

Thesis Title
By
Field of Study
Thesis Advisor

Some Types of Explicit Continued Fractions
Miss Oranit Panprasitwech
Mathematics
Tuangrat Chaichana, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

(Professor Supot Hannonobua, Dr.rer.nat.)

THESIS COMMITTEE

> T. Chaichana

Thesis Advisor

(Tuangrat Chaichana, Ph.D.)

Motinnann Neemarte
(a) Examiner

External Examiner
(Associate Professor Utsanee Leerawat, Ph.D.)

อรนิตย์ พันธ์ประสิทธิ์เวช : เศษส่วนต่อเนื่องที่มีรูปแบบชัดแจ้งบางแบบ (SOME TYPES OF EXPLICIT CONTINUED FRACTIONS) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: อ.ดร.ตวงรัตน์ ไชยชนะ, 98 หน้า.

การที่สามารถทำนายแบบรูปของเศษส่วนต่อเนื่องปกติมิได้เพียงน่าสนใจเท่านั้น หากแต่ใน บางครั้งยังได้มาซึ่งข้อมูลเพิ่มเติมจากเศษส่วนต่อเนื่องปกตินั้นอีกด้วย เป็นที่ทราบกันดีว่า ในฟีลด์ของ จำนวนจริงและฟีลด์ของอนุกรมตามแบบแผนเหนือฟีลด์ใด ๆ ภารพิจารณาว่าเศษส่วนต่อเนื่องปกติเป็น แบบจำกัดหรืออนันต์ถูกนำมาใช้เพื่อแสดงลักษณะเฉพาะของความเป็นตรรกยะหรืออตรรกยะ และยัง ทราบอีกด้วยว่าเศษส่วนต่อเนื่องปกติแบบคาบใด ๆ สอดคล้องกับสมาชิกที่เป็นอตรรกยะกำลังสองเท่านั้น นอกจากนี้มีงานวิจัยจำนวนมากที่เกี่ยวข้องกับการจัดหาเกณฑ์เพื่อตรวจสอบความเป็นอดิศัยผ่านเศษส่วน ต่อเนื่องปกติ

ส่วนสำคัญของวิทยานิพนธ์จบับนี้ คือ คารสร้างสูตรชัดแจ้งของเศษส่วนต่อเนื่อง โดยเริ่มต้น จากการจัดตั้งเอกลักษณ์สำหรับเศษส่วนต่อเนื่องที่มีแบบรูปพิเศษต่าง ๆ รวมทั้งแบบรูปพาลินโดรมซึ่งคือ แบบรูปที่การอ่านจากซ้ายไปขวาเหมือนกันกับการอ่านจากขวามาซ้าย โดยการใช้ประโยชน์จากเอกลักษณ์ เหล่านี้เราได้มาซึ่งเศษส่วนต่อเนื่องที่มีรูปไเบบชัดแจ้งที่เขียนแทนจำนวนที่อยู่ในรูปอนุกรมที่แน่นอน เศษส่วนต่อเนื่องที่มีรูปแบบชัดแจ้งเหล่านี้ดรอบครองคุณสมบัติที่สวยงาม คือ ในทุกช่วงความยาวที่ เหมาะสม การอ่านลำดับของเศษส่วนย่อยจากซ้ายไปขวาจะเหมือนกันกับการอ่านจากขวามาซ้าย และ ดังนั้น จากการใช้เกณฑ์เพื่อตรวจสอบความเป็นอดิศัยของ Adamczewski และ Bugeaud ที่ทำไว้ในปี 2007 สามารถสรุปได้ว่าจำนวนจริงที่ถูกเขียนแทนด้วยเศษส่วนต่อเนื่องที่มีรูปแบบชัดแจ้งเหล่านี้เป็น จำนวนอดิศัย นอกจากสูตรชัดแจ้งสำหรับเศษส่วนต่อในื่องแล้ว การมีขอบเขตของเศษส่วนย่อยของ เศษส่วนต่อเนื่องเป็นเรื่องที่น่าสนใจและถูกพิจารณาในฐอนะที่เป็นส่วนสำคัญอันดับสองในวิทยานิพนธ์นี้ ในส่วนนี้ เราได้ให้เกณฑ์ในการตรวจสอบการมีขอบเขตของเศษส่วนย่อยของเศษส่วนต่อเนื่องปกติที่เขียน
 เศษส่วนย่อยของเศษส่วนต่อเนื่องปกติมีค่าไม่เกิน 5 กล่าวคือ เราได้พิสูจน์ข้อความคาดการณ์ที่มีชื่อเสียง ข้อความหนึ่งของ Zaremba สำหรับจำนวนเต็มที่อยู่ในรูป $2^{\mathrm{s}} \cdot 3^{\mathrm{t}}$ เมื่อ s และ t เป็นจำนวนเต็มที่ไม่เป็นลบ

ภาควิชา...... คณิตศาศตร์....
สาขาวิชา.... คณิตศาสตร์....
ปีการศึกษบ..2552.

\# \# 4873869023 : MAJOR MATHEMATICS
KEYWORDS : EXPLICIT CONTINUED FRACTIONS / PALINDROME / BOUNDED
PARTIAL QUOTIENTS / ZAREMBA'S CONJECTURE
ORANIT PANPRASITWECH : SOME TYPES OF EXPLICIT CONTINUED
FRACTIONS. THESIS ADVISOR: TUANGRAT CHAICHANA, Ph.D., 98 pp.

Being able to predict a pattern of a regular continued fraction is not only interesting in its own right but it sometimes yields more informations about that regular continued fraction. In the real number field and in the field of formal series over any base field, it is well-known that the termination of a regular continued fraction can be used to characterize rationality and is also known that any periodic regular continued fraction corresponds exactly to a quadratic irrational element. There are a number of researches about transcendental criteria via regular continued fractions.

The major part of this thesis is devoted to the establishing of explicit formulae for continued fractions. First, identities for continued fractions with specific patterns, including palindromic patterns, are realized over an arbitrary field. Then by making use of these identities, explicit continued fractions representing the numbers expressible explicitly by certain series are obtained. These explicit continued fractions possess a beautiful property, that is, sequences of their partial quotients begin in arbitrarily long palindromes. By using a transcendental criterion of Adamczewski and Bugeaud in 2007, it can be concluded that the real numbers represented by these explicit continued fractions are transcendental. Besides explicit formulae for continued fractions, boundedness of the partial quotients of a continued fraction is of interest and is considered as the second main part in this thesis. In this part, a criterion of boundedness of the partial quotients of the regular continued fraction representing a linear fractional transformation of a formal series is given. Also, a fascinating example of rational numbers represented by regular continued fractions which their partial quotients are bounded by 5 is provided by proving a famous conjecture attributed to Zaremba for integers, being of the form $2^{s} \cdot 3^{t}$ where s, t are non-negative integers.

$$
\begin{aligned}
& \text { ศูนยิวัทย์ทรพย่ากิร } \\
& \text { จุหาลงกรณ์มหาวิทยาลัย }
\end{aligned}
$$

Department:Mathematics.....
Field of Study:Mathematics.....

Student's Signature orantt Pompralldwech.
Advisor's Signature........... Chaichana...
\qquad

ACKNOWLEDGEMENTS

I am greatly indebted to Dr. Tuangrat Chaichana, my thesis advisor, and Professor Dr. Vichian Laohakosol for their willingness to sacrifice their time to offer me valuable suggestions and helpful advice in preparing and writing this thesis. I would like to thank Professor Dr. Yupaporn Kemprasit, Associate Professor Dr. Ajchara Harnchoowong, Assistant Professor Dr. Yotsanan Meemark and Associate Professor Dr. Utsanee Leerawat, my thesis committee, for their comments and suggestions to this thesis. I also wovld like to thank all of the teachers who have taught me, especially Associate Professor Dir. Wicharn Lewkeeratiyutkul, for the knowledge and skill I have got from them. Thanks to all my friends for giving me warmth and happiness.

In particular, I would like to express my deep gratitude to my parents who have always been my inspiration and my guiding light for their love and encouragement throughout my graduate studies.

Parts of this thesis have been financially supported by the Centre of Excellence in Mathematics, CHE, and by the Commission on Higher Education and the Thailand
 จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT (THAI) iv
ABSTRACT (ENGLISH) v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER I INTRODUCTION AND PRELIMINARIES 1
1.1 Introduction 1
1.2 Preliminaries 4
CHAPTER II CONTINUED FRACTIONS WITH BOUNDED PARTIAL QUOTIENTS 14
2.1 Linear fractional transformations of bounded continued fractions 14
2.2 Zaremba's conjecture for 2 30
CHAPTER III CONTINUED FRACTIONS WITH SOME PATTERNS 34
3.1 Identities for continued fractions with some patterns 34
3.2 A generalization of continued fractions with 2-duplicate symmetry 38
6 a
CHAPTER IV EXPLICITCONTINGEDFRACTIONSREEATED TO CERTAINSERIES.थ.43
4.1 Real numbergase $\cap . \% .1 .9 .198 \cap \cap .9 \cap . \cap$. 43
4.2 Formal series case 71
REFERENCES 94
VITA 98

CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

It is generally difficult to explicitly/obtain a regular continued fraction representing a quantity expressed in other form, see $\overline{\text { e.g., [28], [18] and [9]. However, being able to }}$ predict a pattern in a regular continued fraction of a quatity is not only interesting in its own right but it sometimes enable us to derive more informations about that quantity from its regular continued fraction. In the real number field and in the field $\mathbb{F}\left(\left(x^{-1}\right)\right)$ of formal series, over a-base field \mathbb{F}, which is the completion of the field of rational functions with respeet to the degree valuation, it is well-known that the termination of a regular continued fraction can be used to characterize rationality and is also known that any periodic regular continued fraction corresponds exactly to a quadratic irrational element. Variousecessearches, for examples [5], [1], [2], [3], [4], [6] and [12], gave oranscendenceecriteriaddepending on special patterns in regular continued fractions.
The main objectives of this thesis are to establish explicit formula

The main objectives of this thesis are to establish explicit formulae of continued fractions. It is well-known that the theory of continued fractions for formal series goes parallel with that for real numbers; for detail see [24]. The work in this thesis centers around continued fractions both in the real number field and in the field $\mathbb{F}\left(\left(x^{-1}\right)\right)$. However, it is useful to define continued fractions over a general field K and some results in this work are widely provided for any field K.

In chapter II, boundedness of partial quotients of regular continued fractions representing some certain quantities is mentioned as the second objectives in this work. We say that any irrational number has bounded partial quotients if the supremum of all its partial quotients is finite. Lagarias and Shallit [17] proved, using the socalled Lagrange constant through a result of Cusick and Mendès France [11], that if a irrational number has bounded partial quotients, so does its linear fractional transformation. We show here that this is also the case in $\mathbb{F}\left(\left(x^{-1}\right)\right)$. Also, a bound of the partial quotients of a regular continued fraction representing a linear fractional tranformation of a rational elements in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ is obtained. Next, a fascinating example of rational numbers represented by regular continued fractions whose their partial quotients are bounded by a small integer is provided by proving a famous conjecture attributed to Zaremba. This conjecture of Zaremba, see e.g., [20], states that for a positive integer $m \geq 2$, there exists an integer $1 \leq a<m$, coprime to m such that all of the partial quotients in the regular continued fraction of $\frac{a}{m}$ are less than or equal to 5 . This conjecture has been verified for m being a power of 2,3 and 5 by Niederreiter [20], and for m being a power of 6 by Yodphotong and Laohakosol [30]. In 2005, this conjecture was verified by Komatsu, [16], for m being the $c \cdot 2^{n}$-th power of 7 where $n \geq 0$ and c is an odd number less than or equal to 11 . In this thesis, evidence of Zaremba's conjeeture for m being the form $2^{s} \cdot 3^{t}$ where s, t are non-negative integers is presented.

A group of researchers $[25],[26],[28],[29],[15],[22]$ and $[23]$ have found continued fractions for numbers or formal series expressed by certain types of series. An important tool used in these results is the so-called Folding lemma, an identity, first appears in [19], for continued fractions which has folding symmetry in their partial quotients. In Chapter III, we attach significance to identities for continued fractions with some interesting patterns. Many identities for continued fractions with some
patterns in their partial quotients were tied together as a single phenomenon in the work of Clemens, Merrill and Roeder in 1995, see [9]. They worked in the real number field. This phenonmenon is generalized to continued fractions over a general field K and then many identities for continued fractions with some interesting patterns are realized. One of these results is an identity for continued fractions whose their partial quotients have palindromic property. This is of particular interest since this palindromic property leads to a special property which is useful for finding explicit continued fractions. Next, similar to the work of Cohn in 1996, [10], which generalized the Folding lemma, a generalization of the identity for continued fractions whose their partial quotients have palindromie property is investigated using a modification of a technique due to

In the final chapter, Chapter IV,along the line which Tamura [27] did for two classes of real numbers $\tilde{\theta}\left(T ; \tilde{f}^{(1)}\right)$ and $\tilde{\theta}\left(T ; \tilde{f}^{(2)}\right) / T$ defined by

where $f(T) \in \mathbb{Z}[T], \quad f_{0}(T)=T$ and for all $i \geq 1, \quad f_{i}(T)=f\left(f_{i-1}(T)\right)$, and

$$
\rho_{थ} q_{\tilde{f}^{(2)}(T)}^{\tilde{f}^{(1)}(T)=T(T+2)\left(T Q^{2}\right) \tilde{g}^{(1)}(T)+T^{2}-2,}
$$

with suitable $\tilde{g}(1)(T) \tilde{g}^{(2)}(T) \approx \mathbb{Z}[T]$ and $T T \in \mathbb{N}$, explicit formulae for regular continued fractions for two classes of real numbers $\theta\left(T ; f^{(1)}\right)$ and $\theta\left(T ; f^{(2)}\right) / T$ expressed by the following series

$$
\theta(T ; f)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{f_{0}(T) f_{1}(T) \ldots f_{m}(T)},
$$

where $f(T) \in \mathbb{Z}[T], \quad f_{0}(T)=T$ and for all $i \geq 1, \quad f_{i}(T)=f\left(f_{i-1}(T)\right)$, and

$$
\begin{aligned}
& f^{(1)}(T)=T(T+2)(T-2) g^{(1)}(T)-T^{2}+2, \\
& f^{(2)}(T)=T^{2}(T+2)(T-2) g^{(2)}(T)-T^{2}+2,
\end{aligned}
$$

with suitable $g^{(1)}(T), g^{(2)}(T) \in \mathbb{Z}[T]$ and $T \in \mathbb{N}$ are given. An identity for continued fractions with palindromic property is used as a guideline to produce these formulae. We found that partial quotients of these explicit regular continued fractions begin in arbitrarily long palidromes and using a transcendental criterion given by Adamczewski and Bugeaud in [3] it can be concluded that the numbers in these classes are transcendental. Analogues of these explicit formulae are also established for formal series. In the formal series case, our explicit continued fractions also have a beautiful pattern but it is different from the reat number case because we cannot assure that these continued fractions are regutar. Using the same technique, we give analogues of the works of Tamura as well.

In the rest of this chapter, we celleet definitions and elementary properties, mainly without proofs, to be used throughout the entire thesis.

1.2 Preliminaries

Definition 1.2.1. A valuation on a field $K_{\text {is }}$ a real-valued function $a \mapsto|a|$ defined on K which satisfies the following colditions: N ? $\}$

(ii) $\forall a, b \in K, \quad|a b|=|a||b|$
(iii) $\forall a, b \in K, \quad|a+b| \leq|a|+|b|$.

A valuation on K is called non-Archimedean if the condition (iii), called the triangle inequality, is replaced by a stronger condition: $\forall a, b \in K, \quad|a+b| \leq \max \{|a|,|b|\}$, called the strong triangle inequality. Any other valuation on K is called Archimedean.

An important consequence of the strong triangle inequality is if $|\cdot|$ is a nonArchimedean valuation on a field K, then

$$
\begin{equation*}
\forall x, y \in K, \quad|x| \neq|y| \text { implies }|x+y|=\max \{|x|,|y|\} . \tag{1.1}
\end{equation*}
$$

Examples 1) For $K=\mathbb{Q}$, the ordinary absolute value $|\cdot|$ is an Archimedean valuation on K.
2) Consider the field $\mathbb{F}(x)$ of rational functions over a field \mathbb{F}. Let $\frac{f(x)}{g(x)} \in \mathbb{F}(x) \backslash\{0\}$. Define the degree valuation

$$
\left|\frac{f(x)}{a(x)}\right|=2^{\operatorname{deg} f-\operatorname{deg} g} \quad \text { and } \quad|0|_{\infty}=0
$$

Then $|\cdot|_{\infty}$ is a non-Archimedean valuation on $\mathbb{F}(x)$.
Let K be an arbitrary field equipped with a valuation $|\cdot|$. We adjoin to K an element, called infinity, and denoted by ∞. The set $K \cup\{\infty\}$ will be denoted by \widehat{K} and will be called the extended field. Arithmetic operations involving ∞ are defined for all $a, b \in K$ with $a \neq 0$ as follows:

A sequence $\left\{x_{n}\right\}$ in \widehat{K} is said to converge to an element $x_{1} \in K i f^{\prime}$ for all sufficiently large n,

$$
x_{n} \in K \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|x_{n}-x\right|=0 .
$$

A continued fraction over K is defined formally to be an ordered pair

$$
\left\langle\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle,\left\{\gamma_{n}\right\}\right\rangle,
$$

where $a_{1}, a_{2}, \ldots \in K \backslash\{0\}, \quad b_{0}, b_{1}, \ldots \in K$ and $\left\{\gamma_{n}\right\}$ is a sequence in \widehat{K} given by

$$
\gamma_{n}=S_{n}(0), \quad n=0,1,2,3, \ldots
$$

where $\quad S_{n}: \widehat{K} \rightarrow \widehat{K}$ is defined depending on $s_{n}: \widehat{K} \rightarrow \widehat{K}$ as follows

$$
\begin{array}{lll}
S_{0}(w)=s_{0}(w), & S_{n}(w)=S_{n-1}\left(s_{n}(w)\right), & n=1,2,3, \ldots, \\
s_{0}(w)=b_{0}+w, & s_{n}(w)=\frac{a_{n}}{b_{n}+w}, & n=1,2,3, \ldots .
\end{array}
$$

We call a_{n} and b_{n} the $n^{\text {th }}$ partial numerator and denominator of the continued fraction, respectively, and call γ_{n} the $n^{\text {th }}$ approximant. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are infinite sequences, then $\left\langle\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle,\left\{x_{n}\right\}\right\rangle$ is called an infinite or non-terminating continued fraction. It is called a finite or terminating continued fraction if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ have only a finite number of terms $a_{1}, a_{2}, \ldots, a_{k}$ and $b_{0}, b_{1}, b_{2}, \ldots, b_{k}$.

It can be seen that the $n^{\text {th }}$ approximant is given by

It is more convenient to use the notation

$$
\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n} ; \ldots\right]
$$

on $\left\langle\left\langle\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle,\left\{\left\{\gamma_{n}\right\}\right\rangle\right.\right.$ and iff $a_{n} \approx 1$ for all $n \geq 1$, we

 denotein this case $b_{0}, b_{1}, b_{2}, \ldots$ are called partial quotients of $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{n}, \ldots\right]$.
Corresponding to each continued fraction $\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots\right]$, two sequences $\left\{p_{n}\right\}$
and $\left\{q_{n}\right\}$ are defined by the system of second order linear difference equations

$$
\begin{align*}
& p_{-1}=1, \quad p_{0}=b_{0}, \quad q_{-1}=0, \quad q_{0}=1 \\
& p_{n}=b_{n} p_{n-1}+a_{n} p_{n-2} \quad \text { and } \quad q_{n}=b_{n} q_{n-1}+a_{n} q_{n-2} \quad(n \geq 1), \tag{1.2}
\end{align*}
$$

these p_{n}, q_{n} are called the $n^{\text {th }}$ numerator and denominator, respectively, and the fraction $\frac{p_{n}}{q_{n}}$ is called the $n^{\text {th }}$ convergent.

Some important properties of these numerators and denominators of continued fractions are presented in the following lemma whose proof is straightforward by induction.

Lemma 1.2.2. For an arbitrary field K, let $\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots\right]$ be a continued fraction over K and $\alpha \in K$. Then for $n \geq 0$,

$$
\begin{equation*}
S_{n}(w)=\frac{p_{n-1} P_{n-1} w}{q_{n}+q_{n-1} w} \tag{1.3}
\end{equation*}
$$

The following theorem is a classical result about convergence of continued fractions of Pringsheim in 1899, for detail see [14]:

Theorem 1.2.3. Let K be arbitrary field together with a prescribed valuation. The continued fraction $\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{n}, b_{n} ; \ldots\right]$ converges to an element in K if

$$
\left|b_{n}\right| \geq\left|a_{n}\right|+1, \quad \text { for all } n \geq 1
$$

Definition 1.2.4. An infinite continued fraction $\left[b_{0} ; a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots\right]$ is said to be periodic if there exist positive integers k, N such that

$$
a_{n}=a_{n+k} \quad \text { and } \quad b_{n}=b_{n+k} \quad \text { for all } n \geq N,
$$

and is denoted by

$$
\left[b_{0} ; a_{1}, b_{1} ; \ldots ; a_{N-1}, b_{N-1} ; \frac{1}{a_{N}}, b_{N} ; \ldots ; a_{N+k-1}, b_{N+k-1}\right] .
$$

Definition 1.2.5. A continued fraction $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{n}\right] \quad(n \geq 1)$ is said to be palindromic if the word $b_{1} b_{2} \ldots b_{n}$ is equal to its reversal.

Remark 1.2.6. If a continued fraction $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{n}\right] \quad(n \geq 1)$ is palindromic, then by (1.4) and (1.5) we have the following specific property

Definition 1.2.7. For any terminating continued fraction $\left[b_{0} ; b_{1}, \ldots, b_{n}\right](n \geq 0), n$

In \mathbb{R}, it is known that any real number can be represented as a continued fraction of the form

where $b_{0} \in \mathbb{Z}, \quad b_{i} \in \mathbb{N} \quad(i \geq 1)$. This continued fraction is called a regular or simple

The construction of a regular continued fraction for $\xi \in \mathbb{R} \backslash\{0\}$ runs as follows: Define $\xi=[\xi]+(\xi)$, where $[\xi]$ denote the greatest integer less than or equals ξ and $(\xi):=\xi-[\xi]$. We call $[\xi]$ and (ξ) the head and tail parts of ξ, respectively. Clearly, the head and tail parts of ξ are uniquely determined. Let $b_{0}=[\xi] \in \mathbb{Z}$.

If $(\xi)=0$, then the process stops.

If $(\xi) \neq 0$, then write $\xi=b_{0}+\xi_{1}^{-1}$, where $\xi_{1}^{-1}=(\xi)$ with $\xi_{1}>1$. Next we write $\xi_{1}=\left[\xi_{1}\right]+\left(\xi_{1}\right)$. Let $b_{1}=\left[\xi_{1}\right] \in \mathbb{N}$.

If $\left(\xi_{1}\right)=0$, then the process stops.
If $\left(\xi_{1}\right) \neq 0$, then write $\xi_{1}=b_{1}+\xi_{2}^{-1}$, where $\xi_{2}^{-1}=\left(\xi_{1}\right)$ with $\xi_{2}>1$. Next we write $\xi_{2}=\left[\xi_{2}\right]+\left(\xi_{2}\right)$. Let $b_{2}=\left[\xi_{2}\right] \in \mathbb{N}$.

Again, if $\left(\xi_{2}\right)=0$, then the process stops. If $\left(\xi_{2}\right) \neq 0$, then we continue in the same manner. By doing so, we obtain the mique representation

where $b_{0} \in \mathbb{Z}, b_{i} \in \mathbb{N}(i \geq 1)$ and ξ_{n} is referred to as the $n^{\text {th }}$ complete quotient of ξ.
If $\left(\xi_{n}\right)=0$ for some n, then $\xi=\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{n}\right]$, i.e., its regular continued fraction to ξ is terminating or finite Dotherwise, $\left(\xi_{n}\right) \neq 0$ for all n and the regular continued fraction is infinite and this is the case of interest from now on. In order to establish convergence, we make ise of the following properties which are easily verified by using Lemma 1.2.2 and (1.2)

Lemma 1.2.8. For $n \geq 1$, let $\frac{p_{n}}{q_{n}}$ be the $n^{\text {th }}$ convergent corresponding to the above $b_{0}, b_{1}, \ldots, b_{n}$. Then

(iii) $\xi-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n}}{q_{n}\left(\xi_{n+1} q_{n}+q_{n-1}\right)}$.

Using Lemma 1.2.8 (iii), we get the approximation

$$
\left|\xi-\frac{p_{n}}{q_{n}}\right|=\frac{1}{q_{n}\left(\xi_{n+1} q_{n}+q_{n-1}\right)} \quad \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

since the integer q_{n} are increasing with n, by Lemma 1.2 .8 (ii), and ξ_{n+1} is positive. This immediately implies that $\frac{p_{n}}{q_{n}} \rightarrow \xi$, and enable us to write $\xi=\left[b_{0} ; b_{1}, b_{2}, \ldots\right]$.

The regular continued fraction is unique for an irrational number, but for rational numbers, we have the following characterization; for details, see e.g., [21, Chapter 7].

Theorem 1.2.9. Any finite regular continued fraction represents a rational number. Conversely, any rational number can be expressed as a finite regular continued fraction. and in exactly two ways,
where $b_{n} \geq 2$.

A well-known theorem of Lagrange characterizing periodic regular continued fractions, whose proof can be found in [21, Chapter 7], states that:

Theorem 1.2.10. A periodic regutaf continued fraction is a quadratic irrational number, and conversely.

Next, continued fractions in the field $\mathbb{F}\left(\left(x^{-1}\right)\right)$ of formal series over a field \mathbb{F} are mentioned. It is well-known, see e.g., [7, Chapter 1], that every element $\xi \in$

where $r \in \mathbb{Z}$, and the coefficients $w_{-i} \in \mathbb{F}(i \geq r)$ with $w_{-r} \neq 0$. The degree valuation $|\xi|_{\infty}$ in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ is defined by putting

$$
|0|_{\infty}=0, \quad|\xi|_{\infty}=2^{-r} \quad \text { if } \xi=\sum_{i=r}^{\infty} w_{-i} x^{-i} \text { with } w_{-r} \neq 0
$$

Definition 1.2.11. Let $\xi=\sum_{i=r}^{\infty} w_{-i} x^{-i} \in \mathbb{F}\left(\left(x^{-1}\right)\right)$. The head part, $[\xi]$, and the tail part, (ξ), of ξ are defined by

$$
[\xi]:=\left\{\begin{array}{ll}
\sum_{i=r}^{0} w_{-i} x^{-i} & \text { if } r \leq 0, \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad(\xi):=\xi-[\xi]\right.
$$

In $\mathbb{F}\left(\left(x^{-1}\right)\right)$, there is a continued fraction algorithm similar to the case of real numbers. Each element can be uniquely represented as the regular continued fraction of the form

where $b_{0} \in \mathbb{F}[x]$ and $b_{i} \in \mathbb{F}[x]<\mathbb{F}(i \geq 1)$.
The construction of the regular confinued fraction for $\xi \in \mathbb{F}\left(\left(x^{-1}\right)\right) \backslash\{0\}$ runs as follows:

If $(\xi)=0$, then theprocess stops.
If $(\xi) \neq 0$, then write $\xi=b_{0}+\xi_{1}^{-1}$, where $\xi_{1}^{-1}=(\xi)$ with $\left|\xi_{1}\right|_{\infty}>1$. Next we write $\xi_{1}=\left[\xi_{1}\right]+\left(\xi_{1}\right)$. Let $b_{1}=\left[\xi_{1}\right] \in \mathbb{F}[x] \backslash \mathbb{F}$.

If $\left(\xi_{1}\right) \neq 0$, then write $\xi_{1}=b_{1}+\xi_{2}^{-1}$, where $\xi_{2}^{-1}=\left(\xi_{1}\right)$ with $\left.\xi_{2}\right|_{\infty}>1$. Next we

Again, if $\left(\xi_{2}\right)=0$, then the process stops. If $\left(\xi_{2}\right) \neq 0$, then we continue in the same manner. By doing so, we obtain the unique representation

$$
\xi=\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{n-1}, \xi_{n}\right],
$$

where $b_{0} \in \mathbb{F}[x]$ and $b_{i} \in \mathbb{F}[x] \backslash \mathbb{F}(i \geq 1)$ and ξ_{n} is referred to as the $n^{\text {th }}$ complete quotient of ξ.

If $\left(\xi_{n}\right)=0$ for some n, then $\xi=\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{n}\right]$, i.e., its regular continued fraction to ξ is terminating or finite. Otherwise, $\left(\xi_{n}\right) \neq 0$ for all n and the regular continued fraction is infinite and this is the case of interest from now on. The following lemma collects basic properties of regular continued fractions whose proof is easily verified by using Lemma 1.2.2 and (1.2).

Lemma 1.2.12. For $n \geq 1$, let $\frac{p_{n}}{q_{n}}$ be the $n^{\text {th }}$ convergent corresponding to the above $b_{0}, b_{1}, \ldots, b_{n}$. Then
(i) p_{n} and q_{n} are relatively prime;
(ii) $\left|q_{n-1}\right|_{\infty}>\left|q_{n-2}\right|_{\infty},\left|\xi_{n}\right|_{\infty}=\left|b_{n}\right|_{\infty}$,
(iii) $\left|q_{n}\right|_{\infty}=\left|b_{1} b_{2} \ldots b_{n}\right|_{\infty} ;$
(iv) $\xi-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n}}{q_{n}\left(\xi_{n+1} q_{n}+q_{n-1}\right)}$;
(v) p_{n} is the head part of $q_{n} \xi$.

Since $\left|\xi_{n+1}\right|_{\infty}=\left|b_{n+1}\right| \overbrace{\infty} \geq 2$, Lemma 1.2 .12 (ii) and (ivi) give

Using Lemma 1.2.12 (iv), we get the approximation
which immediately implies that $\frac{p_{n}}{q_{n}} \rightarrow \xi$, and enable us to write $\xi=\left[b_{0} ; b_{1}, b_{2}, \ldots\right]$.
As in the classical case, the following characterization of rational elements in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ via their regular continued fractions is well-known, see e.g., [24].

Theorem 1.2.13. Let $\xi \in \mathbb{F}\left(\left(x^{-1}\right)\right)$. Then ξ is rational if and only if its regular continued fraction is finite.

Specific properties of periodic regular continued fractions for formal series are stated as in Theorem 1.2.14 and 1.2.15, whose proofs can be found in [8].

Theorem 1.2.14. Let $\xi \in \mathbb{F}\left(\left(x^{-1}\right)\right)$. If the regular continued fraction of ξ is periodic, then ξ is an irrational root of a quadratic equation of the form $a t^{2}+b t+c=0$ where $a, b, c \in \mathbb{F}[x], a \neq 0$.

Theorem 1.2.15. Let $\xi \in \mathbb{F}\left(\left(x^{-1}\right)\right) /$ If ξ is an irrational root of a quadratic equation of the form $a t^{2}+b t+c=0$ where $a, b, c \in \mathbb{F}[x], a \neq 0$, then the regular continued fraction of ξ is periodic.

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

CONTINUED FRACTIONS WITH BOUNDED PARTIAL
 QUOTIENTS

In this chapter, the boundedness of partial quotients of regular continued fractions representing linear fractional transformations of elements in the field $\mathbb{F}\left(\left(x^{-1}\right)\right)$ of formal series over a based field \mathbb{F} is considered. In the last section, we verify a famous conjecture involving a bound of partial quotients of regular continued fractions for some rational numbers.

2.1 Linear fractional transformations of bounded continued fractions

Definition 2.1.1. Let θ be an irrational element in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ whose infinite regular

We say that θ has bounded partial quotients if $K(\theta)$ is finite. 6)

Clearly, $K_{\infty}(\theta) \leq K(\theta)$ and $K(\theta)$ is finite if and only if $K_{\infty}(\theta)$ is finite.
The main result reads:
Theorem 2.1.2. Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $a, b, c, d \in \mathbb{F}[x]$ be such that $\operatorname{det} M \neq 0$. If the regular continued fraction of an irrational element $\theta \in \mathbb{F}\left(\left(x^{-1}\right)\right)$ has bounded
partial quotients, then

$$
\begin{array}{ll}
& \frac{1}{|\operatorname{det} M|_{\infty}} K_{\infty}(\theta) \leq K_{\infty}\left(\frac{a \theta+b}{c \theta+d}\right) \leq|\operatorname{det} M|_{\infty} K_{\infty}(\theta), \\
\text { and } \quad & K\left(\frac{a \theta+b}{c \theta+d}\right) \leq \max \left\{|\operatorname{det} M|_{\infty} K(\theta),|c(c \theta+d)|_{\infty}\right\}
\end{array}
$$

Theorem 2.1.2 is proved by making use of the following results.
The next lemma is known as the best approximation property, cf. Theorem 7.13 in [21] for the real case.

Lemma 2.1.3. Let θ be an irrational element in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ whose regular continued fraction expansion is $\left[b_{0} ; b_{1}, b_{2}, \ldots\right]$, If $u, v \in \mathbb{F}[x]$ with $v \neq 0$ satisfy, for some $n \geq 0$,

then $|v|_{\infty} \geq\left|q_{n+1}\right|_{\infty}$.
Proof. Suppose that

Consider the system of linear equations (in y, z)

$$
\begin{align*}
& \text { ศูนย์วิทยทรัพยากร } \tag{2.5}
\end{align*}
$$

By (1.7), $\operatorname{det}\left(\begin{array}{ll}q_{n} & q_{n+1} \\ p_{n} & p_{n+1}\end{array}\right)=(-1)^{n}$, and so

$$
\binom{y}{z}=\left(\begin{array}{cc}
(-1)^{n} p_{n+1} & (-1)^{n+1} q_{n+1} \\
(-1)^{n+1} p_{n} & (-1)^{n} q_{n}
\end{array}\right)\binom{v}{u}
$$

implying that y and z are in $\mathbb{F}[x]$.
We claim that neither y nor z is zero. If $y=0$, then $0 \neq v=z q_{n+1}$, and so $|v|_{\infty} \geq\left|q_{n+1}\right|_{\infty}$, which contradicts (2.4). Then $y \neq 0$. If $z=0$, then $u=y p_{n}$ and $v=y q_{n}$. Since $|y|_{\infty} \geq 1$, we have $|v \theta-u|_{\infty}=\left|y\left(q_{n} \theta-p_{n}\right)\right|_{\infty} \geq\left|q_{n} \theta-p_{n}\right|_{\infty}$, contradicting (2.3).

Next, we show that

$$
\begin{equation*}
\left|\overline{y\left(q_{n} \theta-p_{n}\right)}\right|_{\infty} \neq\left|z\left(\overline{\overline{q_{n+1}} \theta-p_{n+1}}\right)\right|_{\infty} . \tag{2.7}
\end{equation*}
$$

Suppose $\left|y\left(q_{n} \theta-p_{n}\right)\right|_{\infty}=\left|z\left(q_{n+1} \theta-p_{n+1}\right)\right|_{\infty}$. By Lemma 1.2.12 (ii) and (iv), we have

$$
\left|q_{i} \theta-p_{i}\right|_{\infty}=\frac{2(1)}{\left|\theta_{i+1} q_{i}+q_{i}\right|_{\infty}}=\frac{1}{\left|q_{i+1}\right| \infty} \quad(i \geq 0)
$$

and so $\left|y q_{n+2}\right|_{\infty}=\left|z q_{n+1}\right|_{\infty}$. Since $\left.\int y q_{n}\right|_{\infty}<\left|y q_{n+2}\right|_{\infty}, \quad$ (1.1) and (2.5) yield $\left|z q_{n+1}\right|_{\infty}=|v|_{\infty}$ implying that $q_{n+1} \leq| |_{\infty}$. This contradicts (2.4). Thus, (2.7) holds.

Finally, consider $|v \theta-u|_{\infty}=\left|y\left(q_{n} \theta-p_{n}\right)+z\left(q_{n+1} \theta-p_{n+1}\right)\right|_{\infty}$. Using (2.7), and $y \in \mathbb{F}[x] \backslash\{0\}$, we have

$$
\begin{aligned}
& |v \theta|-h| |_{\infty}^{\&}=\max \left\{\left|y\left(q_{n} \theta-p_{n}\right)\right| \infty,\left.\left||z| q_{n+1} \theta+p_{n+1}\right)\right|_{\infty}\right\}
\end{aligned}
$$

which contradicts (2.3), and the lemma follows.

Remark 2.1.4. The best approximation property presented in the above lemma also holds the convergents of finite regular continued fractions. Namely, for a rational element $\theta \in \mathbb{F}\left(\left(x^{-1}\right)\right)$ whose finite regular continued fraction is $\left[b_{0} ; b_{1}, \ldots, b_{n}\right]$, if $u, v \in$ $\mathbb{F}[x]$ with $v \neq 0$ satisfy, for some $0 \leq i<n,|v \theta-u|_{\infty}<\left|q_{i} \theta-p_{i}\right|_{\infty}$, then $|v|_{\infty} \geq\left|q_{i+1}\right|_{\infty}$.

Definition 2.1.5. For $\xi \in \mathbb{F}\left(\left(x^{-1}\right)\right)$, the distance to the head part $\|\xi\|$ of ξ is defined as $\|\xi\|=|\xi-[\xi]|_{\infty}$.

Hence for an irrational element $\theta \in \mathbb{F}\left(\left(x^{-1}\right)\right)$ whose regular continued fraction expansion is $\theta=\left[b_{0} ; b_{1}, b_{2}, \ldots\right]$, by Lemma 1.2.12 (v), we have $\left\|q_{n} \theta\right\|=\left|q_{n} \theta-p_{n}\right|$, and so Lemma 1.2.12 (ii) and (iv) together yield

$$
\begin{equation*}
\left|q_{n}\right|_{\infty}\left\|q_{n} \theta\right\|=\frac{1}{\left|\theta_{n+1}+q_{n-1} / q_{n}\right|_{\infty}}=\frac{1}{\left|b_{n+1}\right|_{\infty}} \tag{2.8}
\end{equation*}
$$

where $\theta_{n+1}=\left[b_{n+1} ; b_{n+2}, \ldots\right]$ is the $(m+1)^{\text {th }}$ complete quotient of $\left[b_{0} ; b_{1}, b_{2}, \ldots\right]$.
Definition 2.1.6. For an irrational element $\theta \in \mathbb{F}\left(\left(x^{-1}\right)\right)$, define its type and its Lagrange constant, respectively, by;

$$
L(\theta)=\sup _{|q|_{\infty} \geq 1}\left(|q|_{\infty}\|q \theta\|\right)-1
$$

To determine the type and the Lagrange constant, it suffices to use the partial denominators as we show now.

Lemma 2.1.7. Let θ be an irrational element in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ whose regular continued
 $L(\theta)=\sup ^{2}\left(\left|q_{i}\right|_{\infty}\left\|q_{i} \theta\right\|\right)^{-1}$ and $L_{\infty}(\theta)=\limsup _{9}\left(\left|q_{i}\right|_{\infty} \psi q_{i} \theta \|\right)^{-1}$.
Proof. Let $q \in \mathbb{F}[x] \backslash\{0\}$. Since the regular continued fraction of any irrational is infinite, there exists $m \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ such that $\left|q_{m}\right|_{\infty} \leq|q|_{\infty}<\left|q_{m+1}\right|_{\infty}$. By Lemma 2.1.3,

$$
\frac{1}{|q|_{\infty}\|q \theta\|} \leq \frac{1}{|q|_{\infty}\left\|q_{m} \theta\right\|} \leq \frac{1}{\left|q_{m}\right|_{\infty}\left\|q_{m} \theta\right\|}
$$

and the result follows.

Corollary 2.1.8. A) For an irrational element $\theta \in \mathbb{F}\left(\left(x^{-1}\right)\right)$, we have

$$
\begin{equation*}
K(\theta)=L(\theta) \quad \text { and } \quad K_{\infty}(\theta)=L_{\infty}(\theta) \tag{2.10}
\end{equation*}
$$

B) Let $\phi=\left[d_{0} ; d_{1}, d_{2}, \ldots\right], \gamma=\left[e_{0} ; e_{1}, e_{2}, \ldots\right]$ be two irrational elements in $\mathbb{F}\left(\left(x^{-1}\right)\right)$. If there exist $s_{1}, s_{2} \in \mathbb{N}_{0}$ such that $\left|d_{s_{1}+i}\right|_{\infty}=\left|e_{s_{2}+i}\right|_{\infty}(i \geq 0)$, then

$$
K_{\infty}(\phi)=K_{\infty}(\gamma) \text { and } L_{\infty}(\phi)=L_{\infty}(\gamma) .
$$

Proof. Part A) follows immediatcly from the definitions of $K(\theta)$ and $K_{\infty}(\theta)$, (2.8) and Lemma 2.1.7. Part B) follows from at once the definition of K_{∞}, Lemma 2.1.7 and (2.10).

The next lemma is proved by modifying the proofs of Theorems 172 and 175 of [13] in the real to the formal series case.

Lemma 2.1.9. Let $\left[b_{0} ; b_{1}, b_{2}, \ldots\right.$ be the regular continued fraction for an irrational element $\theta \in \mathbb{F}\left(\left(x^{-1}\right)\right)$ with $|\theta|_{\infty}>1$, and let $\psi=\frac{a \theta+b}{c \theta+d}$, where $a, b, c, d \in \mathbb{F}[x]$ be such that $|a d-b c|_{\infty}=1$.
A) If $|c|_{\infty}>|d|_{\infty}>0$, then b / d and a / c equal two consecutive convergents of the regular continued fraction for 4 and if b / d and a/Q qqual the $(n-1)^{\text {th }}$ and $n^{\text {th }}$ convergents of the regular continued fraction for ψ, respectively, we have that the $(n+1)^{\text {th }}$ Complete quotient is of the form si for som $\widehat{\text { of }} \in \mathbb{H} \backslash\{0\}$.
B) If the regular continued fraction for ψ is $\left[c_{0} ; c_{1}, c_{2}, \ldots\right]$, then there exist $k, n \in \mathbb{N}_{0}$ such that

$$
\left|b_{k+i}\right|_{\infty}=\left|c_{n+i}\right|_{\infty} \quad \text { for all } i \geq 0
$$

Proof. Denote the regular continued fraction expansion of a / c by $\left[c_{0} ; c_{1}, \ldots, c_{n}\right]$ and let p_{n} / q_{n} be its $n^{\text {th }}$ (last) convergent. Since $|a d-b c|_{\infty}=1$, we have, by Lemma 1.2.12 (i), $\quad \operatorname{gcd}(a, c)=1=\operatorname{gcd}\left(p_{n}, q_{n}\right)$ and hence $a=\gamma p_{n}, c=\gamma q_{n}$ for some $\gamma \in \mathbb{F} \backslash\{0\}$. Thus,

$$
\left|p_{n} d-q_{n} b\right|_{\infty}=|a d-b c|_{\infty}=1=\left|p_{n} q_{n-1}-p_{n-1} q_{n}\right|_{\infty},
$$

yielding $p_{n} d-q_{n} b=\delta^{\prime}\left(p_{n} q_{n-1}-p_{n-1} q_{n}\right)$ for some $\delta^{\prime} \in \mathbb{F} \backslash\{0\}$, and so

$$
\begin{equation*}
p_{n}\left(d-\delta^{\prime} q_{n-1}\right)=q_{n}\left(b-\delta^{\prime} p_{n-1}\right) . \tag{2.11}
\end{equation*}
$$

Since $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$, the relation (2,11) gives

$$
\begin{equation*}
q_{n} \dagger\left(d-\delta^{\prime} q_{n-1}\right) \text {. } \tag{2.12}
\end{equation*}
$$

From $\left|q_{n}\right|_{\infty}=|c|_{\infty}>|d|_{\infty}>0$ and $4 q_{n}| |_{\infty}>\left|q_{n} \geq 1\right|_{\infty} \geq 0$, we get $\left|d-\delta^{\prime} q_{n-1}\right|_{\infty}<\left|q_{n}\right|_{\infty}$, which is consistent with (2.12) only when $d-\delta^{\prime} q_{n-1}=0$, i.e., when $d=\delta^{\prime} q_{n-1}, b=$ $\delta^{\prime} p_{n-1}$. Consequently, $\frac{\partial=\frac{p_{n} \delta \theta+p_{n-1}}{q_{n} \delta \theta+q_{n-1}} \text { for some } \delta \in \mathbb{\mathbb { Z }},\{0\}, \text { and so by (1.6), }}{\psi=\left[c_{0} ; c_{1}, \ldots, c_{n}, \delta \theta\right] .}$
If we develop $\delta \theta$ ass accontinued fractionswe obtain $\delta \theta\left[c_{n+1} ; c_{n+2}, \ldots\right]$ with $\left|c_{n+1}\right|_{\infty}>$

1. Hence $\psi=\left[c_{0} ; c_{1}, \ldots, c_{n}, c_{n+1}, c_{n+2}, \ldots\right]$.

$$
\theta=\left[b_{0} ; b_{1}, \ldots, b_{k-1}, \theta_{k}\right]=\frac{p_{k-1} \theta_{k}+p_{k-2}}{q_{k-1} \theta_{k}+q_{k-2}},
$$

which implies

$$
\psi=\frac{P \theta_{k}+R}{Q \theta_{k}+S},
$$

where
$P=a A_{k-1}+b q_{k-1}, R=a p_{k-2}+b q_{k-2}, Q=c A_{k-1}+d q_{k-1}$ and $S=c p_{k-2}+d q_{k-2}$ are in $\mathbb{F}[x]$ with $|P S-Q R|_{\infty}=\left|(a d-b c)\left(p_{k-1} q_{k-2}-p_{k-2} q_{k-1}\right)\right|_{\infty}=1$. From Lemma 1.2.12 (iv), we have $\left|\theta-\frac{p_{i}}{q_{i}}\right|_{\infty}=\frac{1}{\left|q_{i}\left(\theta_{i+1} q_{i}+q_{i-1}\right)\right|_{\infty}}<\frac{1}{\left|q_{i}^{2}\right|_{\infty}}$ for all $i \geq 0$, and so
where $\left|\beta_{1}\right|_{\infty}<1,\left|\beta_{2}\right|_{\infty}<1$. Thus,

$$
Q=(c \theta+d) q_{k-1}+\frac{c \beta_{1}}{q_{k}=1}, S=(c \theta+d) q_{k-2}+\frac{c \beta_{2}}{q_{k-2}}
$$

Since $c \theta+d \neq 0,\left|q_{k-1}\right|_{\infty}>\left|q_{k-2}\right|_{\infty} \rightarrow \infty(k \rightarrow \infty)$, we have $|Q|_{\infty}>|S|_{\infty}>0$ for all large k. For such k, part A) ensures that there exists $\delta \in \mathbb{F} \backslash\{0\}$ such that $\delta \theta_{k}=\psi_{n}$ for some n, i.e., $\left|b_{k+i}\right|_{\infty}=\mid c_{n+}$ for all $i \geq 0$.

Lemma 2.1.9 and Corollary 2.1.8 immediately yield:
Lemma 2.1.10. Let θ be an irrational element in $\mathbb{F}\left(\left(x^{-1}\right)\right), M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $a, b, c, d \in \mathbb{F}[x]$ and denote $M(\theta):=\frac{a \theta+b}{c \theta+d}$. If $\left.\operatorname{det} M\right|_{\infty}=1$, then

For atransformation with non-unit determinant, we have weaker results.
Lemma 2.1.11. Let θ be an irrational element in $\mathbb{F}\left(\left(x^{-1}\right)\right) ; h, d_{1}, d_{3} \in \mathbb{F}[x] \backslash\{0\}$ and $d_{2} \in \mathbb{F}[x]$. Then
and

$$
\begin{align*}
L_{\infty}(h \theta) & \leq|h|_{\infty} L_{\infty}(\theta) \tag{2.13}\\
L_{\infty}\left(\frac{d_{1} \theta+d_{2}}{d_{3}}\right) & \leq\left|d_{1} d_{3}\right|_{\infty} L_{\infty}(\theta) . \tag{2.14}
\end{align*}
$$

Proof. If θ has unbounded partial quotients, i.e., $L_{\infty}(\theta)=\infty$, both inequalities are trivial. Now assume θ has bounded partial quotients. For $h \in \mathbb{F}[x] \backslash\{0\}, k \in \mathbb{N}_{0}$, clearly,

$$
\sup _{\operatorname{deg} q \geq k}\left(|q h|_{\infty}\|q h \theta\|\right)^{-1} \leq \sup _{\operatorname{deg} q \geq k}\left(|q|_{\infty}\|q \theta\|\right)^{-1}
$$

and

$$
\limsup _{|q|_{\infty} \geq 1}\left(|q h|_{\infty}\|q h \theta\|\right)-1 / 5 \limsup _{|q|_{\infty} \geq 1}\left(|q|_{\infty}\|q \theta\|\right)^{-1}
$$

Consequently,

$$
\begin{aligned}
L_{\infty}(h \theta) & =\limsup _{|q|_{\infty} \geq 1}\left(|q|_{\infty} \mid q h \theta \|\right)^{-1}=|h|_{\infty} \limsup _{|q|_{\infty} \geq 1}\left(|q h|_{\infty}\|q h \theta\|\right)^{-1} \\
& \leq|h|_{\infty} \limsup _{|q|_{\infty} \geq 1}\left(|q| \infty(\|q \theta\|)^{-1}=|h|_{\infty} L_{\infty}(\theta),\right.
\end{aligned}
$$

which proves (2.13).
To verify (2.14), from Corollay 2.1.8 B) and (2.13), we have

$$
\begin{aligned}
& L_{\infty}\left(\frac{d_{1} \theta+d_{2}}{d_{3}}\right)=L_{\infty}\left(\frac{d_{3}}{d_{1} \theta+d_{2}}\right) \quad S \\
& \leq\left|d_{3}\right|_{\infty} L_{\infty}\left(\frac{1}{d_{1} \theta+d_{2}}\right)
\end{aligned}
$$

Now we are ready to prove our main theorem.

Proof of Theorem 2.1.2. By Corollary 2.1.8, it suffices to prove the two results for L_{∞}, L in place of K_{∞}, K, respectively. Let $\psi:=\frac{a \theta+b}{c \theta+d}=M(\theta)$.

We start by showing that there exists $M_{2} \in G L_{2}(\mathbb{F}[x])$ such that

$$
\left|\operatorname{det} M_{2}\right|_{\infty}=1, M_{2} M=\left(\begin{array}{cc}
\alpha & \beta \\
0 & \gamma
\end{array}\right) \in G L_{2}(\mathbb{F}[x]),|\alpha \gamma|_{\infty}=|\operatorname{det} M|_{\infty}
$$

Write $M_{2}=\left(\begin{array}{ll}E & F \\ G & H\end{array}\right)$. To fulfil the matrix equality, it is required that $G a+H c=0$.
If $a=0$, then $c \neq 0$ and so we must take $H=0$. Choose $F \in \mathbb{F} \backslash\{0\}, G=1 / F$ and arbitrary $E \in \mathbb{F}[x]$ to fulfil all requirements.

If $c=0$, then $a \neq 0$ and we must take $G=0$. Choose $E \in \mathbb{F} \backslash\{0\}, H=1 / E$ and arbitrary $F \in \mathbb{F}[x]$ to fulfil all requirements.

If both $a \neq 0$ and $c \neq 0$, then take $G=\frac{1 . c . m .(a, c)}{a}$ and $H=-\frac{\text { l.c.m. }(a, c)}{c}$. Since $\operatorname{gcd}(G, H)=1$, there are $\mu, \nu \in \mathbb{F}[x]$ such that $\mu G+\nu H=1$. Setting $E=\nu$ and $F=-\mu$, all the requirements are fulfilled. $/ \mathrm{s}$

After we obtain such M_{2}, we apply Lemma 2.1.10 to get

and the second inequalityof (2.1) now follows from the inequality (2.14) of Lemma 2.1.11.

To prove the first inequality of (2.1), we consiler the adjoint Matrix

$$
M^{\prime}:=\operatorname{adj}(M)=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

which has $M^{\prime} M=(\operatorname{det} M) I_{2}$, and so

$$
M^{\prime}(\psi)=M^{\prime}(M(\theta))=M^{\prime} M(\theta)=\theta
$$

Applying the second inequality of (2.1) to ψ, we have

$$
L_{\infty}(\theta)=L_{\infty}\left(M^{\prime}(\psi)\right) \leq\left|\operatorname{det} M^{\prime}\right|_{\infty} L_{\infty}(\psi)=|\operatorname{det} M|_{\infty} L_{\infty}(\psi),
$$

and the first inequality of (2.1) follows.
We turn now to the second assertion of the theorem. For each $q \in \mathbb{F}[x] \backslash\{0\}$, let

If $c=0$, then $|\operatorname{det} M|_{\infty}=|a d|_{\infty} \neq 0$ and so

$$
|a d|_{\infty} x_{q}=|a q|_{\infty} \mid a q \theta-\left(\left.(d p-b q)\right|_{\infty} \geq|a q|_{\infty}\|a q \theta\| \geq 1 / L(\theta)\right.
$$

yielding

$$
\left(p=\left[q\left(\frac{a \theta+b}{c \theta+d}\right)\right]\right) .
$$

$$
L(\psi)=\sup _{|q| \infty}\left(|q|_{\infty}\|q \psi\|\right)^{-1} \leq|a d|_{\infty} L(\theta)
$$

which is the first term in the right hand expression of (2.2).
If $c \neq 0$, then

Since θ has bounded partiafquotientso both $K(\theta)$ and $K_{\infty}(\theta)$ are finite. The result of the first part shows then that $K_{\infty}(\psi)$ is finite and so is $K(\psi)$. Corollary 2.1.8 in turn showsthat $\delta(\psi)$ is finite. Thusp there Ais an infinite sequence of non-zero approximations

$$
x_{q^{(i)}}=\left|q^{(i)}\right|_{\infty}\left\|q^{(i)} \psi\right\|
$$

such that

$$
\begin{equation*}
L(\psi)-\frac{1}{2^{i}} \leq \frac{1}{x_{q^{(i)}}} \leq L(\psi) \quad \text { for all } i \geq 0 \tag{2.16}
\end{equation*}
$$

By taking a suitable subsequence, we may reduce to the case where either all of the approximations have $q^{(i)} a-p^{(i)} c=0$ or all of them have $q^{(i)} a-p^{(i)} c \neq 0$.

We first treat the subcase $q^{(i)} a-p^{(i)} c=0$ for all $i \geq 0$. Since $a d-b c=\operatorname{det} M \neq 0$, we have $p^{(i)} d-q^{(i)} b \in \mathbb{F}[x] \backslash\{0\}$ and so (2.15) gives

$$
|c \theta+d|_{\infty} x_{q^{(i)}}=\left|q^{(i)}\right|_{\infty}\left|p^{(i)} d-q^{(i)} b\right|_{\infty} \geq 1 .
$$

Consequently,

$$
L(\psi)-\frac{1}{2^{i}} \leq \frac{1}{x_{q}(i)} \leq \sqrt{c \theta}+\left.d\right|_{\infty} \leq\left.\sqrt{\mid c(c \theta+d)}\right|_{\infty} \quad \text { for all } i \geq 0
$$

Letting $i \rightarrow \infty$, we get the second term in the right hand expression of (2.2).
Finally, we consider the subcase that $q^{(i)} a-p^{(i)} c \neq 0$ for all $i \geq 0$. From (2.15), we have

$$
\begin{aligned}
|c \theta+d|_{\infty}\left|\frac{q^{(i)} a-p^{(i)} c}{q^{(i)}}\right|_{\infty} x_{q^{(i)}}=q^{(i)} a-\left.p^{(i)} c\right|_{\infty}\left|\left(q^{(i)} a-p^{(i)} c\right) \theta-\left(p^{(i)} d-q^{(i)} b\right)\right|_{\infty} \\
\geq 1 q^{(i)} a-p^{(i)} c c_{\infty}\left\|\left(q^{(i)} a-p^{(i)} c\right) \theta\right\| \frac{1}{L(\theta)} .
\end{aligned}
$$

Using the first inequality in (2.16) and the inequality (2.17), we get

Using the strong triangle inequality, we have

$$
\begin{align*}
\left|q^{(i)}\left(\frac{a}{c}\right)-p^{(i)}\right|_{\infty} & \leq \max \left\{\left|q^{(i)}\left(\frac{a \theta+b}{c \theta+d}\right)-q^{(i)}\left(\frac{a}{c}\right)\right|_{\infty},\left|q^{(i)}\left(\frac{a \theta+b}{c \theta+d}\right)-p^{(i)}\right|_{\infty}\right\} \\
& =\max \left\{\frac{\left|q^{(i)}\right| \infty|\operatorname{det}(M)|_{\infty}}{|c(c \theta+d)|_{\infty}}, \frac{x_{q^{(i)}}}{\left|q^{(i)}\right|_{\infty}}\right\} . \tag{2.19}
\end{align*}
$$

Combining (2.18) and (2.19) gives

$$
L(\psi)-\frac{1}{2^{i}} \leq L(\theta) \max \left\{|\operatorname{det} M|_{\infty},|c(c \theta+d)|_{\infty} \frac{x_{q^{(i)}}}{\left|\left(q^{(i)}\right)\right|_{\infty}^{2}}\right\} .
$$

Using the first inequality in (2.16), i.e., $x_{q^{(i)}} \leq \frac{1}{L(\psi)-1 / 2^{i}}$, we deduce that

$$
\begin{equation*}
L(\psi)-\frac{1}{2^{i}} \leq \max \left\{|\operatorname{det} M|_{\infty} L(\theta), \frac{|c(c \theta+d)|_{\infty}}{\left|\left(q^{(i)}\right)\right|_{\infty}^{2}} \cdot \frac{L(\theta)}{L(\psi)-1 / 2^{i}}\right\} \tag{2.20}
\end{equation*}
$$

If $L(\theta) \geq L(\psi)$, then the inequality (2.2) holds trivially, using the first term in the right hand expression. If $L(\theta) \subset L(\psi)$, then letting $i \rightarrow \infty$ in (2.20), the ratio $\frac{L(\theta)}{L(\psi)-1 / 2^{2}}$ becomes ≤ 1 in the limit, and (2.2) follows.

Next, the boundedness of partiataquotients of regular continued fractions representing linear fractional tranformations of rational elements in $\mathbb{F}\left(\left(x^{-1}\right)\right)$ is investigated.

Definition 2.1.12. Ect ϕ be an element in $\mathbb{F}(x) \backslash \mathbb{E}[x]$ whose regular continued fraction expansion is $\left[b_{\sigma} ;, b_{1}, \ldots, b_{n}\right]$. Define $R(\phi):=\max _{1 \leq i \leq n}\left|b_{i}\right|_{\infty}$.
Lemma 2.1.13. Let ϕ beß an element in $\mathbb{F}(x) \wedge \mathbb{F}[x]$ whose regular continued fraction

Proof. From Lemma 1.2.12 (v), we have for $0 \leq i<n, \quad\left\|q_{i} \phi\right\|=\left|q_{i} \phi-p_{i}\right|$, and so
Lemma 1.2.12(ii) and (iv) together yield

$$
\left|q_{i}\right|\left\|q_{i} \phi\right\|=\frac{1}{\left|\phi_{i+1}+q_{i-1} / q_{i}\right|}=\frac{1}{\left|b_{i+1}\right|} .
$$

This implies the first desired equality. The second desired equality follows immedi-
ately from the best approximation property of regular continued fraction convergents according to Remark 2.1.4.

Proposition 2.1.14. Let ϕ be an element in $\mathbb{F}(x) \backslash \mathbb{F}[x]$ with $|\phi|_{\infty}>1$ whose regular continued fraction expansion is $\left[b_{0} ; b_{1}, \ldots, b_{n}\right]$ and let
where $a, b, c, d \in \mathbb{F}[x]$ be such that $a d-\left.b c\right|_{\infty}=1,|c|_{\infty}>|d|_{\infty}>0$ and $c \phi+d \neq 0$. Assume that $\psi \in \mathbb{F}(x)$
A) b / d and a / c equal two consecutive convergents, say $(m-1)^{\text {th }}$ and $m^{\text {th }}$ convergents, respectively, of the regular.continued fraction for ψ and we have that the $(m+1)^{\text {th }}$ complete quotient is, of the form $\delta \theta$ for some $\delta \in \mathbb{F} \backslash\{0\}$.
B) $R(\psi)=\max \left\{\left|b_{0}\right|_{\infty}, R(\phi), R(a \mid c)\right\}$.

Proof. Denote the regular contintued fraction expansion of a / c by $\left[c_{0} ; c_{1}, \ldots, c_{m}\right]$ and let p_{m} / q_{m} be its $m^{\text {th }}$ (fast) convergent. Since $\mid a d-b c_{\infty}=1$, we have, by Lemma 1.2.12 $(i), \operatorname{gcd}(a, c)=\overline{1}=\operatorname{gcd}\left(p_{m}, q_{m}\right)$ and $a=\gamma p_{m}, \mathscr{G}=\gamma q_{m}$ for some $\gamma \in \mathbb{F} \backslash\{0\}$. Thus,

$$
\begin{equation*}
p_{m}\left(d-\delta^{\prime} q_{m-1}\right)=q_{m}\left(b-\delta^{\prime} p_{m-1}\right) \tag{2.21}
\end{equation*}
$$

Since $\operatorname{gcd}\left(p_{m}, q_{m}\right)=1$, the relation (2.21) gives

$$
\begin{equation*}
q_{m} \mid\left(d-\delta^{\prime} q_{m-1}\right) \tag{2.22}
\end{equation*}
$$

From $\left|q_{m}\right|_{\infty}=|c|_{\infty}>|d|_{\infty}>0$, and $\left|q_{m}\right|_{\infty}>\left|q_{m-1}\right|_{\infty} \geq 0$, we get $\left|d-\delta^{\prime} q_{m-1}\right|_{\infty}<$ $\left|q_{m}\right|_{\infty}$, which is consistent with (2.22) only when $d-\delta^{\prime} q_{m-1}=0$, i.e., when $d=$ $\delta^{\prime} q_{m-1}, b=\delta^{\prime} p_{m-1}$. Consequently, $\psi=\frac{\delta p_{m} \phi+p_{m-1}}{\delta q_{m} \phi+q_{m-1}}$ for some $\delta \in \mathbb{F} \backslash\{0\}$, and so

$$
\psi=\left[c_{0} ; c_{1}, \ldots, c_{m}, \delta \phi\right] .
$$

This immediately yields

$$
\psi= \begin{cases}{\left[c_{0} ; c_{1}, \ldots c_{m}, \delta b_{0}, \delta^{-1} b_{1}, \ldots b^{-1} b_{n-1}, \delta b_{n}\right]} & \text { if } n \text { is odd } \\ {\left[c_{0} ; c_{1}, \ldots c_{m}, \delta b_{0}, \delta-\frac{1}{b} b_{1}, \ldots, \delta b_{n-1}, \delta^{-1} b_{n}\right]} & \text { if } n \text { is even. }\end{cases}
$$

Since $\left|b_{i}\right|_{\infty}=\left|\delta b_{i}\right|_{\infty}=\left|\delta^{-1} b_{i}\right|_{\infty}, \quad 0 \leq i \leq n$, we have
$R(\psi)=\max \left\{\left|b_{0}\right| \infty, R(\phi), R(a / c)\right\}$
as desired.

Theorem 2.1.15. Let ϕ be an element in $\mathbb{F}(x) \backslash \mathbb{F}[x]$ whose regular continued fraction expansion is $\left[b_{0} ; b_{1}, \ldots, b_{n}\right]$ and let $p_{n} ; q_{n}$ be its $n^{\text {th }}$ (last) convergent and let

where $a, b, c, d \in \mathbb{P}[x \mid$, ab- $b \mathrm{c} \neq / 9$ and $d / c \theta \stackrel{\sim}{\mathrm{f}} d \mid \neq 0$. As sume that $\psi \in \mathbb{F}(x) \backslash \mathbb{F}[x]$. If $|a|_{\infty} \neq|\psi c|_{\infty}$, then

Proof. Let $\left[\tilde{b}_{0} ; \tilde{b}_{1}, \tilde{b}_{2}, \ldots, \tilde{b}_{s}\right]$ be the regular continued fraction of ψ and denote its $i^{\text {th }}$ convergent by $\tilde{p}_{i} / \tilde{q}_{i}$. Choose a $k^{\text {th }}$ denominator, \tilde{q}_{k}, of ψ such that

$$
0 \leq k<s \quad \text { and } \quad R(\psi)=\frac{1}{\left|\tilde{q}_{k}\right|_{\infty}\left\|\tilde{q}_{k} \psi\right\|}
$$

From Lemma 1.2.12 (iv),

$$
\tilde{q}_{k} \psi-\tilde{p}_{k}=\frac{(-1)^{k}}{\psi_{k+1} \tilde{q}_{k}+\tilde{q}_{k-1}},
$$

so that we can write
for some $\beta \in \mathbb{F}(x)$ such that $|\beta|_{\infty}<1$.
Case 1. $\tilde{p}_{k} \neq 0$.
Hence $\left|\tilde{p}_{k}\right|_{\infty} \geq 1>|\beta|_{\infty}$, and so by (1.1) $\left|\tilde{q}_{k} \psi\right|_{\infty}=\left|\tilde{p}_{k}+\beta\right|_{\infty}=\left|\tilde{p}_{k}\right|_{\infty}>|\beta|_{\infty}$. We get $\left|\tilde{q}_{k} a-\tilde{p}_{k} c\right|_{\infty}=\left|\tilde{q}_{k}(a-\psi c)+\beta c\right|_{\infty}$. By the assumption $|a|_{\infty} \neq|\psi c|_{\infty}$, so we have

$$
\mid \tilde{q}_{k} a-\psi \tilde{q}_{k} c_{\infty}=\max \left\{\left\{\left.\tilde{q}_{k} a\right|_{\infty},\left|\psi \tilde{q}_{k} c\right|_{\infty}\right\} \geq\left|\psi \tilde{q}_{k} c\right|_{\infty}>|\beta c|_{\infty} .\right.
$$

Then by (1.1)

Thus

$$
\left|\tilde{q}_{k} a-\tilde{p}_{k} c\right|_{\infty}=\left|\tilde{q}_{q} \alpha_{\alpha-\psi)}^{q_{k} c+\beta c}\right|_{\infty}=\left|\tilde{q}_{k} a-\psi \tilde{q}_{k} c\right|_{\infty} \neq 0 .
$$

Subcase 1.1. $\left|\tilde{q}_{k} a-\tilde{p}_{k} c\right|_{\infty}<\left|q_{n}\right|_{\infty}$.
Since $|a d-b c|_{\infty} R(\psi) \neq 0, \quad\left|\left(\tilde{q}_{k} a-\tilde{p}_{k} c\right) \phi-\left(\tilde{p}_{k} d-\tilde{q}_{k} b\right)\right|_{\infty} \neq 0$. Hence by the definition of the distance

$$
\left|\left(\tilde{q}_{k} a-\tilde{p}_{k} c\right) \phi-\left(\tilde{p}_{k} d-\tilde{q}_{k} b\right)\right|_{\infty} \geq\left\|\left(\tilde{q}_{k} a-\tilde{p}_{k} c\right) \phi\right\|,
$$

and then Lemma 2.1.13 together with (2.23) yield

$$
|a d-b c|_{\infty} \frac{1}{R(\psi)} \geq\left|\tilde{q}_{k} a-\tilde{p}_{k} c\right|_{\infty}\left\|\left(\tilde{q}_{k} a-\tilde{p}_{k} c\right) \phi\right\| \geq \frac{1}{R(\phi)}
$$

Subcase 1.2. $\left|\tilde{q}_{k} a-\tilde{p}_{k} c\right|_{\infty} \geq\left|q_{n}\right|_{\infty}$.
Write $\phi=\frac{E}{F}, \quad$ where $E \in \mathbb{F}[x], F \in \mathbb{F}[x]$ - \mathbb{F} and $\operatorname{gcd}(E, F) \in \mathbb{F} \backslash\{0\}$. Then by

$$
\begin{align*}
&|a d-b c|_{\infty} \frac{1}{R(\psi)}=\left|\tilde{q}_{k} a-\tilde{p}_{k} c\right|_{\infty}\left|\left(\tilde{q}_{k} a-\tilde{p}_{k} c\right) \frac{E}{F}-\left(\tilde{p}_{k} d-\tilde{q}_{k} b\right)\right|_{\infty} \tag{2.23}\\
&=\mid \tilde{q}_{k} a-\tilde{p}_{k}\left(c_{\infty}\left|\left(\tilde{q}_{k} a-\tilde{p}_{k} c\right) E-\left(\tilde{p}_{k} d-\tilde{q}_{k} b\right) F\right|_{\infty}\right. \\
&|F|_{\infty}
\end{align*} .
$$

We have by Lemma 1.2 .12 (i) and the definition of F that $\left|q_{n}\right|_{\infty}=|F|_{\infty}$, and so combines with the facts that $\left|\tilde{q}_{k} a-\tilde{p} k \epsilon_{\infty} \geq\left|\tilde{q}_{n}\right|_{\infty}\right.$ and $|\left(\tilde{q}_{k} a-\tilde{p}_{k} c\right) E-\left.\left(\tilde{p}_{k} d-\tilde{q}_{k} b\right) F\right|_{\infty} \geq 1$ we get

Case 2. $\tilde{p}_{k}=0$.

By the constructionnof the regular continued fraction we have $\tilde{b}_{i} \in \mathbb{F}[x] \backslash \mathbb{F}$, for all $1 \leq i \leq s$, then by (1.2), $\left|\tilde{p}_{i}\right|_{\infty} \geq 1$ for all $1 \leq i \leq s$. It follows that $k=0$. Thus

Therefore,

$$
R(\psi) \leq \max \left\{\left|\frac{1}{\psi}\right|_{\infty},|a d-b c|_{\infty} R(\phi)\right\}
$$

2.2 Zaremba's conjecture for $2^{s} \cdot 3^{t}$

A famous conjecture attributed to Zaremba, see e.g., [20], states that for a positive integer $m \geq 2$ there exists a reduced fraction a / m such that

$$
\max \left\{b_{1}, \ldots, b_{n}\right\} \leq 5
$$

where $\left[b_{0} ; b_{1}, \ldots, b_{n}\right]$ is the regular continued fraction with $b_{n}>1$ of a / m.
In this section, Zaremba's conjecture for the case $m=2^{s} \cdot 3^{t}$ where s, t are nonnegative integers verified by using the identity known as the Folding lemma similar to [30].

For an arbitrary field K and $\alpha, \beta, \in K$, we adopt the notation

Lemma 2.2.1. (Folding lemmaffet $s_{1} \in \mathbb{R}\left\{\{0\}, n \geq 0\right.$ and $\frac{p_{n}}{q_{n}}$ be the last convergent of a continued fraction $\left\{_{b} ; b_{1}, \ldots, b_{n}\right]$ over \mathbb{R}. Then

Proof. We have by (1.6) and (1.7) that

$$
\begin{aligned}
& =\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{s_{1} q_{n}^{2}} .
\end{aligned}
$$

Hence the computations

$$
s_{1}-q_{n-1} / q_{n}=s_{1}-1+\left(q_{n}-q_{n-1}\right) / q_{n}
$$

$$
\begin{aligned}
q_{n} /\left(q_{n}-q_{n-1}\right) & =1+q_{n-1} /\left(q_{n}-q_{n-1}\right) \\
\left(q_{n}-q_{n-1}\right) / q_{n-1} & =-1+q_{n} / q_{n-1}
\end{aligned}
$$

allow us to rewrite

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{s_{1} q_{n}^{2}}=\left[b_{0} ; b_{1}, \ldots, b_{n}, s_{1}-1,1,-1, \frac{q_{n-1}}{q_{n}}\right] .
$$

Therefore, for the case $n=0$, the desired result follows from the definition of q_{-1} and (1.6) and for the case $n \geq 1$, it follows from (1.5) and (2.24).

Theorem 2.2.2. For any positive integer $m \geq 2$ of the form $m=2^{s} \cdot 3^{t}$, where s, t are non-negative integers, there exists a reduced fraction a / m such that
$\max \left\{b_{1} \ldots, b_{n}\right\} \leq 5$,
where $\left[0 ; b_{1}, \ldots, b_{n}\right]$ is the regular continued fraction with $b_{n}>1$ of a / m.

Proof. Starting from the following fractions

and the proof is then completed by showing the stronger statement that for any positive integer $k \geq 2$ and any positive integer $m \geq 2$ of the forms

$$
m=2^{k} \cdot 3^{j} \quad \text { or } \quad m=2^{j} \cdot 3^{k} \quad(0 \leq j \leq k)
$$

there exists a reduced fraction a / m such that

$$
1<b_{1}, b_{n}<5 \quad \text { and } \quad b_{i} \leq 5 \quad \text { for all } 2 \leq i \leq n-1,
$$

where $\left[0 ; b_{1}, \ldots, b_{n}\right]$ is the regular continued fraction with $b_{n}>1$ of a / m.
We will prove this stronger statement by using induction on k. By the above fractions, the stronger statement holds for $k=2,3$. Now assume that the stronger statement holds for $2 \leq i \leq k \quad(k \geq 3)$. Let $0 \leq j \leq k+1$.

If both $k+1$ and j are even, then by the hypothesis there exist reduced fractions $b /\left(2^{\frac{k+1}{2}} \cdot 3^{\frac{j}{2}}\right)$ and $c /\left(2^{\frac{j}{2}} \cdot 3^{\frac{k+1}{2}}\right)$ such that

$$
\begin{array}{ll}
1<c_{1}, c_{h}<5 & \text { and } \\
1<d_{1}, d_{r}<5 & \text { and } \tag{2.26}
\end{array} \quad d_{i} \leq 5 \quad \text { for all } 2 \leq i \leq h-1
$$

where $\left[0 ; c_{1}, \ldots, c_{h}\right]$ and $\left[0 ; d_{1}, \ldots, d_{r}\right]$ are the regular continued fractions with the last partial quotient >1 of $\mathrm{b} /\left(2^{\frac{k+1}{2}} \cdot 3^{\frac{j}{2}}\right)$ and $c /\left(2^{\frac{j}{2}} \cdot 3^{\frac{k+1}{2}}\right)$, respectively. Applying Lemma 2.2.1 and then by (2.24), we have

$$
\begin{aligned}
\frac{b}{2^{\frac{k+1}{2}} \cdot 3^{\frac{j}{2}}}+\frac{(-1)^{h}}{2^{k+1} \cdot 3^{3}} & \left.=0, c_{1}, \ldots, c_{h}, 0,1, c_{h}-1, c_{h-1}, \ldots, c_{1}\right] \\
& =\left[\theta ; c_{1}, \ldots, c_{h}+1, c_{h}-1, c_{h-1}, \ldots, c_{1}\right]
\end{aligned}
$$

and

It is clear that

$$
\operatorname{gcd}\left(b \cdot\left(2^{\frac{k+1}{2}} \cdot 3^{\frac{j}{2}}\right)+(-1)^{h}, 2^{k+1} \cdot 3^{j}\right)=1
$$

and

$$
\operatorname{gcd}\left(c \cdot\left(2^{\frac{j}{2}} \cdot 3^{\frac{k+1}{2}}\right)+(-1)^{r}, 2^{j} \cdot 3^{k+1}\right)=1
$$

Hence the stronger statement is established by (2.25) and (2.26).

If at least one of $k+1$ and j is odd, then we can write

$$
2^{k+1} \cdot 3^{j}=u_{1} \cdot v_{1}^{2} \quad \text { and } \quad 2^{j} \cdot 3^{k+1}=u_{2} \cdot v_{2}^{2}
$$

where $u_{1}, u_{2} \in\{2,3,6\}, \quad v_{1}=2^{n_{1}} \cdot 3^{n_{2}}$ for some $2 \leq n_{1}<k+1, \quad 0 \leq n_{2} \leq n_{1}$ and $v_{2}=2^{n_{3}} \cdot 3^{n_{4}}$ for some $2 \leq n_{4}<k+1, \quad 0 \leq n_{3} \leq n_{4}$. Then by the hypothesis there exist reduced fractions b / v_{1} and q / v_{2} such that

$$
\begin{align*}
& 1<c_{1}, c_{h}<5 \quad \text { and } \quad c_{i} \leq 5 \text { for all } 2 \leq i \leq h-1 ; \tag{2.27}\\
& 1<d_{1}, d_{r}<5 \text { and } d_{i} \leq 5 \quad \text { for all } 2 \leq i \leq r-1 \text {, } \tag{2.28}
\end{align*}
$$

where $\left[0 ; c_{1}, \ldots, c_{h}\right]$ and $\left[0 ; d_{1}, \ldots, d_{r}\right]$ are the regular continued fractions with the last partial quotient >1 of b / v_{1} and c / v_{2}, respectively. Applying Lemma 2.2.1, we have

$$
\frac{b}{v_{1}}+\frac{(-1)^{h}}{u_{1} v_{1}^{2}}=\left[0 ; c_{1}, \int \cdot, c_{h}, u_{1}-1,1, c_{h}-1, c_{h-1}, \ldots, c_{1}\right]
$$

and

$$
\frac{c}{v_{2}}+\frac{(-1)^{r}}{u_{2} v_{2}^{2}}=\left[0 ; d_{1}, \ldots, d_{r}, u_{2}-1,1, d_{r}-1, d_{r-1}, \ldots, d_{1}\right] .
$$

It is clear that

$$
\operatorname{gcd}\left(b u_{1} v_{1}+(-1)^{h}, u_{1} v_{1}^{2}\right)=1 \quad \text { and } \quad \operatorname{gcd}\left(c u_{2} v_{2}+(-1)^{r}, u_{2} v_{2}^{2}\right)=1
$$

Hence the stronger statement is established by (2.27), (2.28) and the definitions of u_{1} and u_{2}.

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

CONTINUED FRACTIONS WITH SOME PATTERNS

In the chapter, we begin with a generalization of Theorem 2.3 in [9] which considered continued fractions over \mathbb{R} to continued fractions over a general field K. This generalized theorem is then applied to continued fractions over the field $\mathbb{F}\left(\left(x^{-1}\right)\right)$ of formal series over a based field \mathbb{F} to produce some interesting identities. Next, an identity for continued fractions with (palindromic property is extended in the last section.

3.1 Identities for continued fractions with some patterns

Theorem 3.1.1. Let K be an arbitrary field and $\left[b_{0} ; b_{2}, \ldots, b_{n}\right](n \geq 0)$ be a continued fraction over K. Then for any $d \in K$ with $d \neq \overline{q_{n}-1}$, we have
 $n \geq 1$, by (1.6), (1.2) and (1.7), respectively, we have

$$
\begin{aligned}
{\left[b_{0} ; b_{1}, \ldots, b_{n-1}, b_{n}+\frac{q_{n}}{d-q_{n-1}}\right] } & =\frac{\left(b_{n}+\frac{q_{n}}{d-q_{n-1}}\right) p_{n-1}+p_{n-2}}{\left(b_{n}+\frac{q_{n}}{d-q_{n-1}}\right) q_{n-1}+q_{n-2}} \\
& =\frac{d\left(b_{n} p_{n-1}+p_{n-2}\right)-q_{n-1}\left(b_{n} p_{n-1}+p_{n-2}\right)+q_{n} p_{n-1}}{d\left(b_{n} q_{n-1}+q_{n-2}\right)-q_{n-1}\left(b_{n} q_{n-1}+q_{n-2}\right)+q_{n} q_{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d p_{n}-q_{n-1} p_{n}+q_{n} p_{n-1}}{d q_{n}-q_{n-1} q_{n}+q_{n} q_{n-1}} \\
& =\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{d q_{n}}
\end{aligned}
$$

as desired.

Choosing d related to p_{n}, q_{n}, and q_{n-1}, many identities for continued fractions with some patterns are obtained as interesting applications of Theorem 3.1.1.

Corollary 3.1.2. Let $\left[b_{0} ; b_{1}, \ldots, b_{n}\right] \quad(n \geq 0)$ be a regular continued fraction over $\mathbb{F}\left(\left(x^{-1}\right)\right)$. Then for any $s \in \mathbb{F}[x],\{0\}$, we have

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(s q_{n}+2 q_{n-1}\right) q_{n}}= \begin{cases}{\left[b_{0} ; s\right]} \\ & ; \quad \text { if } n=0 \\ {\left[b_{0} ; b_{1}, \ldots, b_{n}, s, b_{n} \ldots, b_{1}\right]} & ; \quad \text { if } n \geq 1\end{cases}
$$

Proof. It is obvious for $n=0$, since $\frac{p_{0}}{q_{0}}+\frac{(-1)^{0}}{\left(s q_{0}+2 q-1\right) q_{0}}=b_{0}+\frac{1}{s}=\left[b_{0} ; s\right]$. Now consider the case $n \geq 1$. Since $\left|q_{n-1}\right|_{\infty}\langle | q_{n}|\infty| \leq\left|s q_{n}\right|_{\infty}$, we have $s q_{n}+2 q_{n-1} \neq q_{n-1}$. By applying Theorem 3 .

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(s q_{n}+2 q_{n-1}\right) q_{n}}=\left[b_{0} ; b_{1}, \ldots, b_{n}, s, b_{n} \ldots, b_{1}\right]
$$

from (1.5).

The symmetric pattern appearing in the case $n \geq 1$ of Corollary 3.1.2 is called 2duplicate symmetry, following Cohn [10]. It is obvious that a 2 -duplicating symmetric
continued fraction is palindromic.
The next corollary is the Folding lemma for the case of formal series.

Corollary 3.1.3. Let $\left[b_{0} ; b_{1}, \ldots, b_{n}\right] \quad(n \geq 0)$ be a regular continued fraction over $\mathbb{F}\left(\left(x^{-1}\right)\right)$. Then for any $s \in \mathbb{F}[x] \backslash\{0\}$, we have

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{s q_{n}^{2}}= \begin{cases}{\left[b_{0} ; s\right]} \\ {\left[b_{0} ; b_{1}, \ldots, b_{n}, s,=b_{n} \ldots,-b_{1}\right]} & ; \text { if } n=0 \\ ; & \text { if } n \geq 1\end{cases}
$$

Proof. It is obvious for $n=0$ from $\frac{p_{0}}{q_{0}}+\frac{(-1)^{0}}{s q_{0}^{2}}=b_{0}+\frac{1}{s}=\left[b_{0} ; s\right]$. Now consider the case $n \geq 1$. Since $\left|q_{n-1}\right|_{\infty}<\left|q_{n}\right| \infty \leq\left|s q_{n}\right|_{\infty}, \quad s q_{n} \neq q_{n-1}$. By Theorem 3.1.1, we have
and hence

$$
\begin{aligned}
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(s q_{n}\right) q_{n}} & \left.=\left[\frac{q_{n}}{b_{0} ; b_{0}}\right], b_{n-1}, b_{n}+\frac{q_{n}}{s q_{n}-q_{n-1}}\right] \\
& =\left[b_{0} ; b_{1}, \ldots, b_{n-1}, b_{n}+\frac{1}{s-\frac{q_{n-1}}{q_{n}}}\right],
\end{aligned}
$$

as required.

Corollary 3.1.4. Let $b_{0}-b_{1} \cong$? $b_{n}^{6} g^{6}\left(n_{9} 0\right.$ o) be a regular continued fraction over $\mathbb{F}\left(\left(x^{-1}\right)\right)$. Then for any $s \in \mathbb{F}[x] \backslash\{0\}$, we have

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(\left(s-b_{0}\right) q_{n}+q_{n-1}+p_{n}\right) q_{n}}= \begin{cases}{\left[b_{0} ; s\right]} & \text {; if } n=0 \tag{3.1}\\ {\left[b_{0} ; b_{1}, \ldots, b_{n}, s, b_{1} \ldots, b_{n}\right]} & ; \text { if } n \geq 1\end{cases}
$$

and

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(\left(s+b_{0}\right) q_{n}+q_{n-1}-p_{n}\right) q_{n}}= \begin{cases}{\left[b_{0} ; s\right]} & \text { if } n=0 \tag{3.2}\\ {\left[b_{0} ; b_{1}, \ldots, b_{n}, s,-b_{1} \ldots,-b_{n}\right]} & \text {; if } n \geq 1\end{cases}
$$

Proof. (3.1) and (3.2) are obvious for $n=0$, because

$$
\frac{p_{0}}{q_{0}}+\frac{(-1)^{0}}{\left(\left(s-b_{0}\right) q_{0}+q_{-1}+p_{0}\right) q_{0}}=\frac{p_{0}}{q_{0}}+\frac{(-1)^{0}}{\left(\left(s+b_{0}\right) q_{0}+q_{-1}-p_{0}\right) q_{0}}=b_{0}+\frac{1}{s}=\left[b_{0} ; s\right] .
$$

Now consider the case $n \geq 1$. Since $\langle | q_{n-1}\left|\infty<\left|q_{n}\right|_{\infty} \leq\left|s q_{n}\right|_{\infty}\right.$ and $\frac{p_{n}-b_{0} q_{n}}{q_{n}}$ is the fractional part of $\frac{p_{n}}{q_{n}}$, we have by (1.7) that

$$
\left|\left(s-b_{0}\right) q_{n}+q_{n-1}+p_{n}\right|_{\infty} \text { 持 }\left.q_{n}\right|_{\infty}=\left|\left(s+b_{0}\right) q_{n}+q_{n-1}-p_{n}\right|_{\infty},
$$

and so $\left(s-b_{0}\right) q_{n}+q_{n-1}+p_{n}$ and $\left(s+b_{\theta}\right) q_{n}+q_{n-1}-p_{n}$ are different from q_{n-1}. By applying Theorem 3.1.1, we have

$$
\begin{aligned}
& \frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(\left(s-b_{0}\right) q_{n}+q_{n}-+p_{n}\right) q_{n}}=\left[b_{0} ; b_{1}, \ldots, b_{n-1}, b_{n}+\frac{q_{n}}{\left(s-b_{0}\right) q_{n}+p_{n}}\right] \\
& \text { \& }=\left[b_{0}^{c}, b_{1}, \ldots, b_{n-1}, b_{n}+\frac{1}{s+\frac{p_{n}-b_{0} q_{n}}{q_{n}}}\right], \\
& \text { จุหาลงกรณ์มหาวิทยาลัย }
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(\left(s+b_{0}\right) q_{n}+q_{n-1}-p_{n}\right) q_{n}} & =\left[b_{0} ; b_{1}, \ldots, b_{n-1}, b_{n}+\frac{q_{n}}{\left(s+b_{0}\right) q_{n}-p_{n}}\right] \\
& =\left[b_{0} ; b_{1}, \ldots, b_{n-1}, b_{n}+\frac{1}{s-\frac{p_{n}-b_{0} q_{n}}{q_{n}}}\right] .
\end{aligned}
$$

We finally reach

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(\left(s-b_{0}\right) q_{n}+q_{n-1}+p_{n}\right) q_{n}}=\left[b_{0} ; b_{1}, \ldots, b_{n}, s, b_{1} \ldots, b_{n}\right]
$$

and

$$
\frac{p_{n}}{q_{n}}+\frac{(-1)^{n}}{\left(\left(s+b_{0}\right) q_{n}+q_{n-1}-p_{n}\right) q_{n}}=\left[b_{0} ; b_{1}, \ldots, b_{n}, s,-b_{1} \ldots,-b_{n}\right]
$$

as desired.

If we repeatedly apply (3.1) in Corollary 3.14 with the same s and with n equals 2 (n of the previous iteration) +1 , we get an minite series expansion for an irrational element in $\mathbb{F}\left(\left(x^{-1}\right)\right)$, which is a root of a quadratic equation with the coefficients are in $\mathbb{F}[x]$ whose regular continued fraction is $\left[b_{0} ; \overline{b_{1}, b_{2}, \ldots, b_{n}, s}\right]$.

3.2 A generalization of continued fractions with 2-duplicate

 symmetryAs mentioned in the previous section, $\left[b_{0} ; b_{1}, \ldots, b_{n}, s, b_{n}, \ldots, b_{1}\right]$ is said to be a 2-duplicating symmetric continued fraction. This notion is generalized as follows.

Definition 3.2.1. Let $k \geq 2, n \geq 1$ and K be an arbitrary field and $b_{0}, b_{1}, \ldots, b_{n}$, $s_{1}, \ldots, s_{k-1} \in K$. Denote the word $b_{1} b_{2} \ldots b_{n}$ by \vec{w} and use \overleftarrow{w} to denote

a k-duplicating symmetric continued fraction and denote $d S_{1}:=\left[b_{0} ; \vec{w}\right]$.
In order to generalize 2-duplicating symmetric continued fractions in Corollary 3.1.2 to $d S_{k}(k \geq 2)$, we need a notation for the convergents of a continued fraction defined by segments of partial quotients from another.

Definition 3.2.2. Let $m \geq 0, K$ be an arbitrary field and $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{m}\right]$ be a continued fraction over K. For $0 \leq u \leq m$, define

$$
\begin{gather*}
P_{u, u-1}=1, \quad Q_{u, u-1}=0, \quad P_{u, u}=b_{u}, \quad Q_{u, u}=1 \\
P_{u, v}=b_{v} P_{u, v-1}+P_{u, v-2} \quad \text { and } \quad Q_{u, v}=b_{v} Q_{u, v-1}+Q_{u, v-2} \quad(u<v \leq m) \tag{3.3}
\end{gather*}
$$

Analogous to the formal definition of the numerators and denominators of continued fractions, we have the following lemma

Lemma 3.2.3. Let $m \geq 0$, K be an arbitrary field and $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{m}\right]$ be a continued fraction over K. Then

$$
\begin{align*}
& \frac{P_{u, v}}{Q_{u, v}}=\left[b_{u} ; b_{u+10} ; b_{v}\right] \quad(0 \leq u \leq v \leq m), \tag{3.4}
\end{align*}
$$

Lemma 3.2.4. Let $m \geq 0, K$ be an arbitrary field and $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{m}\right]$ be a continued fraction over K. The following identities hold for $0 \leq u \leq v \leq m$:

$$
\begin{equation*}
p_{v} q_{u}-q_{v} p_{u}=(-1)^{u} Q_{u+1, v} \tag{1}
\end{equation*}
$$

Proof. All threestatements are proved by mductionong $h=v$ ous. The $h=0$ case
of each is ac consequence of the definitions of $Q_{u, u-1}$ and $P_{u, u-1}$. Now we consider each of them for the $h \geq 1$ case.
(1) (1.7) and the definition of $Q_{u+1, u+1}$ lead to $p_{u+1} q_{u}-q_{u+1} p_{u}=(-1)^{u}=$ $(-1)^{u} Q_{u+1, u+1}$, and hence the equation hold for $h=1$. Now assume that the statement holds for all $0 \leq i \leq h-1 \quad(2 \leq h \leq m-u)$. By applying (1.2) and the hypothesis we have

$$
\begin{aligned}
p_{u+h} q_{u}-q_{u+h} p_{u} & =\left(b_{u+h} p_{u+h-1}+p_{u+h-2}\right) q_{u}-\left(b_{u+h} q_{u+h-1}+q_{u+h-2}\right) p_{u} \\
& =b_{u+h}(-1)^{u} Q_{u+1, u+h-1}+(-1)^{u} Q_{u+1, u+h-2}=(-1)^{u} Q_{u+1, u+h},
\end{aligned}
$$

and so the equation is established.
(2) The definitions of $Q_{u, u}$ and $Q_{u, u+1}$ and (1.2) lead to $q_{u+1} Q_{u, u}-Q_{u, u+1} q_{u}=$ $q_{u+1}-b_{u+1} q_{u}=q_{u-1}=(-1)^{0} q_{u-1}$, and so the equation holds for $h=1$. Now assume that the statement holds for all $0 \leq i \leq h-1,(2 \leq h \leq m-u)$. By applying (1.2), (3.3) and the hypothesis, respectively, we have

$$
\begin{aligned}
& q_{u+h} Q_{u, u+h-1}-Q_{u, u+h} q_{u+h-1} \\
& \quad=\left(b_{u+h} q_{u+h-1}+q_{u+h-2}\right) Q_{u, u+h-1}-\left(b_{u+h} Q_{u, u+h-1}+Q_{u, u+h-2}\right) q_{u+h-1} \\
& \quad=q_{u+h-2} Q_{u, u+h-1}-Q_{u, u+h-2} q_{u+h-1}=(-1)^{u+h-u-1} q_{u-1},
\end{aligned}
$$

and hence the equation is established.
(3) The definitions of $P_{u+1, u+1}$ and $Q_{u+1, u+1}$ and (1.2) lead to $q_{u} P_{u+1, u+1}+$ $q_{u-1} Q_{u+1, u+1}=q_{u} b_{u+1}+q_{u-1}=q_{u+1, ~ a n d ~ h e n c e ~ t h e ~ e q u a t i o n ~ h o l d ~ f o r ~} h=1$. Now assume the statement holds for all $0 \leq i \leq h-1 \quad(2 \leq h \leq m-u)$. By applying (3.3), the hypothesis and (1.2), respectively, we have

$$
\begin{aligned}
q_{u} P_{u+1, u+h} & +q_{u-1} Q_{u+1, u+h} \\
& =q_{u}\left(b_{u+h} P_{u+1, u+h}+P_{u+1, u+h-2}\right) \nLeftarrow q_{u-1}\left(b_{u+h} Q_{u+1, u+h-1}+Q_{u+1, u+h-2}\right) \\
& =b_{u+h}\left(q_{u} P_{u+1, u+h-1}+q_{u} \int_{-1} Q_{u+1, u+h-1}\right)+q_{u} P_{u+1, u+h} \sigma_{2}+q_{u-1} Q_{u+1, u+h-2} \\
& =b_{u+h} q_{u+h}+q_{u+h-2}=q_{u+h}^{6}
\end{aligned}
$$

and then the equation is established.

Theorem 3.2.5. Let $r \geq 2, n \geq r-1, K$ be an arbitrary field and $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{n}\right]$ be a continued fraction over K and let $b_{n+1}, \ldots, b_{n+r} \in K$. If $b_{n-r+2+i}=b_{n+r-i}$ for
all $0 \leq i \leq r-2$, then

$$
\frac{p_{n+r}}{q_{n+r}}=\frac{p_{n}}{q_{n}}+\frac{(-1)^{n} Q_{n+1, n+r}}{\left(Q_{n-r+1, n-1}+P_{n+1, n+r}\right) q_{n}^{2}+(-1)^{r-1} q_{n-r} q_{n}},
$$

where $\frac{p_{n+r}}{q_{n+r}}$ is the last convergent of $\left[b_{0} ; b_{1}, \ldots, b_{n}, b_{n+1}, \ldots, b_{n+r}\right]$.
Proof. Upon using Lemma 3.2.4 (1), it suffices to show that

$$
\begin{equation*}
q_{n+r}=\left(Q_{n-r+1, n-1}+P_{n+1, n+r}\right) q_{n}+(-1)^{r-1} q_{n-r} \tag{3.6}
\end{equation*}
$$

Recall Lemma 3.2.4 (3) and (2) that

$$
\begin{align*}
q_{n} P_{n+1, n+r}+q_{n-1} Q_{n+1, n+r} & =q_{n+r}, \tag{3.7}\\
q_{n+1} Q_{n-r+1, n} & -Q_{n-r+1, n+1} q_{n} \tag{3.8}
\end{align*}=(-1)^{r-1} q_{n-r} .
$$

Subtracting (3.7) by (3.8), we obtain

Hence, by applying (1.2) to q_{n+1} and (3.3) to $Q_{n-r+1, n+1}$, we get

$$
\begin{aligned}
& \text { We have by (3.4) that } \frac{P_{n-r+1, n}}{Q_{n-r+1, n}}=\left[b_{n-r+1} ; b_{n-r+2}, \ldots, b_{n}\right] \text { and by (3.5) that }
\end{aligned}
$$

$$
\frac{Q_{n-r+1, n-1}}{Q_{n-r+1, n}}=\left[0 ; b_{n}, \ldots, b_{n-r+2}\right] .
$$

Observe that the last denominator of $\left[0 ; b_{n}, \ldots, b_{n-r+2}\right]$ equals the last denominator of $\left[b_{n+1} ; b_{n}, \ldots, b_{n-r+2}\right]$ and thus by the assumption $b_{n-r+2+i}=b_{n+r-i} \quad(0 \leq i \leq$
$r-2)$ which lead to

$$
\left[b_{n+1} ; b_{n}, \ldots, b_{n-r+2}\right]=\left[b_{n+1} ; b_{n+2}, \ldots, b_{n+r}\right]=\frac{P_{n+1, n+r}}{Q_{n+1, n+r}} .
$$

Hence we can conclude that $Q_{n-r+1, n}=Q_{n+1, n+r}$. Therefore, by putting $Q_{n-r+1, n}=$ $Q_{n+1, n+r}$ into (3.9) we get (3.6) as desired.

For $k \geq 2, \quad k-1$ times repeated applications of Theorem 3.2 .5 with $r=n+1$ produce a series representing a k-duplicating symmetric continued fraction, described as follows:

Corollary 3.2.6. Let $k \geq 2, n \geq 1$ and K be an arbitrary field and $b_{0}, b_{1}, \ldots, b_{n}$, $s_{1}, \ldots, s_{k-1} \in K$. Then
$d S_{k}=\frac{p_{n}}{q_{n}}$
$+\sum_{i=2}^{k} \frac{(-1)^{(2-1) n} n+i-2}{} Q_{(i-1) n+i-1, i n+i-1}{ }_{\left(Q_{(i-2) n+i-2,(i-1) n+i-3}+P_{(i-1) n+i-1, i n+i-1}\right) q_{(i-1) n+i-2}^{2}+(-1)^{n} q_{(i-2) n+i-3} q_{(i-1) n+i-2}}$.

Remark 3.2.7. Corollary 3.2 .6 with the $k=2$ case leads to

Here $\frac{P_{n+1,2 n+1}}{Q_{n+1,2 n+1}}=\left[s_{1} ; b_{n}, \ldots, b_{1}\right]$ and the fact that thelast denoninator of $\left[s_{1} ; b_{n}, \ldots, b_{1}\right]$ equals the last denominator of $\left[0 \cdot b_{n}^{6}, a, b_{1}\right]$ combined with the Yast denominator of $\left[0 ; b_{n}, \ldots, b_{1}\right]$ is q_{n}, imply

$$
Q_{n+1, n+2 n+1}=q_{n},
$$

hence $\quad P_{n+1, n+2 n+1}=s_{1} q_{n}+q_{n-1}$ and by the definition $Q_{0, n-1}=q_{n-1}$. Therefore this speacial case gives Corollary 3.1.2.

CHAPTER IV

EXPLICIT CONTINUED FRACTIONS RELATED TO CERTAIN SERIES

Explicit formulae for regular continued fractions representing real numbers expressed by certain series are proyided in the first section of this chapter. Analogues of these results are also established for formal series in the latter.

4.1 Real number case

For $n \geq 0$, define $\theta_{n}(T ; f)$ to be the series expressed as follows

where $f(T) \in \mathbb{Z}[T] \backslash\{0\} ; f_{0}(T)=T$ and for all $i \geq 1, f_{i}(T)=f\left(f_{i-1}(T)\right)$ with $T \in \mathbb{Z}$, and for hose $T \in \mathbb{Z}$ for which the Timit exists we define

Throughout this section, we put for any $f(T) \in \mathbb{Z}[T] \backslash\{0\}$,

$$
\begin{aligned}
& A_{n}=A_{n}(T)=(-1)^{n}+\sum_{m=1}^{n}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n}(T), \quad(n \geq 1) ; A_{0}=1, \\
& B_{n}=B_{n}(T)=f_{0}(T) f_{1}(T) \ldots f_{n}(T) \quad(n \geq 0)
\end{aligned}
$$

Note that for any $f(T) \in \mathbb{Z}[T] \backslash\{0\}$ and $n \geq 0, A_{n}$ and B_{n} are the numerator and denominator of the series $\theta_{n}(T ; f)$, respectively, and for $n \geq 1$,

$$
\begin{align*}
A_{n}(T) & =(-1)^{n}+\sum_{m=1}^{n}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n}(T) \\
& =(-1)^{n}+f_{n}(T)\left((-1)^{n-1}+\left(\sum_{m=1}^{n-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n-1}(T)\right)\right) \\
& =(-1)^{n}+f_{n}(T) \cdot A_{n-1}(T), \tag{4.1}\\
A_{n}^{2}(T)-1 & =\left((-1)^{n}+f_{n}(T) A_{n-1}^{2}(T)\right)^{2}-1 \\
& =f_{n}(T)\left(f_{n}(T) A_{n-1}^{2}(T)-2(-1)^{n} A_{n-1}(T)\right) \tag{4.2}\\
& =f_{n}(T)\left(\left(f_{n}(T)+2\right) A_{n-1}^{2}(T)-2 A_{n-1}^{2}(T)+2(-1)^{n} A_{n-1}(T)\right) \\
& =f_{n}(T)\left(\left(f_{n}(T)+2\right) A_{n-1}^{2}(T)-2 A_{n-1}(T)\left(A_{n-1}(T)+(-1)^{n-1}\right)\right) \\
& =f_{n}(T)\left(\left(f_{n}(T)+2\right) A_{n-1}^{2}(T)-2 A_{n-1}(T)\left(f_{n-1}(T) A_{n-2}(T)+2(-1)^{n-1}\right)\right) . \tag{4.3}
\end{align*}
$$

Lemma 4.1.1. For $f(T) \in \mathbb{Z}[T]<\{0\}$, we have for all $n, i \geq 0$,

$$
A_{n}\left(f_{i}(T)\right)=A_{n+i}(T)+D(T) f_{i}(T) \quad \text { or } \quad A_{n}\left(f_{i}(T)\right)=-A_{n+i}(T)+D(T) f_{i}(T)
$$

for some $D(T) \in \mathbb{Z}[T]$. Proof. It is obvious for the case $i=0$. If $i>0$ and $n=0$, then the desired result

$$
\begin{aligned}
A_{n+i}(T)= & (-1)^{n+i}+\sum_{m=1}^{n+i}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n+i}(T) \\
= & (-1)^{n+i}+\sum_{m=1}^{i}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n+i}(T) \\
& +\sum_{m=i+1}^{n+i}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n+i}(T)
\end{aligned}
$$

Case n, i are even.

$$
\begin{aligned}
A_{n+i}(T)= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(-1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& +1+\sum_{m=1}^{n}(-1)^{m+1} f_{m+i}(T) f_{m+1+i}(T) \ldots f_{n+i}(T) \\
= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(-1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& +A_{n}\left(f_{i}(T)\right) .
\end{aligned}
$$

Case n is even, i is odd.

$$
\begin{aligned}
A_{n+i}(T)= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& -1-\sum_{m=1}^{n}(-1)^{m+1} f_{m+i}(T) f_{m+1+i}(T) \ldots f_{n+i}(T) \\
= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& -A_{n}\left(f_{i}(T)\right) .
\end{aligned}
$$

Case n is odd, i is even

$$
\begin{aligned}
& =f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(-1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& +A_{n}\left(f_{i}(T)\right) .
\end{aligned}
$$

Case n, i are odd.

$$
\begin{aligned}
\begin{aligned}
A_{n+i}(T)= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& 1-\sum_{m=1}^{n}(-1)^{m+1} f_{m+i}(T) f_{m+1+i}(T) \ldots f_{n+i}(T) \\
= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& -A_{n}\left(f_{i}(T)\right) .
\end{aligned} \\
\text { Therefore, for all } n, i \geq 0,
\end{aligned}
$$

$$
A_{n}\left(f_{i}(T)\right)=A_{n+i}(T)+D(T) f_{i}(T) \text { or } A_{n}\left(f_{i}(T)\right)=-A_{n+i}(T)+D(T) f_{i}(T)
$$

for some $D(T) \in \mathbb{Z}[T]$.

In this section, two main theorems which give some classes of real numbers represented by palindromic regular continued fractions are proved.

The first main theorem reads:

Theorem 4.1.2. Let $f(T)$ be the polynomial of the form
$g(T) \in \mathbb{Z}[T]$ owhere the leadingrooefficient of $g(T)$ is positive and det $T_{1}=T_{1}(f) \geq 3$ be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{1}$. If $\tilde{T}\left(\geq T_{1}(f)\right)$ is an integer, then

$$
\theta_{0}(\tilde{T} ; f)=[0 ; \tilde{T}],
$$

and for all $n \geq 0, \quad \theta_{n+1}(\tilde{T} ; f)$ is given recursively by the following regular continued
fraction

$$
\theta_{n+1}(\tilde{T} ; f)= \begin{cases}{\left[0 ; b_{1}, \ldots, b_{k}-1,1, d_{n+1}(\tilde{T}), 1, b_{k}-1, \ldots, b_{1}\right]} & ; \text { if } n \text { is odd } \tag{4.5}\\ {\left[0 ; b_{1}, \ldots, b_{k}, d_{n+1}(\tilde{T}), b_{k}, \ldots, b_{1}\right]} & ; \text { if } n \text { is even }\end{cases}
$$

if the regular continued fraction which the last partial quotient is different from 1 of $\theta_{n}(\tilde{T} ; f)$ is $\left[0 ; b_{1}, \ldots, b_{k}\right]$, where
narticular,

$$
\theta(\tilde{T} ; f)=\left[0 ; \tilde{T}, d_{1}(\tilde{T}), \tilde{T}-1,1, d_{2}(\tilde{T}), 1, \tilde{T}-1, d_{1}(\tilde{T}), \tilde{T}, d_{3}(\tilde{T}), \ldots\right]
$$

To prove Theorem 4.1.2, we make use of the following Lemma 4.1.3 to Lemma

4.1.7.

Lemma 4.1.3. Let $f(\underline{I})$ be the polynomial of the form (4.4). If $\tilde{T}(\neq 0)$ is an integer, then $\quad \tilde{T} \mid\left(A_{n}^{2}(\tilde{T})-1\right) \quad(n \geq 0)$.

$$
\begin{aligned}
& \text { Because } ₫ A_{0}(T)=1 \text {, then by (4.1) we have }
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}(0)=(-1)^{1}+f_{1}(0) \cdot A_{0}(0)=-1+2 \cdot 1=1, \\
& A_{2}(0)=(-1)^{2}+f_{2}(0) \cdot A_{1}(0)=1+(-2) \cdot 1=-1, \\
& A_{3}(0)=(-1)^{3}+f_{3}(0) \cdot A_{2}(0)=-1+(-2) \cdot(-1)=1,
\end{aligned}
$$

proceed inductively we get

$$
A_{n}(0)=(-1)^{n+1} \quad(n \geq 1)
$$

Hence we obtain for all $n \geq 0$,

$$
A_{n}^{2}(T)-1=T \cdot D(T), \quad \text { for some } D(T) \in \mathbb{Z}[T],
$$

and so the desired result follows.

Lemma 4.1.4. Let $f(T)$ be the polynomial of the form (4.4), and let $T_{1}=T_{1}(f) \geq 3$ be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{1}$. If $\tilde{T}\left(\geq T_{1}\right)$ is an integer, then

$$
B_{n}(\tilde{T}) \neq 0 \text { and } B_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right) \quad(n \geq 0)
$$

Proof. If $\tilde{T}\left(\geq T_{1}\right)$, then from the definition of T_{1},

$$
3 \leq \tilde{T}<2 \tilde{T}-2<f(\tilde{T})<2 f(\tilde{T})-2<f_{2}(\tilde{T})<\ldots
$$

so that

$$
\begin{equation*}
3 \leq f_{0}(\tilde{T})<f_{1}(\tilde{T})<f_{2}(\tilde{T})<\ldots \tag{4.6}
\end{equation*}
$$

Therefore $B_{n}(\tilde{T}) \neq 0$ for all $n \geq 0$. Now from Lemma 4.1.3, we get

$$
\begin{equation*}
f_{n}(\tilde{T}) \mid\left(A_{n}^{2}\left(f_{n}(\tilde{T})\right)-1\right), \quad \text { for all } n \geq 0 \tag{4.7}
\end{equation*}
$$

ศนย์วิทยทรัพยากร

But we have fromLemma 4.1.1 that for any non-negative integers n, i,
or

$$
A_{n}^{2}\left(f_{i}(\tilde{T})\right)=A_{n+i}^{2}(\tilde{T})-2 D f_{i}(\tilde{T}) A_{n+i}(\tilde{T})+D^{2} f_{i}^{2}(\tilde{T})
$$

for some $D \in \mathbb{Z}$. Thus by (4.7)

$$
f_{i}(\tilde{T}) \mid\left(A_{n+i}^{2}(\tilde{T})-1\right) \quad \text { for all } n, i \geq 0
$$

More precisely,

$$
\begin{equation*}
f_{i}(\tilde{T}) \mid\left(A_{(n-i)+i}^{2}(\tilde{T})-1\right)=\left(A_{n}^{2}(\tilde{T})-1\right) \quad ; \quad i=0,1, \ldots n . \tag{4.8}
\end{equation*}
$$

It remains to prove that

$$
\begin{equation*}
B_{n}(\tilde{T})=f_{0}(\tilde{T}) f_{1}(\tilde{T}) \cdot f_{n}(\tilde{T}) \perp\left(A_{n}^{2}(\tilde{T})-1\right) . \tag{4.9}
\end{equation*}
$$

Since for any non-nengative integers j, k such that $j<k$

$$
f_{k}(\tilde{T})=f_{k-j}\left(f_{j}(\tilde{T})\right)=f_{k-j}(0) \quad\left(\bmod f_{j}(\tilde{T})\right)
$$

noticing here, from the proof of Lemma 4.1.3, that
we obtain

$\left(3^{\circ}\right) \tilde{T}$ is even.
Case $\left(1^{\circ}\right) \tilde{T}$ is odd, $g(\tilde{T})$ is even.
Claim that for all $i \geq 1 \quad f_{i}(\tilde{T})$ is odd. Since $f_{1}(\tilde{T})=\tilde{T}(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}^{2}+2$, $f_{1}(\tilde{T})$ is odd. Assume that $f_{m}(\tilde{T}) \quad(m \geq 1)$ is odd. Then $g\left(f_{m}(\tilde{T})\right)$ is even. Hence $f_{m+1}(\tilde{T})=f_{m}(\tilde{T})\left(f_{m}(\tilde{T})+2\right)\left(f_{m}(\tilde{T})-2\right) g\left(f_{m}(\tilde{T})\right)-f_{m}^{2}(\tilde{T})+2$ is odd. Thus we have
the claim. Therefore, (4.9) follows from (4.8) and (4.10).
For the cases $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$, we make use of the following identity for $n \geq 2$,

$$
\begin{align*}
f_{n} & =f\left(f_{n-1}\right)=f_{n-1}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right)-f_{n-1}^{2}+2 \\
= & f_{n-1}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right) \\
- & \left(f_{n-2}\left(\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-f_{n-2}\right)+2\right)^{2}+2 \\
= & \left.f_{n-1}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right)-f_{n-2}^{2}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-f_{n-2}\right)^{2} \\
- & 4 f_{n-2}\left(\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-f_{n-2}\right)-2, \\
f_{n}+ & 2=f_{n-1}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right)-f_{n-2}^{2}\left(\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)\right)^{2} \\
+ & 2 f_{n-2}^{3}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-4 f_{n-2}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right) \\
- & f_{n-2}^{4}+4 f_{n-2}^{2} \\
= & f_{n-1}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right) f_{n-2}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) \times \\
& \left(f_{n-2}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g^{2}\left(f_{n-2}\right)-2 f_{n-2}^{2} g\left(f_{n-2}\right)+4 g\left(f_{n-2}\right)+f_{n-2}\right) . \tag{4.11}
\end{align*}
$$

Case $\left(2^{\circ}\right) \tilde{T}$ is odd, $g(\tilde{T})$ is odd.
Then $f(\tilde{T})=\tilde{T}(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}^{2}+2$ is even. Let u be the positive integer such that $2^{u} \mid f(\tilde{T})$ and $2^{u} \npreceq f(\tilde{T})$, denoted by $2^{u} \| f(\tilde{T})$. Hence

$$
\begin{align*}
& \text { คูนยวทยทรพยากร } \tag{4.12}
\end{align*}
$$

since $f_{2}-2=f\left(f_{1}\right)-2=f_{1}\left(f_{1}+2\right)\left(f_{1}-2\right) g\left(f_{1}\right)-f_{1}^{2}=f_{1}\left(\left(f_{1}+2\right)\left(f_{1}-2\right) g\left(f_{1}\right)-f_{1}\right)$. By (4.11), we have

$$
\begin{aligned}
f_{3}+2= & f_{2}\left(f_{2}+2\right)\left(f_{2}-2\right) g\left(f_{2}\right)-f_{1}\left(f_{1}+2\right)\left(f_{1}-2\right) \times \\
& \left(f_{1}\left(f_{1}+2\right)\left(f_{1}-2\right) g^{2}\left(f_{1}\right)-2 f_{1}^{2} g\left(f_{1}\right)+4 g\left(f_{1}\right)+f_{1}\right),
\end{aligned}
$$

then, by using (4.12), $f_{3}(\tilde{T}) \equiv-2\left(\bmod 2^{u+2}\right)$, and so by induction, (4.11) and
(4.12) we obtain

$$
\begin{equation*}
f_{n}(\tilde{T}) \equiv-2 \quad\left(\bmod 2^{u+n-1}\right) \quad(n \geq 3) \tag{4.13}
\end{equation*}
$$

Claim that $2^{u+n} \mid\left(A_{n}^{2}(\tilde{T})-1\right)$ for all $n \geq 0$. We prove the claim by induction. It is clear that $2^{u} \mid 0=A_{0}^{2}(\tilde{T})-1$ and $A_{1}^{2}-1=\left(f_{1}-1\right)^{2}-1=f_{1}\left(f_{1}-2\right)$, and then $2^{u+1} \mid\left(A_{1}^{2}(\tilde{T})-1\right)$. From (4.1), we get

$$
\begin{aligned}
A_{2}^{2}-1 & =\left(1+f_{2} A_{1}\right)^{2}-1=f_{2}\left(f_{2} A_{1}^{2}+2 A_{1}\right)=f_{2}\left(\left(f_{2}-2\right) A_{1}^{2}+2 A_{1}^{2}+2 A_{1}\right) \\
& =f_{2}\left(\left(f_{2}-2\right) A_{1}^{2}+2 A_{1}\left(A_{1}+1\right)\right)=f_{2}\left(\left(f_{2}-2\right) A_{1}^{2}+2 A_{1}\left(f_{1}-1+1\right)\right),
\end{aligned}
$$

so by (4.12), we obtain $2^{u+2} \mid\left(A_{2}^{2}(\tilde{T})-\overline{1}\right)$. Now assume $2^{u+k} \mid\left(A_{k}^{2}(\tilde{T})-1\right)$ for all $k=$ $0,1, \ldots, n-1 \quad(n \geq 3)$. By the hypothesis

$$
2^{u+n-1} \mid\left(A_{n-1}^{2}(\tilde{T})-1\right) \text { cand } 2^{u+n-2} \mid\left(A_{n-2}^{2}(\tilde{T})-1\right)
$$

and so the latter leads to 2

since, by (4.2), $A_{n-1}^{2}-1=f_{n-1} A_{n-2}\left(f_{n-1} A_{n-2}+2(-1)^{n-1}\right)$ and, by (4.12) and (4.13),

Case $\left(3^{\circ}\right) \uparrow \tilde{T}$ is even.
Let u be the positive integer such that $2^{u} \| \tilde{T}$. Since $f_{1}(\tilde{T})-2=\tilde{T}((\tilde{T}-2)(\tilde{T}+$ 2) $g(\tilde{T})-\tilde{T})$,

$$
\begin{equation*}
f_{1}(\tilde{T}) \equiv 2 \quad\left(\bmod 2^{u+1}\right) \tag{4.15}
\end{equation*}
$$

By (4.11), we have

$$
\begin{aligned}
f_{2}(\tilde{T})+2= & f_{1}(\tilde{T})\left(f_{1}(\tilde{T})+2\right)\left(f_{1}(\tilde{T})-2\right) g\left(f_{1}(\tilde{T})\right)-\tilde{T}(\tilde{T}+2)(\tilde{T}-2) \times \\
& \left(\tilde{T}(\tilde{T}+2)(\tilde{T}-2) g^{2}(\tilde{T})-2 \tilde{T}^{2} g(\tilde{T})+4 g(\tilde{T})+\tilde{T}\right),
\end{aligned}
$$

then by using (4.15), $\quad f_{2}(\tilde{T}) \equiv-2\left(\bmod 2^{u+2}\right)$, and so by induction, (4.11) and (4.15) we obtain

$$
\begin{equation*}
f_{n}(\tilde{T}) \equiv-2 \quad\left(\bmod 2^{u+n-1}\right) \quad(n \geq 2) \tag{4.16}
\end{equation*}
$$

Claim that $2^{u+n}\left|\left(A_{n}^{2}(\tilde{T})-1\right)\right|$ for all $n \geq 0$. We prove the claim by induction. It is clear that $2^{u} \mid 0=A_{0}^{2}(\tilde{T})-1$ and $A_{1}^{2}=f_{1}\left(f_{1}-2\right)$, and then $2^{u+1} \mid\left(A_{1}^{2}(\tilde{T})-1\right)$. Now assume $2^{u+k} \mid\left(A_{k}^{2}(\tilde{T})-1\right)$ for all $\left.k=0,1, \ldots, n-1\right)(n \geq 2)$. By the hypothesis

$$
2^{u+n-1} \mid\left(A_{n-1}^{2}(\tilde{T})-1\right) \text { and } 2^{u+n-2} \mid\left(A_{n-2}^{2}(\tilde{T})-1\right)
$$

and so the latter leads to $2 \nmid A_{n}$ 粐 Hence we have

since, by (4.2), $A_{n-1}^{2}-1=f_{n-1} A_{n-2}\left(f_{n-1} A_{n-2}+2(-1)^{n-1}\right)$ and, by (4.15) and (4.16), $2 \| f_{n-1}$. Thus the claim forlows from (4.3), (4.16) and $(4.17) \approx$

Lemma 4.1.5. Let $f(T)$ be the polynomial of the form (4.4), and let $T_{1}=T_{1}(f) \geq 3$ be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{1}$. If $\tilde{T}\left(\geq T_{1}\right)$ is an integer, then

$$
0<\frac{2 A_{n}(\tilde{T})}{B_{n}(\tilde{T})}=2 \theta_{n}(\tilde{T} ; f)<1 \quad(n \geq 0)
$$

Proof. It is clear by (4.6) that for all $n \geq 0, B_{n}(\tilde{T})>0$, then we will show for all $n \geq 0, \theta_{n}(\tilde{T} ; f)>0$ by proving that for all $n \geq 0, A_{n}(\tilde{T})>0$. It is obvious by the definition that

$$
A_{0}(\tilde{T})=1>0
$$

and, by (4.1) and (4.6), we have

$$
\begin{aligned}
& A_{1}(\tilde{T})=f_{1}(\tilde{T})-1>2>0 \\
& A_{2}(\tilde{T})=1+f_{2}(\tilde{T}) A_{1}(\tilde{T})>11>0
\end{aligned}
$$

Assume that $A_{k-1}(\tilde{T})>0 \quad(k \geq 3)$. Then by (4.1), (4.6), and the hypothesis

$$
A_{k}(\tilde{T})=(-1)^{k}+\overline{f_{k}(\tilde{T})} \cdot A_{k-1}(\tilde{T})>11>0
$$

It remains to prove that $\theta_{n}(\tilde{T} ; f) \geq \frac{1}{3}$ for all $n \geq 0$.
Case n is even.

$$
\begin{aligned}
& \left.\qquad \begin{array}{rl}
\theta_{n}((\tilde{T} ; f)) & =\frac{1}{f_{0}}-\left(\frac{1}{f_{0} f_{1}}-\frac{1}{f_{0} f_{1} f_{2}}+\ldots-\frac{1}{f_{0} f_{1} \ldots f_{n}}\right) \\
& =\frac{1}{f_{0}}-\left(\frac{f_{2}-1}{f_{0} f_{1} f_{2}}+\frac{f_{4}-1}{f_{0} f_{1} f_{2} f_{3} f_{4}}+\ldots+\frac{f_{n}-1}{f_{0} f_{1}}\right) . . f_{n}
\end{array}\right) . \\
& \text { Case } n \text { is odd. }
\end{aligned}
$$

Thus, by (4.6)

$$
\theta_{n}(\tilde{T} ; f)=\frac{1}{f_{0}(\tilde{T})}<\frac{1}{\tilde{T}} \leq \frac{1}{3}, \quad \text { for all } n \geq 0
$$

Therefore, the lemma is established.

Lemma 4.1.6. Let $f(T)$ be the polynomial of the form (4.4), and let $T_{1}=T_{1}(f) \geq 3$ be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{1}$. If $\tilde{T}\left(\geq T_{1}\right)$ is an integer, then for $n \geq 0$,

$$
\left[\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}\right]= \begin{cases}\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}+2 \frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}-1 & ; \text { if } n \text { is odd } \\ \frac{f_{n+1}(\tilde{T})}{B_{n}(T)}+\frac{2 A_{n}(\tilde{T})}{B_{n}(\tilde{T})}, & ; \text { if } n \text { is even. }\end{cases}
$$

Proof. Let $n \geq 0$. Combining Lemma 4.1.4, $=B_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right)$ and (4.2) leads to

$$
\frac{f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})}{B_{n}(\tilde{T})}=\frac{f_{n+1}(\tilde{T})\left(f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})\right)}{B_{n+1}(\tilde{T})}
$$

Since $A_{n}^{2}(\tilde{T})=D \cdot B_{n}(\tilde{T})-1$ for some $D \in \mathbb{Z}$, we have that
i.e.,

$$
\begin{aligned}
& \text { But we have from Lemmas } 4.5 \\
& \text { ศนยว์ทยทรัพยากร } \\
& 0<\frac{2 A_{n}(\tilde{T})}{B_{n}(\tilde{T})}=2 \theta_{n}(\tilde{T} ; f)<1 . \\
& \text { จหาลงกร์รโโม }
\end{aligned}
$$

Hence we obtain by (4.18) that

$$
\left[\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}\right]=\left\{\begin{array}{cl}
E-1=\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}+2 \frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}-1 & ; \text { if } n \text { is odd } \\
E=\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}-2 \frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})} & ; \text { if } n \text { is even. }
\end{array}\right.
$$

Lemma 4.1.7. Let $f(T)$ be the polynomial of the form (4.4), and let $T_{1}=T_{1}(f) \geq 3$ be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{1}$. If $\tilde{T}\left(\geq T_{1}\right)$ is an integer, then for each $n \geq 0, \quad d_{n+1}(\tilde{T})$ defined by
is a positive integer.

$$
d_{n+1}(\tilde{x})= \begin{cases}{\left[\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}\right]-1} & \text {; if } n \text { is odd } \\ {\left[\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}\right] / 2} & \text {; if } n \text { is even }\end{cases}
$$

Proof. From Lemma 4.1.5-4.1.6, it/suffices to show that

We proceed by induction. For $n=0$, Cemma 4.1.6 and $3 \leq \tilde{T}<f_{1}(\tilde{T})$ lead to

$$
d_{1}(\tilde{T})=\left[\frac{f_{1}(\tilde{T})}{B_{0}(\tilde{T})}\right]=\frac{f_{1}(\tilde{T})}{B_{0}(\tilde{T})}=2 \frac{A_{0}(\tilde{T})}{B_{0}(\tilde{T})}=(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T} \geq 2,
$$

and then by Lemma 4.1.5 we get $\frac{f_{1}(T)}{B_{0}(\tilde{T})}>2$. Now assumethat $\frac{f_{k+1}(\tilde{T})}{B_{k}(\tilde{T})}>2 \quad(k \geq 0)$. Since $f_{k+2}(\tilde{T})=f_{k+1}(\tilde{T})\left(f_{k+1}(\tilde{T})+2\right)\left(f_{k+1}(\tilde{T})-2\right) g\left(f_{k \neq 1}(\tilde{T})\right)-f_{k+1}^{2}(\tilde{T})+2$ and, by (4.6), $f_{k+1}(\tilde{T}) \geq 4$ and $f_{k+2}(\tilde{T}) \geq 5, \quad g\left(f_{k+1}(\tilde{T})\right) \geq 1$. Then

$$
\begin{aligned}
& \text { Hence } \\
& \begin{aligned}
2 & <\frac{f_{k+1}(\tilde{T})}{B_{k-1}(\tilde{T}) \cdot f_{k+1}(\tilde{T})} \cdot f_{k+1}(\tilde{T}) \\
& <\frac{f_{k+1}(\tilde{T}) \cdot\left(\left(f_{k+1}(\tilde{T})+2\right)\left(f_{k+1}(\tilde{T})-2\right) g\left(f_{k+1}(\tilde{T})\right)-f_{k+1}(\tilde{T})\right)}{B_{k+1}(\tilde{T})}<\frac{f_{k+2}(\tilde{T})}{B_{k+1}(\tilde{T})}
\end{aligned}
\end{aligned}
$$

as desired.

Now by making use of the above lemmas, we are ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2 For any non-negative integer r, denoted by $k(r)$ the length of the regular continued fraction which the last partial quotient is different from 1 representing $\theta_{r}(\tilde{T} ; f)=\frac{A_{r}(\tilde{T})}{B_{r}(\tilde{T})}$.

The proof will be completed by induction. We have by a direct calculation

$$
\theta_{0}(\tilde{T} ; f)=[0 ; \tilde{T}] \quad \text { and } \quad \theta_{1}(\tilde{T} ; f)=[0 ; \tilde{T},(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}, \tilde{T}]
$$

which, by Lemma 4.1.6, $\quad d_{1}(\tilde{T})=\frac{f_{1}(\tilde{T})}{B_{0}(\tilde{T})}-\frac{2 A_{0}(\tilde{T})}{B_{0}(\tilde{T})}=(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}$, and hence the statement (4.5) holds for $n=0$. Now assume for $n \geq 1$ that the regular continued fraction which the last partial quotient is different from 1 of $\theta_{n}(\tilde{T} ; f)$ is expressed as
$\theta_{n}(\tilde{T} ; f)= \begin{cases}{\left[0 ; \alpha_{1}, \ldots, \alpha_{k(n-1)}-1,1, d_{n}(\tilde{T}), 1, \alpha_{k(n-1)}-1, \ldots, \alpha_{1}\right]} & ; \text { if } n-1 \text { is odd } \\ {\left[0 ; \alpha_{1}, \ldots, \alpha_{k(n-1)}, d_{n}(T) \alpha_{k(n-1)}, \ldots, \alpha_{1}\right]} & ; \text { if } n-1 \text { is even, }\end{cases}$ if the regular continued fraction which the last partial quotient is different from 1 of $\theta_{n-1}(\tilde{T} ; f)$ is $\left[0 ; \alpha_{1}, \cap \alpha_{k(n-1)}\right]$. Then we have $k(n)$ is $\wp d d$, and we write

$$
\theta_{n}(\tilde{T} ; f)=\left[0 ; b_{1}, \ldots, b_{k(n)}\right]=\frac{\overline{p_{k(n)}}}{q_{k(n)}} .
$$

By using Lemma4.1.4 we have $A_{n}(\tilde{T})$ and $\mathcal{B}_{n}(\tilde{T})$ are relatively prime, so that

$$
\text { ค } 9 \not \subset \cap ด A_{n}(\tilde{T})=p_{n}\left(\frac{d}{n}\right) \text { and } B_{n}(\tilde{T}) 9 \neq q_{q_{n}(n)} \text {. } 6 \text { el }
$$

Since $k(n)$ is odd, we have by (1.7),

$$
\begin{equation*}
q_{k(n)} p_{k(n)-1}=p_{k(n)} q_{k(n)-1}-1, \tag{4.19}
\end{equation*}
$$

and hence by the hypothesis $\left[0 ; b_{1}, \ldots, b_{k(n)}\right]$ is palindromic we have by Remark 1.2.6

$$
\begin{equation*}
p_{k(n)}=q_{k(n)-1} . \tag{4.20}
\end{equation*}
$$

Case n is odd.
By (1.5) we have $\frac{q_{k(n)}}{q_{k(n)-1}}=\left[b_{k(n)} ; b_{k(n)-1}, \ldots, b_{1}\right]$ and then a simple manipulation leads to

$$
\left.-\left(d_{n+1}(\tilde{T})+2\right)+\overline{\frac{q_{k(n)-1}}{q_{k(n)}}=0},-1,1, d_{n+1}(\tilde{T}), 1, b_{k(n)}-1, b_{k(n)-1}, \ldots, b_{1}\right]
$$

Hence by (2.24) and (1.6)
$\left[0 ; b_{1}, \ldots, b_{k(n)}-1,1, d_{n+1}(\tilde{T}), 1, b_{k(n)}-1, b_{k(n)-1}, \ldots, b_{1}\right]$

$$
\begin{aligned}
& =\left[0 ; b_{1}, \ldots, b_{k(n)}, 0_{2}-1,1, d_{n+1}(\tilde{T}), 1, b_{k(n)}-1, b_{k(n)-1}, \ldots, b_{1}\right] \\
& =\frac{\left(-d_{n+1}(T)-2+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(-d_{n+1}(T)-2+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}} .
\end{aligned}
$$

From Lemma 4.1.6 we have

$$
-d_{n+1}(\tilde{T})=-2=-\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}-\frac{2 A_{n}(\tilde{T})}{B_{n}(\tilde{T})}=-\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}
$$

Thus we get

and so we obtain by (4.19) and (4.20) that

$$
\begin{aligned}
\left.\frac{\left(-\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{f_{n+1}(\tilde{T})}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{f_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1} & \frac{\left.f_{n+1}\right) p_{k(n)}+1}{q_{n+1}(\tilde{T}) q_{k(n)}} \\
=\frac{p_{k(n)}}{q_{k(n)}}+\frac{1}{f_{n+1}(\tilde{T}) q_{k(n)}} & =\frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}+\frac{1}{B_{n+1}(\tilde{T})}=\theta_{n+1}(\tilde{T} ; f)
\end{aligned}
$$

Case n is even.
We have by (1.5) that $d_{n+1}+\frac{q_{k-1}}{q_{k}}=\left[d_{n+1} ; b_{k}, b_{k-1}, \ldots, b_{1}\right]$. Hence by (1.6)

$$
\left[0 ; b_{1}, \ldots, b_{k(n)}, d_{n+1}(\tilde{T}), b_{k(n)}, b_{k(n)-1}, \ldots, b_{1}\right]=\frac{\left(d_{n+1}(\tilde{T})+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(d_{n+1}(\tilde{T})+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}}
$$

From Lemma 4.1.6 we have

Thus we get

$$
\begin{aligned}
& {\left[0 ; b_{1}, \ldots, b_{k(n)}, d_{n+1}(\tilde{T}), b_{k(n)}, b_{k(n)-1}, \ldots, b_{1}\right] } \\
&=\frac{\left(\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}}
\end{aligned}
$$

and so we obtain by (4.19) and (4.20) that

$$
\begin{aligned}
& \frac{\left(\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}}{\left(\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)-1}}=\frac{f_{n+1}(\tilde{T}) p_{k(n)}-1}{q_{k(n)-1}} \\
& \quad=\frac{f_{n+1}(\tilde{T}) q_{k(n)}}{p_{k(\tilde{n})}}-\frac{1}{q_{k(n)}} f_{n+1}(\tilde{T}) q_{k(n)}=\frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}-\frac{1}{B_{n+1}^{=}(\tilde{T})}=\theta_{n+1}(\tilde{T} ; f) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefore, }
\end{aligned}
$$

which Lemma 4.1.7 leads to these continued fractions which the last partial quotients are different from 1 are regular.

The following theorem is the second main theorem.

Theorem 4.1.8. Let $f(T)$ be the polynomial of the form

$$
\begin{equation*}
f(T)=T^{2}(T+2)(T-2) g(T)-T^{2}+2 \tag{4.21}
\end{equation*}
$$

$g(T) \in \mathbb{Z}[T]$, where the leading coefficient of $g(T)$ is positive, and let $T_{2}=T_{2}(f) \geq 3$ be the smallest integer such that $2 s-2<\mid f(s)$ for all integers $s \geq T_{2}$. If $\tilde{T}\left(\geq T_{2}(f)\right)$ is an integer, then
and for all $n \geq 0, \theta_{n+1}(\tilde{T} ; f) / \tilde{T}$ is given recursively by the following regular continued fraction

$$
\theta_{n+1}(\tilde{T} ; f) / \tilde{T}= \begin{cases}{\left[0 ; b_{1}, \ldots, b_{k}-1,1, c_{n+1}(\tilde{T}), 1, b_{k}-1, \ldots, b_{1}\right]} & ; \text { if } n \text { is odd } \tag{4.22}\\ {\left[0 ; b_{1}, \ldots, b_{k}, c_{n+1}(\tilde{T}), b_{k 22} \ldots, b_{1}\right]} & ; \text { if } n \text { is even }\end{cases}
$$

if the regular continued fraction which the last partial quotient is different from 1 of $\theta_{n}(\tilde{T} ; f) / \tilde{T}$ is $\left[0 ; b_{1}, \ldots, b_{k}\right]$, where

0

In particular,

$$
\theta(\tilde{T} ; f) / \tilde{T}=\left[0 ; \tilde{T}^{2}, c_{1}(\tilde{T}), \tilde{T}^{2}-1,1, c_{2}(\tilde{T}), 1, \tilde{T}^{2}-1, c_{1}(\tilde{T}), \tilde{T}^{2}, c_{3}(\tilde{T}), \ldots\right]
$$

The following Lemma 4.1.9 to Lemma 4.1.13 are built to establish the proof of Theorem 4.1.8

Lemma 4.1.9. Let $f(T)$ be the polynomial of the form (4.21). If $\tilde{T}(\neq 0)$ is an integer, then $\tilde{T}^{2} \mid\left(A_{n}^{2}(\tilde{T})-1\right) \quad(n \geq 0)$.

Proof. Similar to the proof of Lemma 4.1.3, we obtain

$$
\begin{equation*}
f_{1}(0)=2, \quad f_{n}(0)=-2 \quad(n \geq 2) \tag{4.23}
\end{equation*}
$$

and for all $n \geq 0$,

Hence we will prove this lemma by showing that

$$
\begin{equation*}
\frac{d}{d T}\left(A_{n}^{2}(T)-1\right)=0 \overline{(\operatorname{cat}} T=0, \quad \text { for all } n \geq 0 \tag{4.24}
\end{equation*}
$$

It is obvious for the case $n=0$. Now we consider the cases $n \geq 1$. By (4.2), we have

$$
\begin{aligned}
\frac{d}{d T}\left(A_{n}^{2}(T)-1\right)= & 2 f_{n}(T) f_{n}^{\prime}(T) A_{n-1}^{2}(T)+2 f_{n}^{2}(T) A_{n-1}(T) A_{n-1}^{\prime}(T) \\
& +2(-1)^{n} f_{n}^{\prime}(T) A_{n-1}(T)+2(-1)^{n} f_{n}(T) A_{n-1}^{\prime}(T)
\end{aligned}
$$

then, to prove (4.24), it suffices to show that

and so $f_{1}^{\prime}(0)=0$. Now assume that $f_{k}^{\prime}(0)=0 \quad(k \geq 1)$. From the definition of f_{k+1}, we get

$$
\begin{aligned}
f_{k+1}^{\prime}(T)= & 2 f_{k}(T) f_{k}^{\prime}(T)\left(f_{k}(T)+2\right)\left(f_{k}(T)-2\right) g\left(f_{k}(T)\right) \\
& +f_{k}^{2}(T)\left(f_{k}(T)+2\right)\left(f_{k}(T)-2\right)\left(g\left(f_{k}(T)\right)\right)^{\prime} \\
& +f_{k}^{2}(T)\left(f_{k}^{\prime}(T)\left(f_{k}(T)-2\right)+\left(f_{k}(T)+2\right) f_{k}^{\prime}(T)\right) g\left(f_{k}(T)\right)+2 f_{k}(T) f_{k}^{\prime}(T)
\end{aligned}
$$

Hence the induction hypothesis and (4.23) lead to $f_{k+1}^{\prime}(0)=0$. Thus for all $n \geq 1$ we have that $f_{n}^{\prime}(0)=0$, and so by the mathematical induction, the definition of A_{0} and (4.1) we also have for all $n \geq 1, \quad A_{n-1}^{\prime}(0)=0$.

Lemma 4.1.10. Let $f(T)$ be the polynomial of the form (4.21), and let $T_{2}=T_{2}(f) \geq$ 3 be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{2}$. If $\tilde{T}(\geq$ T_{2}) is an integer, then $\tilde{T} B_{n}(\tilde{T}) \neq 0$ and $\tilde{T} B_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right)(n \geq 0)$

Proof. If $\tilde{T}\left(\geq T_{2}\right)$, then from the definition of T_{2},

$$
3 \leq \tilde{T}<2 \tilde{T}-2<f(\tilde{T})<2 f(\tilde{T})-2<f_{2}(\tilde{T})<\ldots
$$

so that

Therefore $\tilde{T} B_{n}(\tilde{T}) \neq 0$ for all $n \geq 0$. Now from Lemma 4.1.9, we get for all $n \geq 0$,

But from Lemma 4.1.1, we have for any non-negative integers n, i,

$$
f_{i}(\tilde{T}) \mid\left(A_{n+i}^{2}(\tilde{T})-1\right) \quad \text { for all } n, i \geq 0
$$

More precisely,

$$
\begin{equation*}
f_{i}(\tilde{T}) \mid\left(A_{(n-i)+i}^{2}(\tilde{T})-1\right)=\left(A_{n}^{2}(\tilde{T})-1\right) \quad ; \quad i=0,1, \ldots n . \tag{4.27}
\end{equation*}
$$

Also, we have from Lemma 4.1.9 that

$$
\begin{equation*}
\tilde{T}^{2} \mid\left(A_{n}^{2}(\tilde{T})-1\right) \tag{4.28}
\end{equation*}
$$

It remains to prove that

$$
\begin{equation*}
\tilde{T} B_{n}(\tilde{T})=\tilde{T}^{2} f_{1}(\tilde{T}) \cdot f_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right) \tag{4.29}
\end{equation*}
$$

Since for any non-nengative integers j, k such that $j<k$

$$
f_{k}(\tilde{T})=f_{k-j}\left(f_{j}(\tilde{T})\right)=f_{k-j}(0) \quad\left(\bmod f_{j}(\tilde{T})\right)
$$

noticing here, from (4.23), that
we obtain

We consider the following cases 99 なी 9 ?

$\left(3^{\circ}\right) \tilde{T}$ is even.
Case $\left(1^{\circ}\right) \tilde{T}$ is odd, $g(\tilde{T})$ is even.
Since $f(\tilde{T})=\tilde{T}^{2}(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}^{2}+2, \quad f_{i}(\tilde{T}) \quad(i=0,1,2, \ldots)$ is odd.
Thus (4.29) follows from (4.27), (4.28) and (4.30).

For the cases $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$, we make use of the following identity for $n \geq 2$,

$$
\begin{align*}
f_{n}= & f\left(f_{n-1}\right)=f_{n-1}^{2}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right)-f_{n-1}^{2}+2 \\
& =f_{n-1}^{2}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right) \\
- & \left(f_{n-2}^{2}\left(\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-1\right)+2\right)^{2}+2 \\
= & f_{n-1}^{2}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right)-f_{n-2}^{4}\left(\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-1\right)^{2} \\
- & 4 f_{n-2}^{2}\left(\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-1\right)-2, \\
f_{n}+ & 2=f_{n-1}^{2}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right)-f_{n-2}^{4}\left(\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)\right)^{2} \\
+ & 2 f_{n-2}^{4}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right)-4 f_{n-2}^{2}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g\left(f_{n-2}\right) \\
- & f_{n-2}^{4}+4 f_{n-2}^{2} \\
= & f_{n-1}^{2}\left(f_{n-1}+2\right)\left(f_{n-1}-2\right) g\left(f_{n-1}\right)-f_{n-2}^{2}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) \times \\
& \left(f_{n-2}^{2}\left(f_{n-2}+2\right)\left(f_{n-2}-2\right) g^{2}\left(f_{n-2}\right)-2 f_{n-2}^{2} g\left(f_{n-2}\right)+4 g\left(f_{n-2}\right)+1\right) . \tag{4.31}
\end{align*}
$$

Case $\left(2^{\circ}\right) \tilde{T}$ is odd, $g(\tilde{T})$ is odd
Then $f(\tilde{T})=\tilde{T}^{2}(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}^{2}+2$ is even. Let u be the positive integer such that $2^{u} \mid f(\tilde{T})$ and $2^{u} \nmid f(\tilde{T})$. Hence

By $(4.31),{ }^{9} \quad f_{3}+2=f_{2}^{2}\left(f_{2}+2\right)\left(f_{2}-2\right) g\left(f_{2}\right)-f_{1}^{2}\left(f_{1}+2\right)\left(f_{1}-2\right) \times$

$$
\left(f_{1}^{2}\left(f_{1}+2\right)\left(f_{1}-2\right) g^{2}\left(f_{1}\right)-2 f_{1}^{2} g\left(f_{1}\right)+4 g\left(f_{1}\right)+1\right)
$$

then, from (4.32), $f_{3}(\tilde{T}) \equiv-2 \quad\left(\bmod 2^{2 u+2}\right)$, and so by induction, (4.31) and (4.32)
we obtain

$$
\begin{equation*}
f_{n}(\tilde{T}) \equiv-2 \quad\left(\bmod 2^{2 u+n-1}\right) \quad(n \geq 3) \tag{4.33}
\end{equation*}
$$

Claim that $2^{u+n} \mid\left(A_{n}^{2}(\tilde{T})-1\right)$ for all $n \geq 0$. We prove the claim by the mathematical induction. It is clear thàt $2^{u} \mid 0=A_{0}^{2}(\tilde{T})-1 \quad$ and $\quad A_{1}^{2}-1=$ $\left(f_{1}-1\right)^{2}-1=f_{1}\left(f_{1}-2\right)$, and then $2^{u+1} /\left(A_{1}^{2}(\tilde{T})-1\right)$. From (4.1), we get

$$
\begin{aligned}
A_{2}^{2}-1 & =\left(1+f_{2} A_{1}\right)^{2}-1=f_{2}\left(f_{2} A_{1}^{2}+2 A_{1}\right)=f_{2}\left(\left(f_{2}-2\right) A_{1}^{2}+2 A_{1}^{2}+2 A_{1}\right) \\
& =f_{2}\left(\left(f_{2}-2\right) A_{1}^{2}+2 A_{1}\left(A_{1}-1\right)\right)=f_{2}\left(\left(f_{2}-2\right) A_{1}^{2}+2 A_{1}\left(f_{1}-1+1\right)\right),
\end{aligned}
$$

so by (4.32), we obtain $2^{u+2} \mid\left(A_{2}^{2}(\tilde{T})-\overline{1}\right)$. Now assume $2^{u+k} \mid\left(A_{k}^{2}(\tilde{T})-1\right)$ for all $k=$ $0,1, \ldots, n-1 \quad(n \geq 3)$. By the hypothesis

$$
2^{u+n-1} \mid\left(A_{n-1}^{2}(\tilde{T})=1\right) \text { and } 2^{u+n-2} \mid\left(A_{n-2}^{2}(\tilde{T})-1\right)
$$

and so the latter leads to $2 \nmid A_{n}\left(\frac{7}{2}\right)$ Hence we have

since, by (4.2), $A_{n-1}^{2}-1=f_{n-1} A_{n-2}\left(f_{n-1} A_{n-2}+2(-1)^{n-1}\right)$ and, by (4.32) and (4.33),

Case $\left(3^{\circ}\right) \uparrow \tilde{T}$ is even.
Let u be the positive integer such that $2^{u} \| \tilde{T}$. Since $f_{1}(\tilde{T})-2=\tilde{T}^{2}((\tilde{T}-2)(\tilde{T}+$ 2) $g(\tilde{T})-1)$,

$$
\begin{equation*}
f_{1}(\tilde{T}) \equiv 2 \quad\left(\bmod 2^{2 u}\right) \tag{4.35}
\end{equation*}
$$

By (4.31), we have

$$
\begin{aligned}
f_{2}(\tilde{T})+2= & f_{1}^{2}(\tilde{T})\left(f_{1}(\tilde{T})+2\right)\left(f_{1}(\tilde{T})-2\right) g\left(f_{1}(\tilde{T})\right)-\tilde{T}^{2}(\tilde{T}+2)(\tilde{T}-2) \times \\
& \left(\tilde{T}^{2}(\tilde{T}+2)(\tilde{T}-2) g^{2}(\tilde{T})-2 \tilde{T}^{2} g(\tilde{T})+4 g(\tilde{T})+1\right)
\end{aligned}
$$

then, by using (4.35), $\quad f_{2}(\tilde{T}) \equiv-2\left(\bmod 2^{2 u+2}\right)$, and so by induction, (4.31) and (4.35) we obtain

$$
\begin{equation*}
f_{n}(\tilde{T}) \equiv-2 \quad\left(\bmod 2^{2 u+n}\right) \quad(n \geq 2) \tag{4.36}
\end{equation*}
$$

Claim that $2^{2 u+n} 1\left(A_{n}^{2}(\tilde{T})-1\right)$ for all $n \geq 0$. We prove the claim by the mathematical induction. It is clear that $2^{2 u} \mid 0=A_{0}^{2}(\tilde{T})-1$ and $A_{1}^{2}=f_{1}\left(f_{1}-2\right)$, then by (4.35) $\quad 2^{2 u+1} \mid\left(A_{1}^{2}(\tilde{T})-1\right)$. Now assume $2^{2 u+k} \mid\left(A_{k}^{2}(\tilde{T})-1\right) \quad$ for all $k=$ $0,1, \ldots, n-1 \quad(n \geq 2)$. By the hypothesis

$$
2^{2 u+n-1} \mid\left(A_{n-1}^{2}(\tilde{T}) 1\right) \text { and } 2^{2 u+n-2} \mid\left(A_{n-2}^{2}(\tilde{T})-1\right),
$$

and so the latter leads to $2 \nmid A_{n-2}(\tilde{T})$. Hence we have

since, by (4.2), $\left.A_{n-1}^{2}-\right]^{1} \overbrace{}^{6} f_{n}^{1} A_{n-2}\left(f_{n-1} A_{n^{-2}}^{2} t^{2}\left(9^{1}\right)^{n-1}\right)$ and, by (4.35) and (4.36), $2 \| f_{n-1}$. Thus theqlaim follows from (4.3), (4.36) and (4.37).
 (4.27), (4.28) and (4.30).

Lemma 4.1.11. Let $f(T)$ be the polynomial of the form (4.21), and $\operatorname{let} T_{2}=T_{2}(f) \geq$ 3 be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{2}$. If $\tilde{T}\left(\geq T_{2}\right)$ is an integer, then

$$
0<\frac{2 A_{n}(\tilde{T})}{B_{n}(\tilde{T})}=2 \theta_{n}(\tilde{T} ; f)<1 \quad(n \geq 0)
$$

Proof. By using (4.25), the proof is same as that of Lemma 4.1.5.

Lemma 4.1.12. Let $f(T)$ be the polynomial of the form (4.21), and let $T_{2}=T_{2}(f) \geq$ 3 be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{2}$. If $\tilde{T}\left(\geq T_{2}\right)$ is an integer, then for $n \geq 0$,

Proof. Let $n \geq 0$. Combining Lemma 4.1.10, $B_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right)$ and (4.2) leads to

$$
\frac{f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})} \underset{\sim}{\text { nin }} f_{n+1}(\tilde{T})\left(f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})\right) ~\left(\tilde{T} B_{n+1}(\tilde{T})\right.
$$

Since $A_{n}^{2}(\tilde{T})=D \cdot \tilde{T} B \frac{\tilde{n}}{\tilde{n}}(\tilde{T})+1$ for some $D \in \mathbb{Z}$, we haye that

But we have from Lemma 4.1.11 that

$$
\begin{equation*}
0<\frac{2 A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}<1 \tag{4.39}
\end{equation*}
$$

Hence we obtain by (4.38) that

$$
\left[\frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}\right]=\left\{\begin{array}{cl}
E-1=\frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}+2 \frac{A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}-1 & ; \text { if } \mathrm{n} \text { is odd } \\
E=\frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}-2 \frac{A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})} & ; \text { if } \mathrm{n} \text { is even. }
\end{array}\right.
$$

Lemma 4.1.13. Let $f(T)$ be the polynomial of the form (4.21), and let $T_{2}=T_{2}(f) \geq$ 3 be the smallest integer such that $2 s-2<f(s)$ for all integers $s \geq T_{2}$. If $\tilde{T}\left(\geq T_{2}\right)$ is an integer, then for each $n \geq 0 . / c_{n+1}(\tilde{T})$ defined by

Proof. From Lemma 4.1.12 and +4.39$)$, it suffices to show that

$$
\text { If } \frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}>2, \quad \text { for all } n \geq 0 \text {. }
$$

We proceed by nutuction. For $n \neq 0$, Lemma 9.1 .12 and $\beta<\tilde{T}<f_{1}(\tilde{T})$ lead to $c_{1}(\tilde{T})=\left[\begin{array}{c}f_{1}(\tilde{T}) \\ \tilde{T} B_{0}(\tilde{T})\end{array}\right]=\frac{f_{0}(\tilde{T})}{\tilde{T} B_{\theta}(\tilde{D})}-\frac{6}{-2} \frac{A_{0}(\tilde{T})}{\tilde{T} B_{0}(\tilde{T})}=(\tilde{T} \uparrow-2)(\tilde{T}-\hat{Z}) g(\tilde{T})-1 \geq 2$,
and then by (4.39) we get $\frac{f_{1}(\tilde{T})}{\tilde{T} B_{0}(\tilde{T})}>2$. Now assume that $\frac{f_{k+1}(\tilde{T})}{\tilde{T} B_{k}(\tilde{T})}>2 \quad(k \geq 0)$. Since $f_{k+2}(\tilde{T})=f_{k+1}^{2}(\tilde{T})\left(f_{k+1}(\tilde{T})+2\right)\left(f_{k+1}(\tilde{T})-2\right) g\left(f_{k+1}(\tilde{T})\right)-f_{k+1}^{2}(\tilde{T})+2$ and, by (4.25), $f_{k+1}(\tilde{T}) \geq 4$ and $f_{k+2}(\tilde{T}) \geq 5, \quad g\left(f_{k+1}(\tilde{T})\right) \geq 1$. Then $f_{k+1}\left(f_{k+1}(\tilde{T})+2\right)\left(f_{k+1}(\tilde{T})-2\right) g\left(f_{k+1}(\tilde{T})\right)-f_{k+1}(\tilde{T})>12 f_{k+1}(\tilde{T})-f_{k+1}(\tilde{T})>f_{k+1}(\tilde{T})$.

Hence

$$
\begin{aligned}
2 & <\frac{f_{k+1}(\tilde{T}) \cdot f_{k+1}(\tilde{T})}{\tilde{T} B_{k}(\tilde{T}) \cdot f_{k+1}(\tilde{T})} \\
& <\frac{f_{k+1}(\tilde{T}) \cdot\left(f_{k+1}(\tilde{T})\left(f_{k+1}(\tilde{T})+2\right)\left(f_{k+1}(\tilde{T})-2\right) g\left(f_{k+1}(\tilde{T})\right)-f_{k+1}(\tilde{T})\right)}{\tilde{T} B_{k+1}(\tilde{T})} \\
& <\frac{f_{k+2}(\tilde{T})}{\tilde{T} B_{k+1}(\tilde{T})}
\end{aligned}
$$

as required

Now by making use of the abovelemmas, we are ready to prove Theorem 4.1.8.

Proof of Theorem 4.1.8 For any non-negative integer r, denoted by $k(r)$ the length of the regular continued fraction which the last partial quotient is different from 1 of $\theta_{r}(\tilde{T} ; f) / \tilde{T}=\frac{A_{r}(\tilde{T})}{\tilde{T} B_{r}(\tilde{T})}$.

The proof will be completed by induction. We have by a direct calculation

$$
\theta_{0}(\tilde{T} ; f) / \tilde{T}=\left[0 ; \tilde{T}^{2}\right] \quad \text { and } \quad \theta_{1}(\tilde{T} ; f) / \tilde{T}=\left[0 ; \tilde{T}^{2},(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-1, \tilde{T}^{2}\right]
$$

which, by Lemma 4.1.12, $\quad c_{1}(\tilde{T})=\frac{f_{1}(\tilde{T})}{\tilde{T} B_{0}(\tilde{T})}-\frac{2 A_{0}(\tilde{T})}{\tilde{T} B_{0}(\tilde{T})}=(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-1$, and hence the statement (4.22) holds for $n=0$. Now assume for $n \geq 1$ that the regular continued fraction which the last partial quotient is different from 1 of $\theta_{n}(\tilde{T} ; f) / \tilde{T}$ is

if the regular continued fraction which the last partial quotient is different from 1 of $\theta_{n-1}(\tilde{T} ; f) / \tilde{T}$ is $\left[0 ; \alpha_{1}, \ldots, \alpha_{k(n-1)}\right]$. Then we have $k(n)$ is odd, and we write

$$
\theta_{n}(\tilde{T} ; f) / \tilde{T}=\left[0 ; b_{1}, \ldots, b_{k(n)}\right]=\frac{p_{k(n)}}{q_{k(n)}}
$$

By using Lemma 4.1.10 we have $A_{n}(\tilde{T})$ and $B_{n}(\tilde{T})$ are relatively prime, so that

$$
A_{n}(\tilde{T})=p_{k(n)} \quad \text { and } \quad \tilde{T} B_{n}(\tilde{T})=q_{k(n)} .
$$

Since $k(n)$ is odd, we have by (1.7),

$$
\begin{equation*}
q_{k(n)} p_{k(n)-1}=p_{k(n)} q_{k(n)-1}-1 \tag{4.40}
\end{equation*}
$$

and hence by the hypothesis $\left[0 ; b_{1}, \ldots, b_{k(n)}\right]$ is palindromic we have by Remark 1.2.6

Case n is odd.
By (1.5) we have $\frac{q_{k(n)}}{q_{k(n)-1}}=\left[b_{k(n)} ; b_{k(n)}, 1, \ldots . b_{1}\right]$ and a simple manipulation leads to

$$
-\left(c_{n+1}(\tilde{T})+2\right)+\frac{q_{k(n)-1}}{q_{k(n)}}=\left[0,1-1,1, c_{n+1}(\tilde{T}), 1, b_{k(n)}-1, b_{k(n)-1}, \ldots, b_{1}\right] .
$$

Hence by (2.24) and (1.6)

$$
=\left[0 ; b_{1}, \ldots, b_{k(n)}, 0,-1,1, c_{n+1}(\tilde{T})-1, b_{k(n)}-1, b_{k(n)-1}, \ldots, b_{1}\right]
$$

$$
-c_{n+1}(\tilde{T})-2=-\frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}-\frac{2 A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}=-\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}} .
$$

Thus we get
$\left[0 ; b_{1}, \ldots, b_{k(n)}-1,1, c_{n+1}(\tilde{T}), 1, b_{k(n)}-1, b_{k(n)-1}, \ldots, b_{1}\right]$

$$
=\frac{\left(-\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(-\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}},
$$

and so we obtain by (4.40) and (4.41) that

$$
\begin{aligned}
\frac{\left(-\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(-\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}}=\frac{f_{n+1}(\tilde{T}) p_{k(n)}+1}{f_{n+1}(\tilde{T}) q_{k(n)}} \\
=\frac{A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}+\frac{1}{\tilde{T} B_{n+1}(\tilde{T})}=\theta_{n+1}(\tilde{T} ; f) / \tilde{T} .
\end{aligned}
$$

Case n is even.
We have by (1.5) that $c_{n+1}(\tilde{T})+\frac{q_{k(n)-1}}{q_{k(n)}}=\left[c_{n+1}(\tilde{T}) ; b_{k(n)}, b_{k(n)-1}, \ldots, b_{1}\right]$.
Hence by (1.6)

$$
\left[0 ; b_{1}, \ldots, b_{k(n)}, c_{n+1}(\tilde{T}), b_{k(n)}, b_{k(n)}-1, \ldots, b_{1}\right]=\frac{\left(c_{n+1}(\tilde{T})+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(c_{n+1}(\tilde{T})+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}} .
$$

From Lemma 4.1.12 we have

$$
c_{n+1}(\tilde{T})=\frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}-\frac{2 A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}=\frac{f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}} .
$$

Thus we get
$\left[0 ; b_{1}, \ldots, b_{k(n)}, c_{n+1}(\tilde{T}), b_{k(n)}, b_{k(n)} \frac{\left.1, \ldots, b_{1}\right]}{1}\right.$,

and so we obtain by (4.19) and (4.20) that

$$
\theta_{n+1}(\tilde{T} ; f) / \tilde{T}= \begin{cases}{\left[0 ; b_{1}, \ldots, b_{k}-1,1, c_{n+1}(\tilde{T}), 1, b_{k}-1, \ldots, b_{1}\right]} & ; \text { if } n \text { is odd } \\ {\left[0 ; b_{1}, \ldots, b_{k}, c_{n+1}(\tilde{T}), b_{k}, \ldots, b_{1}\right]} & ; \text { if } n \text { is even }\end{cases}
$$

which Lemma 4.1.13 leads to these continued fractions which the last partial quotients are different from 1 are regular.

4.2 Formal series case

Throughout this section, we let \mathbb{F} be a field of characteristic zero.
Analogues of Theorems 4.1.2 and 4.1.8 are investigated for continued fractions in the field of formal series over a field \mathbb{F}. We begin with the following analogous setup.

For $n \geq 0$, define $\theta_{n}(T ; f)$ to be the series expressed as follows

$$
\begin{equation*}
\theta_{n}(T ; f)=\sum_{m=0}^{n} \frac{(-1)^{m}}{f_{0}(T) f_{1}(T) \ldots f_{m}(T)}, \tag{4.42}
\end{equation*}
$$

where $f(T) \in(\mathbb{F}[x])[T] \wedge\{0\}, \quad f_{0}(T)=T$ and for all $i \geq 1, f_{i}(T)=f\left(f_{i-1}(T)\right)$ with $T \in \mathbb{F}[x] \backslash\{0\}$, and for those $T \in \mathbb{F}[x]>\{0\}$ for which the limit exists we define

For any $f(T) \in(\mathbb{F}[x])[T] \times\{0\}$, , we put
$A_{n}=A_{n}(T)=(-1)^{n}+\sum_{m=1}^{n}(-T)_{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n}(T), \quad(n \geq 1) ; A_{0}=1$,
$B_{n}=B_{n}(T)=f_{0}(T) f_{1}(T) \ldots f_{n}(T) \quad(n \geq 0)$.
Similar to the classical case, for any $f(T) \in(\mathbb{F}[x])[T] \backslash\{0\}$ and $n \geq 0, A_{n}$ and B_{n} are the numerator and denominator of the series, $\theta_{n}(T ; f)$ given by (4.42), respectively,

$$
\begin{align*}
A_{n}(T) & =(-1)^{n} \widehat{\sum_{m=1}^{n}}(-1)^{m+1} \cdot f_{m}(T) f_{m+1}(T) \cdot C \cdot f_{n}(T) ? \\
& =(-1)^{n}+f_{n}(T)\left((-1)^{n-1}+\left(\sum_{m=1}^{n-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n-1}(T)\right)\right) \\
& =(-1)^{n}+f_{n}(T) \cdot A_{n-1}(T), \tag{4.43}\\
A_{n}^{2}(T)-1 & =\left((-1)^{n}+f_{n}(T) A_{n-1}^{2}(T)\right)^{2}-1 \\
& =f_{n}(T)\left(f_{n}(T) A_{n-1}^{2}(T)+2(-1)^{n} A_{n-1}(T)\right) \tag{4.44}
\end{align*}
$$

Lemma 4.2.1. For any $f(T) \in(\mathbb{F}[x])[T] \backslash\{0\}$, we have for all $n, i \geq 0$,

$$
A_{n}\left(f_{i}(T)\right)=A_{n+i}(T)+D(T) f_{i}(T) \quad \text { or } \quad A_{n}\left(f_{i}(T)\right)=-A_{n+i}(T)+D(T) f_{i}(T)
$$

for some $D(T) \in(\mathbb{F}[x])[T]$.

Proof. It is obvious for the case $i=0$. If $i>0$ and $n=0$, then the desired result follows from the definition of A_{0} and (4.43). Now consider for $n, i \geq 1$,

$$
\begin{aligned}
A_{n+i}(T)= & \left(-\frac{1^{n+i}+\sum_{m=1}^{n+i}(-1)^{m+1} f_{m}(T) f_{m+1}}{}(T) \ldots f_{n+i}(T)\right. \\
& =(-1)^{n+i}+\sum_{m=1}^{i}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n+i}(T) \\
& +\sum_{m=i+1}^{n+i}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{n+i}(T) .
\end{aligned}
$$

Case n, i are even.

$$
\begin{aligned}
& A_{n+i}(T)=f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(-1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& 1+\sum_{m=1}^{n}(-1)^{m+1} f_{m+i}(T) f_{m+1+i}(T) \ldots f_{n+i}(T)
\end{aligned}
$$

$$
\begin{aligned}
& +A_{n}\left(f_{i}(T)\right) .
\end{aligned}
$$

Case n isleven, i is odd.

$$
\begin{aligned}
A_{n+i}(T)= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& -1-\sum_{m=1}^{n}(-1)^{m+1} f_{m+i}(T) f_{m+1+i}(T) \ldots f_{n+i}(T)
\end{aligned}
$$

$$
\begin{aligned}
= & f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& -A_{n}\left(f_{i}(T)\right)
\end{aligned}
$$

Case n is odd, i is even

$$
\begin{aligned}
& A_{n+i}(T)=f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(-1 / \sum_{m=1}^{i+1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& \left.-1+\sum_{m=1}^{n}(-1)^{m+1} f_{m+i} T\right) f_{m+1+i}(T) \ldots f_{n+i}(T) \\
& =f_{i}(T) f_{i+1}(T) \ldots f_{n+i}(T)\left(-1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& +A_{n}\left(f_{i}(T)\right) \\
& \text { Case } n, i \text { are odd. } \\
& A_{n+i}(T)=f_{i}(T) f_{i+1}(T) \ldots f_{n+1}(T)\left(1+\sum_{m=1}^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& 1-\sum_{m=1}^{n}(-1)^{m+1} f_{m+i}(T) f_{m+1+i}(T) \ldots f_{n+i}(T) \\
& =f_{i}(T) f_{i+1}(T) d \cdot f_{n+i}(T)\left(-1+\sum^{i-1}(-1)^{m+1} f_{m}(T) f_{m+1}(T) \ldots f_{i-1}(T)\right) \\
& -A_{n}\left(f_{i}(T)\right) . \\
& \text { จหาลงกรณ์มหาวิทยาลัย }
\end{aligned}
$$

Therefore, for all $n, i \geq 0$,

$$
A_{n}\left(f_{i}(T)\right)=A_{n+i}(T)+D(T) f_{i}(T) \text { or } A_{n}\left(f_{i}(T)\right)=-A_{n+i}(T)+D(T) f_{i}(T)
$$

for some $D(T) \in(\mathbb{F}[x])[T]$.

Lemma 4.2.2. Let $f(T)$ be the polynomial of the form

$$
f(T)=T(T+2)(T-2) g(T)-T^{2}+2,
$$

where $g(T) \in(\mathbb{F}[x])[T]$. If $\tilde{T} \in \mathbb{F}[x] \backslash\{0\}$, then for all $n \geq 0$,

$$
\tilde{T} \mid\left(A_{n}^{2}(\tilde{T})-1\right) .
$$

Proof. Since $f(T)=T(T+2)(T-2) g(T)-T^{2}+2$,

$$
f_{1}(0)=2 \quad \text { and } f_{n}(0)=-2 \quad(n \geq 2) .
$$

Because

$$
A_{0}(T)=1 \text {, then by }(4.43) \text { we have }
$$

$$
A_{1}(0)=(-1)^{1}+f_{1}(0) \cdot A_{0}(0)=-1+2 \cdot 1=1
$$

$$
A_{2}(0)=(-1)^{2}+f_{2}(0) \cdot A_{1}(0)=1+(-2) \cdot 1=-1,
$$

$$
A_{3}(0)=(-1)^{3}+f_{3}(0) \cdot A_{2}(0)=-1+(-2) \cdot(-1)=1,
$$

proceed inductively we get

$$
A_{n}(0)=(-1)^{n+1} \quad(n \geq 1) .
$$

Hence we obtain for alt $n \geq 0$,

$$
A_{n}^{2}(T)-1=T \cdot D(T) \quad \text { for some } D(T) \in(\mathbb{F}[x])[T]
$$

Lemma 4.2.3. Let $f(T)$ be the polynomial of theform

where $g(T) \in(\mathbb{F}[x])[T]$. If $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$, then for all $n \geq 0$,

$$
\left|B_{n}(\tilde{T})\right|_{\infty} \neq 0 \text { and } B_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right) .
$$

Proof. Since $f(\tilde{T})=\tilde{T}(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}^{2}+2$ and $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$,

$$
\begin{equation*}
2 \leq\left|f_{0}(\tilde{T})\right|_{\infty}<\left|f_{1}(\tilde{T})\right|_{\infty}<\left|f_{2}(\tilde{T})\right|_{\infty}<\ldots \tag{4.45}
\end{equation*}
$$

Thus $\left|B_{n}(\tilde{T})\right|_{\infty} \neq 0$ for all n. Now from Lemma 4.2.2, we get

But we have from Lemma 4.2.1 that for any non-negative integers n, i,
or

$$
\begin{aligned}
& A_{n}^{2}\left(f_{i}(\tilde{T})\right)=A_{n+i}^{2}(\tilde{T})+2 D f_{i}(\tilde{T}) A_{n+i}(\tilde{T})+D^{2} f_{i}^{2}(\tilde{T}), \\
& A_{n}^{2}\left(f_{i}(\tilde{T})\right)=A_{n+i}^{2}(\tilde{T})-2 D f_{i}(\tilde{T}) A_{n+i}(\tilde{T})+D^{2} f_{i}^{2}(\tilde{T}),
\end{aligned}
$$

for some $D \in \mathbb{F}[x]$. Thus by (4.46)

$$
f_{i}(\tilde{T}) \mid\left(A_{n \neq}^{2}(\tilde{T})-1\right) / \Delta \text { for all } n, i \geq 0
$$

More precisely,

$$
\begin{equation*}
f_{i}(\tilde{T}) \mid\left(A_{(n-i)+i}^{2}(\tilde{T})-1\right)=\left(A_{n}^{2}(\tilde{T})-1\right) \quad i=0,1, \ldots n . \tag{4.47}
\end{equation*}
$$

Since for any non-negative integers j, k such that $j<k$

$$
f_{k}(\tilde{T})=f_{k-j}\left(f_{j}(\tilde{T})\right) \equiv f_{k-j}(0) \quad\left(\bmod f_{j}(\tilde{T})\right)
$$

noticing here, from the proof of Lemma 4.2.2, that

$$
f_{k-j}(0)=\left\{\begin{aligned}
2 & \text { for } k=j+1 \\
-2 & \text { for } k>j+1
\end{aligned}\right.
$$

we obtain

$$
\begin{equation*}
\operatorname{gcd}\left(f_{j}(\tilde{T}), f_{k}(\tilde{T})\right)=\operatorname{gcd}\left(f_{j}(\tilde{T}), 2\right)=1 \tag{4.49}
\end{equation*}
$$

Therefore, (4.48) follows from (4.47) and (4.49)

Lemma 4.2.4. Let $f(T)$ be the polynomial of the form

$$
f(T)=T(T+2)(T-2) g(T)-T^{2}+2
$$

where $g(T) \in(\mathbb{F}[x])[T]$. If $\tilde{T} \in \mathbb{F}[x]$, \mathbb{F}, then for all $n \geq 0$,

Proof. It is obvious by the definition that

For $n \geq$ ค., we have by (4.45) ว6ో

$$
2 \leq\left|f_{0}(\tilde{T})\right|_{\infty}<\left|f_{1}(\tilde{T})\right|_{\infty}<\left|f_{2}(\tilde{T})\right|_{\infty}<\ldots
$$

and hence by (1.1)

$$
\left|\frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}\right|_{\infty}=\left|\frac{(-1)^{n}+\sum_{m=1}^{n}(-1)^{m+1} f_{m}(\tilde{T}) f_{m+1}(\tilde{T}) \ldots f_{n}(\tilde{T})}{f_{0}(\tilde{T}) f_{1}(\tilde{T}) \ldots f_{n}(\tilde{T})}\right|_{\infty}
$$

$$
=\left|\frac{f_{1}(\tilde{T}) f_{2}(\tilde{T}) \ldots f_{n}(\tilde{T})}{f_{0}(\tilde{T}) f_{1}(\tilde{T}) \ldots f_{n}(\tilde{T})}\right|_{\infty}=\frac{1}{\left|f_{0}(\tilde{T})\right|_{\infty}}=\frac{1}{|\tilde{T}|_{\infty}}
$$

Thus we get for all $n \geq 0$,

$$
0<\left|\frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}\right|_{\infty}<1
$$

since $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$.
Next, we will show $\left|\frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}\right|_{\infty} \geq 2$ by using the induction. Since

$$
\begin{aligned}
\left|\frac{f_{1}(\tilde{T})}{B_{0}(\tilde{T})}\right|_{\infty} & =\left\lvert\, \frac{\tilde{T}(\tilde{T}+2)(\tilde{T}-1) g(\tilde{T})}{\tilde{T}}-\tilde{T}^{2}+2\right. \\
& \left.=|(\tilde{T}+2)(\tilde{T}-1) g(\tilde{T})-\tilde{T}|_{\infty}=\left.\frac{\tilde{T}(\tilde{T}+2)(\tilde{T}-1) g(\tilde{T})-\tilde{T}^{2}}{\tilde{T}}\right|_{\infty} \max |(\tilde{T}+2)(\tilde{T}-1) g(\tilde{T})|_{\infty},|\tilde{T}|_{\infty}\right\} \\
& \geq 2,
\end{aligned}
$$

the statement holds for $n=0$. Now, assume $\left|\frac{f_{k+1}(\tilde{T})}{B_{k}(\tilde{T})}\right|_{\infty} \geq 2 \quad(k \geq 0)$. Since

$$
\left|f_{k+1}(\tilde{T})\right|_{\infty}<\left|f_{k+1}(\tilde{T})\right|_{\infty}\left|\left(f_{k+1}(T)+2\right)\left(f_{k+1}(\tilde{T})-2\right) g\left(f_{k+1}(\tilde{T})\right)-f_{k+1}(\tilde{T})\right|_{\infty},
$$

we obtain by the hypothesis
$2 \leq\left|\frac{f_{k+1}(\tilde{T})}{B_{k}(\tilde{T})}\right|_{\infty}=\frac{\left|f_{k+1}(\tilde{T})\right|_{\infty}\left|f_{k+1}(\tilde{T})\right|_{\infty}}{\left|f_{k+1}(\tilde{T})\right|_{\infty}\left|B_{k}(\tilde{T})\right|_{\infty}}$
$<\frac{\left.\left.\left|f_{k+1}(\tilde{T})\right|_{\infty} \mid \rho_{k+1}(\tilde{T})+2\right)\left(f_{k+1}(\tilde{T})\right) \ell 2\right)(\tilde{g}\left(f_{k+1}(\tilde{T})\right)-\overparen{f}_{k+1}+\overbrace{\infty}}{\left|B_{k+1}(\tilde{T})\right|_{\infty}}=\frac{\left|f_{k+2}(\tilde{T})\right|_{\infty}}{\left|B_{k+1}(\tilde{T})\right|_{\infty}}$.
Now we are ready to state the analogue of Theorem 4.1.2. 9 亿
Theorem 4.2.5. Let $f(T)$ be the polynomial of the form

$$
f(T)=T(T+2)(T-2) g(T)-T^{2}+2,
$$

where $g(T) \in(\mathbb{F}[x])[T]$. If $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$, then

$$
\theta_{0}(\tilde{T} ; f)=[0 ; \tilde{T}],
$$

and for all $n \geq 0$,

$$
\begin{equation*}
\theta_{n+1}(\tilde{T} ; f)=\left[0 ; b_{1}, \ldots, b_{k}, u_{n+1}(\tilde{T}), b_{k}, \ldots, b_{1}\right], \tag{4.50}
\end{equation*}
$$

if $\left[0 ; b_{1}, \ldots, b_{k}\right]$ is a palindromic continued fraction representing $\theta_{n}(\tilde{T} ; f)$ and

$$
u_{n+1}(\tilde{T})=(-1)^{n} \delta_{n}^{2} \frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}-2 \frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}
$$

where δ_{n} is the element in $\mathbb{F} \backslash\{0\}$ such that $A_{n}(\tilde{T})=\delta_{n} p_{k}$ and $B_{n}(\tilde{T})=\delta_{n} q_{k}$ provided $\frac{p_{k}}{q_{k}}$ is the $k^{\text {th }}$ (last) convergent of $\theta_{n}(\tilde{T} ; f)$ respect to $\left[0 ; b_{1}, \ldots, b_{k}\right]$.

In particular,

$$
\theta(\tilde{T} ; f)=\left[0 ; \tilde{T}, u_{1}(\tilde{T}), \tilde{T} u_{2}(\tilde{T}), \tilde{T}, u_{1}(\tilde{T}), \tilde{T}, u_{3}(\tilde{T}), \ldots\right] .
$$

Proof. For any non-negative integer r. denoted by $k(r)$ the length of a continued fraction representing $\theta_{r}(\tilde{T} ; f)=\frac{A_{r}(T)}{B_{r}(\tilde{T})}$ which all partial numerators are 1 .

The proof will be completed by induction. We have by a direct calculation

$$
\theta_{0}(\tilde{T} ; f)=\left[0 ; \tilde{T}=\text { and } \quad \theta_{1}(\tilde{T} ; f)=[0 ; \tilde{T},(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}, \tilde{T}]\right.
$$

which $u_{1}(\tilde{T})=\frac{(-1)^{0} \delta_{0}^{2} f_{1}(\tilde{T})}{B_{0}(\tilde{T})}-\frac{2 A_{0}(\tilde{T})}{B_{0}(\tilde{T})}=\frac{f_{1}(\tilde{T})}{\tilde{T}}-\frac{2}{\tilde{T}}=(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}$, and hence the statement (450) holds for $n \neq 0.1$. Now suppose for $\eta \nexists \frac{1}{g}$ that

if $\left[0 ; \alpha_{1}, \ldots,, \alpha_{k(n-1)}\right]$ is a palindromic continued fraction representing $\theta_{n-1}(\tilde{T} ; f)$ and

$$
u_{n}(\tilde{T})=(-1)^{n-1} \delta_{n-1}^{2} \frac{f_{n}(\tilde{T})}{B_{n-1}(\tilde{T})}-2 \frac{A_{n-1}(\tilde{T})}{B_{n-1}(\tilde{T})}
$$

We write

$$
\theta_{n}(\tilde{T} ; f)=\left[0 ; b_{1}, \ldots, b_{k(n)}\right]=\frac{p_{k(n)}}{q_{k(n)}},
$$

and then $k(n)$ is odd. By using Lemma 4.2.3, we have $A_{n}(\tilde{T})$ and $B_{n}(\tilde{T})$ are relatively prime, so that there exists $\delta_{n} \in \mathbb{F} \backslash\{0\}$ such that

$$
A_{n}(\tilde{T})=\delta_{n} p_{k(n)} \quad \text { and } \quad B_{n}(\tilde{T})=\delta_{n} q_{k(n)}
$$

Since $k(n)$ is odd, we have by (1.7),
$q_{k(n)} p_{k(n)-1}=p_{k(n)} q_{k(n)-1}-1$,
and hence by the hypothesis $\left[0 ; b_{1}\right.$, $\left.\bar{b}_{k(n)}\right]$ is palindromic we have by Remark 1.2.6 $p_{k(n)}=q_{k(n)-1}$.

Case n is odd.
We have by (1.5) that

$$
\frac{-\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}=\frac{-\delta_{n}^{2} f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}-\frac{2 A_{n}(\tilde{T})}{B_{n}(\tilde{T})}+\frac{q_{k(n)-1}}{q_{k(n)}}
$$

Hence by (1.6)

and so we obtain by (4.51) and (4.52) that

$$
\begin{aligned}
\frac{\left(\frac{-\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(\frac{-\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}} & =\frac{p_{k(n)}}{q_{k(n)}}+\frac{1}{\delta_{n} f_{n+1}(\tilde{T}) q_{k(n)}} \\
& =\frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}+\frac{1}{B_{n+1}(\tilde{T})}=\theta_{n+1}(\tilde{T}) .
\end{aligned}
$$

Case n is even.
We have by (1.5) that

$$
\begin{aligned}
\frac{\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}} & =\frac{\delta_{n}^{2} f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}-\frac{2 A_{n}(\tilde{T})}{B_{n}(\tilde{T})}+\frac{q_{k(n)-1}}{q_{k(n)}} \\
& =\left[u_{n+1}(\tilde{T}) ; a_{k(n)}, \ldots, a_{1}\right] .
\end{aligned}
$$

Hence by (1.6)
$\left[0 ; b_{1}, \ldots, b_{k(n)}, u_{n+1}(\tilde{T}), b_{k(n)}, \ldots, b_{1}\right]$

and so we obtain by (4.51) and (4.52) that

$$
\begin{aligned}
& \frac{\left(\frac{\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)+f_{n}} p_{k(n)-1}}{\left(\frac{\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) \underline{q_{k(n)}+\ldots q_{k(n)-1}}}=\frac{p_{k(n)}}{q_{k(n)}}+\frac{-1}{\delta_{n} f_{n+1}(\tilde{T}) q_{k(n)}} \\
& =\frac{A_{n}(\tilde{T})}{B_{n}(\tilde{T})}+\frac{-1}{B_{n+1}(\tilde{T})}=\theta_{n+1}(\tilde{T}) .
\end{aligned}
$$

Therefore, the theorem is established.
Remark 4.2.6. Different from the case of real numbers, we cannot assure that the continued fractions produced by the above theorem are regylar. Because for each $n \geq 0, \quad u_{n+1}$, that we added into a given palindromic continued fraction of θ_{n} to produce a continuedraction of $\theta_{n}+\frac{1}{2}$, is in $\overbrace{F}[x]$ only the casel $\delta_{n}= \pm 1$. This fact is proven in the following lemma.

Lemma 4.2.7. Let $f(T)$ be the polynomial of the form

$$
f(T)=T(T+2)(T-2) g(T)-T^{2}+2,
$$

where $g(T) \in(\mathbb{F}[x])[T]$. Let $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$. Then for $n \geq 0, \quad u_{n+1}(\tilde{T})$, defined as in Theorem 4.2.5, is in $\mathbb{F}[x]$ if and only if $\delta_{n}= \pm 1$.

Proof. Let n be a non-negative integer. From Lemma 4.2.3 and (4.44), we have

$$
\begin{align*}
\frac{f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})}{B_{n}(\tilde{T})} & =\frac{f_{n+1}(\tilde{T})\left(f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})\right)}{B_{n+1}(\tilde{T})} \\
& =\frac{A_{n+1}^{2}(\tilde{T})-1}{B_{n+1}(\tilde{T})} \in \mathbb{F}[x] \tag{4.53}
\end{align*}
$$

Since, by Lemma 4.2.3, $B_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right)$,

$$
A_{n}^{2}(\tilde{T})=D \cdot B_{n}(\tilde{T})+1 \quad \text { for some } D \in \mathbb{F}[x] .
$$

Then from (4.53), we have

$$
\begin{align*}
& \quad \frac{f_{n+1}(\tilde{T})+2(-1)^{n+1} \vec{A}_{n}(\tilde{T})}{B_{n}(\tilde{T}) \overline{(\sqrt{(1)})^{n+1} A_{n}(\tilde{T})}} \in \mathbb{F}[x], \\
& \text { i.e., } \quad \frac{f_{n+1}(\tilde{T})}{B_{n}(\tilde{T})}=E-\frac{2\left(B_{n}(\tilde{T})\right.}{} \quad \text { some } E \in \mathbb{F}[x] . \tag{4.54}
\end{align*}
$$

We have by Lemma 4.2.4 that

Hence the lemma is established by considering

$$
\begin{aligned}
& u_{n+1}(\tilde{T}) \frac{\rho(-d)^{2} \delta_{n}^{2} f_{n c-1}(\tilde{T})}{B_{n}(\tilde{T})}=\frac{1 A_{n}(\tilde{T})}{B_{n}(\tilde{T})} M \& \cap \hat{\sigma}
\end{aligned}
$$

with (4.54) and (4.55).

From the above lemma, if there exist $n \geq 0$ such that $\delta_{n} \neq \pm 1$, then continued fractions produced by Theorem 4.2.5 are not regular. In this case, it is natural to worry about the convergence of $\left[0 ; \tilde{T}, u_{1}(\tilde{T}), \tilde{T}, u_{2}(\tilde{T}), \tilde{T}, u_{1}(\tilde{T}), \tilde{T}, u_{3}(\tilde{T}), \ldots\right]$.

This problem is treated by using a classical theorem of Pringsheim:
For each $i \geq 1$, denoted by a_{i} and b_{i} the $i^{\text {th }}$ partial numerator and denominator of $\left[0 ; \tilde{T}, u_{1}(\tilde{T}), \tilde{T}, u_{2}(\tilde{T}), \tilde{T}, u_{1}(\tilde{T}), \tilde{T}, u_{3}(\tilde{T}), \ldots\right]$, respectively. By using Lemma 4.2 .4 we have that

$$
\left|a_{i}\right|_{\infty}=1 \quad \text { and } \quad\left|b_{i}\right|_{\infty} \geq 2 \quad \text { for all } i \geq 1
$$

Therefore, the convergence of $\left[0 ; \tilde{T}, u_{1}(\tilde{T}), \tilde{T}, u_{2}(\tilde{T}), \tilde{T}, u_{1}(\tilde{T}), \tilde{T}, u_{3}(\tilde{T}), \ldots\right]$ is guaranteed by Theorem 1.2.3.

Next, the following lammas are prepared to organize an analogue of Theorem 4.1.8.

Lemma 4.2.8. Let $f(T)$ be the polynomial of the form
$f(T)=T^{2}(T+2)(T-2) g(T)-T^{2}+2$,
$g(T) \in(\mathbb{F}[x])[T] \backslash\{0\}$. If $\tilde{T} \in \mathbb{F}(x)<\mathbb{F}$, then for all $n \geq 0$,

Proof. Similar to the proof of Lemma 4.2.2, we obtain

$$
\begin{equation*}
\left.\rho_{थ 1} q f_{1}(0)=2, \& g_{n}(0)=42 \& \mid n \geqslant 2\right) \tag{4.56}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}^{2}(T)-1=T \cdot D(T) \quad \text { for some } D(T) \in(\mathbb{F}[x])[T] . \tag{4.57}
\end{equation*}
$$

Hence we will prove this lemma by showing that

$$
\begin{equation*}
\frac{d}{d T}\left(A_{n}^{2}(T)-1\right)=0 \quad \text { at } T=0, \quad \text { for all } n \geq 0 \tag{4.58}
\end{equation*}
$$

It is obvious for the case $n=0$. Now we consider the cases $n \geq 1$. By (4.44), we have

$$
\begin{aligned}
\frac{d}{d T}\left(A_{n}^{2}(T)-1\right)= & 2 f_{n}(T) f_{n}^{\prime}(T) A_{n-1}^{2}(T)+2 f_{n}^{2}(T) A_{n-1}(T) A_{n-1}^{\prime}(T) \\
& +2(-1)^{n} f_{n}^{\prime}(T) A_{n-1}(T)+2(-1)^{n} f_{n}(T) A_{n-1}^{\prime}(T),
\end{aligned}
$$

then, to prove (4.58), it suffices to show that

$$
f_{n}^{\prime}(0)=0 \quad \text { and } \quad A_{n-1}^{\prime}(0)=0, \quad \text { for all } n \geq 1
$$

Since $f_{1}(T)=T^{2}(T+2)(T-2) g(T)$

$$
f_{1}^{\prime}(T)=2 T(T+2)(T-2) g(T)+\overline{T^{2}((T+2)(T-2) g(T))^{\prime}-2 T, ~, ~}
$$

and so $f_{1}^{\prime}(0)=0$. Now assume that $\underline{f}_{k}^{\prime}(0)=0 \quad(k \geq 1)$. From the definition of f_{k+1}, we get

$$
\begin{aligned}
f_{k+1}^{\prime}(T)= & 2 f_{k}(T) f_{k}^{\prime}(T)\left(f_{k}(T)+2\right)\left(f_{k}(T)-2\right) g\left(f_{k}(T)\right) \\
& +f_{k}^{2}(T)\left(f_{k}(T)+2\right)\left(f_{k}(T)-2\right)\left(g\left(f_{k}(T)\right)\right)^{\prime} \\
& +f_{k}^{2}(T)\left(f_{k}^{\prime}(T)\left(f_{k}(T) \text { 2)+(fl}(T)+2\right) f_{k}^{\prime}(T)\right) g\left(f_{k}(T)\right)+2 f_{k}(T) f_{k}^{\prime}(T) .
\end{aligned}
$$

Hence the induction hypothesis and (4.56) lead to $f_{k+1}^{\prime}(0)=0$. Thus for all $n \geq 1$, we have that $f_{n}^{\prime}(0)=0$ and so by the mathematical induction, the definition of A_{0} and (4.43) we also have for all $n \geq 1, \quad A_{n-1}^{\prime}(0)=0$.
Lemma 4.2.9. Wetaf (T) bethepolynomial ofthe form $\}$ §

$$
f(T)=T^{2}(T \not 2)(T-2) g(T)-T^{2}+2
$$

$g(T) \in(\mathbb{F}[\alpha])[T] \backslash\{0\}$. If $\tilde{T} \in \mathbb{F}(x] \backslash \mathbb{F}$, then for all $n \geq 0$, of

$$
\left|\tilde{T} B_{n}(\tilde{T})\right|_{\infty} \neq 0 \text { and } \tilde{T} B_{n}(\tilde{T}) \mid\left(A_{n}^{2}(\tilde{T})-1\right)
$$

Proof. Since $f(\tilde{T})=\tilde{T}^{2}(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-\tilde{T}^{2}+2$ and $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$,

$$
2 \leq\left|f_{0}(\tilde{T})\right|_{\infty}<\left|f_{1}(\tilde{T})\right|_{\infty}<\left|f_{2}(\tilde{T})\right|_{\infty}<\ldots
$$

Thus $\left|\tilde{T} B_{n}(\tilde{T})\right|_{\infty} \neq 0$ for all n. Now from Lemma (4.57), we get for all $n \geq 0$,

$$
\begin{equation*}
f_{n}(\tilde{T}) \mid\left(A_{n}^{2}\left(f_{n}(\tilde{T})\right)-1\right) \tag{4.59}
\end{equation*}
$$

But from Lemma 4.2.1, we have for any non-negative integers n, i,

$$
A_{n}^{2}\left(f_{i}(\tilde{T})\right)=A_{n+i}^{2}(\tilde{T})+2 D f_{i}(\tilde{T}) A_{n+i}(\tilde{T})+D^{2} f_{i}^{2}(\tilde{T})
$$

or

$$
A_{n}^{2}\left(f_{i}(\tilde{T})\right)=A_{n+i}^{2}(\tilde{T})-2 D f_{i}(\tilde{T}) A_{n+i}(\tilde{T})+D^{2} f_{i}^{2}(\tilde{T})
$$

for some $D \in \mathbb{F}[x]$ and so (4.59) implies

$$
f_{i}(\tilde{T}) /\left(A_{n-i}^{2}(\tilde{T})=1\right) \quad \text { for all } n, i \geq 0
$$

More precisely,

$$
\begin{equation*}
f_{i}(\tilde{T}) \mid\left(A_{(n-i)+i}^{2}(\tilde{T})-1\right) \equiv\left(A_{n}^{2}(\tilde{T})-1\right) \quad ; \quad i=0,1, \ldots n . \tag{4.60}
\end{equation*}
$$

Also, we have from Lemma 4.2.8 that

Since for any non-nengative integers j, k such that $j<k$

$$
f_{k}(\tilde{T})=f_{k-j}\left(f_{j}(\tilde{T})\right) \equiv f_{k-j}(0) \quad\left(\bmod f_{j}(\tilde{T})\right)
$$

noticing here, from (4.56), that

$$
f_{k-j}(0)=\left\{\begin{aligned}
2 & \text { for } k=j+1 \\
-2 & \text { for } k>j+1
\end{aligned}\right.
$$

we obtain

$$
\begin{equation*}
\operatorname{gcd}\left(f_{j}(\tilde{T}), f_{k}(\tilde{T})\right)=\operatorname{gcd}\left(f_{j}(\tilde{T}), 2\right)=1 \tag{4.63}
\end{equation*}
$$

Therefore, (4.62) follows from (4.60), (4.61) and (4.63).

Lemma 4.2.10. Let $f(T)$ be the polynomial of the form

$$
f(T)=T^{2}(T+2)(T-2) g(T)-T^{2}+2,
$$

where $g(T)=w_{m} T^{m}+\ldots+w_{1} T+w_{0}$ with $m \geq 0, w_{i} \in \mathbb{F}[x](0 \leq i \leq m), w_{m} \neq 0$
and $\left|w_{m}\right|_{\infty} \geq\left|w_{i}\right|_{\infty}$ for all $0<i<m-1$. If $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$, then for all $n \geq 0$,

The definitions of $f(T), g(T)$ and \tilde{T} lead to

$$
2 \leq\left|f_{0}(\tilde{T})\right|_{\infty}<\left|f_{1}(\tilde{T})\right|_{\infty}<\left|f_{2}(\tilde{T})\right|_{\infty}<\ldots
$$

Then we obtain, by (1.1), for $n \geq 1$,

$$
\begin{aligned}
\left|\frac{A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}\right|_{\infty} & =\left|\frac{(-1)^{n}+\sum_{i=1}^{n}(-1)^{i+1} f_{i}(\tilde{T}) f_{i+1}(\tilde{T}) \ldots f_{n}(\tilde{T})}{\tilde{T} f_{0}(\tilde{T}) f_{1}(\tilde{T}) \ldots f_{n}(\tilde{T})}\right|_{\infty} \\
& =\left|\frac{f_{1}(\tilde{T}) f_{2}(\tilde{T}) \ldots f_{n}(\tilde{T})}{\tilde{T} f_{0}(\tilde{T}) f_{1}(\tilde{T}) \ldots f_{n}(\tilde{T})}\right|_{\infty}=\frac{1}{\left|f_{0}(\tilde{T})\right|_{\infty}}=\frac{1}{\left|\tilde{T}^{2}\right|_{\infty}} .
\end{aligned}
$$

Thus we get for all $n \geq 0$,
since $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$.
Next, we will show

We have by the definition of $g(T)$ that $=$

$$
|g(S)|_{\infty} \geq 1 \text { for all } S \in \mathbb{F}[x] \backslash \mathbb{F}
$$

Hence

and so the statement holds for $n=0$. Now assume $\left|\frac{f_{k+1}(\tilde{T})}{\tilde{T} B_{k}(\tilde{T})}\right|_{\infty} \geq 2 \quad(k \geq 0)$.

$$
\begin{aligned}
& \text { Since }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \leq\left|\frac{f_{k+1}(\tilde{T})}{\tilde{T} B_{k}(\tilde{T})}\right|_{\infty}=\frac{\left|f_{k+1}(\tilde{T})\right|_{\infty}\left|f_{k+1}(\tilde{T})\right|_{\infty}}{\left|f_{k+1}(\tilde{T})\right|_{\infty}\left|\tilde{T} B_{k}(\tilde{T})\right|_{\infty}} \\
& <\frac{\left|f_{k+1}(\tilde{T})\right|_{\infty}\left|f_{k+1}(\tilde{T})\left(f_{k+1}(\tilde{T})+2\right)\left(f_{k+1}(\tilde{T})-2\right) g\left(f_{k+1}(\tilde{T})\right)-f_{k+1}(\tilde{T})\right|_{\infty}}{\left|\tilde{T} B_{k+1}(\tilde{T})\right|_{\infty}} \\
& =\frac{\left|f_{k+2}(\tilde{T})\right|_{\infty}}{\left|\tilde{T} B_{k+1}(\tilde{T})\right|_{\infty}} .
\end{aligned}
$$

Theorem 4.2.11. Let $f(T)$ be the polynomial of the form

$$
f(T)=T^{2}(T+2)(T-2) g(T)-T^{2}+2
$$

where $g(T)=w_{m} T^{m}+\ldots+w_{1} T+w_{0}$ with $m \geq 0, w_{i} \in \mathbb{F}[x](0 \leq i \leq m), w_{m} \neq 0$ and $\left|w_{m}\right|_{\infty} \geq\left|w_{i}\right|_{\infty}$ for all $0 \leq i \leq m-1$. If $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$, then
and for all $n \geq 0$,

$$
\begin{equation*}
\left.\theta_{n+1}(\tilde{T} ; f) \mid \tilde{T}=10: b_{1}, \ldots, b_{k}, v_{n+1}(\tilde{T}), b_{k}, \ldots, b_{1}\right] \tag{4.64}
\end{equation*}
$$

if $\left[0 ; b_{1}, \ldots, b_{k}\right]$ is a palindromic continued fraction representing $\theta_{n}(\tilde{T} ; f) / \tilde{T}$ and

$$
v_{n+1}(\tilde{T})=\frac{(-1)^{2} \delta_{n}^{2} \frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}-2 \frac{A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}, ~, ~, ~}{\text { and }}
$$

where δ_{n} is the element in $\mathbb{F} \backslash\{0\}$ such that $A_{n}(\tilde{T})=\delta_{n} p_{k}$ and $\tilde{T} B_{n}(\tilde{T})=\delta_{n} q_{k}$ provided $\frac{p_{k}}{q_{k}}$ is the $k^{\text {th }}$ convergent of $\theta_{n}(\tilde{T} ; f) / \tilde{T}$ respect to $\left\{\theta ; b_{1}, \ldots, b_{k}\right]$.
In particular,

Proof. For any Mon-negative integer r, denoted by $k(r)$ the length of a continued fraction representing $\theta_{n}(\tilde{T} ; f) \approx \frac{A(T)}{B n(T)}$ which all partial numeratorsare 1.

The proof will be completed by induction. We have by a direct calculation

$$
\theta_{0}(\tilde{T} ; f) / \tilde{T}=\left[0 ; \tilde{T}^{2}\right] \quad \text { and } \quad \theta_{1}(\tilde{T} ; f) / \tilde{T}=\left[0 ; \tilde{T}^{2},(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-1, \tilde{T}^{2}\right]
$$

which $v_{1}(\tilde{T})=\frac{(-1)^{0} \delta_{0}^{2} f_{1}(\tilde{T})}{\tilde{T} B_{0}(\tilde{T})}-\frac{2 A_{0}(\tilde{T})}{\tilde{T} B_{0}(\tilde{T})}=\frac{f_{1}(\tilde{T})}{\tilde{T}^{2}}-\frac{2}{\tilde{T}^{2}}=(\tilde{T}+2)(\tilde{T}-2) g(\tilde{T})-1$, and hence the statement (4.64) holds for $n=0$. Now suppose for $n \geq 1$ that

$$
\theta_{n}(\tilde{T} ; f) / \tilde{T}=\left[0 ; \alpha_{1}, \ldots, \alpha_{k(n-1)}, v_{n}(\tilde{T}), \alpha_{k(n-1)}, \ldots, \alpha_{1}\right]
$$

if $\left[0 ; \alpha_{1}, \ldots, \alpha_{k(n-1)}\right]$ is a palindromic continued fraction representing $\theta_{n-1}(\tilde{T} ; f) / \tilde{T}$ and

$$
v_{n}(\tilde{T})=(-1)^{n-1} \delta_{n-1}^{2} \frac{f_{n}(\tilde{T})}{\tilde{T} B_{n-1}(\tilde{T})}-2 \frac{A_{n-1}(\tilde{T})}{\tilde{T} B_{n-1}(\tilde{T})}
$$

We write

$$
\theta_{n}(\tilde{T} ; f) / \tilde{T}=\left[0 ; b_{1}, \ldots, b_{k(n)}\right]=\frac{p_{k(n)}}{q_{k(n)}},
$$

and then $k(n)$ is odd. By using Lemma 4.2.9, we have $A_{n}(\tilde{T})$ and $\tilde{T} B_{n}(\tilde{T})$ are relatively prime, so that there exists $\delta_{n} \in \mathbb{F} \backslash\{0\}$ such that

$$
A_{n}(\tilde{T})=\delta_{n} p_{k}(n) \quad \text { and } \quad \tilde{T} B_{n}(\tilde{T})=\delta_{n} q_{k(n)} .
$$

Since $k(n)$ is odd, we have by (1.7),

$$
\begin{equation*}
q_{k(n)} p_{k(n)}=1 \sqrt{5} p_{k(n)} q_{k(n)-1}-1 \tag{4.65}
\end{equation*}
$$

and hence by the hypothesis $\left[0 ; 6, \ldots, \gamma_{k}(n)\right]$ is palindromic, we have by Remark 1.2.6

Case n is odd.

Hence by (1.6)
$\left[0 ; b_{1}, \ldots, b_{k(n)}, v_{n+1}(\tilde{T}), b_{k(n)}, \ldots, b_{1}\right]$

$$
=\frac{\left(\frac{-\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(\frac{-\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}},
$$

and so we obtain by (4.65) and (4.66) that

$$
\begin{aligned}
\frac{\left(\frac{-\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(\frac{-\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{22 k_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}} & \frac{p_{k(n)}}{q_{k(n)}}+\frac{1}{\delta_{n} f_{n+1}(\tilde{T}) q_{k(n)}} \\
& =\frac{A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}+\frac{1}{\tilde{T} B_{n+1}(\tilde{T})}=\theta_{n+1}(\tilde{T}) / \tilde{T} .
\end{aligned}
$$

Case n is even.
We have by (1.5) that

$$
\frac{\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)}-1}{q_{k(n)}}=\frac{\delta_{n}^{2} f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}-\frac{2 A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}+\frac{q_{k(n)-1}}{q_{k(n)}}
$$

Hence by (1.6)

$$
\left[0 ; b_{1}, \ldots, b_{k(n)}, v_{n+1}(\tilde{T}), b_{k(n)}, \cdot, \frac{\left(\frac{\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) p_{k(n)}+p_{k(n)-1}}{\left(\frac{\delta_{n} f_{n+1}(\tilde{T})}{q_{k(n)}}-\frac{2 p_{k(n)}}{q_{k(n)}}+\frac{q_{k(n)-1}}{q_{k(n)}}\right) q_{k(n)}+q_{k(n)-1}}\right.
$$

and so we obtain by

Therefore, the theorem is established.

Similar to Theorem 4.2.5, the continued fractions produced by Theorem 4.2.11 may not be regular described by the following lemma. The problem about the convergence of $\left[0 ; \tilde{T}^{2}, v_{1}(\tilde{T}), \tilde{T}^{2}, v_{2}(\tilde{T}), \tilde{T}^{2}, v_{1}(\tilde{T}), \tilde{T}^{2}, v_{3}(\tilde{T}), \ldots\right]$ is handled by using Lemma 4.2.10 and then Theorem 1.2.3.

Lemma 4.2.12. Let $f(T)$ be the polynomial of the form

$$
f(T)=T^{2}(T+2)(T-2) g(T)-T^{2}+2,
$$

where $g(T)=w_{m} T^{m}+\ldots+w_{1} T+w_{0}$ with $m \geq 0, w_{i} \in \mathbb{F}[x](0 \leq i \leq m), w_{m} \neq 0$ and $\left|w_{m}\right|_{\infty} \geq\left|w_{i}\right|_{\infty}$ for all $0 \leq i \leq m-1$. Let $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$. Then for $n \geq 0$, $v_{n+1}(\tilde{T})$, defined as in Theorem 4.2.11, is in $\mathbb{F}[x]$ if and only if $\delta_{n}= \pm 1$.

Proof. Let n be a non-negative integer. From Lemma 4.2.9 and (4.44), we have

$$
\begin{align*}
& \frac{f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}=\frac{f_{n+1}(\tilde{T})\left(f_{n+1}(\tilde{T}) A_{n}^{2}(\tilde{T})+2(-1)^{n+1} A_{n}(\tilde{T})\right)}{\tilde{T} B_{n+1}(\tilde{T})} \\
& =\frac{A_{n+1}^{2}(\tilde{T})-1}{\tilde{T} B_{n+1}(\tilde{T}) \in \mathbb{F}[x] .} \tag{4.67}
\end{align*}
$$

Since, by Lemma 4.2.9, $\tilde{T} B_{n}(\tilde{T}) \downharpoonleft\left(\mathcal{A}_{n}^{2}(\tilde{T})-1\right)$,

$$
A_{n}^{2}(\tilde{T})=D \cdot \tilde{T} B_{n}(\tilde{T})+1 / \Delta \text { for some } D \in \mathbb{F}[x] \text {. }
$$

Then from (4.67), we have

i.e.,

We have by Lemma 4.2.10 that

$$
\begin{equation*}
0 \leq\left|\frac{2\left(\delta_{n}^{2}-1\right) A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}\right|_{\infty}<1 \tag{4.69}
\end{equation*}
$$

Hence the lemma is established by combining

$$
\begin{aligned}
v_{n+1}(\tilde{T}) & =\frac{(-1)^{n} \delta_{n}^{2} f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}-\frac{2 A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})} \\
& =(-1)^{n} \delta_{n}^{2}\left(\frac{f_{n+1}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}+\frac{2(-1)^{n+1} A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})}\right)+\frac{2\left(\delta_{n}^{2}-1\right) A_{n}(\tilde{T})}{\tilde{T} B_{n}(\tilde{T})},
\end{aligned}
$$

with (4.68) and (4.69).

Using the same proof as in Theorem 4.2.5 and Theorem 4.2.11, analogues of Theorem 1 and Theorem 2 of Tamura [27] can also be established in Theorem 4.2.13 and Theorem 4.2.14, respectively

For $n \geq 0$, define $\tilde{\theta}_{n}(T ; f)$ to be the series expressed as follows

$$
\tilde{\theta}_{n}(T ; f)=\sum_{m=0}^{n} \sum_{f_{0}(T) f_{1}(T) \ldots f_{m}(T)}^{n},
$$

where $f(T) \in(\mathbb{F}[x])[T] \backslash\{0\} ; f_{0}(T)=T$ and for all $i \geq 1, f_{i}(T)=f\left(f_{i-1}(T)\right)$ with $T \in \mathbb{F}[x] \backslash\{0\}$, and for those $T \in \mathbb{F}[x] \backslash\{0\}$ for which the limit exists we define

$$
\tilde{\theta}(T ; f)=\lim _{n \rightarrow \infty} \tilde{\theta}_{n}(T ; f) .
$$4

$\tilde{A}_{n}=\tilde{A}_{n}(T)=1+\sum_{m=1}^{n} f_{m}(T) f_{m+1}(T) \ldots f_{n}(T)_{\mathrm{a}}(n \geq 1) ; \tilde{A}_{0 \oplus}=1$,

Theorem 4.2.13. Let $f(T)$ be the polynomial of the form

$$
f(T)=T(T+2)(T-2) g(T)+T^{2}-2,
$$

where $g(T) \in(\mathbb{F}[x])[T]$. If $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$, then

$$
\tilde{\theta}_{0}(\tilde{T} ; f)=[0 ; \tilde{T}],
$$

and for all $n \geq 0$,

$$
\tilde{\theta}_{n+1}(\tilde{T} ; f)=\left[0 ; b_{1}, \ldots, b_{k}, y_{n+1}(\tilde{T}), b_{k}, \ldots, b_{1}\right],
$$

if $\left[0 ; b_{1}, \ldots, b_{k}\right]$ is a palindromic continued fraction representing $\tilde{\theta}_{n}(\tilde{T} ; f)$ and

$$
y_{n+1}(\tilde{T})=-\delta_{n}^{2} \frac{f_{n+1}(\tilde{T})}{\tilde{B}_{n}(\tilde{T})}-2 \frac{\tilde{A}_{n}(\tilde{T})}{\tilde{B}_{n}(\tilde{T})},
$$

where δ_{n} is the element in $\mathbb{F} \backslash\{0\}$ such that $\tilde{A}_{n}(\tilde{T})=\delta_{n} p_{k}$ and $\tilde{B}_{n}(\tilde{T})=\delta_{n} q_{k}$ provided $\frac{p_{k}}{q_{k}}$ is the $k^{\text {th }}$ (last) convergent of $\tilde{\theta}_{n}(\tilde{T} ; f)$ respect to $\left[0 ; b_{1}, \ldots, b_{k}\right]$.

In particular,

$$
\tilde{\theta}(\tilde{T} ; f)=\left[0 ; \tilde{T}, y_{1}(\tilde{T}), \tilde{T}, y_{2}(\tilde{T}), \tilde{T}, y_{1}(\tilde{T}), \tilde{T}, y_{3}(\tilde{T}), \ldots\right]
$$

Theorem 4.2.14. Let $f(T)$ be the polynomial of the form

$$
f(T)=T^{2}(T+2)(T-2) g(T)+T^{2}-2,
$$

where $g(T)=w_{m} T^{m}+\ldots+w_{1} T$ wo. with $m \geq 0, w_{i} \in \mathbb{F}[x](0 \leq i \leq m), w_{m} \neq 0$ and $\left|w_{m}\right|_{\infty} \geq\left|w_{i}\right|_{\infty}$ for all $0 \leq i \leq m-1$ If $\tilde{T} \in \mathbb{F}[x] \backslash \mathbb{F}$, then

and for all $n \geq 0$,

if $\left[0 ; b_{1}, \ldots\right.$, $\left.b_{f}\right]$ is a analindromic continued fraction cepresenting ${ }^{0} \hat{\theta}_{n}(\tilde{T} ; f) / \tilde{T}$ and

$$
z_{n+1}(\tilde{T})=-\delta_{n}^{2} \frac{f_{n+1}(\tilde{T})}{\tilde{T} \tilde{B}_{n}(\tilde{T})}-2 \frac{\tilde{A}_{n}(\tilde{T})}{\tilde{T} \tilde{B}_{n}(\tilde{T})},
$$

where δ_{n} is the element in $\mathbb{F} \backslash\{0\}$ such that $\tilde{A}_{n}(\tilde{T})=\delta_{n} p_{k}$ and $\tilde{T} \tilde{B}_{n}(\tilde{T})=\delta_{n} q_{k}$ provided $\frac{p_{k}}{q_{k}}$ is the $k^{\text {th }}$ convergent of $\tilde{\theta}_{n}(\tilde{T} ; f) / \tilde{T}$ respect to $\left[0 ; b_{1}, \ldots, b_{k}\right]$.

In particular,

$$
\tilde{\theta}(\tilde{T} ; f) / \tilde{T}=\left[0 ; \tilde{T}^{2}, z_{1}(\tilde{T}), \tilde{T}^{2}, z_{2}(\tilde{T}), \tilde{T}^{2}, z_{1}(\tilde{T}), \tilde{T}^{2}, z_{3}(\tilde{T}), \ldots\right] .
$$

Remark 4.2.15. Similar to Theorem 4.2.5 and Theorem 4.2.11, the continued fractions produced by Theorem 4.2.13 and Theorem 4.2.14 are regular if and only if $\delta_{n}= \pm 1$ and we can guarantee convergences for infinite continued fractions.

REFERENCES

[1] B. Adamczewski, and Y. Bugeaud, On the complexity of algebraic numbers II. Continued fractions, Acta Math., 195(2005), 1-20.
[2] B. Adamczewski, and Y. Bugeaud, On the Maillet-Baker continued fractions, J. Reine Angew. Math., 606(2007), 105-121
[3] B. Adamczewski, and Y. Bugerud, Palindromic continued fractions, Ann. Inst. Fourier, 57(2007), 1557-1574.
[4] J. -P. Allouche, J. L. Davison, M. Queffélec, and L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory, 91(2001), 39-66.
[5] A. Baker, Continued fractionsof transcendental numbers, Mathematika, 9(1962), 1-8.
[6] C. Baxa, Extremal values of continuants and transcendence of certain continued fractions, Adv. in Appl. Math., 32(2004), 754-790.
cassels, Loeal Fields, Cambriage University Press, Cambridge, 1986.
[8] T. Chaichana, ©. Maohakosol and A/Harchoowong, LiBearihdependence of continued fractions in the field of formal series over a finite field, Thai J. Math., 4(2006), 163-177.
[9] L. E. Clemens, K. D. Merrill, and D. W. Roeder, Continued fractions and series, J. Number Theory, 54(1995), 309-317.
[10] H. Cohn, Symmetry and specializability in continued fractions, Acta Arith., 75(1996), 297-320.
[11] T. W. Cusick and M. Mendès France, The Lagrange spectrum of a set, Acta Arith., 34(1979), 287-293.
[12] J. L. Davison, Quasi-periodic continued fractions, J. Number Theory, 127(2007), 272-282.
[13] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, London, 1971.
[14] W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applications, Addison-Wesley, Massachusetts, 1980.
[15] G. Kohler, Some more predictable continued fractions, Mh. Math., 89(1980), 95-100.

[16] T. Komatsu, On a Zaremba's conjecture for powers, Sarajevo J. Math., 13(2005), 9-13.
[17] J. C. Lagarias and J. O. Shallit Linear fractional transformations of continued fractions with bounced partial quotients, J. Théor. Nombres Bordeaux, 9(1997), 267-279.
[18] J. Mc Laughlin, Symmetry and specializability in the continued fraction expansions of some infinite products, J. Number Theory, $\mathbf{1 2 7}(2007)$, 184-219.
[19] M. Mendès France, Sur les fractions continues limitées, Acta Arith., 23(1973), 207-215.
[20] H. Niederreiter, Dyadic fractions with small partial quotients, Mh. Math., 101(1986), 309-315.
[21] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley and Sons, New York, 1991.
[22] A. Petho, Simple continued fractions for the Fredholm numbers, J. Number Theory, 14(1982), 232-236.
[23] P. Riyapan, V. Laohakosol, and T. Chaichana, Two types of explicit continued fractions, Period. Math. Hungar, 52(2006), 51-72.
[24] W. M. Schmidt, On continued fractions and Diophantine approximation in power series fields, Acta Arith., 95(2000), 139-166.
[25] J. O. Shallit, Simple continued fractions for some irrational numbers, J. Number

[26] J. O. Shallit, Simple continued fractions for some irrational numbers II, J. Number Theory, 14 คิ882), 22883आ มหาว ทยาลย
[27] J. Tamura, Symmetric continued fractions related to certain series, J. Number Theory, 38(1991), 251-264.
[28] A. J. Van der Poorten, and J. O. Shallit, Folded continued fractions, J. Number Theory, 40(1992), 237-250.
[29] A. J. Van der Poorten, and J. O. Shallit, A specialised continued fraction, Canad. J. Math., 45(1993), 1067-1079.
[30] M. Yodphotong and V. Laohakosol, A proof of Zaremba's conjecture for powers of 6, Proc. Inter. Conf. Algebra Appl., Chulalongkorn Univ., Bangkok, March 18-22, 2002, 278-282.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

VITA

Miss Oranit Panprasitwech was born on July 15, 1977 in Bangkok, Thailand. She graduated with a Bachelor of Science Degree in Mathematics from Chulalongkorn University in 2000 and graduated with a Mâster of Science Degree in Applied Statistics from National Institute of Development Administration in 2002. Then she studied in Mathematics for a Master degree program at King Mongkut's University of Technology Thonburi with a scholarship from the Ministry Staff Development Project and graduated in 2004. At present, she is a Ph.D. candidate at Department of Mathematics, Faculty of Science, Chulalongkorn University with a scholarship from the Ministry Staff Development Project again. After graduation she will become an instructor at King Mongkut's University of Technology Thonburi.

