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CHAPTER 1

INTRODUCTION

The ability to manipulate objects is one of the fundamental tasks which we need a
robot to interact with its surroundings. Grasping and regrasping are operations which a
human performs to change the environment by grabbing an object, lifting and placing it
to another position or another posture. This seems to be a natural and simple ability for a
human but not for a robot. The robot does net have its own instinct to perform any task.
It has to be controlled restrictively on a task,the geometry of an object, the constraints
of itself and the environment.. This challenges tobotic.researchers to analyze and transfer

these manipulation skills't6 a robet.in the recent decades.

The central idea of manipulation is t0 move an object to a desire configuration while
the object being restrained an stable states. One approach of object manipulation is grasp-
ing an object in a fixed stable grasping co;l:ﬁg-uration and then moving the object from
place to place. However, the pick and place bperation is performed by a motion sequence
of an arm which requires a large workspaoe t_C)-';(:k-.lange the grasping configuration even for
manipulating a small object. Further, it requifés a stable placement for the object when
the robot changes a grasping configuration. T.(')Veivoid these limitations, an in-hand ma-
nipulation is taken place to bring the object throug—gh several actions by changing grasping
configurations without releasing the grasped object. The operation of changing a grasp-
ing configuration is usually called regrasping. To achicve a manipulation task, the fingers
have to be moved several times to reach the target posture. This arises the in-hand manip-
ulation planning probleny, giventan ifitidl grasp and a target:grasp, the goal is to compute
the sequence of the fingérs’ movements which changes the grasp to the target position
while still maintaining stability, For manipulation involving grasping, to verify stability
of a grasp, the forcesclosure preperty istnsually congidered in several literatures dealing

with the grasp synthesis problem.

In a manipulation, we have to consider all constraints arising from a task and a robot
hand. Despite planning a manipulation sequence considering all these constraints could
accomplish a task, there are some kinds of arising restrictions and drawbacks. All com-
plexities are gathered in the manipulation planning that might uses non-reasonable time to
compute a simple manipulation sequence. Further, combining mechanical constraints of

a robot hand in planning confines the result manipulation sequences to the specific robot



hand platform. Therefore, the manipulation sequences may be not feasible for another

hand platform.

The problem is that, currently, we have so many tasks, so many objects and so
many robot hands. There is no algorithm that works best on all settings. This is mainly
because tasks, objects and robot hands are varying. The problem of task/object/hand
dependency is the inspiration of this work. We propose to decompose the manipulation
problem into layers. We split the problem into three main levels, each of which considers
task constraints, object constraints and hand constraints separately. It allows a hardware
practitioner to concentrate on creating a hands At the same time, we can imagine any use
of robot in manipulation. The-advantage of the deeemposition is that robot visionaries
can abstract their manipulation-algorithms away frem constraints and limitations of the

recent robot hand developments.

We aim to derive @ framework that shall be applicablc to any task, any object or any
robot hand. The key coneept is simple; atask'and a hand impose on manipulation planning
many constraints, which we simply decide fp Jneglect them. Without any assumption on
a task or a hand, solutions from the algorithrrit will be dependent only on the object being
manipulated, not with any predefined hand ortask After solutions are identified, when
knowledge of a hand and a task is"provided, w;:. tﬁén find solutions that satisfy the arising

constraints. -

Given an objectt0 be manipulated, a condition thatcan be verified without con-
sidering constraints of a task and a robot handis the force-closure condition because we
can consider only contactspesitions of the end effectors which are applicable only for
force-closure verification: ' This reduees jour consideration into the problem of planning
a sequence of the'end effectors from an initial grasp to a target grasp while all grasps in
the sequence maintain force=closure; We callrarsequence of changingithe end effectors’
positions regrasp sequence. The problem of determining such sequence’is referred to as

regrasp planning problem.

This work studies the problem of regrasp planning which computes a sequence
of finger repositioning from initial grasping configuration to a desired configuration for
polyhedral-modelled object and a set of discrete points based on the following assump-
tions. The polyhedral model is chosen because most objects in the real world can be
represented by linear surfaces. An object is described by linear segments in 2D and flat

surfaces in 3D. Further, since the representation of an object is linear, we can efficiently



solve the regrasp planning problem using existing linear algebra and computational ge-
ometry algorithms. For a complex object, we describe it by a set of discrete points on its
surface. Approaches to handle this problem setting in both 2D and 3D workspace are also

proposed.

The hands are assumed to be equipped with three or four in 2D workspace and five
fingers in 3D workspace. 2- and 3-finger grasp are sufficient to grasp a 2D object and
4-finger grasp is sufficient to grasp a 3D object. The other one finger is used to switch
grasping position. Our planner aims to.construct general solution satisfying grasping con-
straints regardless task constraints, kinematic'constraints, dynamic constraints, etc. The
most advantage of general solution is independefiCy.+itis applicable to any task or hand in
the real world. A finger is therefore assumed to be a free-flying point contact. To maintain
stability, grasping constraint€onsidered in this work is associated with force closure prop-
erty. Every grasping configtiration/u the-obtained sequence of finger repositioning has to

satisfy force closure property to'ensure stabil'ity during the entire repositioning process.

1.1 Related Works

Regrasp problem consists of ‘various problems in many subfields on robotics.
Firstly, we have to define what we want the fp_ﬁdt to do. This is according to task con-
straints. Based on the classification of grasp b}g Cutkosky (1989), two main grasping
types are concerned, fingertip grasp and power grasp. Fingertip grasps achieve dexterity
by holding the objects by the tips of the fingers. Power grasps are distinguished by large
areas of contact between the object and the fingers and palm which do not allow the mo-
tion of the grasped objects’ The grasps perform with low dexterity. For regrasping, the

fingertip grasps are preferred since the problem required dexterity of grasps.

Regrasp.planning is the main theme of this. work. The method.reports a sequence of
fingers’ position from initial grasp:toidesired grasp given by task planner. The obtained
grasping positions not only associate with task requirement but also satisfy stability con-
straint. The force closure property is applied to satisfy the stability constraint. This means
that every grasping position in a sequence calculated by the method has to achieve force

closure grasp.

In practice, a robot finger is not a point. A grasp has to satisfy kinematic constraints
and dynamic constraints as well. Motions of fingers when a regrasp process is performed,

also introduce to a manipulation planning problem which mainly mentions accessability



and collision avoidance of a path from an initial configuration to a desired one.
1.1.1 Robot Hands

Dexterous manipulation or regrasp problem require a manipulator which is able
to change a grasped object’s configuration with respect to the hand without releasing it.
The robot hand is one suitable manipulator for this task. It may be designed to be an
approximation of the human hand or specified for particular tasks. A well-known 3-finger
robot hand is Barret Hand(Townsend, 2000) commercially made by Barrett Technology
Inc. Two fingers can be spread synchronously by 180° around the palm. The Utah/MIT
hand (Jacobsen et al., 1986) is the first anthtepemorphic hand with four fingers. Each
finger has four degrees of freedom. The whole hand system is very large including the
out-hand actuators. The Robenauthand (Lovchik and Diftler, 1999) designed for space
based operations has five fingérs.The hand combined with wrist and forearm has fourteen
degrees of freedom. Another anthropemorphic hand 1s the DLR-Hand (Butterfal3 et al.,
2001). The hand consists'of founfingers with the actuators embedded inside.

1.1.2 Contact Kinematics, Dynamic and '-C.Ontrol of Manipulation

When the object has been grasped, the _h_-a—ngl‘_‘is possible to perform in-hand manip-
ulation. To gain more dexterity, the hand is }i_ot-_ required to maintain a rigid grasp. It
may therefore roll, slide or release and place ﬁn:gers to change the grasp configuration.
The accurate control of the force applied to the object, which associates with the contact

constraints is required to achieve the operations.

One approach that the dexterous hand manipulates.an ebject, is exploiting a rolling
contact. Rolling is the operation that-the fingertip rolls without'slipping on the object’s
surface. It is defined by the constraints that the fingestip and object velocities are equal at
contact peint, I'he kinematic constraints and transformations betwgeen task-space and lo-
cal coordinates are presented in (Kerr and Roth, 1986) and (Montana, 1988). The rolling
constraints are formulated in different ways. Kerr and Rott (1986) derived the force anal-
ysis for the systems using a set of differential equations to describe the motion of the
object with pure rolling contact. Montana (1988) proposed a method for relating relative
rigid body motion to the rates of change of contact coordinates using a matrix formulation
of the motion of a point of contact over the rolling surfaces. Sarkar ef al. (1997) intro-
duced local contact coordinates which allow them to formulate the dynamics and control

of manipulation via rolling contacts in explicit equations relating the velocities and ac-



celerations of the contact points. The formulation admits motion of the contacts during
the manipulation process. Li et al. (2000) developed a unified formulation describing the

relationship between the object motion and the joint motion.

Dexterous manipulation sometimes exploits slippage between the fingers and the
object to change grasping configuration. Sliding a finger along the surface of an object
requires a good model of the contact friction which is mostly assumed Coulomb friction
model. A finger exerts a force inward to the object’s surface when it slides along the
surface. According to Coulomb friction model, when the finger is sliding, the contact
force must lie on the edge of the friction cone: Broek (1988) derived a kinematic relation
between the object motion, theimotion constraints andthe grasp forces. Cole et al. (1989)
presented a coordinated contiellaw for sliding contacts between an object and finger-
tip including a problem of.ehoosing contact positions for collision avoidance. In (Cole
etal., 1992), the sliding metionof the fingertips along the object’s surface is dynamically
controlled simultaneously with controlling the position and orientation of the held object.
Zheng et al. (2000) formulated a dynamic Ebntrol of a 3-finger robot hand manipulating
an object in 3D. One fingeris allowed to slidé—_on the object’s surface. Motion equations of
the whole system are derived. They also propg(')s-.éd a dynamic control law for linearizing
the system dynamics and realizing the desifé'_g'l_opject motion, the desired finger sliding

and desired grasping force.

Combinations of -«rolling and sliding are in consideration as well. Cai and Roth
(1987), (1988) studied spatial motions combining rolling and sliding between rigid bod-
ies for point contact andline contact, respectively. Chong«(1993) proposed an algorithm
generating finite motion of object by considering sliding contacts as well as rolling con-
tacts between the fingertips and the object. The minimum contact forces and minimum

joint velocities are solved for the relative velocity at.the contact point.

Forces applied to the object by the fingers are controlled for the desired manipula-
tion. Kerr and Roth (1986) developed a hand Jacobian which calculates the joint torques
from the desired contact forces. Yoshikawa and Nagai (1988) decomposed forces into
two components. Manipulating or external forces produce a net force and torque on the
object. The other forces are grasping or internal forces which produce no net force nor
torque on the object. These forces are used to maintain a secure grasp. The same authors
gave a physically reasonable definition of manipulating force and grasping force for 2-, 3-
and 4-finger hands in (1991). They also presented an algorithm for decomposing a given

fingertip force into manipulating and grasping forces. Using the concept of the manip-



ulating and grasping forces, they proposed a dynamic manipulation/grasping controller
of multifingered robot hands based on the dynamic control and the hybrid position/force
control. The controller consists of a compensator which linearizes the whole grasping
system and a servo controller for the linearized system. Nakamura et al. (1989) discussed
the dynamical coordination of a multifingered robot hand. The coordination problem is
solved in two phases. Firstly, determine the resultant force used for maintaining dynamic
equilibrium and for generating the restoring force. Secondly, determine the internal force
used to satisfy the static frictional constraints and is related to contact stability. Li et
al. (1998) studied a formulation of dynami¢ stability of grasping using Lapunov stability

theory for measurement purpose.

The systems discussed.above are formed by complex constraints. A system that
a manipulation is achievedsby low velocity motions is called quasi-static. Quasi-static
analysis results are thereforé much simpler and practical. Fearing (1986) considered slip
from a quasi-static viewpoifit (0 achieve grasp stability. Yoshikawa et al. (1993) used
controlled slip in quasi-statig’System to modify the grasp and increase manipulation range

for a 3-finger robot hand.

1.1.3 Grasp Definition a

Secure holding an object in-a.robot hand 18 required in grasping. The concept of
a firm grasp is formalized in various ways. Equilibrium, force closure and form closure
property are usually applied to ensure the stability of a grasp.-Equilibrium grasp is a grasp
that the resultant of forces and torques exerted to the grasped object are zero. According
to the definition, an equilibrium grasp cannet resist any disturbance. This property is
therefore not sufficient to ensure the stability lof a grasp. Horce ¢closure grasp is a grasp
that can exert a resisting force and torque balancing any external disturbance on the ob-
ject. A «closely related property;taforce clogure,is form closure firstly investigated by
Reuleaux (1963). "The distinction between form ‘closure” and force closure is that form
closure considers the immobility of an object in presence of fixed contact points whereas
force closure considers how contact points can exert force and torque on an object. An-
other difference between form and force closure is the presence of friction. Friction effect
is considered in force closure while it is neglected in form closure analysis. Markenscoff
et al. (1990) provided an upper bound to the number of contacts necessary to achieve
form closure grasps. They showed that four contact points are sufficient for the form-
closure grasp of any planar object and seven contact points are sufficient in spatial case.

Bicchi (1995) considered form closure as a purely geometric property of a set of contact



constraints. Rimon and Burdick (1996) gave precise definitions for first and second order
form closure for frictionless grasps based on mobility theory. They also showed that a
frictionless grasp is force closure if and only if it is form closure for both first order and

second order.
1.1.4 Force Closure

To ensure that the object is grasped securely, the classical force closure condition
is employed. A grasp of an object achieves force closure when it can resist any external
wrench exerted on the grasped object. The well-known qualitative test for a force closure
grasp is to check whether the contact wrenches.of the grasp positively span the whole
wrench space (Salisbury, 1982). This is equivalent to checking whether the convex hull
of the primitive contact wreaehes' contains the origin (Mishra et al., 1987b). Various
approaches for testing whether the originiis inside the convex hull are proposed. Yun-
Hui Liu (1998) proposed a s€cursive reduction technique which allows the problem of
testing convex hull containing the origin in’ high dimensions to be solved in the lowest
dimension. The same aughors transfonned:";_tﬁis problem to ray-shooting which can be
solved by linear programming (Liu, 1999). Zhu and Wang (2003a) developed the force
closure test based on the concept of @ distaﬁég which uses a convex hull containing the
origin as a metric to test whether the origin;_liéjls" in the interior of the convex hull of
the primitive wrenches. Recently; Zhu et al: "'(2904) discussed that the problem can be
transformed into the ‘preblem of calculation of distance between convex objects. They

proposed the use of pseudodistance function to solve the problem.

Other approaches ofi'qualitative test for a force closure grasp by considering the
workspace, not the wrench space, were also investigated. [Nguyen (1988b) proposed a
geometric method for testing 2-finger force closure grasps on polygonal objects. The
synthesis of stable\graspsiwas proven byiconstructingvirtual springs-at theé contact points,
such that a desired stiffness matrix about'its stable €quilibritm can be“acquired. Ponce
et al. proposed the concept of non-marginal equilibrium which implies the force closure
property. Based on this concept, the qualitative tests of 3-finger grasps for polygonal
objects (Ponce and Faverjon, 1995a) and 4-finger grasps for polyhedral objects (Ponce
et al., 1997) were proposed.

For regrasping, a set of force closure grasps has to be calculated. In (Ponce and
Faverjon, 1995a) and (Ponce et al., 1997), a grasp is represented by parameters related

to positions on the grasped faces. To calculate all possible grasps, two(three) additional



parameters are required to construct linear constraints for 2D(3D) case. The additional
parameters have to be eliminated to acquire a set of force closure grasping positions on
given grasped faces. Sudsang and Ponce (1995) proposed another representation of grasps
avoiding the use of additional parameters. A point in workspace is used to represent a set

of force closure grasps.

Quantitative tests of force closure grasps are also considered to define the quality of
grasps. Kirkpatric et al. (1990) considered the most general stability measurement which
does not know a priori knowledge of disturbance. An external wrench is assumed to be
uniformly distributed in every direction. The minimaum magnitude of a particular external
wrench that breaks force closure property is measused: This is equivalent to the radius of
the maximal ball that can fit inside the convex hull of primitive contact wrenches. Ferrari
and Canny (1992) applied.this caiterion to plan the optimal grasp. The radius of maximal
ball is used in many works, su¢h/as (Mirtich and Canny. 1993; Borst et al., 2003; Jia,
1995). L5

Recently, the best performance n resiétiilg external wrenches as the optimality cri-
terion 1s still studied. Yun-Hui Lui (1999) addressed the problem of minimizing the L,
norm of the grasp forces in balancing an ex'tefrnal wrench, which can be transformed to
ray-shooting problem. Zhu and Wang (2003a) hci&fessed the problem of planning optimal
grasps that minimize the ) distancé and expresses the best performance in firmly hold-
ing an object while resisting external wrench loads. Zhu ef @l. (2004) solved the same

problem by optimizing the pseudodistance function.

Methods mentionedsbeve are used togdetermine grasps that require precision of
fingertip on the gbjects. To allow some positioning etrors, the notion of independent con-
tact regions was introduced by Nguyen (1988b). In short, an independent contact region
is a parallel<axis‘rectangularregionyin fingers’ configuration space which represents ar-
eas on object’s boundary where fingers can be placed independently to"Compose a force
closure grasp. In (Nguyen, 1988b), Nguyen also showed how to geometrically determine
independent contact regions for 2-finger grasps of a polygon. Tung and Kak (1996) at-
tacked the completeness of the previous work and proposed an algorithm which is correct
and complete. Recently, Cornella and Suarez investigated an algorithm of determining
independent grasp regions on 2D discrete objects (Cornella and Suarez, 2005a). A four
frictionless grasp is considered. The algorithm determines the independent regions of two

fingers when the locations of the other two fingers are given.



In order to find the best independent contact region, one needs to define what best
means. There have been many different definitions of the best independent contact region
due to different purposes and constraints of grasping devices. The two popular criteria
are: (1) the largest n-cube, and (2) the largest rectangular region (product of lengths on
every axis). Using the first criterion, the optimization can be done by linear program-
ming as discussed in (Ponce and Faverjon, 1995a) and (Ponce et al., 1997). Faverjon and
Ponce (1991) tackled the problem of 2-finger grasping on curved objects using the sec-
ond criterion. In their work, a numerical optimization algorithm was presented, but they
could not guarantee the algorithm’s completeness. Cornella and Suarez (2005b) presented
an approach to determine independent contact'tegions on polygonal objects considering
arbitrary number of friction or frictionless eontacts on given edges. Their approach subdi-
vides configuration spacesso that.the graspable region ineach subdivision is convex, then

computes the independent'contactregion in each subdivision.

1.1.5 Regrasp Planning

Regrasp or dexterous manipulation is-";e-quired when a grasp is not appropriate for
a specific task. A planner calculating a sequénc*e’ of feasible configuration of robot hand
and object transforming to the desired one is Jépplied to solve the problem. The obtained
results from a planner have to satisfy constrainis é'gnsidered in the system. The distinction
between various planners are constraints discussed above, kinematics, dynamic, stability
constraints, etc. In thisswork, force closure constraint 1s satisfied only for more general

results. Some different planners are discussed here.

Hong et al. (1990)¢preved the existence of two and three finger grasps for 2D
and 3D objects @ssuming isolated hard |point contacts with friction. The manipulated
objects are assumed to be smooth. This paper also proposed a fine motion of an object
by repositioning«thesgrasping fingers while maintaining a grasp dutringentire process. A
subclass of fine motion problem focused in this paper is gait problem. Finger gaits with
three and four fingers on the plane are proven for the existence. For the prove of three
finger gait, a two finger force closure condition is taken into consideration. In the case
of four finger gait, two different gaits can behave which are using two pairs separately or
using a three finger grasp and replacing one finger with the remaining finger to form a

new grasp.

Regrasp planning for reorientation of a prism was addressed by Omata and Nagata

(1994). The 4-finger hand and frictional contact point are assumed. The planner plans



10

a sequence of repositioning of fingers for horizontal rotation of an object for a desired
angle. The calculation of finger repositioning are classified into three problems. Problem
A(c) tests whether the finger ¢ can be removed from the initial grasp. This problem can be
solved by linear programming method. Problem B(c, n) is solved for calculating feasible
region of finger ¢ to form equilibrium grasp without finger n. The last one is problem
C'(c, n, d) which calculates the feasible region of finger ¢ when finger ¢ and n form a grasp
without finger d. These two problem can be solved by non-linear programming. Problem
C'is harder and takes more calculation time than B. Sequences of finger repositioning are
attained by a search tree. Each node represents a removed finger. The search algorithm
begins with solving problem A(¢) then solves B¢ 7)to remove finger n and bring finger
c to form a grasp. Problem C' will be solved when the problem B cannot produce feasible
solution. Child nodes arerexpanded-according to a heuristic function. The function is
based on a angle which.a'grasp‘Can rotate Fhe object, the depth of a node and the penalty

when problem C' has to be solved:

Omata and Farooqi (1996) studied ol;ject reorientation by using regrasp primitive.
Two primitives are carriedioutfor reorientatitl)l_l task. The rotation presented in (Omata and
Nagata, 1994) is a primitivehat the fingers gr'a;sl;- on the side faces of the object and rotate
it. The pivoting primitive uses the two ﬁngerfiifs,tjq form an axis of pivoting and the third
finger exerts the force on the side facts to rotate f.f‘le object about the axis. The algorithm
of this primitive is explained in this paper. Based on the following assumptions, four
fingered hand and a prism object; sequential executions of these primitives can achieve
reorientation. The search tree is applied to solve the problem. Each branch represents
a primitive and each node contains the current orientation. The search procedure uses

quaternion concept to solve resultantrotation-about ayunique-axis:

An approach to solve the problem of dexterous.manipulation using geometrical rea-
soning techniques was proposed: by Munoz'et al. (1995). Kinematic Constraints are re-
spected by checking non-penetration between the fingertips and the object. Some acces-
sibility limitations due to the kinematic constraints of the hand are also considered. Three
manipulation modes, which are fixed-point, rolling and sliding, are applied in the plan-
ning algorithm. A combination of manipulations in these three modes can form a nominal
trajectory of a task that the object is being grasped by a dexterous hand. A manipulation
task is represented by a homogeneous transformation that brings the object from its initial
configuration to its final configuration. The planner decomposes the transformation into

a sequence of infinitesimal motions by exploring the space of potential solutions for the
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problem of changing the orientation of the grasped object. Each infinitesimal motion is
solved for every manipulation mode. The equilibrium constraints are considered in this
procedure. A solution is represented in the form of joint motion. The minimum joint

motion is selected by the planner for the particular infinitesimal motion.

Leveroni (1997) addressed finger gait problem for a planar convex object. One
method to determine whether local motions will suffice to reorient the object is the grasp
map, a graphical representation of all stable grasps. Workspace map is constructed to
determine workspaces of three fingers. A sequence of finger gaits can be extracted from
the combination of the grasp map and the workspace map. In planning, a new grasp
cannot always be found if the-ebject is moved 16cally until a finger reaches a workspace

limit; often a grasp gait must.eeeut before the limitis reached.

In (Cherif and Gupta, 4997), The system of Cherif and Gupta assumed that the ma-
nipulation system processesqat low velocities. Planning feasible quasi-static trajectories
for the fingertips to move object (0 a“desired configuration is available. Two motions
which are rolling and sliding the ﬁngertips:'pﬁ the surface of the object are considered.
The planner is a 2-level planning scheme. Thé'gi’obal planning level applies an A* search
algorithm to find connectivity between sub—g’e'fa}s in the configuration space of the object.
The nominal path generated by this planner J,gnc‘rres any manipulation constraints. The
second level is the local manipulation planner. The local planner is based on solving an
inverse finger motion problem to plan for feasible quasi-staticimotions of the hand-object
system between sub-goals. The instantaneous solution satisfies collision-free, reachabil-

ity, friction and equilibrivm constraints.

Han and Trinkle (1998b) proposed a Framework for dextrous manipulation by
rolling fingers onithe surface of an object and finger gaiting. Three taxonomies of ma-
nipulationytasks for multifingered hand systemsrare stated: (ObjectiManipulation , Grasp
Adjustment and Dextrous Manipulation. The contributionof this paper is to purpose a
general methodology to implement large-scale object manipulation tasks when the capa-
bility of the fingers are limited by their workspace. Two strategies, finger rewind and
finger substitution, are applied to accomplish a task. Dextrous manipulation of a sphere
is exemplified. The condition of two soft-finger and three hard-finger force closure grasp
are derived for spherical object. The trajectory of the finger on the object is restricted to

be a great circle which simplifies contact constraint.

Regrasp planning for discrete contact points using independent regions is proposed
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in (Roa and Suarez, 2009). The regrasp operation that is allowed in the work is only
motion of a finger without contact breaking. The main restriction of applying only regrasp
operation is that the approach fails to find a path between two grasps in distinct connected

grasp sets.
1.1.6 Dexterous Manipulation Planning

Since an object cannot move by itself. The robot hand has to grasp and move it from
one stable position to another. The objective of the planner is to calculate a path of robot
hand and object’s configuration from an initial eonfiguration to a desired configuration

while avoiding collision with obstacles, other objeets and self-collision.

Modelling the problem wath.as fully dynamic and using control-based planning
is costly expensive. Thus, Adami ef al. (1989) developed another approach using two
distinct paths which are ifanster pathsand transit paths. The former are defined as motions
of the system while the robot hand grasps tﬁe]object. Transit paths are defined as motions
of the robot when it moves along while the object is in a stable position. Regrasping
operation is also calculated by the planner. '-'Ba_sed on this concept, Koga and Latombe
(1994) solved the manipulation problem for tobots with many degrees of freedom. The
planner compute a series of fransfer‘and trangitfpaths for the robot that make the robot
grasp and move the object from an initial conﬁ-gugation to a goal configuration. Recently,
probabilistic algorithms'are applied for manipulation planner under continuous grasps and

placements in (Siméon.€t al., 2002), (Sahbani et al., 2002).

Nielsen and Kavraki.(2000) developed a manipulation planner which extends the
probabilistic roadmap (PRM) frameworks.| The'planaér consists of two levels. The first
level builds a manipulation graph. Nodes represent stable placements of the object. Edges
representtransfer.and transitactions. The actual motion planning for the transfer and tran-
sit paths is.done by PRM'plannets at thesecond level. The fuzzy roadmap was introduced
to apply in both levels. The computations is efficient by verifying that the edges are
collision-free only if they are part of the final path. Instead, the local planner assigns a

probability to the edge that expresses its belief that the edge is collision-free.

Sahbani et al. (2002) proposed a probabilistic algorithm for manipulation planning
under continuous grasps and continuous object placements. Instead of classifying the
regrasping operation as another subproblem, their approach transforms a regrasping op-

eration into a finite sequence of transfer and transit paths. Therefore, a particular planner
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for the regrasping operation is not needed.

Saut et al. (2007) attacked in-hand manipulation planning problem by using PRM.
Two fundamental paths are applied which are transfer path and regrasp path. The object
is immobile and some fingers move to change the grasp during a regrasp path. Based on
PRM, a manipulation graph is constructed to plan a path between initial and goal con-
figurations. Instead of sampling a hand’s configurations in configuration space, grasping
configurations are sampled over grasp subspaces and then verified chain closures at con-

tact positions by considering the kinematics of the robot hand.

Xu and Li (2008) solved finger gait problem for a smooth surface object by evo-
lution of hybrid automaton. The finger gaiting is analyzed into discrete and continuous
characteristics. The discrete.variables describe two actions of all fingers in either ma-
nipulation mode or substituiion.mede. The continuous variables represent the controls
of the fingertips in continugus time ./ In'(Xuet al., 2007), the hybrid automaton is used
for finger gait planning by 1mproving the RRT approach such that the discrete metric and

continuous matric are defined on the state space.

Huber and Grupen (2002) presented finger gaits as finite state control strategies in
a discrete event dynamic systém framework. é _s’rliall set of control laws are used as basis
controllers to solve a manipulation task in a b_dttQm,—up fashion. However, actual contact
locations and object metions are computed based on local contact information. There-
fore, this framework suits for local manipulation planning. Platt er al. (2004) presented
a control basis capable to generate a variety of force-based interaction focusing on the
grasp and contact artificialipetentials. Fingergaits are formulated into states and actions
modeled in a Markov Deeision Process (MDP) which-is defined over the space of wrench
closure conditions. However, this space is not explicitly computed. A state in the MDP is

not a geometrical assertionbuta report about the'membership of graspgiin the state.

Finger repositioning can be casted into a stratified system. Goodwine and Burdick
(2002) proposed a nonlinear motion planning algorithm in a stratified configuration space.
The configuration space of finger reposition consists of several smooth strata correspond-
ing to the conditions of fingers used in manipulation. Harmati ef al. (2002) developed a
fitted stratified manipulation planning algorithm which works on a space that a fingertip
position is described more directly to its representation in the real physical system. A
semi-stratified was also proposed by assuming that a finger can be moved freely in the

space to provide a greater degree of freedom for finger repositions in manipulation plan-
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ning and to allow more constraints taken into account. However, most works about the
stratified system study relations between a manipulated object and joint configurations
or fingertip positions while force-closure condition is mostly assumed. Therefore, result
trajectories obtained from these frameworks have to be verified for the force-closure con-
dition for a practical use. Trajectories that do not achieve force-closure are not applicable

in a real manipulation.
1.2 Problem Statement

Given an object (a polygon or a polyhedren or a set of contact points), an initial
grasp and a goal grasp, we wish to identify a-regrasp sequence from the initial grasp to

the goal grasp.
1.2.1 Contribution

The contribution of this work is to propésed a framework for regrasp planning prob-
lem. Our planner reports a géneral set of feaxf?ible finger repositioning satisfying force clo-
sure property for task and constraint indepeh'den_ce. An approach using a structure called
Switching Graph has been introduced. Conn_e:c;ti-vity in a graph presents ability to change
a grasping configuration to another. This all(_)_s-x;s the regrasp planning to be transformed
to graph search. A node in switching grasp ;Te’pr;;sents a connected set of force closure
grasps for given surfaces. Any grasps of which. ;éf)fesentations are in the same node can
be transformed to one'afiother using finger sliding along the Continuous surfaces. An edge
connecting two nodes indicates the ability of switching one finger to another different sur-
face. Based on this structure, the obtained results are not a single solution, they are a set of
feasible solutionS.: An advantage of & set of solutions'is thatit allows any planner to find
a sequence of grasping positions which optimized according to some considered criteria

or to add.mare constraints for practical uses.
1.3 Dissertation Outline

In the next chapter, we provide a theoretical preliminaries on grasping which is
used subsequently in the remaining of the dissertation. The remaining chapters describe
algorithms to solve the problem in each setting which are regrasp planning for a polygon,

a polygon with a large number of edges, a polyhedron and a discrete contact point set.

Finally, Chapter 7 concludes our work and describes future extension of our work.



CHAPTER 11

GRASPING AND REGRASPING PRELIMINARIES

In this chapter, we describe necessary definitions and propositions which will be

applied in the discussion on our regrasp planning problems.
2.1 Nomenclatures

Following the definitions in (Boyd and Vaadenberghe, 2004), we denote by INT(-),
RI(-) and CO(-) the interior, the relative interior*and.the convex hull of a set. For an
arbitrary vector v, let us denote by-#, the plane eontaining the origin and orthogonal to v,
ie., P, = {z|x-v =0,z € R¥ A point at @ is said te lic in the positive side of, negative
side of, or exactly on P, whén & o> 0, - v < 0ora - v = 0, respectively. A closed
half space H(v) is the set ofallpoints that lie exactly on P, or in the positive side of P,.
An open half space H™(®) isSimply H(v)  F,. We define H** to be H*((0,0,1)) and
H*~ tobe H*((0,0, —1))s :

2.2 Contact Model ¥/

In grasping, the most commonly used c(_;)'r-_l_ta(_:tr model are hard contact without fric-
tion, hard contact with friction and soft finger cénzact. Soft ¢ontact grasp is different from
hard contact grasp with.ability that soft finger can exert torque about the surface normal
while hard finger can exert force at contact point only. For analysis of hard contact, the
point contact without frictien can only exert a unidirectional force normal to the surface.
Tangential forcesycan be produced by a finger,up to the Triction coefficient when friction

is considered.

Coulomb friction (Stewart, 2000) is usnally applied for friction model. Coulomb’s
law of friction states that for a contact point exerting a force fy along the contact normal,
the friction force (the tangential contact force) is less than or equal to f; = pfy where p
is the frictional coefficient. This equation indicates that when the contact is maintained
without slip, the contact can exert any force in a cone C' of which the half angle is equal
to tan~!(u). The cone is emanated from the contact point and the axis coincides with the

contact normal n. This cone is commonly called a friction cone. Cone in 2D case can

I'A relative interior of a set is the interior relative to the affine hull of the set. Intuitively speaking, a
relative interior are all points not on the relative edge of the set, e.g., A relative interior of a line segment is
the segment minus its endpoints, regardless of the dimension where the line is situated.
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be expressed by two vectors as shown in Figure 2.1(a). In 3D case, a cone is described
by quadratic function. Cone introduces complexity of nonlinearity to the problem. To
simplify the problem, a cone can be replaced with an m-sided pyramid (Figure 2.1(b)).
A pyramid has planar facets which avoid nonlinearity from the problem but at a price of

lesser precision.

oA

(a) (b)

Figure 2.1: Coulomb frictigns"(a)4s the friction cone for 2D grasps and (b) is the friction
cone for 3D grasps and its approximating pyramid cone.

2.3 Grasp and Wrenehes

Force closure is a property of a grasp VWhich 1s defined by a set of contacts. Each
contact can be defined by its position and inward normal direction. In this work, it is

assumed that every contact of the.same objectiis ffépresented by the same contact model.

Definition 2.1 (Grasp)-A grasp-G-isdefined-byasetofordered pairs {(p,,n1), ..., (D, "n) }

where p; and n; are the-position vector and the inward normal vector of i*" contact.

A grasp achieves force'closure when the'grasp is able to counterbalance any external
disturbance to theiobject being grasped. The external disturbance and the effect of contact
points are,represented, as-a force. f-and a torque-7.-In 2D, it is-copventional to combine
a force f ="(f,, f,) and'a torque“rinto"an entity called a-wrench w-= (f,, f,, 7). A
wrench is a vector of force concatenated with a vector of torque. In 2D space, force can
be described by a 2D vector while torque is described by a 1D vector, hence, a wrench in
2D space is a 3D vector. Likewise, a wrench in 3D space is 6D vector formed by a 3D
force vector concatenated with a 3D torque vector. Formally, a wrench w is denoted by

(f,t) where f is a force vector and ¢ is a torque vector.

Combining force and torque into wrench makes it simpler to consider the force clo-

sure property. An effect of a contact point or external disturbance can be easily described
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as a wrench. For example, let us consider an equilibrium in terms of wrenches. An ob-
ject is said to be under equilibrium when the summation of all force and torque acting
on the object is zero. Using wrench notation, an object achieves equilibrium when the

summation of acting wrenches is the zero vectors.

Analysis on force closure concerns wrenches that can be exerted by a grasp. A
contact is associated with a set of wrenches that it can exert. The set of wrenches that
can be exert by a contact and by a grasp are referred as a contact wrench set and a grasp
wrench set, respectively. In force closure analysis, a contact wrench is allowed to take
arbitrarily large magnitude?. Since wrenches ean'beadded up linearly, the set of wrenches
exertable by the grasp is the pesitive combination ofswrenches of its contacts. Let us refer
to a positive combination of a.set'0f vectors as a lineair positive span, or positive span for
short. Exertable wrenches.of a grasp is a positive span of a contact wrench set of each

contact.

Definition 2.2 (Positive Span) /Let W be aset of vectors. A positive span of W, denoted
by SPANT (W), is a set {@,wio = 0,2, € W}

2.3.1 Primitive Contact Wrenches +H

A contact wrenchiset can also be convenieﬁtly represénted using positive span no-
tation. A frictionless ¢ontact can only exert force in one direction and its contact wrench
set is a ray in its respective wrench space. The ray can be represented as a positive span of
a single wrench with arbitrary length lying in the same direction. For a frictional contact,
a friction cone of-which ¢an be represented by-positive span‘of itssboundary force vectors.
These vectors corresponds to boundary wrenches and the whole contact wrench set can
be represented.by.a positive.span of these boundary-wrenches, using one, single arbitrary

length for'each direction.

We refer to unit length boundary wrenches as primitive contact wrenches. A contact
wrench set is a positive span of primitive contact wrenches. Similarly, a grasp wrench set
1s a positive span of its contact wrench sets which is also equal the to positive span all of
primitive contact wrenches (from all contact points). Let w;, . . . , w,, be primitive contact
wrenches of a grasp. The grasp wrench set of a grasp whose primitive contact wrenches

are ws, . . . , W, can be represented as follows.

’In practice, a magnitude of a wrench is limited by the realization of the contact, e.g., the actuator of
finger, the size of motor, etc. This detail is unrelated to the contact position and hence is neglected.
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{E, aw;la; > 0} (2.1)

2.3.2 Grasp Wrench Set

Primitive contact wrenches and positive span represent a grasp wrench set in a com-
pact form. It is necessary to understand the properties of a grasp wrench set when it is
represented as a positive span of the primitive eontact wrenches. A key feature of a
positive span is its convexity. €onvexity of a graspswrench set is an important property

exploited by most grasping works:

Other than convexity, a grasp wrench set also has other interesting properties. In the
3D frictional contact cases a feiction cone Ii_s bounded by a quadratic surface, not a finite
number of wrenches. A pfominent differegée is that a 3D friction cone, though it still
maintains convexity, is no longer a linear st;uc‘ture. This implies that the corresponding
grasp wrench set itself is noalinear as well. " In many works, a circular friction cone is
simplified by an m-sided pyramid. Each boun;_él'ilfy force vector of the pyramid yields one
primitive contact wrench. Since jn is finite, 'th@_‘number of primitive contact wrenches
is also finite and thus the grasp wrench set cgn now be represented by linear surfaces

allowing several tools in linear algebra to be appliéable for analysis.
2.4 Force Closure

A grasp achieves force‘¢losure when its'grasp wrench set covers the entire wrench
space. A property called positively spanning s defined to describe that the positive span

of a vector set covers the entire space.

Definition 2.3 (Positively Span) We say that a set V' of n-dimensional vector positively
spans R" when SPANT (V) = R"

The force closure property can be formally defined using the notion of positively
spanning, namely, a grasp achieves force closure when its associated wrenches, i.e., the
polyhedral convex cone generated from the primitive contact wrenches, positively span
their respective wrench space (3D wrench space in case of planar grasp and 6D wrench

space in case of 3D grasp).
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Definition 2.4 (Force Closure) A grasp, whose primitive contact wrenches form the set

W in R", is said to achieve force closure when SPANT (W) positively span R™.

Since the force closure property is defined over a set of vector (wrenches) associated
with a grasp, it is more convenient to say that a set of vector achieves force closure, even
though a set of vector cannot literally achieve force closure. Hereafter, saying that a set of
wrenches achieves force closure is a short hand of saying that a grasp whose associated

set of wrenches positively span R".
2.5 Condition of Force Closure

The force closure property is.defined using the netion of positively spanning. How-
ever, it is still indefinite tosassest'whether a set of vectors positively span a space. In this
section we recite some of4he wéllknown conditions that assert on positively spanning of

a set of vectors.

Mishra et al. related pogitively spanning of a set of vectors with a convex hull of
the vectors. It is shown in (Mishraetal., 1987b) that a set of vectors I/ positively span a
space when the origin of the space lies strictlj‘ir{side the convex hull of V.

g4

Proposition 2.5 A sef of wrenches W in R" achieve Jforce closure when the origin lies in

the interior of the conyéx hull of INT(CO(11/)).

Proposition 2.5 transferms the force closure testing problem into a well defined
computational geometry problem. A straightforward approach to solve the problem is to
compute the convex hull of the primitiye contact wrenches and directly whether the origin
lies inside'the interioi,) Etom this approach; it comes directly thatiif.\ve €an identify a half
space through the origin that contains all primitive contact wrenches, the primitive contact

wrenches cannot positively span the space.

Proposition 2.6 A set of wrenches W do not positively span R? if there exists a vector v

such that the closed half space H(v) contains every wrench in W.

A closely related property of force closure is equilibrium. Equilibrium indicates

that the net resultant wrench of the system is a zero vector. A grasp is said to achieve
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equilibrium when it is possible for some contacts of the grasp to exert wrenches such that
the net resultant wrench is zero vector. Formally, a grasp is an equilibrium grasp when

Equation (2.2) has a non-trivial solution.

E?:lozi'wi =0 (22)

Apparently, a grasp that achieves force closure also is an equilibrium grasp. How-
ever, the inverse is not necessary true. In the«case of frictional contact, there exists a
special class of equilibrium-grasp called non-marginal equilibrium. A grasp achieves
non-marginal equilibrium whenthewwrenches achieving equilibrium are not the wrenches
associated with the boundaryof a force cone. In practice, it means that any equilibrium

grasp is also a force clostire grasp under any arbitrarily greater frictional coefficient.

Nguyen (1988a) shows that a 2D 2—ﬁ1j,ge'r non-marginal equilibrium grasp is also a
force closure grasp. Ponce and Faverjon (19’952}) show the same implication in the case
of 2D 3-finger grasp and also in the ¢ase of 3pi4—ﬁnger grasp (Ponce et al., 1997). Care
should be taken not to take this implication-'i-nt;o_'_.‘ general. Though it might seems that
non-marginal equilibrium implies force closu_fEf,_th_is is not always true for any number of
fingers. For example a 3D two ﬁﬁger non—mafgi;al equilibrium grasp does not achieve

force closure.

Proposition 2.7 A sufficient.condition for 2- and 3-finger force closure in 2D and 4-finger

force closure in 3D is non-marginal equilibrium

2.6 Regrasping

Regrasping is a process of repositioning contact points of robot fingers. Two prim-
itive forms of repositioning are finger switching and finger sliding. To determine an ap-
propriate sequence of these two processes, we introduce a structure called a switching
graph. A node in a switching graph represents a connected set of force closure grasps on
three(four) particular polygonal edges(faces) in 2D(3D). An edge connecting two nodes
indicates that there exist a grasp associated with one node that can be switched to a grasp
associated with the other by finger switching. By using a switching graph, the regrasp

problem can be formulated into a graph search problem. A path from the graph search
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O
(@) (b) ©

Figure 2.2: Regrasping overview: (a) Initial grasping configuration (b) A result of finger
Switching. (c) a result of a finger sliding

determines a sequence of actions — switching and sliding to be executed in order to tra-
verse from the initial to the final grasp. The following sections will describe the finger

switching and sliding primitives and the switching graph in detail.

2.6.1 Finger Switching and Einger Sliding
\

Regrasping process which/changes grasping configuration by placing an additional
finger on desired contaci‘point and then releasing one finger of the initial grasp is called
finger switching. For example detus éssume? Jth;lt a starting grasp holds a polygonal object
on points p,, p, and p,. and'we want to switéh ‘to a grasp holding points p,, p. and p,.
A finger switching process starts by’placing:él_f addifional finger on p, and then releas-
ing the finger at p,. If both grasps satisfy the:folfce closure property, the entire process
still holds the force closure property.-For the case of 4(5)-finger hand grasping a polyg-
onal(polyhedral) obje¢ts finger switching requires that two(ihiee) grasping configurations

must have two contact points in common and both of thenrachieve force closure.

Finger sliding is a pracess for repositioning fingers by sliding them along edges(faces)
of a polygon(polyhedron) while maintaining a force elosure grasp during the sliding pro-
cess. Using this process, we can change grasping configuration with in the same set of
force closurei grasps« This means therélatiombetween fingerslidingandiainode of switch-
ing graph.. However, finger sliding may be hard to"implement mechatically since it is
required that fingers must always touch the edge during sliding. Finger switching can im-
itate finger sliding by switching fingers from the initial to the final position of the sliding.

Examples of finger switching and sliding are shown in Figure 2.2.



CHAPTER III

REGRASP PLANNING FOR A POLYGONAL OBJECT

3.1 Introduction

A framework to deal with the problem of regrasp planning for a polygonal object
will be discussed in this chapter. Since we segparate the regrasp planning from task and
mechanical constraints, general sets of force-Clesure grasps for an object can be com-
puted beforehand. We propose an-efficient structure called Switching Graph to store sets
of force-closure grasps which"wili'be further used to solve the regrasp planning problem.
Sets of force-closure graspsfarescomputed by considering combinatorial sets of polygo-
nal edges. Each set is assigned foa vertex of the switching graph. Our planner exploits
the connectedness of a grasp set (o compute’é regrasp sequence between two grasps in the
same set. This type of sequénce can be perfo‘ir_med by continuous movements of end effec-
tors while all grasps in this sequence are guareﬁitéed to satisfy the force-closure condition.
An edge joining two vertices indicates that a g‘rasp in one vertex can change to a grasp
in the other vertex using a finger switching. The connectivity of this structure captures
ability to switch from one grasp set to another g grasp set and. allows regrasp planning to
be formulated as a graph-seaich.—Since-the-structure-contams sets of grasps, the regrasp
planner is permitted to extract the information of the graph and compute a set of regrasp
sequences that ensures force-closure for every grasping configuration in the sequences
without reverifying all graspSin the sequences. ’An important.adyantage of our framework
is generality of solutions.which does.not specifically.dependion’a task or a robot hand.
By applying the switching graph, we €an consider the regrasp planner as a middle-level
planner which acquires an initialland a goal grasp from a'task plannér then computes a set
of regraspsequences and then transfers the solution set to mechanical-controlled level.
Another advantage is globalization of the switching graph. Since the switching graph
contains sets force-closure grasps considering all combinations of polygonal edges of an

object therefore it allows a planner to globally search for regrasp sequences.

The organization of this chapter is as follows. Force-closure conditions in 2D are
presented in Section 3.2. The switching graph for a polygon is discussed in Section 3.3.
The description of grasp representations are appeared in Section 3.3.1. In this section,

we will describe simplification of a force-closure grasp set into a linear structure which
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is easy to extract its information based on the assumption of a polygonal object. The
relation between regrasp operations and sets of grasps is presented in Section 3.3.2 and
3.3.3. Construction of the switching graph containing the sets of grasps is described in
Section 3.3.4. We provide a guideline of using the switching graph in Section 3.4. The

implementation of our approach and experimental results are shown in Section 3.5.
3.2 Force-closure conditions in 2D

In Chapter 2, we have described that;2- and 3-finger non-marginal equilibrium is
sufficient to satisfy force-closure in 2D. Due 0 (Nguyen, 1988b), the following proposi-

tion characterizes 2-finger equilibrium.

Proposition 3.1 A necessary and sufficient condition for two points to form an equilib-
rium grasp with non-zero coniaet forces is-that the line joining both points lies completely

in the two double-sided frictionicones at the points.

The following two propositions combl'et_el__y characterize 3-finger grasps achieving

equilibrium with non-zero ¢ontact forees: . |

Proposition 3.2 A necessary and sufficient coﬁd_ifion for three points to form an equilib-
rium grasp with three nen-zero contact forces, not all of them being parallel, is that (Pa)
there exist three linesin'the corresponding double-sided friciion cones that intersect in a
single point and (Pb) the vectors parallel to these lines and lying in the internal friction

cones at the contact pointsipositively span' R2.

For a polygonal object, given three edges, the set of equilibrium grasps satisfying
the conditions of Proposition 3.2yi§'described by non-linear telation-of three contact posi-
tions and directions of forces in three friction cones. Instead of using Proposition 3.2, the
construction of the switching graph relies on a stricter condition given below in Proposi-

tion 3.4. The following definition is needed to write the proposition.

Definition 3.3 Let C;(i = 1,2,3) be the cones centered on w; with half angle 0. We
say that the three vectors w;(i = 1,2, 3) 0-positively span R? when any triple of vectors

v; € Cy(i = 1,2, 3) positively span R

I'A set of vectors positively spans R™ if any vector in R” can be written as a positive linear combination
of the set.
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It is easy to see that when three vectors §-positively span the plane, the three vectors
positively span the plane and every pairwise angle is smaller than 7 — 26. In the following
proposition and the remainder of the paper, we will denote by # the half angle of every

friction cone.

Proposition 3.4 A sufficient condition for three points to form an equilibrium grasp with
non-zero contact forces is that: (Pa) there exist three lines in the corresponding double-
sided friction cones that intersect in a single point and (Pc) the internal normals at the

three contact points 0-positively span R,

A proof of the above propesition caﬁ be foundin (Ponce and Faverjon, 1995a). Note
that replacing condition Pban Preposition 3.2 with condition Pc yields a stricter condition;
certain grasps satisfying Beoposition 3.2-will not satisfy Proposition 3.4. Some of them,
however, form 2-finger forge-closure graspé or parallel grasps satisfying Proposition 3.5.
The underlying reason for the use of a more restrictive condition will become clear as we

explain the representation/of gongéurrent grasps in Section 5.3.1.

Proposition 3.5 A necessary and sufficient cbhﬂ_i‘tion for three points to form an equi-
librium grasp with three parallel and non—ze,—%_o_’_ contact forces is that there exist three
parallel lines in the corresponding double-sided friction cones and for three vectors par-
allel to these lines and ly-ing in the internal friction cones at the contact points, the vector

parallel to the middle line are in the opposite direction from the other two.

Proof: Obyiously, threeparallel non-zero contact forces achieve a force equilibrium
only when exactly one of them lies in the opposite direction of the, other two. If the
opposingiforce doesnotilie between the other two, the moment withireSpect to any points
along the other vectors will not be zero. To achieve force closure, that force must be in

the middle. In that case, it is obvious that a moment equilibrium can also be achieved. B

This type of force-closure grasp is taken into account in order to cover some grasps
missing by applying Proposition 3.4. A formulation of the conditions in Proposition 3.4

into linear constraints will be described later in Section 3.3.1.3.
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3.3 Switching Graph for a Polygonal Object

This work assumes finger switching performed by changing one contact at a time.
At least one free finger is needed when switching from one force-closure grasp to an-
other. In 2D workspace, 2-finger and 3-finger force-closure grasps are sufficient for grasp
stability. Therefore, a robot hand used in this work is assumed to be equipped with four
fingers. For 3-finger force-closure grasps, our approach consider (1) parallel grasps:
force-closure grasps satisfying Proposition 3.5, and (2) concurrent grasps: force-closure

grasps satisfying Proposition 3.42.

However, a parallel grasp and a concuiréni“@rasp cannot switch to each other di-
rectly. For a parallel grasp satisfying Proposition 3.5, the three double-sided friction
cones of the three grasped edgeés, when being drawn at the same point, must intersect in
a nonempty region (i.e., so_that ghree parallel lines in the cones exist). This prevents any
finger switching for a parallel grasp o resultin a concurrent grasp because there is still a
pair of edges whose intefnal aormals forbid the three internal normals from 0-positively
spanning the plane no matier which edge is ch_dsen to participate in the finger switching. It
is, however, possible for a finger switching to change into a 2-finger force-closure grasp.
This information allows us to draw the diagrafrr in Fig. 3.1 showing the overall structure
of a switching graph characterizing types of ;gr;iléps a finger switching can transform a

certain type of grasps into. T

Coneurrent 2—finger Parallel
grasps grasps grasps

Figure 3.1: Switching diagram

3.3.1 Representing Force-closure Grasps

Generally, a set of force-closure grasps can be described in the configuration space

of contact points. In 2D, a contact point on the object’s surface can be identified by

by not using Proposition 3.2, some grasps may be missing as mentioned in Section 3.2 but this will al-
low simple characterization of independent contact regions which is an important foundation of the switch-
ing graph
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one parameter. Hence, a 2- and 3-finger grasp is represented by a point in 2D and 3D
parameter spaces, respectively. However, it is not straight forward to compute and store
a grasp set in a data structure. In this section, we will describe representations of force-
closure grasp sets for each type. We transform the representation of grasps satisfying
Proposition 3.1 and 3.4 from parameter space into workspace. Since our representations
of 2-finger and concurrent grasps are in the same R? space, therefore we can efficiently
compute a set of grasps by using computational geometry algorithms in 2D. In contrast,
since the lines of parallel forces intersect at infinity, a parallel grasp is represented by a
point in 3D parameter space but planning regrasp sequences can be reduced into a problem
in 2D.

3.3.1.1 Representing Coneurrent Grasps

As mentioned earligf, a grasp is geométfically defined by the positions of the fingers
on the object’s boundary. JAssuming that-an object is a polygon, a contact point on a
polygonal edge can be defined by distance frbm an endpoint of the edge. This amounts to
using three parameters to uniquely defime a 3-finger grasp (with the three grasped edges
already chosen). However, using Proposition 3";4;-‘5}\/6 can define a set of concurrent grasps

with only two parameters. In the following, we'_.e_)g':plain how this can be done.

Let us consider Fig. 3.2(a) where £;,i = a,b,¢ (a # b # c) are the three shown
edges whose internal normals 0-positively span the plane. Consider also a point x, such
that each of the three inverted friction cones® at x intersects the corresponding edge in a
non-empty segment.Letius denote the intersection’'segment onjedge F; by E! and consider
a grasp defined by, x; € E.,7 = a,b,c (Fig. 3.2(b)). Obviously from the construction,
the three double-sided friction cones at x;, &.. = a, ¢ intersect in a_region containing x,
(regardless of where)x; is chosenintF/)and in turn, according to Proposition 3.4, the
three contact points x;,7 = a, b, c form a concurrent grasp (Fig. 3.2(b)). Therefore, x,
can be used for defining a set of concurrent grasps formed by all possible triples x; €
E!,i = a,b,c. Equivalently, we obtain the following proposition (a 3D version of this

proposition can be found in (Sudsang and Ponce, 1995)).

3an inverted friction cone w.r.t an edge is a friction cone projecting toward the edge with its axis parallel
to the normal of the edge
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Proposition 3.6 A sufficient condition for three fingers to form a concurrent grasp is that
the internal normals of the three grasped edges 0-positively span the plane and there exists
a point x, such that the inverted friction cones at this point intersect the three grasped

edges.

Note that each point x, satisfying Proposition 3.6 yields three independent con-
tact regions where fingers can be placed independently while achieving concurrent grasp:
these regions are simply the intersection of the inverted cones in x, with the contact edges

(Fig. 3.2(b)).

Figure 3.2: Construction of @ focus cell: (a) inverted friction cones, (b) independent
contact regions, (c) focus cell from the inters{ééti'on of the union of cones

s T
A

We are now ready to discuss how a Verté?i; the switching graph represents a set of
grasps. A vertex of the switchiﬂgi‘ graph reprééér?té a Sew.of concurrent grasps by having
an association with a sef of all points & satisfying Pioposition 3.6 for a given triple of
edges. Since an inverted friction cone at x intersect the corresponding edge when x lies
in the polygon defined by the union of all double-sided friction cones at every point on
the edge (Fig. 3.2(c)), the set'of allwg satistyingtProposition:3,6:can be obtained from the
intersection of the three polygons each of which'is the union of all double-sided friction
cones on_each edge. In_the following definition,“we give a name for the intersection

polygon for future references.

Definition 3.7 The polygon defining the set of all points x satisfying Proposition 3.6 for
a given set of three edges F;, /; and Ej, where i # j # k will be called the focus cell for
the edges and will be denoted by Fi ;

With the above definition, we can say that a vertex in the switching graph represents
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a set of concurrent grasps on edge E;, I/; and Ej, by having an association with F; ; 1, the

focus cell for the triple of edges.

3.3.1.2 Representing 2-finger Grasps

A point in the plane can be also used to represent a set of 2-finger grasps. This
representation is applied for a simplicity of checking a finger switching between a 2-
finger grasp and a concurrent grasp as described.in Section 3.3.2.2. To understand the
process, consider Fig. 3.3(a) showing a grasp.at &, on F, and x;, on E,. To achieve
force-closure, according to-Propesition 3.1, the line segment L joining &, and o, must lie
within the friction cones at the contact points ( €, and ). An equivalent condition is that
the arrangement of the segment Lmust be within the double-sided cone Cy), where C},
is obtained from the intersection/of doublg-gided friction cones C, and ('} drawn at the
same point (Fig. 3.3(b)). dn other words, the ldouble—sided friction cones intersects when
the angle between two associated normals “;Dfdthe contact edges is in (7 — 260, 7 + 260).
Following (Nguyen, 1988b) this allows inci_é_pegdent contact regions to be found as the
intersection between the double-sided cone ij pata point x, and the two grasped edges

(Fig. 3.3(c)). The corresponding f6eus cell is, in turn the set all points x, with non-empty

independent contact regions. Like the concurpefn_tgcase, the focus cell can be constructed
from the intersection of‘the two polygon each of which is the.union of the cone C7), at all

points on each edge (Firg.r 3.3(d)).

(b) (© (d)

Figure 3.3: 2-finger force-closure focus cell construction. (see text)

3.3.1.3 Representing Parallel Grasps

Parallel grasp is another type of 3-finger grasps. It provides additional force-closure

grasps that cannot satisfy the conditions of Proposition 3.4. Since the lines of forces
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forming a parallel grasp do not intersect at a point, a set of parallel grasps cannot be
represented by any elements in the plane. We use three parameters to indicate positions

on three grasped edges instead.

However, we do not apply the condition in Proposition 3.5 to construct a set of
parallel grasps directly because the conditions are formulated into non-linear constraints.
We have presented a new condition for three contact points to form a parallel grasp. Let
us consider Proposition 3.5. There exists three parallel forces from three contact points
x,,x, and . whose normals respectively are n,, n, and n. (Fig. 3.4(a)) when there
exists i, j,k € {a,b,c} and i # j # k such that the intersection of cones C;, C; and
—C, all of them originated at the same point, 1Shotempty (Fig. 3.4(b)). This condition
is equivalent to the condition.that the ang-le between.#,;, n; and —n, are pairwisely less
than 260. If we limit 6 to beless«than 77/4 (i.e., friction coefficient < 1), only one triple
of (4, j, k) will satisfy the pfevieus condition. We call the contact point that has opposite
direction force as a center pbinéi We define-a structure called a common cone that aids in
existence checking of a‘parallel grasp as folfow_.s. A common cone exists only when three
contact points x,, o, and'x,. have three parfllallel forces, one of them lies in the opposite
direction from the other twe. Hrom Fig. 34(9), x, is the center point, a common cone
C{;b,C is the double-sided cone of th¢ intersé‘é:ﬁopl of three cones —C,, Cy, and C, (Fig.
3.4(c)). If we draw a common cone on the?e?rﬂer point, part of the plane that is not
occupied by the cone will be divided into two regions These regions are called the outer
regions. The next propesition from (Phoka et al:; 2005) uses the notion of outer regions
to define a necessary and sufficient condition for an existerice of a parallel grasp when 0

is less than 7 /4.

Xp

Cj

n;

(a) (b) (c)

Figure 3.4: Construction of a common cone: (a) A parallel grasp. (b) Three friction cones
of (a) drawn at the same point. The dashed cone is inverted. (c) A common cone.

Proposition 3.8 A necessary and sufficient condition for three contact points x,, x;, and
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x., whose normals respectively are n,,n, and n., to form a parallel grasp is that two
following conditions hold. (Pd) a common cone C'pla,nb,nc is not empty. (Pe) Let us
assume that the center point of these three points be x,. The points x;, and x. do not lie

in the same outer region separated by the common cone CQ b Originated at x, (Fig. 3.5).

Proof: For the sufficient side, let us draw a segment connecting p;, and p.. If both
of them do not lie in the same side of the common cone, the segment p,p. will definitely
intersect the common cone. Let p, be any point in the intersection of p,p. and the common
cone, we can draw a line from p, to p,. That line definitely lies in the friction cone of p,
(see Fig. 3.5). A line parallel-to p,p, that passes.py also lies in the friction cone of py,
and so is the case of p.. Froma eonstruction of aecommon cone, we can find three forces

parallel along these lines that form.a parallel grasp.

For the necessary side, if there exis|_ts a parallel grasp, a common cone will also
exist. Now, if p, and p,. lie inuthe same si(ig:t PP does not intersect the common cone.
A line lying in the middle of p, and p,, vi{hich 1s necessary for a parallel grasp, must
intersect with the segment Pgp.. However,‘f's_i‘nqc Py and p. lie completely in one outer
region, every point in p,p.@lso lies in'that outer region. It follows that if we pick some
points on p,p. and use it to define a middle l-ijliél,:_the other two lines passing through p,
and p,. that are parallel to the first hne will als@_ie_ outside their respective common cone.
Thus, at least one of theém must lié‘outside its fric_'[-ioh cone. This completes the proof as a

contrapositive. [ |

Figure 3.5: 3 contact points forming a parallel grasp: When p;p. intersects with the com-
mon cone, we can find three parallel lines and vectors that satisfy 3.8

Since we are dealing with a polygonal object, we need a representation of a contact
point on a polygonal edge. Let £, be an edge with an end point a, and a unit direction £,,.

The length of F, is [,. A point x, on an edge F, can be represented by x, = ay + u.t,
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Figure 3.6: Representing a common cone: A common cone on point &, and vectors n
and n.

where u, € [0,1,]. By using this representation,.we can represent a set of all grasping
configurations G, . by a polytepe in 3D, each dimension represents a value of u,, u, and

U, respectively.

The polytope P is defiied'by a set of linear constraints. For a polytope of E,,
and F,, contact points &, Zy, ¢ are constrained to be on the polygonal edges. We define

it

length constraints F 4
0 <= 1 fori = ayb, ¢ 3.1)

s

Next, a set of constraints that bounds contact points to satisfy Proposition 3.8 is
presented. Let us assume.that the center edge is £, and the others are £, and F.. In-
tuitively, if one point ,-on £, lies in an outer region (separated by a common cone of
some point x, on F,), the second point . on £, must be'th a common cone of the third
point or in the other outer région. However, the feasible area may not be convex so we
construct it from a/union of six convex polytopes. We denote L(m, ) = n -z, > 0 and
R(n,x) = n - x,@ < 0 to describe the constraints.of a point & on the left and the right
side of the'half space'described by the normal vector n and aline passing through .. We

define constraints for each of them as follows.

Koy = L(ng,xp) N L(ng, xp) N R(ng, x.) N R(ny, x.) (3.2)
K, = R(ng, z,) N R(ny,x,) N L(ng, x.) N L(ng, x,.) (3.3)
Ky = L(ng, xp) N R(ny, ) (3.4)
K3 = L(ng,xz.) N R(ny, x.) (3.5)
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K4 = R(ng, xp) N L(ng, ) (3.6)
K5 = R(ng,x.) N L(ny, x.) (3.7)

Where ny and n, are the normal vector of left margin and right margin of the
common cone respectively (see Fig. 3.6). The first two constraints, K and K1, are cases
that u;, and u, are on two distinct outer regions separated by a common cone at u, while
the others are for the cases when w;, or u, are in the common cone. Each sub-polytope P!
are defined as a convex hull constrained by Eqs: (3.1) and K;. These polytopes represent
a connected set of all parallel grasps on the edges &, I/, and F, and involve with a vertex

in the switching graph.

3.3.2 Finger Switching

Regrasp process which changes graspi:ng" configuration by placing an additional fin-
ger on desired contact point and then _releasifig_, one finger of the initial grasp is called fin-
ger switching. Intuitively, considering grasps_‘(}_nitwo different edge sets, a finger switching
can be performed when contact points on the'-—C(jI_nmon grasped edges are restrained. In
parameter spaces, the common contact points,:‘;f_r_ef computed in subspaces of the common
edges. It requires projeetions of two grasp seté ohto the subspaces. The projections are
then checked for the iniersection which indicates a set of common contact points. This
method is applied for parallel grasps as described in Section 3.3.2.3. On contrary, our

algorithm computes finger,switching of 2-finger and concurrent grasps in 2D workspace.

This operation involves with anredge in the switching graph. Considering two grasp
sets associated with two vertices, exiStence of fingémswitching betWweéen these sets indi-
cates an edge linkingthe'related yertices, Switchings among concurrent/grasps or between
concurrent grasps and 2-finger grasps can be described by a set of common points in the
plane representing grasps on distinct grasped edges. Finger switching of parallel grasp
is computed in parameter subspace of two common edges. Representation of a 2-finger
grasp set is transformed into parameter space when finger switching into a parallel grasp

1s needed.
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3.3.2.1 Finger Switching among Concurrent Grasps

For the sake of representing a set of concurrent grasps by a focus cell, finger switch-
ing is related to the intersection of two focus cells that their associated grasps have
two common grasped edges. Let us consider two focus cells F, ;. and Iy 4 such that
Fope N Fopa # () (Fig. 3.7) where g be a point in Fope N Fopq. Clearly, g defines
two sets of concurrent grasps: one for triple of edges F,, Ey, E. and the other for triple
of edges E,, Ey, E/4. Let us suppose that the fingers 1,2 and 3 are respectively on edges
E,, £}, and E, and forming one of the concurrent grasps defined by q. It is easy to see that
the hand can switch to another concurrent grasponedges I, F, and E; by placing finger
4 on any point in the intersection between edge £y -and-its inverted friction cone at g (Fig.
3.7(c)). Once finger 4 is on _Lgsfinger 3 cain leave edge [, resulting in a switching from a
concurrent grasp on I, I, by fingers 1,2.3 to another concurrent grasp on £, Ej, Fy
by fingers 1,2.4. This fingerrepositioning sequence enables us to plan finger switching by
identifying intersection between two focus-cells for which their triples of grasped edges

are different from each othep’by only one e&;ge,..

Figure 3.7: Finger switching between concurrent grasps: (a) Fy ., (b) Fyp 4, (¢) their
intersection

3.3.2.2 Finger Switching between 2-finger Grasps and Concurrent Grasps

According to the assumption of a 4-finger hand used in this work, any couple of 2-
finger grasps can always switch to each other. Therefore, an edge linking any two vertices

of two 2-fingers grasps always exists.

Let us consider 2-finger grasps on F,, I/, and concurrent grasps on Fy, ., Fy.
Since a set of 2-finger grasps and a set of concurrent grasps are represented by points

in the plane, finger switching between these grasp types can be described by the intersec-
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tion between two focus cells I, . and F;, . 4 where £, is the common edge. Clearly, a point
q lying in I, . N F}, . 4 represents two sets of grasps. The independent contact regions of
by, B, E; are formed by the projections of the inverted cones at g onto them, namely,
the intersections are denoted by Ej, £/, E/. The independent contact regions of 2-finger
grasps on F,, E. are determined by the intersections between FE,, . and the cone CQ,C
emanated from g. Let theses independent contact regions denoted by E” and E”. From

the construction of C"’

a,c’

it is clear that C}, is a subset of C, when their origin is at the
same point. Therefore, £ is also a subset of E.. To perform a finger switching, three
fingers forming a concurrent grasp have to be placed on Ej, E” E/, and the other finger

has to be positioned on E! to form a 2-finger grasp with the finger on E”.

3.3.2.3 Finger Switching among Parallel Grasps

Parallel grasps cangwite¢h among thé;ﬁ or to 2-finger grasps. In the former case,
finger switching requires that fwo non-switching contact points must remain the same
during the process. Formally; there will be an edge connecting a vertex v, and a vertex
Up,c,a When there exists a triple of points (@,. &, ¢.) € G, and a triple (), ., x);) €

Gl.c.q such that x, = x; and &, =z’ 223244

To check whether there exist grasps from—two grasp/sets that can switch to each
other, we consider two polytopes representing these grasp Sets. Let P; be the polytope
for edges F,, E,, E. and P, be the polytope for edges Fy, ., E;. The space of P; and
P have two components (axes) in common, namely the axes of u; and u.. These com-
ponents correspond ‘fo|the non-switching ‘edgest i.e.; 'theé common edges of both grasps.
The projection ofg?; on the space of these two components represents the set of points on
edges Fyp.and L. thata parallel grasp on I, Fj, andF. is possible. Similarly, the projec-
tion of Py representsithe subspace of parallel grasps on £}, [E. and'E,. If the intersection
between these two projections is not empty, then there exists points on £, and E,. that
form a parallel grasp on both F,, Fy, E. and Ey, E., E;. The reverse is also definitely

true. Fig. 3.8 depicts the projection process.

The process is completed by picking six sub-polytopes Pj, . .. P associated with a
parallel grasp vertex. We find their projections on a non-switching plane by examining
their extreme points. For each sub-polytope, we project every extreme point of it on

the non-switching plane and construct a convex hull from these points. The union of all
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Ugq

(b)

Uc
>

(d)

Figure 3.8: Finger switching between parallel grasps: (a) A polytope representing possi-
ble contact points (in term of u4, wp anid . (b), (¢) two poelytopes and their projections.
(d) Intersection of the projected polygon repreéenting a set of common points for a finger
switching. -

¥

projected convex hulls is a projection of the eﬁ;t_ifé-‘polytopes.

3.3.2.4 Finger Switching between Parallel Grasps and 2-finger Grasps

Planning finger switchifig between parallel grasps and 2-finger grasps requires more
operations because the representations of two-grasp types are different. A set of 2-finger
grasps has to be transformed into positions on the grasped edges. Let a parallel grasp is
on edges. F,; L), . and'a two'finger grasp 1s on edges F, ., F,; wheie E, is the common
edge. To transform the representation of 2-finger grasps, we compute the projections of
cones C’;"d emanated from all points in the focus cell F, 4 to E,, E;. the double-sided
cone C{!, is drawn at every point in the focus cell F, 4 to intersect with the grasped edges.
The intersections are regions that are feasible for 2-finger grasps (Fig. 3.9(a)) and denoted
by E!, EY. For the parallel grasp, the polytopes of the parallel grasps are projected onto
u, axis (Fig. 3.9(b)). The union of projections I, of the polytopes is transformed into
a region on F,. We denote this region by E’ which is a feasible region that can form

parallel grasps with some points on E;, .. Clearly, a finger switching can be performed
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(b)

Figure 3.9: Finger switching between 2-finger grasps and parallel grasps: (a) A focus cell
is transformed into graspable regions on the grasped edges. (b) A polytope is projected in
the axis of the common edge.

when the finger on F, is placedan £/ N E(’l’ and forms a 2-finger grasp with a point on
E,; and a parallel grasp with'two points each of which is on E,, E. concurrently. Non-
empty intersection region &4 N£"“indicates finger switching. As a result, there exists an
edge joining the vertices agsociated with these two grasp sets. The number of common
fingers for switching between 2-finger grasp and parallel grasp is up to two fingers. If two
edges are in common, oné non-empty. interé,,e_tction region on a common grasped edge is

sufficient to perform finger switching.

3.3.3 Finger Aligning

Finger aligning is a process for repositioning fingers by rolling or sliding them along
edges of a polygon while maintaining a force-closure grasp during the repositioning pro-
cess. By applying this joperationy wercanichangeigraspingiconfiguration with in the same
connected set of grasps. This'expresses the direct relation between finger aligning and a

vertex of switching graph explained in section 3.3.1

Finger aligning is necessary as exemplified in the following instance. Let us con-
sider Fig. 3.10(a). Obviously, because F, ;. N Fy, 4. = (), it is not possible to switch
directly from a grasp on edges F,, L, E. to another grasp on edges Ey, Ey, . using fin-
ger switching. However, suppose the current grasp on £, I, I, is defined by q,, a finger
switching can be performed to switch to another grasp on edge E,, £, E; (i.e., g, is in
both £, . and F,; 4q) and somehow if the hand can adjust the finger to change from the
grasp defined by g, to a grasp defined by g, (which could be any point in F, , ¢ N F} q.),

another finger switching at g, can be applied to switch to a grasp on edge £y, Ey, . as
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desired.

(b)

Figure 3.10: Finger aligning: (a) moving between non-overlapping focus cells, (b) mov-
ing locally within a focus cell

In fact, for 2-finger and eoncutrent grasps, changing grasping configuration within
the same focus cell is the precess we refegred to as finger aligning. This process can be
accomplished by takingadvantage of the idea that force-closure can be maintained during
finger sliding, finger rolling ,or /finges swi;ching within an independent contact region.
We illustrate in the case of concurrent gra{Spg. Let us consider Fig. 3.10(b) showing
configuration points g, and g, in the same f('),cus cell £, 4. The inverted friction cones
at g, intersect the three grasped edges in tﬁé".three independent contact regions E/, F}
and E! and likewise the inverted friction coni z,if—j-’q2 intersect the three grasped edges in
E!, E/ and E!]. Suppose that the thiee ﬁngef_s_—’dre;at x, € E/,x, € Ej and . € F..
This can be represented by g,. To move from g, to g,, we move the three fingers from
x;tox, € El N E!(i =a,b,c). It is sufficient to ensure force-closure during the fingers’
motion by maintaining that the fingers are in the independent contact regions of g, during
the entire process. This cansbe done by rolling or sliding the fingers along the grasped
edges from x; t0 & (i.= a, b,¢). Instead of relling or sliding, it is also possible to apply
finger switching within each independent contact region by placing a free finger at «, and
lifting off the finger alix,. Because there'isionly one free finger duriag a concurrent grasp,

this kind of finger switching can be performed in one independent region at a time.

By continuity, for any point in a focus cell of 2-finger or concurrent grasps, there
exists a neighborhood for which the independent contact regions of the point intersect the
independent contact regions of every point in the neighborhood. That is, there always
exists a finger repositioning sequence to move between any pair of configuration points

in the same focus cell.

Finger aligning for parallel grasps is trivial from the construction of a grasp set
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that is formed by a union of connected convex hulls. Each vertex in the switching graph
corresponds to exactly one grasp set. Every grasp in each vertex can be repositioned
to another grasp of the same vertex by finger aligning because of continuity in a set of

parallel grasps for each triple of polygon’s edges.

3.3.4 Computing Switching Graph

To construct a switching graph, all of itswvertices and edges have to be found. The
constructions of switching graphs for all grasp yvpeswill be explained in this section. In
the proposed algorithms, required information about-an-edge is maintained in a structure
EdgeStruct. An instance of FdgeSiruct for an edge contains two fields which are (1) id:
the number uniquely identifying the edge, and (2) normalAngle: the angle between the
internal normal of the edge and the x-axis Wr@_tten in radian in the range from O to 27. The
input of the algorithm is an acray, allEdge[L.'n] containing F'dgeStruct instances for all
edges of the polygon. The algorithm beginé}bff sorting all E'dge in an increasing order of
the field normal Angle then gonstructs an atfay upper|L..m, | containing all EdgeStruct
instances such that the field nogmal Angle isin the range [0, ) and an array lower([1..m;]
containing all FdgeStruct instances in arra@l;l’Edge that are not in array upper. The
algorithm sorts upper in the increasing orderj_o’f; normal Angle and sorts lower in the
decreasing order of normal Angle (this takes O(n) time since upper and lower are con-

structed from all Edge which is already sorted).

3.3.4.1 ComputingVertices of Concurrent Grasps

We. compute dll foeu$ cells tolidentify vertices of jall concuricnt grasp sets. Com-
puting all«focus cells requires identifying all triple of edges having concurrent grasps
satisfying Proposition 3.6. Instead of enumeratively checking all triples, the number of
candidate triples can be significantly reduced by considering only those triples whose
internal normals 6-positively span the plane. Let us present an algorithm for generat-
ing these candidate triples and then discuss how it works. The algorithm proceeds as

described in the following pseudocode.
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1: for: =1tom,; do

2 « = upper[i].normal Angle

3 =1

4: while j < my and lower[j|.normalAngle > a + 7 + 260 do

5 B = lower[j].normal Angle

6 for each £ such that
all Edgelk].normal Angle > (3 — w + 26 and
all Edge[k].normal Angle < o+ 7 — 26 do

7 generate candidate triple of edges:
{upperli).id, lower|j|id, allFdgelk).id}

8: j=j+1 )

This algorithm is basedon the idea that selecting one normal restricts how the next
one can be selected. The algorithm selects the first normal from the upper half of the
unit circle (line 1) and the second normal f;om the lower one (line 4). This is due to the
fact that three vectors canndt be inl the same}heﬁf of the unit circle when they 0-positively
span the plane. According to Definition 3.3,:-;');nce the first normal is selected, it is needed
that the angle between the fitst and the seé%;hd_ normals is smaller than m — 26. This
amounts to choosing the second-normal in t-h_;c-eif;')wer circle and outside the cone with
half angle 26 and centered on the vector oprSitéto the first normal (Fig. 3.11(b)). This
results in two regions.where the second normal may be chosen (regions A and B in Fig.
3.11(b)). However, the :fegion starting at smaller angle (region B) need not be considered
because selecting the second normal from this region would lead to generating triples that
were already generated in“previous iterationsi(i.e., generating the third normal that was
already considered as.the first ot second normals'in previous iterations). Once the first
and second normals are determined, Definition 3.3 is used again to_specify the range of
angles where the thitdinormal can‘be selected (line’6land region Clin Fig. 3.11(c)). Note
that although the upper bound running time of this algorithm is O(n?), it is in practice
output sensitive and efficient. This claim is supported by experimental results in Section
3.5 that the number of the candidate triples generated from the presented algorithm varies

closely with the number of focus cells found for polygons with varying number of edges.
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(b) (©

Figure 3.11: Generating candidate triples of concurrent grasps (see text)

3.3.4.2 Computing Vertices of 2-finger Grasps

Before computing focus cells for 2-finger grasps, the angle between the normals of
two grasped edges is necessary.to be in range (7 — 20, @+ 260). The algorithm starts with
selecting one edge from allE'dgednrange [0, 7 + 20) because an edge out of this range
induces redundant pairs-of cdges (Fig. 3. l|2(b)). Let normal Angle of this edge be «, the
other edge is restricted byfits normal being in range (- 7m=20, a+7+20) (Fig. 3.12(a))
and not exceeding 27 to avoidiredundancy. ;ffhe generated candidates are then computed

for focus cells. A non-empty focus cell is aé§;oé'iated with a vertex in the switching graph.
: AsY T 20
£ g
/y{ B+ T =0 a+0
2 atT 0 G0

St 20
(a) | (b) (©

Figure 3.12: Generating pairs of 2-finger grasps and-triples of parallel grasps

3.3.4.3 Computing Vertices of Parallel Grasps

To participate a switching graph, we start by building all vertices of parallel grasps.
Since solving linear constraints of three grasped edges that induce null polytopes is worth
nothing, we need a condition that can check the existence of a parallel grasp on three
polygonal edges. Proposition 3.8 can be extended to cover an existence of a parallel grasp
on three polygonal edges. We define a union volume Uy, . of polygonal edges a, b and ¢
on edge a as the union of all common cones C}, . originated on every points of edge a.
A union volume also divides the plane into two outer regions. We can uniquely identify
the edge that contains a center point in the same way as the case of point. This edge will

be called the center edge. Fig. 3.13 illustrates a union volume.
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a
a,bjc

(b)

Figure 3.13: Computing a vertex of parallel grasps: (a) Three edges and a common cone
drawn on some points on center edge. (b) A union volume.

Proposition 3.9 A necessary and sufficient condition for the existence of a parallel grasp
on three polygonal edges . 4y, and E, whose normals are n,, n, and n.., is that the two
following conditions hold. (Pd) a ommon gone C', ..is'not empty. (Pf) Let us assume
that the edges that contaifi a ¢enter point issF,. The edges Ey, and E. do not entirely lie
in the same outer region separdted by the uﬁio}i volume U, .

Proof: Let p, be a point On e, and p,. Béa point on e.. If two edges e, and e. do
not entirely lie in the same outer ¥egion. then ger’é exists p, and p. such that the line pyp.
intersects with the union volumeé.  According o the definition of the union volume, the
point on the intersection of p,p. and the union volume must lie.in a common cone of some
point on ¢,. Let us asSume that the origin of that common cone is p,. Three points p,, p,
and p. must form a parallel grasp according to Proposition:3.8. This complete the proof

for the sufficient condition®

For the necéssary side, since e, and e, entirely lie on the same outer region, every
pair of peintpson, e-andp~on.e.: also lies;outside the union, volume, Hrtom the definition
of the union volume;'we know thatfor every point p; on é,-any pair of-p, and p. will lie
outside the common cone originated at p,. From Proposition 3.8, we know that there can

not be a parallel grasp. Thus, the proof is completed. [ |

3.34.3.1 We compute all vertices by using a condition Pd in Proposition 3.9 for prun-
ing. The pruning starts by iteratively selecting the first edge. It limits that the angle of a

normal vector between itself and a second edge must be less than than 26. Let o be the
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value of normal Angle of a first edge and /3 be the value of normal Angle of the second
edge. Clearly, (3 has to be selected in range (« + 0, o« — ). The value of normalAngle
of a third edge is restricted in the range (3 + 7 — 20, a + 7 + 260) (Fig. 3.12(c)). All gen-
erated triples satisfying Pd are then checked against Pf. If a triple passes the verification,

it constitutes a vertex in the switching graph.
3.3.44 Computing Edges

Once all vertices are computed, every; pair of concurrent grasp vertices having two
common edges are checked for intersection of'the associated focus cells. Also, the focus
cells of every pair of concurrent grasp vertex and«2-finger grasp vertex having one com-
mon edge are checked for intersection. If the intersection is not empty, an edge is created
in the graph for linking the two vertices that represent the two focus cells. According to
the number of fingers, any_ #Wwo vertices representing sets of 2-finger grasps are always

adjacent.

For parallel grasps, eyery pairof parallel grasp vertices having two common edges
are checked for intersection of the projections-'gf the polytopes associated with the vertices
as described in Section 3.3:2.3. To save time, when a vertex is computed in the first step,
we do a preprocessing of computing a projeé_tibh of its polytope on all three pairs of
planes (plane (u,, up), plane (uy; u,.) and plan_er_. (@ay.)). If the intersection on subspace
is not empty, an edge linking these vertices is created. Vertices of 2-finger grasps are also
considered for switching to parallel grasps. A parallel grasp-vertex and a 2-finger grasp
vertex having at least oné common edge are checked for intersection of their graspable

regions on the common edge:
3.4 Using Switehing Graph

A switching gtaph.provides a tool for planning a regrasp sequence. A graph search
is performed to find a path joining the two vertices representing the two grasp sets. A path
connecting the vertex containing the initial grasping position and the vertex containing the
required grasping position indicates a sequence of edges that a finger switching should
be performed. However, a path in a switching graph does not directly determine which
contact points on grasping edges are to be used in each step. For a pair of vertices having
an edge connecting them, a switching graph tells us that we can switch between two
grasps on these edges but it does not tell which contact points that we can do a finger

switching. This section describe a method of transforming a path in a switching graph to
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an actual regrasp sequence.

First, let us consider a finger switching. Finger switching takes place when we move
from one vertex to another vertex in a graph. An edge in the graph tells us that a finger
switching is viable. We have to find two grasps on each vertex that have non-switching
contact points on common edges. For finger switching among concurrent grasps or be-
tween concurrent grasps and 2-finger grasps, the intersection of the two associated focus
cells is used to compute switchable regions on the grasped edges. A point in the intersec-
tion indicates regions on the common edges which fingers can be positioned on them and
form two different grasps with the two switchededges. The calculation of the switchable

regions has been described in-Section 3.3.2.1 and 3.3:2.2.

In the case of switching-between parallel grasps, we pick a point from the intersec-
tion of the projections of polytopés/described in Section 3.3.2.3. That point indicates two
actual points on non-switching gdges. Thenext step is to find a point forming a grasp of
the first vertex and a point forminga grasp of the second vertex. Let us consider a poly-
tope defined in Section 3.3.1.3. Once a Valﬁc Jof (wy, u.) in the intersection of projected
P; and P, is chosen, we can construct a set of feasible contact points for the other two
fingers by solving the linear system-in { 1)—(7)‘f’with the fixed values wu;, and .. To switch
between a parallel grasp and a 2-finger grasp, élr.c;t‘j"mmon contact point is picked from the
intersection of graspable regions on the common edge. Contact points on the remaining
switched edges of parallel grasps are obtamed by solving-the same linear system with
the fixed value of parameier on the common edge. The graspable region on the switched
edge for 2-finger graspss obtained by projecting the double-sided cone originated from
the common contact point to‘the switched edge: The intersection of the cone and the edge
indicates a region that a/finger can be placed:to form a 2-fingersgrasp with the common

contact point.

Next, let'us ‘consider a'finger aligning. "We exemplify in 3-finger grasp situation.
Finger aligning may be required in-between two finger switching, i.e., when we just tra-
versed from vertex v,y . to vertex vy .4 and about to move to the next vertex vy . r. Let
us assume that the first finger switching is just performed and we currently are in a grasp
represented in v, . 4. In order to perform the next finger switching, i.e., to move to the
vertex v . f, the grasping position must have two contact points in common with the fi-
nal grasp. An appropriate grasping configuration is computed as described earlier in this
section when we have to change from the finishing grasp of the first switching to the a

next switching. Since these two grasps lie on same polygon’s edges, we can change the
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Figure 3.14: A corresponding between vertices and edges in a switching graph and a
finger switching and a finger aligning. \A dashed line in the bottom figure represents a
finger aliging while a solid line represents a finger switching

current grasp to an appropriate grasp for the next switching by a finger aligning. Fig. 3.14
shows the corresponding between.a switching graph and the actual action performed on a

regrasp. |

Since the switchinggraph contains s;e'ts of grasps, additional constraint, such as
finger kinematics, may be incorporated as a search policy to find a sequence that meets
additional requirement. ‘Ongce a path is fouild, Jfor each pair of consecutive vertices in
the path, a grasp in the associated grasp set is, chosen such that a finger switching can
occur. Again, the grasp can be’selected such that the resulting grasps optimize some
criteria. After these grasps are computed, ﬁﬁgeg_aligning can be planned to complete
the sequence. An advantage of this approach is that a path in the graph represents a set
of regrasp sequences, ndt just one. This allows selecting sequences based on additional
constraint or any fine tuning on the sequences to be performed more efficiently than an

approach that returns one sequence at a time.
3.5 Implementation and Results

Werhave implemented the regrasp planning for concurrent gtasps, parallel grasps
and 2-finger grasps based on the switching graph concept. The program is written in C++
using LEDA library (Mehlhorn and Naher, 2000). To achieve accuracy, rational numbers
supported by LEDA are used in geometric computation. All run times are measured on a
PC with a 2.8 GHz CPU.

Some test polygons with varying number of edges are shown in Figure 3.15. The
results classified for each grasp type are in Table 3.1 showing the numbers of candidate
sets, vertices and connected components of switching graphs. Table 3.2 shows the overall

results when all grasps are taken into account and combined in one switching graph.
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The results show that concurrent grasps are quite complete in themselves since the
combination with 2-finger grasps and parallel grasps decreases the number of connected
components only for the object in Fig. 3.15(b). The numbers of parallel grasp vertices are
small comparing with concurrent grasps but they provide more 3-finger grasps that do not
satisfy the strong condition in Proposition 3.4. 2-finger grasps play a role as transitions
between concurrent grasps and parallel grasps. Moreover, they can decrease the number
of connected components as we can see in the cases of parallel grasps for all objects and

concurrent grasps for the object in Fig. 3.15(b).

Some regrasp sequences are presented in Fig.3.16 - 3.20. Fig. 3.16 shows a regrasp
sequence for only concurrent-grasps. A regrasp-sequence for parallel grasps is shown in
Fig. 3.17. The cones in _this-figure are -common cones for parallel grasps. Fig. 3.18
presents an example when.2=fingér grasps are taken inte account with concurrent grasps.
Dashed line segments representding joining two contact points which form 2-finger grasp.
An example of parallel grasps and 2-ﬁnget grasps is appeared in Fig. 3.19. The cones
in Fig. 3.19(b) and Fig:" 3.19(1) of the parajlel_. grasps are the common cones. Fig. 3.20
shows a regrasp sequence from a concurrenl_ grasp to a parallel grasp. The cones in Fig
3.20(a)-(d) are double-sided frigtion cones Wh’ereas the cones in Fig 3.20(f) are common
cones for the parallel grasp. =

In conclusion, the most important grasp"'t'y}p'e is.concurrent grasp which covers the
most number of vertices and captures the connectivity of the-switching graph. However,
more grasps found induces more running time from the computation of edges linking
switchable vertices. Alse; 2-finger grasps cannot be neglected because they are transition
between concurrent grasps and parallel grasps*which cannot directly switch to the other
different type. In practice, 2-finger grasps can'shorten a path from two vertices represent-

ing the same grasp type.

£59. 37 (5

Figure 3.15: Test polygons



46

Table 3.1: Results of the algorithm for all grasp types

Fig. | #edge 2-finger grasps concurrent grasps parallel grasps
' #vertex | #can | #vertex | #can | #CC | #vertex | #can | #CC
3.15(a) 15 10 13 43 61 1 11 11 4
3.15(b) | 20 12 26 77 121 6 31 40 4
3.15(c) | 25 21 40 185 250 2 81 101 3
3.15(d) | 30 22 42 407 577 1 62 78 3
3.15(e) 35 26 64 550 853 2 122 162 4
3.15(f) 40 37 97 736 1074 | 1 249 358 1

Table 3.2: gombined results

Fig, #vertex .| #CC |~time(s)
345(a) 644 1 1.05
3.16(b) 120_ 3 1.89
3.15(c) 267 WD 6.34
345@@) 291 Lo\ 12.13
8.15(c) | 6989 1" 2. | 20.98
345@) 1022::‘. 1 38.27

3.6 Summary St =

s

We have proposed a method for solving the regrasp planning problem for a polygon.
A hand using in this wc;k is assume;l four free-flying ﬁngers. Our method provides
general solutions represented by a graph which allows us to plan a regrasp sequence by
using a graph search. Sincte.an obtained result is a set of general solutions satisfying
force-closure thus other constraints can be takén into account to determine an appropriate
regrasp sequence for a given hand platform. The experimental results show the efficiency
of our algerithimhwhich canccover manyisetsiof grasps..Theiswitching graphs have a few
number of:connected components which'means that any two vertices in a'graph are mostly

connected.
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Figure 3.16: A regrasp sequence for concurrent grasps
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Figure 3.18: A regrasp sequence for concurrent grasps and 2-finger grasps
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CHAPTER IV

REGRASP PLANNING FOR A POLYGON WITH A
LARGE NUMBER OF EDGES

4.1 Introduction

This chapter addresses the problem of régraspplanning for a polygon with a large
number of edges. We consider the case that uses-minimum number of fingers to grasp
and regrasp, i.e., 2-finger grasps‘isstaken into account and one additional finger is used
for a finger switching. Therefores a hand applied in this work is assumed to equip with
three fingers. To obtain.the complete Structure for regrasp planning of an object, all force
closure grasps are computed in grasp spacé., ]Instead of naively constructing a switching
graph from all uncombined sets of grasps COﬁiputed from all combination of polygonal
edges, we propose to merge séts of grasps thaf._connect to one another into a connected set.
In grasp space, a connected set allows . continuous changing among any grasping configu-
rations in the set, i.e., it allows continuous moizgh‘i‘ents of fingers across polygonal edges.
The obtained connected sets are then used o .é_oli;struct nodes of a switching graph. We
propose an output sensitive algorithm which efficiently computes all edges of a switching
graph. Regrasp plannmg then can be formulated as a graph s€arch problem where nodes
of the graph represent connected sets of force closure grasps while an edge connects two
sets that can be changed between each otherdby finger switching. A method for finding

the optimal solution of a finger switching is also presented.
4.2 Representing force closure grasps

In this section, we describe how to represent and construct the configuration space
that characterizes all force closure grasps. The polygonal boundary of the rigid object to
be grasped must not be self-intersecting but could be broken into many simple polygons.
It is sufficient to consider only the case that the boundary is composed of at most two
simple polygons: if there are more than two simple polygons that define the boundary, we

can pick two at a time and run the same algorithm over all possible pairs.

The configuration space of the problem is clearly the contact space. A configuration
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consists of two parameters, each of which defines where each finger is placed along the
boundary of the grasped object. This section describes how to represent and construct the

configuration space that characterizes all force closure grasps.

The entities of a polygon needed in our discussion are defined as follows. A simple
polygon P is described by n distinct vertices v; € R? where i € Z, !. It is assumed
that v, are arranged counterclockwise if they represent the outer boundary of the object,
or arranged clockwise if they represents the hole inside the object. Edges E; are line
segments with endpoints v; and v, ;. Every point p on the boundary of P can be mapped
to the length of curve measured counterclockwise from v, to p along the boundary. We
will write length(p) to represent such length-“Lengths of E; can be computed by the
equation l; = ||v,41 — v;||. Itis-obvious that Ly = length(v;) = > ;cz, ;. We denote by
L the total length of the boundazy of /7, which can be computed by L = >~ ;.

Next, let us define the g@angentsof £ ast; = (v, — v;)/l;. The normal vectors n;
of E; are unit vectors that arg perpendicular to ; and point inward. Note that n; can be
obtained by rotating ¢; counterelockwise by 7r / 2 radian. The cone of forces C;; that can be
exerted on the edge F; is defined by two vectbrs’hi + (tan o)t; and n; — (tan a)t; where
a € [0,7/2) is the half-angle of the“friction c{)ne

I

Since we deal with two fingers that migh‘t_. not reside on the same polygon, two sets
of entities for different polygons are needed. Let all entities defined above correspond to
the polygon P which'is in contact with the first finger, and-let ', v}, E, length/, I}, L,
L', t;, n! and C! be defined similarly for the polygon P’ in contact with the second finger.
If the two fingers are on the same polygon, then n = n/, length = length’, L = L’ and
X; =X/ where X = v, E.l,L,t/n or C!

The configuration space C.of the two fingers i$:]0,.L) %[0, L'). Given a configuration
(u,u") € C, we sayithat'(u, u')composes a 2-finger'grasp if ‘and enlyif the two contact
points length™'(u) and (length')~'(u') achieve force closure. (Recall that length is a
function that maps a vertex into a number, so length™! gives a vertex.) Let the graspable
set G C C be the set of all configurations that compose 2-finger grasps (Obviously, G is
the set of all configurations contained in all force closure regions mentioned in Section
??). Also let the graspable subsets G; ; be graspable regions on edges £; and E; defined
by

Gij =GN ([Li, Liya] x [L, L))

17Z.,, is a group of non-negative integers less than n. Addition and subtraction are computed modulo 7.
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4.2.1 Computing G, ;

Clearly each G ; corresponds to configurations whose one finger is on £; and the
other is on E?. This problem of finding all force closure grasps on a pair of edges has been
well studied. Using Proposition 3.1, it has been shown in (Faverjon and Ponce, 1991) that
(;; can be defined by eight linear inequalities in the parameters v and u’. Here, let
us present an easier method to define G; ;. We define the inverted force cone —C as
{—z | x € C}}. It was shown in (Nguyen, 1988b) that emptiness of C; ; = C; N (—C})
implies emptiness of G, ;. If C; ; is not empty. we claim that GG; ; can be defined by no

more than six points on the bounding rectangle.«The claim is justified as follows.

Since a 2-finger grasp can be either compressive(squeezing grasp) or expan-
sive(stretching grasp), we defin€ for simplicity DC; ;= C; ;U(—C; ;) as the double-sided
cone of C;; so that both the'Sitetching and squeezing cases can be dealt with together.
Now we prove the above claim by examining DC;; centered on Ej. Let us first extend
both sides of the edges F; and E; to inﬁlﬁty,_ choose an arbitrary real number u, find
p(u) = length™'(u) on i, thenldet DT ('u) be the cone DC; ; centered at p(u). The
intersection [(u) of E; and the cone D (u) is a line segment on £’ which represents
the region that the second finger can'be placéé 1o achieve force closure with the first fin-
ger at p(u). This means for a given position;ofjj'%he first finger w, length/(I(u)) is the

corresponding graspable interval-in-the secoh‘d’ﬁhger’s configuration space (Fig. 4.1(a,

b)).

It is easy to see that if « moves by Aw, p(u) will move in the direction of ¢; by the
same distance Au, the endpoints of I(u) will meve in the direction of —t; by the distance
proportional to Au, and the endpoints of lengt//(I (x)) will move in the —Aw direction
by the distance proportional to Awu (Fig. 4.1(c, d)). These linear relationships imply
that the graspableregiontistbounded, bytwaorstraightlines. It isnowiobvious that cutting
E; and Ejto their original lengths'is equivalent t0 imposing four rectangular constraints
u>Li,u< Li,u > Lg and v/ < L;‘+1 in the (u, u')-space (Fig. 4.1(e)). Therefore,
G ; can be defined with no more than six points on the bounding rectangle. In the real
implementation, all defining points of G ; can be found by computing endpoints of four
intersections: DC; j(v;) N E}, DC; j(vi1) N EY, DC; 3(v}) N B, and DC; (), ) N E;
(Fig. 4.2).
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length'(I(u))

“p(u)
(a)

MAu AAu
-~

£)
Figure 4.1: Computing G; ;: (&) [{w} is the é‘r_ﬁ_spable region of the second finger when
the first finger is at p. (b) length{T{u)) is an intérval in u’ configuration space. (c) End-
points of I(u) move by the distances proportional to Aw. (d) Endpoints of length’(I(u))
move by the same distances as endpoints of / (u): giving two straight lines bounding the
graspable region. (e) G -is-theesult-of cutting the-infinite-area by the rectangle.

4.2.2 Extending Conﬁéuration Space

Since each finger can bé positioned ‘anywhere.in its ICR in order to form a force
closure grasp, and its position can be'represented by one parameter,sit is clear that the
ICRs cambe depicted in the configuration space as_rectangles whose sides are parallel
to u and 4 axes. The mapping results in one rectangle if the ICRs do not contain v,
or v, two rectangles if the ICRs contain v, or v, but not both, or four rectangles if the
ICRs contain both vy and vy, (Fig. 4.3). To eliminate the need to find ICRs with multiple
rectangles, we extend the domain of length™' and (length’)™! to the whole real line so
they both become functions with periods L and L' respectively. (length and length’ are
no longer one-to-one.) The new G in the expanded configuration space R? can be defined

from the old G with these periodic relations:
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, Iy, I. and I; are shown in (a),
1. by these intersections as shown in (e).

Figure 4.2: Extreme points
(b), (¢) and (d). G, j can be i

AUHINEINGDT

AR IR RN

o (u,u') e G (u+ L) € G.

o (u,v') e G (u,u/ +L) €.

We claim that despite infiniteness of GG, the ICRs have one corresponding rectangle

within G N [0,2L] x [0,2L']. This is easily proved by the following argument.
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e Suppose a position of one finger is given, there must be some positions of the second

finger that do not form force closure with the first finger.

e It follows that all u-constant line segments in G are shorter than L’ and all u’-

constant line segments in GG are shorter than L.

e Since the ICRs can be mapped into some rectangles in G whose sides are axis-

parallel segments in GG, one of these rectangles must lie inside [0, 2L] x [0,2L/].

The special case where the two fingers touch the same polygon can be handled with a
smaller configuration space. G will be symmegtric.about the axis v = v/, which means
we can cut out one half of G that lies above (orbelow) the line u = u’ (Fig. 4.4(a)).
The remaining part of G abovew’ > L (or to the right of v > L) can also be eliminated
because to every rectangle crossing the line v = L (or the line u = L), there corresponds
a rectangle in [0, 2L] x40 L](owl0s £] x [O 2 L)) that represents the same configurations
(Fig. 4.4(b)). Finally, the region to the rig_hé of the line w. = v — L (or above the line
u = u' + L) is redundant because 1o pointi:.-oﬁ'-this line is in G (Fig. 4.4(c)). Therefore,
the region of consideration is the shaded poffi.pn.‘as shown in Fig. 4.4(d).
¥,

4.2.3 Constructing G 7, o ;,,_j_J

Now we know that each GU contains at ‘most six defining vertices, so all G; ; can
be constructed within ©fnn’) trme:in the final-aigorithm, Wwe will need the polygonal
representation of G, S0 adjacent G, ; must be merged together into big pieces. Many
simple polygons may be needed to define G because G does not have to be simple nor

connected.

A vertex of some G; ; is a defining vertex of G, or defines G if it is a vertex on a
boundary, of (G It can be observed that'a vertex v of some (5, ; déiines G if and only if

one of theffollowing is true:

e v is not at a corner of the bounding rectangle.

e v is a corner of four bounding rectangles (one contains G; ; and the other three are

adjacent), but is not contained in some G, ; bounded by these rectangles.

Note that if G; ; is neither empty nor full (“full” means G ; = [L;, Liy1] x [L}, L} 4]), at

least one vertex of (G; ; must be a defining vertex of G.
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2L |------- A Axis of Symmetry Q[ |-------5-------

’ Not Graspable ’
u =u

Not Graspable

U= Ly !

v |

Tmipossible 3

» U L

I||
Same Coufigurations - ToapRiRin ¢ Portion
(©) A as ()
— '

Figure 4.4: (a) The axis'of symmetry.is «' = us (b) For each rectangle that crosses the line
' = L, there correspondsnogher rectangle in 10,2L] % [0y L] that crosses the line u = L.
(c) The line v’ = w and v’ = w—.L mever intersect &, and the part of GG to the right of
u’ = u — L represents the samg configlirations as the remaining portion in [0, L] x [0, L].
(d) The remaining portion to con;ﬁdeg is showg.ig,}he shaded area.
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The algorithm to find all sifnplé polygoné that define boundaries of G is described

as follows. Let us first aftach a state “used/unused” to all Véi;tices of all G; ;. All vertices

are initialized as “unused;_’. We scan through all values of ¢ and J, and do the following:

e While ¢, j"has an *unused” vertex v that defines G,
— It is clear that v is on a boundary of G§so we can trace-the boundary of G
from v until we get back at v.

— All vertices traced along the way defines a simple polygon which is a boundary

of G. Mark these vertices as “used”.

Note that tracing the boundary of G from G; ; may involve many Gy, ;.

The tracing process can be simplified by first defining adjacencies of vertices that
define (5. Situations when two vertices v, and v, that define GG are adjacent in GG are listed

below:
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e If v; and v, are adjacent in the polygonal representation of (i, ; and they lie on

different sides of the bounding rectangle of G ;, they are adjacent in G (Fig. 4.5(a)).

e If v; and v, are adjacent in the polygonal representation of G; ; and they lie on the
same side of the bounding rectangle of G; ;, we assume without loss of generality
thatvy, vy € {L;} x[L}, L ,]. v; and v, will be adjacent in G if G, ;NU10; = &
(Fig. 4.5(b)).

e If v, and v, belong to different pieces, i.e. GG; ; and G, ;, we assume without loss of
generality that v, € G j,v2 & G, ;./v4 and v, can be adjacent in G if and only
if they lie on the same segment { L;} > [LoT | and

- V1Vo g Gi—lhj and V0o () Giﬂ' = {’Ul}, or

- V1Vo Q G@j andm‘g‘ﬁ Gj_]d‘ = {’UQ} (Flg 45(0))
|

ffffffff LT AN e Ly
Vig Voo T \ Y o
L) P !I J.-
J I Dol 7N e L
, Y

o

Figure 4:5: Adjaceﬁie;s of vertices
A vertex on a boundary of & defines either an outer boundary or a hole of G. It is
necessary to distinguish_that the vertex defines an outer boundary or a hole. A sequence
of vertices representing-a polygon starting at v is obtained when a tracing gets back at
v but we do not exactly kiowsthe orientation‘ef the sequence. We firstly assume that it
represents a simple closed polygon and then rearrange it into'a counterclockwise order. To

rearrange it, we start with the vertex that is extreme in v’ direction denoted by v;. Let its

adjacent yertices be w, 4 and v, 3" The ¢ross product of v; 1 v; and, 0,0, is calculated.
Since the internal angle at the extreme vertex is convex and strictly less than 7, they orient
counterclockwise when the cross product is positive. If the cross product is negative, the

sequence of the vertices is reversed.

The rearranged sequence defines an outer boundary when two adjacent vertices v;
and v, of the sequence form the segment v;v,;,; such that the graspable region is on the
left side of v;v, 1, whereas the sequence represents a hole when the graspable region is
on the right side of ©v;U; ;. All vertices in the sequence are identified that they define an

outer boundary or a hole for further use.
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The number of vertices defining G can be decreased by eliminating collinear ver-
tices. Let a connected boundary of G consist of n vertices v; € R? where i € Z,. A

vertex v; can be eliminated when the slope of ¥;_1o; is equal to the slope of U,U, 1.
4.3 Finger Switching

Regrasp process which changes grasping configuration by placing an additional fin-
ger on desired contact point and then releasing one finger of the initial grasp is called
finger switching. Intuitively, considering grasps on two different grasp sets, a finger
switching can be performed when there exists a'common contact point on the grasped
object. In grasp space, the commen contact poinis‘are computed in subspaces of one pa-
rameter. It requires projections of two grasp sets onto the subspaces. The projections are
then checked for the interseciton . which indicates a set of common contact points. This
operation involves with an edge in the switching graph. Considering two grasp sets asso-
ciated with two nodes, €Xistgice of finger switching betwecen these sets indicates an edge
linking the two nodes. - 4

Finger switching requires that one noii__—_.switching contact points must remain the
same during the process. Formally, there will be an edge connecting a node v, and a node
v, when there exists a couple of points-(length=Ha, ), length ™" (u,)) where (uq, u;,) € P,

and a couple (length™"(uy), length - (u})) whete (u,, u) € P, such that u, = w, or

To check whether there exist grasps from two grasp sets that can switch to each
other, we consider two polygons representing these grasp sets. The projection 7,(F,) of
P, on the axis of parameter u, (Fig! 4./6(a)). répresents the set of points on the object
that are possible to form 2-finger grasps with some points corresponding to the projec-
tion 7, (P,).of P, on the axis.of parameter 2. Similarly, the projections of P, (Fig.
4.6(b)) represents the subspaces ofi2<finger grasps .cNote that 7, (F,)'and 7,(P,) are in
the same subspace, if the intersection between these two projections is not empty (Fig.
4.6(c)), then there exists points length™!(u,) on the object that form 2-finger grasps with
length~(u/) and length™'(u}) concurrently when u, = wuy is satisfied. We apply the
same process to check the existence of finger switching on the space of parameters u, and

uj, by considering 7,/ (P,) and 7, (Py).
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WU(PCJ u 71-u(f)b) u >71,
(@) (b) (©)

Figure 4.6: Finger switching: The projection of (a) F,, (b) P, on u parameter space. (c)
Overlapping projections

4.4 Finger Aligning
9

Finger aligning is a process for repositioning fingers by rolling or sliding them along
edges of a polygon while maintaning a fo'{ce closure grasp during the repositioning pro-
cess. By applying this eperation, we can change grasping configuration with in the same
connected set of grasps. Fhisexpresses the}direct relation between finger aligning and a

node of the switching graph. e,

dd

Finger aligning is neeessary a’s_-dexemp‘liﬁed in the following instance. Let us con-
sider Fig. 4.7(a). Obviously, because the cui‘r'e!nta position of finger 1 cannot form a 2-
finger grasp with the upper part, it is not possrble to switch directly from the current grasp

to a grasp that one ﬁnger is placed on the upper part usmg hnger switching. However,

somehow if the hand ‘cah continuously adjust finger 1 and 2.to change from the current
grasp to a new grasp in Flg 4.7(b), a finger switching can be performed to switch to
another grasp by placing finger 3 on the upper part to form a 2-finger grasp with finger 1
(Fig. 4.7(c)) and:then releasing the finger 2 (Fig. 4.7(d)).

3 _’T Q@ @

‘Tt 11 33NN G

T o o o

(a) (b) (© (d)

Figure 4.7: Finger aligning

Finger aligning is trivial from the construction of connected grasp sets Py, ..., P,.
Each node in the switching graph corresponds to exactly one grasp set. Every grasp

in each node can be repositioned to another grasp of the same node by finger aligning
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because of continuity in a connected set of 2-finger grasps.
4.5 Constructing Switching Graph

To construct a switching graph, all of its vertices and edges have to be found. We
compute all G;; and construct G to identify all connected polygons P, ..., F,. Each

connected polygon is associated with a node of the switching graph.

To construct all edges, all polygons have to be checked for finger switching among
them. Instead of exhaustively testing all pair ©f polygons, we apply a sweep algorithm to
find overlaps among the projections of the polygens.in a parameter subspace. Let the pro-
jection 7, (P,) of a polygonf,-on the axis of parameterw, be represented by an interval
(ly : hy) where [, is the lower eadpoint and /i, 1s the higher endpoint. The lower endpoint
and the higher endpointare obfained fromthe leftmost vertex and the rightmost vertex of
P, respectively. The intervals ofall polygbr}_s are used in our algorithm. We firstly sort
all endpoints in increasing order and store thé sorted endpoints into an event queue £. A
priority queue () is used to store intervals aﬁd identify overlaps among intervals. The pri-
ority of a interval is based onthe value of its'.lj,-l'_i_rgh‘er endpoint, less value has more priority.
We are now ready to start the sweeping procég_sjrom the first element in . An endpoint
is dequeue from F. If it is a lower endpoint, 1t_s éSSOCiated interval is added into (). Oth-
erwise, if it is a higher endpoint,its associated_._ir_li;enval is dequeued from (). Clearly, the
interval has the highest priority, we can use ExtractMin opetation of the priority queue to
remove it from (). Let thé dequeued interval be (I : i). All remaining intervals in ) have
the lower endpoints that less than /. and the higher endpoints that higher than & therefore
they overlap the interval (I :=h). As a consequence, the associated node of the interval
(I : h) has edgesdinking nodes associated with the remaining intérvals in ). The process
is repeated from dequeuing £ and so on until £ is empty. We also have to check overlaps
in the subspace «“using the same algorithni (The pseudocede of edgerconstruction is as
follows.

1: E=Sort(ly, hi,lo,hay. .. lm, hin)
2: while E is not empty do
3: e = E.Dequeue()

4.  if e is lower endpoint then

5: ().Insert(interval of €)

6: else

7: Q.EztractMin()

8: L = all remaining elements of @)
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9: v = the associated node of e
10: forall: € L do
11: n = the associated node of ¢
12: link(v,n)
13: end for
14:  end if

15: end while

The construct of the event queue / takes O(mlogm) running time. A prior-
ity queue using a heap give performance ((¥) 0 insert an element into (). Extract-
Min operation takes O(log ). For all endpoints;*our output sensitive algorithm takes

O(mlog m+ mk) where L.isthe avetage number of overlapping intervals of one interval.
4.6 Using Switching Graph '

4.6.1 Unconstrained Regrasp Sequence_;

A switching graph provides a tool for ﬁl_anping a regrasp sequence. A path connect-
ing the node containing thetnitial grasping p_‘?_ésiﬁon and the node containing the required
grasping position indicates a'sequence of ed'geé,,_'_that a finger switching should be per-
formed. However, a path in a switching grapﬁ does not directly indicate which contact
points on grasping edges are to bé used in each s';ep. For a pair of nodes having an edge
connecting them, a switching graph tells us that we can switch between two grasps from
two grasp sets but it does not tell which grasping points that we can perform a finger
switching. This section describe a method of transforming a path in a switching graph to

an actual regraspssequence.

First, let us consider a finger switching. Finiger switching takes place when we
move from one node to,another node in a graph. An edge in the graph tells us that
a finger switching is viable. We have to find two grasps on each node that have one
non-switching contact point in common. We pick a point from the intersection of the
projections described in section 4.3. That point indicates one actual non-switching point.
The next step is to find a point forming a grasp of the first node and a point forming a
grasp of the second node. Let us consider a polygon defined in section 4.3. Once a value
of u, or u, in the intersection of the projections of P, and P, is chosen, we can construct
a set of feasible contact points for the other finger by intersecting P, with the line passing

u, and parallel with the axis of u/, or the line passing u/, and parallel with the axis of u,
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Figure 4.8: A corresponding between nodes and edges in a switching graph and a finger
switching and a finger aligning. A dashed line in the bottom figure represents a finger
aligning while a solid line represents a finger switching

Next, let us consider-afinger aligning. Finger-aligning may be required in-between
two finger switchings, i.€.; Whearwe just traversed from node v, to node v, and about to
move to the next node v Letis assume that the first finger switching is just performed
and we currently are ins@ grasp representé(l 10 vp. In order to perform the next finger
switching, i.e., to move tgithe node @, the grélsping position must have one contact point
in common with the final grasp. However)it ‘might not be the current grasp. When an
appropriate grasping configuration, is compﬁ't_r_ed‘.‘as described earlier in this section, we
have to change from the finishing grasp of the first switching to the a next switching.
Since these two grasps are from the 'same connected set, we can change the current grasp

to an appropriate grasp for the next switching_._b}_{. a finger aligning. Fig. 4.8 shows the

corresponding between-a switching graph and the actual aciion performed on a regrasp.
4.6.2 Optimal Regrasp Sequence

In this section,we will plan for.a regrasp-sequence thatindependent contact regions
(ICR) are locally optimized for eachfinger switching.using the principle of L., Voronoi
diagram (Papadopoulou and Lee, 2001). We propogse.to accomplishsthis task by comput-
ing the /iy, Voronoi diagram of the edges of . Considering only pait of the resulting L,
Voronoi diagram that lies inside (G, we claim that the largest square in G must be centered
at a vertex of the diagram. Before proving this claim, let us briefly review the concept of

L, Voronoi diagram.

The L., Voronoi diagram is conceptually defined in the same manner as the ordinary
Voronoi diagram except that L., distance metric is used instead of the more familiar L.

Recall that the L., distance d(p, g) between two points p = (p,,p,) and ¢ = (¢z, qy)

is given by d(p, q) = max(|p, — ¢z, [py — @yl), i-€., the maximum of the differences in

each coordinate, and the L, distance d(p, ¢) between point p and segment e is defined to
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be minge. d(p, q), i.e., the shortest L, distance between p and any point on e. Let S be
a set of segments in the plane. A point lies on the L., Voronoi diagram of .S if, among
all segments in S, at least two of them are equally of the lowest L, distance to the point
(in other words, they are the L., nearest segments of the point). Equivalently speaking,
considering the definition of the L., distance, a point is on the L., Voronoi diagram of
S if it is the center of a square that touches at least two of the segments in S without
having its interior intersect with any. An L., Voronoi edge is defined to be the set of all
points on the L., Voronoi diagram that are on the same straight line segment. A Voronoi
vertex is defined to be the point at which at least two Voronoi edges meet (implying that
the point is equally L, far from at least three segments). Since every point on the L.,
Voronoi diagram lies at least on one Voronoi edge, the L., Voronoi diagram is essentially
a network of straight line segments: Specifically, the I Woronoi diagram of S divides the
plane into polygonal regions called Voronoi regions. Eaeh Voronoi region is associated
with a unique segment in"S such/that the fegion entirely contains the segment, and any
point in the interior of thegegion s L. clo§§r to this segment than to any other segment

in S.

ICR are defined by afrectangle in ' w}jdée shorter side length is maximum. We
extend to the problem of optimizing ICR for é_ ',_ﬁ_nggr switching which involves two grasps
concurrently. The measure of goodness of two rectangles R, with side lengths a, and ap
and R, with side lengths by and bs is given by f(Ra, Rp).= min{ay, as, by, by }. Our goal
is to maximize f(R,, R3) such that the grasps represented-by the centers of R, and R,

can switch to each other;

To optimize the criteriony we use anotherrepresentation of a square to describe ICR.
Let v be a point in Gland let squaré(v) denoteithe langest square gentered at v that is fully
contained in G. The size of square(w) is determined by size(v) = minpesa(d(v, p))
where d(@\ p) = max( vy —ip), [ty — dpl): Therefore, any largest square is described
by its center v and size(v). Let v, € P, and v, € B, it is clear that maximizing the
criterion is equivalent to maximizing min{size(v,), size(vs)}. We denote by 7, (v) and
7w (V) the projections of a point v on the axis of v and «’ parameters respectively. The
problem is transformed to locating the centers v, € P, and v, € P, of two squares such

that 7, (v,) = m,(vp) or Ty (v,) = 7w () and min{size(v,), size(vy)} is maximal.

Our algorithm exploits an important characterization of Voronoi edges which allows
us to search squares centered on them to optimize the criterion. We claim that the largest

square(v) must be centered on a Voronoi edge when one parameter of the point v € P
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is restrained. This is justified by the following argument:

We describe in the case that parameter w is restrained as shown by the dotted line in
Fig. 4.9(a).

e If v is inside a Voronoi region whose upper and lower boundaries are a Voronoi
edge and an edge of P (v, in Fig. 4.9(a)), square(v) must have one corner on that
polygonal edge. Moving v away from that polygonal edge will increase size(v).
We can move v in such direction until it reaches a Voronoi edge while square(v)

1s growing.

e If v is on a Voronoi tégion whose upper and lower boundaries are both Voronoi
edges (v in Fig. 4.9(a))y moving v in one direction, size(v) is increasing or de-
creasing along the ways'and siz¢(v)iis decreasing or increasing along the opposite

way until it reaches a Voronoi edge (1_1 yand vs in F1g.'4.9(a)).

This argument allows us to'searchtwo points‘"pa € VB, and v, € V Ejsuch that 7, (v,) =
Tu(vp) of Ty (v,) = T (up) fOr optimizing min{size(v,), size(v,)} where VE, and

V' E}, are sets of Voronoi edges of P -and /7. S

Searching procedure begins with identif&ing-an interval for finger switching by the
intersection between 7, P,) and 7, (P,) or (P, ) and 7, (). We again describe in the
case of an interval in the space of parameter u. Let 7, (P,) A7, (P,) # () be denoted by an
interval ([ : h). Voronoi-edges in V' £, and V'E,, that interseet this interval are considered.
It is possible that we obtaih many branches of Voronoi edges. All combinations of pairs
of Voronoi edge branches are investigated, a pair consists of one Voronoi edge branch
from V E, and another branch from V.Ej. For each pair, we divide the two branches us-
ing subintervals ‘defined by -all“Voronoi ‘vertices in‘the" branchés|as.shown by the dotted
lines in Fig. 4.9(b). Voronoi vertices are used to determine subdivisions of two Voronoi
edge branches because sizes of largest squares centered at them are critical. Each pair
of subsets of two Voronoi edges in a subinterval is then searched for local optimization
of the criterion. Let the two subsets be represented by two segments whose endpoints
are s,,t, and s, t,. Since the size of a square centered on a Voronoi edge linearly in-
creases or decreases and a Voronoi edge is also linear, therefore the size of a square can

be parameterized by a parameter . We define new size functions as

sizeq(a) = size(s,) + %(size(ta) — size(8,))
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sizey(a) = size(sp) + %(size(tb) — size(sy))

where r is the length of the associated subinterval and « € [0, r]. Clearly, « can be linearly
inverted for positions on the segments. Let T, | be increasing and decreasing. The locally

optimum is obtained as follows (Fig. 4.10).

o If o 1= size () | and sizey(«) |, @ = 0 induces a local optimum.
o If a 7= size,(a) T and sizey(a) [, a = r induces a local optimum.

o Ifa 1= size,(a) | and sizey(ar) | and'sizea(0) < size,(0), @ = 0 induces a local

imum.
optimu 2

o If a 1= size,(a) [andsiZepla) 1 and size,(r) = sizey(r), a = r induces a local

1

optimum. \

o If @ 1= sizey(a) fand dide)(a )*T and size,(0) > sizey(0) and sizey(r) <

sizep(r), a causing sige, (o) = szzebs o) induges a local optimum.

dd

e The remaining cases are replica of the last three cases.
Resres /N
SN iduis, + +hgraeily ) .
All pairs of segments from"all subintervals are queried for local optima. Our ap-
proach is done when all combifiations of panfs ‘of Voronoi edge branches have been ex-

plored. The best local thLmum_lsJ;hegpumaLsalutmn_far_&ﬁnger switching.

(a) (b)

Figure 4.9: The largest square on Voronoi edges

4.7 Experimental Results

We have implemented the regrasp planning for a polygon with a large number of
edges based on the switching graph concept. The program is written in C++ programming

language. All run times are measured on a PC with a 2.4 GHz CPU.
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sizeq(@) = sizey(a)

— sizeg(@)
----sizey(a)

a w0 r o
Figure 4.10: Determining.alocal optimum

-

Some test polygons with varyimg number of edges are shown in Fig. 4.11. We also

vary the half-angle of the fricuon.cone by ‘[|l0°, 15°%.and-20%

(a)

=

Y. :J‘.J
Figure 4.11: Test polygons with-aumber of €dges (a) 128 (b) 200 (c) 256 (d) 300

tef o
-

o

Table -4:;'1: Switching graph construction of 1_0° half-angle

Fig. | #node | #edge | #CC | time for nodes | time for edges
(a) 70 162 15 0,11 0.03
(b) 35 79 6 0.20 0.03
(c) 84 222 11 0.25 0.05
(d | 134 400 11 0.30 0:09

The results of switching graph constructions are shown in Table 4.1-4.3. They
present for all test objects the number of connected polygons or nodes of switching
graphs, edges of switching graphs, the number of connected components of the switching
graphs, time spent in node and edge construction in second. The number of nodes of a
switching graph depends on the object’s shape. An object with more complexity produces
more connected polygons. The number of connected components indicates probability to
have a path joining any two nodes in the switching graph. The half-angle of the friction

cone heavily effects the results. It’s clear that larger friction cone induces larger feasible



Table 4.2: Switching graph construction of 15° half-angle

Fig. | #node | #edge | #CC | time for nodes | time for edges
(a) 65 194 5 0.16 0.03
(b) 41 121 4 0.22 0.02
(c) 85 323 3 0.31 0.06
(d | 150 630 4 0.39 0.19

Table 4.3: Switching graph construction of 20° half-angle

Fig. | #node | #edge | #CC | timedor nodes | time for edges
(a) 58 230 3 0.17 0.03
(b) 41 156 2 0.27 0.03
(c) 84 424 ) 0.38 0.06
(d | 143 732 2 0.45 0.08

grasp sets. This causes sets of force closuye ‘grasps to be merged more and connected
polygons to be larger. As a gesult, the nurﬁbey of nodes decreases while the number of
edges increases so that the number of connéétéd components of a switching graph de-
creases. Run times of node constructions depjc_-rlli on areas of merged connected polygons
which are inherited from the objects’ shapesind the values of the half-angles. For an

edge construction, a run time relates to the number of connected polygons.

An example of a regrasp sequence is presented in Fig. 4.12. The sequence is com-
puted using the algorithm described in Section 4.6.1. The dashed lines are lines connect-

ing two contact peints which-entirely,lie.in the two,associated friction cones.
4.8 Summary

We have proposed a method for'solving the regrasp planning problem for a polygon
with a large number of edges. A hand using in this chapter is assumed three free-flying
fingers. Our method provides complete solutions represented by a graph which allows us
to plan a regrasp sequence by using a graph search. The experimental results show the
efficiency of our algorithm which merges grasp sets that are adjacent to one another into
one connected set. The obtained connected sets are used to construct a switching graph

in realtime.
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Figure 4.12: A regtrasp sequence for tk&p object in Flg 3.15(c) when the half-angle is 15°.
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CHAPTER V

REGRASP PLANNING FOR A POLYHEDRAL
OBJECT

5.1 Introduction

This chapter addresses the regrasp planning problem of a 5-finger hand manipulat-
ing a polyhedron. We propese-a technique for eomputing a sequence of finger reposi-
tioning that transforms an initial*erasp into a desired onc while keeping the manipulated

object in a force-closure grasp'during the éntire process.

The proposed technigtie i§ based on th‘e‘:.".idea that a set of force-closure grasps can be
represented geometrically as'a compact set Qf points in 3D space. Based on this represen-
tation, overlapping volumes g¢orresponding ‘tb different sets of grasps can be represented
as a switching graph. The switching graph ;{:aptures ability to switch from one set of
grasps to another and, as a result, allows the £e-éfg1_§p planning to be thought of as a graph
search problem. We demonstrate that the sw_i@_lin_g graph can be efficiently constructed
for test objects with over 40 faces ‘using a randérﬁizéd technique. Note that although fin-
ger kinematics and othé relevant constraints are not initially taken into account, different
search strategies and policies may be later incorporated to generate regrasping sequences

that meet additional requirements.
5.2 Force-closure conditions in 3D

For. 3D grasp, weialso exploit the condition ofnon-marginal-¢quilibrium to imply
force-closure for a grasp. A zero-pitch wrench w = (f, t) for the force f can be thought
of as the line of action of this force and can be written in Pliicker coordinates. Equilibrium
therefore implies that the lines (represented as Pliicker vectors) associated with the contact
forces are linearly dependent. As mentioned in (Ponce et al., 1997), Grassman geometry
(Dandurand, 1984), which characterizes the varieties of various dimensions formed by
sets of dependent lines, can be applied to yield a necessary and sufficient condition for

non-planar equilibrium, namely, the contact forces must positively span' R? and their

A set of vectors positively spans some space when any vector in the space can be written as a linear
combination of the vectors in the set with positive coefficients
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lines of action all intersect in a point (concurrent grasps), lie in two flat pencils having
a line in common (pencil grasps), or form a regulus (regulus grasps). Instead of using
this condition directly for grasp computation, (Ponce et al., 1997) proposes a sufficient
condition that does not depend on the actual contact forces. This condition provides an
underlying idea for constructing the switching graph. It is given here as Proposition 5.2

which requires the following definition.

Definition 5.1 Let V;,i = 1,2, 3,4 be the four cones of half-angle 0 centered on vector
v;. We say that the four vectors v, i = 1.2 844 §-positively span R? if any combination

of vectors v, € Vi = 1,2, 3. 4 positively spainBe:

To tell whether four.giVenweetors O-positively span R*, we may verify that for any
triple v, vo, v3 of these vectoss, the cones V4, V5, V4 of half-angle 6 centered on vy, vo
and v3 lie in the interior of the same half-spaé'e and the cone —V/} of half-angle 6 centered
on the direction opposite to the fourth Vect(-;r v, lies in the interior of the intersection of
the trihedra formed by all‘triples of veetors belongmg to V4, V5 and V3. Geometrically, it
can be shown that the intergection of the trlhedra 1s essentially the trihedron bounded by
three planes, each of which passes thtough the ongm and touches two of the three cones

Vi, Va, V3 while separating them into dlfferent"ﬁalf—space from the remaining cone.

In the following proposition.and the remainder of the paper, we will denote by 6 the

half angle of every friction cone.

Proposition 5.27°A Sufficient condition {for foui: on-coplanar=points to form a force-
closure grasp is that: (P1I)there exist four lines in the corresponding double-sided friction
cones that either intersect in.a single point, form two flat pencils having a line in common
but lying in differentplanes, or form a regulus, and (P2) the_ internal normals at the four

contact points 0-positively span R3.

5.3 Switching Graph for a Polyhedral Object

The switching graph concept is based on the idea that a set of concurrent grasps can
be represented by a point in 3D space. This representation will be explained in detail in
Section 5.3.1. We will also show how contiguous points representing concurrent grasps

can be grouped together to form a cell. A vertex of a switching graph represents a set of
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grasps by establishing an association with a cell. The way we form a cell allows us to
compute (1) a finger aligning between two grasps within the same cell and (2) a finger
switching between a grasp in one cell and another grasp in another cell (associated with a

neighboring vertex). This computation will be discussed in Section 5.3.4.
5.3.1 Representing Concurrent Grasps

As mentioned earlier, a grasp is geometrically defined by the positions of the fin-
gers on the object’s faces. Assuming pelygonal object model, the position of a contact
point can be defined by specifying an ordered pair representing coordinates of the point
on the corresponding grasped face. With fout grasping fingers, this amounts to using
eight parameters to uniquely define a grasp (with the four grasped faces already chosen).
However, using Proposition 813 [rom (Sudsang and Ponce, 1995), we can define a set
of concurrent grasps with oaly three parameters. This proposition follows directly from

Proposition 5.2.

Proposition 5.3 A sufficient condition for fbur Jingers to form a force-closure grasp is
that the four internal normals at the four contact points 0-positively span R3 and there
exists a point T, such that the inverted friction tones at this point (Fig. 5.1) intersect the

four contact faces.

Ao

Figure 5.1: Inverted friction coné¢ of face F' at x

Note that each 'point’ @, satisfying Proposition 3.3 yields four independent con-
tact regions where fingers can be placed independently while achieving concurrent grasp:
these regions are simply the intersection of the inverted friction cones in & with the con-
tact faces. As we will discuss in Section 5.3.3, locally adjusting contact points within
independent contact regions is a means for finger aligning to move from one grasping

configuration to another one belonging to the same vertex in the switching graph.

We are now ready to discuss how a vertex in a switching graph represents a set of
grasps. A vertex of a switching graph represents a set of concurrent grasps by having an

association with a set of all points x( satisfying Proposition 5.3 for a given combination
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of four faces. Since an inverted friction cone at x intersect the corresponding face when
x lies in the volume defined by the union of all double-sided friction cones at every point
on the face (Fig. 5.2(a)), the set of all & satisfying Proposition 5.3 can be obtained from
the intersection of the four volumes each of which is the union of all double-sided friction
cones on each face. In the following definition, we name the union and the intersection

for future references.

Definition 5.4 The union of all double-sided friction cones at every point on face F, will

be called the union volume for the face and will he denoted by U,.

Figure 5.2: Union volume: (a) construct_ion, and (b) its shape (see text)

Definition 5.5 The volume containing all points :1;0 satisfying Proposition 5.3 for a given
combination of four faces F;, F;, Iy, and F; where i = gt ke~ L will be called the focus
cell for the faces and will be denoted by C; -

Before proceeding to'the next section, itis helpful to discuss briefly about the shape
of the union volume and the focus cell.’ Letius begin by considering an example of a
triangular face with its union volume. As shown in Fig. 5.2(b), the union volume is
composedof two symmetricyparts«(in mirrerslike fashion)m oneyabovesthe face, and the
other one below. Note that the union volume is an unbounded body.~This is because
double-sided friction cones are symmetric and unbounded. Clearly from the construction,
the boundary of the union volume consists of unbounded rectangular and conic patches
(at rounded corners). With conic parts involved, quadric surfaces are needed to exactly
describe the union volume’s boundary. This requirement implies that to construct a focus
cell by intersecting four union volumes, univariate polynomial equations of degree upto 8
are to be solved (e.g., to obtain curved edges from intersecting two conic patches and to
obtain a vertex from intersecting three conic patches). A typical technique to avoid this

complexity is to give up some exactness by approximating conic parts of the boundaries of
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union volumes with multi-facet pyramids. This approximation will allow a union volume
to be described as a polyhedron and, in turn, a focus cell can readily be obtained using
an algorithm for intersecting polyhedra (Hoffman, 1989). This approximation scheme
should be used with caution because when the number of facets of the approximating
pyramids is too large, the resulting polyhedron will have so many faces that intersecting
polyhedra might be slower than using algorithms for computing intersection of quadric
surfaces (Hoffman, 1989). This issue on construction of focus cells will become important
as we discuss how to build a switching graph in Section 5.3.4. Before then, let us explain

how focus cells are related to finger switching and finger aligning operations.
5.3.2 Finger Switching

Let us consider two focus cells €, , .y and C\y.. such that Cppeq N Copee # 0.
Let g be a point in C, . 4 C4 6. (Clearly, g defines two sets of concurrent grasps:
one for the combination ofifages’ /iy Fy, 4, Fy and the other for the combination of
faces Fy, Fy, I, Ie. Letais suppose that the fingers 1,2,3 and 4 are respectively on faces
F,, Fy, F. and F; and forming ong of the coﬁ_c{lrrent grasps defined by q. It is easy to see
that the hand can switch to another concurrenf'.grasp (represented by q) on faces Iy, Fy, I
and F, by placing finger 5 on any point in the'ifitersection between face F, and its inverted
friction cone at g (because g € €54 C’a,;c:';.):. Once finger 5 is on F,, finger 4 can
leave face F; resulting in a switching from a concurrent grasp on F}, Fy, F,, Fy; by fingers
1,2,3,4 to another concurrent grasp on F,, . fo. F. by fingeis 1,2,3,5. This finger repo-
sitioning sequence enables us to plan finger switching by identifying intersection between

two focus cells having one different grasped face.
5.3.3 Finger Aligning

Clearly,.a finger switching cannot occur, between. two. grasps whose corresponding
focus cells do not overlap. For example,det us consider focus.cells th Fig.'5.3. Obviously,
because Cypcqa N Cope s = 0, it is not possible to switch directly from a grasp on faces
F,, Fy, F,, Iy to another grasp on faces Iy, Iy, I, F'y using a finger switching discussed
in the previous section. However, suppose the current grasp on faces Fj, Fy, I, Fy is
defined by q,, a finger switching can be performed to switch to another grasp on faces
F,, Fy, Ie, F. (g, is in both C, . q and Cy . .) and somehow if the hand can adjust the
fingers to change from the grasp defined by q, to a grasp defined by g, (which could be
any point in Cy 4.4 M Cop c.c), another finger switching at g, can be applied to switch to a

grasp on faces Fy, Iy, I, I’y as desired.



75

a,b,c,d C C

a,b,c.e

Figure 5.3: Moving between non-overlapping cells

In fact, changing grasping configuration within the same focus cell is the process
we referred to as finger aligning. This process can be accomplished by taking advantage
of the idea that force closure can be maintained-during finger sliding, finger rolling (see
(Han and Trinkle, 1998b; Bicchi.and Mari-‘go, 2000) on how to apply rolling in dexterous
manipulation), or finger switehing‘within an independent contact region. To illustrate, let
us consider Fig. 5.4 showing'configuration points g and ¢’ in the same focus cell C, . 4.
The inverted friction cones of the four grasped faces at g intersect the faces in the four
independent contact regions &, .y, R, andTRgl_and likewise the inverted friction cones at
¢’ intersect the four grasped facesin £, ;,, R’c and R/,. Suppose that the four fingers are
atx, € R,,x, € Ry, x. € R, andxj e Ry. ThlS can be represented by g. To move from
g to q', we move the four fingers froi ; to :C{E R, R;(i = a,b,c, d). It is sufficient to
ensure force closure during the ﬁngefs’ motieiﬁrglj; maintaining that the fingers are in the
independent contact regions-of g during the entlre process. This can be done by rolling
or sliding the fingers o the-giasped-faces-fioii-aw; to-@w:li-= 4, b, c, d). Instead of rolling
or sliding, it is also possible to apply finger switching wiihin each independent contact
region by placing a freefinger at «; and lifting off the fingér at x;. Because there is only
one free finger during a concurrent grasp, this Kind of finger.switching can be performed

in one independent region.at d'time.

By _cotfifindity, for, any pointin a focus cell) theré! exists 4 neighborhood for which
the four independent contact regions of the point intersect the four independent contact
regions of every point in the neighborhood. That is, there always exists a finger repo-
sitioning sequence to move between any pair of configuration points in the same focus

cell.
5.3.4 Computing a Switching Graph

To construct a switching graph, all of its vertices and edges need to be found. To

identify all vertices of a switching graph, we compute all focus cells and to identify all
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Figure 5.4: Moying within a focus cell

edges, we compute all pairs of overlapping focus cells with three common grasped faces.

Computing all focus cell§ requires identifying all combinations of four faces with
concurrent grasps satisfying#Proposition 5.3. Instead of enumeratively checking all com-
binations, the number Of candidaies ean be significantly reduced by considering only
those combinations whose internal nomalsqu_sitively span the plane. Our technique for
generating such combinations is baséd on tﬂg fact that when three normals are given, the
fourth one must lie strictly inside the 'trihedrén formed by the inverses of the three given
normals in order that the four normals 'positi\;e_iy span IR? (otherwise, they would be in the

#e a2 Al

same half space). ==

s

It is also important that every combination of four normals is listed without any
repetition. This is esseritgily the probie;ni of generating a]i k<subsets (i.e., subsets with k
members) of a given set with n members. A simple solution for this problem is to assign a
totally ordered relation to all members of the set.and list every k-subset in the form of a k-
tuple for which eachjelement (except-the last one) precedes the next one according to the
assigned order. Applying this method to our problem, each unit normal is reparameterized
using an‘ordeted pair-of twoangles(a, #)|wherewe [0727] istherangle between the z-
axis and the projection of the normal on the z-y plang, and € [0, 7] is the angle between
the z-axis and the normal. With this parameterization, a sorted order can be imposed by
defining that a normal n, = («a,, §,) precedes a normal n, = (o, ;) when a, < ay,
or when (3, < [, in the case that o, = «y. For clarity, let us present pseudocode of
the resulting algorithm. In the pseudocode, the n sorted unit normals are stored in the
array normal[l..n] with corresponding indices to faces in the array faceld[l..n] and
variable upwardIndex containing the index to the last normal in the array with angle
£ smaller than 7/2 (i.e., all normal vectors in normal[l..upwardIndex| points in the

upward direction).
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Figure 5.5: Parameterization of a unit normal vector

for i = 1 to upper Index-deo
nl = normalli]; f1 = jaceld|i]
for j =1+ 1ton — 2do '

n2 = normdl|) |4 244 faceld]j]

I:

2

3

4

5: for k = j + Lto w—/1 do -

6 n3 = normal [k]4f3 = face[d[k]

7 m = max (kg K upperl ndé’a_c_. +1)

8 Compute all normal vectors inpormal[m..n]
that is contained ity the trihedfgﬂ formed by

—nl, —n2 and —n3

From line 1 of the"above pseudocode, we can see that every first normal is chosen
such that it has toypoint upward (with £ < 1/2). This is.because.choosing a first normal
with angle 3 > i /2 Would reSult in having all four nermals with 5 > 7 /2 which means
that they are all in the same lower half&pace and therefore cannot positively span R3. The
same reason is.appliedinline 7 to allow a fourth normal to point downward only (with 5 >
7/2), otherwise all four normals would be pointing upward and lie in the same upper half-
space. Line 7 also incorporates the fact that, to generate different combinations without
repetition, a fourth normal must be after the third normal according to the sorted order
(i.e., with greater 3 than that of the third normal). The following paragraphs describe how

line 8 can be implemented.

Because a unit normal can be thought of as a point on the unit sphere, and a trihedron
formed by three unit vectors intersects the unit sphere in a triangular region (bounded by

three sections of great circles), all normal vectors contained in the trihedron are therefore
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those vectors corresponding to the points lying inside this triangular region. If we can
somehow map the surface of the sphere onto the plane, a range searching algorithm can

be applied to find the desired normals.

In fact, we have already mentioned such mapping. Recall that we parameterize
every unit normal using an ordered pair of angles («, 3). This allows each normal vector
to be mapped to a point in the a-( plane. The triangular region on the sphere mentioned
above will be mapped to a planar region bounded by three vertices and three curved edges
(Fig. 5.6). Since a curve of constant.c (resp. 3) on the sphere maps to a straight line
parallel to the (3-axis (resp. «-axis) on the c=F plane, it is intuitive that the smallest
isothetic box? covering the planar region, can-be.drawn by considering only the range
of the coordinates of the three-vertices. With this bounding box, we can then apply an
orthogonal range searchingalgosithm (de Berg et al., 1997) to find all the points contained
in the box (note that before®applying the range searching, the bounding box may need to
be clipped to ensure that the angle §of a fourth normal is greater than that of the third
normal). For each point obtained, its corff;sponding normal is checked with the three
previously chosen normals to tell whether fia_ey can positively span R?. By using range
trees (de Berg et al., 1997) o perform orthdg'(;)‘n-;é-ll range searching, the overall algorithm

runs in O(n®log® n).

Figure 5.6: Mapping from the spherical to cartesian coordinates

In constructing the*bounding’ box described above, it-is important to take into ac-
count nature of the mapping from the spherical to the cartesian coordinates. In particular,
when the triangular region on the sphere intersects the arc defined by o« = 0 (Fig. 5.7)
, two bounding boxes are to be constructed to reflect that the arcs « = 0 and o = 27

coincide.

Another case is when the triangular region covers the “south pole” (bottommost

point) of the sphere. When this occurs, the normals corresponding to the three vertices of

%a rectangle with its sides parallel to the axes
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*

Figure 5.7: Two bounding boxes are needed when the triangular region cross over the arc
a=0

the triangular region have their normal projéection.on the x-y plane positively spanning the
plane. This should be handled by constructing“a.botinding box covering the entire range

of a (from O to 27).

Every combination”of faccs found by the algorithm outlined above is also tested
whether the corresponding four mormal vectors 0-positively span R3. This can be done
in constant time by following geometric de;sc'ription given after Definition 5.1. Now that
we know all combinations of faces whose fyor’fnal vectors 0-positively span R?, the next
step is then to find which ones of these combigatjons yield focus cells, and which pairs of
these focus cells overlap. In this paper, we investigate two different approaches for this

task: direct geometric computation, and random sampling.

5.3.4.1 Direct Geometric Combutation

To test whether a combination of four faces F,,, Iy, F= F,; (with normals f-positively
spanning R?) forms a focus cell, intersection of the union volumes U,, Uy, U,, Uy is com-
puted. The intersection, if not empty, isthe resulting focus cell.C,, ; . 4. To find overlap-
ping focus cells! cortesponding to an.edge in'the switching graph, all pairs of resulting

focus cells with one different face aredgain checked-for intersections
5.3.4.2 Random Sampling

The underlying idea is that all the points contained in a focus cell are contained in
all the union volumes of the faces that form the cell. This implies that if we have found
such points, we have an evidence showing that the corresponding focus cell exists. Like-
wise, we can conclude that two focus cells overlap if we can find some points that are
contained in both cells. Following this simple idea, instead of directly computing inter-
section to explicitly obtain focus cells, a number of points in 3D are randomly selected,

each of which is then tested to list all faces whose union volumes can contain the point.
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The resulting list of faces is then scanned for matching with combinations of four faces
whose normal vectors #-positively span R? (obtained from the algorithm previously de-
scribed). A matching indicates a focus cell found, and any pair of matching with the two
corresponding combinations having one different face indicates that the corresponding

focus cells overlap and an edge in the switching graph linking the two cells exists.

It is clear that the completeness of the switching graph generated using this approach
depends heavily on the number of sampled points and the region in R® where the sampling
takes place. To define the sampling region that is guaranteed to cover all focus cells
without actually computing them is still an epen problem. Our implementation shown
in the next section relies onan-ad hoc alternattve by-defining the sampling region to be
the cube obtained from enlarging the smallest isothetic eube that can contain the object
four times about its centerAlthough a complete switching graph cannot be guaranteed,
experimental results show.dargemumnber of vertices and edges are found within a fraction

of the time used by the dire¢t ggometric-approach.
5.4 Implementation and Results

We have implemented the regrasp planning based on the switching graph concept
described in the paper. The program is writtén in C++ using ACIS library (Corney and
Lim, 2002) for geometric computation. All run times are measured on a PC with a 2.4
GHz CPU.

Some test polyhedra are shown in Fig. 5.8 and 5.9. Test results in Table 5.1 show
the number of focus cells found, the number of links found, the number of connected
component of switching graphs‘and the‘inime for each objeét in Fig. 5.8 when using
the direct interseetion approach to build the switching graph. Test results from random
sampling.approach with 1,000,.5,000, 10,000, and“20,000 sampling points are shown in
Tables 5.2-5.5 correspondingly (theselare numbers of one run for/each test object to show
tendency of the random approach). Without guaranteeing a complete switching graph, the
random sampling approach appears to generate a large portion of the graph when spending
only small amount of time compared with the direct intersection approach. In particular,
for most objects, the random sampling approach is much faster and also producing the
nearly complete switching graph. It is of course difficult to give a general statement from
only few examples, however we feel that the random sampling approach is very promising
especially in its ability to quickly produce a sketch of the switching graph. Fig. 5.10, 5.11

and 5.12 show snapshots of a short sequence of finger repositioning generated from the
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program to transform the initial grasps into the target grasps. With a switching graph

already computed, the program takes less than 0.1 second to generate the sequence.

(@ (). (i

Figure 5.8: Test objects with the number of faces = (a) 14 4(b) 24, (c) 34, (d) 36, (e) 38,
(f) 40, (g) 42, (h) 47 and (i) 67

5.5 Summary

We have présented a method for regrasp planning of a polyhedron by a 5-finger hand
based on-theseoneept-of thesswitehing ,graphs A set,of force-closure-grasps is represented
geometrically as a‘compact'set of points'in 3D'space‘which'allows us to-solve the regrasp
planning problem by computational geometry algorithms in 3D. Based on this represen-
tation, overlapping volumes corresponding to different sets of grasps can be computed by
finding intersections between polyhedrons representing the grasp volumes. The experi-
mental results demonstrate an efficient implementation of the proposed approach. The
direct computation provides a complete switching graph while the randomized approach
is more efficient in the aspect of computational time when an input object consists of a

large number of faces.
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Table 5.1: Results from direct intersection approach for each test object in Fig. 5.8

Fig. | #focus cells | #links | # cc | time (s)
5.8(a) 22 24 3 1.61
5.8(b) 177 384 1 19.03
5.8(¢c) 503 1408 1 49.99
5.8(d) 585 1664 5 60.97
5.8(e) 509 1451 12 53.59
5.8(f) 527 1430 8 46.99
5.8(g) 830 | 4 17 52.89
5.8(h) 20 | 461.42
5.8(1) 3 136.92

4

Table 5.2: Results fro a 1If approac test object in Fig. 5.8 with

1,000 sampling points \

irﬁdﬁﬂiﬂ9”' time (s)
58 14 aniadd 0.06
5.8(b) TR % ‘ 0.2
5.8(c) : 0.63
5.8(d) 2 462, | 0.79
5.8(c) go———48 0.94

AUYANENTNYNS

Table 5.3: Result%‘lfrom random sampling approacﬁor each test ol;&sct in Fig. 5.8 with

o RN I ANENA Y
q Fig. | # focus cells | #links | # cc | time (s)
5.8(a) 22 24 3 0.36
5.8(b) 177 384 1 0.56
5.8(c) 311 612 5 1.22
5.8(d) 338 688 4 1.45
5.8(e) 158 250 11 1.56
5.8(f) 413 917 12 1.69
5.8(g) 235 520 11 2.03
5.8(h) 1150 5013 2 2.98
5.8(1) 236 817 3 9.58
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Table 5.4: Results from random sampling approach for each test object in Fig. 5.8 with
10,000 sampling points

Fig. | #focus cells | #links | #cc | time (s)
5.8(a) 22 24 3 0.67
5.8(b) 1 1.06
5.8(¢c) 1 2.3
5.8(d) 9 2.39
5.8(e [— ‘ 2.55
5.8( )48 2.52
5.8(g) | 482 16 . 3.25
5.8 $26/ \ *" | 4.97
5.8 #3600 ) 1436 . 4wl 1128

2T NN

Table 5.5: Results frommandom sampling approach for eﬂh test object in Fig. 5.8 with
20,000 sampling points ¢ =, o/
1 foc 1 cc |t (s)
VU5.8%) 22 3 1.28
8(b) 7 5.0
AW Rl 11 3\ E)
q 5.8(d) 548 1378 4.17
5.8(e) 274 466 4.16
5.8(f) 505 1225 10 4.14
5.8(g) 545 1333 17 5.11
5.8(h) 2065 11279 | 11 8.66
5.8(1) 370 1467 3 14.16
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Figure 5.10: A regrasp sequence generated from a switching graph of the object in Fig.
5.8(b)
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Figure 5.11: A regrasp sequence generated from a switching graph of the object in Fig.

5.8(f)

)
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Figure 5.12: A regrasp sequence generated from a switching graph of the object in Fig.
5.8(2)



CHAPTER VI

REGRASP PLANNING FOR A TRIANGULAR-MESH
OBJECT

6.1 Introduction

As we have described in the previous chaptcisy regrasp planning can be formulated
as a graph search problem-where vertices of the graph represent force closure grasps
while an edge connects two grasps that can be changed between each other by simple
movement. To construct'suchsgraphy it is required to compute all force closure grasps and
calculate all possible simple moyements. This approach works well when the object is of
low complexity, e.g. polyhedron with small ‘number of facets. However, this is not the
case for most real world objects, especially Whén the information of the object is acquired

by sensor rather than being nicely modeled t;y_-human.

¢

To achieve complete automation, it is VitalijJ;”__g)r the robot to be able to perform sens-
ing by itself. Acquisition of object spatial $Egc_tpre is usually done via range sensing
devices such as a laser range ﬁndér or stereosc-ogicrcameras. The data obtained through
this method usually involve thousands of surface points. This poses a very challenging
issue in grasp planning because of the combinatorial explosion of the search space. Given
a thousand contact points, the number of all possible 4-finger grasps reach 10*2, beyond
the address space of an ‘ordinary computer. “Considering all possible grasps would take
too much time. TFo provide a trade-off between accuracy and computational simplicity,
Goldfeder, et.al. (2007) applied.superquadric.fitting. to.parameterize ‘object shapes from
the point-cloud input.” Avgrasp planningis performéd in'the hieraichy.of superquadrics
from the coarsest to finer approximations. In (Huebner et al., 2008), the minimum vol-
ume bounding box approach is used to fit input data by primitive box shapes. The result
bounding boxes and data points are iteratively split to yield better box approximations.

A grasp planner exploits the approximations as clues to synthesize grasps on arbitrary

objects.

While the grasp planning problem for discrete contact points just recently began to

receive more attention, the regrasp planning problem in the same setting remains mostly
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unexplored. Most existing works in grasp planning for point data approximate the model
of the object using only spatial information from the input points. Although this approach
may be sufficient for computing a single grasp, it offers no clues on how a regrasp se-
quence can be obtained. The main contribution of this paper is to present a novel method
for organizing the input contact points to facilitate the regrasp planning process. Our un-
derlying idea is to partition the input points based on their wrenches. Contact points that
can exert similar wrenches are grouped together. For each group, a representative is se-
lected. Every set of representatives that can form a force closure grasp is then computed
and referred to as a representative grasp. Our idea is motivated by a typical regrasping
scenario when a supporting finger need to be placed on the object before some finger
in a force closure grasp can be lifted offa Obyiously, if the supporting finger can exert
wrenches similar to thoseby the finger to be lifted off, itis likely that the object will still
remain in force closure after thefinger swap. The most important product of the proposed
clustering strategy is the soadmap structure‘.the_lt leads to significant reduction of the search
space. This structure is a gfaph'that capturegflow representative grasps can switch among
one another via finger swapping.. Since each representative grasp roughly describes a
different way wrenches e¢an be aligned to form a force closure grasp, the roadmap some-
what approximates the global relationship th_a_;b_ describes how force closure grasps can be
switched among one another.” Of course, an arbitrary force closure grasp may not be a
member of the roadmap. Therefore, to utiliz_e: the roadmap for regrasp planing from an
arbitrary initial grasp {0 a target grasp, we nee.d fegrasp sequences that bring the initial
and the target grasps to some grasps in the roadmap. We will present methods for comput-
ing such sequences based on the clustering information. Preliminary experimental results
show that most regrasp planning problems can be solved within a few seconds or a few

minutes by our approach whereas exhaustive search takes abouta day or longer.
6.2 Regrasp Planning on Discrete Point Set

In this chapter, we assume that the model of the input object is described by trian-
gular meshes. This will result in a polyhedron with a large number of triangular facets.
Each facet is usually very small relative to the entire object. We use the centroid of each
facet as a possible contact point. This approach is also adopted in (Roa and Suarez, 2008).
Since we consider discrete contact points, finger rolling and finger sliding which require
continuous motion at a contact are not permitted. Only finger switching is considered in

the planning.
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6.2.1 Overview

The first step of regrasp planning is to compute a roadmap of all possible grasping
configurations. Since we consider 4-finger grasps, a grasping configuration consists of
four contact points. A grasping configuration that satisfies force closure induces a vertex
in the roadmap and the configuration is stored in this vertex. An edge joining two vertices
exists when two associated grasping configurations can switch to each other. This work
assumes five fingers for regrasping. Four fingers are used to securely grasp the object. The
remaining finger is used for finger switching. This means that two grasping configurations
that have one distinct contact point can perfosm finger switching which implies that there

exists an edge joining the twoweitices correspondingto these two grasping configurations.

There are some drawbaeks associated with this traditional approach. Suppose there
are N contact points to congider./The possible grasping configurations are as many as N4,
For each grasping configuraiions there can be as many as 4NV other grasping configura-
tions that can be reached'dirgctly by finger switching. Consequently, size of a roadmap
constructed from a large aumber of contac‘t'r_p-oints could easily become larger than the

memory space of an ordinary computer.

¥

To overcome these limitations, we prop’E)_s’e‘_".to cluster the input contact points into
groups. Instead of using all contact points, oné__c_'o_ntact point is picked from each group
to be a representative for constructing the representative-level roadmap. The number of
groups is a user-defined‘variable which indicates trade off between completeness and re-
source used in the computation. Of course, the representative-level roadmap does not
cover grasping configurations,consisting of seme contact points that are not representa-
tives. A local planner is required to compute a path from such grasping configurations to

a grasp in the representative-level roadmap.
6.2.2 Spectral Clustering for:ContactPoint Set

Before constructing a representative-level roadmap, we apply spectral clustering
algorithm to partition the input contact points into meaningful clusters. In spectral clus-
tering, users are free to define how a cluster is meaningful according to their task at hand.
However, the definition of meaningful clusters from existing works, mostly in the field of
computer graphics, are not related to our regrasp planning problem. Our proposed idea
is to define meaningful clusters from similarity of wrenches by means of grasping. Re-

call the finger switching operation: the remaining finger is placed on the object then one
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finger is lifted to change grasping configuration. To maintain force closure, a reasonable
heuristic is to ensure that the chosen contact point for the remaining finger and the contact

point of the finger to be lifted can produce similar wrenches.

Spectral clustering takes a contact point set as input to compute an affinity matrix
which embeds similarities of every pair of contact points. The matrix is solved for eigen-
vectors corresponding to the k largest eigenvalues. The eigenvectors are then used to

determine the clustering of contact points.
6.2.2.1 Affinity Matrix

Affinity matrix contains-information that reflects how contact points are grouped
according to their applicable foreesand torques. Each pair of contact points is measured
for pairwise distance. The pairwise distances of all pairs form a matrix that encodes
similarity between conta€t points. An affinity matrix is Symmetric and denoted by A €
RV*N | where 0 < a;; &£ 1ffor all conta;ct] points i and j. Element a;; encodes the
likelihood that contact poins i and j can be elustered into the same group. Let f,, 7; be a
unit force perpendicular to the object’s surfaég and the position of ¢th contact point w.r.t.
a reference point o. The associated torque is £, = (; — o) x f,. The wrench generated
by f; at this contact point i is thérefore w; = (f,, ;). When friction is assumed, the
friction cone at contact point i _is approximated using an m-sided pyramid bounded by

fis -+, Fim. The associated wrench cone is defined by w;y /... . , w;,,, and called primitive

wrenches.

Since a force closure test in the wrench space considers only the directions of
wrenches, the diStance /function is formuldted-based on measuring the angle between two
wrenches from twg distinct contact points, which can be calculated from their inner prod-
uct. However, the torque component of a wrench depends on.the choice of the origin
assumed 1n the torque calculation. We therefore useithe centroid of the object as the ref-
erence origin. Since any vector (r; — 0) is a constant vector, the toque component of the
associated wrench is not affected by any rigid transformation applied to the object, i.e.,

independent from the object’s pose.

The proposed pairwise distance between two contact points ¢ and j considers the
difference between wrenches that the two contact points can exert. Roughly speaking,
we compare the geometries of the two wrench cones. Instead of integrating all differ-

ences between all pairs of wrenches from the two cones, an approximation is taken by



92

comparing only the boundaries of the linearized wrench cones, i.e., angles between the
primitive wrenches from the two wrench cones are measured. Each primitive wrench of
1 is compared with a primitive wrench of j. Obviously, there are many ways to match
pairs of primitive wrenches for comparison. We have to select one correspondence that is
appropriate for the distance function. Since the linearization of a friction cone is in either
a clockwise or counterclockwise order, the result primitive wrenches are arranged in the
same order and a reasonable correspondence of the primitive wrenches has to preserve this
order. The starting index for a wrench cone in the comparison is however not necessary
the first index obtained from the linearization. The indices of the primitive wrenches of a
contact point can all be shifted by an integer # while preserving the order. Without loss
of generality, we apply the shifting # forithe primitive wrenches of the contact point j.
The angles between w8 W @A W14 mod m)s =5 Wiimta mod m) are measured
pair by pair in order (Fige™6. L)@ The summation of these angles defines our geometrical
difference between thesestwo wrench coneli_s. However, this value is varied by changing
x. We imitate the principal of the shortest cli’étance between two bodies in the Euclidean

space: by varying z, the minimal summatioi; of angles 1s used as the pairwise distance.

The difference between two wrench cdn’?s 1s measured as follows
ol

m e a Ay

M (i, ) =min > angle(wgk, (i)

o= S

Tyl S

where 0 < = < m — l-and &+ 7 € Z;,. Since value of //(7, j) depends on the number

of pyramid’s sides, the distance function is normalized as d(i,7) = M(i,5)/m.

(@) (b)

Figure 6.1: Transformation distance: An example of cones in 3D where the numbers show
the order of comparison (a) z = 0 (b) x = 2

The Gaussian similarity function is applied to encode pairwise measures into the

affinity matrix. It is formed by an exponential function as
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ali, ) = 9>

Clearly, 0 < a,;; < 1, and contact points of which their pairwise distance is smaller
have larger affinities between them. The issue of choosing o is neglected. We simply

choose o as the average of all measures, i.e., 0 = 55 Y. 1<; j<n d(3, ).
6.2.2.2 Spectral Clustering Algorithm

The spectral clustering algorithm in (Ng et al., 2001) is applied. The eigenvectors
of the affinity matrix are used.in clustering Of“Contaet points. The spectral clustering

algorithm from (Ng et al., 2001)as as follows.

i. Compute the affinigy matrix A.

ii. Define D to be thediagonal matrix whose (i, j )-element is the sum of A’s i-th row,

and construct the matrix/l &= D12 AD~1/2
iii. Compute the eigenve€tors vy, .., vy 0f L associated with the k largest eigenvalues.

iv. Construct the matrix V ="{w s wp] € fRN *F by stacking the eigenvectors in

columns. =K

v. Form the matrix [J from V' by normalizing the row sums to have unit length, that is

ui; = vij /(g v

vi. Extracting each row of ¥ as a point in R¥, cluster them into clusters K7, . .., K} by

performing k-means algorithm

vii. Assign the-griginal.contact peint p; to,clustet-K jif and only.af rew 7 of the matrix

U 1slassigned toicluster ;.

After running the clustering algorithm, we need to construct some structures for
further uses in regrasp planning. Let the input contact points be stored in a table denoted
by Tp. From the above clustering algorithm, Euclidean distances in the affinity matrix are
used to partition the input contact points. We then apply the same distance measurement
for the successor procedures instead of the pairwise distance measurement proposed in
Section 6.2.2.1. The contact point associated with the row vector of U that is closest

to the center of K is chosen to be the representative of the cluster ;. We construct a
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matrix F to store Euclidean distances between all row vectors of U and the centers of all
clusters. A matrix F' contains Euclidean distances among all row vectors. A table T is

constructed to store all representatives.
6.2.3 Constructing Representative-Level Roadmap

We are now ready to compute a roadmap for the representatives. All vertices are
constructed by checking force closure grasp for every four representatives in 7. We call
such grasping configurations representativeigrasping configurations. Each representative
grasping configuration satisfying force closuredsassigned to a vertex. The number of ver-
tices in a switching graph is equal to the number oigrasps found in force closure checking.
In this chapter, we apply the algorithm of (Niparnan and Sudsang, 2007) for fast filter-
ing grasps that do not satisty.the nécessary condition. Grasps that pass the filter are then
verified for force closure bysapplying the algorithm of (Zhu and Wang, 2003a). An edge
joining two vertices of ' Whigh corresponding representative grasping configurations can
switch to each other cande easily computed by checking the number of common contact
points between the two cogresponding conﬁgufations. Sinee 4-finger force closure grasps
are considered, two representatiye grasping cbnﬁ'gurations can switch to each other when
they share three common contact peints. Th’ef—eorﬁnputed representative-level roadmap is

A4

denoted by R. =
6.2.4 Planning Regrasp Sequence

The regrasp sequence planning process is splitted into two level search: in
representative-level roadmap and in local roadmap. In the previous section, the construc-
tion of representative-level roadmap 'has been desctibed.) A'régrasp sequence acquired
from the representative-level roadmap contains only configurations consisting of contact
points in. 'z which is a subset of of the original contact point.set. 75, This means that
traversal 1n the representative-levebiroadmap does not cover.grasping configurations that
consist of some contact points in 7\ 7. Therefore, for arbitrary initial and goal grasps,
the regrasp planner has to find regrasp sequences that link both grasps to some grasps in

the representative-level roadmap.

An intuitive way is to find a path from the initial grasp or the goal grasp to their
representative grasp, i.e., the grasp that consists of the representatives of all contact points
forming the initial grasp or the goal grasp. The planner performs Algorithm 1 which ex-

ploits a heuristic of similarity in a cluster to determine a vertex in the representative-level
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roadmap that the initial grasp or the goal grasp should be switched to. Let g be the initial
grasping configuration or the goal grasping configuration that consists of contact points
Da, Po, Pe and py. Let us denote by p., py, po and py the representatives of the clusters
that respectively contain p,, py, p. and py. Also denote by ¢’ the representative grasping
configuration consisting of p,/, py, p and py. If ¢’ does not achieve force closure, i.e. the
vertex defining ¢’ is not in the representative-level roadmap R, the planner then performs

Algorithm 2. Otherwise, a regrasp sequence from g to ¢’ is planned as follows.

For each contact point p; of ¢’ (i.= a,. :. ,d), all contact points in T}, that are in the
same cluster of p; are considered. We exploit m€arness among p;, p; and contact points
in the cluster to limit search space in local planning«The distance F}; between p; and p;/
is queried from /. A contactpemt j in the cluster that induces I;; < I and Fy; < Fiy
is copied to a set .S;. We.then eompute all possible 4-finger force closure grasps such
that the first, second, thirdeind fouth’ contact points are picked from S/, Sy, Sy and Sy,
respectively. A local roadmap is then constructed such that each of its vertices represents
each force closure grasp mentioned aboye, ;nd.each of its edges joins two vertices repre-
senting two grasping configurations with thée_:e common contact points (finger switching
is possible). With a local roadmap, any graph;sé-arch can be used to retrieve a path from
the vertex representing ¢’ to the vertex repreé_éﬁti‘r}g ¢. If no such path can be found, the

planner invokes Algorithm 2.

Algorithm 1
1: Determine p,/, pyts Do, Por and g’
2: if ¢ ¢ R then
3:  Algorithm 2
4: else
5. Determin€ S Syt S, 54
6: L = ConstructRoadmap(S,/, Sy, S Sar)
7
8
9

if path = FindPath(L, g, ¢') then
return path

: else
10: Algorithm 2
11:  endif
12: end if

Algorithm 2 again exploits the information of clusters. It is invoked when ¢’ does
not achieve force closure or Algorithm 1 fails to find a regrasp sequence from g to ¢'. The
underlying idea of this algorithm is to find another appropriate representative grasping
configuration, which the given grasping configuration will change to, that satisfies force

closure and has one different contact point from ¢’. Since the new representative grasping
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configuration does not consist of all representatives of the given grasping configuration,
to apply the same local planning strategy, we have to relocate one contact point of the
given grasping configuration from its cluster to the cluster of the different representative.
A local planning, is then performed among one changed cluster and three unchanged clus-
ters, which guarantees that g and the new representative grasping configuration are force
closure. However, this method perturbs the local properties of the changed clusters. To
minimize the effect of this transfer and to maximize the use of local property, this algo-
rithm aims to transfer one contact point in g to its second nearest cluster. The procedure
FindNearestCluster begins with finding vertices in R of which the representative grasp-
ing configuration f’ has one distinct representative from ¢'. Let p,» and p,/ be the distinct
representative of ¢’ and f’. The associated contact point of p, is denoted by p,.. We query
the matrix F for the distanee'betweenp, and the eenter of eluster K,y of p,/. All represen-
tative grasping configurations in /2 having one distinct representative from ¢’ are used to
query the distances. Thegpair thaginduces |th§ shortest distance between them is selected
for locality reason. Now we redefine some}fotations to understand the pseudocode. Let
the selected contact point be p, 1t cluster be‘Kx/, its second nearest cluster be K, and
the representative grasping configuration possessing the cluster K,y be f ’. This procedure
returns the variable X which consists of .., K*L’L’ K, and f'. If X is determined, we then
temporarily add p, into K,,. Let/f’ . consist of.-pé,._'pm Ps, p¢. We perform a local roadmap
construction as applied in Algorithm 1 and ﬁlila path between g and f’ which both are

members of the local roadmap.

Algorithm 2
1: Determine DPars Por s Pells Pa

2: X = FindNearestCluster(p,:, py, Pers Par)
3: if X is not detesmined,then
4:  Algorithm 3
5: else
6:  Add p, into K,/
7. Determtine $,95,%.54 ¢
8: L = ConstructRoadmap(S,, Sy, Ss, St)
9:  if path = FindPath(L, g, f') then
10: Remove p, from K,
11: return path
12:  else
13: Remove p, from K,
14: Algorithm 3
15:  end if
16: end if

If finding a path from g to f’ still does not achieve, Algorithm 3 is applied by updat-
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ing the representative-level roadmap. The contact points p,, pp, P, P4 are now considered
as representatives. Let T; be a set of the contact points {pq, Py, Pe, Pa}- All grasping con-
figurations partially consisting of some contact points in 7¢; are verified for force closure
condition and reported as new vertices in R. New edges are computed among the new
vertices and between the new vertices and the recent vertices of R to complete updating
R. Clearly, g is associated with a vertex in R. Therefore, a path from g to any grasp in R

can be computed by a graph search.

Algorithm 3
1: TG = {paapbapmpd}
2: Ty =TrUTqg
3: L = ConstructRoadmap(Ly, T, T4, Tc;)
4. Update R by adding Land linking L'to R

In conclusion, the"overall algorithm firstly clusters the input contact points. Then
a representative-level readmap A is constructed from the representatives. To query a
regrasp sequence from angdnitial grasping cd,nﬁ guration ¢ to.a goal grasping configuration
h, they have to be linked with/R by using Algorithm | and 2. These algorithms find a
path between ¢ to a vertex in /v and.so on for A. If the algorithms fail to report a path,
Algorithm 3 is performed by adding g or /. mto R. Finally, a graph search is then applied

to find a path connecting two grasps:in £. 'j' +H
6.3 Experiments and Results

The test objects are'shown in Fig. 6.2. They are simplified and modeled with about
500 and 1000 triangular meshes. The half angle of frictioni cones is 10°. All objects are
clustered into 30,-50.and.70 groups for regrasp planning.-Alltun-times are measured on a
PC with a 2.4 GHz CPU.Exainples of-regrasping sequences are presented in Fig. 6.3 and
6.4.

Table 6.1-6.6 show the result from the construction of representative-level roadmaps.
The result presents for each test object the number of force closure grasp vertices of the
resulting representative-level roadmap, time spent in the construction and the number of
connected components of the roadmap. The numbers of vertices of roadmaps depend
heavily on the numbers of groups. Another factor is the object’s shape. The objects in
Fig. 6.2(a) and (f) result in more vertices than the others due to their sphere-like shapes
which generally yield more force closure grasps. Note that the number of vertices is much
smaller than the total number of force closure grasps that can be formed by the input con-

tact points (up to millions for each test object). Small number of connected components
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Figure 6.2: Test Objects

indicates high probabilityﬁzwe a path_ Joining any two vertices in the roadmap.

The tables also prese f the result erm querying regrasping sequences. We ran-

domly pick 30 pairs of fi élosure grdgps‘ato serve as the initial and target grasps for

X b

each query. Although the n‘umber of conneeted- components of the representative-level
roadmaps are quite large for some objects succé.s),sful regrasping sequences can be found

for most pairs of grasps. This 1mphe_f,hat thema_]orlty of grasps lie in the same connected

component. The success rates tend fo increase When the numbers of groups are increased

as we can see from tlle‘suuatlons when the numbers of gr?_ljips are changed from 30 to
50. Minimum, maximuiil and average querying times arc also shown in the tables. The
numbers of vertices and the numbers of meshes affect corﬁf)utational times used to find a
path connectingtworgrasps.The:formerneffects when Algorithm:2, 3 and representative-
level planner are executed whereas the later effects when all local planners are executed.
From out experiments, minimum times are spent whien both initial and target grasps can
connect to reptesentative-level roadmaps-by Algorithm 1. Maximum times mostly occur
when Algorithm 3 is provoked. However, when the number of groups is quite low such
as 30 groups of 1,000 triangles, the average number of members in a group is greater
than the number of groups so that computing a local roadmap by Algorithm 1 and 2 takes
more computational time than provoking Algorithm 3. As discussed above, our approach
provides trade off between completeness and resource used in the computation. From the
results, the numbers of vertices and the success rates depend on the numbers of groups.
Less number of groups provides faster computational times but variations of grasps and

success rates decrease. This is reasonable for an ordinary personal computer to be used
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in the regrasp planning problem.

For more insight of the local planners, the results of local planning are shown in
Table 6.7 - 6.12. For each setting, we sample 10,000 force closure grasps. For Algorithm
1, each sampled grasp is verified whether the associated representatives form a force
closure grasp. The numbers of force closure grasps found are shown in percent. For
Algorithm 2, the procedure FindNearestCluster is executed for each sampled grasp. A
grasp passes the verification if the variable X is determined. Then 30 grasps are randomly
picked from the sampled grasps that pass the verification for each algorithm. Each grasp
is planned for a regrasping sequence that joins it to the representative-level roadmap.
The results list the numbers of grasps (out of 30) ferwhich such sequence are found. To
measure the efficiency of Algerithm 3, 30 sampled grasps that do not pass the verifications
of Algorithm 1 and 2 are randomly picked. We then perform Algorithm 3 for each of them
and verify whether it connéctswith' part-of the representative-level roadmap that exists

before the update by Algorithmi3,

The results show the low passing ré;_te; of the verification by Algorithm 1 for
some objects. Most grasps that pass the verification however can be connected to the
representative-level roadmap. ‘Algorithm 2 api)ea;s to be more effective than Algorithm
1. The passing rates for the verification of Afébrithm 2 are significantly higher than
those of Algorithm 1, (with slightly fewer reg'réSping sequences found on average). How-
ever, Algorithm 1 is'still needed because of its considerably higher verification speed.
By varying the numbers.of groups, in most cases, the results show that the execution
rates of Algorithm 1 and 2 increase and the numbers of-achievements of path connec-
tion also tend to_increase when_the number 'of group is increased. Although applying
Algorithm 3 can connéct most grasps to the representative-levelrroadmap, it takes much
longer to update the representative-level roadmap than to run both Algaorithms 1 and 2 (the
computational times-are not shown here). | However, computationahfime of Algorithm 3
will decredse when the number of groups is decreased because the number of vertices of
the representative-level roadmap decreases and updating the representative-level roadmap

takes less computational time.
6.4 Summary

We have proposed a new approach to solve the regrasp planning problem. Existing
methods typically solve the problem only for a complete solution. However, using such

approach on real world data such as highly complex contact points is next to impossible.
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Table 6.1: Result of 500 mesh objects clustered into 30 clusters

Fig| #Vert| #CC | time(s) | #Con Search time(s)
min | max | avg
(a) | 2156 1 3.04 30 | 0.21 | 3.46 | 0.94
(b) | 1101 1 1.60 30 | 0.14 | 3.27 | 1.28
(c) | 386 7 0.66 28 | 0.16 | 2.06 | 0.94
(d) | 341 13 0.61 26 1 0.12 1298 | 1.01
(e) | 374 14 0.65 27 10.15 | 1.82 | 0.76
() | 2071 1 2.84 30 | 0.31|7.16 | 1.80

Table 6.2: Resultof 500 mesh objecis-elustered into 50 clusters

Fig, #Vert | #€C+ time(s) || #Con ‘Search time(s)

| min | max | avg
(a) | 15928 1 22,67 4° 30 }1.628,19.92 | 2.47
(b) | 7752 4 10:89° 7 30 1079 | 17.32 | 3.12
(c) | 2970 12 2987 (430 0327 7.42 | 1.82
(d) | 2281 i 42591729 1023 | 6.16 | 1.92
(e) | 2479 31 | 439 ~ 28 024° 7.77 | 2.69
() | 109934 2 15,5474 4 30 | 1.13 | 15.85 | 3.25

ol J

a2 Ay

This is due to combinatorial explosion of the search space. Our approach provides trade
off between completeness and the resource used in the computation. It clusters the input
using spectral clustering. The representatives from all clusters are used to constrain pos-
sible search space. The underlying 1dea 1s similar to that of‘the classical motion planning
problem. We construct a pactial solution, called a representative-level roadmap. This al-
lows the original problemni to be divided into three parts: planning regrasp sequence from
the starting grasp to the roadmap, planning regrasp sequence in the roadmap and, finally,
planning regrasp seguence from the roadmap to thetarget grasp...Since the set of rep-
resentatives contains much fewer contact points, solving the problem on the roadmap is

much less complex. Nevertheless, this is achieved at the cost of completeness.



Table 6.3: Result of 500 mesh objects clustered into 70 clusters

Fig| #Vert | #CC | time(s) | #Con ‘Search time(s)
min max avg

(a) | 69898 1 100.55 | 30 | 10.88 | 76.42 | 13.42
(b) | 30434 1 44,58 30 | 4.02 | 2348 | 4.84
(c) | 8562 9 16.28 30 | 0.67 | 10.06 | 4.07
(d) | 10322 | 10 30 | 0.73 | 2241 | 3.79
(e) | 7683 | 23 430 0.45 | 1529 | 4.20
(f) | 51675 ' 8.49 | 160.31 | 14.02
Table 6.4: Re

Fig|

(a)

(b)

©

(d)

(e)

®

ﬂum‘nﬂmwmm

chill| Wﬁﬁ?ﬁ'ﬁﬁﬁ%ﬁﬁ Ny

Fig| #Vert time(s) | #Con Search time(s)
min | max | avg
(a) | 17056 1 24.25 30 | 2.19 | 42.75 | 10.56
(b) | 6249 1 9.02 30 [0.85] 1195 | 3.28
(c) | 3747 7 6.02 30 [ 040 | 6.01 | 2.36
(d) | 1969 11 3.75 29 10.20| 7.40 | 2.29
(e) | 3770 12 6.09 30 (043 ] 9.67 | 2.79
(f) | 14580 20.37 30 [2.04 | 21.25| 5.65
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Table 6.6: Result of 1000 mesh objects clustered into 70 clusters

Fig| #Vert | #CC | time(s) | #Con . Search time(s)
min max avg
(a) | 79444 1 11041 | 30 | 15.82 | 18.16 | 16.83
(b) | 25064 | 2 36.04 30 | 3.62 | 28.40 | 7.37
(c) | 9288 19 17.08 30 | 0.89 | 1299 | 4.19
(d) | 11352 | 11 20.19 30 1.01 | 23.53 | 5.29
(e) | 8258 | 23 ‘ 9 0.76 | 10.12 | 4.28
(f) | 46386 7.88 | 164.11 | 22.22

Table 6.7: Result of 1 ing of - S clustered into 30 clusters

) Algorithm 3
Fig; #connect
(a) 30
(b) 30
(c) 29
(d) 29
(e) 28
() 30

ﬂuﬂ'mﬂmwmm
| WT“E\T S e Ty

Fig Algorithm 1 Algorithm 2 Algorithm 3
1 %run | #connect | %run | #connect | #connect
(a) | 30.21 30 93.24 30 30
(b) | 34.88 28 87.45 29 30
(¢) | 15.24 27 84.69 24 29
(d) | 9.62 28 81.14 24 30
(e) | 9.62 27 79.12 21 29
() | 32.32 30 90.33 30 30




Table 6.9: Result of local planning of 500 mesh objects clustered into 70 clusters

Fig|

(a)
(b)
(©
(d
(e)
(H)

Fig Algorithm 1 Algorithm 2 Algorithm 3
| %run | #connect | %run | #connect | #connect
(a) | 40.59 30 95.08 28 30
(b) | 47.41 29 92.49 24 30
(c) | 14.65 27 89.13 20 30
(d) | 14.90 23 30
(e) | 10.25 19 30
() 30

Algorithm 3

#connect

30
30
29
30
29
30

ﬂummmswmm
| W‘TR Sttt (1l (b b2 i

Fig Algorithm 1 Algorithm 2 Algorithm 3
1 %run | #connect | %run | #connect | #connect
(a) | 30.01 30 92.79 30 30
(b) | 38.01 30 89.28 30 30
(¢) | 17.18 25 84.08 22 30
(d) | 9.05 28 78.80 30 30
(e) | 10.59 27 85.08 27 30
(f) | 43.17 30 92.03 29 30

103
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Table 6.12: Result of local planning of 1000 mesh objects clustered into 70 clusters

Fig Algorithm 1 Algorithm 2 Algorithm 3
1 %run | #connect | %run | #connect #connect
(a) | 38.39 30 95.07 30 30
(b) | 40.72 29 91.80 28 30
(c) | 12.89 28 89.44 23 30
(d) | 16.06 30
(e) | 9.23 30
(f) | 49.28 30

(©)

@uﬁﬁwﬂwswa1ﬂ§[
N0 'ma?

® (h) @

N

Figure 6.3: A regrasping sequence for the object in Fig. 6.2(b) with 500 triangles clustered
into 50 groups
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Figure 6.4: A regrasping sequence for the object in Fig. 6.2(d) with 1000 triangles clus-
tered into 30 groups



CHAPTER VII

CONCLUSION

7.1 Dissertation Summary

In this work, we consider the problem of regrasp planning on an object that is de-
scribed by a polygon, polyhedron or a set of diSerete contact points. Given an object, our
algorithm constructs a graph structure that storesséts of force-closure grasps and captures
abilities of changing grasping conﬁguratiz)ns among these grasp sets using basic opera-

tions which are finger switching and finger aligning.
|

For a polygon, our algerithm compﬁtq.s a switching graph to store sets of force-
closure grasps. A node i the'graph contai;qs a set of 2-finger grasps, concurrent grasps
or parallel grasps for couple or triple of pbl)}'gonal edges. In the same node, a finger
aligning can be performed without losing cdr}t;,acts on the grasped edges. A finger switch-
ing is performed to change grasping ,conﬁguiﬁtion between two different sets of grasped
edges. This operation directly involves with z& éﬂfge of the switching graph. We apply a
necessary and sufficient condition: for 2—ﬁnger'_-fé)ﬁce—closure grasp to compute a 2-finger
grasp node. However, in the case of 3-finger grasps, a necessary and sufficient condition
is non-linear. We simplifies the condition into two grasping types : concurrent grasps
and parallel grasps of which constraints are linear. Further, representations of all grasping
types are in 2D and 3D spaces, we can applydinear algebra and computational geometry

theory to compute the complete switching graph.

For.a polygon.consisting.of a,large number of edgess we-propose ;an algorithm to
solve the problem of ‘finger switching by three fingers. ' A-node‘in a-switching graph
contain a connected set of 2-finger grasps. This allows finger aligning across edges of
a polygon and also reduces computational cost of a switching graph construction. By
applying the principal of L., Voronoi diagram, we can locally optimize finger switching

based on independent contact region criterion.

For the 3D case, for each four faces of a polyhedron, we consider only concurrent
grasps which can be represented by a set of points in spatial. Out algorithm applies the

same principal of the polygon case. A node of the switching graph contains a set of
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concurrent grasps for four grasped faces. An edge linking two nodes when there exist
two grasps from the distinct nodes that change to each other using a finger switching.
However, computing a complete switching graph may take much running time. We pro-
pose a random approach to compute partial solution of a switching graph. The obtained
switching graph is constructed in lazy fashion, i.e., actual force-closure grasp sets are not
computed when the switching graph is being constructed. The results show that the ran-
dom approach drastically decreases running time but it can almost capture the topology

of the complete switching graph.

For the discrete contact point set case, wepropose a heuristic approach to solve the
regrasp planning problem. Sinee the input is discictesonly the finger switching is consid-
ered. Our algorithm exploits similarities among contact points to group them into disjoint
clusters. This principal is.anduced from the finger switching. If we want to change one
contact point in a grasping’configtiration, contact points that produce similar wrenches
are appropriate for switching. Therefore, contact points producing similar wrenches are
grouped into the same cluster. A represematxilve.contact point is chosen for each cluster. A
graph structure called representative-level ré;admap 1s construted by considering 4-finger
force-closure grasps whose configurations co'r'}'si—.ét of representative contact points to de-
crease search space for regrasp planning. Ci_é:efrl}{? this roadmap does not cover all con-
tact points. Given arbitrary initial and target graéping configurations, a local planner is
also proposed to find paths from these graspir.l'g'._é?:)ﬁﬁgurations to the representative-level
roadmap. In our experiments; the results show that our approach can mostly find a re-
grasp sequence betweer two arbitrary grasping configurations in a few seconds whereas
constructing the complete roadmap and planning a regrasp sequence over it seem to be

not possible using{an ordinary,P€:
7.2 Further Improvement and Extension

In this section we list'some future improvement and extension that'could be done to

this work.

1. Condition improvement: All force-closure conditions applied for regrasp plan-
ning of a polygon and a polyhedron are sufficient conditions. To plan in the com-
plete search space, necessary and sufficient conditions could be taken place. A new
planner is needed to handle with non-linear constraints. Appropriate grasping rep-
resentations are also required to describe a set of force-closure grasps. However, it

is quite complex to compute the exact geometry of a grasp set. A node of a switch-
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ing graph may contain a set of constraints instead. An edge may contain a set of
constraints for finger switchings. We can apply non-linear optimization to prove
the existence of a solution of non-linear constraints. we are also interested in addi-
tion of the other two types of 4-finger force closure grasps (i.e., pencil and regulus

grasps) to our regrasp planning.

. Optimized regrasp sequence: A regrasp sequence obtained from our algorithm is
guaranteed for force-closure but it is not considered for its quality or qualities of
grasps in the sequence. Quality measure metrics for a grasp can be exploited such
as independent contact region, Q-distaneeyetc. There are many ways to determine
a quality of a regrasp sequence such a€ intégrating qualities of all grasps in the

sequence or optimizing bound of qtfélities of all grasps in the sequence.

. Random approach'improvement and application: The random approach in this
work uses the ordimary sandom fun{ctij_on in C++ programming language. There
are many probabilisgic approaches in;ﬁiotion planning such as PRM and RRT that
could be improve comnvergence of thé}, switching graph construction. We can also
apply the random approach to plan a regrasp sequence over pre-computed sets of
force-closure grasps and finger switchi_r_l;gii.n a switching graph. For example, in the
case of a polyhedron, sample points in a’fQ¢us cell for finger aligning and sample
points in the intersection of two focus c_ell that have one distinct grasped face for

finger switching Operations.

. Local planning iinprovement: For the problem of regrap planning for discrete
contact points, we'can speed up the local planner by exploiting the properties of
the spectral clustering ‘algorithm. In the clustering procedure, the measurement of a
contact point is-converted into Euclidean space.and L 2 distance is used to cluster
contact points. Since L — 2 distance is metrie.distance functien, we can apply the
existence nearest neighbor search algorithms to improve the determination of sets
S;.

. Including hand constraints: With pre-computed sets of force-closure grasp at
hand, we can plan a regrasp sequence in these sets including kinematic and dy-
namic constraints of a hand without verifying for force-closure anymore. Recently,

probabilistic approaches are reasonable when these constraints are included.
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7.3 Discussion

An autonomous robot that accomplishes a required task with minimum supervision
is a goal yearned by most researchers. A similar goal is also set for the dexterous manip-
ulation problem. It is the uttermost goal of this dissertation to, at least, provide a stepping

stone to that problem.

Recently, robot hands are widely applied to many tasks instead of human because
they work with more decision and endurance. As we can see in many industries, robot
hands are programmed to assembly cars or tiny.circuit boards. However, the ability of
the robot hands are much less comparing with-a.hwman hand. To control a robot hand, a
planner has to consider many constraints : task, grasping stability, kinematic constraints
and dynamic of the hand. Kinematic focuses on a robot hands’ geometry, an object’s
geometry, configurations and limitations that allow us to derive relations among joints
and fingertips’ positions andsalse relations between the hand and the object. Many works
in kinematics often assume that a tobot hand 1s periectly controlled neglecting hand dy-
namic. Actually, forces at fingertips are exef’}e& via movements or rotations of joints in a
robot hand which requires analysis‘of hand dyna"mic. The remaining procedure is to con-
trol forces and torques of joints for precisiofr‘ibf fingertip positioning and forces exerted
at the fingertips. Although hand kinematic and:d-‘jjfﬁamic are necessary for analysis of the
dexterous manipulation, it also requires higher l'é\;iel'planner that provides a manipulation
sequence satisfying grasping constraints. Recently, there are-a few works that attack the
problem of planning a sequence of finger repositioning which our work focuses on. Our
planner provides a sequence of finger repositioning that ali“grasps in the sequence satisfy
force-closure. For,a given object, our approach’constructs a graph structure that contains
a set of force-closure grasps in a node and anedgeis'associated with the finger switching
operation. We apply this graph structure as a framework for the regrasp,planning problem.
Since the,graph contains, sets of force-closure grasps, a planner 1s allewedto include other
constraints such as kinematic or dynamic of an arbitrary hand for a regrasp sequence that

all grasps satisfying these additional constraints also maintain force-closure.

The main advantage of the switching graph is that it explicitly contains sets of
force-closure and sets of finger switchings. Note that the traditional necessary and suffi-
cient conditions for computing a set of force-closure grasp on given edges are non-linear.
Therefore, the set of force-closure grasps is implicitly represented by non-linear con-
straints which are complex to transform them into geometries. The advantage of our

approach is strongly based on the simplifications of force-closure conditions. In 2D, we
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classify grasps into three types which are the 2-finger grasp, the concurrent grasp and
the parallel grasp. For given grasped edges, the conditions of all grasping types can be
formulated into linear constraints. A set of 2-finger grasps and a set of concurrent grasps
are represented by a set of points in the plane. In contrast, a set of parallel grasps consists
of polytopes in the 3D parameter space. Finger switchings between grasps in distinct two
sets are computed using existing boolean operation of polygons in the plane. Although
our approach simplifies the force-closure conditions into sufficient conditions, but we can
solve the problem efficiently using linear algebra and computational geometry in 2D. The
results evidences that the proposed approach ¢oyers a large number of force-closure grasp

sets which adequate for the regrasp planning of aspolygon.

For a polyhedron, we foeus on concurrent grasps which are natural for 3D grasp-
ing, 1.e., exerted forces intersectat.a point. A set of points in spatial is used to represent
a concurrent grasp set. Adthough/the condition of coneurrent grasps is just a sufficient
condition, but it reduces the'dimension-of the representation from 8D (2 parameters for
a contact point) into 3. This condition alf(;ws us to apply the existing geometric com-
putation library which is#ACIS library: to dil_l’ implementation. Moreover, based on the
representation of concurrent grasps in 3D, the 'fegg-rasp planning problem can be efficiently

solved using a probabilistic approach in low cil;jl_'rh,e‘nsions.

Our last problem is the regrasp planning for discrete contact points. Discrete contact
points suit more to the data acquisition sensors, such as a lasér range scanner or a stereo-
scopic camera which are.widely available. Discrete contact point model also calls forth
the need to handle input-of a large number of contacts. Though it is possible to approx-
imate the scanned,data with‘one polynomial,‘this approach suffers from the high cost of
curve fitting and the a¢curacygproblem from Runge phenomenals Spline fitting, arguably,
reduces the effect of both problems but the result is.still a large number of polynomials.
In fact, when, the reselution of the'scan'is large enough, spline fifting results in similar
representation of discrete contact points. We realize that the use of the discrete contact
point model is necessary for complete automation. Evidently, this problem is included as

one objective of this dissertation.

Using discrete contact points result in an enormous number of contact points of
which all force closure grasps and finger switchings must be computed. The number
of the solutions can be as high as O(N*) and O(N?). Tt is precisely this problem that
our work tries to cope with. Instead of planning in the whole search space, we apply a

two-level scheme approach to plan in much smaller search space. We show that, at least,
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the pre-computed representative-level roadmap contains partial solutions; it is possible to
solve a regrasp planning problem using our proposed local planner in much lesser time

than complete approach and there are many possible improvement that could be done.

Another advantage of our framework is generality of the structure which does not
specifically depend on a task or a robot hand. The switching graph can be considered as a
middle level in manipulation planning. Given an initial grasp and a goal grasp from a task
planner, the switching graph provides sets of force-closure grasps and finger switchings
that involve changing of grasps between the two grasps. These sets and their relations
are then transferred to lower levels to compute feasible trajectories of a hand constrained
on the grasp sets and the finger switchin_g sets..Mere practically, the switching graph
can be applied to other plannes Computf;d grasp seis serve explicit wrench closure sets
for the approach in (Jr et aly2004): Also, finger switching sets can be applied to search
for transitions of contactsaForthe recent approach in (Saut et al., 2007), the switching
graph provides the explicit grasp subspaceé-ffom which a PRM planner can sample grasp
sequences without verifying all generated gr‘,aasps for the force-closure condition. Another
advantage is globalization of the switehing f‘lg_raph. Once we compute a switching graph
that contains all force-closare @rasps.for an .:(')l;ject, the switching graph then allows a

planner to globally search for sets of 'force-cl(‘)f:sﬁ;rlel grasps and finger switchings.

The author strongly believe that, With'fhé-proposed algorithms and the proposed
approaches, we could see many interesting, or the ultimaté; solution to the dexterous

manipulation problem in-the near future.
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