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CHAPTER I

INTRODUCTION

1.1 Background and Significance of the Research Problems

The application of electromagnetic radiation is seen in various disciplines such as an-
tennas, scattering, radar, radio and astronomy, quantum electronics and solid-state circuits
and devices, electro-mechanical energy conversation, and even computer. Although the be-
haviors of electromagnetic fields in the practical system are very complicated to recognize
properly, physicists and engineers are making research and developing various methods to
solve these fields such as experimental method, analytical method and numerical method.
The experimental methods are expensive, time consuming, sometimes hazardous, and usu-
ally do not allow much flexibility in parameter variation. The analytical methods can in-
vestigate the solutions of partial differential equations (PDE) by using analytical evaluation
such as Separation of Variables, Series Expansion, Conformal Mapping, Integral Solution
and Perturbation Method. These techniques work out the uncomplicated problems; however,
they need mathematical knowledge at high level for realistic problems. Therefore, engineers
resort to solve the complex PDE using numerical methods.

Maxwell’s equations that are a set of four first order partial differential equations
can represent the relationship between electric and magnetic fields that occurs when two
fields are time-varying. The numerical methods can approximate effectively the solutions of
Maxwell’s equations into both differential form and integral form. The differential equation
methods are used to solve Maxwell’s equations in differential form such as Finite Difference
Method (FDM), Finite Element Method (FEM), Finite-Difference Time-Domain (FD-TD),
Transmission-Line Method (TLM), etc. The integral equation methods are used to solve
Maxwell’s equations in integral form such as Moment Method (MoM) and Boundary Ele-
ment Method (BEM). The integral equation methods have emerged as powerful alternative
to differential equation methods particularly in case where the domain extends to infinity.
Formulation of these methods when analyzing thought out homogeneous medium requires
discretization of only the boundary (surface or curve) and not interior of the region under
consideration. Accordingly, computer codes of the integral equation methods are easier to
employ with existing solid modelers and mesh generators.

There are two main integral equations based on vector calculus such as Electric Field
Integral Equation (EFIE) and Magnetic Field Integral Equations (MFIE). They are proved
from Helmholtz equations. The kernels of these integral equations are not only constructed
from the fundamental solution of Helmholtz operator, Green’s function, but they also contain
the differentiation of those fundamental solutions. Numerical integration of the kernel is dif-
ficult because of that differential component of the fundamental solution, and often produces
(at least at some frequencies) a very badly conditioned system of equations. These effects
gives the spurious solutions, when the EFIE or MFIE are operated with boundary conditions
in order to formulate the system of linear equations. Both EFIE and MFIE are involving
with current densities along the boundary. After the current densities have been evaluated by
inversion, they are used to be the equivalent source to generate the radiated field around the
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boundary.
This thesis presents a new integral equation based on Clifford algebra that can con-

struct the solutions of the original four Maxwell’s equations without modification. In Clif-
ford framework, Maxwell’s equations are embedded into a single differential equation called
k-Dirac equation or Maxwell-Dirac equation. The integral equations are derived from the
boundary theorem and the fundamental solutions of k-Dirac equations. Their kernels contain
only the singular functions without the differentiation of them. The integral equations are
applied to formulate some integral operators that they can be used to describe the radiation
of the fields from boundary. The integral operators are the key tools for solving the linear
system of the boundary value problem by using iterative method.

1.2 Literature Review

In electromagnetics, the relationships between time varying electric field and magnetic
field quantities can describe into mathematical expressions as called Maxwell’s equations.
Maxwell’s equations in differential form in [1–3] are derived to solve the bounded problems
in order to explain and analyze the fields inside waveguide by using numerical methods
such as FEM, FETD in [4–7]. Moreover, Maxwell’s equations have widely accepted, since
these powerful equations give details of behaviors of the radiated fields by the antenna and
clarify effects of the scattered fields of any conducting objects. Consequently, they have been
used to model and to design functional antennas for important practical problems. Generally
engineers who apply for the antennas propagation problems in exterior regions must simplify
Maxwell’s equations into various modified versions of integral form [8–10] such as integro-
differential equation, Fredholm integral equation and the others. The examples of unbounded
problems are to analyze the far-field radiation and the scattered fields in [11–15].

Earlier numerical integral technique is a wire-grid model by J. H. Richmond in [16] that
reforms simple relationship between the electric field and current distribution for studying
the scattered electric field by conducting bodies of arbitrary shapes. He approximates the
unidentified current distribution with any constant functions and work out the electric field
with solution of inhomogeneous vector potential wave equation by integrating over surface
of the wire. After that, numerical results are obtained by formulating a system of linear
equation with the point-matching techniques.

The literature of [4] is discussed that the EFIE has advantages of being applicable to
both open and small closed bodies such as a thin-wire antenna, whereas the MFIE applied
by only to closed surface, especially those having large smooth surfaces. Both formulations
of integral equations are used with MoM in [17, 18] to develop a simple and efficient nu-
merical procedure for treating problems of scattering from arbitrarily shaped objects. The
Numerical Electromagnetic Code (NEC) [19] is a computer program for analyzing the elec-
tromagnetic response of arbitrary structure consisting of wires and surfaces in free space or
over ground plane. The NEC program use both EFIE and MFIE to model the response of
general structures, since each has advantages particular structure types. The applications of
EFIE are found in [20–32]. The applications of MFIE, which fails for the thin wire case,
is more attractive for voluminous structures, especially those having large smooth surfaces.
The examples of MFIE are found in [33–40].

C. M. Butler and D. R. Wilton in [20] investigate the efficiency of various numeri-
cal schemes based on EFIE when solving the scattered fields by thin-wire structures. The
schemes are constructed using different basis functions for approximating the current dis-



3

tribution, for example, piecewise sinusoidal, piecewise linear and trigonometric. These un-
known current distributions are formulated in Hallen’s equation and Pocklington’s equation
for formulating linear equation system. The results are delineated that the solution methods
applied to Hallen’s equation govern quantities which are less sensitive to discontinuities in
the current approximation and its derivative than Pocklington’s equation. Then, for the con-
vergence rate of solutions to Pocklington’s equation, it must eliminate the effects of these
discontinuities by rendering the equation insensitive to them. Moreover, the kernel functions
of EFIE that contain singular functions must be reduced particularly to more convenient im-
plementation as [21] by C. M. Butler. Many researches attempt to evade the use of the exact
kernel function of EFIE; thus, the other choices are available that they avoid the singular-
ity of those kernel. In [22], they discuss about the property of both Hallen’s equation and
Pocklington’s equation when using the reduced and exact kernel functions, and they propose
a new reduced derivation of integral equation. With these integral equations the unknown
current distribution are determined their behavior directly in the time-domain and indirectly
in the frequency-domain; consequently, their results agree with the common opinion that
numerical space and time differentiation should be avoided as much as possible.

However, the reduced kernel integrals cause the erroneous numerical solutions, the ex-
act kernel integrals are employed again. In order to reduce the complicated evaluation of the
exact kernels of integro-differential equations, the researchers attempt to describe these exact
kernels into various forms for particular problems. For example, when integrating the exact
kernel over very thin wire the scalar potential function is approximated into infinite series
by [23] and over arbitrary closed surfaces the vector potential function is approximated into
various infinite series by [24, 25]. Potential integrals involved in EFIE occur often singu-
lar, and therefore necessitate special numerical considerations of their evaluation. The [26]
does not only realize the singularity of Green’s functions on a plane triangle but their gra-
dients also. Then, their singularity causes the complexity of the numerical integration and
is eliminated with the singularity extraction (subtraction) techniques by [27]. These various
techniques that are offered for expressing numerically the exact kernel integral can eliminate
the need of singularity extraction when analyzing the thin wire. In [28], D. R. Wilton and
N. J. Champage propose transforming the discontinuous approximated current distribution
into smooth integrand with quadrature schemes. It is necessary that the assumptions of the
wire antenna calculate using line integrals and construct from two kinds of elements of lines;
observation point is contained inside and outside these elements. When an observation point
holds on and off the elements of the line, line integrals employ the Ma, Rohkin, Wandzura
(MRW) quadrature scheme and Gauss-Legendre scheme, respectively. Unfortunately, it is
only appropriate for very extreme thin wire and more difficult to be relevant real scattering
objects. Moreover, the drawbacks of the singularity extraction (subtraction) techniques are
discussed into the literature review of [29], and then this research improves the numerical
singularity cancellation method techniques for evaluating the singular and near-singular po-
tential integration. This new method is demonstrated to solve scattering fields from thin
wires in two dimensions [30].

On the other hand, Rao, Wilton and Glisson in [31] model the surfaces of scatterer
with planar triangular patches in order to get effective formulation of integral equation is
applicable to both open and close surfaces. Thus, the set of individual sub-domain basis
functions that can be defined on pairs of adjacent triangular patches and yield a current
representation free of line or point charges at sub-domain boundaries. After that, their basis
functions have been of interest by many researchers as known as RWG basis functions.
The EFIE associated with RWG basis function can solve efficiently the scattering problem
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for very thin wire; and then, the [32] proposes this method to apply for large problem on
three dimensional geometry. However, the strength of the singularity in the integrand being
strongly singular has been not eliminated. The strong singular of kernel integral has been the
limitation of the numerical integration.

N. C. Albertsen, J. E. Hansen and N. E. Jensen in [33] present a theoretical formu-
lation for electromagnetic problems in which one or more wire antenna are connected to
conducting body of arbitrary shape. The MFIE are combined with EFIE in order to obtain
good advantages of both integral equations. Although, this is primary implementation of
integral equation for analyzing scattering field on conducting bodies, it confirms that the in-
tegral equation method is more efficient tool. However, the current distribution formulated
in MFIE and EFIE has been critical to approximate the derivative of singular kernel function.
In 2004, O. Ergul and L. Gurel in [34] verify that MFIE cannot give more accurate results
as compared to EFIE for the solution electromagnetic scattering problems with RWG basis
function of current distribution [35]; moreover, it is more evident when the results in [36] are
discussed. They also investigate the inaccuracy of MFIE discretized with four different basis
functions of current distributions, such as RWG, TL, n x RWG and n x TL defined on the
planar triangles. Their efficiency is measured by induced current on scatterer and radar cross
section. The scatterer is a cube with edge and is triangulated with mesh size. The results
notify that TL and n x TL are more accurate than RWG and n x RWG. Although the use
of TL and n x TL functions can improve the efficiency in [37], computational cost has been
significantly increased. At the same time, [38] presented by C. P. Davis and K. F. Warnick
is another research group attempting to develop the formulation of MFIE with a low-order
discretization in two dimensions. In their literature it is discussed that MFIE kernel is more
continuous than EFIE kernel, but MFIE scattering solution is one-order less accuracy than
EFIE solution for polarizations. They conclude that the identity operator associated with
MFIE causes inaccuracy in MoM solutions of MFIE. This identity operator is not only very
specific for implementing MFIE on MoM, but it also has not developed to three dimensional
scatterer. The various basis functions of MFIE are improved for efficient numerical solu-
tions; moreover, the singularity of the kernel integral is analyzed. In [39] O. Ergul and L.
Gurel show that the solution of MFIE by MoM on planar triangulation have the singularity
both in the inner integrals on the basis function and also in the outer integrals on the testing
functions. Therefore, they propose the singularity extraction method for computation of the
outer integrals, similar to the way inner integral singularities are handled. Otherwise, in [40]
they redevelop both linear normal and liner tangential basis functions to describe the basis
and testing functions of MFIE.

Recently, A.F. Peterson and M.M. Bibby [41] discuss about the implementation of
EFIE and MFIE for the detail procedure of MoM. In their literature, researchers have been
improving the evaluation of the MoM matrix entries by using higher-order polynomial basis
functions, since it is possible that these individual basis functions assist in such validation
and verification in several respects. They investigate the error by comparing the results of two
uncomplicated cases with exact solutions in two dimensions. The first case is to calculate the
current density and scattering cross section of circular cylinder of one wavelength. Another
case is to measure the residue error in the continuous equation of a TM-illuminated flat strip,
which can be estimated by over-determined matrix. In two cases of their experiences with
higher order dicretizations of EFIE and MFIE suggest that the error in the current density,
scattering cross section and residuals follow predictable trends indicative of higher order
solutions. Moreover, these results are interesting in their own right, and can be used to
confirm the correctness of computer implementation.
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A variety of formulations to remedy the spurious solution of the scattered fields from
the perfect conductor have been presented: the combined field integral equation (CFIE) for-
mulation, the combined source integral equation formulation (CSIE), the augmented bound-
ary condition method, the augmented integral equation method, and the minimum norm so-
lution. Firstly, the combination of EFIE and MFIE as called CFIE are utilized for modeling
the scattered fields from the mixture of the thin wire antennas and conducting bodies by [33].
Then the CFIE are used for improving the conditioning of MoM matrix, since they can help
avoiding the spurious solutions of the EFIE and MFIE. Therefore, the CFIE are modified
into various several formulations such as [42–44]. In 1996, C.C. Lu, W.C. Chew and J.M.
Song as [42] implement the numerical algorithm with utilizing the flat-triangular patch and
RWG basis functions, after EFIE, MFIE and CFIE are formulated by using MoM. Their re-
sults show that the CFIE in iterative solver provides more accurate radar cross section and
faster convergence. Otherwise, [43] proposes the basis functions for MoM solution of CFIE
for three dimensional problems. These basis functions are higher order functions that the
Lagrange interpolation points are chosen to be the same as the nodes of the well-developed
Gaussian quadratures. Therefore, the evaluations of the integrals in the MoM is greatly sim-
plified. However, this formulation never considers the particular behavior of the electric and
magnetic fields. The different CFIE proposed in [44] uses the different basis functions be-
tween EFIE and MFIE. Consequently, there are at least two different forms of the CFIE.
One version, known as the PMCHW formulations involves two equations, one of which is
obtained by combining an electric field equation for the interior region with an electric field
equation for the exterior region of the problem domain. A second equation is obtained when
a magnetic field equation for the interior region is combined with a magnetic field equation
for the exterior region. A second type of the CFIE is obtained when the electric and mag-
netic equations for the interior region are combined and the electric and magnetic equations
for the exterior region are combined [45]. This latter form of the CFIE is of interest be-
cause the exterior equations alone can be combined and used a radiation boundary condition
to truncate the computational domain of differential equation formulations [46]. However,
the solutions of this form are failed at interior resonance [47] when are implemented for
considered electrically large problems.

It is the fact that any tools in electrical engineering, which are employed for com-
puting electromagnetic fields, are only in the vector framework. Although, Maxwell’s four
equations represent on vector calculus, their solutions cannot be solve directly in vector
framework. Because a single vector cannot contain both electric and magnetic fields at the
same time. However, other framework in NEC is differential forms (DFs) which is applied
from exterior algebra in order to express various laws of physics. DFs form on various
degrees and identify them with field intensity, flux density, current density, charge density
and scalar potential. A number in DFs can represent both the electric field and the mag-
netic flux into the different groups. Otherwise, the multiplication of two groups needs to use
the basic laws of exterior algebra. In paper [2], this article by M.J. Bluck, A. Hatzipetros
and S.P. Walker introduces the relevance of the exterior calculus to EMs and proposes the
application of DFs. And it describes the representation of electromagnetic fields and defini-
tion of relationship between the curl, gradient and divergence operators of vector calculus in
terms of DFs. Moreover, it is applied to solve the reduced versions of Maxwell’s equations
by using numerical method, such as FDM and FEM by L.E. Garcia-Castillo, M. Salazar-
Palma, T.K. Sarkar and R.S. Adve [3], in order to decrease the system matrix of problem.
K.F. Warnick, R.H. Selfridge and D.V. Arnold [48], this is another paper to define DFs in
order to clarify the relationship between field intensity and flux density by using graphical
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representations in order to teach engineering EMs. Otherwise, it uses these DFs to express
Maxwell’s equations in integral forms. Recently, differential forms are developed for com-
putational works in EMs. It uses for Boundary Integral Equations (BIE) which consider by
dicretization. S. Kurz, et al. [49] show how the integral equations of EMs can be expressed
in language of DFs. For frequency domain EM problems, G.A. Deschamps [50] propose the
appropriate integral equations for Helmholtz equation but not for original Maxwell’s equa-
tions. Then, Green’s functions are used for the fundamental solution of Helmholtz operator.
Consequently, this method is also to solve Maxwell’s equations with integral form which are
applied by using Green theorem based on DFs. All literature reviews about DFs, they can
not only represent Maxwell’s equations, but also they are encode both electric and magnetic
fields. Unfortunately, they have still not been employed for evaluating both fields in electro-
magnetics. Moreover, it is not possible to apply integral equation for scattering problems on
DFs.

A great deal of freedom exists in exactly how to formulate integral equation tech-
niques firstly at the level of the equations themselves and secondly at the level of the nu-
merical solution. Formulation of integral equations can be carried either by using potentials
and differentiations or by avoiding them altogether. One approach of the latter kind uses
a multi-dimensional version of the Cauchy integral [51] to invert differential equations in
the form of fields directly into the corresponding boundary integral equations [52]. This
multi-dimensional Cauchy integral was not used when the approaches based on Green’s
functions were first developed for the simple reason that, at that time (cf. [53]), it had yet to
be discovered. Only recently [51] has this alternative approach appeared in the mathematical
literature.

From a mathematical viewpoint, the method is based on extending the properties of
analytic functions of complex variables in the plane, to multiple dimensions [54] as what are
called monogenic functions of Clifford variables in N -dimensional space, where N ≥2. (Of
course, in electromagnetism only N = 4 dimensions are required, three for space and one
for time or frequency). Such a generalization of complex variables into multiple dimensions
has long been sought, engineers well recognizing their invaluable properties for solving field
problems which conform to a two-dimensional planar geometry. That the generalization has
proved somewhat elusive is in part because it is not to be found amongst the familiar mathe-
matical tools of real or complex variables, algebra and arithmetic. Rather, the generalization
is to be found amongst the (less familiar) tools of Clifford variables, algebra and arithmetic.
These tools were actually developed for the specific purpose of making Maxwell’s equations
easier to solve a long time ago by Clifford [55], a student of Maxwell’s [56], but were for
some reason or the other, overlooked. However, a growing interest in applying Clifford’s
algebra to problems in mathematical physics including electromagnetism, gravitation and
multi-particle quantum mechanics [57] has appeared within the last few years.

The approach involving the Cauchy integral and Clifford algebra bears a formal sim-
ilarity to integral methods involving Green’s functions. However, they are by no means di-
rectly equivalent. The kernel for the Cauchy integral solves a first order differential equation
whereas the Green’s functions solve a second order differential equation. The singularities
that appear in each differ, for example (−1)e−ikr/4πr for the Green’s function in the fre-
quency domain and {−(�r/r2)+ik(ie0−�r/r)}e−ikr/4πr for the Cauchy kernel, where k, is
wavenumber, �r is displacement vector and r is magnitude of �r.

The Cauchy integral is known to apply to Lipschitz surfaces [52, 58], i.e. those with
sharp corners and edges, such as cubes and wedges. It correctly accommodates fields which
approach infinity at such points (cf [59, 60]) provided that the basis functions for the fields
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on the boundary are chosen correctly. The functional analysis has been carried in two cases:
one for fields on the boundary in the L2 (square integrable) functional space [52, 58], and
one for functions in a more complicated functional space denoted in [61] as X 2. The second
choice ensures that the field off the boundary is locally square integrable (i.e. finite energy,
L2).

This research proposes a new tool used for solving scattering fields of arbitrary objects
in free space. It is anticipated that original Maxwell’s equations are solved by implementing
the integral equation on Clifford algebra. The innovative form of integral equation not only
reproduces the full electromagnetic field but does so (provided a little bit of care is taken)
without introducing any significant problem when numerically integrating over the singular-
ity in the kernel. This produces a (numerically) more stable linear system. Since the kernel
function is the fundamental solution of first order of partial differential equation (k-Dirac
operator) as a point source of full fields already, it is not necessary to do any derivative op-
eration. Moreover, the approximated current distributions are without complicated functions
whenever they are computed by numerical methods.

1.3 Objectives of the Research

The objectives of the research are:

1. To propose new method for solving Maxwell’s equations using Clifford algebra and
multi-dimensional Cauchy integral equation.

2. To apply the Cauchy integral equation based on Clifford number for analyzing scatter-
ing and radiation of electromagnetic fields.

1.4 Scopes of the Dissertation

The research will recast Maxwell’s equations (for regions of uniform, linear and isotropic
material properties) from vector calculus into a single first-order partial differential equation
on Clifford algebra in order to improve methodology and solve directly for full solution of
Maxwell’s equations by using a novel integral equation form. The scope of the research
covered here is limited to the following five topics:

1. To study and analyze the method of solving Maxwell’s equations by Clifford algebra
and the multi-dimensional Cauchy integral.

2. To formulate and to show the utility of the integral operator over a closed surface in
the near-field, in the role of determining the electromagnetic field in the far-field.

3. To analyze and formulate an implementation of the integral operator over closed sur-
face in the near-field back onto itself, as a perquisite for using it to solve a boundary
value problem.

4. To construct linear equation system in case of scattering problems by using integral
operator, and to solve this system by iterative methods.

5. To compare calculated results with measured results or analytical solutions.
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1.5 Expected Results and Benefits

Solution of Maxwell’s equations using Clifford algebra is expected to be easier than
other methods when it is computed with integral equation method. The Clifford algebra
itself is equivalent to the algebras of Dirac matrices and to Cartan’s algebra, and has no
special advantages over other algebras. However, the Clifford algebra carries with it the
multi-dimensional Cauchy integral, other algebras themselves do not directly support. This
integral is a direct inverse for Maxwell’s homogeneous (source free) equations, similar in
form to a Green’s function integral, but operating directly on the field instead of the potential.
Eliminating any need for using a potential makes the solution simpler. This in turn makes it
easier to develop a reliable implementation.

From an educational viewpoint, use of Clifford algebra is much more straightforward
than, for example, vector calculus. Rather than a pair of products (dot and cross) and a col-
lection of identities which are difficult to remember, as for vector calculus, Clifford algebra
has a single product which relies only on two simple rules which can be easily remembered.
From the view of an instructor teaching, or a student learning, it is expected that Clifford
algebra makes a more effective tool than does vector calculus.

The method of solution using Clifford algebra and the multi-dimensional Cauchy inte-
gral leads to a solution in the domain of Banach space. The form of the solution is different
from most conventional techniques. It is the form of a linear system, but is not a form that
can be solved directly by a single matrix inversion. It is therefore expected that any numer-
ical implementation of the solution directly in Banach space will behave differently from a
solution in the form of a matrix inversion. It may be possible to exploit the different behavior
to obtain some numerical advantages, such as increased accuracy or faster solution.

1.6 Research Procedure

1. Study previous research papers relevant to the research works of the dissertation.

2. Study Clifford algebra

3. Study and represent Maxwell’s equations on vector calculus into Maxwell-Dirac equa-
tion on Clifford form.

4. Study and apply the integral equations for solving Maxwell-Dirac equation.

5. Publish the conference paper in topic of solving Maxwell’s equations by the Cauchy
integral equation on Clifford algebra.

6. Implement and test the efficiency of the proposed integral operator with numerical
method.

7. Publish the conference paper in topic of application of the proposed integral operators

8. Improve the accuracy of integral operator for solving boundary value problems.

9. Study and formulate the linear system equations in the perfect transmission problems
with the proposed integral operator.
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10. Study and formulate the linear system equations in the perfect reflection problems with
the proposed integral operator.

11. Construct the indirect inversion of the linear equations by iterative techniques.

12. Publish the international journal

13. Check whether the conclusions meet all the objectives of the research work of the
dissertation.

14. Write the dissertation.



CHAPTER II

INTEGRAL EQUATIONS FOR ELECTROMAGNETIC

FIELDS

This chapter describes the mathematical material applied in this thesis. The main fo-
cus is on the behavior of electromagnetic fields as described through integral equations and
operators. However, reference is first made to Maxwell’s equations in the well known dif-
ferential form based on vector notation in order to introduce another version of Maxwell’s
equations based on Clifford algebra. After that, their integral form based on Clifford alge-
bra is described. Finally, integral operators are constructed for focusing on boundary value
problems.

2.1 Clifford Number and Arithmetic

Four dimensional Clifford numbers take the general form:

a = a0 + a1e0 + a2e1 + a3e2 + a4e3

+ a5e0e1 + a6e0e2 + a7e1e2 + a8e0e3 + a9e1e3 + a10e2e3

+ a11e0e1e2 + a12e0e1e3 + a13e0e2e3 + a14e1e2e3

+ a15e0e1e2e3.

(2.1)

The ai are complex-valued numeric coefficients. The ei are symbolic entities known as
Clifford units. For the purposes of electromagnetism the Clifford units ei play the role of
four Cartesian basis vectors, the (compound) units eiej play the role of bivectors (oriented
areas), the eiejek play the role of trivectors (oriented volumes), and e0e1e2e3 plays the role
of the four dimensional pseudo-scalar.

The arithmetic operations required are those of addition and multiplication, as shown
in detail in Appendix A. Addition a + b is simply a matter of adding all the corresponding
complex coefficients. Multiplication ab entails use of the distributive law of multiplication
over addition. The 256 terms produced are then further reduced by applying the two rules
for multiplication of Clifford units:

eiej =

{ −1 if i = j
−ejei if i �= j.

(2.2)

The first rule has the same characteristics as the rule i2 = −1 for squaring the unit imaginary
number i. The second rule has the same anti-commutative property as the rule for the vector
cross product, �x × �y = −�y × �x, if �x and �y are vectors.
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2.2 Clifford Fields

When using the vector form of electromagnetic fields in three spatial dimensions sep-
arate electric and magnetic fields vectors are written:{

�E = Ex�ax + Ey�ay + Ez�az

�H = Hx�ax + Hy�ay + Hz�az.
(2.3)

Here, each vector is transformed into three dimensional Clifford number, in which the Clif-
ford units e1, e2 and e3 play the role of Cartesian unit vectors �ax, �ay and �az, respectively,

e1 ⇔ �ax , e2 ⇔ �ay , e3 ⇔ �az. (2.4)

Then, each of the magnitudes (or numeric parts) of both vectors ( �E, �H) have a one to one
correspondence to each of the magnitudes of both Clifford numbers (E,H) by following:⎧⎨

⎩
Ex�ax ⇔ Exe1

Ey�ay ⇔ Eye2

Ez�az ⇔ Eze3

⎫⎬
⎭ and

⎧⎨
⎩

Hx�ax ⇔ Hxe1

Hy�ay ⇔ Hye2

Hz�az ⇔ Hze3

⎫⎬
⎭ . (2.5)

Therefore, both electric and magnetic fields are described with the vector parts or grade 1
(Λ1) of three dimensional Clifford numbers:{

E = Exe1 + Eye2 + Eze3

H = Hxe1 + Hye2 + Hze3.
(2.6)

Although, both electric and magnetic fields in (2.6) are expressed into three Cartesian space,
they are still separate. However, the dimension of time can help to attach their relationship
together. It is necessary to consider three dimensions of space and one dimension of time.
Therefore, the two Clifford field (E,H) are encoded into a four dimensional Clifford number:

u =
√

µHσ + j
√

εEe0, (2.7)

where ε and µ are the electric permittivity (farad/metre) and the magnetic permeability
(herry/metre), respectively. The Clifford unit e0 plays the role of time dimension, and σ
is Clifford space units in Λ3 that denoted −e1e2e3.

The Clifford number u consists of sixteen components such as a scalar, four vectors,
six bivectors, four tri-vector and a pseudo-scalar. In here, all components of bi-vector or Λ2

are used to represent both the electric and magnetic fields. In the right hand side of (2.7),
there are two groups such as groups of magnetic and electric fields. The first group is used to
describe the bi-vector field which involves the spatial components of Λ2 such as e1e2, e2e3,
e1e3, so that they keep the magnetic field. The second group is used to describe the bi-vector
field which involves the temporal components of Λ2 such as e1e0, e2e0, e3e0, so that they
keep the electric field:

u =
√

µHσ + j
√

εEe0

=
√

µ(Hxe1 + Hye2 + Hze3)σ + j
√

ε(Exe1 + Eye2 + Eze3)e0

=
√

µ(Hxe2e3 − Hye1e3 + Hze1e2) + j
√

ε(Exe1e0 + Eye2e0 + Eze3e0). (2.8)
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2.3 Maxwell-Dirac Equation

For the purpose of simplification the discussion here is limited to electromagnetic fields
which are time harmonic as ejωt with an angular frequency ω, in source free region of space
where the material properties are uniform, linear and isotropic. In this case Maxwell’s equa-
tions can be written in vector notation as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇ · �E = 0

∇× �H − jωε �E = 0

∇× �E + jωµ �H = 0

∇ · �H = 0

, (2.9)

where �E = Ex�ax + Ey�ay + Ez�az and �H = Hx�ax + Hy�ay + Hz�az are the electric and mag-
netic fields respectively. The reduced (homogeneous or source free) version of Maxwell’s
equations (2.9) are derived into the appropriate form for retrieving their solution on vector
framework and Clifford algebras.

2.3.1 Helmholtz Equation on Vector Form

To solve Maxwell’s equations on vector framework, one may first convert the first-
order differential equations involving two field quantities into second-order differential equa-
tions involving only one field quantity. Therefore, the differential equations for �E can be
obtained by eliminating �H with the aid of the constitutive relations:

∇× (
1

µ
∇× �E) − ω2ε �E = 0. (2.10)

Similarly, one can eliminate �E to find the equation for �H as

∇× (
1

ε
∇× �H) − ω2µ �H = 0. (2.11)

Note that k is the wavenumber
(
k = ω

√
µε
)
. Taking the vector identity ∇ × ∇ × �E =

∇(∇ · �E) −∇2 �E and ∇ · �E = 0, and then (2.10) can be written:

∇2 �E + k2 �E = 0. (2.12)

And taking the vector identity ∇ ×∇ × �H = ∇(∇ · �H) − ∇2 �H and ∇ · �H = 0, and then
(2.11) can be written:

∇2 �H + k2 �H = 0. (2.13)

In (2.12) and (2.13), these equations are the partial differential equations of the electric
and magnetic fields respectively, which are the derivation of the vector fields operated by
Helmholtz operator. The Helmholtz operator denotes that

Π = ∇2 + k2. (2.14)
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2.3.2 Maxwell-Dirac Equation on Clifford Form

On vector form, the differential operators ∇· and ∇× are used to describe the rela-
tionship of electromagnetic field in (2.9). They play the same role as the Dirac derivative
or Clifford gradient D (see Appendix A) based on Clifford algebra. The D-operator can
write the vector differential operators both divergence and curl; however, it can not explain
the behavior of the electromagnetic field in time dimension. Therefore, another operator is
considered:

Dk = D − ke0, (2.15)

which is called ’k-Dirac operator’ or ’Maxwell-Dirac operator’ in [52, 62]. In frequency do-
main an additional dimension is used to accommodate the wavenumber k. The Clifford unit
e0 plays the role of the time dimension. The Clifford units e1, e2 and e3 similarly play the
role of the Cartesian unit vectors, respectively. The properties of Dk-operator are satisfying
with the electromagnetic field in three spatial and one temporal dimensions. Therefore, the
frequency domain version of homogeneous form of Maxwell’s equations in (2.9) are written
as the Maxwell-Dirac equation [52]:

Dku = 0. (2.16)

Here the electromagnetic field u of (2.7) is a monogenic function since the source term on
the right is zero. Such a field could represent the total field in a region without source, or
some aspect of a field in a region containing sources (such as the field reflected from or
transmitted through a boundary). The Maxwell-Dirac equation (2.16) can be expanded into
components by using (2.15) and (2.7), along with the multiplication of Clifford units:

Dku = (D − ke0)
(√

µHσ + j
√

εEe0

)
=

√
µ (DH) σ + j

√
ε (DE) e0 − k

√
µ (e0Hσ) − kj

√
ε (e0Ee0) . (2.17)

Taking the gradient operator D identity of a Clifford number v when the vector �v is encoded
into Λ1 of v:

Dv = − [∇ · �v]0 − [∇× �v]1 e1e2e3

= − [∇ · �v]0 + [∇× �v]1 σ, (2.18)

and then substituting into (2.17) yield:

Dku =
√

µ

(
−
[
∇ · �H

]0

+
[
∇× �H

]1

σ

)
σ + j

√
ε

(
−
[
∇ · �E

]0

+
[
∇× �E

]1

σ

)
e0

− k
√

µ (e0Hσ) − kj
√

ε (e0Ee0)

= −√
µ
[
∇ · �H

]0

σ +
√

µ
[
∇× �H

]1

− j
√

ε
[
∇ · �E

]0

e0 + j
√

ε
[
∇× �E

]1

σe0

− k
√

µ
[
�H
]1

σe0 − kj
√

ε
[
�E
]1

= 0. (2.19)
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In order to show that Maxwell-Dirac equation can contain four Maxwell’s equations in vector
form (2.9), then (2.19) are rearranged into different grades:

Dku =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− j
√

ε
[
∇ · �E

]0

e0 ∈ TΛ1

+
√

µ

([
∇× �H

]1

− jωε
[
�E
]1
)

∈ SΛ1

+ j
√

ε

([
∇× �E

]1

+ jωµ
[
�H
]1
)

σe0 ∈ TΛ3

− √
µ
[
∇ · �H

]0

σ ∈ SΛ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0. (2.20)

The resulting Clifford number occupies time-like components T (containing the time unit e0)
and space-like components S (where the unit e0 is missing) of both Λ1 and Λ3. These four
components in the order listed represent respectively source free differential statements of
Gausses’ law, the Ampere-Maxwell law, Faraday’s law, and a magnetic version of Gausses’
law.

2.3.3 Fundamental Solution of Maxwell-Dirac Operator

Before the fundamental solution of k-Dirac operator as (2.15) is described in here,
let us discuss the solution of Helmholtz operator (2.14) since the fundamental solution of
k-Dirac operator can be derived from the fundamental solution of Helmholtz operator.

If Bk is the fundamental solution of Helmholtz operator (2.14), then it is satisfied in

ΠBk = (∇2 + k2)Bk(p) = δ(p − 0), (2.21)

where p is Clifford number in Λ1 which is defined the location of the point in Cartesian
coordinates (p = xe1 + ye2 + ze3), and δ(p − 0) is Dirac delta function for an impulse
function acting at the origin defined as

δ(p − 0) = 0, if p �= 0, (2.22)

and that the integral over any finite region including p = 0 is unity, i.e.∫
Ω

δ(p − 0)dσ = 1, (2.23)

where dσ is the elemental measure of space within the region Ω.
Moreover, Helmholtz operator can derive from the term of k-Dirac operator. Simple

algebra using the rules of multiplication of Clifford numbers shows that:

D2
k = (D − ke0)

2

= D2 − D(ke0) − (ke0)D + k2e0e0

= D2 − D(ke0) + D(ke0) − k2

= D2 − k2

= −(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) − k2

= −(∇2 + k2)

= −Π. (2.24)
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The resulting Clifford number is (minus) Helmholtz operator that is a scalar operator, and it
is in Λ0 of a Clifford number.

After the relationship of both Helmholtz operator and k-Dirac operator is shown, it is
used to explain constructing the solution of k-Dirac operator from Helmholtz operator. When
applying Helmholtz operator in (2.21) by using (2.24):

(∇2 + k2)Bk(p) = δ(p − 0)

(−D2
k)Bk(p) = δ(p − 0)

Dk(−DkBk)(p) = δ(p − 0)

DkFk(p) = δ(p − 0), (2.25)

where Fk(p) is the fundamental solution of k-Dirac operator. Therefore, the fundamental so-
lution of k-Dirac operator can be calculated simply by applying (minus) the k-Dirac operator
to the fundamental solution of the Helmholtz operator:

Fk = −DkBk(p). (2.26)

In here the electromagnetic fields in three dimensions are of interest, so that the funda-
mental solution of Helmholtz operator by [63] are

Bk = − 1

4π|p|e
jk|p|. (2.27)

Therefore the fundamental solution of k-Dirac operator in three dimensions is given by

Fk(p) = −DkBk(p)

= (D − ke0){
1

4π|p|e
jk|p|}

=
1

4π
{D 1

|p|e
jk|p| − ke0

1

|p|e
jk|p|}

=
ejk|p|

4π|p|{−
p

|p|2 + jk(je0 +
p

|p|)}

=
ejkr

4πr
{(−1 + jkr

r2
)p − ke0}, (2.28)

where r = |p|.
The fundamental solution of k-Dirac operator (Fk) as (2.28) are represented by the four

dimensional Clifford number. The part of the spatial component does not only involve with
the magnitude of position vector, |p|, but also it depends on the vector p. Otherwise, the part
of the temporal component still appears and relates with the wavenumber k. Although the
two fundamental solutions which are considered are different ( the fundamental solution of
Helmholtz operator Bk as scalar but the fundamental solution k-Dirac Fk as Clifford field),
they have satisfied with the property of Dirac delta function as (2.23). In the following
sections, they can be used for developing the boundary integral equation method.

2.4 Reproducing Formula

Construction of an integral equation for potential is based on the fundamental solution
of the Helmholtz operator together with Green’s function. For the field, it is the fundamental
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Figure 2.1: Calculation of field u(p) in region Ω+ and Ω− from its trace u(q) on boundary

Σ.

solution of the k-Dirac operator and boundary theorem which are used instead [52]. Repro-
ducing formula, reproduces the value of a function u(p) within a region Ω+ (see Fig.2.1)
from the trace of the function u(q) on the boundary of the region Σ. The boundary theorem
can be written for two functions f and g∫

Σ

g(q)n(q)f(q) dσ(q) =

∫
Ω+

{(gD)(q)f(q) + g(q)Df(q)} dq, (2.29)

where D = Dk=0 = ∂
∂x

e1 + ∂
∂y

e2 + ∂
∂z

e3 is the Dirac operator [58], q is a Clifford number
representing a point on the boundary Σ or within its interior Ω+, n is a Clifford number
representing the outward unit normal, dσ(q) is differential measure of area on the boundary.

In Fig. 2.1, the boundary theorem is more general than Green’s theorem since the latter
can be recovered from the former. This is achieved by first putting g(q) = 0, which gives
both Stokes’theorem and the divergence theorem, and then by substituting into the diver-
gence theorem as usual a vector field constructed from two scalar fields and their gradients.
In the case of electromagnetic fields, it is more useful when the function g(q) = 0 of the
differential operator D is zero at everywhere except at q = 0, and that the integral over any
finite region including q = 0 is unity as the delta function. In Axelsson’s work [52], the
fundamental solution of k-Dirac operator is derived for the full field associated with a point
source of radiation. It satisfies the Clifford-valued relationship DkFk(q) = δ(|q|) where Dk

is the k-Dirac operator, and δ(|q|) is a delta function at the origin q = 0.
Now choose g(q) = g(q;p) = Ek(q−p) = −Fk(p−q) , then Ek(q−p) is actually

a function of two points p and q. Although they can both vary normally we think that one
of them is fixed (at least temporarily) while we perform operations like differentiation or
integration with respect to the other one. When the point p can be placed anywhere: inside
Ω+, or inside Ω−, or on the boundary Σ, the effect of placing p at different locations is to
translate the function Ek. The function Ek is closely related to the fundamental solution
of the k-Dirac operator, Fk. The function f is taken as the monogenic field u as (2.7). We
simply use the stated properties of Ek and u, giving:∫

Σ

Ek(q − p)n(q)u(q) dσ(q)

{
=

∫
Ω+ Ek(D − ke0)(q − p)u(q) dq

=
∫

Ω+ δ(q − p)u(q) dq.
(2.30)
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Therefore, the boundary value theorem then reduces to a different integral formulation:

∫
Σ

Ek(q − p)n(q)u(q) dσ(q) =

⎧⎨
⎩

u(p) ; p ∈ Ω+

1
2
u(p) ; p ∈ Σ

0 ; p ∈ Ω−

, (2.31)

for the field u at one point p inside the region Ω+ from its value u at every point q on
the boundary Σ (see Fig. 2.1). This results is in the form of Cauchy integral with Clifford-
valued functions in 4 dimensions rather than the complex-valued function in 2 dimensions
as is usually the case. It is called reproducing formula. Note that, if the point q is placed
on a non-smooth part of the boundary the factor of 1

2
must be changed to represent the local

geometry of the boundary.
Eq. (2.31) is not the same style of integral as, for example, a Fredholm integral equa-

tion. There is no equation here to solve. Eq. (2.31) instead plays the role of a theorem that,
for a function u which is monogenic (i.e., a solution to (2.16)) within some region Υ of
space/time spanned by Λ1 of an n-dimensional Clifford algebra, states the following: “given
any Cauchy surface Σ within Υ the trace of u on Σ can reproduce u in the sub-domain Ω+

of Υ enclosed by Σ”. In terms of applications in electromagnetics this theorem may be re-
stated as: “given the electromagnetic field on any closed surface in a source free region it is
possible to reconstruct the field inside”.

2.5 Cauchy Extension Operator

Although the reproducing formula are used to describe the relationship of the trace
of the field between on the boundary and inside the boundary, they cannot be used for cal-
culating the field outside the boundary. In the problem of electromagnetics, it is necessary
to analyze the behavior of field both inside and outside of the boundary. Therefore, in this
section the reproducing formula are applied to the different integral operator for considering
the fields on both sides of the boundary.

In Fig. 2.2, the closed surface Σ is the boundary which split separately for the interior
region Ω+ and the exterior region Ω−. The position of a point on Σ is denoted by q and called
boundary point. The position of a point in Ω+ or Ω− is denoted by p and called an internal
point or external point, respectively. The normal vector n+, which identifies the closed
surface covering over the interior region, gives direction from Ω+ to Ω−. The normal vector
n−, which identifies the closed surface covering over the exterior region, gives direction from
Ω− to Ω+. Let us define three kinds of the fields on Σ. The first field that is propagating away
from Σ into Ω+ is called the inward field on Σ denoted as u+(q). The second field that is
propagating away from Σ into Ω− is called the outward field on Σ denoted as u−(q). The
third field that combines u+(q) and u−(q) is called the total field on Σ denoted as u(q). For
understanding easier, let us express the relationship of the reproducing formula and the field
on both sides of Σ by separating into three cases, such as the inward propagation, outward
propagation and total field of inward and outward propagations on Σ.

• The first case: Inward propagation

The surface equivalence theorem is referred in order to discuss the field propagating
from Σ to Ω+. In Fig. 2.2(a), it assumes that the surface field produces the inward field
from Σ into Ω+, and it does not generate the outward field from Σ to Ω−. Accordingly, the
outward field in Ω− is zero, and the inward field in Ω+ is monogenic function satisfied with
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(a) Inward propagation
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(c) Inward and Outward propagation

Figure 2.2 Propagating field u(p) in region Ω+ and Ω− from its trace u(q) on boundary Σ.

(2.16). On the boundary, the total of the field is u(q) = u+(q) since u−(q) = 0. Moreover,
the normal unit of Σ is defined as n = n+. Finally, applying the reproducing formula in
(2.31) into: ∫

Σ

Ek (q − p)n+ (q)u+ (q) dσ(q) =

{
u+ (p) if p ∈ Ω+

0 if p ∈ Ω− . (2.32)

It reproduces u+(p) in Ω+ from Σ and give zero in Ω−.

• The second case: Outward propagation

The surface equivalence theorem is referred in order to discuss the field propagating
from Σ to Ω−. In Fig. 2.2(b), it assumes that the surface field produces the outward field
from Σ into Ω−, and it does not generate the inward field from Σ to Ω+. Accordingly, the
inward field in Ω+ is zero, and the outward field in Ω− is monogenic function satisfied with
(2.16). On the boundary, the total of the field is u(q) = u−(q) since u+(q) = 0. Moreover,
the normal unit of Σ is defined as n = n−. Finally, applying the reproducing formula in
(2.31) into: ∫

Σ

Ek (q − p)n− (q)u− (q) dσ(q) =

{
0 if p ∈ Ω+

u− (p) if p ∈ Ω− . (2.33)

It reproduces u−(p) in Ω− from Σ and give zero in Ω+.

• The third case: Inward and Outward propagations

In Fig. 2.2(c), it assumes that the surface field produces both the inward and outward
fields from Σ to Ω+ and Ω−, respectively. Both inward and outward fields have been being
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the monogenic function and satisfying with (2.16). On the boundary, the total of the field is
u(q) = u+(q) + u−(q), and the normal unit of boundary Σ is defined as n(q) = n+(q) =
−n−(q).

Firstly, considering the propagating field in the interior region (p ∈ Ω+), (2.32) is
applied into:

u+(p) =

∫
Σ

Ek (q − p)n+ (q)u+ (q) dσ(q)

=

∫
Σ

Ek (q − p)n (q)
(
u (q) − u− (q)

)
dσ(q), (2.34)

and (2.33) is applied into:

0 =

∫
Σ

Ek (q − p)n− (q)u− (q) dσ(q)

= −
∫

Σ

Ek (q − p)n (q)
(
u− (q)

)
dσ(q). (2.35)

Subtracting (2.34) by (2.35) to eliminate the terms of u−(q) yields:

u+(p) =

∫
Σ

Ek (q − p)n (q)u (q) dσ(q) −
∫

Σ

Ek (q − p)n (q)u− (q) dσ(q)

−
(
−
∫

Σ

Ek (q − p)n (q)u− (q) dσ(q)

)

=

∫
Σ

Ek (q − p)n (q)u (q) dσ(q) if p ∈ Ω+. (2.36)

Therefore, this resulting integral equation can be used to explain the inward field in interior
region, u(p ∈ Ω+), that is involved with any surface fields on boundary u(q ∈ Σ).

Secondly, considering the propagating field in the exterior region (p ∈ Ω−), (2.32) is
applied into:

0 =

∫
Σ

Ek (q − p)n+ (q)u+ (q) dσ(q)

=

∫
Σ

Ek (q − p)n (q)
(
u (q) − u− (q)

)
dσ(q), (2.37)

and (2.33) is applied into:

u−(p) =

∫
Σ

Ek (q − p)n− (q)u− (q) dσ(q)

= −
∫

Σ

Ek (q − p)n (q)
(
u− (q)

)
dσ(q). (2.38)

Subtracting (2.37) by (2.38) to eliminate the terms of u−(q) yields:

0 − u−(p) =

∫
Σ

Ek (q − p)n (q)u (q) dσ(q) −
∫

Σ

Ek (q − p)n (q)u− (q) dσ(q)

−
(
−
∫

Σ

Ek (q − p)n (q)u− (q) dσ(q)

)

−u−(p) =

∫
Σ

Ek (q − p)n (q)u (q) dσ(q) if p ∈ Ω−. (2.39)
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Therefore, this resulting integral equation can be used to explain the outward field in exterior
region, u(p ∈ Ω−), that is involved with any surface fields on the boundary u(q ∈ Σ).

Notice in these formula that the inward and outward fields, in (2.36) and (2.39) respec-
tively, are created from any same surface fields u(q) = u+(q) + u−(q). Now declare Ω+ as
the “official” inside, and always use normal unit n = n+. Then replace n− with −n+ = n

so that: ∫
Σ

Ek (q − p)n (q)u (q) dσ(q) =

{
u+(p) if p ∈ Ω+

− u−(p) if p ∈ Ω− . (2.40)

Both fields are propagating away from the boundary. Note that u+ and u− are usually discon-
tinuous across the boundary, both in value and in derivatives. It is possible to have continuity
in value and derivatives if neither Ω+ and Ω− extends to infinity then continuity in value
and in derivatives can only be achieved if u+ and u− are zero everywhere. Now define an
integral operator C, which operates on some function u(q ∈ Σ) and produces a different
function Cu(p ∈ Ω+ ∪ Ω−), according to the formula:

Cu(p ∈ Ω+ ∪ Ω−) =

∫
Σ

Ek (q − p)n (q)u (q) dσ(q). (2.41)

The operator C is called the Cauchy extension. Thus Cu is the Cauchy extension of u in
both Ω+ and Ω−. Therefore, Eq. (2.31) are applied to the inward and outward fields in terms
of Cauchy extension operator as:

Cu(p) =

{
u+(p) if p ∈ Ω+

− u−(p) if p ∈ Ω− . (2.42)

The Cauchy extension operator is used to explain the propagation of both inward and outward
fields from the Σ in Ω+ and Ω−, and it is used to apply the integral equation for solving
boundary value problems.

2.6 Cauchy Integral Operator

After Cauchy extension operator is constructed for describing the radiation of the field
from the boundary, this section introduces another integral operator for analyzing the field
on the boundary. The integral operator is derived from reproducing formula. It is used to
identify the difference of the trace of the fields on the boundary.

Let us refer to the third case of Section 2.5, the field on the surface equivalent is u(q) =
u+(q) + u−(q). The observation point inside the interior and exterior regions (p ∈ Ω+ ∪
Ω−) moves into the boundary (p ∈ Σ). Therefore, in here to define operator CΣ, which
operates on some function u(q) and produces a different function (CΣu)(p), according to
the formula:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(CΣu)(p) = 2 p.v.
∫

Σ
Ek(q − p)n(q)u(q) dσ(q)

= 2 p.v.
∫

Σ
Ek(q − p)n(q)(u+(q) + u−(q) dσ((q)

= 2 p.v.
∫

Σ
Ek(q − p)n(q)u+(q) dσ((q)

+ 2 p.v.
∫

Σ
Ek(q − p)n(q)u−(q) dσ((q)

= u+(p) − u−(p) if p ∈ Σ.

(2.43)

The operator CΣ is called the “principal value (p.v.) Cauchy integral”. Thus CΣu is the
(principal value) Cauchy integral of u on Σ.
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When Cauchy integral operator operates any field functions on the boundary, their
results are the difference of the inward and outward propagating fields on the boundary.
This property is very powerful for solving the boundary value problems, such as the perfect
transmission and perfect reflection problems.

2.7 Hardy Projection Operator

After Cauchy extension operator is constructed for describing the radiation of the field
from the boundary, this section introduces another integral operator for analyzing the field
on boundary. The integral operator is derived from the reproducing formula. It is used to
identify the difference of the trace of the fields on the boundary.

��

�

Ω+Ω−

Σ

� u = u+ + u−

���

Σ+

���

Σ−

� Pu+�
u+

�Pu− �
u−

Figure 2.3 Cauchy extensions u± and Hardy projections P±u for the surface field u on Σ.

Fig. 2.3 shows some part of the boundary Σ in order to describe the two ideal boundary
Σ+ and Σ−. Both Σ+ and Σ− are placed on very close up to Σ, but it is never the same place
on Σ (Σ+ and Σ− are membered onto the domains Ω+ and Ω−, respectively). And then the
function u+(p ∈ Σ+) and u−(p ∈ Σ−) are the trace of the field on Σ+ and Σ−, respectively.

If the p+ point, which is placed on Σ+, approaches closely at the point p on the Σ
from Ω+ (p+ = p → Σ), then the limit of Cauchy extension operator by taking function
u(q ∈ Σ) that:

P+u(p) = lim
p+→Σ

Cu(p+) = u+(p) if p ∈ Σ, (2.44)

where P+ is the plus Hardy projection. So that P+u(p) can be used to predict the trace of
u+(p) function on Σ. On the other hand, if the p− point, which is placed on Σ−, approaches
closely at the point p on the Σ from Ω− (p− = p → Σ), then the limit of Cauchy extension
operator by taking function u(q ∈ Σ) that:

P−u(p) = − lim
p−→Σ

Cu(p−) = u−(p) if p ∈ Σ, (2.45)

where P− is the minus Hardy projection. So that P−u(p) can be used to predict the trace of
u−(p) function on Σ.

The original field u(p ∈ Σ) can recover by the summation of two projection operator,
P+ and P− as described (2.44) and (2.45):

u(p) = P+u(p) + P−u(p) = u+(p) + u−(p). (2.46)

Therefore, it is possible to obtain the following identities for the Hardy projection:
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• Idempotent: {
(P+)2 = P+

(P−)2 = P− (2.47)

• Mutually Exclusive: {
P+P− = 0
P−P+ = 0

(2.48)

• Complementary
P+ + P− = I (2.49)

Eq. (2.47) confirms that the two Hardy projections are indeed projection operators; i.e., the
result of repeated applications of one operator is not different from the result of a single
application. Eq. (2.48) states that these two projections are orthogonal; i.e., the information
preserved by one is entirely independent of that preserved by the other. Eq. (2.49) shows
that the two projections are complementary, i.e. the information preserved by one matches
exactly that lost by the other.

The two Hardy projection operators have defined already, but they have not been em-
ployed for solving boundary value problems. It is necessary to construct the term of the
Cauchy integral operator on the boundary in order to split the trace of the field u(p) into
u+(p) and u−(p). When Cauchy integral operator is written into the terms of two Hardy
projection operators by substituting (2.44) and (2.45) into (2.43), then

CΣu(p) = P+u(p) + P−u(p). (2.50)

The sum and difference of the two unknown fields on Σ are represented in (2.46) and (2.50),
they can be written by separately:{

u+ = 1
2
(I + CΣ)u = P+u

u− = 1
2
(I − CΣ)u = P−u

. (2.51)

Table 2.1 summaries the effects of the Cauchy integral and Hardy operators on three partic-
ular fields; one with only an inward propagating field, one with only an outward propagating
field, and one with both inward and outward propagating fields. Note that the Hardy pro-
jections play role of decomposing the field on the boundary into its inward and outward
propagating fields.

Table 2.1 Hardy and Cauchy integral operators.

surface field

u(q ∈ Σ)

Cauchy integral

CΣu(q ∈ Σ)

Hardy projection

P+u(q ∈ Σ)

Hardy projection

P−u(q ∈ Σ)

u+ u+ u+ 0

u− −u− 0 u−

u+ + u− u+ − u− u+ u−



CHAPTER III

GEOMETRIC SOLUTIONS OF INTEGRAL EQUATION

FOR BOUNDARY VALUE PROBLEMS

Electromagnetic boundary value problems fall naturally into three different cases, as
shown in Fig. 3.1, according to the behavior of the field at the boundary: (a) perfect transmis-
sion, (b) perfect reflection and (c) partial transmission and reflection. In all cases the method
of solution involves calculating the the transmitted and reflected fields, utr and usc, on the
boundary from the incident field, uin.

�
�
�

Region I Region II

Interface

ε1, µ1, σ1 ε2, µ2, σ2

���

uin

usc = 0
utr

utr = uin

(a) Perfect Transmission

�
Region I Region II

Interface

ε1, µ1, σ1 ε2, µ2, σ2�
�

uin

utr = 0

usc

(b) Perfect Reflection

(c) Partial Transmission and Reflection

Region I Region II

Interface

ε1, µ1, σ1 ε2, µ2, σ2�

���
uin

usc utr

Figure 3.1 Three cases of electromagnetic boundary value problems.

For the perfect transmission, the incident and transmitted fields exhibit same behavior
when the mediums in region I and region II are same (ε1 = ε2, µ1 = µ2, σ1 = σ2 �= ∞).
For the perfect reflection, the current density induced on PEC interface (σ2 = ∞) by the
incident field will produce the reflected field. For the partial of transmission and reflection,
both the transmitted and reflected fields are propagating into the medium I (ε1, µ1, σ1 �= ∞)
and medium II (ε2, µ2, σ2 �= ∞), respectively, when the incident field arrive at the interface.

The three cases can be ordered according to complexity (and difficulty) from the per-
fect transmission as the simplest, to the partial transmission as the most complicated. Here
the perfect transmission case and the perfect reflection case are described separately in Sec-
tions 3.1 and 3.2, respectively. Each of these two sections describes the Maxwell-Dirac
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equation in the integral form, the solution of integral operator, and applied solution of inte-
gral operator for iteration.

Together, the Maxwell-Dirac equation (differential) (see in Chapter II) and the bound-
ary conditions lead to sufficient equations for determining the unknown fields (transmitted
or reflected or both). For each region where one field is unknown, two equations can be
written. The first derives from the general properties of k-monogenic functions as solutions
to the Maxwell-Dirac equation. This gives the Hardy projection, relating the field on the
boundary to the field immediately adjacent to the boundary. The second comes from the
boundary conditions, recast in the form of one of two boundary data projections (see detail
in Appendix C). Each of these two projections relates one half of the unknown field on the
boundary to one half of the incident field on the boundary.

For the case of perfect transmission and perfect reflection this process reduces the en-
tire problem to two simultaneous equations: one Hardy-style and one data-style. The Hardy
projections are already of a form that can be used immediately to construct a coordinate sys-
tem in Banach space. The boundary conditions known well in vector form can be recast as
boundary data projections of a suitable form. This is easy for the cases of perfect transmis-
sion and perfect reflection, because it is only necessary to deal with one side of the boundary
and one value of permittivity and permeability.

3.1 Perfect Transmission Problem

3.1.1 Boundary Value Problem in Perfect Transmission

3.1.1.1 The Cookie Cutter Problem

Fig. 3.2 shows a rectangular subregion within a larger (infinite) region Ω of uniform
material properties µ, ε and σ. There are no sources within the subregion, but electromagnetic
radiation propagates though the subregion from some distant monochromatic source. The
magnitude of the phaser u representing the field in the subregions is a k-monogenic function
as given by the Maxwell-Dirac equation.

�

�
�

n
Σ

Ω−
Ω+•u(q ∈ Σ)

Figure 3.2 Three different functions: u+, u− and u along Ω+, Ω− and Σ, respectively.

Imagine now tracing some arbitrary (non-intersecting) closed boundary Σ separating
Ω into an interior region Ω+ and an exterior region Ω− (extending to infinity), taking in the
process a copy of the value of the field u(p ∈ Σ) on the boundary. If the external region
Ω− is cut away the boundary field is maintained by some equivalent electromagnetic source
located on the boundary, the field in the interior Ω+ remains the same. This problem is called
the “Cookie Cutter” problem since its construction bears many similarities to the way cookie
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of various shapes are cut out of a sheet of uniform dough. The Cookies Cutter problem can
be used to generate simple boundary value test problems in which there is a single uniform
region of arbitrary shape, and in which the (equivalent) boundary sources can be varied by
changing the real (external) sources of the field according to taste. External sources for
which analytical solutions are known are preferable in order to make it easy to calculate the
(equivalent) boundary sources.

Unlike the problems described in the next section, the incident field gives directly the
solution without calculation: both on the boundary and inside. Discarding one half of the
boundary field at the outset and retaining the other half to serve as the boundary conditions
establishes a simple non-trivial boundary value test problem for which the correct answer is
known both on the boundary and inside. This makes it possible to break the work of devel-
oping an algorithm to calculate the solution numerically into decoupled sections, and verify
their numerical validity independently. Such an approach with checks at all possible stages is
essential in developing a trustworthy numerical solution since the numerical methods which
must be used are far from trivial; littered with all sorts of traps awaiting the unwary devel-
oper. It is also worth noting that the solution of the Cookie Cutter problem is effectively
the same as the solution for the case of perfect reflection. Whereas the former may seem
contrived, the latter is of definite practical importance.

3.1.1.2 Boundary Conditions in Perfect Transmission

In case of perfect transmission, the boundary conditions in vector form is:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�n · �Ein = �n · �Etr

�n × �H in = �n × �H tr

�n × �Ein = �n × �Etr

�n · �H in = �n · �H tr

, (3.1)

where �Ein and �H in are incident electric and magnetic fields, respectively, and �Etr and �H tr

are transmitted electric and magnetic fields, respectively. The behavior of the fields on the
interface does not create the reflection; therefore, the incident field is same as the transmitted
field.

The incident and transmitted fields on boundary conditions on the vector form in (3.1)
can be divided into four groups by considering the direction of normal unit identifying the
boundary. The first pair of the groups are the normal components of electric and magnetic
fields ( �En, �Hn) and another one are the tangential component of both fields ( �Et, �Ht). All these
fields are described into Clifford number according to (2.7):{

uin = µ
1

2

−Hinσ + jε
1

2

−Eine0

utr = µ
1

2

+Htrσ + jε
1

2

+Etre0

, (3.2)

where (µ−,ε−) and (µ+,ε+) are the electric permittivity and permeability in the exterior and
interior regions, respectively. The material properties µ and ε take complex number scalar
values. This accommodates lossy material in frequency domain as non-zero imaginary part
of ε, but excludes anisotropic media. In order to capture two appropriate components of the
fields either ( �Et, �Hn) or ( �En, �Ht) in Clifford algebra the data projection operators Q± are
employed and their details are described in Appendix C. Therefore, the boundary conditions
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in (3.1) are rewritten into Clifford formalism with the data projections:{
Q+utr = µ

1

2

+Htr
t σ + jε

1

2

+Etr
n e0 = µ

1

2

−Hin
t σ + jε

1

2

−Ein
n e0 = Q+uin

Q−utr = µ
1

2

+Htr
n σ + jε

1

2

+Etr
t e0 = µ

1

2

−Hin
n σ + jε

1

2

−Ein
t e0 = Q−uin

. (3.3)

3.1.2 Normal Solutions for Perfect Transmission

In case of perfect transmission, there are two main situations such as consideration of
the inward field or the outward field. Firstly, when the incident field is propagating from
the exterior region onto the boundary, the inward field is reproduced in the interior region.
Secondly, when the incident field is propagating from the interior region onto the boundary,
the outward field is reproduced on the exterior region. Therefore, both situations are shown
in this section.

3.1.2.1 Normal Solution of Inward Field

When the incident field produced by any actual source in the exterior region arrives
at the boundary, this field is equivalent source or secondary source along boundary that can
generate the inward field propagating in the interior region. Their characteristics of these
fields are satisfied with Maxwell-Dirac equation in the form of Hardy projections (2.51).
When u+ is used instead of utr, and u− is zero since the reflected field does not appear.
Therefore, the total field on the boundary u is utr:{

P+utr = utr

P−utr = 0
. (3.4)

And the boundary conditions of perfect transmission in (3.3) can be shown as{
f = Q+utr

g = Q−utr . (3.5)

where f and g are Clifford functions. The function f is used to describe the normal compo-
nents of the electric field and the tangential field of the magnetic field (Etr

n ,Htr
t ). In practice,

these components of the fields are unknown, since it cannot be measured directly. However,
the function g that is used to describe the normal components of the magnetic field and the
tangential field of the electric field (Htr

n ,Etr
t ) can be evaluated without using complicated

techniques. Therefore, the function g that is some parts of the transmitted field is employed
as the input data in order to solve its full parts.

In order to visualize the solutions to (3.4) and (3.5) it is useful to represent them in
a geometric form. Since P± and Q± are operators which take the projections of functions
rather that points, the appropriate geometrical space to use is one of functions utr, as shown
in Fig. 3.3, rather than points. In here, only two equations are chosen for formulating the
linear system: {

P+utr = utr

g = Q−utr . (3.6)
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Figure 3.3: Solution of Maxwell’s equations as intersection in Banach space of dotted line

through boundary conditions g and coordinate axis OP,OP ′ for the inward field in case of

perfect transmission.

In Banach space this means the solution utr lies somewhere along the dotted lines
parallel to the OQ-axis and through function g on the OQ

′

-axis, as shown in Fig. 3.3. Sim-
ple geometry dictates that the intersection between the dotted line and the OP -axis gives
a unique solution utr as long as the OP -axis and the OQ

′

-axis are not coincident. This is
known already, since from their definitions the projections Q− and P+ are definitely not the
same.

The solution utr can be represented in terms of Cartesian components in either the
P -system and Q-system: {

utr = utr + 0 P − system
utr = f + g Q − system

. (3.7)

where f = Q+utr (as shown in Fig. 3.3) is the missing half of the boundary field.
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•
I = P−g

•
II = P+g

•
III = P+Q+utr

•IV = P−Q+utr

Figure 3.4 Construction for solution of inward field given data g = Q−utr.

A solution in either system can be formulated by inspection of Fig. 3.4. The figure
shows the solution utr on the OP -axis, split into two components Q+utr and g = Q−utr

in the Q-system, each of which are themselves further split into two more components back
in the P -system. All of the triangles and rectangles in the figure which appear by casual
inspection to be similar, are indeed similar.



28

The value of the four components produced in the P -system by the splitting process are
represented in Fig. 3.4 by the four line segments I, II, III and IV. Adding these line segments
as vectors produces a resultant vector from the origin to the solution utr:

I + II + III + IV = P−g + P+g + P+Q+utr + P−Q+utr = utr. (3.8)

Eq. (3.8) is actually rather trivial, and rather useless in its own right since it is easily reduced
to either of the forms in (3.7). Of more interest and more immediate use are its projections
into the P system. Projection onto the two axes of the P -system gives:{

P+Q+utr + P+g = utr

P−Q+utr + P−g = 0
, (3.9)

where use has been made of (P±)2 = P±, P±P∓ = 0 and P+utr = utr.
Inspection of Fig. 3.4 shows that P+Q+utr �= utr unless the OP -axis is coincident

with the OQ
′

-axis; a situation which has already been ruled out. It is therefore possible to
subtract P+Q+utr from both sides of (3.9) to obtain:

P+g = (I − P+Q+)utr, (3.10)

with the assurance that both sides are non-zero.
The right hand side contains the product of two singular operators P+Q+, itself sin-

gular. The sum of this product with the (non-singular) identity operator gives the term
I − P+Q+ which is sure to be non-singular. It is therefore possible to invert this term,
giving:

utr =
(
I − P+Q+

)−1
P+g. (3.11)

This is the solution of inward field in case of perfect transmission problem.
Note that (3.10) is not in the form of a Fredholm integral equation. Writing (3.10) in

full integral form shows that the operator (I − P+Q+) embeds utr with non-communitative
multiplication from both sides. For a Fredholm integral equation the multiplication is from
one side only. Whereas a direct matrix inverse style of solution for a discrete approximation
to a Fredholm integral equation is possible, the same cannot be said for (3.10). The formal
solution as written in (3.11) is symbolic only, and should not be mistaken for some kind of
matrix inverse.

3.1.2.2 Normal Solution of Outward Field

When the incident field produced by any actual source in the interior region arrives
onto the boundary, this field is equivalent source or secondary source along boundary that
can generate the outward field propagating in the exterior region. The characteristics of these
fields are satisfied with the Maxwell-Dirac equation in form of Hardy projections (2.51).
When u− is used instead of utr, and u+ is zero since the reflected field does not appear.
Therefore, the total field on the boundary u is utr:{

P−utr = utr

P+utr = 0
. (3.12)

The boundary conditions of perfect transmission in (3.3) can be shown again as{
f = Q+utr

g = Q−utr . (3.13)
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This boundary conditions for analyzing the outward field is same as the the inward field.
The Maxwell-Dirac equation in the form of Hardy projections (3.12) and boundary

conditions (3.13) are described together on Banach space in order to construct the solution
of the outward field. In here, only two equations are chosen for formulating the linear system:{

P−utr = utr

g = Q−utr . (3.14)
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Figure 3.5: Solution of Maxwell’s equations as intersection in Banach space of dotted line

through boundary conditions g and coordinate axis OP,OP ′ for the outward field in case of

the perfect transmission.

In Banach space this means the solution utr lies somewhere along the dotted lines
parallel to the OQ-axis and through function g on the OQ

′

-axis, as shown in Fig. 3.5. Simple
geometry dictates that the intersection between the dotted line and the OP

′

-axis gives a
unique solution utr as long as the OP

′

-axis and the OQ
′

-axis are not coincident. This is
known already, since from their definitions the projections Q− and P− are definitely not the
same.

The solution utr can be represented in terms of Cartesian components in either the
P -system and Q-system: {

utr = utr + 0 P − system
utr = f + g Q − system

, (3.15)

where f = Q+utr (as shown in Fig. 3.5) is the missing half of the boundary field.
A solution in either system can be formulated by inspection of Fig. 3.6. The figure

shows the solution utr on the OP
′

-axis, split into two components Q+utr and g = Q−utr

in the Q-system, each of which are themselves further split into two more components back
in the P -system. All of the triangles and rectangles in the figure which appear by casual
inspection to be similar, are indeed similar.

The value of the four components produced in the P -system by the splitting process are
represented in Fig. 3.6 by the four line segments I, II, III and IV. Adding these line segments
as vectors produces a resultant vector from the origin to the solution utr:

I + II + III + IV = P+g + P−g + P−Q+utr + P+Q+utr = utr. (3.16)

Eq. (3.16) is actually rather trivial, and rather useless in its own right since it is easily reduced
to either of the forms in (3.15). Of more interest and more immediate use its projections into
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Figure 3.6 Construction for solution of outward field given data g = Q−utr.

the P systems. Projection onto the two axes of the P -system gives:{
P−Q+utr + P−g = utr

P+Q+utr + P+g = 0
. (3.17)

where has been made of (P±)2 = P±, P±P∓ = 0 and P−utr = utr.
Inspection of Fig. 3.6 shows that P−Q+utr �= utr unless the OP

′

-axis is coincident
with the OQ

′

-axis; a situation which has already been ruled out. It is therefore possible to
subtract P−Q+utr from both sides of (3.17) to obtain:

P−g = (I − P−Q+)utr, (3.18)

with the assurance that both sides are non-zero.
The right hand side contains the product of two singular operators P−Q+, itself sin-

gular. The sum of this product with the (non-singular) identity operator gives the term
I − P−Q+ which is sure to be non-singular. It is therefore possible to invert this term,
giving:

utr =
(
I − P−Q+

)−1
P−g. (3.19)

This is the solution of outward field in case of perfect transmission problem. The (I−P−Q+)
that is the compound operators can simulate its inversion similar to the inversion of (I −
P+Q+) as (3.11).
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3.1.3 Iterative Solution for Perfect Transmission

3.1.3.1 Iterative Solution of Inward Field

In principal the solution of the inward field utr in (3.11) need not involve a direct
inversion of the compound operator (I − P+Q+). An iterative procedure can be used, as
shown in Fig. 3.7.
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•
utr
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•
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0

∆utr
0

•
utr

1

•
Q+utr

1

∆utr
1

•
utr

2

Figure 3.7: Iterative solution of inward field. Adding correction ∆utr
0 to initial estimate utr

0

gives improved estimate utr
1 , and adding ∆utr

1 to utr
0 gives utr

2 .

Firstly, an initial estimate:
utr

0 = P+g, (3.20)

is obtained by projecting the boundary condition g onto the OP -axis. A correction ∆utr
0 =

P+Q+utr
0 is calculated by projecting utr

0 first onto the OQ-axis and then back onto the
OP -axis. A new estimate utr

1 = utr
0 + ∆utr

0 is obtained by adding the correction to initial
estimate. As a second iteration, an improved correction ∆utr

1 = P+Q+utr
1 is used to give

a better estimate utr
2 = utr

0 + ∆utr
1 . Note that the correction is always added to the initial

estimate utr
0 , not to the most recent estimate. The general form of the kth estimate utr

k is:

utr
k = utr

0 + P+Q+utr
k−1 =

k∑
m=0

(P+Q+)mutr
0 . (3.21)

This is iterative solution of inward field in case of perfect transmission. The solution takes
the form of Neumann iteration, with initial guess u0 calculated directly from the boundary
conditions g. A different field u′

0 = P+v could also be chosen for an initial guess. This
would make sense if it is known that u′

0 is closer to the solution than u0.
Moreover, the convergence of the iterative solution in (3.21) is discussed in here. The

difference between consecutive estimates is:

utr
k − utr

k−1 =
(
P+Q+

)k
utr

0 . (3.22)

which, as shown in Fig. 3.8, approaches zero as k approaches infinity at a rate proportional to
the size of the difference. In principle, the difference reduces to zero after an infinite number
of iterations. At that stage utr

k =utr
k−1, so that:

utr
k = utr

0 + P+Q+utr
k−1 = utr

0 + P+Q+utr
k . (3.23)
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Figure 3.8: The difference of the solutions of inward fields utr
k − utr

k−1 between consecutive

estimates of solution utr approaching zero as the iteration proceeds.

The difference from the correct solution u can be found by subtracting (3.10):(
utr

k − utr
)

= P+Q+
(
utr

k − utr
)
, (3.24)

which by inspection of Fig. 3.9 can only be true if utr
k − utr is sitting at the origin, so that

utr
k = utr. It therefore follows that the iterative method in (3.20) and (3.21) converges and,

furthermore, converges to the correct solution.
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Q+(utr − utr
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•P+Q+(utr − utr
k )

Figure 3.9: The difference between estimate utr
k and solution of inward field utr is the same

after projections P+Q− only if utr
k − utr = 0, showing convergence to correct solution of

inward field utr
k = utr.

3.1.3.2 Iterative Solution of Outward Field

In principal the solution of the outward field utr in (3.19) need not involve a direct
inversion of the compound operator (I − P−Q+). An iterative procedure can be used, as
shown in Fig. 3.10.
Firstly, an initial estimate:

utr
0 = P−g, (3.25)

is obtained by projecting the boundary conditions g onto the OP ′-axis. A correction ∆utr
0 =

P−Q+utr
0 is calculated by projecting utr

0 first onto the OQ-axis and then back onto the
OP ′-axis. A new estimate utr

1 = utr
0 + ∆utr

0 is obtained by adding the correction to initial
estimate. As a second iteration, an improved correction ∆utr

1 = P−Q+utr
1 is used to give
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Figure 3.10: Iterative solution of outward field. Adding correction ∆utr
0 to initial estimate

utr
0 gives improved estimate utr

1 , and adding ∆utr
1 to utr

0 gives utr
2 .

a better estimate utr
2 = utr

0 + ∆utr
1 . Note that the correction is always added to the initial

estimate utr
0 , not to the most recent estimate. The general form of the kth estimate utr

k is:

utr
k = utr

0 + P−Q+utr
k−1 =

k∑
m=0

(P−Q+)mutr
0 . (3.26)

This is iterative solution of outward field in case of perfect transmission. The solution takes
the form of Neumann iteration, with initial guess u0 calculated directly from the boundary
conditions g. A different field u′

0 = P−v could also be chosen for an initial guess. This
would make sense if it is known that u′

0 is closer to the solution than u0.
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Figure 3.11: The difference of the solutions of outward fields utr
k −utr

k−1 between consecutive

estimates of solution utr approaching zero as the iteration proceeds.

Moreover, the convergence of the iterative solution in (3.26) is discussed in here. The
difference between consecutive estimates is:

utr
k − utr

k−1 =
(
P−Q+

)k
utr

0 , (3.27)

which, as shown in Fig. 3.11, approaches zero as k approaches infinity at a rate proportional
to the size of the difference. In principle, the difference reduces to zero after an infinite
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number of iterations. At that stage utr
k =utr

k−1, so that:

utr
k = utr

0 + P−Q+utr
k−1 = utr

0 + P−Q+utr
k . (3.28)

The difference from the correct solution u can be found by subtracting (3.18):(
utr

k − utr
)

= P−Q+ (uk − u) , (3.29)

which by inspection of Fig. 3.12 can only be true if utr
k − utr is sitting at the origin, so that

utr
k = utr. It therefore follows that the iterative method in (3.25) and (3.26) converges and,

furthermore, converges to the correct solution.
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Figure 3.12: The difference between the estimate utr
k and solution of the outward field utr

is the same after projections P−Q− only if utr
k − utr = 0, showing convergence to correct

solution of outward field utr
k = utr.
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3.2 Perfect Reflection Problem

3.2.1 Boundary Value Problem in Perfect Reflection

3.2.1.1 Good Conductors

Conductors are solids or liquids in which the flow of current is supported by charge
carriers moving at a constant average (drift) velocity through the material. In linear conduc-
tors this flow of current can be described at the macroscopic level by Ohm’s Law, and is
called “conduction” current. In good conductors the flow of current is supported predomi-
nantly by conduction current. Other mechanisms of current flow, such as convection current
and displacement current, are (by definition) negligible. They can normally be ignored. The
idea of a good conductor is a conceptual ideal. In practice only superconductors really fit the
description, but many metals also behave like good conductors.

When external electromagnetic fields interact with a good conductor, the external fields
drop abruptly to zero at the surface of the conductor. Inside, the internal fields in a good
conductor are in principle identically zero. The abrupt change in the value of the field is
effected by charges and currents induced in an infinitesimally thin layer immediately inside
the conductor. In principle the layer is only infinitesimally thin if the conductivity is infinite,
i.e. in the case of a superconductor. In the case of real conductors such as metal , the
charge and current layer is of non-zero thickness, and the fields inside the conductor decay
exponentially from the value at the surface of the conductor to zero value a short distance
inside. When external electromagnetic fields interact with a good conductor none of the field
is transmitted into the conductor. All of the field is reflected.

3.2.1.2 Boundary Conditions in Perfect Reflection

In case of perfect reflection the boundary conditions in vector form is:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�n · ε− ( �Ein + �Esc) = ρs

�n × ( �H ic + �Hsc) = �Js

�n × ( �Ein + �Esc) = 0

�n · µ− ( �H in + �Hsc) = 0

, (3.30)

where ε− and µ− are the electric permittivity and permeability in space region (exterior
region). The fields �Ein and �H in are incident electric and magnetic fields respectively, and
�Esc and �Hsc are reflected electric and magnetic fields, respectively. The behavior of the fields
on the interface does not create the transmission; therefore, the incident field reproduces the
surface charge density ρs the current density �Js and also generates the reflected field around
the boundary.

The incident and reflected fields on boundary conditions on vector form in (3.30) can
be divided into four groups by considering the direction of normal unit identifying the bound-
ary. The first pair of the groups are the normal components of the electric field involving with
the charge density, and the tangential components of the magnetic field involving with the
current density. And another one are the tangential components of the electric field and the
normal components of the magnetic field involving without any source on the boundary. All
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these fields are described into Clifford number that satisfying with (2.7):{
uin = µ

1

2

−Hinσ + jε
1

2

−Eine0

usc = µ
1

2

−Hscσ + jε
1

2

−Esce0

, (3.31)

where µ− and ε− are the electric permittivity and permeability in the exterior. In order to
capture two appropriate components of the fields ( �Et, �Hn) in Clifford algebra the data pro-
jection operators Q± are employed and their details are described as Appendix C. Therefore,
the boundary conditions in (3.30) are rewritten into Clifford formalism with the data projec-
tions: {

Q+uin + Q+usc = ζ(ρs,Js)
Q−uin + Q−usc = 0

, (3.32)

where ζ(ρs,Js) is the unknown function of the surface charge and current densities. The
boundary conditions for solving the reflected field is:

Q−usc = µ
1

2

−Hsc
n σ + jε

1

2

−Esc
t e0

= −
(
µ

1

2

−Hin
n σ + jε

1

2

−Ein
t e0

)
= −Q−uin

. (3.33)

3.2.2 Normal Solutions for Perfect Reflection

When the incident field that is produced by any actual source in the exterior region
arrives onto the boundary, this field induces the charge and current densities along the in-
terface. These densities that are equivalent sources generate the scattered or reflected field
around the boundary in the exterior region. Their characteristics of these fields are satisfied
with the Maxwell-Dirac equation in form of Hardy projections (2.51). When u− is used
instead of usc, and u+ is zero since the transmitted field does not appear. Therefore, the total
field on the boundary u is usc, {

P−usc = usc

P+usc = 0
. (3.34)

The boundary conditions of perfect reflected in (3.33) can be shown as{
f = Q+usc

g = Q−usc , (3.35)

where f and g are Clifford functions. The function f is used to describe the normal compo-
nents of the electric field and the tangential field of the magnetic field (Esc

n ,Hsc
t ), and it can

be used to evaluate the charge and current densities on the boundary. The function g that is
used to describe the normal components of the magnetic field and the tangential field of the
electric field (Hsc

n ,Esc
t ) can evaluate without using complicated techniques. Therefore, the

function g that is some parts of the reflected field is employed as the input data in order to
solve its full parts.

The Maxwell-Dirac equation in the forms of Hardy projections (3.34) and boundary
conditions (3.35) are described together on Banach space in order to construct the solution
of the inward field. In here, only two equations are chosen for formulating the linear system:{

P−usc = usc

g = Q−usc . (3.36)
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Figure 3.13: Solution of Maxwell’s equations as intersection in Banach space of dotted line

through boundary conditions g and coordinate axis OP,OP ′ for the reflected field in case of

perfect reflection.

In Banach space this means the solution usc lies somewhere along the dotted lines
parallel to the OQ-axis and through function g on the OQ

′

-axis, as shown in Fig. 3.13.
Simple geometry dictates that the intersection between the dotted line and the OP ′-axis
gives a unique solution usc as long as the OP ′-axis and the OQ

′

-axis are not coincident.
This is known already, since from their definitions the projections Q− and P− are definitely
not the same.

The solution usc can be represented in terms of Cartesian components in either the
P -system or Q-system: {

usc = usc + 0 P − system
usc = f + g Q − system

, (3.37)

where f = Q+usc (as shown in Fig. 3.13) is the missing half of the boundary field.
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Figure 3.14 Construction for solution of reflected field given data g = Q−usc.
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A solution in either system can be formulated by inspection of Fig. 3.14. The figure
shows the solution usc on the OP ′-axis, split into two components Q+usc and g = Q−usc

in the Q-system, each of which are themselves further split into two more components back
in the P -system. All of the triangles and rectangles in the figure which appear by casual
inspection to be similar, are indeed similar.

The value of the four components produced in the P -system by the splitting process
are represented in Fig. 3.14 by the four line segments I, II, III and IV. Adding these line
segments as vectors produces a resultant vector from the origin to the solution usc:

I + II + III + IV = P+g + P−g + P−Q+usc + P+Q+usc = usc. (3.38)

Eq. (3.38) is actually rather trivial, and rather useless in its own right since it is easily reduced
to either of the forms in (3.37). Of more interest and more immediate use its projections into
the P system. Projection onto the two axes of the P -system gives:{

P−Q+usc + P−g = usc

P+Q+usc + P+g = 0
. (3.39)

where has been made of (P±)2 = P±, P±P∓ = 0 and P−usc = usc.
Inspection of Fig. 3.14 shows that P−Q+usc �= usc unless the OP ′-axis is coincident

with the OQ
′

-axis; a situation which has already been ruled out. It is therefore possible to
subtract P−Q+usc from both sides of (3.39) to obtain:

P−g = (I − P−Q+)usc, (3.40)

with the assurance that both sides are non-zero.
The right hand side contains the product of two singular operators P−Q+, itself sin-

gular. The sum of this product with the (none-singular) identity operator gives the term
I − P−Q+ which is sure to be non-singular. It is therefore possible to invert this term,
giving:

usc =
(
I − P−Q+

)−1
P−g. (3.41)

This is the solution of reflected field in case of perfect reflection problem. The (I − P−Q+)
that is the compound operators can simulate its inversion similar to the inversion of (I −
P+Q+) as (3.11).
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3.2.3 Iterative Solution for Perfect Reflection

In principal the solution of the reflected field usc in (3.41) need not involve a direct
inversion of the compound operator (I − P−Q+). An iterative procedure can be used, as
shown in Fig. 3.15.

O
Q

Q′

P

P ′

•usc

•usc
0

•u
sc
1

•u
sc
2

g

•
Q+usc

0

• ∆usc
0

•
Q+usc

1

• ∆usc
1

Figure 3.15: Iterative solution of reflected field. Adding correction ∆usc
0 to initial estimate

usc
0 gives improved estimate usc

1 , and adding ∆usc
1 to usc

0 gives usc
2 .

Firstly, an initial estimate:
usc

0 = P−g, (3.42)

is obtained by projecting the boundary conditions g onto the OP ′-axis. A correction ∆usc
0 =

P−Q+usc
0 is calculated by projecting usc

0 first onto the OQ-axis and then back onto the
OP ′-axis. A new estimate usc

1 = usc
0 + ∆usc

0 is obtained by adding the correction to initial
estimate. As a second iteration, an improved correction ∆usc

1 = P−Q+usc
1 is used to give

a better estimate usc
2 = usc

0 + ∆usc
1 . Note that the correction is always added to the initial

estimate usc
0 , not to the most recent estimate. The general form of the kth estimate usc

k is:

usc
k = usc

0 + P−Q+usc
k−1 =

k∑
m=0

(P−Q+)musc
0 . (3.43)

This is iterative solution of reflected field in case of perfect reflection. The solution takes
the form of Neumann iteration, with initial guess u0 calculated directly from the boundary
conditions g. A different field u′

0 = P−v could also be chosen for an initial guess. This
would make sense if it is known that u′

0 is closer to the solution than u0.
Moreover, the convergence of the iterative solution in (3.43) is discussed in here. The

difference between consecutive estimates is:

usc
k − usc

k−1 =
(
P−Q+

)k
usc

0 , (3.44)

which (as shown in Fig. 3.16) approaches zero as k approaches infinity at a rate proportional
to the size of the difference. In principle, the difference reduces to zero after an infinite
number of iterations. At that stage usc

k =usc
k−1, so that:

usc
k = usc

0 + P−Q+usc
k−1 = usc

0 + P−Q+usc
k . (3.45)
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Figure 3.16: The difference of the solutions of reflected fields usc
k − usc

k−1 between consecu-

tive estimates of solution usc approaching zero as the iteration proceeds.

The difference from the correct solution usc can be found by subtracting (3.40):

(usc
k − usc) = P−Q+ (usc

k − usc) , (3.46)

which by inspection of Fig. 3.17 can only be true if usc
k − usc is sitting at the origin, so that

usc
k = usc. It therefore follows that the iterative method in (3.42) and (3.43) converges and,

furthermore, converges to the correct solution.

O
Q

Q′P ′

P

•(usc − usc
k )

Q+(usc − usc
k )

• P−Q+(usc − usc
k )

Figure 3.17: The difference between estimate usc
k and solution of reflected field usc is the

same after projections P−Q− only if usc
k −usc = 0, showing convergence to correct solution

of reflected field usc
k = usc.



CHAPTER IV

METHODOLOGY

In this chapter, all proposed integral operators are applied to boundary element tech-
niques. In order to realize a numerical solution according to calculate the field by using
reproducing formula, it is necessary to choose a representation for the boundary Σ and the
field u on the boundary which conforms to:

• the geometrical requirements of the particular application

• the known physical behavior of the field.

The shape of the boundary should be simple for approximation, since the error made by
modeling the boundary can be fixed easier. The field on the boundary should be approximated
with the appropriated function but being not far away from the theory [52].

4.1 Geometry of Boundary

Most electromagnetic problems in electrical engineering involve macroscopic objects
with either planar or curved smooth surfaces meeting at sharp corners or edges. On a smooth
surface the unit normal vector varies continuously from point to point. Edges and corners
are points where two or more smooth surfaces meet with a loss of continuity in the normal.
When integrating over surfaces which meet at edges and corners the integral should be car-
ried piecewise, carefully using the normal appropriate to each individual piece. That means
edges, for example, are incorporated into the overall integral two lines, with different values
of normal.

Surfaces which are smooth apart from a finite number of edges and corner are known
as Lipschitz surfaces. Fractal surfaces have infinite number of edges and corners, and are
therefore not Lipschitz surfaces. Moreover, surfaces which have cusps, points at which the
normal abruptly reverse (180 degrees) in direction, are also not Lipschitz surfaces.

The Clifford formulation and solution of Maxwell’s equations presented here is mathe-
matically proven as valid for Lipschitz surface. The same cannot be said for fractal surfaces,
or surfaces with cusps. It is not clear in those case how to formulate a solution.

For many physical problems it is possible to approximate a curved smooth surface suf-
ficiently well by a surface constructed from polygonal element (facets). However, that is
not possible for problems involving electromagnetic phenomena. Electromagnetic radiation
likes nothing more than colliding with edges and corners, breaking up, and scattering all
directions. If smooth curved surfaces are required they must be constructed as such, from
smooth elements meet without a discontinuity in the normal. This avoids art-factual scatter-
ing from edges in those places where none should exist.

4.1.1 Boundary

Boundary is defined by Cartesian system, because it is the original system which the
mathematicians are use to prove the kernel of reproducing formula. Moreover, it is to help
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Figure 4.1 The six surfaces consist of the cube as boundary Σ.

more confident for investigating the formulation of the integral equation on previous section.
The most appropriated boundary on Cartesian system is surface of a cube, as is indicated
in Fig. 4.1. They consist of six planes. Therefore, this shape of the boundary is the best
boundary for checking the reproducing formula and the geometric operator.

4.1.2 Discretisation of Boundary

The boundary is represented by a certain number of elements as Fig. 4.2. In here, all
segments which are divided from the boundary Σ are the rectangular elements. Since they
are perfectly matching with boundary Σ, the errors of the integral equations do not cause by
the discretisation of the geometric boundary.

The position of points on the boundary can be encoded as vectors into SΛ1 of a Clifford
number x. Individual elements (pieces) of the boundary are in general free to assume any
arbitrary orientation with respect to whatever directions are used for reference. This case is
shown in Fig. 4.3(a) where the reference directions are depicted by the coordinates x, y, z
(common to all elements), and the orientation of a single rectangular boundary element is
depicted by the local coordinates xl, yl, zl fixed in one of its corners.

In a numerical implementation it is often convenient to initially treat all elements
(pieces) of the boundary in terms of their own local coordinates, and to later convert any

x
y

z

∆x

∆y

∆z

Σj

Figure 4.2 Discretisation of boundary Σj .
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Figure 4.3 Rotations to bring local coordinates into alignment with common coordinates.

results from these coordinate systems to common set of coordinates. The conversation of
results operators which have the effect of rotating each element until its local coordinates
move into alignment with the common coordinates.

Fig. 4.3(b) shows the same element as in Fig. 4.3(a), after applying a rotation operator
Θ1 chosen to transport the local x-axis xl onto a new vector x′

l lying along the common
x-axis. At the same time, the local y and z axes are transported onto vectors y′

l and z′l, both
lying in the common yz-plane x = 0:⎧⎨

⎩
xl → x

′

l = Θ1xl on the x-axis
yl → y

′

l = Θ1yl on the y-axis
zl → z

′

l = Θ1zl on the z-axis
. (4.1)

Fig. 4.3(c) shows the element after applying a further rotation operator Θ2 chosen to
transport the local y-axis y′

l onto a new vector y′′ lying along the common y-axis. At the
same time, the local x and z axes are transported onto x′′

l and z′′l lying respectively along the
common x and z axes: ⎧⎨

⎩
x

′

l → x
′′

l = Θ1x
′

l on the x-axis
y

′

l → y
′′

l = Θ1y
′

l on the y-axis
z
′

l → z
′′

l = Θ1z
′

l on the z-axis
. (4.2)

The rotation operators Θ1 and Θ2 can each be constructed from any pair of unit vector n1, n2

lying separated in the plane of rotation by half the angle of rotation. For Θ1 an appropriate
choice is: {

n1 = U(xl)
n2 = U(U(xl) + U(x)) = U(U(xl) + e1

, (4.3)

where U(r) is a unit vector r/|r| and the Clifford unit e1 has been taken to represent the
x-axis. For Θ2 an appropriate choice is:{

n1 = U(y′
l) = Θ1U(yl)

n2 = U(U(y′
l) + U(y)) = U(Θ1U(yl) + e2

, (4.4)
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where the Clifford unit e2 has been taken to represent the y-axis.

4.2 Boundary Element Method

There are three integral operators such as Cauchy extension operator (2.42), Cauchy
integral operator (2.43) and Hardy projection operators (2.51) that can be discretized to sys-
tem of equations from which the boundary fields can be found. The cube that is discretized
boundary in three dimensions, and its surface is divided into N = 6 × M2 segments or
elements as shown Fig. 4.2.

z

y

x

n(q)
qp

q − p

Σj

Figure 4.4 Element of boundary Σj with local coordinates on face.

4.2.1 Discretization of Cauchy extension operator

Cauchy extension operator (2.42) that is used to determine the fields inside and outside
boundary can be constructed from the fields on the N-element of the boundary.

Cu(p ∈ Ω+ ∪ Ω−) =

∫
Σ

Ek (q − p)n (q)u (q) dσ(q)

=
N∑

j=1

∫
Σj

Ek (q − p)n (q)u (q) dσ(q)

=
N∑

j=1

Fj(p), (4.5)

where Σj is the boundary of the ’j’ element. The field Fj generated at any point p by the
field at the point q inside the element of the boundary Σj shown in Fig. 4.4:

Fj(p) =

∫
Σj

Ek (q − p)n (q)u (q) dσ(q). (4.6)

The fields on its surface generate a different value for the field at the point p after translating
and rotating that surface.
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• Consider first a translation:

q′ = q − p, (4.7)

which brings the point p to origin and transports the element of the boundary Σj along with
the fields on its surface in the same direction by the same distance. After translation the field
F′

j generated at any point p′ can be calculated by applying (4.6):

F′
j(p

′) =

∫
Σ′

j

E′
k (q′ − p′)n′ (q′)u′ (q′) dσ′(q′). (4.8)

The values of all the primed variables can be obtained directly from the corresponding un-
primed variables; i.e. those employed prior to translation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Σ′
q′ = Σq = Σq′+p

E′
k(q

′
1 − q′

2) = Ek(q1 − q2) = Ek(q
′
1 − q′

2)
n′(q′) = n(q) = n(q′ + p)
u′(q′) = u(q) = u(q′ + p)
dσ′(q′) = dσ(q) = dσ(q′ + p).

(4.9)

Note that the value of the original field can be obtained after translation by choosing p′ = 0:

Fj(p) = F′
j(0) =

∫
Σ′

j

E′
k (q′)n′ (q′)u′ (q′) dσ′(q′). (4.10)

• Consider second a rotation

which brings the local axes xl, yl, zl into a chosen orientation and transports the element of
the boundary Σ′

j along with the fields on its surface in the same direction by the same angle.
After rotation the field F′′

j generated at any point p′′ can be calculated by applying (4.6):

F′′
j (p

′′) =

∫
Σ′′

j

E′′
k (q′′ − p′′)n′′ (q′′)u′′ (q′′) dσ′′(q′′). (4.11)

The values of all of doublely primed variables can be obtained directly from the correspond-
ing singly primed variables, i.e. those employed immediately prior to rotation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Σ′′
q′′ = ΘΣ′

q′ = ΘΣ′
Θ−1q′′

E′′
k(q

′′) = ΘE′
k(q

′) = E′
k(q

′′)
n′′(q′′) = Θn′(q′) = Θn′(Θ−1q′′)
u′′(q′′) = Θu′(q′) = Θu′(Θ−1q′′)
dσ′′(q′′) = dσ′(q′) = dσ′(Θ−1q′′).

(4.12)

Note that a rotated version of the original field can be obtained after rotation by choosing
p′′ = 0:

ΘFj(p) = ΘF′
j(0) = F′′

j (0) =

∫
Σ′′

j

E′′
k (q′′)n′′ (q′′)u′′ (q′′) dσ′′(q′′). (4.13)
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The rotation Θ can be chosen separately to bring the local coordinates for each element
of boundary Σj into alignment with the common coordinates. Adopting this choice for the
front face of Σj gives dσ′′(q′′) = dxdy, n′′(q′′) = e3 and:

Fj(p) = Θ−1

∫
Σ′′

j

E′′
k (q′′) e3u

′′ (q′′) dxdy

= Θ−1

∫
Σ′′

j

E′
k (q′′) e3Θu′

(
Θ−1q′′

)
dxdy

= Θ−1

∫
Σ′′

j

Ek (q′′) e3Θu
(
p + Θ−1q′′

)
dxdy

=

∫
Σ′′

j

Θ−1 {Ek (q′′) e3}u
(
p + Θ−1q′′

)
dxdy

=

∫
Σ′′

j

Θ−1 {Ek (q′′) e3}u (q) dxdy, (4.14)

where the Clifford unit e3 has been taken to represent the z-axis.
Equation (4.14) can be used to calculate the field generated by all Σj , simply by choos-

ing different values for the rotation Θ-each to bring the local coordinates into alignment with
the common coordinates.

The field u(q) on each element is approximated by a bilinear function:

u(q) = u(q(x, y)) =
4∑

i=1

Aijfi(x, y), (4.15)

in a local coordinates system x, y. The coefficients Aij are the values of the field at the four
corners, and the function fi which interpolate the field elsewhere are:

fi(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − x/�)(1 − y/�) ; i = 1
(x/�)(1 − y/�) ; i = 2
(x/�)(y/�) ; i = 3

(1 − x/�)(y/�) ; i = 4

, (4.16)

for an element with edges of the length l.
It is always difficult when choosing a basis to know whether it is a good one for any

particular problem. The judgement of what is good and what is not good lies in part in
mathematical rigour and in part in the accuracy required in any particular application. The
mathematical rigour tells us that by choosing for the functions on the boundary a basis which
spans either the L2 functional space [62] or the X 2 functional space [58] leads to results with
a predictable behavior. In the first case the solutions for the functions on the boundary are
guaranteed to be square integrable, i.e. finite energy but accommodating isolated integrable
singularities. In the second case the same condition applies for the fields off the boundaries.

Here, the particular application needs only to meet the accuracy of other published
numerical solutions in order to verify, to that accuracy, that the technique described here is
at least as viable as any other. In this situation it is a expedient to choose the simplest basis
which allows us to meet that stated objective. The choice here, then, is to adopt a bilinear
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basis. This basis is a subset of the L2 functional space. It resides fully inside but does not
span all of it. In particular, the bilinear basis does not accommodate singularities of any kind.
From a practical viewpoint that means the field at certain points is likely to be more smooth
that if an L2 basis were chosen.

For the case of perfectly transmissive objects this makes no difference, since the field
is everywhere smooth; there are no singularities. That is the reason the tests in Section 3.1 on
perfectly transmissive objects are important. For the case of perfectly reflective objects it is
likely that the fields at the corners and edges, if closely examined, have a lower accuracy than
at other points. It is for that reason the comparative tests in Sections 3.2 to other published
results are so important.

The integrals Fj(p) in (4.14) over each element are carried in the local coordinate
system.

Fj(p) =
4∑

i=1

Gij(p)Aij, (4.17)

where

Gij(p) =

∫
Σ

′′

j

Θ−1 {Ek(q
′′(x, y))e3} fi(x, y)dxdy. (4.18)

Two-dimensional Gauss quadrature integration for rectangular region [64] is used to
here to evaluate these value numerically,⎧⎨

⎩ Gij(p) =
ng∑

α=1

ng∑
β=1

Θ−1 {Ek (q′′ (x (ζα, ηβ) , y (ζα, ηβ))) e3}
fi (x (ζα, ηβ) , y (ζα, ηβ)) Jwαwβ

, (4.19)

where ζα,ηβ are integration point coordinates, and wα,wβ are the weight factors, and J is the
Jacobian of common and local coordinates.

4.2.2 Discretization of Cauchy integral operator

Cauchy integral operator (2.43) that is used to determine the field on boundary in order
to make the reflection operator for solving the boundary field problem. It can be constructed
from the field on the N-element of the boundary,

CΣu(p ∈ Σ) = 2 p.v.
∫
Σ

Ek (q − p)n (q)u (q) dσ(q)

=
N∑

j=1

2 p.v.
∫
Σj

Ek (q − p)n (q)u (q) dσ(q)

=
N∑

j=1

FΣ,j(p), (4.20)

where Σj is the boundary of the ’j’ element. The field FΣ,j generated at any point p by the
field at the point q inside the element of the boundary Σj shown in Fig. 4.4

FΣ,j(p) = 2 p.v.
∫
Σj

Ek (q − p)n (q)u (q) dσ(q). (4.21)
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The fields on its surface generate a different value for the field at the point p after translating
and rotating that surface. Therefore, the transformation of FΣ,j from the local coordinates to
the common coordinate is similar to FΣ,j in (4.14) by using the translation and rotation,

FΣ,j(p) = 2 p.v.
∫
Σ′′

j

Θ−1 {Ek (q′′) e3}u (q) dxdy, (4.22)

where the Clifford unit e3 has been taken to represent the z-axis. Moreover, the field u(q)
on each element is approximated by a bilinear that is same as (4.15). Therefore, the integral
FΣ,j in (4.22) over each element are carried in the local coordinate system,

FΣ,j(p) =
4∑

i=1

GΣ,ij(p)Aij, (4.23)

where,

GΣ,ij(p) = 2 p.v.
∫
Σ

′′

j

Θ−1 {Ek(q
′′(x, y))e3} fi(x, y)dxdy. (4.24)

Two-dimensional Gauss quadrature integration for rectangular region [64] is used to here to
evaluate these value numerically.⎧⎨

⎩ GΣ,ij(p) = 2
ng∑

α=1

ng∑
β=1

Θ−1 {Ek (q′′ (x (ζα, ηβ) , y (ζα, ηβ))) e3}
fi (x (ζα, ηβ) , y (ζα, ηβ)) Jwαwβ

, (4.25)

where ζα,ηβ are integration point coordinates, and wα,wβ are the weight factors, and J is the
Jacobian of common and local coordinates.

For a single step in the iteration the Cauchy integral is calculated at every point pm

at the corners of every element. However, it is only necessary to evaluate the geometric
components GΣ,ij(pm) once, since the entire set of values does not change as the iteration
proceeds. Gauss-Legendre integration [64] is used here to evaluate these values numerically.
The calculations required for each iteration then amount to the product of a matrix G′

j(pm)
and a vector A′

j:

CΣu(pm) =
N∑

j=1

4∑
i=1

GΣ,ij(pm)Aij =
N+2∑
j=1

G′
Σ,j(pm)A′

j, (4.26)

both of which contain Clifford-valued quantities. The vector Aij contains multiple copies of
the points at the corners of the elements. The values in the matrix G′

jpm) are obtained from
the matrix Gij(pm) by adding together columns which operate on common points. For any
particular problem the matrix is fixed, and the vector A′

j represents the most recent estimate
of the field at all N +2 points on the boundary. For example of the single step in iteration,
the Cauchy integral operator at every point on the boundary can be described into the matrix
form:

B = G ′A, (4.27)
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where

G ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

G′
Σ,1(p1) G′

Σ,2(p1) · · · G′
Σ,j(p1) · · · G′

Σ,N+2(p1)
G′

Σ,1(p2) G′
Σ,2(p2) · · · G′

Σ,j(p2) · · · G′
Σ,N+2(p2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G′

Σ,1(pm) G′
Σ,2(pm) · · · G′

Σ,j(pm) · · · G′
Σ,N+2(pm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G′

Σ,1(pN+2) G′
Σ,2(pN+2) · · · G′

Σ,j(p(N+2)) · · · G′
Σ,N+2(pN+2)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4.28)

AT =
[
A′

1 A′
2 · · ·A′

m · · ·A′
N+2

]
, (4.29)

BT =
[
CΣu(p1) CΣu(p2) · · ·CΣu(pm) · · ·CΣu(p(N+2))

]
. (4.30)

Table 4.1 Angular ratios on cube.

ratio τ±

position interior field exterior field

corner 1/4 7/4

edge 1/2 3/2

smooth 1 1

4.2.3 Discretization of Hardy projection operators

A cubic boundary Σ in Fig. 4.1 is used to verify the iterative solutions of the inward
field in Fig. 3.7, the outward field in Fig. 3.10 and the reflected field in Fig. 3.15. For
this boundary minor modifications in Cauchy integral and Hardy projections are required at
the corners and edges. Equations (2.43) and (2.51) strictly apply only to points on smooth
surfaces. In the case of the points on edges and corners for boundary field problems, the
equations should be written more generally as:

CΣu(p) = 2p.v.

∫
Σ

Ek(q − p)n(q)u(q)dσ(q)

= τ+u+(p) − τ−u−(p), (4.31)

and {
u+ = 1

2
(τ−I + CΣ)u = P+u

u− = 1
2
(τ+I − CΣ)u = P−u

. (4.32)

Here the parameter τ± = θi/θii is the ratio of two angles: (i) the angle on the side of the
boundary indicated by the superscript x ∈ {+,−} subtended to a point on an edge or a
corner, and (ii) the angle subtended to a point not on an edge or corner. The ratios at edges
and corners, when calculating the Hardy projections for the interior and exterior fields, are
as listed in Table 4.1.
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Start

Setting Σ-coordinates
and parameter λ and N

Getting boundary fields:
input function [g(pm)]

Calculating matrix G ′(pm)

k ≥ 0
yes

no

A−1 = [gm]

Cauchy integral: CΣ

B−1 = G ′A−1

⊗
Hardy projection: P±

[u0,m] = 1
2
(A−1 ± B−1)

Initial estimate: [u0,m]

Plus reflection: Q+

Q+ [uk,m]

Ak = Q+ [uk,m]

Cauchy integral: CΣ

Bk = G ′Ak

⊗
Hardy projection: P±

[∆uk,m] = 1
2
(Ak ± Bk)

kth-correction: [∆uk,m]

⊗

kth-estimate
[uk+1,m] = [u0,m] + [∆uk,m]

k ≤ Nmax
yes

no

Stop

Figure 4.5 Procedure for calculating the iterative solutions of boundary field problems.
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4.2.4 Procedure of Calculation

This section describes a procedure for calculating the iterative solution of the boundary
field. The main step is the discretisation of both Cauchy integral and Hardy projection as de-
scribed in the previous sections. Although the iterative solutions of three cases are different,
the Cauchy integral and Hardy projection operator is operated into the process at Fig. 4.5 can
be covered them. Then each steps are explained by following:

1. The first step is to prepare the important parameters; for examples, the boundary Σ
considered is described in the Cartesian system and divided into N rectangular ele-
ments Σj . And the frequency of the field is defined through the wavelength λ.

2. After the coordinates of the discretized boundary Σj are generated, they are used to
evaluate the field function g at any point pm. All (N + 2)-function g are arranged into
the matrix [gm].

3. In this step, the geometric function G′
Σ,j of any point pm are prepared for calculating

Cauchy integral by (4.26), and they are collected into matrix G ′ as (4.28).

4. In order to calculate the initial estimate of iterative solution, the value of k is fixed as
-1. Then matrix A−1 in (4.29) is used to contain every input function g at any point
pm.

5. In matrix B−1 in (4.30) contains the (N + 2) Clifford functions that each of them
CΣu(pm) are constructed from the geometric function G′

Σ,j inside matrix G ′ and the
field function A′

j inside matrix A−1 by using the multiplication of two Clifford num-
bers. Therefore, the multiplication of them are employed (N + 2) times for (N + 2)
Clifford functions CΣu(pm).

6. Hardy projection of the Clifford field at any point pm can construct from the field
function g in matrix A−1 and the field function CΣg(pm) in matrix B−1 by using the
addition of two Clifford numbers. Then, the results of Hardy projection that consist of
(N + 2) functions are collected into matrix [u0,m] for being the initial estimate.

7. Next iteration the value of k is increased as 0, then the field functions in matrix [u0,m]
are operated with plus reflection operator. The results of the plus reflection operator,
Q+[uk,m], is collected into matrix A0.

8. In matrix B0 the field function CΣu(pm) are constructed from the same geometric
function G′

Σ,j inside G ′ and the field function A′
m inside matrix A0 by using the mul-

tiplication of two Clifford numbers.

9. Hardy projection of the Clifford field at pm can be constructed from the plus reflection
of the field function, Q+[u0,m] in matrix A0, and the field function CΣu(pm) in matrix
B0 by using the addition of two Clifford numbers. Then the results are the corrections
of the initial estimate, [∆u0,j].

10. All the new estimate of Clifford field in matrix [u1,j] can calculate by addition of the
initial estimate in matrix [u0,m] and [∆u0,j].

11. The step (7) to (10) have been reconsidered for improving the, estimate, [uk,m], until
the iterative solutions converge.



CHAPTER V

NUMERICAL RESULTS

This chapter is to show numerical results used for verifying the theoretical geometric
and iterative solutions. These solutions of boundary field problems are offered by boundary
element method (BEM). The solutions of both perfect transmission and perfect reflection are
described as Chapter III. The normal and iterative solutions of inward field in Section 3.1.2.1
and Section 3.1.3.1, respectively, are demonstrated into test cases as Section 5.1. And then,
both solutions of outward field in section 3.1.2.2 and section 3.1.3.2, respectively, are con-
firmed into far-field cases as Section 5.2. In the perfect reflection, the normal and iterative
solutions of reflected field in Section 3.2.2 and Section 3.2.3 respectively are verified into
scattering cases as Section 5.3. The convergence of all iterative solution can examine the
trends of the error in the full field toward the normal solution. The definition of error are
described in the next section.

5.1 Test Cases

Cauchy integral equations that are established on Clifford algebra by mathematicians
can be employed to illustrate theoretically some behaviors of the fields according with Maxwell’s
equations. However, they are never applied for solving practically the boundary field prob-
lem in electrical engineering. It is difficult to study and to modify Cauchy integral equations
in the impenetrable problem directly. Therefore, the suitable situations that are used to prove
Cauchy integral equations by mathematicians have still been used to verify their results by
using computational techniques.

The test case focuses initially in simple case of perfect transmission problem in order to
achieve various central benefits. The first aim is to prove that Cauchy extension and Cauchy
integral operators can be used to construct properly the solution of Maxwell’s equations. The
second aim is to evaluate efficiency of the integral operators when be relevant with boundary
element method, before these operators are used as tool in the iterative solution. The third
aim is to prove that the geometric solution gives unique answer certainly and to demonstrate
the development of the iterative solution. Otherwise, the capability of both these integral
operators and the iterative solutions can be analyzed in this case easier, since it is without the
complicated phenomena of the fields.

5.1.1 Boundary condition of transparent boundary

Six surfaces of a cube that is described as Section 4.1 is the considered boundary. The
centre of a cube is the origin. A cube of 1 m3 with edges aligns to the axes of Cartesian
system. In this case, the boundary is transparent surface that is used to analyze the surface
field in free space (ε0,µ0) according with the boundary condition of perfect transmission
as Section 3.1. In Fig. 5.1 the incident field from outside boundary. The incident field is
a uniform plane wave traveling in the positive z direction, written in terms of electric and
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Figure 5.1 Propagation of the incident and transmitted fields in test cases.

magnetic fields as [1]: {
�Ein(x, y, z) = Ex�ax = E0e

jβz�ax

�H in(x, y, z) = Hy�ay = H0e
jβz�ay

. (5.1)

Numerical values of E0 = 120πV/m and H0 = 1A/m were taken for the magnitude of
electric and magnetic fields, respectively, and β is the wavenumber. Both vector fields are
encoded into Clifford form by following (2.6):{

Ein(x, y, z) = E0e
jβze1

Hin(x, y, z) = H0e
jβze2

. (5.2)

Both Clifford field are described into the full components of the incident field in free space
by (3.2): {

uin = µ
1

2

0 Hinσ + jε
1

2

0 Eine0

= µ
1

2

0 H0e
jβz (−e1e3) + jε

1

2

0 E0e
jβze1e0

. (5.3)

Therefore, the inward field can be evaluated by incident field with boundary condition as
(3.3): {

Q+utr = µ
1

2

0 Htr
t + jε

1

2

0 Etr
n e0 = µ

1

2

0 Hin
t + jε

1

2

0 Ein
n e0 = Q+uin

Q−utr = µ
1

2

0 Htr
n + jε

1

2

0 Etr
t e0 = µ

1

2

0 Hin
n + jε

1

2

0 Ein
t e0 = Q−uin

. (5.4)

The medium inside boundary is same as outside, so that on the interface the inward field is
the incident field

utr = uin. (5.5)

Then utr represents all components of the inward field on the boundary, and it can rewritten
as:

utr = f + g, (5.6)

where f = Q+utr and g = Q−utr are Clifford function that stand for some components of
the inward field on boundary.

5.1.2 Definition of errors in test cases

Errors are classified into two groups. The first group of errors involves with the full
field at any point that is reproduced by the integral operators. Another group involves with
the iterative solution of the full field that are presented on Banach space.
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In the first group there are two types of the errors. They are the error of the full field
at any point that is used to evaluate the accuracy of the integral operators such as Cauchy
extension, Cauchy integral and Hardy projections. The definition of the first type of error is:

%ξ(p) =
|u(p) − ũ(p)|

|u(p)| × 100, (5.7)

which u(p) and ũ(p) is the analytical solution (or exact solution) and the numerical result
of the full field at any point p, respectively. And another type of error is:

%av. error =

N+2∑
i=1

ξ(pi)

N + 2
, (5.8)

where N is the number of elements. It is the average of the ξ at any point p, when Hardy
projections are considered at all points on boundary.
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Figure 5.2 Error of inward field in iterative solution.

In the second group there are four types of the errors. They are used to check error in
iterative solution. Fig. 5.2 shows for the case of inward field the solution utr of Maxwell’s
equations as intersection between the dotted line through the data g = Q−utr and the OP-
axis.

Also shown is an estimate of the solution utr
k . Note that the error utr − utr

k can be
measured in terms of its projections:⎧⎪⎪⎨

⎪⎪⎩
ε1 = Q+utr

k − Q+utr

ε2 = Q−utr
k − g

ε3 = P−utr
k

ε4 = P+utr
k − utr

. (5.9)

The value of the solution utr is known, so all errors can be calculated. However, they can be
normalized as a percentage: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

%ε1 = |ε1|
|Q+utr|

× 100

%ε2 = |ε2|
|g|

× 100

%ε3 = |ε3|
|P−g|

× 100

%ε4 = |ε4|
|utr|

× 100

. (5.10)
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5.1.3 Verification of Cauchy extension operator

In this calculation, the numerical results are used to verify both theory and application
of Cauchy extension in sections 2.5 and 4.2.1, respectively. The Cauchy extension operator
reproduces the full field at any points inside the considered region, after all components of
the field are forced on the surfaces of a cube by according with (5.5). The six surfaces of a
cube are divided into the definite number of elements such as 150, 384 and 600. The inward
field at any points inside a cube are compared with the solution of uniform plane wave in
order to make the error of the full field by following as (5.7).

Fig. 5.3 illustrates some errors in the full fields at a point in the centre of the cube
(x = y = z = 0), and Fig. 5.4 illustrates some errors in the full field at a point close to one
surface of the cube (x = y = 0, z = 0.45). The error between the value delivered by Cauchy
extension and known solution of uniform plane wave depends on both the wavelength of the
surface fields and the number of points q used as samples to represent the field on boundary.
The errors can be reduced if the number of elements is increased as Figs. 5.3 and 5.4. These
figures show the percentage error at the points inside a cube for the full fields as the number
of boundary elements is increased from 150, 384 and 600.



56

 0.01

 0.1

 1

 10

 100

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

4s/λ

Error in full field (%)

150-element
384-element
600-element

Figure 5.3: Error (%) of Cauchy extension operator in full field at a centre of a cube

p(0.0,0.0,0.0) when varying boundary elements: 150, 384, 600 and 4s
λ
∈ (0.6,2.6).

 0.01

 0.1

 1

 10

 100

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

4s/λ

Error in full field (%)

150-element
384-element
600-element

Figure 5.4: Error (%) of Cauchy extension operator in full field near a surface of a cube

p(0.0,0.0,0.45) when varying boundary elements: 150, 384, 600 and 4s
λ
∈ (0.6,2.6).
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5.1.4 Verification of Hardy Projection Operator

In this calculation, the numerical results are used to verify both theory and application
of Hardy projections in Sections 2.7 and 4.2.3, respectively. The Hardy projections operates
with the trace of the inward or outward fields that are collected on the surfaces of a cube
by according with (5.5). The six surfaces of a cube are divided into the definite number
of elements such as 150, 384 and 600. The trace of the inward fields at any points on the
boundary are compared with known solution of uniform plane wave in order to make the
error of the full field by following as (5.7) and (5.8).

Table 5.1 Errors of Hardy projection in full field when at 4s
λ

=0.6366.

Positions
Averaged error (%)

150-element 384-element 600-element

corner 0.12392 0.05507 0.03855

edge 0.17626 0.08343 0.06089

middle 0.17419 0.09132 0.07800

Table 5.1 shows the error in the full field at three different positions such as the points
at corner, edge and middle of the surface of a cube. The error between the value delivered
by Hardy projections and known solution depends on both the particular positions and the
number of points q used as samples to represent the field on boundary.

Fig. 5.5 illustrates some averages of errors in the full fields at all points q placed on
rectangular boundary elements of a cube, when the number of elements are 150. And then,
these errors as the numbers of elements are 384 and 600 are shown in Figs. 5.6 and 5.7,
respectively. When Figs. 5.5 to 5.7 are considered, the error can be reduced if the number of
elements is increased. These figures show the percentage error at all points on the cube as the
number of the elements is increased from 150, 384 and 600. Otherwise, these errors depend
on the wavelength of the surface fields as shown in Fig. 5.8. The averaged error decreases,
when the wavelength of the field is increasing as constant boundary elements.
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Figure 5.5: Error (%) of Hardy projection operator in full field of all corner points on 150

rectangular boundary elements and 4s
λ

=0.6366.
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Figure 5.6: Error (%) of Hardy projection operator in full field of all corner points on 384

rectangular boundary elements and 4s
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=0.6366.
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Figure 5.7: Error (%) of Hardy projection operator in full field of all corner points on 600

rectangular boundary elements and 4s
λ

=0.6366.
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Figure 5.8: Averaged error (%) of Hardy projection operator in full field calculated from all
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5.1.5 Verification of Geometric solution

In this calculation, the numerical results are used to verify both normal and iterative
solutions of inward field in sections 3.1.2.1 and section 3.1.3.1, respectively. All components
of the inward field on the boundary are constructed from the function f and g as (5.6). This
boundary condition is considered to test the iterative algorithm in (3.21), and the function g

is chosen for making the initial term of iterative solution.
There are sixteen different wavelengths of the incident field , 4s

λ
∈ (0.6,2.6), focused

in here. Figs. 5.9 to 5.24 show the averaged error in full field, that is evaluated by (5.8),
decreasing as the iterative algorithm processes towards known solution of uniform plane
wave. In each figure, the three curves are for different conditions, with the cubic boundary
divided into either N = 150, 384 or 600 elements. With each condition the solution obtained
has a finite error. The error decreases as the number of boundary elements is increased.

Fig. 5.25 shows at the last iteration of all cases the averaged error in the full field.
Figs. 5.26 to 5.29 show at the last iteration of all cases the error-ε1 to error-ε4 in Banach space,
respectively. The averaged error and four error-εi have the behaviors similarly. Their value
decreases when the wavelength of the field is increasing as constant boundary elements, and
it decreases when the number of boundary elements increases.
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Figure 5.9: Percentage averaged error in full field during iteration towards plane wave solu-

tion. Boundary elements N: 150, 384, 600 and 4s
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=0.6366.
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Figure 5.10: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=0.7640.
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Figure 5.11: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=0.8913.
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Figure 5.12: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.0185.
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Figure 5.13: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.1460.
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Figure 5.14: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.2732.
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Figure 5.15: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.4005.
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Figure 5.16: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.5278.
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Figure 5.17: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.6552.
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Figure 5.18: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.7825.
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Figure 5.19: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=1.9098.
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Figure 5.20: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=2.0371.
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Figure 5.21: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=2.1645.
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Figure 5.22: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=2.2918.
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Figure 5.23: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=2.4192.
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Figure 5.24: Percentage averaged error in full field during iteration towards plane wave

solution. Boundary elements N: 150, 384, 600 and 4s
λ

=2.5465.

 0.1

 1

 10

 100

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

4s/λ

Averaged error in full field (%)

150-element
384-element
600-element

Figure 5.25: The last averaged error (%) of iterative solution towards plane wave solution in

full field at corner point on boundary elements 150, 384, 600 and 4s
λ
∈ (0.6,2.6).
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Figure 5.26: The last averaged error-ε1 (%) of iterative solution towards plane wave solution

in full field at corner point on boundary elements 150, 384, 600 and 4s
λ
∈ (0.6,2.6).
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Figure 5.27: The last averaged error-ε2 (%) of iterative solution towards plane wave solution

in full field at corner point on boundary elements 150, 384, 600 and 4s
λ
∈ (0.6,2.6).
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Figure 5.28: The last averaged error-ε3 (%) of iterative solution towards plane wave solution

in full field at corner point on boundary elements 150, 384, 600 and 4s
λ
∈ (0.6,2.6).
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Figure 5.29: The last averaged error-ε4 (%) of iterative solution towards plane wave solution

in full field at corner point on boundary elements 150, 384, 600 and 4s
λ
∈ (0.6,2.6).
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5.2 Far-Field Cases

Typically, it is difficult to determine directly the far-field pattern of antenna; therefore,
the far-field is simulated for predicting and understanding its characteristic. Ordinarily, it is
the radiated power that is of interest (not the far-field pattern), and then antenna patterns are
usually measured in the far-field region. The accepted formula [1] for the distances in the
far-field region is

r ≥ 2D2

λ
, (5.11)

where D is the largest dimension of the radiator or scatterer. In here, the integral equation on
Clifford algebra is used for constructing the powerful techniques of the transformation from
the near-field to the far-field. Cauchy extension operator that is one part of powerful tools
can reproduce the full field at any points inside the considered region, when all components
of the near-field on the boundary are recognized completely. Although some components
of the near-field are available in the practice, they cannot be used to analyze the far field
instantly. The proposed technique that is constructed with Hardy projection operators can
solve all components of the near-field on the boundary.

The far-field cases point out the radiated fields in the exterior region that are generated
by any sources in the interior region. The first aim is to prove the normal and iterative
solutions of outward field in boundary field problem involving with the calculation of all
components of the near-field. Hardy projection operators that are verified in the test cases are
used to be the important tools of this application. The second aim is to show the efficiency
of Cauchy extension operator when its results is reproduced by analytical and calculated
solutions of the near-field.

l
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Figure 5.30 Radiated fields by Hertzian dipole source at near-field and far-field.

5.2.1 Boundary Condition of Near-Fields on Boundary

In Fig.5.30, six surfaces of a cube that is described as section 4.1 is the considered
boundary. The centre of a cube is the origin. A cube of 1 m3 with edges aligned to the axes
of Cartesian system. In this case, the boundary is transparent surface that is used to analyze
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the surface field in free space (ε0,µ0) according with the boundary condition of perfect trans-
mission as section 3.1. The surface field is created by the incident field from inside boundary.
The incident field emanates from a Hertzian dipole source oriented in the positive z direc-
tion at the centre of the cube, written in terms of electric and magnetic fields in spherical
coordinates as [1]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�E(x, y, z) = Er�ar + Eθ�aθ

= I0�
4π

e−jβr
[(

2η

r2 + 2
jωεr3

)
cos θ�ar +

(
jωµ

r
+ 1

jωεr3 + η

r2

)
sin θ�aθ

]
�H(x, y, z) = Hφ�aφ

= I0�
4π

e−jβr
(

jβ

r
+ 1

r2

)
sin θ �φ

. (5.12)

Numerical values of I0l = 0.04Am was taken for the strength of the dipole, and β is the
wavenumber.

Both vector fields are used to describe all components of the incident field into Clifford
form similar to the incident field in the test cases as (5.3). Then, the outward field can be
evaluated by incident field with the boundary condition (3.3). The medium inside and outside
boundary are same, so that along the interface the outward field is the incident field. There are
two kinds of the near-field on the boundary. The first kind is the outward field that contains
all components of the near-field,

utr = µ
1

2

0 Htrσ + jε
1

2

0 Etre0. (5.13)

The second kind is the outward field that contains some normal components of the magnetic
field and some tangential components of the electric field,

g = Q−utr. (5.14)

5.2.2 Definition of errors in far-field cases

Equations (5.7) and (5.8) are referred to present the accuracy of the numerical solutions
in the far-field cases. Another group of the errors is used to check the error in iterative
solution on Banach space. The errors have the definitions similar to the error in test cases.
Fig. 5.31 shows for the case of outward field the solution utr of Maxwell’s equations as
intersection between the dotted line through the data g = Q−utr and the OP’-axis.

Also shown is an estimate of the solution utr
k . Note that the error utr − utr

k can be
measured in terms of its projections:⎧⎪⎪⎨

⎪⎪⎩
ε1 = Q+utr

k − Q+utr

ε2 = Q−utr
k − g

ε3 = P−utr
k − utr

ε4 = P+utr
k

. (5.15)

The value of the solution utr is known, so all errors can be calculated. However, they can be
normalized as a percentage: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

%ε1 = |ε1|
|Q+utr|

× 100

%ε2 = |ε2|
|g|

× 100

%ε3 = |ε3|
|P+g|

× 100

%ε4 = |ε4|
|utr|

× 100

. (5.16)
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Figure 5.31 Error of outward field in iterative solution.

5.2.3 Calculation of Far-Field from All Components E, H of Near-Field

After Cauchy extension operator is verified in test case, its primary application is pre-
sented in here. The Cauchy extension operator reproduces the full field at any points outside
the boundary, after all components of the near-field are forced on the surfaces of a cube
according with (5.13). The six surfaces of a cube are divided into the definite number of
elements such as 150, 384 and 600. The outward fields at any points outside the cube are
compared with the solution of the radiated field from the Hertzian dipole antenna in order to
make the error of the full field by following as (5.7).

Figs. 5.32, 5.33 and 5.34 illustrate some errors in the full fields at a point 0.6283, 62.83
and 628.3 m, respectively, from the centre of the cube when varying frequency from 40 MHz
to 170 MHz. The error between the value delivered by Cauchy extension and the radiated
field excited by the Hertzian dipole antenna depends on both frequency and the number of
the point q used as sample to represent the field on boundary. The errors can be reduced if the
number of the elements is increased as Figs. 5.32 to 5.34. These figures show the percentage
error of all components of the far-field outside a cube as the number of boundary elements is
increased from 150, 384 and 600.
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Figure 5.32: Error (%) in far field at r = 0.6283 m., θ=0◦ generated by all components E, H

of field when varying boundary elements: 150, 384, 600 and frequency ∈ (40,170) MHz.
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Figure 5.33: Error (%) in far field at r = 62.83 m., θ=0◦ generated by all components E, H

of field when varying boundary elements: 150, 384, 600 and frequency ∈ (40,170) MHz.
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Figure 5.34: Error (%) in far field at r = 628.3 m., θ=0◦ generated by all components E, H

of field when varying boundary elements: 150, 384, 600 and frequency ∈ (40,170) MHz.

5.2.4 Calculation of Near-Field from components Et, Hn of Near-Field

In this calculation, the numerical results are used to verify both normal and iterative
solutions of outward field in section 3.1.2.2 and sections 3.1.3.2, respectively. All compo-
nents of the outward field on the boundary are constructed from function g as (5.14). This
boundary condition is considered to show the iterative algorithm in (3.26), and the function
g is chosen for making the initial term of iterative solution.

There are thirteen different frequency of the incident field between 40MHz and 170MHz,
focused in here. Figs. 5.35 to 5.47 show the averaged error in full field, that is evaluated
by (5.8), decreasing as the iterative algorithm processes towards known solution of the ra-
diated field of Hertzian dipole antenna. In each figure, the three curves are for different
conditions, with the cubic boundary divided into either N = 150, 384 or 600 elements. With
each condition the solution obtained has a finite error. The error decreases as the number of
boundary elements is increased.

Fig. 5.48 shows at the last iteration of all cases the averaged error in the full field.
Figs. 5.49 to 5.52 show at the last iteration of all cases the error-ε1 to error-ε4 in Banach space,
respectively. The averaged error and four error-εi have the behaviors similarly. Their value
decreases when the wavelength of the field is increasing as constant boundary elements, and
it decreases when the number of boundary elements increases. However, at 150-160 MHz of
Figs. 5.50 to 5.52, the error of iterative solution by using 150 elements does not depend on the
frequency, because the efficiency of the integral operator is decreased at higher frequencies.
It is noticed on Figs. 5.32 to 5.34 that the integral operator by using 150 elements of the
boundary has large error when comparing with 384 and 600 elements.
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Figure 5.35: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=47.746MHz.
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Figure 5.36: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=57.295MHz.
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Figure 5.37: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=66.845MHz.
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Figure 5.38: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=76.394MHz.
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Figure 5.39: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=85.943MHz.
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Figure 5.40: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=95.492MHz.
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Figure 5.41: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=105.042MHz.
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Figure 5.42: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=114.592MHz.
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Figure 5.43: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=124.140MHz.
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Figure 5.44: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=133.690MHz.
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Figure 5.45: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=143.240MHz.
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Figure 5.46: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=152.789MHz.
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Figure 5.47: Percentage averaged error in full field during iteration towards the radiated

solution of Hertzian dipole antenna. Boundary elements N: 150, 384, 600 and frequency

f=162.338MHz.
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Figure 5.48: The last averaged error (%) of iterative solution towards the radiated solution

of Hertzian dipole antenna in full field at corner point on boundary elements 150, 384, 600

and frequency ∈ (40,170) MHz.
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Figure 5.49: The last averaged error-ε1 (%) of iterative solution towards the radiated solution

of Hertzian dipole antenna in full field at corner point on boundary elements 150, 384, 600

and frequency ∈ (40,170) MHz.
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Figure 5.50: The last averaged error-ε2 (%) of iterative solution towards the radiated solution

of Hertzian dipole antenna in full field at corner point on boundary elements 150, 384, 600

and frequency ∈ (40,170) MHz.
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Figure 5.51: The last averaged error-ε3 (%) of iterative solution towards the radiated solution

of Hertzian dipole antenna in full field at corner point on boundary elements 150, 384, 600

and frequency ∈ (40,170) MHz.
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Figure 5.52: The last averaged error-ε4 (%) of iterative solution towards the radiated solution

of Hertzian dipole antenna in full field at corner point on boundary elements 150, 384, 600

and frequency ∈ (40,170) MHz.
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5.2.5 Calculation of Far-Field from components Et, Hn of Near-Field

The Cauchy extension operator reproduces the full field at any points outside the
boundary, after all components of the near-field are the results of the previous section. The
six surfaces of a cube are divided into the definite number of elements such as 150, 384 and
600. The outward fields at any points outside the cube are compared with the solution of the
radiated field from the Hertzian dipole antenna in order to make the error of the full field by
following as (5.7).

Figs. 5.53, 5.54 and 5.55 illustrate some errors in the full fields at a point 0.6283, 62.83
and 628.3 m, respectively, from the centre of the cube when varying frequency from 40 MHz
to 170 MHz. The error between the value delivered by Cauchy extension and the radiated
field excited by the Hertzian dipole antenna depends on both frequency and the number of
the point q used as sample to represent the field on boundary. The errors can be reduced if the
number of the elements is increased as Figs. 5.53 to 5.55. These figures show the percentage
error of all components of the far-field outside a cube as the number of boundary elements is
increased from 150, 384 and 600.
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Figure 5.53: Error (%) in far field at r = 0.6283 m., θ=0◦ generated by components Et, Hn

of field when varying boundary elements: 150, 384, 600 and frequency ∈ (40,170) MHz.
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Figure 5.54: Error (%) in far field at r = 62.83 m., θ=0◦ generated by components Et, Hn of

field when varying boundary elements: 150, 384, 600 and frequency ∈ (40,170) MHz.
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Figure 5.55: Error (%) in far field at r = 628.3 m., θ=0◦ generated by components Et, Hn of

field when varying boundary elements: 150, 384, 600 and frequency ∈ (40,170) MHz.
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5.3 Scattering Cases

Currently, the scattering problems that involve the field reflected by perfect electric
conductor (PEC) have been attracted by many researchers [44]. In here the integral equation
on Clifford form is used to solve the scattering problems. Cauchy extension operator that
is one part of the proposed tools can evaluate the full field at any points around the PEC
cube, when all components of the field on the cube’s surface are known. Although some
components of the surface field are available in practice, they have not been used to analyze
the scattered field directly. The techniques proposed here, constructed with Hardy projection
operators, can solve all components of the surfaced field over the considered cube.

The scattering cases point out the reflected field in the exterior region that are generated
by any artificial source such as the surface field on the boundary. The first aim is to prove
the normal and iterative solutions of the reflected field in boundary field problem involving
with the calculation of all components of the surface field. The second aim is to show the
efficiency of Cauchy extension operator when its results are the scattered field around the
PEC cube written in term of radar cross section (RCS).

5.3.1 Boundary condition of Perfect Electric Conductor (PEC)

Six surfaces of a cube that is described as section 4.1 is the considered boundary of
perfect electric conductors. The cube has a volume 1 m3 with edges aligns to the axes of
Cartesian system. In this case, the boundary is PEC surface that is used to analyze the
reflected field according with the boundary condition of perfect reflection as section 3.2.
The surface field is dictated by the incident field from outside boundary. The incident field
is uniform plane wave traveling in the positive z direction, written in terms of electric and
magnetic fields as (5.1). The numerical values are copied from the section 5.1.1 in the test
cases. Moreover, the incident field in Clifford form is referred as (5.3). Therefore, some
components of the reflected field can be evaluated by some components of the incident field
directly with boundary condition as (3.33):

g = Q−usc = −Q−uin, (5.17)

where g is Clifford function that play some components of the reflected field on boundary.

5.3.2 Definition of errors in scattering cases

The group of the error is used to check the error in iterative solution on Banach space.
Fig. 5.56 shows for the case of the reflected field the solution usc of Maxwell’s equations as
intersection between the dotted line through the data g = Q−usc and OP’-axis.

Also shown is an estimate of the solution usc. Note that the error usc − usc
k can be

measured in terms of its projections:⎧⎪⎪⎨
⎪⎪⎩

ε1 = Q+usc
k − Q+usc

ε2 = Q−usc
k − g

ε3 = P+usc
k

ε4 = P−usc
k − usc

, (5.18)

The value of the solution usc is unknown, so it is not possible to calculate ε1 and ε4. However,
it is possible to calculate both ε2 and ε3. Note from Fig. 5.56 that if ε2 → 0 and ε3 → 0 then
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usc
k → usc. It we check only ε2 → 0 then usc

k can be anywhere on the dotted line through
g. It we check only ε3 → 0 then usc

k can be anywhere on the OP’-axis. We therefore need
to check both ε2 and ε3 and make sure that both of these approach zero. If we want to plot
the error as a percentage, we can divide ε2 by (the magnitude of) g, and divide ε3 by (the
magnitude of) P+g: {

%ε2 = |ε2|
|g|

× 100

%ε3 = |ε3|
|P+g|

× 100
. (5.19)
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Figure 5.56 Error of reflected field in iterative solution.

5.3.3 Calculation of surface field on PEC from components Et, Hn of incident field

In this calculation, the numerical results are used to verify both normal and iterative
solutions of reflected field in section 3.2.2 and section 3.2.3, respectively. All components
of the reflected field on PEC cube are constructed from function g as (5.17). This boundary
condition is constructed to show the iterative algorithm in (3.43), and the function g is chosen
for making the initial term of the iterative solution.

There are fourteen different ratio of the side of a cube and wavelength 4s
λ

between 0.6
and 2.3 focused in here. Figs. 5.57 to 5.70 show the error-ε2 in full field, that is evaluated
by (5.8), decreasing as the iterative algorithm progresses towards these components of the
reflected field which are know in advance from the data. In each figure, three curves are
for different conditions, with the cubic boundary divided into either N=150, 384 and 600
elements. With each condition the solution obtained has a finite error. The error decreases as
the number of boundary elements is increased.

Fig. 5.71 and Fig. 5.72 show at the last iteration of all cases the error-ε2 and the error-
ε3 in Banach space, respectively. For a given number of boundary elements the values of
the error-ε2 are more than the error-ε3 in all wavelengths. The error-ε2 is fluctuating slightly
when 4s

λ
between 0.6 and 2.4. The error-ε3 is going up when 4s

λ
is increasing. However, these

errors can be reduced when the boundary elements increase.
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Figure 5.57: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=0.6366.
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Figure 5.58: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=0.7640.
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Figure 5.59: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=0.8913.
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Figure 5.60: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.0185.
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Figure 5.61: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.1460.
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Figure 5.62: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.2732.
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Figure 5.63: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.4005.
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Figure 5.64: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.5278.
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Figure 5.65: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.6552.
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Figure 5.66: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.7825.



94

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50

nth-iteration

Averaged error in full field (%)

150-element
384-element
600-element

Figure 5.67: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=1.9098.
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Figure 5.68: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=2.0371.
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Figure 5.69: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=2.1645.
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Figure 5.70: Percentage averaged error-ε2 in full field during iteration towards solution of

reflected field on PEC. Boundary elements N: 150, 384, 600 and 4s
λ

=2.2918.
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Figure 5.71: The last averaged error-ε2 (%) of iterative solution of perfect reflection in full

field at corner point on boundary elements 150, 384, 600 and 4s
λ
∈ (0.6,2.3).
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Figure 5.72: The last averaged error-ε3 (%) of iterative solution of perfect reflection in full

field at corner point on boundary elements 150, 384, 600 and 4s
λ
∈ (0.6,2.3).
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5.3.4 Calculation of radar cross section at Far-Field

After the iterative solutions of the reflected field on PEC cube are provided evidence by
the errors on Banach space, they are double-checked in this section. These surface fields are
operator with Cauchy extension operator in order to evaluate all components of the scattered
field around the PEC cube. The six surfaces of a cube are divided into the definite number of
elements such as 150, 384 and 600. Normally, the scattered fields are examined in the form
of radar cross section:

σ = 4πr2 | �Hsc|2
|H0|

, (5.20)

where r is the distance from the scatterer. The |H0| and | �Hsc| are the magnitude of the
magnetic field that are decoded from the incident and scattered field, respectively.

In [65] the EHFD method produces the broadside curve of backscattering RCS com-
pared with the measured data. Then, these curves are used to examine the results of the
proposed method. Figs. 5.73 to 5.75 plot the RCS curves of the EHFD method and mea-
sured data in order to compare with the numerical results when using boundary elements as
150, 384 and 600, respectively. The RCS of the proposed method has higher accuracy than
the EHFD method when the wavelength of the incident field increases. The errors of RCS
by the proposed method can be reduced when the number of the elements is increased as
Figs. 5.73 to 5.75. Note that these errors are corresponding with the errors of the surface
fields as Figs. 5.71 and 5.72. Therefore, the proposed method can give better the RCS when
the number of boundary elements is increased from 150, 384 and 600.

Moreover, those surface fields on boundary that are calculated by the proposed method
can evaluate the scattered field any point around the PEC cube by operating with Cauchy
extension. The scattered fields are described in terms of both E-plane and H-plane Bi-static
RCS at r = 1 km as Figs. 5.76 to 5.89. In each figure, the three curves are for different
conditions, with the cubic boundary divided into either N = 150, 384 and 600 elements.
With each condition the RCS obtained has the corresponding characteristic. The RCS curve
between using 384 and 600 elements is less different than using 150 and 384 elements.

The experiment results of all cases are covered the calculation of the scattered field
over 4s/λ ∈ (0.6,2.3). Under this situation the iterative algorithm can reproduce the solution
of the scattered field converging strongly. However, the iterative algorithm has less efficient
when the value of 4s/λ is more than 2.3. For example of 4s/λ equals 3.0, the error-ε2 in full
field that has condition by using 600 elements is plotted for analyzing the convergence of
iterative solution as shown Fig. 5.90. Although, the solution fluctuates very greatly, it can
be captured to check the correction when the error-ε2 is minimize value. The results are
compared with the measured data [66] and they are plotted the E-plane and H-plane Bi-static
RCS at r = 1 km as shown Fig. 5.91. The case of scattered field when 4s/λ equals 3.0 is used
often to confirm the algorithm by many researchers, since the spurious solution in this case
occurs from the other integral equation method [67].
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Figure 5.73: Broadside of backscattering RCS at r=1km. computed using EHFD solution

and iterative method using 150-element compared with measured data.
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Figure 5.74: Broadside of backscattering RCS at r=1km. RCS computed using EHFD solu-

tion and iterative method using 384-element compared with measured data.
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Figure 5.75: Broadside of backscattering RCS at r=1km. RCS computed using EHFD solu-

tion and iterative method using 600-element compared with measured data.
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Figure 5.76: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=0.6366.
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Figure 5.77: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=0.7640.
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Figure 5.78: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=0.8913.
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Figure 5.79: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.0185.
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Figure 5.80: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.1460.
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Figure 5.81: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.2732.
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Figure 5.82: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.4005.
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Figure 5.83: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.5278.
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Figure 5.84: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.6552.
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Figure 5.85: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.7825.
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Figure 5.86: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=1.9098.
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Figure 5.87: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=2.0371.
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Figure 5.88: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=2.1645.
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Figure 5.89: E-plane and H-plane Bi-static RCS at r=1km. in (a) and (b), respectively.

RCS computed using iterative method when varying boundary elements: 150, 384, 600 and
4s
λ

=2.2918.
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Figure 5.90: Percentage averaged error-ε2 in full field during iteration towards solution of
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Figure 5.91: E-plane and H-plane Bi-static RCS at r=1Km. in (a) and (b), respectively. RCS

computed using iterative method when using boundary elements: 600 and 4s
λ

=3.0.

5.3.5 Calculation of reflection coefficient

On a planar interface the tangential components of electric and magnetic fields must
be continuous at the boundary between the incident and transmitting media. The reflection
coefficient is given by

Γ =
| �Esc|
| �Ein|

= −| �Hsc|
| �H in|

. (5.21)

In Fig. 5.92 the reflection coefficients are evaluated by focusing the incident and scattered
fields at the centre of backscattering surface of a cube by using 150, 384 and 600 elements.
The results computed by 384 and 600 elements are similar more than 150 elements. Conse-
quently, the reflection coefficients can get more accurate when the numerical results of the
scattered field on boundary are close up to the exact solution.

5.4 Summary

The iterative method presented in Chapter 5 can be used for both perfectly reflective
and transmissive interfaces. Here, there are three applications such as test cases, far-field
cases and scattering cases. Both test and far-field cases are on the transmissive type of
the interface since the results are in general known in advance. It is difficult to evaluate
clearly the direction and magnitude of the reflected field in the scattering cases; however, the
measured data and the numerical results by the other method have been referred here. This
knowledge makes it easier to properly evaluate the performance of the algorithm.

The cube is chosen as a tested shape for reason of simplicity. For surfaces with sharp
edges and corners it is usually expected that the field contains singularities at some points.
That is not the cases of perfect transmission, since the incident field is transmitted through
the surface without perturbation. The field everywhere, including on edges and corners, is
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Figure 5.92: Reflection coefficient at backscattering when using boundary elements: 150,

384 and 600 elements.

that of either a plane wave or is that of a dipole source. In the first case study the field is
totally void of singularities, and in the second there is one singularity at the source itself.
However, the dipole here is placed off the surface, so the field on the surface is everywhere
finite and well behaved. In the third the scattered field from the PEC cube is very interesting
from [66]. Its numerical calculation is often involves the occurrence of spurious solutions,
because the incident field is echoed diffusely over the surface and especially on edges and
corners.

The efficiency of algorithm in these three applications has been analyzed in various
wavelengths, after each iterative solution converges into some finite error. The accuracy
achieved in Fig. 5.25 for test cases is greater than in Fig. 5.48 for dipole source. The orienta-
tion of the plane wave matches the orientation of surface and also matches the orientation of
the elements into which the surface is divided. The same is not true for dipole source, where
the nature of the wave is more well suited by a spherical rather than a cubic and Cartesian
system. The bilinear functions and quantization chosen here are set in the Cartesian frame-
work, and do not accommodate the dipole field as easily as they accommodate the plane
wave. It then follows for any given level of quantization that the accuracy is likely to be
higher for the plane wave. Nevertheless, for both applications the accuracy can be improved
by increasing the number of elements. It is likely that the same would also be the true if
functions of higher order than bilinear were used.

In the scattering cases error-ε2 and error-ε3 are considered instead of the averaged
error. When considering error-ε2 of three applications the accuracy of achieved in Fig. 5.27
for test cases is greater than in Fig. 5.50 for the dipole source and Fig. 5.71 for scattered field,
respectively. The boundary condition for the scattered field at some points of a cube has been
not complete, when some components of the reflected field as the initial data for iterative
solution are computed from the incident field. Some points that located on edge and corner
cause the big error when the normal unit has not identified correctly. Accordingly, the error-
ε3 of three applications play similarly with the error-ε2. The error in Fig. 5.28 for test cases
is better than in Fig. 5.51 for far-field cases and in Fig. 5.72 for scattering cases, respectively.
After that these results of iterative solutions are used to generate the radar cross section



109

as shown in Figs. 5.73, 5.74 and 5.75 when using number of elements as 150, 384 and
600, respectively. The RCS calculated by iterative solution is more accurate than the EHFD
solution when referring with measured data. The numerical results of the reflected field have
still not deteriorated near internal resonance of the PEC cube when varying wavelengths
between 4s/λ ∈ (0.6,2.4). It is very interesting that the basis functions are improved for the
scattered field on boundary when focusing into high frequency.

Consider now the convergence of iterative solution in perfect transmission when the
interface is same, but the incident field is different. The rate of convergence towards solution
appears in Figs. 5.35 to 5.47 higher for the far-field cases than in Figs. 5.9 to 5.21 for the test
cases, although the shape of the curve for the dipole makes it somewhat difficult to obtain
a good estimate. Consider also the convergence of iterative solution when the incident field
is same, but the interface is different. In this case the rate of convergence towards solution
appears in Figs. 5.57 to 5.70 much higher for the scattering cases than in Figs. 5.35 to 5.47
for test cases. The accuracy accrues at a rate of five decimal place for every ten iterations
in test cases, three decimal place for every five iterations in far-field cases and one decimal
place for every three iterations. However, the number of iterations in scattering cases is the
smallest and in test cases is the largest.

Many problems in physics can be formulated as some kind of linear system. Tradition-
ally Maxwell’s equations are formulated using a linear system constructed around Green’s
functions. Here, the formulation involves instead the Cauchy kernel. Both are linear sys-
tems. In both cases the solution involves determining the unknown fields or currents using
some kind of linear algebra. In the case of Green’s functions, it is normal to use the algebra
of real or complex numbers. It is usually possible (even if it is not done) to write the system
using matrix algebra. The most direct solution then involves a matrix inverse, either directly
or indirectly (i.e. iteratively).

Matrix inverse of size N × N usually take of the order of N 3 operations. If some
particular structure of the system can be exploited, it may be possible to reduce the number of
operations. Also, an iterative technique may require fewer operations than a direct technique.
However, none of that can be guaranteed. The one thing that can be guaranteed is that
any solution taking more than N3 operations is not as efficient as a matrix solution, and is
therefore definitely not very good.

Here, our interest is to check that the solution either not worse than a matrix solution,
or perhaps is better than a matrix solution. If either of those cases are true, then we can
conclude that there is nothing really wrong or badly inefficient with the solution we use. It
may of course with a lot more study be possible to develop a better (faster, more efficient)
solution. However, if we are already faster than N 3, it may not be possible to be very much
faster.

The operations of multiplication and addition are carried in Clifford arithmetic, which
takes more work than real arithmetic. Without taking special short cuts, a Clifford multiplica-
tion of two four-dimensional Clifford numbers, each of which have 16 complex coefficients,
takes 162 = 64 complex multiplications and additions when implemented as 4 × 4 Dirac
matrices. However, for applications in electromagnetism short cuts can be achieved because
many of the 16 complex coefficients are zero. The �E and �H fields together require only six
non-zero complex coefficients, and simple vectors such as the normal vector �n require only
three non-zero real coefficients.

Table 5.2 shows CPU time on a personal computer (AMD Athlon, 2.4 GHz) and re-
quired memory 512 MB. When using 150 elements the operation of the integral operator,
construction of Matrix G and each period of iteration took around 8.66, 1074.27 and 301.62
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seconds, respectively. The other data using 384 and 600 elements are shown in Table 5.2.

Table 5.2 CPU time (seconds).

Number Number Integral Geometry A period

element node operator Matrix G iteration

150 152 8.66 1064.27 301.62

384 386 20.40 6936.03 1948.75

600 602 31.91 16854.87 4756.24



CHAPTER VI

CONCLUSIONS

6.1 Conclusions of Desertation

The differential form of Maxwell’s equations based on vector calculus has for a long
time been widely popular when solving electromagnetic problems. These equations serve as
a starting point from which to introduce another differential form based on Clifford algebra.
In detail both electromagnetic fields and their differential operators on vector calculus are
encoded respectively into a single number and an operator in Clifford arithmetic. The electric
and magnetic fields are encoded into a four dimensional Clifford number. Both divergence
and curl operators are replaced with a Clifford gradient operator. In the Clifford framework
the Maxwell-Dirac equation, which reproduces faithfully all of Maxwell’s equations, is the
fundamental equation governing behavior of the electromagnetic field.

The Maxwell-Dirac equation ( called the k-Dirac equation by mathematicians) is con-
structed from the k-Dirac operator and the Clifford field. The k-Dirac operator is a first order
differential operator. Differentiating it reproduces the Helmholtz operator. The Helmholtz
equation is the reduced version of Maxwell’s equations used to make the solution of the
potential, but the k-Dirac equation is the unadulterated version of Maxwell’s equations and
is used to make the solution of the electromagnetic field directly. The Green’s function is
the fundamental solution of the Helmholtz operator. Although it works in a straightforward
manner when applied to the potential problem, it needs various complicated techniques when
computing the field itself. The fundamental solution of the k-Dirac operator provides a much
more direct approach in order to obtain the solution of Maxwell’s field equations.

The integral form of the Maxwell-Dirac equation is derived from the boundary theorem
by applying it to the fundamental solution of the k-Dirac operator. This integral equation
describes the behavior of the full field at any point as generated by the fields on the boundary.
The initial form of the integral equation considers only the field at points placed inside the
boundary, but that form can be extended to evaluate the field at any points placed anywhere
in the entire domain. The resulting integral equations are divided into two kinds. The first
kind of the integral equation (the Cauchy extension operator) can reproduce the full field at
any point placed inside and outside the boundary. It is used to analyze the behavior of the
field propagating away from the boundary. Another integral equation (the Cauchy integral
operator) describes the relationship of the fields at any point placed on the boundary. It not
only evaluates the difference of the inward and outward fields along the boundary, but also
behaves as a reflection operator accommodating Maxwell’s equations.

The boundary field problems that are examined satisfy the reduced (homogeneous or
source free) version of Maxwell’s equations. These problems are constructed by using pro-
posed projection operators, and their specified boundary conditions are described with data
projection operators. The proposed projection operators, the plus and minus Hardy projec-
tion operators, define a Banach space in which to construct generalized geometric solutions.
The geometric solution only fails to be unique if the two systems of projection operators
(Hardy and data) are identically the same. However, the Hardy projection operators and the
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data projection operators play quite distinct and separate roles, so that the solution obtained
is very well defined. Although the proposed work has covered the boundary field problems in
the case of perfect transmission and perfect reflection, it is possible to expand into the case of
the partial transmission and reflection. Surface currents play no role in the proposed integral
equations and appear nowhere in the geometric solutions. For that reason, it is possible to
use the technique for objects which are not perfect electric conductors just as easily as for
objects which are perfect electrical conductors.

The proposed integral equations are applied for solving practical problems by em-
ploying numerical techniques. The considered boundary is discretized into the number of
rectangular segments. After that the integral equations are formulated with boundary ele-
ment techniques. Over each element of the boundary, the kernel integral is constructed from
geometric function in conjunction with the approximated surface field. The geometric func-
tion is produced by multiplying the fundamental solution of k-Dirac operator and the unit
normal. For approximating the surface field, the mathematical theory [51, 52, 58, 62] behind
the method presented here is quite rigorous. The implementation of the surface field departs
from the rigor of the theory by making three different approximations. Firstly, the surface is
quantized into a finite number of elements (here squares). Secondly, the field on each element
is supposed to confirm to a particular generic form (here bilinear). Thirdly, integrals over the
elements are evaluated numerically (here by Gauss Legendre integration). Such departures
from the theory, if taken too far, can render its support invalid. However, if departures from
the theory are kept with acceptable limits, valid solutions are guaranteed. Although it is
not clear in general what those limits might be, the experience here is that valid solutions are
achievable (within a fixed amount of error) using relatively simple approximations. Needless
to say, making improvements to those approximations is likely to yield even more accurate
results.

After the applied Hardy projection operators are verified to produce an acceptably
small finite error, they are used to compute the iterative solutions. The iterative solutions are
obtained by expanding the inverse of the compound operators I−X in the formal solution as
a binomial series (I−X)−1 =

∑∞
m=0 Xm. Convergence of the binomial series follows from

the properties of the operator X. For example in the test case of Chapter V the operator X =
P+Q+ and for any function x �= 0 on the OP-axis that |P+Q+x| < |Ix| = |x| since P+Q+x
is closer to the origin. That is always true as long as P+ and Q+ (as here) are some kind of
projection operators. For the case of Fredholm integral equations, the rate of convergence
can be improved by replacing Neumann style iterative solutions by various alternatives, such
as the conjugate gradient method (cf. [68]). It would be expected that similar improvements
can be achieved if the same methods apply in non-Fredholm non-commutative situation here.

When converting an implementation of the transmissive problem into an implementa-
tion of the reflective problem some care must be taken. Validity of the conversion relies on
the resulting implementation meeting certain conditions required of the reflective solution,
but not of the transmissive solution. In principle, basis functions which support singularities
at the corners and edges are required. Use of bilinear functions as here cannot be expected to
yield optimal results. With the new basis functions, methods of integration must be chosen
accordingly; i.e., to support (integrable) singularities at the limits of the integration. Doing
so eliminates the need for the angular ratios in Table 4.1 at the corners and edges of the cube
which, in the case of the reflective problems, are unknown.
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6.2 Future Research

The scope of the work here has been limited to the most simple cases in three ways:
theoretical, numerical and applied.

Theory Here the theory used applies only to the case of perfect transmissive and perfectly
reflection objects. Although there are many real applications for which this theory is
sufficient, there are also applications such as dielectrically loaded waveguides, where
the theory of partially reflective and transmissive objects needs to be used instead.
Further work is required at theoretical level to accommodate these applications. For
example, it is not clear if the simple iterative solution described here is appropriate
for partially reflective and transmissive objects. The reason for some doubt is that for
these objects the geometrical constructions on which the solution here is based, are not
longer simple and straightforward.

Numerical Methods The numerical techniques used here are limited by shape, integrations,
basis functions, and speed.

1. Shape is limited to rectilinear objects. That is not useful for most engineering
applications. Further work us required to extend the implementation so that it
also applies to smoothly curving surfaces.

2. Integration are limited to cases where the normal is everywhere known, and the
functions (fields) on the boundary are everywhere finite. In practice the (field
density) functions should be free to approach infinity at sharp edges and corners,
and the normals there are undefined. Further work is required to incorporate
integration techniques which accommodate integrable singularities at the corners
and edges, and are insensitive to the normal at those points.

3. The basis functions here are simpler than strictly necessary to properly represent
all fields in the surfaces of all objects. Further work is required to incorporate
basis functions which support integrable singularities at the corners and edges.

4. The iterative technique here has linear convergence, i.e. the number of decimal
places of accuracy increases by the same amount every iteration (until close to
convergence). Iterative techniques for the other problems have been developed
which show convergence characteristics greater than linear, suggesting that it
may be possible to improve the speed of convergence for the iteration used here.
Further work is required to find out how to do that.

Applications The applications investigated here are useful for testing the technique but are
too simple for real (engineering design) solutions. Further work is required to extend
the technique (particularly in the numerical sense described above) and then apply it to
problems of real engineering interest, such as the design of antennas and waveguides.



References

[1] Balanis, C. A. Advanced Engineering Electromagnetics. New York : John Wiley & Sons,
1989.

[2] Bluck, M. J., Hatzipetros, A., and Walker, S. Applications of differential forms to boundary
integral equations. IEEE Trans. on Antennas and Propagation. 54 (June 2006):
1781–1796.

[3] Garcia-Castillo, L., Salazar-Palma, M., Sarkar, T., and Adve, R. Efficient solution of dif-
ferential form of Maxwell’s equations in rectangular regions. IEEE Trans. on
Microwave Theory and Techniques 43 (Mar. 1995): 647–654.

[4] Miller, E. K. A selective survey of computational electromagnetics. IEEE Trans. on Anten-
nas and Propagation 36 (Sept. 1988): 1281–1305.

[5] Krishnan, A. Finite element analysis of lossless propagation in surface plasmon polariton
waveguides with nanoscale spot-sizes. Journal of Lightwave Technology 27 (May
2009): 1114–1121.

[6] Loveday, P. W. Simulation of piezoelectric excitation of guided waves using waveguide
finite elements. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Con-
trol 55 (Sept. 2008): 2038–2045.

[7] Marais, N. and Davidson, D. B. Numerical evaluation of high-order finite element time
domain formulations in electromagnetics. IEEE Trans. on Antennas and Propa-
gation 56 (Dec. 2008): 3743–3751.

[8] Balanis, C. A. Antenna Theory Analysis and Design. New York : John Wiley & Sons,
3rd ed., Apr. 2005.

[9] Davidson, D. B. Computational Electromagnetics for RF and Microwave Engineering.
Cambridge : Cambridge University Press, 2005.

[10] Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering. London :
Presetice-Hall International, 1991.

[11] Petre, P. and Sarkar, T. K. Plannar near-field to far-field transformation using an equivalent
magnetic current approach. IEEE Trans. on Antennas and Propagation 40 (Nov.
1992): 1348–1356.

[12] Petre, P. and Sarkar, T. K. Plannar near-field to far-field transformation using an array of
dipole probes. IEEE Trans. on Antennas and Propagation 42 (Apr. 1994): 534–
537.

[13] Taaghol, A. and Sarkar, T. K. Near-field to near/far-field transformation for arbitrary near-
field geometry, utilizing an equivalent magnetic current. IEEE Trans. on Electro-
magnetic Compatibility 38 (Aug. 1996): 536–542.



115

[14] Sarkar, T. K. and Taaghol, A. Near-field to near/far-Field transformation for arbitrary near-
Field geometry utilizing an equivalent electric current and MoM. IEEE Trans. on
Antennas and Propagation 47 (Mar. 1999): 566–573.

[15] Knepp, D. L. and Goldhirsh, J. Numerical analysis of electromagnetic radiation properties
of smooth conducting bodies of arbitrary shape. IEEE Trans. on Antennas and
Propagation 20 (May 1972): 383–388.

[16] Richmond, J. A wire-grid model for scattering by conducting bodies. IEEE Trans. on An-
tennas and Propagation 14 (Nov. 1966): 782–786.

[17] Mautz, J. R. and Harrington, R. F. H-field, E-field and combined-field solution for con-
ducting bodies of revolution. Arch. Elektron. Übertragungstech. (AEU) 32 (Apr.
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Appendix A

Clifford Algebra

This section is to introduce Clifford number and Clifford arithmetic for supporting
the proposed material in the research. There are two operations of Clifford algebra such as
addition and multiplication. These operations can explain the three main products in vector
form, such as inner product, outer product and cross product. Moreover, the differential
operators such as the divergence and curl that are expressed in Maxwell’s equations in the
differential form, are described with Clifford algebra.

A.1 Clifford numbers

Numbers on Clifford algebra are called ”Clifford number” which can represent elec-
tromagnetic fields in various dimensions. For problems in electromagnetics, 3-dimensional
and 4-dimensional Clifford numbers are the most useful.

Dimensions: Dimensions of Clifford number depends on the kind of problem. Static field
problems and time dependent field problems are embedded in three and four dimensions
respectively. For example of Clifford number in three dimensions is shown as:

a = a0 + a1e0 + a2e1 + a3e0e1 + a4e2 + a5e0e2 + a6e1e2 + a7e0e1e2

and four dimensions is shown as:

a = a0 + a1e0 + a2e1 + a3e2 + a4e3 + a5e0e1 + a6e0e2 + a7e1e2 + a8e0e3 + a9e1e3

+ a10e2e3 + a11e0e1e2 + a12e0e1e3 + a13e0e2e3 + a14e1e2e3 + a15e0e1e2e3

Components: Number of components is all terms of a Clifford number which depends on
the dimensions. This is similar to complex numbers, where there are two components: Real
and Imaginary parts. For example of three dimensional Clifford number contains eight terms,
so that the number of components is eight. Each component is made form two parts: numeric
and symbolic parts. In the numeric part is a complex number and it is commonly called
the ’coefficient’. The symbolic part is either invisible, or is a combination of the symbol
’e’ and digits ’0-9’. This part is commonly called the unit which is described latter. The
eight components are enough to provide storage for two complex scalars and two complex
3-dimensional vectors. It is normal to use one of vectors for the electric field and one of
vectors for magnetic field.

In general an n-dimensional Clifford number Cn has 2n complex-valued components.

Grades: The internal structure of Clifford numbers places the different components into
different groups. All components in each group have some common characteristics, which
are different from the characteristics of the other groups. The characteristic of the groups are
described by the term ’Grade’.

Grades are given numeric names so that each grade can be easily identified, e.g. grade
0, grade 1, etc. The symbol, which normally used to represent grades, is a capital lambda
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Λ with a numeric superscript. For example, Λ0= grade 0 and Λk= grade k. The number of
grades (groups of components) in a Clifford number is determined if the dimension of Clif-
ford number is specified.

Units: In order to determine how each component in Clifford numbers should behave under
arithmetic operation each component is given specific (individual) characteristics. This is
similar to complex numbers where the real component is given the characteristic of ’multi-
plication by 1’ and the imaginary component is given the characteristic of ’multiplication by√−1’. For Clifford numbers the appropriate characteristics are first assigned to the compo-
nents in grade 0 and grade 1, and then used along with some simple rules to construct the
characteristics for the components in all other grades. The characteristics of the components
are described by the term ’unit’.

Units are given symbolic names according to a particular convention, chosen so that
the characteristics of each component are clearly defined by the name of its unit. The units
can not be determined until the dimension of the Clifford number is specified. For example
of units in the three dimensional Clifford number, the unit in Λ0 is 1 which is an invisible
unit. The units in Λ1, which is called the basis units, are e0, e1 and e2. The units in Λ2 are
constructed by multiplying in pairs all of the basis units i.e. e0e1, e0e2 and e1e2. The units
in Λ3 are constructed by multiplying in triples all of the basis units i.e. e0e1e2.

In general an n-dimensional Clifford number has an invisible unit in Λ0 and the basis
units e0, e1, . . ., en in Λ1. The units of in Λk > Λ1 are constructed by multiplying in k-tuples
all of the units in in Λ1; i.e.

Πk
i=1eui

where ui < ui+1 and ui ∈ {1, 2, . . . , k}. The order of multiplication is very important! In
Clifford numbers the units emen is not normally the same as the units enem. One is normally
the negative of the order (unless m = n, in which case they are equal). It does not matter
whether enem or emen is used as long as care is taken to get the ± sign correct. However,
it is normal to use units with the subscripts running smallest to largest in the direction from
left to right, i.e. emen if m > n, or enem if n > m.

A.2 Addition of Clifford numbers

Addison of Clifford numbers is similar to addition vectors which is performed by
adding all of the components that have the same units. However, the coefficients of the
components need to use the addition of complex number, in vector case use the addition
of real number. Adding two n-dimensional Clifford numbers requires 2n complex addition
operations. For examples of addition of two 3-dimensional Clifford numbers: c3 = a3 + b3,

a3 = a0 + a1e0 + a2e1 + a3e0e1 + a4e2 + a5e0e2 + a6e1e2 + a7e0e1e2

b3 = b0 + b1e0 + b2e1 + b3e0e1 + b4e2 + b5e0e2 + b6e1e2 + b7e0e1e2

c3 = a + b

= c0 + c1e0 + c2e1 + c3e0e1 + c4e2 + c5e0e2 + c6e1e2 + c7e0e1e2

where:
c0 = a0 + b0

c1 = a1 + b1

c2 = a2 + b2

c3 = a3 + b3

c4 = a4 + b4

c5 = a5 + b5

c6 = a6 + b6

c7 = a7 + b7
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A.3 Multiplication of Clifford numbers

Multiplication of Clifford number is not really difficult, but there are an awful lot of
operations involved. It necessary uses two important rules: the rules of multiplying complex
number and the rules of combining units of Clifford number. Multiplying two n-dimensional
Clifford numbers requires 22n complex multiplication operations, and after that the 22n in-
termediate results must be sorted into components, and all the immediate results for each 22n

components must be added together.
The rule of multiplying complex number is the basic rule in complex algebra, but the

rules of multiplying units of Clifford numbers are many alternatives. For example of the
common choice is enen=+1 or enen=0. Any of these choice can be adopted. Each gives a
different formalism of the Clifford framework, and Maxwell’s equations can be embedded
in any of these. It seems that none of these formalisms has any overwhelming advantage.
In this thesis, the rules of multiplying Clifford’s units are following by (2.2) that is made to
accord with history convention.

Multiplying two 2-dimensional Clifford numbers of A and B:{
A(2) = a0 + a1e1 + a2e2 + a3e1e2

B(2) = b0 + b1e1 + b2e2 + b3e1e2

gives the result:⎧⎪⎪⎨
⎪⎪⎩

C(2) = a0b0 + a0b1e1 + a0b2e2 + a0b3e1e2

+ a1b0e1 + a1b1e1e1 + a1b2e1e2 + a1b3e1e1e2

+ a2b0e2 + a2b1e2e1 + a2b2e2e2 + a2b3e2e1e2

+ a3b0e1e2 + a3b1e1e2e1 + a3b2e1e2e2 + a3b3e1e2e1e2

Therefore; ⎧⎪⎪⎨
⎪⎪⎩

C(2) = (a0b0 − a1b1 − a2b2 − a3b3)
+ (a0b1 + a1b0 + a2b3 − a3b2)e1

+ (a0b2 − a1b3 + a2b0 + a3b1)e2

+ (a0b3 + a1b2 − a2b1 + a3b0)e1e2

Notice that the coefficients of the components involve sums and differences of pairs of com-
plex numbers. This similar to complex arithmetic, where the coefficients of the components
involve sums and differences of pairs of the real numbers.

A.4 Involution

Involution (or inversion) is an operation which changes the signs of some components
of a Clifford number. The operation can be performed as three step:

1. breaking all Clifford units from grade Λk into a product of separate units from grade
Λ1,

2. multiplying all the Λ1 units by -1, and

3. putting all the Λ1 units back together into units from Λk
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The effect is to introduce in every unit a factor of (−1)k. This introduces a change of sign
for all odd grades, and has no effect on even grades. For example: If x = a0 +a1e1 +a2e2 +
a3e1e2 is 2-dimensional Clifford number, then the involution of x is:⎧⎨

⎩
x̄ = a0 + a1e1 + a2e2 + a3e1e2

= a0 + a1(−e1) + a2(−e2) + a3(−e1)(−e2)
= a0 − a1e1 − a2e2 + a3(−e1)(−e2)

where the symbol¯ is used to indicate the involution operation. Involution can be used to
help write some algebraic results in a more concise from as with, for example, the recursive
product in next section.

A.5 Recursive Product

The product of Clifford numbers of any dimension can be recursively defined in terms
of Clifford numbers of lower dimension, in a form similar to the (more familiar) product of
complex numbers. For complex numbers u = v + iw and z = x + iy the product is:

uz = (v + iw)(x + iy) = [vx − wy] + i[vy + wx] (1)

For n-dimensional Clifford numbers U(n) = V(n−1) + W(n−1)en and Z(n) = X(n−1) +
Y(n−1)en the product is:

U(n)Z(n) =
(
V(n−1) + W(n−1)en

)
(X(n−1) + Y(n−1)en)

=
(
V(n−1)X(n−1) + W(n−1)enY(n−1)en

)
+
(
V(n−1)Y(n−1)en + W(n−1)enX(n−1)

)
Changing the order of enX(n−1) to X(n−1)en introduces minus signs in all odd grade of X .
The same effect can be achieved by applying the involution operator so that:

enX̄(n−1) = X(n−1)en

Multiplying both sides from left and right by en now gives:

enenX̄(n−1)en = enX(n−1)enen

X̄(n−1)en = enX(n−1)

Using this result for both enX(n−1) and enY(n−1) gives:

U(n)Z(n) = (V(n−1)X(n−1) + W(n−1)Ȳ(n−1)enen) + (V(n−1)Y(n−1)en + W(n−1)X̄(n−1)en)
= (V(n−1)X(n−1) − W(n−1)Ȳ(n−1)) + (V(n−1)Y(n−1) + W(n−1)X̄(n−1))en

Comparison of the case for the multiplication of Clifford numbers and the case for multi-
plication of complex numbers shows strong similarities. Structurally the equations are the
same, with the only added complication in the case of Clifford multiplication being the need
to apply the involution operation to some of the terms. The simple form of equation can
be exploited to develop simple (although recursive) computer implementations of Clifford
multiplication.
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A.6 Geometric operation

The inner, cross and outer products are always described by vector form in engineer-
ing, the transformation of vectors and Clifford numbers are appeared in here for applying
and understanding easier. Moreover, the construction about the differentiation of the fields
based on Clifford algebra is presented. The representations of geometric object perform in
three dimensions; therefore, the forms of fields that are presented in three dimensional vector
forms are considered in three dimensional Clifford numbers.

Transformation between vectors and Clifford numbers: To describe in details of (2.4)
the transformation of vectors and Clifford numbers for explaining the geometric operation
and differentiation of Clifford algebra. Vectors are presented in the Cartesian system are
constructed form basis vectors: �ax, �ay and �az that shown as:

�v = vx�ax + vy�ay + vz�az

These vectors in three dimensions are a subset of Clifford numbers in three dimensions. The
subset used consists of number whose components are zero in all grades except Λ1. It is
possible to encode the coordinates of the vector �v into Λ1 of the Clifford number: u:

u = vxe1 + vye2 + vze3 = [�v]1

The notation [�v]1 indicates the vector �v encoded into a Clifford number by copying its coor-
dinates into corresponding coefficients of Λ1. It is now possible to perform geometric oper-
ations on the vector �v by making algebraic operations on Clifford image u of the vector �v.

Product operation: When working with vectors there are three products that are frequently
used Inner product (or scalar product), Cross product (or vector product) and Outer product
(or wedge product).

All three of these products are produced it two vectors �p and �q are encoded as Clifford
numbers, and those numbers are then multiplied together. Vector �p has coordinates (px, py,
pz) and Vector �q has coordinates (qx, qy, qz). Then vector �p and �q are encoded into Clifford
numbers p and q respectively.

�p = px�ax + py�ay + pz�az

�q = qx�ax + qy�ay + qz�az

p = [�p]1 = pxe1 + pye2 + pze3

q = [�q]1 = qxe1 + qye2 + qze3

In Clifford algebra, Scalar product can be recovered after adding the two Clifford products
pq and qp. The result ends up in Λ0, which is a scalar.

�p · �q =

[
−1

2
(pq + qp)

]
0

Cross product can be recovered after subtracting two Clifford products pq and qp. The
result ends up in Λ2, which does not decoded into a vector. So that we must post-multiply by
(minus) the unit of Λ3 to transfer the result into Λ1.

�p × �q =

[
−1

2
(pq − qp) e1e2e3

]
1
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Outer product can be recovered directly after subtracting two Clifford products pq and qp.
The results ends up in Λ2, which is bi-vector.

�p ∧ �q =

[
1

2
(pq − qp)

]
2

A.7 Differentiation of Clifford number

Three important operators of vectors in three dimensions are gradient, divergence and
curl operations can be described on three dimensional Clifford number. These operators are
used to present the relationship of the electromagnetic fields in Maxwell’s equations. The
gradient operator ∇ of vector form can encode into Clifford number in Λ1:

∇ = ∂
∂x

�ax + ∂
∂y

�ay + ∂
∂z

�az

D = ∂
∂x

e1 + ∂
∂y

e2 + ∂
∂z

e3

where the differential operator ’D’ is called ’Dirac operator’ or ’Clifford gradient’. The
scalar ’φ’ and vector ’�F ’ that are represented in vector form are encoded into three dimen-
sional Clifford number u in Λ0 and Λ1, respectively.

φ = φ(x, y, z)
�F = Fx�ax + Fy�ay + Fz�az

u = [φ]0 +
[
�F
]1

= φ + Fxe1 + Fye2 + Fze3

In Clifford algebra, three operators can be constructed by using the multiplication of
the gradient operator D and Clifford number u:

Du =

(
∂

∂x
e1 +

∂

∂y
e2 +

∂

∂z
e3

)
(φ + Fxe1 + Fye2 + Fze3)

= −
(

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

)
∈ Λ0

+

(
∂φ

∂x
e1 +

∂φ

∂y
e2 +

∂φ

∂z
e3

)
∈ Λ1

+

(
∂Fz

∂y
− ∂Fy

∂z

)
e2e3 −

(
∂Fz

∂x
− ∂Fx

∂z

)
e3e1 +

(
∂Fy

∂x
− ∂Fx

∂y

)
e1e2 ∈ Λ2

Divergence of vector �F can be recovered from some components of Du in Λ0 is a scalar and
define as:

∇ · �F = − [Du]0

=

(
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

)

Gradient of scalar function φ can be recovered from some components of Du in Λ1 is a
vector and define as:

∇φ = [Du]1

=

(
∂φ

∂x
e1 +

∂φ

∂y
e2 +

∂φ

∂z
e3

)
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Curl of vector �F can be recovered from some components of Du in Λ2 is a bi-vector which
can be decoded the curl of vector �F into a vector by post-multiplying by (minus) the units of
Λ3 and then decoding into Λ1 is a vector, that define as:

∇× �F = − [(Du) e1e2e3]1

=

(
∂Fz

∂y
− ∂Fy

∂z

)
e1 −

(
∂Fz

∂x
− ∂Fx

∂z

)
e2 +

(
∂Fy

∂x
− ∂Fx

∂y

)
e3

Notice, if the scalar function is zero, φ = 0, u is encoded by vector field �F only, and the
differential operation in Clifford number gives only Λ0 and Λ2.

Du =

(
∂

∂x
e1 +

∂

∂y
e2 +

∂

∂z
e3

)
(φ + Fxe1 + Fye2 + Fze3)

= −
(

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

)
∈ Λ0

+

(
∂Fz

∂y
− ∂Fy

∂z

)
e2e3 −

(
∂Fz

∂x
− ∂Fx

∂z

)
e3e1 +

(
∂Fy

∂x
− ∂Fx

∂y

)
e1e2 ∈ Λ2

= −
[
∇ · �F

]0

−
[
∇× �F

]1

e1e2e3

Therefore, two differential operations on vector calculus, such as divergence and curl prod-
ucts, can be produced with a single differential operation on Clifford algebra.

A.8 Hybrid Vector/Clifford Notation

The rules governing manipulations of Clifford numbers are very simple, but when there
are many components it is easy to make a mistake and to lose a minus sign. Often we wish
to perform geometric operation (primarily in 3 spatial dimensions or 3 spatial + 1 temporal
or frequency dimension) rather than numeric operations. In this case it is often easier for
manipulations performed by hand to adopt a hybrid notation and a set of rules which exploit
both the Clifford structure and the engineer’s familiarity with vector calculus. This approach
also makes it easier to recognize important results which fall into the form of cross products
and dot products (such as Maxwell’s equations); something not always easily recognized if
scattered around the page as isolated components.

The hybrid notation unites, where possible, groups of components in a Clifford number
either in terms of a single vector, or a dot product or cross product of a pair of vectors , all
suitably encoded and transfered into the required grades. For example of the product of two
vectors p, q encoded into two Clifford number u, v can be written:

uv = [�p · �q]0 − [�p × �q]1�e1�e2�e3

The unit e1e2e3 of Λ3 appears so often (with a minus sign) that is accorded for conve-
nience with a single symbol σ. This new unit has the following properties:

σ = −e1e2e3

σ2 = 1

σe1 = e1σ

σe2 = e2σ

σe3 = e3σ
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Note that the unit σ commutes with all of the other units. The product of u and v can now
be written:

uv = [�p · �q]0 − [�p × �q]1σ

It is difficult to remember which particular vector p or q is coded into which particular
Clifford number u or v, especially when there are a lot of vectors and Clifford numbers. It
is therefore safer to write as:

uv = −[[u]1 · [v]1]
0 + [[u]1 × [v]1]

1σ

The equation reads from left to right:
“the product of the Clifford number u with the Clifford number v is equal to minus the dot
product of the vector decoded from grade 1 of the Clifford number u with the vector decoded
from grade 1 of the Clifford number v then recoded into grade of another Clifford number
plus the cross product of the vector decoded from grade 1 of the Clifford number u with
the vector decoded from grade 1 of the Clifford number v then recoded into grade 1 of yet
another Clifford number and multiplied by the unit σ.”

It is important to note three things:

1. It is only true for Clifford numbers which have vectors encoded into Λ1 and nothing in
any other grade,

2. It is really clumsy when written in words, and

3. It is also really clumsy when written as an equation!

The first point is usually not a problem, because we are normally interested only in that
situation (or very similar situation). The second point is not a problem because we never use
a complete verbal description. The third point can eliminated by throwing away the notation
[. . . ]0 and [. . . ]1 for encoding scalars and vectors into Clifford numbers and [. . . ]0 and [. . . ]1
for decoding Clifford numbers into vectors or scalars. The multiplication of uv can then be
written:

uv = −(u · v) + (u × v)σ

Care must be taken when reading equations in this hybrid “Clifford plus vector” form.
On the left the symbols u and v represent Clifford numbers. On the right the symbols u

and v represent equivalent vectors, but the whole expression on the right denotes a Clifford
numbers.

The reader must note for themselves that the dot product and the cross product only
make sense with vectors, so the symbols u and v on the right hand side must be intended
into vectors. There is explicit notation for recoding the results of the vector dot and cross
products into Clifford numbers. The reader must also note that the dot product of two vectors
is a scalar so must be recoded into Λ0, and that the cross product of two vectors is a vector
so must be recoded into Λ1. In this example the recoded result of the cross product is then
transfered into Λ2 by multiplying by the (specially defined) Clifford unit σ.

If an outer product notation is preferred to the cross product notation, it can be written
instead as:

uv = −(u · v) − (u ∧ v)

The same approach can be used for rewriting the Clifford gradient of Clifford number
u with vector field. First gritting the full expression gives:

Du = −[∇ · [�u]1]
0 + [∇× [�u]1]

1σ
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Now, as before, leaving the notation for encoding and decoding unwritten gives:

Du = −(∇ · u) + (∇× u)σ
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Appendix B

Static Electric and Magnetic Fields

B.1 Static Field on Maxwell’s Equations

The time-hamonic Maxwell’s equations in vector form are referred for describing the
static electric and magnetic fields. They do not change int time; therefore, we can let ω → 0
in (2.9). The four basic equations of electromagnetism can be found immediately⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇ · �E = 0

∇× �H = 0

∇× �E = 0

∇ · �H = 0.

These four equations can describe into a single equation on Clifford framework.

B.2 Static Field on Maxwell-Dirac equations

Maxwell-Dirac equations in Clifford form as (2.16) that are used to model the gen-
eral electromagnetic fields are referred in here. They are made by multiplying the k-Dirac
operator and the Clifford field. For static field the k-Dirac operator as (2.15) is specified to:

Dk=0 = D

where D is Clifford gradient operator, and the Clifford field as (2.7) is same style as the elec-
tromagnetic field. Therefore the static domain version of homogenous form of Maxwell’s
equations is given by:

Du =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− j
√

ε
[
∇ · �E

]0

e0 ∈ TΛ1

+
√

µ
[
∇× �H

]1

∈ SΛ1

+ j
√

ε
[
∇× �E

]1

σe0 ∈ TΛ3

− √
µ
[
∇ · �H

]0

σ ∈ SΛ3

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 0.

The resulting Clifford number occupies time-like components T (containing the time unit e0)
and space-like components S (where the unit e0 is missing) of both Λ1 and Λ3. These four
components in the order listed represent respectively source free differential statements of
Gausses’ law, the Ampere-Maxwell law, Faraday’s law, and a magnetic version of Gausses’
law.
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B.3 Fundamental Solutions of k-Dirac Operator for Static Fields

The fundamental solution of the static Maxwell-Dirac operator is given by:

F0(p) =
−1

4πr3

where r = |p|. The fundamental solution of k-Dirac operator for static field by three dimen-
sional Clifford number. The part of temporal component does not appear (the wavenumber
is zero).
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Appendix C

Reflection and Projection Operators for Clifford Functions

C.1 General Reflection and Projection Operators

In general, from a mathematical viewpoint, any operator R is a reflection operator if
it acts as its own inverse, i.e. R2 = I , and any operator P is a projection operator if it is
idempotent. This means only the first of a sequence of n identical operators can produce any
effect. In general for n >1, Pn = P . In particular for n = 2, P2 = P .

In addition, any pair of operators P+, P− constructed from a reflection operator R
according to the relations { P+ = 1

2
(I + R)

P− = 1
2
(I −R)

(2)

are encoded with the following properties:⎧⎨
⎩

(P±)2 = P±

P±P∓ = 0
P+ + P− = I

(3)

The first property ensures that P+ and P− are projection operators. The second prop-
erty is useful for splitting fields into two orthogonal components. The third property is useful
for reconstructing a field from its orthogonal components.

C.2 Space and Time

Here, the operator T
T (w) = σwσ (4)

is chosen as the basis on which to construct projection operators which extract the ’space-
like’ and ’time-like’ components of Clifford numbers. The operator T acts as its own inverse:

T 2(w) = σ2wσ2 = Iw (5)

so that it has the general behavior of a reflection operator, as is required. Its particular
behavior is to reflect any Clifford number w in the hyper plane (mirror) represented by
the unit of Λ3, σ = −e1e2e3. Components containing only space-like units are invariant
since (geometrically) they sit on the (hyper) surface of the mirror, and (mathematically) they
commute with the unit σ. Components containing the time unit ê undergo a change of sign
since (mathematically) they anti-commute with the unit σ:

σê = −êσ (6)

are (geometrically) they are transported from one side of the mirror to the other.
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Subjecting a four dimensional Clifford space-time vector u ∈ Λ1 to the operator T
simply reverses the sign on the time dimension, ê → −ê, leaving all of the spatial dimensions
e1, e2, e3 unaltered:

T (u1e1 + u2e2 + u3e3 + ûê) = u1σe1σ + u2σe2σ + u3σe3σ + ûσêσ

= u1e1 + u2e2 + u3e3 − ûê (7)

Projection operators that reject and select components containing the time unit are now con-
structed from the reflection operator T :{

S = 1
2
(I + T )

T = 1
2
(I − T )

(8)

As in the general case, these operators are idempotent (S2 = S, T 2 = T ), mutually exclusive
(ST = TS = 0) and complementary (S + T = I).

Subjecting a four dimensional Clifford space-time vector û ∈ Λ1 to the S operator
gives:

S(û) = S(u1e1 + u2e2 + u3e3 + ûê)

=
1

2
(u1e1 + u2e2 + u3e3 + ûê) +

1

2
(u1e1 + u2e2 + u3e3 − ûê)

= (u1e1 + u2e2 + u3e3) (9)

Subjecting a four dimensional Clifford time-time vector û ∈ Λ1 to the T operator
gives:

T (û) = T (u1e1 + u2e2 + u3e3 + ûê)

=
1

2
(u1e1 + u2e2 + u3e3 + ûê) − 1

2
(u1e1 + u2e2 + u3e3 − ûê)

= ûê (10)

The operator T selects components which contain the time unit, either alone or in the
form of a product with space units. The operator S does exactly the opposite. It selects all
other components. This includes all components which contain only space units, either alone
or in the form of a product with one another. It also includes all components which contain
only the invisible unit, i.e. scalars. In view of their behavior, the S and T operators are called
the space-like and time-like projection operators respectively. However, don’t forget that the
S operator is really space+scalar.

C.3 Boundary Data and Boundary Field

Boundary conditions for problems in electromagnetics are usually described for the
field u on the boundary Σ, in terms of either the field’s normal component of its tangential
component.

In the Clifford framework vectors and fields can be split into a mixture of different
normal or tangential components by employing two projection operators Q+ and Q−, which
themselves are derived from a single reflection operator Q.

For the purposes of numerical implementation it is usual to embed any given problem
into whatever coordinate system seems most appropriate. In some case it is convenient to
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decompose the boundary into a set of matching elements (pieces), and to perform some of
the calculations using a coordinate system local to each element. The local results must
subsequently be transformed into a common coordinate system before they can be used to-
gether to form a solution. This requires simple rigid body transformations, i.e. translation
and rotation.

In the Clifford framework translation of vectors and fields can be effected by adding
a constant vector to the independent variable, and rotation can be achieved by employing a
rotation operator constructed specifically for that purpose.

• Boundary data Projection Operator

1. A Boundary Reflection Operator Firstly, a reflection operator Q for any Clifford
number u is defined as

Qu = nun (11)

where n is a unit vector encoded as a Clifford number (i.e. n ∈ SΛ1 and n2 =
−1). Note that Q2u = (nun)2 = u = Iu. This shows Q is its own inverse
and therefore confirms that Q is a reflection operator. The unit vector n can be
chosen arbitrarily, but it is often most useful to choose n as the unit normal vector
to the boundary Σ.

2. Two Boundary Projection Operators Two projection operators Q+, Q− are now
defined as:

Q+ =
1

2
(I + Q)u (12)

Q− =
1

2
(I − Q)u (13)

As in the general case, these operators are idempotent (Q+)2 = Q+, (Q−)2 =
Q−, mutually exclusive (Q+Q− = Q−Q+ = 0) and complementary (Q+ +
Q− = I).

3. Application to Vectors. The positions of points on the boundary can be encoded
into SΛ1 of a Clifford number u. Applying the reflection operator Q to any
vector u ∈ SΛ1 gives:

Qu = nun

= [−(n · u) + (n × u)σ]n

= −(n · u)n + {−(n × u)σ · n + [(n × u)σ × n]σ} (14)

The first term of in braces is zero because n × u is perpendicular to n, and the
second term simplifies with nσ = σn and then σ2 = 1. Therefore:

Qu = −(n · u)n + (n × u) × n

= −un + ut (15)

where un and ut are two orthogonal components of the vector u. The component
un is parallel to the vector �n, and the component ut is perpendicular to it. The
general behavior of the reflection operator is to reverse the component of any
vector parallel to the unit (reference) vector �n. In the case where �n is the unit
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normal to the boundary Σ then un and ut are the normal and tangential compo-
nents of the field respectively. In this case the behaviour of the operator Q is to
reflect the vector u in the boundary.

Applying the projection operators Q+ and Q− now gives:

Q+u =
1

2
(I + Q)u =

1

2
(un + ut − un + ut) = ut

Q−u =
1

2
(I − Q)u =

1

2
(un + ut + un − ut) = un (16)

The projection operator Q+u and Q−u therefore split any Clifford vector u ∈
SΛ1 into normal and tangential components with respect to the normal vector n.

4. Application to Electromagnetic Field The Electromagnetic (bi-vector) field u ∈
Λ2 is encoded into a Clifford number as:

u = abHσ + jbEê (17)

Applying the reflection operator Q gives:

Qu = nun

= abnHσn + jbnEên

= ab(nHn)σ − jb(nEn)ê

= ab(QH)σ − jb(QE)ê (18)

Both the magnetic and electric parts of the field are subject to the influence of the
operator, with the electric part subject also to a change of sign.

Applying the projection operators Q+ and Q− gives:

Q+u =
1

2
[abHσ + jbEê + ab(QH)σ − jb(QE)ê]

= ab
1

2
(I + Q)Hσ + jb

1

2
(I − Q)Eê

= ab(Q+H)σ + jb(Q−E)ê

= abHtσ + jbEnê (19)

and:

Q−u =
1

2
[abHσ + jbEê − ab(QH)σ + jb(QE)ê]

= ab
1

2
(I − Q)Hσ + jb

1

2
(I + Q)Eê

= ab(Q−H)σ + jb(Q+E)ê

= abHnσ + jbEtê (20)

The projection operators Q+ and Q− therefore split the Clifford representation
of the electromagnetic field into one part containing tangential magnetic field
paired with normal electric field, and another part containing normal magnetic
field paired with tangential electric field.
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• A vector and Field Rotation Operator

A rotation operator Θ for any Clifford number u is defined as:

Θu = n2n1un1n2 (21)

where n1 and n2 are unit vectors encoded as Clifford numbers (i.e. n ∈ SΛ1 and
n2 = −1). Note that Θu = Q2Q1u, where Q1 = n1un1 and Q2 = n2un2 are two
different reflection operators.

1. Application to Scalar
For any scalar u ∈ Λ0:

Θu = n2n1un1n2 = n2n1n1n2u = u (22)

The rotation operator has no effect on scalars.

2. Application to Vector
For any vector u ∈ Λ1:

Θu = n2n1un1n2 (23)

3. Application to Bi-vector
For any electromagnetic field u = abHσ + ibEê ∈ Λ2:

Θu = ab(ΘH)σ + ib(ΘE)ê (24)

4. Application to Sum
For any Clifford numbers u and v:

Θ(u + v) = n2n1(u + v)n1n2

= n2n1un1n2 + n2n1vn1n2

= Θu + Θv

The rotation operator has a distributive property over sums of Clifford numbers.

5. Application to Products
For any Clifford number u and v:

Θ(uv) = n2n1(uv)n1n2

= (n2n1u)(vn1n2)

= (n2n1u)(n1n2n2n1)(vn1n2)

= (n2n1un1n2)(n2n1vn1n2)

= ΘuΘv (25)

The rotation operator has a distributive property over products of Clifford num-
bers.

6. Application to Reproducing Kernel
The reproducing kernel is of the form:

Ek(x) = a(|x|)x + êb(|x|) (26)
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where a and b are scalar valued functions and x ∈ SΛ1. Applying the rotation
operator gives:

ΘEk(x) = n2n1{a(|x|)x + êb(|x|)}n1n2

= a(|x|)n2n1xn1n2 + n2n1êb(|x|)n1n2

= a(|x|)Θx + n2n1n1n2êb(|x|)
= a(|x|)Θx + êb(|x|)
= a(|Θx|)Θx + êb(|x|)
= Ek(Θx) (27)

Note that the same effect can be achieved by applying the rotation operator to ei-
ther the result to the argument of the reproducing operator. This is a consequence
of the radial symmetry of the reproducing kernel.
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Appendix D

List of Abbreviations

PDE Partial Differential Equation
FDM Finite Differential Method
FEM Finite Element Method
FDTD Finite Difference Time Domain
FETD Finite Element Time Domain
TLM Transmission-Line Method
MoM Method of Moment
BEM Boundary Element Method
BIE Boundary Integral Equation
EFIE Electric Field Integral Equation
MFIE Magnetic Field Integral Equation
CFIE Combined Field Integral Equation
CSIE Combined Source Integral Equation
NEC Numerical Electromanetics Code
MRW Ma-Rohkin-Wandzura Quadrature Scheme
RWG Rao-Wilton-Gilsson Basis Function
TL Trintinalia-Ling Basis Function
PMCHW Poggio-Miller-Chang-Harrington-Wu Formulation
DFs Differential Forms
EMs Electromagnetics
PEC Perfect Electric Conductor
EHFD Enhanced High Frequency Diffraction
P.V. Principal Value
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Appendix E

Publications and Presentations

Chantaveerod, A., Seagar, A. D. and Angkaew, T.
“Calculation of Electromagnetic Field with Integral Equation Based Clifford Alge-
bra” is presented at Progress in Electromagnetics Research Symposium (PIERS 2007)
on August 27-30, 2007, Prague, Czech Republic.

Chantaveerod, A. and Angkaew, T.
“Numerical Computation of Electromagnetic Far-Field from Near-Field using Inte-
gral Equation based on Clifford Algebra” is presented at Asia-Pacific Microwave
Conference (APMC 2007) on December 11-14, 2007, Bangkok, Thailand.

Chantaveerod, A. and Seagar, A. D.
“Iterative Solutions of Electromagnetic Fields at Perfectly Reflective and Transmis-
sive Interfaces using Clifford Algebra and the Multi-Dimensional Cauchy Integral”
is published in the IEEE Transactions on Antennas and Propagations, on xxx, yyy,
pages zzz-zzz.
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