)
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m, = 0.37646 +1.54226 i - 0.26992Wi (2.56)

A = abP 2.57
(RT)’

B = bP . (258)
RT

A
The Partial Fugacity (¢ i) for P

A

mi = Bi(Z-1)-In(ZB IBi - | 2/ 300" 2y, [Z+2.414B]  (2.59)

B Z+2.414B]
where
A =_amixP
(RT)
B = bmixP
RT
Bi = b,P
RT
n n
= T Y yivac
I
(aQ) ;= (1-Kij) [(aQ) ‘ua g1 ', (2.64)
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