ค่าประมาณความผิดพลาดภายหลังสำหรับสมการเชิงอนุพันธ์ย่อยเชิงวงรีแบบกึ่งเชิงเส้น

Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2009
Copyright of Chulalongkorn University

Thesis Title A POSTERIORI ERROR ESTIMATES FOR SEMI-LINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

By
Field of Study
Thesis Advisor

Mr. Suttisak Jampawai Mathematics

Khamron Mekchay, Ph.D

Accepted by the Faralty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

..... Sitthpat.... (hinotriyarrt...... External Examiner (Assistant Professor Settapat Chinviriyasit, Ph.D.)

สุทธิศักดิ์ จำปาหวาย : ค่าประมามความผิคพลาดภายหลังสำนรับสมการเชิงอนุพันย์ย่อยเชิงวงรี แบบกึ่งเชิงเส้น. (A POSTERIORI ERROR ESTIMATES FOR SEMI-LINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUALTIONS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ดร.คำรณ เมฆฉาย, 32 หน้า.

> ในวิทยานิพนธ์ดบับนี้เราหาขอบเขตบนและขอบเขตล่างของค่าประมามความผิดพลาคภายหลัง สำหรับวิธีการชิ้นประกอบของสมการเชิงอนุพันธ์ย่ยยเริววยรีแบบกึ่งเชิงเส้นบนโคเมนรูปหลายเหลี่ยม ในปริภูิิสองมิติ โดยที่เราพิจารณาบัญหาแบบ Dirichlet ที่มีเงื่อนไขค่าขอบเป็นศูนย์ การประมาณค่า อยู่บนพื้นฐานของ Lagrange element และอย่บนสมมติฐานการอินทิเกรตได้อย่างแม่นตรง ซึ่งเราวัด ค่าประมาณความผิดพลาคอยู่ในรูปของนรอมเทบบลังงาน ภายใต้เง่อยไขขของฟังก์ชัน $f(x, u)$ มี อนุพันธ์อันดับหนึ่งเทียบกับตัวแปปรี่สอง

จุหาลงกรณ์มหาวิทยาลัย

ภาควิชา. \qquad คณิตศาสตร์. \qquad ลายมือชื่อนิสิต......nno.................................... สาขาวิชา \qquad คณิตศาสตร์ \qquad ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก........a ปีการศึกษา \qquad 2552 \qquad
\# \# 5072519723 : MAJOR MATHEMATICS
KEYWORDS : A POSTRIORI ERROR ESTIMATES / SEMI-LINEAR ELLIPTIC

SUTTISAK JAMPAWAI : A POSTERIORI ERROR ESTIMATES FOR SEMI-LINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS.

THESIS ADVISOR : KHAMRON MEKCHAY, Ph.D. 32 pp.

We derive upper and lower bounds for a posteriori error estimates in finite element solutions of semi-linear elliptic partial differential equations (PDEs) over polygonal domains in two space dimensions. We consider the Dirichlet problem for semi-linear PDEs with vanishing boundary. The estimate is based on Lagrange element, and the error estimates are computed in the energy norm with assumption of exact integration. The proof is based on the condition of function $f(x, u)$ which have first derivative in second argument.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

ACKNOWLEDGEMENTS

First I would like to thank my advisor, Khamron Mekchay, Ph.D., for giving me invaluable opportunity to work on challenging and extremely interesting the thesis over the past couple years. Next, Iwould like to thank Associate Professor Pornchai Satravaha, Ph.D., Assistant Professor Anusorn Chonwerayuth, Ph.D. and Assistant Professor Settapat/Chinviriyasit, Ph.D., my thesis committee, for variable suggestions. Next, the Institute for the Promotion of Teaching Science and Technology (IPST), for the DPST scholarship which provided me the great opportunity to study through out M.Sc. Program. Finally, I would like to thank all of my teachers and lecturers who have taught me for my knowledge and skills.

If I did the wrong thing, 1o apologize. It does not happen by intention.

จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II PRELIMINARIES 4
2.1 Sobolev Spaces 4
2.2 Finite Element Spaces . $\ldots, \ldots .4$. 8
III THE MODEL PROBLEM 11
3.1 The model problen 11
3.2 Coercivity and Continuity 13
$3.3 \quad L^{2}$-Estimates 14
IV A POSTERÆORI ERROR ESTIMATES 17
4.1 Upper Bounds $Q \cap \cdot \dot{\square}$ 19
4.2 Lativer Bounds 21
จพพคคคครถ่มหาวิทยาลัย 27
NOTATIONS 29
REFERENCES 31
VITA 32

CHAPTER I

INTRODUCTION

The finite element method is one of the main tools for the numerical treatment of partial differential equations (PDES). It is based on the variational formulation of the differential equation, it is much more flexible than finite difference methods and can thus be applied to more complicated problems.

Adaptive finite element methods started in the late 70's and now are standard tools in science and engineering. AFEMs are effective tools to obtain good approximate solutions with low compritational costs, especially in presence of singularities.

A key of AFEMs is an a posterioni error estimation. A posteriori error estimates are computable estimates for the error in suitable norms, typically in energy norm, in term of the approximate solution and data the problem.

For elliptic PDEs, AFEMs are boil down to iterations of the form

Given@ current mesh and data, SOLVE find thêApproximate solution; ESTIMATE computes error estimates in suitable norm based on a posteriori error estimators; REFINE refines the current mesh to obtain a finer mesh according to the error indicators. The ultimate purpose is to construct a sequence of meshes (approximate solutions) that will eventually reducing error in an efficient way in term of degree of freedom.

For elliptic PDEs, a posteriori error estimation techniques were developed for
computing quantities η_{T} to approximate the error in energy norm or other norms on each finite element T. These formed basis of adaptive mesh procedures designed to control and minimize the error. In the last 30 years, many results for elliptic error estimation techniques were obtained: we refer to Babuška and Rheinboldt as representative of the work. Here are list of recent results of AFEM for elliptic-type PDEs.

- W.Dorfler [4] designed steps of AFEM and proved the convergence of algorithm for Poisson equation fin two dimensions.
- P. Morin, R.H.Nochetto and K.G. Siebert [7] extended the result of W.Dorfler [4] for linear elliptic PDEs,

$$
-\nabla \cdot(A \nabla u)=f \quad \text { in } \Omega,
$$

where $\Omega \subseteq \mathbb{R}^{d}(d \geq 1)$, Ais a piecewise constant function, and f is a function on Ω. Here, they infroduced oscillation that is important in proving convergence of AFEM algorithm.

- K. Mekchay and R.H.Nochetto [6], extended the result of [7] and proved convergence of AFEM algonithm for the general dinear elliptic PDEs, $-\nabla \cdot(A \nabla \hat{a})+b \cdot \nabla u+c u=f \quad$ in Ω 屏

where A, f, b, c are functions on Ω.
- In the book by M. Ainsworth and J. T. Oden [1], they derived a posteriori error estimates for nonlinear problems in general elliptic PDEs in term of implicit forms.
- Recently in 2006, R.H. Nochetto, A. Schmidt, K.G. Siebert and A. Veeser [8], they computed upper bounds and lower bounds of a posteriori error
estimates in the maximum norm for semi-linear Poisson equation,

$$
-\Delta u+f(x, u)=0 \quad \text { in } \Omega,
$$

where $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is assumed to be continuous in $\bar{\Omega} \times \mathbb{R}$ and nondecreasing in the second argument.

In this thesis, we are interested in deriving an explicit a posteriori error estimation in energy norm for semi-linear elliptic PDE,
u) $=f(x, u) \quad$ in Ω,
where A is a function on Ω and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ has first derivative in second argument. We estimated upper and local lower bounds of a posteriori error estimates in the energy norm.

We organized this thesis intothree parts. In Chapter II, we gave definitions and theorems that are important in deriving weak and discrete formulations of our model problem. Nearly last, we gave finite elementspace and the theorems for deriving upper bound. In Chapter III, we formulated the weak form of the model problem including also the discrete problem. In Chapter IV, we derived upper and local lower bounds. Finanly, we pave conclusion and some idea for designing
คุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

PRELIMINARY

2.1 Sobolev Spaces

We first introduced weak derivatives and defined Sobolev spaces, refer to the book of S. C. Brenner and L. R. Scott [3].

We reviewed Lebesgue integrations and restricted our attention for simplicity to a real-valued functions f on a given domain Ω, that are Lebesgue measurable. We denoted the Lebesgue integral of f by

For $1 \leq p<\infty$, let

and for $p=\infty$, set

In either cases, wêdefine the Lebesgue spaces a 9 ? ? \&

$$
L^{p}(\Omega):=\left\{f:\|f\|_{L^{p}(\Omega)}<\infty\right\} .
$$

A multi-index α is an n-tuple of non-negative integers. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. The length of α is given by $|\alpha|:=\sum_{i=1}^{n} \alpha_{i}$. For $\phi \in C^{\infty}$, denoted by $D^{\alpha} \phi$ the usual partial derivatives $\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \ldots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} \phi$. Note that the order of this derivative is given by $|\alpha|$.

Definition 2.1.1. Let Ω be a domain in $\mathbb{R}^{n}(n \geq 1)$. Defined by $C_{0}^{\infty}(\Omega)$ the set of $C^{\infty}(\Omega)$ functions with compact support in Ω.

Note that a support of a continuous function f is the closure of the open set $\{x: f(x) \neq 0\}$, denoted by $\operatorname{supp}(f)$.

Definition 2.1.2. We say that a given function $f \in L^{1}(\Omega)$ has a weak derivative, $D_{w}^{\alpha} f$, provided there is a function $v \in L(\Omega)$ such that

$$
\left.\int_{\Omega} v(x) \varphi(x) \overline{d x=(-1)}\right)^{\alpha \mid} \int_{\Omega} f\left(\overline{\bar{x}) D^{\alpha} \varphi(x)} d x \quad \forall \varphi \in C_{0}^{\infty}(\Omega) .\right.
$$

If such a v exists, we define $D_{w}^{\mathrm{w}} \mathrm{f} \mid=v$.
Example 2.1.3. Take $n=1, \Omega=(-1,1)$, and $f(x)=|x|$. We claim that $D_{w}^{1} f$ exists and is given by

To see this, we break the interval $(-1,1)$ into the parts in which f is smooth, and we integrate by parts. Let $\varphi \in C_{0}^{\infty}(\Omega)$. Then

$$
\begin{aligned}
& \int_{-1}^{1} f(x) \varphi^{\prime}(x) d x=\int_{-1}^{0}-x \varphi^{\prime}(x) d x+\int_{0}^{1} x \varphi^{\prime}(x) d x
\end{aligned}
$$

One may check that $D_{w}^{i} f$ does not exist for $i>1$.
Definition 2.1.4. Let Ω be a domain in \mathbb{R}^{n}, k be a non-negative integer, and $f \in L^{1}(\Omega)$. Suppose that the weak derivatives $D_{w}^{\alpha} f$ exist for all $|\alpha| \leq k$. Define the Sobolev norms

$$
\begin{equation*}
\|f\|_{W^{k, p}(\Omega)}:=\left(\sum_{|\alpha| \leq k}\left\|D_{w}^{\alpha} f\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

and the semi-norms

$$
\begin{equation*}
|f|_{W^{k, p}(\Omega)}:=\left(\sum_{|\alpha|=k}\left\|D_{w}^{\alpha} f\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

in the case $1 \leq p<\infty$, and in the case $p=\infty$

$$
\|f\|_{W^{k, \infty}(\Omega)}:=\max \left\{\left\|D_{w^{\alpha}}^{\alpha} f\right\|_{L^{\infty}(\Omega)}:|\alpha| \leq k\right\} .
$$

In either case, we define the Sobolev spaces via

$$
\begin{equation*}
W^{k, p}(\Omega):=\left\{f / \notin L^{1}(\Omega):\|f\|_{W^{k, p}(\Omega)}<\infty\right\} . \tag{2.3}
\end{equation*}
$$

For $k=1$ and $p=2$, the Sobolev space $W^{1,2}(\Omega)$ is often denoted by $H^{1}(\Omega)$.

Theorem 2.1.5. The Sobolev spaces $N^{k, p}(\Omega)$ are Banach spaces.

Proof. See Theorem 1.3.2 in Brenner and Scott [3].

Theorem 2.1.6. Let Ω be any gpen set. Then $C^{\infty}(\Omega) \cap W^{k, p}(\Omega)$ is dense in $W^{k, p}(\Omega)$.

Proof. See Theorem 1, 3.4 in Brenner and Scott [3].
Then, the elosure of $C_{0}^{\infty}(\Omega) \Omega W_{0}^{1, p}(\Omega)$ is denoted by $\frac{W_{0}^{1, p}}{\sigma}(\Omega)$. Thus,
$H_{0}^{1}(\Omega)=W_{0}^{1,2}(\Omega)$.
Here afelist of bilinear forms (lingear products) for spaces $T^{2}(\Omega), H^{1}(\Omega)$, and $H_{0}^{1}(\Omega)$.

1. For $u, v \in L^{2}(\Omega),\langle u, v\rangle:=\int_{\Omega} u v d x$ and $\|u\|_{0}:=\|u\|_{L^{2}(\Omega)}=\sqrt{\langle u, u\rangle}$.
2. For $u, v \in H^{1}(\Omega),(u, v)_{1}:=\langle\nabla u, \nabla v\rangle+\langle u, v\rangle$.
3. For $u, v \in H_{0}^{1}(\Omega),(u, v)_{1}=\langle\nabla u, \nabla v\rangle$ and $|u|_{H^{1}(\Omega)}=\sqrt{\langle\nabla u, \nabla u\rangle}=\|\nabla u\|_{0}$.
4. For $u \in H^{1}(\Omega),|u|_{H^{1}(\Omega)} \leq\|u\|_{H^{1}(\Omega)}$.

Note that the Sobolev space $H^{1}(\Omega)$ is a Hilbert space (See Example 2.2.2 in Brenner and Scott [3]).

Theorem 2.1.7 (Poincaré inequality). Suppose Ω, subset of \mathbb{R}^{n}, is an open bounded domain. Then

$$
\begin{equation*}
\|u\|_{0} \leq C_{P}\|\nabla u\|_{0} \quad, \quad \forall u \in H_{0}^{1}(\Omega) \tag{2.4}
\end{equation*}
$$

where C_{P} is a constant that depends only on the domain Ω.

Proof. See p. 30 in Braess [2].

Corollary 2.1.8. The semi-norm $\|_{H^{1}(\Omega)}$ is equivalent to the norm $\|\cdot\|_{H^{1}(\Omega)}$ in $H_{0}^{1}(\Omega)$.

Proof. Let $f \in H_{0}^{1}(\Omega)$. Then

$$
\begin{aligned}
& |f|_{H^{1}(\Omega)}^{2}=\int_{\Omega}|\nabla f|^{2} d x \leq \int_{\Omega} \frac{f^{2} d x+\left.\int_{\Omega} \nabla f\right|^{2} d x}{} \\
& \begin{array}{l}
\Omega=\|f\|_{H^{1}(\Omega)}^{2} \\
=\int_{\Omega}|f|^{2} d x+\int_{\Omega}|\nabla f|^{2} d x
\end{array}
\end{aligned}
$$

Therefore, $|\cdot|_{H^{1}(\Omega)}$ is equivalent to the norm $\|\cdot\|_{H^{1}(\Omega)}$.

2.2 Finite Element Spaces

In this section, we defined some continuous piecewise spaces of polynomial function that are subspaces of $H^{1}(\Omega)$.

Definition 2.2.1. Let $\Omega \subseteq \mathbb{R}^{2}$ be a polygonal domain. A triangulation \mathcal{T} of Ω is a collection $\{T\}$ of triangles such that:

1. $\bar{\Omega}=\bigcup_{T \in \mathcal{T}} \bar{T}$;
2. for $T, T^{\prime} \in \mathcal{T}$ and $T \neq T^{\prime}$ the set $\bar{T} \cap \overline{T^{\prime}}$ is empty or consists of a vertex or a common side.

Let $\omega \subseteq \Omega$. We define

- $\mathbb{P}_{p}(\omega):=$ the set of all polynomials on ω in two variables of degree less than or equal to p;

- $H_{T}:=\operatorname{diam} T=$ the diameter of triangle T;
- $\rho_{T}:=$ the diameter of the largest circle inscribed in T. Regularity constant is denoted by

Definition 2.2.2. A family of triangulations $\left\{\mathcal{T}_{H}\right\}$ of Ω is ${ }^{S}$ said to be shaperegular if there exists a constant K_{K} such that $\kappa_{T} \leq \sum_{K}$ for alp $T \in \mathcal{T}_{H}$ and for all triangulations \mathcal{T}_{H}.

Definition 2.2.3. Let \mathcal{T} be a conforming triangulation. Then finite element subspace of order $p \in \mathbb{N}$ associated with \mathcal{T} is defined by

$$
\begin{equation*}
\mathbb{V}^{p}:=\left\{v \in C(\bar{\Omega}): \forall T \in \mathcal{T},\left.v\right|_{T} \in \mathbb{P}_{p}(T)\right\} . \tag{2.6}
\end{equation*}
$$

If there is no ambiguity, we will use \mathbb{V} for simplicity.

Refinement.

Let \mathcal{T}_{0} be an initial triangulation of Ω. If we decompose a subset of triangles of \mathcal{T}_{0} into subtriangles such that the resulting set of triangles is again a triangulation of Ω, we call this a refinement of \mathcal{T}_{0}. We may denote this triangulation by \mathcal{T}_{1}. In this way we can construct a sequence of triangulations $\left\{\mathcal{T}_{k}\right\}$ such that \mathcal{T}_{k+1} is a refinement of \mathcal{T}_{k}.

We used notations as follows

1. \mathcal{T}_{h} is a refinement of $\mathcal{T}_{H} ;$
2. $\mathbb{V}_{H}:=\left\{v \in C(\bar{\Omega}): \forall T \in \mathcal{I}_{H}, v \sqrt{T_{T}} \in \mathbb{P}_{p}\right\}$
3. $\mathbb{V}_{H}^{\circ}:=\left\{v \in \mathbb{V}_{H}: v(x)=0 ; x \in \partial \Omega\right\}$.

Remark 2.2.4. $\mathbb{V}_{H}^{\circ} \subset H_{0}^{1}(\Omega)$

Definition 2.2.5. For $T \in \mathcal{T}_{H}$, we define the patch element of T to be

$$
\omega_{T}:=\bigcup\left\{T^{\prime} \in \mathcal{T}: \bar{T} \cap \overline{T^{\prime}} \neq \phi\right\}
$$

Figure 2.2.2: An example of a patch with respect to the element T.

Theorem 2.2.6 (The Clément Interpolation). There is a linear interpolation operator $\mathcal{I}_{H}: H_{0}^{1}(\Omega) \rightarrow \mathbb{V}_{H}^{\circ}$ such that for $T \in \mathcal{I}_{H}$ and $S \in \partial T$ we have

$$
\begin{array}{ll}
\left\|\varphi-\mathcal{I}_{H} \varphi\right\|_{L^{2}(T)} \leq C H_{T}\|\nabla \varphi\|_{L^{2}\left(\omega_{T}\right)} & \forall \varphi \in H_{0}^{1}(\Omega), \\
\left\|\varphi-\mathcal{I}_{H} \varphi\right\|_{L^{2}(S)} \leq C H_{S}^{1,2}\|\nabla \varphi\|_{L^{2}\left(\omega_{T}\right)} & \forall \varphi \in H_{0}^{1}(\Omega), \tag{2.8}
\end{array}
$$

where H_{S} is the diameter of the side S and C is a constant depending only on the shape regularity.

Proof. See p. 84 in Braess [2].

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

THE MODEL PROBLEM

3.1 The Model Problem

First, we introduced the defimition of strict monotonicity.

Definition 3.1.1. Let A be an operator. If A satisfies

$$
\begin{equation*}
\left(A(p)-A(\overline{q)}) \cdot(p-q) \geq \theta|p-q|^{2}\right. \tag{3.1}
\end{equation*}
$$

for all $p, q \in \mathbb{R}^{n}$ and some constant $\theta>0$. Then A is strict monotonicity.

Let $\Omega \subseteq \mathbb{R}^{n}(n \geq 2)$ be a convex polyhedral domain, $f \in C(\bar{\Omega} \times \mathbb{R})$ and has first derivative in second argument and $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be strict monotonicity.

As the model problem, we consider the semi-linear elliptic PDE with vanishing Dirichlet boundary condition,

The weak formulation of this problem reads as follows: find $u \in H_{0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\mathcal{B}(u, \varphi)=\mathcal{L}(u ; \varphi), \quad \forall \varphi \in H_{0}^{1}(\Omega), \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{B}(u, \varphi)=\int_{\Omega} A(x) \nabla u \cdot \nabla \varphi d x \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}(u ; \varphi)=\int_{\Omega} f(x, u) \varphi d x \tag{3.6}
\end{equation*}
$$

The corresponding discrete problem then reads as follows: find $u_{H} \in \mathbb{V}_{H}^{\circ}(\Omega)$ such that

$$
\begin{equation*}
\mathcal{B}\left(u_{H}, \phi\right)=\mathcal{L}\left(u_{H} ; \phi\right), \quad \forall \phi \in \mathbb{V}_{H}^{\circ}(\Omega) \tag{3.7}
\end{equation*}
$$

Remark 3.1.2.

1. If u satisfies equation (3.4), then u is called a weak solution of (3.2) and (3.3) by [3].
2. If u_{H} satisfies equation (3.7), then u_{H} is called a finite element solution and is unique by [7].

Let $\|\cdot\|$ denotes the energy norm, defined by $\|v\|=\sqrt{\mathcal{B}(v, v)}$ for $v \in H_{0}^{1}(\Omega)$.
The error $\mathcal{E}_{H}:=u-u_{H}$ belonge to the space $H_{0}^{1}(\Omega)$ and satisfies

$$
\begin{equation*}
\mathcal{B}\left(\mathcal{E}_{H}, \varphi\right)=\mathcal{B}(u, \varphi)-\mathcal{B}\left(u_{H}, \varphi\right)=\mathcal{L}(u ; \varphi)-\mathcal{B}\left(u_{H}, \varphi\right) \quad \forall \varphi \in H_{0}^{1}(\Omega) \tag{3.8}
\end{equation*}
$$

For convenience, real values $f(x, u)$ and $f\left(x, u_{H}\right)$ are denoted by f and f_{H}, respectively.
Lemma 3.1.3. $\mathcal{B}\left(\mathcal{E}_{j}, \phi\right)=\left\{f\left|-9 f_{H}, \phi\right\rangle \stackrel{\ddots}{\delta} Q N \forall \phi \in Y_{H}^{\circ}(\Omega) \delta\right.$
Proof. Let $\phi \in \mathbb{V}_{H}^{\circ}(\Omega)$. Then

$$
\begin{array}{rlrl}
\text { f. Let } \phi \in \mathbb{V}_{H}^{\circ}(\Omega) \text {. Then } & & \text { by equation (3.7) } \\
& =\mathcal{L}(u ; \phi)-\mathcal{L}\left(u_{H} ; \phi\right), & & \text { by equation (3.6) } \\
& =\int_{\Omega} f(x, u) \phi d x-\int_{\Omega} f\left(x, u_{H}\right) \phi d x, & \\
& =\int_{\Omega}\left[f(x, u)-f\left(x, u_{H}\right)\right] \phi d x, & & \\
& =\left\langle f-f_{H}, \phi\right\rangle .
\end{array}
$$

3.2 Coercivity and Continuity

Definition 3.2.1. A bilinear form $\mathcal{B}(\cdot, \cdot)$ on a norm linear space H is said to be bounded (or continuous) if $\exists c_{1}<\infty$ such that

$$
\mathcal{B}(v, w) \leq c_{1}\|v\|_{H}\|w\|_{H}, \quad \forall v, w \in H
$$

and coercive on $V \subset H$ if $\exists c_{2}<\infty$

Lemma 3.2.2. The bilinear form $\mathcal{B}(\cdot$,$) in equation (3.5) is coercive on H_{0}^{1}(\Omega)$ and bounded on $H^{1}(\Omega)$

Proof. We will first show that $\mathcal{B}(\cdot$,$) is coercive. Let v \in H_{0}^{1}(\Omega)$. Since A is strict monotonicity, we can choose $p=\nabla v$ and $q=0$. We get $A \nabla v \cdot \nabla v \geq \theta|\nabla v|^{2}$. Take integral over Ω,

$$
\mathcal{B}(v, v)=\int_{\Omega}(A \nabla v \cdot \nabla v) d x \geq\left.\int_{\Omega} \theta \nabla v\right|^{2} d x=\theta\|\nabla v\|_{0}^{2}=\theta|v|_{H^{1}(\Omega)}^{2} .
$$

Since two norms are equivalent on $H_{0}^{1}(\Omega), \mathcal{B}(v, v) \geq \theta\|v\|_{H^{1}(\Omega)}^{2}$.
Finally, we will show that $\mathcal{B}(\cdot, \cdot)$ is bounded. Let $v, w \in H^{1}(\Omega)$. By the Cauchy-Schwarz inequality,

Since A is smooth, A is bounded on Ω. Let $C(A)=\|A\|_{L^{\infty}(\Omega) \cdot}$ Then

Theorem 3.2.3. The norm $\|\cdot\|_{H^{1}(\Omega)}$ is equivalent to the norm $\|\cdot\|$ in $H_{0}^{1}(\Omega)$.
Proof. By the coercivity and continuous of the bilinear form \mathcal{B} (Lemma 3.2.2), we get Theorem 3.2.3.

$3.3 \quad L^{2}$-Estimates

Under the assumptions and notations of the model problem we can estimate the L^{2}-error as follows.

Theorem 3.3.1 (Duality). Let $L^{2}(\Omega)$ be a space with the norm $\|\cdot\|_{0}$ and the scalar product $\langle\cdot, \cdot\rangle$. Let $H_{0}^{1}(\Omega)$ be a subspace which is also a Hilbert space under another norm $\|\cdot\|$. Then the finite element solution u_{H} of equation (3.7) in $\mathbb{V}_{H}^{\circ} \subset H_{0}^{1}(\Omega)$ satisfies

$$
\begin{equation*}
\left\|u-u_{H}\right\|_{0} \leq C\left(\left\|u-u_{H}\right\|_{g \in L_{2}^{2}(\Omega),\|g\|_{0} \leq 1} \sup _{v \in \mathbb{V}_{H}}\left\|\varphi_{g}-v\right\|+\left\|f-f_{H}\right\|_{0}\right) \tag{3.9}
\end{equation*}
$$

Here, for $g \in L^{2}(\Omega)$ we denote $\varphi_{g} \in H_{0}^{1}(\Omega)$ the corresponding unique solution of the (linear) dual equation

$$
\begin{equation*}
\mathcal{B}\left(w, \varphi_{g}\right)=(q, w) \quad \text { for all } w \in H_{0}^{1}(\Omega) \tag{3.10}
\end{equation*}
$$

Proof. By considering w as a function on $L^{2}(\Omega), w \in\left(L^{2}(\Omega)\right)^{*}$, the dual space of $L^{2}(\Omega)$. We can compute the dual norm

$$
\begin{equation*}
\|w\|_{0}=\sup _{g \in L^{2}(\Omega),\|g\|_{0} \leq 1}\langle g, w\rangle \tag{3.11}
\end{equation*}
$$

Here and in (3.9), the supremumis taken only over thoseg with $\|g\|_{0} \leq 1$. We

$$
\mathcal{B}(u, v)=\langle f, v\rangle,
$$

$$
\mathcal{B}\left(u_{H}, v\right)=\left\langle f_{H}, v\right\rangle, \quad \text { for all } v \in \mathbb{V}_{H}^{\circ}
$$

By Lemma 3.1.3, $\mathcal{B}\left(u-u_{H}, v\right)=\left\langle f-f_{H}, v\right\rangle$ for all $v \in \mathbb{V}_{H}^{\circ}$. Moreover, if we insert $w:=u-u_{H} \in H_{0}^{1}(\Omega)$ in (3.10), for any $v \in \mathbb{V}_{H}^{\circ}$ and $g \in L^{2}(\Omega)$, by
continuity of the bilinear \mathcal{B} and Cauchy-Schwarz inequality we get

$$
\begin{aligned}
\left\langle g, u-u_{H}\right\rangle & =\mathcal{B}\left(u-u_{H}, \varphi_{g}\right), \\
& =\mathcal{B}\left(u-u_{H}, \varphi_{g}-v\right)+\mathcal{B}\left(u-u_{H}, v\right), \\
& \leq C\left\|u-u_{H}\right\| \cdot\left\|\varphi_{g}-v\right\|+\left\langle f-f_{H}, v\right\rangle, \\
& \leq C\left\|u-u_{H}\right\| \cdot\left\|\varphi_{g}-v\right\|+\left\|f-f_{H}\right\|_{0}\|v\|_{0} .
\end{aligned}
$$

Let $\varphi_{g, H} \in \mathbb{V}_{H}^{\circ}$ be a finite element solution of φ_{g}. By Céa's Lemma [p.55, 2]

By taking $v=\varphi_{g, H} \in \mathbb{V}_{H}^{0}$, it follows that

$$
\begin{aligned}
\left\langle g, u-u_{H}\right\rangle & \leq C\left\|u-u_{H}\right\| \varphi_{g}-\varphi_{g, H}\|+\| f-f_{H}\left\|_{0}\right\| \varphi_{g, H} \|_{0}, \\
& \leq C\left\|u-u_{i H} \inf _{v \in \mathbb{V}_{H}}\right\| \varphi_{g}-v\|+\| f-f_{H}\left\|_{0}\right\| \varphi_{g, H} \|_{0} .
\end{aligned}
$$

Since Ω is the convex polyhedral domain, the solution of equation (3.10) has H^{2} regular (Regularity theorem $[\mathrm{p} .89,2]$). Therefore, there is constant c depending only on Ω, \mathcal{B} and $H^{2}(\Omega)$ such that $\varphi_{g, H} \in H^{1}(\Omega)$ satisfying

Then φ_{g} is bounded on its domain. Thus φ_{g} is also bounded. Now the duality

$$
\begin{aligned}
\left\|u-u_{H}\right\|_{0} & =\sup _{g \in L^{2}(\Omega),\|g\|_{0} \leq 1}\left\langle g, u-u_{H}\right\rangle \\
& \leq C\left(\left\|u-u_{H}\right\| \sup _{g \in L^{2}(\Omega),\|g\|_{0} \leq 1} \inf _{v \in \mathbb{V}_{H}}\left\|\varphi_{g}-v\right\|+\left\|f-f_{H}\right\|_{0}\right) .
\end{aligned}
$$

Corollary 3.3.2. Under the hypotheses of Theorem 3.3.1 and f has first derivative in second argument with $\left\|f_{u}\right\|_{L^{\infty}(\Omega)} \leq \rho<1$ for some positive ρ. Then

$$
\left\|u-u_{H}\right\|_{0} \leq C_{f} H\left|u-u_{H}\right|_{H^{1}(\Omega)}
$$

where H is the maximum of H_{T} for $T \in \mathcal{T}_{H}$ and a constant C_{f} depends only on ρ, the shape regularity and the data.

Proof. By its assumption and theorem 7.3 in the book of Braess [p.90, 2], the right bracket of (3.9) of Theorem 3.3.1 becomes

$$
\begin{equation*}
\left\|u-u_{H}\right\|_{0} \leq d H \vec{u}-\left.u_{H}\right|_{H^{\prime}(\Omega)}+\left\|f-f_{H}\right\|_{0} . \tag{3.12}
\end{equation*}
$$

Apply the mean value theorem to f, we get $\left|f(\cdot, u)-f\left(\cdot, u_{H}\right)\right|=\left|f_{u}\left(\cdot, u^{*}\right)\right|\left|u-u_{H}\right|$ for some u^{*}. Take L^{2}-norm to bothisides and estimate $\left\|f_{u}\left(\cdot, u^{*}\right)\right\|_{0} \leq\left\|f_{u}\right\|_{L^{\infty}(\Omega)} \leq$ ρ, equation (3.12) lead to

Since $\rho<1$, we can absorb the second term on right-hand side with the term on the left-hand side:

where a constant6 depends on Ω, the shape regularity, and one data.

CHAPTER IV

A POSTERIORI ERROR ESTIMATES

In the first step, we decomposed the residual equation in Lemma 3.1.3 for the true error into local contributions from each element.

Let $\varphi \in H_{0}^{1}(\Omega)$ be chosen arbitrarily. Then, by writing the single integral over the whole domain as a sum of integrals over the individual elements gives

$$
\mathcal{B}\left(\mathcal{E}_{H}, \varphi\right)=\sum_{T \in \mathcal{I}_{H}}\left\{\int_{T} f \varphi d x-\int_{T} A \nabla u_{H} \cdot \nabla \varphi d x\right\} .
$$

Applying Green's theorem to each of the terms in the second term and rearranging terms leads to

$$
\begin{align*}
& \mathcal{B}\left(\mathcal{E}_{H}, \varphi\right)=\sum_{T \in \mathcal{I}_{H}}\left\{\int_{T} f \varphi d x+\int_{T} \nabla \cdot\left(A \nabla u_{H}\right) \varphi d x-\int_{\partial T} \frac{\partial\left(A \nabla u_{H}\right)}{\partial n_{T}} \varphi d s\right\}, \\
& =\sum_{T \in \mathcal{T}_{H}}\left\{\int_{T}\left(f-f_{H}\right) \varphi d x+\int_{T}\left(f_{H}+\nabla \cdot\left(A \nabla u_{H}\right)\right) \varphi d x-\int_{\partial T} \frac{\partial\left(A \nabla u_{H}\right)}{\partial n_{T}} \varphi d s\right\}, \\
& =\sum_{T \in \mathcal{T}_{H}}\left\{\int_{T}\left(f f^{6} \sigma_{H}\right) \varphi d x+\int_{T} \mathcal{R}_{T}^{e}\left(u_{H}\right) \varphi d x-\int_{\partial T} \frac{\partial\left(A \nabla u_{H}\right)}{\partial n_{T}} \varphi d s\right\} \text {. } \\
& \text { Here } \widehat{\mathcal{R}}_{T}\left(u_{H}\right) \text { is the niteriorcesiduad } 198 \text { ค9 \& } \tag{4.1}\\
& \mathcal{R}_{T}\left(u_{H}\right):=f_{H}+\nabla \cdot\left(A \nabla u_{H}\right) \quad \text { in } T,
\end{align*}
$$

and n_{T} is the unit outward normal vector to ∂T. Each of these quantities is welldefined thanks to the smoothness of the data and regularity of the approximation u_{H} when restricted to a single element.

The contribution from the final term in equation (4.1) can be rewritten by observing that the trace of the function φ matches along an edge shared by two elements, giving

$$
\mathcal{B}\left(\mathcal{E}_{H}, \varphi\right)=\sum_{T \in \mathcal{I}_{H}}\left\{\int_{T}\left(f-f_{H}\right) \varphi d x+\int_{T} \mathcal{R}_{T} \varphi d x\right\}-\sum_{S \in \partial \mathcal{T}_{H}} \int_{S}\left[\frac{\partial\left(A \nabla u_{H}\right)}{\partial n}\right] \varphi d s
$$

where $\partial \mathcal{T}_{H}$ is the set of inter-element sides (edges and faces) of \mathcal{T}_{H} and the final summation is over the set $\partial \mathcal{I}_{H}$ consisting of the inter-element sides S on the interior of the mesh

defined on the side S separating elements T and T^{\prime} represents the jump discontinuity in the approximation to the normal flux on the interface. Then, they will be denoted by

Thus equation (4.2) then becomes

$$
\begin{equation*}
\mathcal{B}\left(\mathcal{E}_{H}, \varphi\right)=\sum_{T \in \mathcal{T}_{H}}\left\{\int_{T}\left(f-f_{H}\right) \varphi d x+\int_{T} \mathcal{R}_{T} \varphi d x\right\}+\sum_{S \in \partial \tau_{H}} \int_{S} J_{S} \varphi d s \tag{4.3}
\end{equation*}
$$

The equation (4.3) is written again to be 9 N

Finally, we defined local indicators and error estimators for finding upper bounds and local lower bounds.

Definition 4.0.3. For $T \in \mathcal{T}_{H}$ and $S \in \partial \mathcal{T}_{H}$ an inter-element side, we define the local error indicator $\eta_{H}(T)$ by

$$
\eta_{H}^{2}(T):=H_{T}^{2}\left\|\mathcal{R}_{T}\right\|_{L^{2}(T)}^{2}+\sum_{S \subset \partial T} H_{S}\left\|J_{S}\right\|_{L^{2}(S)}^{2},
$$

and the error estimator $\eta_{H}(\omega)$ for $\omega \subseteq \Omega$ by

$$
\eta_{H}^{2}(\omega):=\sum_{T \in \mathcal{T}_{H}, T \subseteq \omega} \eta_{H}^{2}(T) .
$$

4.1 Upper bounds

Let \mathcal{I}_{H} be the Clément interpolation operator. For a given $\varphi \in H_{0}^{1}(\Omega)$, where $\mathcal{I}_{H} \varphi \in \mathbb{V}_{H}^{\circ}$, and by the Lemma 3.1.3 and the identity (4.4), we get

and then subtracting from identity $(4,4)$ gives

$$
\begin{align*}
\mathcal{B}\left(\mathcal{E}_{H}, \varphi\right)= & \int_{\Omega}\left(f-f_{H}\right) \varphi d x+\sum_{T \in \mathcal{I}_{H}} \int_{T} \mathcal{R}_{T}\left(\varphi-\mathcal{I}_{H} \varphi\right) d x \\
& +\sum_{S \in \partial \mathcal{T}^{\prime}} \int_{S} \mathcal{J}\left(\varphi-\mathcal{I}_{H} \varphi\right) d s, \quad \forall \varphi \in H_{0}^{1}(\Omega) . \tag{4.5}
\end{align*}
$$

Applying the Cauchy-Schwarz inequality gives

By the clément interpolation (Theorem-2.2.6), we get

$$
\begin{aligned}
& +\sum_{S \in \partial \tau_{H}} C H_{S}^{1 / 2}\left\|J_{S}\right\|_{L^{2}(S)}\|\nabla \varphi\|_{L^{2}\left(\omega_{T}\right)} .
\end{aligned}
$$

Applying Cauchy-Schwarz inequality leads to

$$
\begin{align*}
\mathcal{B}\left(\mathcal{E}_{H}, \varphi\right) \leq & \left\|f-f_{H}\right\|_{0}\|\varphi\|_{0} \\
& +C\|\nabla \varphi\|_{0}\left\{\sum_{T \in \mathcal{T}_{H}} H_{T}^{2}\left\|\mathcal{R}_{T}\right\|_{L^{2}(T)}^{2}+\sum_{S \in \partial \mathcal{T}_{H}} H_{S}\left\|J_{S}\right\|_{L^{2}(S)}^{2}\right\}^{1 / 2} . \tag{4.6}
\end{align*}
$$

Therefore,

$$
\mathcal{B}\left(\mathcal{E}_{H}, \varphi\right) \leq\left\|f-f_{H}\right\|_{0}\|\varphi\|_{0}+C \eta_{H}(\Omega)\|\nabla \varphi\|_{0} \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

So, substituting $u-u_{H} \in H_{0}^{1}(\Omega)$ in place of φ results in the estimate

$$
\begin{equation*}
\left\|u-u_{H}\right\|^{2} \leq\left\|f-f_{H}\right\|_{0}\left\|u-u_{H}\right\|_{0}+C \eta_{H}(\Omega)\left\|\nabla\left(u-u_{H}\right)\right\|_{0} . \tag{4.7}
\end{equation*}
$$

By Corollary 3.3.2 and its assumptions, we get

$$
\left\|u-u_{H}\right\|^{2} \leq C \overline{C_{f} H \| f}-f_{H}\left\|\left|\left\|-\left.u_{H}\right|_{H^{1}(\Omega)}+C \eta_{H}(\Omega)\right\| \nabla\left(u-u_{H}\right) \|_{0} .\right.\right.
$$

By equivalence of $|=|_{H^{1}(\Omega)}$ and $\|/:\|<\operatorname{on}^{1} H_{0}^{1}(\Omega)$, we get

$$
\begin{equation*}
\left\|u-u_{H}\right\| \leq C_{1} H H f-f_{H} \|_{0}+C_{2} \eta_{H}(\Omega) \tag{4.8}
\end{equation*}
$$

Theorem 4.1.1 (Upper bound).

$$
\left\|u-u_{H}\right\| C_{1} \eta_{H}(\Omega)+C_{2} H\left\|f-f_{H}\right\|_{0}
$$

where the constants depends only on the shape regutarity, a coercivity constant, the domain Ω, and the data of the problem and C_{2} also depends on ρ in Corollary 3.3.2, the shape regularity, and the data of the problem.

Proof. Follows alt once from previous arguments.

4.2 Lower bounds

A key role for estimating the local lower bounds will be played by certain locally supported, nonnegative functions that are commonly referred to as bubble functions. The two types of bubble functions are interior bubble functions, supported a single element, and edge bubble functions, supported on a pair of elements.

Let $\psi_{T} \in \mathbb{P}_{3}(T)$ be an interior bubble function with $\operatorname{supp}\left(\psi_{T}\right)=T$ and $0 \leq \psi_{T} \leq 1$ and $\max _{x \in T} \psi_{T}(x)=1$
Theorem 4.2.1. There is a positive constant C such that for all v in a finitedimensional space $\mathcal{P}(T)$
and

where the constant is independent of v and H_{T}

Proof. See Theorem 2.2 in Ainsworth and Oden [1].
Let T_{1}, T_{2} ef $\mathcal{T}_{\vec{H}}$ be the pair of elements sharing the interior side S. Denote $\omega_{S}:=T_{7} \cup T_{2}$ and det $\psi_{S} \in \mathbb{P}_{2}\left(\omega_{S}\right)$ be an edge bubble function with $\operatorname{supp}\left(\psi_{S}\right)=\omega_{S}$ and $0 \leq \psi_{S} \leq 1$ and $\max _{x \in \omega_{S}} \psi_{S}(x)=1$.

Theorem 4.2.2. Let $S \in \partial T$ be an edge and let ψ_{S} be the corresponding edge bubble function. Let $\mathcal{P}(S)$ be the finite-dimensional space of functions defined on S. Then for $v \in \mathcal{P}(S)$, there exists a positive constant such that

$$
C^{-1}\|v\|_{L^{2}(S)}^{2} \leq \int_{S} \psi_{S} v^{2} d s \leq C\|v\|_{L^{2}(S)}^{2}
$$

and

$$
H_{T}^{-1 / 2}\left\|\psi_{S} v\right\|_{L^{2}(T)}+H_{T}^{1 / 2}\left|\psi_{S} v\right|_{H^{1}(T)} \leq C\|v\|_{L^{2}(S)}^{2}
$$

where the constant C is independent of v and H_{T}.

Proof. See Theorem 2.4 in Ainsworth and Oden [1].
Applying the first part of Theorem 4.2.1, we have

$$
\begin{equation*}
\| \overline{\mathcal{R}_{T} \|_{L^{2}}^{2}(T)} \leq C \int_{T} \psi_{T}{\overline{\mathcal{R}_{T}}}^{2} d x, \tag{4.9}
\end{equation*}
$$

where $\overline{\mathcal{R}_{T}}$ be the L^{2}-projection of \mathcal{R}_{T} onto the space of polynomials \mathbb{P}_{p} over the element $T \in \mathcal{T}_{H}$. The function $\varphi=\overline{\mathcal{R}_{T}} \psi_{T}$ vanishes on the boundary of element T, therefore, $\overline{\mathcal{R}_{T}} \psi_{T}$ can be extended to the rest of the domain as a continuous function by defining its values outside the element to be zero. Thus, inserting $\overline{\mathcal{R}_{T}} \psi_{T}$ into the equation (4.3) yields

$$
\mathcal{B}\left(\mathcal{E}_{H}, \overline{\mathcal{R}_{T}} \psi_{T}\right)=\int_{T}\left(\int-\int_{H}\right) \overline{\mathcal{R}_{T}} \psi_{T} d x+\int_{T} \mathcal{R}_{T} \overline{\mathcal{R}_{T}} \psi_{T} d x
$$

and therefore

$$
\begin{array}{r}
\int_{T} \psi_{T}{\overline{\mathcal{R}_{T}}}^{2} d x=\int_{T} \psi_{T} \overline{\mathcal{R}_{T}}\left(\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right) d x-\int_{T}\left(f-f_{H} \overline{\mathcal{R}_{T}} \psi_{T} d x+\mathcal{B}\left(\mathcal{E}_{H}, \overline{\mathcal{R}_{T}} \psi_{T}\right) .\right. \\
\text { คq\& } \tag{4.10}
\end{array}
$$

Applying the second part of properties of bubble functions, we obtain

Applying Cauchy-Schwarz inequality to the first term of (4.10) leads to

$$
\int_{T} \psi_{T} \overline{\mathcal{R}_{T}}\left(\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right) d x \leq\left\|\psi_{T} \overline{\mathcal{R}_{T}}\right\|_{L^{2}(T)}\left\|\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}(T)}
$$

By equation (4.11),

$$
\begin{equation*}
\int_{T} \psi_{T} \overline{\mathcal{R}_{T}}\left(\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right) d x \leq C\left\|\overline{\mathcal{R}_{T}}\right\|_{L^{2}(T)}\left\|\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}(T)} \tag{4.12}
\end{equation*}
$$

Similarly, for the second term of (4.10) we obtain

$$
\begin{equation*}
\int_{T}\left(f-f_{H}\right) \overline{\mathcal{R}_{T}} \psi_{T} d x \leq C\left\|f-f_{H}\right\|_{L^{2}(T)}\left\|\overline{\mathcal{R}_{T}}\right\|_{L^{2}(T)} \tag{4.13}
\end{equation*}
$$

Since the bilinear form \mathcal{B} is bounded and $\operatorname{supp}\left(\overline{\mathcal{R}_{T}} \psi_{T}\right)=T$,

$$
\mathcal{B}\left(\mathcal{E}_{H}, \overline{\mathcal{R}_{T}} \psi_{T}\right) \leq C\| \| \mathcal{E}_{H}\left\|_{H^{1}(T)}\right\| \psi_{T} \overline{\mathcal{R}_{T}} \|_{H^{1}(T)}
$$

and by Theorem 4.2.1,

$$
\begin{equation*}
\mathcal{B}\left(\mathcal{E}_{H}, \overline{\mathcal{R}}_{T} \psi_{T}\right) \leq \mathcal{C H}_{T}^{-1}\left\|\mathcal{E}_{H}\right\|_{H^{1}(T)}\left\|\overline{\mathcal{R}_{T}}\right\|_{L^{2}(T)} . \tag{4.14}
\end{equation*}
$$

Inserting these estimates into equation (4:10) gives
$\int_{T} \psi_{T}{\overline{\mathcal{R}_{T}}}^{2} d x \leq C\left\|\overline{\mathcal{R}_{T}}\right\|_{L^{2}(T)}\left\{\left\|\overline{\mathcal{R}}_{\bar{T}_{2}-\mathcal{R}_{T} \| L^{2}(T)}+\right\| f-f_{H}\left\|_{L^{2}(T)}+H_{T}^{-1}\right\| \mathcal{E}_{H} \|_{H^{1}(T)}\right\}$,
and rescaling (4.9)

$$
\begin{equation*}
\left\|\overline{\mathcal{R}_{T}}\right\|_{L^{2}(T)} \leq C\left\{\left\|\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}(T)}+\left\|f-f_{H}\right\|_{L^{2}(T)}+H_{T}^{-1}\left\|\mathcal{E}_{H}\right\|_{H^{1}(T)}\right\} . \tag{4.15}
\end{equation*}
$$

Hence, the desired bound on the actual residual follows from (4.15) and (4.16),

$$
\begin{equation*}
\left\|\mathcal{R}_{T}\right\|_{L^{2}(T)} \leq C\left\{\left\|\overline{\overline{\mathcal{R}}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}(T)}+\left\|f-f_{H}\right\|_{L^{2}(T)}+H_{T}^{-1}\left\|\mathcal{E}_{H}\right\|_{H^{1}(T)}\right\} \tag{4.17}
\end{equation*}
$$

By applying the first part of Theorem 4.2.2,

$$
\begin{equation*}
\left\|\overline{J_{S}}\right\|_{L^{2}(S)}^{2} \leq C \int_{S} \psi_{S}{\overline{J_{S}}}^{2} d s \tag{4.18}
\end{equation*}
$$

where $\overline{J_{S}}$ is the best L^{2}-projection of J_{S} onto $\mathbb{P}_{p}(S)$. We extend $\overline{J_{S}}$ constantly along the normal such that it is defined on ω_{S}. The function $\varphi=\overline{J_{S}} \psi_{S}$ vanishes on the boundary of the subdomain ω_{S}. Extending φ by zero outside ω_{S} to the whole of the domain Ω gives a function $\varphi \in H_{0}^{1}(\Omega)$. The residual equation (4.3), with this choice of φ, yields

$$
\mathcal{B}\left(\mathcal{E}_{H}, \overline{J_{S}} \psi_{S}\right)=\int_{\omega_{S}}\left(f-f_{H}\right) \bar{J}_{S} \psi_{S} d \int_{\mathcal{D}^{2}} \int_{\mathcal{R}_{T}} \bar{J}_{S} \psi_{S} d x+\int_{S} J_{S} \overline{J_{S}} \psi_{S} d s,
$$

and thus

$$
\left.\int_{S} \psi_{S}{\overline{J_{S}}}^{2} d s=\int_{S} \psi_{S} \bar{J}_{S}\left(\bar{J}_{S}\right) J_{S}\right) d s+\mathcal{B}\left(\mathcal{E}_{H}, \overline{J_{S}} \psi_{S}\right)-\int_{\omega_{S}} \psi_{S} \mathcal{R}_{T} \overline{J_{S}} d x
$$

$$
\begin{equation*}
-\int_{\omega S}\left(f-f_{H}\right) J_{S} \psi_{S} d x \tag{4.19}
\end{equation*}
$$

Each of these terms can be estimated by using Theorem 4.2.2 and Cauchy-Schwarz inequality. The first term of (4.19) leads to

$$
\begin{array}{r}
\int_{S} \psi_{S} \overline{J_{S}}\left(\overline{J_{S}}-\sqrt{\left.J_{S}\right) d s} \leq\left\|\psi_{S} \overline{J_{S}}\right\|_{L^{2}(S)}\left\|\overline{J_{S}}-J_{S}\right\|_{L^{2}(S)},\right. \\
\leq C\left\|\overline{J_{S}\left\|_{L^{2}(S)}\right\| \overline{J_{S}}} \int_{S}\right\|_{L^{2}(S)} \text {, } \tag{4.20}
\end{array}
$$

The second term is estimated by the continuity of \mathcal{B}_{2}

$$
\begin{align*}
& \text { The thirdeterm is bounded by } \\
& \qquad \begin{aligned}
\int_{\omega_{S}} \psi_{S} \mathcal{R}_{T} \overline{J_{S}} d x & \leq\left\|\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{S}\right)}\left\|\psi_{S} \overline{J_{S}}\right\|_{L^{2}\left(\omega_{S}\right)} \\
& \leq C H_{S}^{1 / 2}\left\|\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{S}\right)}\left\|\overline{J_{S}}\right\|_{L^{2}(S)} .
\end{aligned}
\end{align*}
$$

Finally the estimation of the last term is

$$
\begin{align*}
\int_{\omega_{S}}\left(f-f_{H}\right) \overline{J_{S}} \psi_{S} d x & \leq\left\|f-f_{H}\right\|_{L^{2}\left(\omega_{S}\right)}\left\|\overline{J_{S}} \psi_{S}\right\|_{L^{2}\left(\omega_{S}\right)} \\
& \leq C H_{S}^{1 / 2}\left\|f-f_{H}\right\|_{L^{2}\left(\omega_{S}\right)}\left\|\overline{J_{S}}\right\|_{L^{2}(S)} \tag{4.23}
\end{align*}
$$

$$
\begin{aligned}
& \mathcal{B}\left(\mathcal{E}_{H,}, \overline{J_{S}} \psi_{S}\right) \leq C\left\|\mathcal{E}_{H}\right\|_{H^{1}\left(\omega_{S}\right)}\left\|\psi_{S} \overline{J_{S}}\right\|_{H^{1}\left(\omega_{S}\right)},
\end{aligned}
$$

As a consequence of these estimates and the bound (4.18), we conclude that

$$
\begin{aligned}
\left\|\overline{J_{S}}\right\|_{L^{2}(S)} \leq & C\left\{\left\|\overline{J_{S}}-J_{S}\right\|_{L^{2}(S)}+H_{S}^{1 / 2}\left\|\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{S}\right)}+H_{S}^{-1 / 2}\left\|\mathcal{E}_{H}\right\|_{H^{1}\left(\omega_{S}\right)}\right. \\
& \left.+H_{S}^{1 / 2}\left\|f-f_{H}\right\|_{L^{2}\left(\omega_{S}\right)}\right\} .
\end{aligned}
$$

By triangle inequality similar to (4.16), we obtain

$$
\begin{align*}
\left\|J_{S}\right\|_{L^{2}(S)} \leq & C\left\{\left\|\overline{J_{S}}-J_{S}\right\|_{L^{2}(S)}+H_{S}^{1 / 2}\left\|\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{S}\right)}+H_{S}^{-1 / 2}\left\|\mathcal{E}_{H}\right\|_{H^{1}\left(\omega_{S}\right)}\right. \\
& \left.+H_{S}^{1 / 2}\left\|f=f_{H}\right\|_{L^{2}\left(\omega_{S}\right)}\right\} \tag{4.24}
\end{align*}
$$

Applying the estimate (4.17) for interior residual in terms of the true error, giving

$$
\begin{align*}
\left\|J_{S}\right\|_{L^{2}(S)} \leq & C\left\{\left\|\overline{J_{S}}-J_{S}\right\| L_{L^{2}(S)}+H_{S}^{1 / 2}\left\|\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{S}\right)}+H_{S}^{-1 / 2}\left\|\mathcal{E}_{H}\right\|_{H^{1}\left(\omega_{S}\right)}\right. \\
& \left.+H_{S}^{1 / 2}\left\|f-f_{H}\right\|_{L^{2}\left(\omega_{S}\right)}\right\} . \tag{4.25}
\end{align*}
$$

Theorem 4.2.3. Let \mathcal{R}_{T} and S $_{S}$ denote the interior and boundary residuals associated with the finite element approximation constructed from the subspace \mathbb{V}_{H}°. Suppose that $\overline{\mathcal{R}_{T}}$ and $\overline{J_{S}}$ are polynomial approximations to the interior and boundary residuals constructed from finite-dimensional subspace. Then,

$$
\begin{equation*}
\left\|\mathcal{R}_{T}\right\|_{L^{2}(T)} \leq C\left\{\left\|\overline{\mathcal{R}_{T}}=\mathcal{R}_{T}\right\|_{L^{2}(T)}+\left\|£-f_{H}\right\|_{L^{2}(T)}+H_{T}^{-1}\left\|\mathcal{E}_{H}\right\|_{H^{1}(T)}\right\} \tag{4.26}
\end{equation*}
$$

and
where C is a positive constant depending only on the shape regularity of elements and the selection of the finite-dimensional subspace used to approximate the interior and boundary residuals.

Proof. Follows at once from previous arguments.

$$
\begin{align*}
& \left.+H_{S}^{1 / 2}\left\|f-f_{H}\right\|_{L^{2}\left(\omega_{S}\right)}\right\}, \tag{4.27}
\end{align*}
$$

Finally, by definition of the indicator and Theorem 4.2.3,

$$
\begin{aligned}
\eta_{H}(T)^{2}= & H_{T}^{2}\left\|\mathcal{R}_{T}\right\|_{L^{2}(T)}^{2}+\sum_{S \subset \partial T} H_{S}\left\|J_{S}\right\|_{L^{2}(S)}^{2} \\
\leq & C H_{T}^{2}\left\|\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}(T)}^{2}+C H_{T}^{2}\left\|f-f_{H}\right\|_{L^{2}(T)}^{2}+C\left\|\mathcal{E}_{H}\right\|_{H^{1}(T)}^{2}+ \\
& C \sum_{S \subset \partial T}\left\{H_{S}\left\|\overline{J_{S}}-J_{S}\right\|_{L^{2}(S)}^{2}+H_{S}^{2}\left\|\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{S}\right)}^{2}+\left\|\mathcal{E}_{H}\right\|_{H^{1}\left(\omega_{S}\right)}+\right. \\
& \left.H_{S}^{2}\left\|f-f_{H}\right\|_{L^{2}\left(\omega_{S}\right)}\right\} .
\end{aligned}
$$

$$
\text { For } \tilde{\omega}_{T}:=\bigcup_{S \subseteq \partial T} \omega_{S}, \text { we have }
$$

$$
\eta_{H}^{2}(T) \leq C_{1}\left\|\mathcal{E}_{H}\right\|_{H^{1}\left(\tilde{\omega}_{T}\right)}^{2}+C_{2}\left\{H_{T}^{2}\left\|\overline{\mathcal{R}}_{T}-\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{T}\right)}^{2}+\sum_{S \subset \partial T} H_{S}\left\|\overline{J_{S}}-J_{S}\right\|_{L^{2}(S)}^{2}\right\}+
$$

$$
\begin{equation*}
C_{3} H_{T}^{2}\left\|f-f_{H}\right\|_{L^{2}\left(\hat{\omega}_{T}\right)}^{2} \tag{4.28}
\end{equation*}
$$

where the constant C_{1}, C_{2} and C_{3} depend only on the shape regularity, and the data of the problem. We define the oscillation on the element T by

$$
o s c_{H}^{2}(T)=H_{T}^{2}\left\|\overline{\mathcal{R}_{T}}-\mathcal{R}_{T}\right\|_{L^{2}\left(\omega_{T}\right)}^{2}+\sum_{S \in \partial T} H_{S}\left\|\overline{J_{S}}-J_{S}\right\|_{L^{2}(S)}^{2},
$$

and for $\omega \subseteq \Omega$, we define

Theorem 4.2.4 (Local lower bound).

$$
\eta_{H}^{2}(T) \leq C_{1}\left\|\mathcal{E}_{H}\right\|_{H^{1}\left(\tilde{\omega}_{T}\right)}^{2}+C_{2} o s c_{H}^{2}\left(\tilde{\omega}_{T}\right)+C_{3} H_{T}^{2}\left\|f-f_{H}\right\|_{L^{2}\left(\tilde{\omega}_{T}\right)}^{2}
$$

where the constant C_{1}, C_{2} and C_{3} depend only on the shape regularity, and the data of the problem.

Proof. Follows at once from previous arguments.

4.3 Conclusions

In previous section, we derived the upper and local lower bounds for a posteriori error estimates. The Theorem 4.1.1 gives the upper bound,

$$
\left\|u-u_{H}\right\| \leq C_{1} \eta_{H}(\Omega)+C_{2} H\left\|f-f_{H}\right\|_{0},
$$

and the Theorem 4.2.4 gives the local lower bounds,

$$
\eta_{H}^{2}(T) \leq C_{1}\left\|u-u_{H}\right\|_{H H}^{2}+C_{2} \sigma \overline{\overline{s c_{H}}\left(\tilde{\omega}_{T}\right)+C_{3} H_{T}^{2}\left\|f-f_{H}\right\|_{L^{2}\left(\tilde{\omega}_{T}\right)}^{2} . . . ~ . ~}
$$

Note that the upper bound we have the term $\left\|f-f_{H}\right\|_{0}$ coming from the nonlinearity of the function $f(x, u)$ which does not appear in the case of linear problems. Similarly, we also have the term $\left\|f_{C}-f_{H}\right\|_{L^{2}\left(\omega_{T}\right)}$ in the local lower bounds.

It is known from $[4,6,7]$ for linear cases the convergence of AFEM relies on the control of error indicators $\eta_{11}(T)$ and oscillation $\operatorname{osc}_{H}(T)$, based on the assumption that the error $\| u$ - $\mu_{H} \|$ reduces if we can control $\eta_{H}(T)$ and $o s c_{H}(T)$. For our result, in order to design a computable algorithm of AFEM we need to control the term $\left\|f=f_{H}\right\|_{L^{2}\left(\omega_{T}\right)}$ that appears on the error bounds. Since it is not computable in term of given data and known information like $\eta_{H}(T)$ or $o s c_{H}(T)$, due to the knowledge of exact solution. Whemay control this term with the following two ideas. First, if f has first derivative in the second argument and
 the terms $\left\|f-f_{H}\right\|_{0}$ in the error term $\left\|u-u_{H}\right\|$, namely

$$
\left\|f(\cdot, u)-f\left(\cdot, u_{H}\right)\right\|_{0} \leq\left\|f_{u}\right\|_{L^{\infty}(\Omega)}\left\|u-u_{H}\right\|_{0} \leq \rho\left\|u-u_{H}\right\| .
$$

With this we obtain the Corollary 4.3.1.

Corollary 4.3.1. Upper bounds: $\left\|u-u_{H}\right\| \leq C \eta_{H}(\Omega)$.
Local lower bounds: $C_{1} \eta_{H}^{2}(T) \leq C_{2} o s c_{H}^{2}\left(\tilde{\omega}_{T}\right)+\left\|u-u_{H}\right\|_{H^{1}\left(\tilde{\omega}_{T}\right)}^{2}$.

In this case, we obtain the same error estimates as for linear cases. Thus the algorithm of AFEM can be designed similarly. Second, we may try approximate $\left\|f-f_{H}\right\|_{L^{2}\left(\omega_{T}\right)}$ by something that can be computed and use this also as an indicator similar to the role of $\eta_{H}(T)$ and $\operatorname{osc}_{H}(T)$ in the AFEM algorithm. This may require a further analysis to obtain such the approximation. With the given a posteriori error estimates, one can design the AFEM algorithm as follows.

The Adaptive Finite Element Method(AFEM) consists of loops of the form

$$
\text { SOLVE } \rightarrow \text { ESTINIATE } \rightarrow \text { MARK } \rightarrow \text { REFINE. }
$$

The procedure SOLVE solves (3.7) for the discrete solution u_{H}. Note that they requires methods for solving non-linear system like the Newton's method. The procedure ESTIMATE determines the element indicators $\eta_{H}(T)$, oscillation $\operatorname{osc}_{H}(T)$ and approximation of $\left\|f-f_{H}\right\|_{L^{2}(T)}$ that are computable for each element. Depending on their relative sizes, these quantities are later used by the procedure MARK to mark element T, and thereby create a subset of \mathcal{T}_{H} of elements to be refine. Finally, procedure REFINE partitions those elements in the subset to maintain mesh conformity.

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย
NOTATIONS

$\|\cdot\|_{V} \quad$ The norm on the space V, p.5-6
$|\cdot|_{W} \quad$ The semi-norm on the space W, p. 6
$\|\cdot\|_{0} \quad$ The norm on $L^{2}(\Omega)$, p. 6
$\|\cdot\| \| \quad$ The energy norm, p. 12
$\mathcal{B}(\cdot, \cdot)$ The bilinear form, p. 18
$\langle\cdot, \cdot\rangle \quad$ The inner product on $L^{2}(\Omega)$, p. 6
$H^{1}(\Omega)$ The Sobolev spaces of functions in $L^{2}(\Omega)$ whose
first derivatives are also in $L_{2}^{2}(\Omega)$, p. 6
$H_{0}^{1}(\Omega)$ The space $H^{1}(\Omega)$ with vanishing on boundary, p. 6
$\mathbb{V}_{H} \quad$ The finite element space, p. 9
$\mathbb{V}_{H}^{\circ} \quad$ the space \mathbb{V}_{H} with vanishing on boundary, p. 9
$\mathbb{P}_{p}(\omega)$ The set of att polynomials on ω in two variables of degree
less than or equal to p, p. 8

∂T ลิThe boundary of the element Thp.10 9% ?
$\partial \mathcal{T}_{H} \quad$ The set inter-element sides, p. 18
$H_{T} \quad$ The diameter of on the element T, p. 8
$H_{S} \quad$ The diameter of on the side $S \subseteq T$, p. 10
$H \quad$ The maximum of H_{T} for $T \in \mathcal{T}_{H}$, p. 15
$\rho_{T} \quad$ The diameter of the largest circle inscribed in T, p. 8
$\kappa_{T} \quad$ The regularity constant on the element T, p. 8
$\omega_{S} \quad$ The union of the pair elements sharing the interior side S, p. 21
$\omega_{T} \quad$ The patch element of the element T, p. 9
$\tilde{\omega}_{T} \quad$ The union of ω_{S} for $S \subseteq \partial T$, p. 26
$\mathcal{I}_{H} \quad$ The Clément Interpolationoperator, p. 10
$\mathcal{E}_{H} \quad$ The different between u and $u_{H}, \mathrm{p} .12$
$\mathcal{R}_{T}\left(u_{H}\right) \quad$ The interior residual of u_{H} on the element T, p. 17
$J_{S}\left(u_{H}\right) \quad$ The jump discontinuity of u_{H} on the element T, p. 18
$\eta_{H}(T) \quad$ The local indicator on the element T, p. 18
$\operatorname{osc}_{H}(T)$ The oscillation on the element T, p. 26
$\psi_{T} \quad$ The interior bubble on the element $T, \mathrm{p} .21$
$\psi_{S} \quad$ The edge bubble function on the interior side S, p. 21 ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, John Wiley \& Sons, Inc., New York, 2000.
[2] D. Braess, Finite elements, Cambrige University Press, New York, 2001.
[3] S. C. Brenner and L. R. Scott, The mathematical theory of finite element models, Springer-Verlag, Inc., New York, 1994.
[4] W. Dorfler, A convergence adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33, 1106-1124 (1996)
[5] L. C. Evans, Partial differential equations, Graduate studies in mathematics 19, AMS (1998).
[6] K. Mekchay and R.H. Nochetto, Convergence of adaptive finite element methods for general second order tinear elliptic PDEs, SIAM J. Numer. Anal. 43, 1803-1827 (2005)
[7] P. Morin, R. H. Nochetto and KK. G. Siebert: Convergence of adaptive finite element methods, SIAM J. Numer. Applied Math. 44, 631-658 (2002).
[8] R. H. Nochetto, A. Schmidt, F. G. Siebert and A. Veeser, Pointwise a posteriori error estimates for monotone semi-linear equations, Numerische Mathematik, Springer-Verlag New, York, Inc. 104, 515-538 (2006).

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

VITA

Meeting in Mathematics, 5-6 March 2009

Attend

- The $13^{\text {th }}$ Annual Meeting in Mathematics, 6-7 May 2008
- The $14^{\text {th }}$ Annual Meeting in Mathematics, 5-6 March 2009

