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CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

It is generally difficult to explicitly obtain a regular continued fraction representing

a quantity expressed in other form, see e.g., [28], [18] and [9]. However, being able to

predict a pattern in a regular continued fraction of a quatity is not only interesting

in its own right but it sometimes enable us to derive more informations about that

quantity from its regular continued fraction. In the real number field and in the field

F((x−1)) of formal series, over a base field F, which is the completion of the field

of rational functions with respect to the degree valuation, it is well-known that the

termination of a regular continued fraction can be used to characterize rationality

and is also known that any periodic regular continued fraction corresponds exactly

to a quadratic irrational element. Various researches, for examples [5], [1], [2], [3],

[4], [6] and [12], gave transcendence criteria depending on special patterns in regular

continued fractions.

The main objectives of this thesis are to establish explicit formulae of continued

fractions. It is well-known that the theory of continued fractions for formal series goes

parallel with that for real numbers; for detail see [24]. The work in this thesis centers

around continued fractions both in the real number field and in the field F((x−1)).

However, it is useful to define continued fractions over a general field K and some

results in this work are widely provided for any field K.
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In chapter II, boundedness of partial quotients of regular continued fractions rep-

resenting some certain quantities is mentioned as the second objectives in this work.

We say that any irrational number has bounded partial quotients if the supremum

of all its partial quotients is finite. Lagarias and Shallit [17] proved, using the so-

called Lagrange constant through a result of Cusick and Mendès France [11], that if

a irrational number has bounded partial quotients, so does its linear fractional trans-

formation. We show here that this is also the case in F((x−1)). Also, a bound of

the partial quotients of a regular continued fraction representing a linear fractional

tranformation of a rational elements in F((x−1)) is obtained. Next, a fascinating

example of rational numbers represented by regular continued fractions whose their

partial quotients are bounded by a small integer is provided by proving a famous

conjecture attributed to Zaremba. This conjecture of Zaremba, see e.g., [20], states

that for a positive integer m ≥ 2, there exists an integer 1 ≤ a < m, coprime to m

such that all of the partial quotients in the regular continued fraction of a
m

are less

than or equal to 5. This conjecture has been verified for m being a power of 2, 3 and

5 by Niederreiter [20], and for m being a power of 6 by Yodphotong and Laohakosol

[30]. In 2005, this conjecture was verified by Komatsu, [16], for m being the c · 2n-th

power of 7 where n ≥ 0 and c is an odd number less than or equal to 11. In this

thesis, evidence of Zaremba’s conjecture for m being the form 2s · 3t where s, t are

non-negative integers is presented.

A group of researchers [25], [26], [28], [29], [15], [22] and [23] have found contin-

ued fractions for numbers or formal series expressed by certain types of series. An

important tool used in these results is the so-called Folding lemma, an identity, first

appears in [19], for continued fractions which has folding symmetry in their partial

quotients. In Chapter III, we attach significance to identities for continued fractions

with some interesting patterns. Many identities for continued fractions with some
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patterns in their partial quotients were tied together as a single phenomenon in the

work of Clemens, Merrill and Roeder in 1995, see [9]. They worked in the real num-

ber field. This phenonmenon is generalized to continued fractions over a general field

K and then many identities for continued fractions with some interesting patterns

are realized. One of these results is an identity for continued fractions whose their

partial quotients have palindromic property. This is of particular interest since this

palindromic property leads to a special property which is useful for finding explicit

continued fractions. Next, similar to the work of Cohn in 1996, [10], which general-

ized the Folding lemma, a generalization of the identity for continued fractions whose

their partial quotients have palindromic property is investigated using a modification

of a technique due to [9].

In the final chapter, Chapter IV, along the line which Tamura [27] did for two

classes of real numbers θ̃(T ; f̃ (1)) and θ̃(T ; f̃ (2))/T defined by

θ̃(T ; f) =
∞∑
m=0

1

f0(T )f1(T ) . . . fm(T )
,

where f(T ) ∈ Z[T ], f0(T ) = T and for all i ≥ 1, fi(T ) = f(fi−1(T )), and

f̃ (1)(T ) = T (T + 2)(T − 2)g̃(1)(T ) + T 2 − 2,

f̃ (2)(T ) = T 2(T + 2)(T − 2)g̃(2)(T ) + T 2 − 2,

with suitable g̃(1)(T ), g̃(2)(T ) ∈ Z[T ] and T ∈ N, explicit formulae for regular con-

tinued fractions for two classes of real numbers θ(T ; f (1)) and θ(T ; f (2))/T expressed

by the following series

θ(T ; f) =
∞∑
m=0

(−1)m

f0(T )f1(T ) . . . fm(T )
,

where f(T ) ∈ Z[T ], f0(T ) = T and for all i ≥ 1, fi(T ) = f(fi−1(T )), and
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f (1)(T ) = T (T + 2)(T − 2)g(1)(T )− T 2 + 2,

f (2)(T ) = T 2(T + 2)(T − 2)g(2)(T )− T 2 + 2,

with suitable g(1)(T ), g(2)(T ) ∈ Z[T ] and T ∈ N are given. An identity for continued

fractions with palindromic property is used as a guideline to produce these formulae.

We found that partial quotients of these explicit regular continued fractions begin

in arbitrarily long palidromes and using a transcendental criterion given by Adam-

czewski and Bugeaud in [3] it can be concluded that the numbers in these classes are

transcendental. Analogues of these explicit formulae are also established for formal

series. In the formal series case, our explicit continued fractions also have a beautiful

pattern but it is different from the real number case because we cannot assure that

these continued fractions are regular. Using the same technique, we give analogues

of the works of Tamura as well.

In the rest of this chapter, we collect definitions and elementary properties, mainly

without proofs, to be used throughout the entire thesis.

1.2 Preliminaries

Definition 1.2.1. A valuation on a field K is a real-valued function a 7→ |a| defined

on K which satisfies the following conditions:

(i) ∀a ∈ K, |a| ≥ 0 and |a| = 0⇔ a = 0

(ii) ∀a, b ∈ K, |ab| = |a| |b|

(iii) ∀a, b ∈ K, |a+ b| ≤ |a|+ |b|.

A valuation on K is called non-Archimedean if the condition (iii), called the triangle

inequality, is replaced by a stronger condition: ∀a, b ∈ K, |a+ b| ≤ max {|a| , |b|},

called the strong triangle inequality. Any other valuation on K is called Archimedean.
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An important consequence of the strong triangle inequality is if | · | is a non-

Archimedean valuation on a field K, then

∀x, y ∈ K, |x| 6= |y| implies |x+ y| = max{|x|, |y|}. (1.1)

Examples 1) For K = Q, the ordinary absolute value | · | is an Archimedean

valuation on K.

2) Consider the field F(x) of rational functions over a field F. Let f(x)
g(x)
∈ F(x) r {0}.

Define the degree valuation | · |∞ by

∣∣∣∣f(x)

g(x)

∣∣∣∣
∞

= 2deg f−deg g and |0|∞ = 0.

Then | · |∞ is a non-Archimedean valuation on F(x).

Let K be an arbitrary field equipped with a valuation | · |. We adjoin to K an

element, called infinity, and denoted by ∞. The set K ∪ {∞} will be denoted by K̂

and will be called the extended field. Arithmetic operations involving ∞ are defined

for all a, b ∈ K with a 6= 0 as follows:

a · ∞ =∞, a

∞
= 0,

a

0
=∞, b+∞ =∞, and ∞+∞ =∞.

A sequence {xn} in K̂ is said to converge to an element x ∈ K if for all sufficiently

large n,

xn ∈ K and lim
n→∞

|xn − x| = 0.

A continued fraction over K is defined formally to be an ordered pair

〈〈{an}, {bn}〉 , {γn}〉 ,

where a1, a2, . . . ∈ K r {0}, b0, b1, . . . ∈ K and {γn} is a sequence in K̂ given by
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γn = Sn(0), n = 0, 1, 2, 3, . . . ,

where Sn : K̂ → K̂ is defined depending on sn : K̂ → K̂ as follows

S0(w) = s0(w), Sn(w) = Sn−1(sn(w)), n = 1, 2, 3, . . . ,

s0(w) = b0 + w, sn(w) = an

bn+w
, n = 1, 2, 3, . . . .

We call an and bn the nth partial numerator and denominator of the continued frac-

tion, respectively, and call γn the nth approximant. If {an} and {bn} are infinite

sequences, then 〈〈{an}, {bn}〉 , {γn}〉 is called an infinite or non-terminating contin-

ued fraction. It is called a finite or terminating continued fraction if {an} and {bn}

have only a finite number of terms a1, a2, . . . , ak and b0, b1, b2, . . . , bk.

It can be seen that the nth approximant is given by

γn = b0 +
a1

b1 +
a2

. . . +
an
bn

.

It is more convenient to use the notation

[b0; a1, b1; a2, b2; . . . ; an, bn; . . .]

denote a continued fraction 〈〈{an}, {bn}〉 , {γn}〉 and if an = 1 for all n ≥ 1, we

denote

[b0; b1, b2, . . . , bn, . . .] := [b0; 1, b1; 1, b2; . . . ; 1, bn; . . .],

in this case b0, b1, b2, . . . are called partial quotients of [b0; b1, b2, . . . , bn, . . .].

Corresponding to each continued fraction [b0; a1, b1; a2, b2; . . .], two sequences {pn}
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and {qn} are defined by the system of second order linear difference equations

p−1 = 1, p0 = b0, q−1 = 0, q0 = 1;

pn = bnpn−1 + anpn−2 and qn = bnqn−1 + anqn−2 (n ≥ 1), (1.2)

these pn, qn are called the nth numerator and denominator, respectively, and the

fraction pn

qn
is called the nth convergent.

Some important properties of these numerators and denominators of continued

fractions are presented in the following lemma whose proof is straightforward by

induction.

Lemma 1.2.2. For an arbitrary field K, let [b0; a1, b1; a2, b2; . . .] be a continued

fraction over K and α ∈ K. Then for n ≥ 0,

Sn(w) =
pn + pn−1w

qn + qn−1w
(n ≥ 1, w ∈ K̂), (1.3)

pn
qn

= [b0; a1, b1; a2, b2; . . . ; an, bn], (1.4)

qn−1

qn
= [0; 1, bn; an, bn−1; . . . ; a2, b1] (n ≥ 1), (1.5)

αpn + pn−1

αqn + qn−1

= [b0; a1, b1; a2, b2; . . . ; an, bn; 1, α], (1.6)

pnqn−1 − qnpn−1 = (−1)n−1

n∏
k=1

ak, where
0∏

k=1

ak = 1. (1.7)

The following theorem is a classical result about convergence of continued fractions

of Pringsheim in 1899, for detail see [14]:

Theorem 1.2.3. Let K be arbitrary field together with a prescribed valuation. The

continued fraction [b0; a1, b1; a2, b2; . . . ; an, bn; . . .] converges to an element in K if

|bn| ≥ |an|+ 1, for all n ≥ 1.



8

Definition 1.2.4. An infinite continued fraction [b0; a1, b1; a2, b2; . . .] is said to be

periodic if there exist positive integers k,N such that

an = an+k and bn = bn+k for all n ≥ N,

and is denoted by

[b0; a1, b1; . . . ; aN−1, bN−1; aN , bN ; . . . ; aN+k−1, bN+k−1 ].

Definition 1.2.5. A continued fraction [b0; b1, b2, . . . , bn] (n ≥ 1) is said to be palin-

dromic if the word b1b2 . . . bn is equal to its reversal.

Remark 1.2.6. If a continued fraction [b0; b1, b2, . . . , bn] (n ≥ 1) is palindromic, then

by (1.4) and (1.5) we have the following specific property

pn = b0qn + qn−1.

Definition 1.2.7. For any terminating continued fraction [b0; b1, . . . , bn] (n ≥ 0), n

is said to be the length of [b0; b1, . . . , bn].

In R, it is known that any real number can be represented as a continued fraction

of the form

[b0; b1, b2, . . . , bn, . . .],

where b0 ∈ Z, bi ∈ N (i ≥ 1). This continued fraction is called a regular or simple

continued fraction.

The construction of a regular continued fraction for ξ ∈ R r {0} runs as follows:

Define ξ = [ξ] + (ξ), where [ξ] denote the greatest integer less than or equals ξ and

(ξ) := ξ − [ξ]. We call [ξ] and (ξ) the head and tail parts of ξ, respectively. Clearly,

the head and tail parts of ξ are uniquely determined. Let b0 = [ξ] ∈ Z.

If (ξ) = 0, then the process stops.
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If (ξ) 6= 0, then write ξ = b0 + ξ−1
1 , where ξ−1

1 = (ξ) with ξ1 > 1. Next we write

ξ1 = [ξ1] + (ξ1). Let b1 = [ξ1] ∈ N.

If (ξ1) = 0, then the process stops.

If (ξ1) 6= 0, then write ξ1 = b1 + ξ−1
2 , where ξ−1

2 = (ξ1) with ξ2 > 1. Next we write

ξ2 = [ξ2] + (ξ2). Let b2 = [ξ2] ∈ N.

Again, if (ξ2) = 0, then the process stops. If (ξ2) 6= 0, then we continue in the

same manner. By doing so, we obtain the unique representation

ξ = [b0; b1, b2, . . . , bn−1, ξn],

where b0 ∈ Z, bi ∈ N (i ≥ 1) and ξn is referred to as the nth complete quotient of ξ.

If (ξn) = 0 for some n, then ξ = [b0; b1, b2, . . . , bn], i.e., its regular continued

fraction to ξ is terminating or finite. Otherwise, (ξn) 6= 0 for all n and the regular

continued fraction is infinite and this is the case of interest from now on. In order

to establish convergence, we make use of the following properties which are easily

verified by using Lemma 1.2.2 and (1.2).

Lemma 1.2.8. For n ≥ 1, let pn

qn
be the nth convergent corresponding to the above

b0, b1, . . . , bn. Then

(i) pn and qn are relatively prime,

(ii) qn > qn−1 > 0,

(iii) ξ − pn

qn
= (−1)n

qn(ξn+1qn+qn−1)
.

Using Lemma 1.2.8 (iii), we get the approximation

∣∣∣∣ξ − pn
qn

∣∣∣∣ =
1

qn(ξn+1qn + qn−1)
→ 0 as n→∞,
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since the integer qn are increasing with n, by Lemma 1.2.8 (ii), and ξn+1 is positive.

This immediately implies that pn

qn
→ ξ, and enable us to write ξ = [b0; b1, b2, . . .].

The regular continued fraction is unique for an irrational number, but for rational

numbers, we have the following characterization; for details, see e.g., [21, Chapter 7].

Theorem 1.2.9. Any finite regular continued fraction represents a rational num-

ber. Conversely, any rational number can be expressed as a finite regular continued

fraction. and in exactly two ways,

[b0; b1, b2, . . . , bn] = [b0; b1, b2, . . . , bn−1, bn − 1, 1],

where bn ≥ 2.

A well-known theorem of Lagrange characterizing periodic regular continued frac-

tions, whose proof can be found in [21, Chapter 7], states that:

Theorem 1.2.10. A periodic regular continued fraction is a quadratic irrational num-

ber, and conversely.

Next, continued fractions in the field F((x−1)) of formal series over a field F

are mentioned. It is well-known, see e.g., [7, Chapter 1], that every element ξ ∈

F((x−1)) r {0} can be uniquely written as

ξ :=
∞∑
i=r

w−ix
−i,

where r ∈ Z, and the coefficients w−i ∈ F (i ≥ r) with w−r 6= 0. The degree valuation

|ξ|∞ in F((x−1)) is defined by putting

|0|∞ = 0, |ξ|∞ = 2−r if ξ =
∞∑
i=r

w−ix
−i with w−r 6= 0.
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Definition 1.2.11. Let ξ =
∞∑
i=r

w−ix
−i ∈ F((x−1)). The head part, [ξ], and the tail

part, (ξ), of ξ are defined by

[ξ] :=


0∑
i=r

w−ix
−i if r ≤ 0,

0 otherwise

and (ξ) := ξ − [ξ] .

In F((x−1)), there is a continued fraction algorithm similar to the case of real

numbers. Each element can be uniquely represented as the regular continued fraction

of the form

[b0; b1, b2, . . .],

where b0 ∈ F[x] and bi ∈ F[x] r F (i ≥ 1).

The construction of the regular continued fraction for ξ ∈ F((x−1)) r {0} runs

as follows:

Consider ξ = [ξ] + (ξ). Let b0 = [ξ] ∈ F[x].

If (ξ) = 0, then the process stops.

If (ξ) 6= 0, then write ξ = b0 + ξ−1
1 , where ξ−1

1 = (ξ) with |ξ1|∞ > 1. Next we write

ξ1 = [ξ1] + (ξ1). Let b1 = [ξ1] ∈ F[x] r F.

If (ξ1) = 0, then the process stops.

If (ξ1) 6= 0, then write ξ1 = b1 + ξ−1
2 , where ξ−1

2 = (ξ1) with |ξ2|∞ > 1. Next we

write ξ2 = [ξ2] + (ξ2). Let b2 = [ξ2] ∈ F[x] r F.

Again, if (ξ2) = 0, then the process stops. If (ξ2) 6= 0, then we continue in the

same manner. By doing so, we obtain the unique representation

ξ = [b0; b1, b2, . . . , bn−1, ξn],

where b0 ∈ F[x] and bi ∈ F[x] r F (i ≥ 1) and ξn is referred to as the nth complete

quotient of ξ.
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If (ξn) = 0 for some n, then ξ = [b0; b1, b2, . . . , bn], i.e., its regular continued fraction

to ξ is terminating or finite. Otherwise, (ξn) 6= 0 for all n and the regular continued

fraction is infinite and this is the case of interest from now on. The following lemma

collects basic properties of regular continued fractions whose proof is easily verified

by using Lemma 1.2.2 and (1.2).

Lemma 1.2.12. For n ≥ 1, let pn

qn
be the nth convergent corresponding to the above

b0, b1, . . . , bn. Then

(i) pn and qn are relatively prime;

(ii) |qn−1|∞ > |qn−2|∞, |ξn|∞ = |bn|∞;

(iii) |qn|∞ = |b1b2 . . . bn|∞;

(iv) ξ − pn

qn
= (−1)n

qn(ξn+1qn+qn−1)
;

(v) pn is the head part of qnξ.

Since |ξn+1|∞ = |bn+1|∞ ≥ 2, Lemma 1.2.12 (ii) and (iii) give

|qn(ξn+1qn + qn−1)|∞ = |qn|2∞ |bn+1|∞ ≥ 22n+1.

Using Lemma 1.2.12 (iv), we get the approximation

∣∣∣∣ξ − pn
qn

∣∣∣∣
∞
≤ 2−(2n+1) → 0 as n→∞,

which immediately implies that pn

qn
→ ξ, and enable us to write ξ = [b0; b1, b2, . . .].

As in the classical case, the following characterization of rational elements in

F((x−1)) via their regular continued fractions is well-known, see e.g., [24].
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Theorem 1.2.13. Let ξ ∈ F((x−1)). Then ξ is rational if and only if its regular

continued fraction is finite.

Specific properties of periodic regular continued fractions for formal series are

stated as in Theorem 1.2.14 and 1.2.15, whose proofs can be found in [8].

Theorem 1.2.14. Let ξ ∈ F((x−1)). If the regular continued fraction of ξ is periodic,

then ξ is an irrational root of a quadratic equation of the form at2 + bt+ c = 0 where

a, b, c ∈ F[x], a 6= 0.

Theorem 1.2.15. Let ξ ∈ F((x−1)). If ξ is an irrational root of a quadratic equation

of the form at2 + bt + c = 0 where a, b, c ∈ F[x], a 6= 0, then the regular continued

fraction of ξ is periodic.



CHAPTER II

CONTINUED FRACTIONS WITH BOUNDED PARTIAL

QUOTIENTS

In this chapter, the boundedness of partial quotients of regular continued fractions

representing linear fractional transformations of elements in the field F((x−1)) of

formal series over a based field F is considered. In the last section, we verify a famous

conjecture involving a bound of partial quotients of regular continued fractions for

some rational numbers.

2.1 Linear fractional transformations of bounded continued

fractions

Definition 2.1.1. Let θ be an irrational element in F((x−1)) whose infinite regular

continued fraction expansion is [b0; b1, b2, . . .]. Define

K(θ) := sup
i≥1
|bi|∞ and K∞(θ) := lim sup

i≥1
|bi|∞.

We say that θ has bounded partial quotients if K(θ) is finite.

Clearly, K∞(θ) ≤ K(θ) and K(θ) is finite if and only if K∞(θ) is finite.

The main result reads:

Theorem 2.1.2. Let M =

a b

c d

, where a, b, c, d ∈ F[x] be such that detM 6= 0.

If the regular continued fraction of an irrational element θ ∈ F((x−1)) has bounded
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partial quotients, then

1

| det M |∞
K∞(θ) ≤ K∞

(
aθ + b

cθ + d

)
≤ | detM |∞ K∞(θ), (2.1)

and K

(
aθ + b

cθ + d

)
≤ max {| detM |∞ K(θ), |c(cθ + d)|∞} . (2.2)

Theorem 2.1.2 is proved by making use of the following results.

The next lemma is known as the best approximation property, cf. Theorem 7.13

in [21] for the real case.

Lemma 2.1.3. Let θ be an irrational element in F((x−1)) whose regular continued

fraction expansion is [b0; b1, b2, . . .]. If u, v ∈ F[x] with v 6= 0 satisfy, for some n ≥ 0,

|vθ − u|∞ < |qnθ − pn|∞, (2.3)

then |v|∞ ≥ |qn+1|∞.

Proof. Suppose that

|v|∞ < |qn+1|∞. (2.4)

Consider the system of linear equations (in y, z)

yqn + zqn+1 = v (2.5)

ypn + zpn+1 = u. (2.6)

By (1.7), det

qn qn+1

pn pn+1

 = (−1)n, and so

y
z

 =

(−1)npn+1 (−1)n+1qn+1

(−1)n+1pn (−1)nqn


v
u

 ,
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implying that y and z are in F[x].

We claim that neither y nor z is zero. If y = 0, then 0 6= v = zqn+1, and so

|v|∞ ≥ |qn+1|∞, which contradicts (2.4). Then y 6= 0. If z = 0, then u = ypn

and v = yqn. Since |y|∞ ≥ 1, we have |vθ − u|∞ = |y(qnθ − pn)|∞ ≥ |qnθ − pn|∞,

contradicting (2.3).

Next, we show that

|y(qnθ − pn)|∞ 6= |z(qn+1θ − pn+1)|∞. (2.7)

Suppose |y(qnθ − pn)|∞ = |z(qn+1θ − pn+1)|∞. By Lemma 1.2.12 (ii) and (iv), we

have

|qiθ − pi|∞ =
1

|θi+1qi + qi−1|∞
=

1

|qi+1|∞
(i ≥ 0),

and so |yqn+2|∞ = |zqn+1|∞. Since |yqn|∞ < |yqn+2|∞, (1.1) and (2.5) yield

|zqn+1|∞ = |v|∞ implying that |qn+1|∞ ≤ |v|∞. This contradicts (2.4). Thus, (2.7)

holds.

Finally, consider |vθ− u|∞ = |y(qnθ− pn) + z(qn+1θ− pn+1)|∞. Using (2.7), (1.1)

and y ∈ F[x] r {0}, we have

|vθ − u|∞ = max{|y(qnθ − pn)|∞, |z(qn+1θ − pn+1)|∞}

≥ |y(qnθ − pn)|∞ ≥ |qnθ − pn|∞,

which contradicts (2.3), and the lemma follows.

Remark 2.1.4. The best approximation property presented in the above lemma

also holds the convergents of finite regular continued fractions. Namely, for a rational

element θ ∈ F((x−1)) whose finite regular continued fraction is [b0; b1, . . . , bn], if u, v ∈

F[x] with v 6= 0 satisfy, for some 0 ≤ i < n, |vθ−u|∞ < |qiθ−pi|∞, then |v|∞ ≥ |qi+1|∞.
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Definition 2.1.5. For ξ ∈ F((x−1)), the distance to the head part ‖ξ‖ of ξ is defined

as ‖ξ‖ = |ξ − [ξ]|∞ .

Hence for an irrational element θ ∈ F((x−1)) whose regular continued fraction

expansion is θ = [b0; b1, b2, . . .], by Lemma 1.2.12 (v), we have ‖qnθ‖ = |qnθ − pn|,

and so Lemma 1.2.12 (ii) and (iv) together yield

|qn|∞ ‖qnθ‖ =
1

|θn+1 + qn−1/qn|∞
=

1

|bn+1|∞
, (2.8)

where θn+1 = [bn+1; bn+2, . . .] is the (n+ 1)th complete quotient of [b0; b1, b2, . . .].

Definition 2.1.6. For an irrational element θ ∈ F((x−1)), define its type and its

Lagrange constant, respectively, by

L(θ) = sup
|q|∞≥1

(|q|∞ ‖qθ‖)−1 and L∞(θ) = lim sup
|q|∞≥1

(|q|∞ ‖qθ‖)−1 .

To determine the type and the Lagrange constant, it suffices to use the partial

denominators as we show now.

Lemma 2.1.7. Let θ be an irrational element in F((x−1)) whose regular continued

fraction is [b0; b1, b2, . . .]. Then

L(θ) = sup
i≥0

(|qi|∞ ‖qiθ‖)−1 and L∞(θ) = lim sup
i≥0

(|qi|∞ ‖qiθ‖)−1 . (2.9)

Proof. Let q ∈ F[x] r {0}. Since the regular continued fraction of any irrational is

infinite, there exists m ∈ N0 := N∪{0} such that |qm|∞ ≤ |q|∞ < |qm+1|∞. By Lemma

2.1.3,

1

|q|∞ ‖qθ‖
≤ 1

|q|∞ ‖qmθ‖
≤ 1

|qm|∞ ‖qmθ‖
,

and the result follows.
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Corollary 2.1.8. A) For an irrational element θ ∈ F((x−1)), we have

K(θ) = L(θ) and K∞(θ) = L∞(θ). (2.10)

B) Let φ = [d0; d1, d2, . . .], γ = [e0; e1, e2, . . .] be two irrational elements in F((x−1)).

If there exist s1, s2 ∈ N0 such that |ds1+i|∞ = |es2+i|∞ (i ≥ 0), then

K∞(φ) = K∞(γ) and L∞(φ) = L∞(γ).

Proof. Part A) follows immediately from the definitions of K(θ) and K∞(θ), (2.8)

and Lemma 2.1.7. Part B) follows from at once the definition of K∞, Lemma 2.1.7

and (2.10).

The next lemma is proved by modifying the proofs of Theorems 172 and 175 of

[13] in the real to the formal series case.

Lemma 2.1.9. Let [b0; b1, b2, . . .] be the regular continued fraction for an irrational

element θ ∈ F((x−1)) with |θ|∞ > 1, and let ψ = aθ+b
cθ+d

, where a, b, c, d ∈ F[x] be such

that |ad− bc|∞ = 1.

A) If |c|∞ > |d|∞ > 0, then b/d and a/c equal two consecutive convergents of the

regular continued fraction for ψ and if b/d and a/c equal the (n − 1)th and nth

convergents of the regular continued fraction for ψ, respectively, we have that

the (n+ 1)th complete quotient is of the form δθ for some δ ∈ F r {0}.

B) If the regular continued fraction for ψ is [c0; c1, c2, . . .], then there exist k, n ∈ N0

such that

|bk+i|∞ = |cn+i|∞ for all i ≥ 0.
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Proof. Denote the regular continued fraction expansion of a/c by [c0; c1, . . . , cn] and

let pn/qn be its nth (last) convergent. Since |ad−bc|∞ = 1, we have, by Lemma 1.2.12

(i), gcd(a, c) = 1 = gcd(pn, qn) and hence a = γpn, c = γqn for some γ ∈ F r {0}.

Thus,

|pnd− qnb|∞ = |ad− bc|∞ = 1 = |pnqn−1 − pn−1qn|∞,

yielding pnd− qnb = δ′(pnqn−1 − pn−1qn) for some δ′ ∈ F r {0}, and so

pn(d− δ′qn−1) = qn(b− δ′pn−1). (2.11)

Since gcd(pn, qn) = 1, the relation (2.11) gives

qn|(d− δ′qn−1). (2.12)

From |qn|∞ = |c|∞ > |d|∞ > 0 and |qn|∞ > |qn−1|∞ ≥ 0, we get |d− δ′qn−1|∞ < |qn|∞,

which is consistent with (2.12) only when d − δ′qn−1 = 0, i.e., when d = δ′qn−1, b =

δ′pn−1. Consequently, ψ = pnδθ+pn−1

qnδθ+qn−1
for some δ ∈ F r {0}, and so by (1.6),

ψ = [c0; c1, . . . , cn, δθ].

If we develop δθ as a continued fraction, we obtain δθ = [cn+1; cn+2, . . .] with |cn+1|∞ >

1. Hence ψ = [c0; c1, . . . , cn, cn+1, cn+2, . . .].

To prove part B), from (1.6), we have

θ = [b0; b1, . . . , bk−1, θk] =
pk−1θk + pk−2

qk−1θk + qk−2

,

which implies

ψ =
Pθk +R

Qθk + S
,
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where

P = aAk−1 + bqk−1, R = apk−2 + bqk−2, Q = cAk−1 + dqk−1 and S = cpk−2 + dqk−2

are in F[x] with |PS −QR|∞ = |(ad− bc)(pk−1qk−2 − pk−2qk−1)|∞ = 1. From Lemma

1.2.12 (iv), we have |θ − pi

qi
|∞ = 1

|qi(θi+1qi+qi−1)|∞ < 1
|q2i |∞

for all i ≥ 0, and so

pk−1 = θqk−1 +
β1

qk−1

, pk−2 = θqk−2 +
β2

qk−2

,

where |β1|∞ < 1, |β2|∞ < 1. Thus,

Q = (cθ + d)qk−1 +
cβ1

qk−1

, S = (cθ + d)qk−2 +
cβ2

qk−2

.

Since cθ+ d 6= 0, |qk−1|∞ > |qk−2|∞ →∞ (k →∞), we have |Q|∞ > |S|∞ > 0 for all

large k. For such k, part A) ensures that there exists δ ∈ F r {0} such that δθk = ψn

for some n, i.e., |bk+i|∞ = |cn+i|∞ for all i ≥ 0.

Lemma 2.1.9 and Corollary 2.1.8 immediately yield:

Lemma 2.1.10. Let θ be an irrational element in F((x−1)), M =

a b

c d

 , where

a, b, c, d ∈ F[x] and denote M(θ) := aθ+b
cθ+d

. If | detM |∞ = 1, then

L∞(M(θ)) = L∞(θ).

For a transformation with non-unit determinant, we have weaker results.

Lemma 2.1.11. Let θ be an irrational element in F((x−1)) ; h, d1, d3 ∈ F[x] r {0}

and d2 ∈ F[x]. Then

L∞(hθ) ≤ |h|∞L∞(θ) (2.13)

and L∞

(
d1θ + d2

d3

)
≤ |d1d3|∞ L∞(θ). (2.14)
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Proof. If θ has unbounded partial quotients, i.e., L∞(θ) = ∞, both inequalities are

trivial. Now assume θ has bounded partial quotients. For h ∈ F[x] r {0}, k ∈ N0,

clearly,

sup
deg q≥k

(|qh|∞ ‖qhθ‖)−1 ≤ sup
deg q≥k

(|q|∞ ‖qθ‖)−1

and

lim sup
|q|∞≥1

(|qh|∞ ‖qhθ‖)−1 ≤ lim sup
|q|∞≥1

(|q|∞ ‖qθ‖)−1 .

Consequently,

L∞(hθ) = lim sup
|q|∞≥1

(|q|∞ ‖qhθ‖)−1 = |h|∞ lim sup
|q|∞≥1

(|qh|∞ ‖qhθ‖)−1

≤ |h|∞ lim sup
|q|∞≥1

(|q|∞ ‖qθ‖)−1 = |h|∞ L∞(θ),

which proves (2.13).

To verify (2.14), from Corollary 2.1.8 B) and (2.13), we have

L∞

(
d1θ + d2

d3

)
= L∞

(
d3

d1θ + d2

)
≤ |d3|∞L∞

(
1

d1θ + d2

)
= |d3|∞L∞(d1θ + d2) ≤ |d1|∞|d3|∞L∞(θ).

Now we are ready to prove our main theorem.

Proof of Theorem 2.1.2. By Corollary 2.1.8, it suffices to prove the two results for

L∞, L in place of K∞, K, respectively. Let ψ := aθ+b
cθ+d

= M(θ).



22

We start by showing that there exists M2 ∈ GL2(F [x]) such that

| detM2|∞ = 1, M2M =

α β

0 γ

 ∈ GL2(F [x]), |αγ|∞ = | detM |∞.

Write M2 =

E F

G H

. To fulfil the matrix equality, it is required that Ga+Hc = 0.

If a = 0, then c 6= 0 and so we must take H = 0. Choose F ∈ F r {0}, G = 1/F

and arbitrary E ∈ F[x] to fulfil all requirements.

If c = 0, then a 6= 0 and we must take G = 0. Choose E ∈ F r {0}, H = 1/E

and arbitrary F ∈ F[x] to fulfil all requirements.

If both a 6= 0 and c 6= 0, then take G = l.c.m.(a,c)
a

and H = − l.c.m.(a,c)
c

. Since

gcd(G,H) = 1, there are µ, ν ∈ F[x] such that µG + νH = 1. Setting E = ν and

F = −µ, all the requirements are fulfilled.

After we obtain such M2, we apply Lemma 2.1.10 to get

L∞(ψ) = L∞(M2(ψ)) = L∞(M2M(θ)) = L∞

(
αθ + β

γ

)
,

and the second inequality of (2.1) now follows from the inequality (2.14) of Lemma

2.1.11.

To prove the first inequality of (2.1), we consider the adjoint matrix

M ′ := adj (M) =

 d −b

−c a

 ,

which has M ′M = (det M)I2, and so

M ′(ψ) = M ′(M(θ)) = M ′M(θ) = θ.
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Applying the second inequality of (2.1) to ψ, we have

L∞(θ) = L∞(M ′(ψ)) ≤ | det M ′|∞L∞(ψ) = | det M |∞L∞(ψ),

and the first inequality of (2.1) follows.

We turn now to the second assertion of the theorem. For each q ∈ F[x] r {0}, let

xq = |q|∞ ‖qψ‖ = |q|∞
∣∣∣∣q(aθ + b

cθ + d

)
− p
∣∣∣∣
∞

(
p =

[
q

(
aθ + b

cθ + d

)])
.

If c = 0, then | detM |∞ = |ad|∞ 6= 0 and so

|ad|∞ xq = |aq|∞ |aqθ − (dp− bq)|∞ ≥ |aq|∞ ‖aqθ‖ ≥ 1/L(θ),

yielding

L(ψ) = sup
|q|∞≥1

(|q|∞ ‖qψ‖)−1 ≤ |ad|∞L(θ),

which is the first term in the right hand expression of (2.2).

If c 6= 0, then

|cθ + d|∞ xq = |q|∞ |(qa− pc)θ − (pd− qb)|∞. (2.15)

Since θ has bounded partial quotients, both K(θ) and K∞(θ) are finite. The result

of the first part shows then that K∞(ψ) is finite and so is K(ψ). Corollary 2.1.8

in turn shows that L(ψ) is finite. Thus, there is an infinite sequence of non-zero

approximations

xq(i) = |q(i)|∞
∥∥q(i)ψ

∥∥
such that

L(ψ)− 1

2i
≤ 1

xq(i)
≤ L(ψ) for all i ≥ 0. (2.16)
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By taking a suitable subsequence, we may reduce to the case where either all of the

approximations have q(i)a− p(i)c = 0 or all of them have q(i)a− p(i)c 6= 0.

We first treat the subcase q(i)a−p(i)c = 0 for all i ≥ 0. Since ad−bc = detM 6= 0,

we have p(i)d− q(i)b ∈ F[x] r {0} and so (2.15) gives

|cθ + d|∞ xq(i) = |q(i)|∞ |p(i)d− q(i)b|∞ ≥ 1.

Consequently,

L(ψ)− 1
2i ≤ 1

x
q(i)
≤ |cθ + d|∞ ≤ |c(cθ + d)|∞ for all i ≥ 0.

Letting i→∞, we get the second term in the right hand expression of (2.2).

Finally, we consider the subcase that q(i)a − p(i)c 6= 0 for all i ≥ 0. From (2.15),

we have

|cθ + d|∞
∣∣∣∣q(i)a− p(i)c

q(i)

∣∣∣∣
∞
xq(i) = |q(i)a− p(i)c|∞|(q(i)a− p(i)c)θ − (p(i)d− q(i)b)|∞

≥ |q(i)a− p(i)c|∞
∥∥(q(i)a− p(i)c)θ

∥∥ ≥ 1

L(θ)
. (2.17)

Using the first inequality in (2.16) and the inequality (2.17), we get

L(ψ)− 1

2i
≤ 1

xq(i)
≤ |cθ + d|∞

∣∣∣∣q(i)a− p(i)c

q(i)

∣∣∣∣
∞
L(θ)

= |cθ + d|∞
|c|∞
|q(i)|∞

∣∣∣∣q(i)a− p(i)c

c

∣∣∣∣
∞
L(θ). (2.18)

Using the strong triangle inequality, we have

∣∣∣q(i)
(a
c

)
− p(i)

∣∣∣
∞
≤ max

{∣∣∣∣q(i)

(
aθ + b

cθ + d

)
− q(i)

(a
c

)∣∣∣∣
∞
,

∣∣∣∣q(i)

(
aθ + b

cθ + d

)
− p(i)

∣∣∣∣
∞

}
= max

{
|q(i)|∞| det (M)|∞
|c(cθ + d)|∞

,
xq(i)

|q(i)|∞

}
. (2.19)
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Combining (2.18) and (2.19) gives

L(ψ)− 1

2i
≤ L(θ) max

{
| detM |∞, |c(cθ + d)|∞

xq(i)

|(q(i))|2∞

}
.

Using the first inequality in (2.16), i.e., xq(i) ≤ 1
L(ψ)−1/2i , we deduce that

L(ψ)− 1

2i
≤ max

{
| detM |∞L(θ),

|c(cθ + d)|∞
|(q(i))|2∞

· L(θ)

L(ψ)− 1/2i

}
. (2.20)

If L(θ) ≥ L(ψ), then the inequality (2.2) holds trivially, using the first term in the

right hand expression. If L(θ) < L(ψ), then letting i → ∞ in (2.20), the ratio

L(θ)
L(ψ)−1/2i becomes ≤ 1 in the limit, and (2.2) follows. �

Next, the boundedness of partial quotients of regular continued fractions repre-

senting linear fractional tranformations of rational elements in F((x−1)) is investi-

gated.

Definition 2.1.12. Let φ be an element in F(x) r F[x] whose regular continued

fraction expansion is [b0; b1, . . . , bn]. Define R(φ) := max
1≤i≤n

|bi|∞.

Lemma 2.1.13. Let φ be an element in F(x) r F[x] whose regular continued fraction

expansion is [b0; b1, . . . , bn]. Then

R(φ) = max
0≤i<n

(|qi|∞ ‖qiφ‖)−1 = max
0<|q|∞<|qn|∞

(|q|∞ ‖qφ‖)−1.

Proof. From Lemma 1.2.12 (v), we have for 0 ≤ i < n, ‖qiφ‖ = |qiφ − pi|, and so

Lemma 1.2.12(ii) and (iv) together yield

|qi| ‖qiφ‖ =
1

|φi+1 + qi−1/qi|
=

1

|bi+1|
.

This implies the first desired equality. The second desired equality follows immedi-
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ately from the best approximation property of regular continued fraction convergents

according to Remark 2.1.4.

Proposition 2.1.14. Let φ be an element in F(x)rF[x] with |φ|∞ > 1 whose regular

continued fraction expansion is [b0; b1, . . . , bn] and let

ψ =
aφ+ b

cφ+ d
,

where a, b, c, d ∈ F[x] be such that |ad− bc|∞ = 1, |c|∞ > |d|∞ > 0 and cφ+ d 6= 0.

Assume that ψ ∈ F(x) r F[x]. Then

A) b/d and a/c equal two consecutive convergents, say (m − 1)th and mth conver-

gents, respectively, of the regular continued fraction for ψ and we have that the

(m+ 1)th complete quotient is of the form δθ for some δ ∈ F r {0}.

B) R(ψ) = max{|b0|∞, R(φ), R(a/c)}.

Proof. Denote the regular continued fraction expansion of a/c by [c0; c1, . . . , cm] and

let pm/qm be its mth (last) convergent. Since |ad − bc|∞ = 1, we have, by Lemma

1.2.12 (i), gcd(a, c) = 1 = gcd(pm, qm) and a = γpm, c = γqm for some γ ∈ F r {0}.

Thus,

|pmd− qmb|∞ = |ad− bc|∞ = 1 = |pmqm−1 − pm−1qm|∞,

yielding pmd− qmb = δ′(pmqm−1 − pm−1qm) for some δ′ ∈ F r {0}, and so

pm(d− δ′qm−1) = qm(b− δ′pm−1). (2.21)

Since gcd(pm, qm) = 1, the relation (2.21) gives

qm|(d− δ′qm−1). (2.22)
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From |qm|∞ = |c|∞ > |d|∞ > 0, and |qm|∞ > |qm−1|∞ ≥ 0, we get |d − δ′qm−1|∞ <

|qm|∞, which is consistent with (2.22) only when d − δ′qm−1 = 0, i.e., when d =

δ′qm−1, b = δ′pm−1. Consequently, ψ = δpmφ+pm−1

δqmφ+qm−1
for some δ ∈ F r {0}, and so

ψ = [c0; c1, . . . , cm, δφ].

This immediately yields

ψ =


[c0; c1, . . . cm, δb0, δ

−1b1, . . . , δ
−1bn−1, δbn] if n is odd,

[c0; c1, . . . cm, δb0, δ
−1b1, . . . , δbn−1, δ

−1bn] if n is even.

Since |bi|∞ = |δbi|∞ = |δ−1bi|∞, 0 ≤ i ≤ n, we have

R(ψ) = max{|b0|∞, R(φ), R(a/c)}

as desired.

Theorem 2.1.15. Let φ be an element in F(x)rF[x] whose regular continued fraction

expansion is [b0; b1, . . . , bn] and let pn/qn be its nth (last) convergent and let

ψ =
aφ+ b

cφ+ d
,

where a, b, c, d ∈ F[x], ad− bc 6= 0 and cθ + d 6= 0. Assume that ψ ∈ F(x) r F[x]. If

|a|∞ 6= |ψc|∞, then

R(ψ) ≤ max
{∣∣∣ 1

ψ

∣∣∣
∞
, |ad− bc|∞R(φ)

}
.

Proof. Let [b̃0; b̃1, b̃2, ..., b̃s] be the regular continued fraction of ψ and denote its ith

convergent by p̃i/q̃i. Choose a kth denominator, q̃k, of ψ such that

0 ≤ k < s and R(ψ) =
1

|q̃k|∞ ‖q̃kψ‖
.
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From Lemma 1.2.12 (iv),

q̃kψ − p̃k =
(−1)k

ψk+1q̃k + q̃k−1

,

so that we can write

p̃k = q̃kψ − β,

for some β ∈ F(x) such that |β|∞ < 1.

Case 1. p̃k 6= 0.

Hence |p̃k|∞ ≥ 1 > |β|∞, and so by (1.1) |q̃kψ|∞ = |p̃k + β|∞ = |p̃k|∞ > |β|∞. We

get |q̃ka− p̃kc|∞ = |q̃k(a− ψc) + βc|∞. By the assumption |a|∞ 6= |ψc|∞, so we have

|q̃ka− ψq̃kc|∞ = max{|q̃ka|∞, |ψq̃kc|∞} ≥ |ψq̃kc|∞ > |βc|∞.

Then by (1.1)

|q̃ka− p̃kc|∞ = |q̃ka− ψq̃kc+ βc|∞ = |q̃ka− ψq̃kc|∞ 6= 0.

Thus

|ad− bc|∞
1

R(ψ)
= |cφ+ d|∞|a− ψc|∞|q̃k|∞ ‖q̃kψ‖

= |cφ+ d|∞
∣∣∣∣ q̃ka− ψq̃kcq̃k

∣∣∣∣
∞
|q̃k|∞ ‖q̃kψ‖

= |cφ+ d|∞|q̃ka− p̃kc|∞ ‖q̃kψ‖

= |cφ+ d|∞|q̃ka− p̃kc|∞
∣∣∣∣q̃k (aφ+ b

cφ+ d

)
− p̃k

∣∣∣∣
∞

= |q̃ka− p̃kc|∞|(q̃ka− p̃kc)φ− (p̃kd− q̃kb)|∞. (2.23)

Subcase 1.1. |q̃ka− p̃kc|∞ < |qn|∞.

Since |ad− bc|∞R(ψ) 6= 0, |(q̃ka− p̃kc)φ− (p̃kd− q̃kb)|∞ 6= 0. Hence by the definition

of the distance
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|(q̃ka− p̃kc)φ− (p̃kd− q̃kb)|∞ ≥ ‖(q̃ka− p̃kc)φ‖,

and then Lemma 2.1.13 together with (2.23) yield

|ad− bc|∞
1

R(ψ)
≥ |q̃ka− p̃kc|∞ ‖(q̃ka− p̃kc)φ‖ ≥

1

R(φ)
.

Subcase 1.2. |q̃ka− p̃kc|∞ ≥ |qn|∞.

Write φ =
E

F
, where E ∈ F[x], F ∈ F[x] r F and gcd(E,F ) ∈ F r {0}. Then by

(2.23)

|ad− bc|∞
1

R(ψ)
= |q̃ka− p̃kc|∞

∣∣∣∣(q̃ka− p̃kc)EF − (p̃kd− q̃kb)
∣∣∣∣
∞

= |q̃ka− p̃kc|∞
|(q̃ka− p̃kc)E − (p̃kd− q̃kb)F |∞

|F |∞
.

We have by Lemma 1.2.12 (i) and the definition of F that |qn|∞ = |F |∞, and so com-

bines with the facts that |q̃ka−p̃kc|∞ ≥ |qn|∞ and |(q̃ka− p̃kc)E − (p̃kd− q̃kb)F |∞ ≥ 1

we get

|ad− bc|∞
1

R(ψ)
≥ |qn|∞

1

|qn|∞
= 1 >

1

R(φ)
.

Case 2. p̃k = 0.

By the construction of the regular continued fraction we have b̃i ∈ F[x] r F, for all

1 ≤ i ≤ s, then by (1.2), |p̃i|∞ ≥ 1 for all 1 ≤ i ≤ s. It follows that k = 0. Thus

R(ψ) =
1

|q̃0|∞ ‖q̃0ψ‖
= |b1|∞ =

1

|ψ|∞
.

Therefore,

R(ψ) ≤ max

{∣∣∣∣ 1ψ
∣∣∣∣
∞
, |ad− bc|∞R(φ)

}
.
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2.2 Zaremba’s conjecture for 2s · 3t

A famous conjecture attributed to Zaremba, see e.g., [20], states that for a positive

integer m ≥ 2 there exists a reduced fraction a/m such that

max{b1, . . . , bn} ≤ 5,

where [b0; b1, . . . , bn] is the regular continued fraction with bn > 1 of a/m.

In this section, Zaremba’s conjecture for the case m = 2s · 3t where s, t are non-

negative integers verified by using the identity known as the Folding lemma similar

to [30].

For an arbitrary field K and α, β ∈ K, we adopt the notation

[. . . , α, 0, β, . . .] = [. . . , α + β, . . .]. (2.24)

Lemma 2.2.1. (Folding lemma) Let s1 ∈ R r {0}, n ≥ 0 and pn

qn
be the last

convergent of a continued fraction [b0; b1, . . . , bn] over R. Then

pn
qn

+
(−1)n

s1q2
n

=


[b0; s1 − 1, 1] ; if n = 0,

[b0; b1, . . . , bn, s1 − 1, 1, bn − 1, bn−1, . . . , b1] ; if n ≥ 1.

Proof. We have by (1.6) and (1.7) that

[
b0; b1, . . . , bn, s1 −

qn−1

qn

]
=

(
s1 − qn−1

qn

)
pn + pn−1(

s1 − qn−1

qn

)
qn + qn−1

=
pn
qn

+
(−1)n

s1q2
n

.

Hence the computations

s1 − qn−1/qn = s1 − 1 + (qn − qn−1)/qn
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qn/(qn − qn−1) = 1 + qn−1/(qn − qn−1)

(qn − qn−1)/qn−1 = −1 + qn/qn−1

allow us to rewrite

pn
qn

+
(−1)n

s1q2
n

=

[
b0; b1, . . . , bn, s1 − 1, 1,−1,

qn−1

qn

]
.

Therefore, for the case n = 0, the desired result follows from the definition of q−1 and

(1.6) and for the case n ≥ 1, it follows from (1.5) and (2.24).

Theorem 2.2.2. For any positive integer m ≥ 2 of the form m = 2s · 3t, where s, t

are non-negative integers, there exists a reduced fraction a/m such that

max{b1, . . . , bn} ≤ 5,

where [0; b1, . . . , bn] is the regular continued fraction with bn > 1 of a/m.

Proof. Starting from the following fractions

1
2

= [0; 2]; 1
3

= [0; 3]; 5
2·3 = [0; 1, 5];

1
22 = [0; 4]; 2

32 = [0; 4, 2]; 8
22·32 = [0; 3, 2, 1, 2];

3
23 = [0; 2, 1, 2]; 8

33 = [0; 3, 2, 1, 2]; 49
23·33 = [0; 4, 2, 2, 4, 2];

5
2·32 = [0; 3, 1, 1, 2]; 5

22·3 = [0; 2, 2, 2]; 11
23·3 = [0; 2, 5, 2];

17
2·33 = [0; 3, 5, 1, 2]; 29

22·33 = [0; 3, 1, 2, 1, 1, 3]; 11
23·32 = [0; 4, 4, 4],

and the proof is then completed by showing the stronger statement that for any

positive integer k ≥ 2 and any positive integer m ≥ 2 of the forms

m = 2k · 3j or m = 2j · 3k (0 ≤ j ≤ k),

there exists a reduced fraction a/m such that

1 < b1, bn < 5 and bi ≤ 5 for all 2 ≤ i ≤ n− 1,
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where [0; b1, . . . , bn] is the regular continued fraction with bn > 1 of a/m.

We will prove this stronger statement by using induction on k. By the above

fractions, the stronger statement holds for k = 2, 3. Now assume that the stronger

statement holds for 2 ≤ i ≤ k (k ≥ 3). Let 0 ≤ j ≤ k + 1.

If both k+ 1 and j are even, then by the hypothesis there exist reduced fractions

b/(2
k+1
2 · 3 j

2 ) and c/(2
j
2 · 3 k+1

2 ) such that

1 < c1, ch < 5 and ci ≤ 5 for all 2 ≤ i ≤ h− 1; (2.25)

1 < d1, dr < 5 and di ≤ 5 for all 2 ≤ i ≤ r − 1, (2.26)

where [0; c1, . . . , ch] and [0; d1, . . . , dr] are the regular continued fractions with the

last partial quotient > 1 of b/(2
k+1
2 · 3 j

2 ) and c/(2
j
2 · 3 k+1

2 ), respectively. Applying

Lemma 2.2.1 and then by (2.24), we have

b

2
k+1
2 · 3 j

2

+
(−1)h

2k+1 · 3j
= [0; c1, . . . , ch, 0, 1, ch − 1, ch−1, . . . , c1]

= [0; c1, . . . , ch + 1, ch − 1, ch−1, . . . , c1],

and

c

2
j
2 · 3 k+1

2

+
(−1)r

2j · 3k+1
= [0; d1, . . . , dr, 0, 1, dr − 1, dr−1, . . . , d1]

= [0; d1, . . . , dr + 1, dr − 1, dr−1, . . . , d1].

It is clear that

gcd(b · (2 k+1
2 · 3 j

2 ) + (−1)h, 2k+1 · 3j) = 1,

and gcd(c · (2 j
2 · 3 k+1

2 ) + (−1)r, 2j · 3k+1) = 1.

Hence the stronger statement is established by (2.25) and (2.26).
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If at least one of k + 1 and j is odd, then we can write

2k+1 · 3j = u1 · v2
1 and 2j · 3k+1 = u2 · v2

2

where u1, u2 ∈ {2, 3, 6}, v1 = 2n1 · 3n2 for some 2 ≤ n1 < k + 1, 0 ≤ n2 ≤ n1

and v2 = 2n3 · 3n4 for some 2 ≤ n4 < k + 1, 0 ≤ n3 ≤ n4. Then by the hypothesis

there exist reduced fractions b/v1 and c/v2 such that

1 < c1, ch < 5 and ci ≤ 5 for all 2 ≤ i ≤ h− 1; (2.27)

1 < d1, dr < 5 and di ≤ 5 for all 2 ≤ i ≤ r − 1, (2.28)

where [0; c1, . . . , ch] and [0; d1, . . . , dr] are the regular continued fractions with the last

partial quotient > 1 of b/v1 and c/v2, respectively. Applying Lemma 2.2.1, we have

b

v1

+
(−1)h

u1v2
1

= [0; c1, . . . , ch, u1 − 1, 1, ch − 1, ch−1, . . . , c1],

and

c

v2

+
(−1)r

u2v2
2

= [0; d1, . . . , dr, u2 − 1, 1, dr − 1, dr−1, . . . , d1].

It is clear that

gcd(bu1v1 + (−1)h, u1v
2
1) = 1 and gcd(cu2v2 + (−1)r, u2v

2
2) = 1.

Hence the stronger statement is established by (2.27), (2.28) and the definitions of u1

and u2.



CHAPTER III

CONTINUED FRACTIONS WITH SOME PATTERNS

In the chapter, we begin with a generalization of Theorem 2.3 in [9] which

considered continued fractions over R to continued fractions over a general field K.

This generalized theorem is then applied to continued fractions over the field F((x−1))

of formal series over a based field F to produce some interesting identities. Next, an

identity for continued fractions with palindromic property is extended in the last

section.

3.1 Identities for continued fractions with some patterns

Theorem 3.1.1. Let K be an arbitrary field and [b0; b1, . . . , bn] (n ≥ 0) be a con-

tinued fraction over K. Then for any d ∈ K with d 6= qn−1, we have

pn
qn

+
(−1)n

dqn
=

[
b0; b1, . . . , bn−1, bn +

qn
d− qn−1

]
.

Proof. It is obvious for n = 0 from p0
q0

+ (−1)0

dq0
= b0 + 1

d
. Now consider the case

n ≥ 1, by (1.6), (1.2) and (1.7), respectively, we have

[
b0; b1, . . . , bn−1, bn +

qn
d− qn−1

]
=

(
bn + qn

d−qn−1

)
pn−1 + pn−2(

bn + qn
d−qn−1

)
qn−1 + qn−2

=
d(bnpn−1 + pn−2)− qn−1(bnpn−1 + pn−2) + qnpn−1

d(bnqn−1 + qn−2)− qn−1(bnqn−1 + qn−2) + qnqn−1
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=
dpn − qn−1pn + qnpn−1

dqn − qn−1qn + qnqn−1

=
pn
qn

+
(−1)n

dqn

as desired.

Choosing d related to pn, qn, and qn−1, many identities for continued fractions

with some patterns are obtained as interesting applications of Theorem 3.1.1.

Corollary 3.1.2. Let [b0; b1, . . . , bn] (n ≥ 0) be a regular continued fraction over

F((x−1)). Then for any s ∈ F[x] r {0}, we have

pn
qn

+
(−1)n

(sqn + 2qn−1)qn
=


[b0; s] ; if n = 0,

[b0; b1, . . . , bn, s, bn . . . , b1] ; if n ≥ 1.

Proof. It is obvious for n = 0, since p0
q0

+ (−1)0

(sq0+2q−1)q0
= b0 + 1

s
= [b0; s]. Now consider

the case n ≥ 1. Since |qn−1|∞ < |qn|∞ ≤ |sqn|∞, we have sqn + 2qn−1 6= qn−1. By

applying Theorem 3.1.1, we have

pn
qn

+
(−1)n

(sqn + 2qn−1)qn
=

[
b0; b1, . . . , bn−1, bn +

qn
sqn + qn−1

]
=

[
b0; b1, . . . , bn−1, bn +

1

s+ qn−1

qn

]
.

Hence

pn
qn

+
(−1)n

(sqn + 2qn−1)qn
= [b0; b1, . . . , bn, s, bn . . . , b1]

from (1.5).

The symmetric pattern appearing in the case n ≥ 1 of Corollary 3.1.2 is called 2-

duplicate symmetry, following Cohn [10]. It is obvious that a 2-duplicating symmetric
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continued fraction is palindromic.

The next corollary is the Folding lemma for the case of formal series.

Corollary 3.1.3. Let [b0; b1, . . . , bn] (n ≥ 0) be a regular continued fraction over

F((x−1)). Then for any s ∈ F[x] r {0}, we have

pn
qn

+
(−1)n

sq2
n

=


[b0; s] ; if n = 0,

[b0; b1, . . . , bn, s,−bn . . . ,−b1] ; if n ≥ 1.

Proof. It is obvious for n = 0 from p0
q0

+ (−1)0

sq20
= b0 + 1

s
= [b0; s]. Now consider the

case n ≥ 1. Since |qn−1|∞ < |qn|∞ ≤ |sqn|∞, sqn 6= qn−1. By Theorem 3.1.1, we

have

pn
qn

+
(−1)n

(sqn)qn
=

[
b0; b1, . . . , bn−1, bn +

qn
sqn − qn−1

]
=

[
b0; b1, . . . , bn−1, bn +

1

s− qn−1

qn

]
,

and hence

pn
qn

+
(−1)n

sq2
n

= [b0; b1, . . . , bn, s,−bn . . . ,−b1]

as required.

Corollary 3.1.4. Let [b0; b1, . . . , bn] (n ≥ 0) be a regular continued fraction over

F((x−1)). Then for any s ∈ F[x] r {0}, we have

pn
qn

+
(−1)n

((s− b0)qn + qn−1 + pn)qn
=


[b0; s] ; if n = 0,

[b0; b1, . . . , bn, s, b1 . . . , bn] ; if n ≥ 1,

(3.1)
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and

pn
qn

+
(−1)n

((s+ b0)qn + qn−1 − pn)qn
=


[b0; s] ; if n = 0,

[b0; b1, . . . , bn, s,−b1 . . . ,−bn] ; if n ≥ 1.

(3.2)

Proof. (3.1) and (3.2) are obvious for n = 0, because

p0

q0
+

(−1)0

((s− b0)q0 + q−1 + p0)q0
=
p0

q0
+

(−1)0

((s+ b0)q0 + q−1 − p0)q0
= b0 +

1

s
= [b0; s].

Now consider the case n ≥ 1. Since |qn−1|∞ < |qn|∞ ≤ |sqn|∞ and pn−b0qn
qn

is the

fractional part of pn

qn
, we have by (1.1) that

|(s− b0)qn + qn−1 + pn|∞ = |sqn|∞ = |(s+ b0)qn + qn−1 − pn|∞,

and so (s− b0)qn + qn−1 + pn and (s + b0)qn + qn−1 − pn are different from qn−1.

By applying Theorem 3.1.1, we have

pn
qn

+
(−1)n

((s− b0)qn + qn−1 + pn)qn
=

[
b0; b1, . . . , bn−1, bn +

qn
(s− b0)qn + pn

]
=

[
b0; b1, . . . , bn−1, bn +

1

s+ pn−b0qn
qn

]
,

and

pn
qn

+
(−1)n

((s+ b0)qn + qn−1 − pn)qn
=

[
b0; b1, . . . , bn−1, bn +

qn
(s+ b0)qn − pn

]
=

[
b0; b1, . . . , bn−1, bn +

1

s− pn−b0qn
qn

]
.

We finally reach
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pn
qn

+
(−1)n

((s− b0)qn + qn−1 + pn)qn
= [b0; b1, . . . , bn, s, b1 . . . , bn],

and

pn
qn

+
(−1)n

((s+ b0)qn + qn−1 − pn)qn
= [b0; b1, . . . , bn, s,−b1 . . . ,−bn]

as desired.

If we repeatedly apply (3.1) in Corollary 3.1.4 with the same s and with n equals

2 (n of the previous iteration)+1, we get an infinite series expansion for an irrational

element in F((x−1)), which is a root of a quadratic equation with the coefficients are

in F[x] whose regular continued fraction is [b0; b1, b2, . . . , bn, s].

3.2 A generalization of continued fractions with 2-duplicate

symmetry

As mentioned in the previous section, [b0; b1, . . . , bn, s, bn, . . . , b1] is said to be a

2-duplicating symmetric continued fraction. This notion is generalized as follows.

Definition 3.2.1. Let k ≥ 2, n ≥ 1 and K be an arbitrary field and b0, b1, . . . , bn,

s1, . . . , sk−1 ∈ K. Denote the word b1b2 . . . bn by
→
w and use

←
w to denote

bnbn−1 . . . b1. We call

dSk :=


[b0;

→
w, s1,

←
w, s2,

→
w, s3,

←
w, . . . , sk−1,

→
w] ; if k is odd

[b0;
→
w, s1,

←
w, s2,

→
w, s3,

←
w, . . . , sk−1,

←
w] ; if k is even,

a k-duplicating symmetric continued fraction and denote dS1 := [b0;
→
w].

In order to generalize 2-duplicating symmetric continued fractions in Corollary

3.1.2 to dSk (k ≥ 2), we need a notation for the convergents of a continued fraction

defined by segments of partial quotients from another.
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Definition 3.2.2. Let m ≥ 0, K be an arbitrary field and [b0; b1, b2, . . . , bm] be a

continued fraction over K. For 0 ≤ u ≤ m, define

Pu,u−1 = 1, Qu,u−1 = 0, Pu,u = bu, Qu,u = 1,

Pu,v = bvPu,v−1 + Pu,v−2 and Qu,v = bvQu,v−1 +Qu,v−2 (u < v ≤ m). (3.3)

Analogous to the formal definition of the numerators and denominators of contin-

ued fractions, we have the following lemma

Lemma 3.2.3. Let m ≥ 0, K be an arbitrary field and [b0; b1, b2, . . . , bm] be a con-

tinued fraction over K. Then

Pu,v
Qu,v

= [bu; bu+1, . . . , bv] (0 ≤ u ≤ v ≤ m), (3.4)

Qu,v−1

Qu,v

= [0; bv, . . . , bu+1] (0 ≤ u < v ≤ m). (3.5)

Lemma 3.2.4. Let m ≥ 0, K be an arbitrary field and [b0; b1, b2, . . . , bm] be a con-

tinued fraction over K. The following identities hold for 0 ≤ u ≤ v ≤ m:

(1) pvqu − qvpu = (−1)uQu+1,v,

(2) qvQu,v−1 −Qu,vqv−1 = (−1)v−u−1qu−1,

(3) quPu+1,v + qu−1Qu+1,v = qv.

Proof. All three statements are proved by induction on h = v−u. The h = 0 case

of each is a consequence of the definitions of Qu,u−1 and Pu,u−1. Now we consider

each of them for the h ≥ 1 case.

(1) (1.7) and the definition of Qu+1,u+1 lead to pu+1qu − qu+1pu = (−1)u =

(−1)uQu+1,u+1, and hence the equation hold for h = 1. Now assume that the state-

ment holds for all 0 ≤ i ≤ h − 1 (2 ≤ h ≤ m − u). By applying (1.2) and the

hypothesis we have
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pu+hqu − qu+hpu = (bu+hpu+h−1 + pu+h−2)qu − (bu+hqu+h−1 + qu+h−2)pu

= bu+h(−1)uQu+1,u+h−1 + (−1)uQu+1,u+h−2 = (−1)uQu+1,u+h,

and so the equation is established.

(2) The definitions of Qu,u and Qu,u+1 and (1.2) lead to qu+1Qu,u−Qu,u+1qu =

qu+1− bu+1qu = qu−1 = (−1)0qu−1, and so the equation holds for h = 1. Now assume

that the statement holds for all 0 ≤ i ≤ h− 1 (2 ≤ h ≤ m− u). By applying (1.2),

(3.3) and the hypothesis, respectively, we have

qu+hQu,u+h−1 −Qu,u+hqu+h−1

= (bu+hqu+h−1 + qu+h−2)Qu,u+h−1 − (bu+hQu,u+h−1 +Qu,u+h−2)qu+h−1

= qu+h−2Qu,u+h−1 −Qu,u+h−2qu+h−1 = (−1)u+h−u−1qu−1,

and hence the equation is established.

(3) The definitions of Pu+1,u+1 and Qu+1,u+1 and (1.2) lead to quPu+1,u+1 +

qu−1Qu+1,u+1 = qubu+1 + qu−1 = qu+1, and hence the equation hold for h = 1. Now

assume the statement holds for all 0 ≤ i ≤ h − 1 (2 ≤ h ≤ m − u). By applying

(3.3), the hypothesis and (1.2), respectively, we have

quPu+1,u+h + qu−1Qu+1,u+h

= qu(bu+hPu+1,u+h−1 + Pu+1,u+h−2) + qu−1(bu+hQu+1,u+h−1 +Qu+1,u+h−2)

= bu+h(quPu+1,u+h−1 + qu−1Qu+1,u+h−1) + quPu+1,u+h−2 + qu−1Qu+1,u+h−2

= bu+hqu+h−1 + qu+h−2 = qu+h,

and then the equation is established.

Theorem 3.2.5. Let r ≥ 2, n ≥ r−1, K be an arbitrary field and [b0; b1, b2, . . . , bn]

be a continued fraction over K and let bn+1, . . . , bn+r ∈ K. If bn−r+2+i = bn+r−i for
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all 0 ≤ i ≤ r − 2, then

pn+r

qn+r

=
pn
qn

+
(−1)nQn+1,n+r

(Qn−r+1,n−1 + Pn+1,n+r)q2
n + (−1)r−1qn−rqn

,

where pn+r

qn+r
is the last convergent of [b0; b1, . . . , bn, bn+1, . . . , bn+r].

Proof. Upon using Lemma 3.2.4 (1), it suffices to show that

qn+r = (Qn−r+1,n−1 + Pn+1,n+r)qn + (−1)r−1qn−r. (3.6)

Recall Lemma 3.2.4 (3) and (2) that

qnPn+1,n+r + qn−1Qn+1,n+r = qn+r, (3.7)

qn+1Qn−r+1,n −Qn−r+1,n+1qn = (−1)r−1qn−r. (3.8)

Subtracting (3.7) by (3.8), we obtain

qnPn+1,n+r + qn−1Qn+1,n+r − qn+1Qn−r+1,n +Qn−r+1,n+1qn + (−1)r−1qn−r = qn+r.

Hence, by applying (1.2) to qn+1 and (3.3) to Qn−r+1,n+1, we get

qnPn+1,n+r + qn−1Qn+1,n+r − qn−1Qn−r+1,n +Qn−r+1,n−1qn + (−1)r−1qn−r = qn+r.

(3.9)

We have by (3.4) that Pn−r+1,n

Qn−r+1,n
= [bn−r+1; bn−r+2, . . . , bn] and by (3.5) that

Qn−r+1,n−1

Qn−r+1,n

= [0; bn, . . . , bn−r+2].

Observe that the last denominator of [0; bn, . . . , bn−r+2] equals the last denominator

of [bn+1; bn, . . . , bn−r+2] and thus by the assumption bn−r+2+i = bn+r−i (0 ≤ i ≤
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r − 2) which lead to

[bn+1; bn, . . . , bn−r+2] = [bn+1; bn+2, . . . , bn+r] =
Pn+1,n+r

Qn+1,n+r

.

Hence we can conclude that Qn−r+1,n = Qn+1,n+r. Therefore, by putting Qn−r+1,n =

Qn+1,n+r into (3.9) we get (3.6) as desired.

For k ≥ 2, k − 1 times repeated applications of Theorem 3.2.5 with r = n + 1

produce a series representing a k-duplicating symmetric continued fraction, described

as follows:

Corollary 3.2.6. Let k ≥ 2, n ≥ 1 and K be an arbitrary field and b0, b1, . . . , bn,

s1, . . . , sk−1 ∈ K. Then

dSk =
pn
qn

+
k∑
i=2

(−1)(i−1)n+i−2Q(i−1)n+i−1,in+i−1

(Q(i−2)n+i−2,(i−1)n+i−3 + P(i−1)n+i−1,in+i−1)q2
(i−1)n+i−2 + (−1)nq(i−2)n+i−3q(i−1)n+i−2

.

Remark 3.2.7. Corollary 3.2.6 with the k = 2 case leads to

dS2 =
pn
qn

+
(−1)nQn+1,2n+1

(Q0,n−1 + Pn+1,2n+1)q2
n

.

Here Pn+1,2n+1

Qn+1,2n+1
= [s1; bn, . . . , b1] and the fact that the last denominator of [s1; bn, . . . , b1]

equals the last denominator of [0; bn, . . . , b1] combined with the last denominator of

[0; bn, . . . , b1] is qn, imply

Qn+1,n+2n+1 = qn,

hence Pn+1,n+2n+1 = s1qn + qn−1 and by the definition Q0,n−1 = qn−1. Therefore

this speacial case gives Corollary 3.1.2.



CHAPTER IV

EXPLICIT CONTINUED FRACTIONS RELATED TO

CERTAIN SERIES

Explicit formulae for regular continued fractions representing real numbers ex-

pressed by certain series are provided in the first section of this chapter. Analogues

of these results are also established for formal series in the latter.

4.1 Real number case

For n ≥ 0, define θn(T ; f) to be the series expressed as follows

θn(T ; f) =
n∑

m=0

(−1)m

f0(T )f1(T ) . . . fm(T )
,

where f(T ) ∈ Z[T ] r {0}; f0(T ) = T and for all i ≥ 1, fi(T ) = f(fi−1(T )) with

T ∈ Z, and for those T ∈ Z for which the limit exists we define

θ(T ; f) = lim
n→∞

θn(T ; f).

Throughout this section, we put for any f(T ) ∈ Z[T ] r {0},

An = An(T ) = (−1)n +
n∑

m=1

(−1)m+1fm(T )fm+1(T ) . . . fn(T ), (n ≥ 1) ; A0 = 1,

Bn = Bn(T ) = f0(T )f1(T ) . . . fn(T ) (n ≥ 0).
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Note that for any f(T ) ∈ Z[T ] r {0} and n ≥ 0, An and Bn are the numerator and

denominator of the series θn(T ; f), respectively, and for n ≥ 1,

An(T ) = (−1)n +
n∑

m=1

(−1)m+1fm(T )fm+1(T ) . . . fn(T )

= (−1)n + fn(T )

(
(−1)n−1 +

(
n−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fn−1(T )

))

= (−1)n + fn(T ) · An−1(T ), (4.1)

A2
n(T )− 1 = ((−1)n + fn(T )A2

n−1(T ))2 − 1

= fn(T )(fn(T )A2
n−1(T ) + 2(−1)nAn−1(T )) (4.2)

= fn(T )((fn(T ) + 2)A2
n−1(T )− 2A2

n−1(T ) + 2(−1)nAn−1(T ))

= fn(T )((fn(T ) + 2)A2
n−1(T )− 2An−1(T )(An−1(T ) + (−1)n−1))

= fn(T )((fn(T ) + 2)A2
n−1(T )− 2An−1(T )(fn−1(T )An−2(T ) + 2(−1)n−1)).

(4.3)

Lemma 4.1.1. For f(T ) ∈ Z[T ] r {0}, we have for all n, i ≥ 0,

An(fi(T )) = An+i(T ) +D(T )fi(T ) or An(fi(T )) = −An+i(T ) +D(T )fi(T ),

for some D(T ) ∈ Z[T ].

Proof. It is obvious for the case i = 0. If i > 0 and n = 0, then the desired result

follows from the definition of A0 and (4.1). Now consider for n, i ≥ 1,

An+i(T ) = (−1)n+i +
n+i∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fn+i(T )

= (−1)n+i +
i∑

m=1

(−1)m+1fm(T )fm+1(T ) . . . fn+i(T )

+
n+i∑

m=i+1

(−1)m+1fm(T )fm+1(T ) . . . fn+i(T ).
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Case n, i are even.

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

+ 1 +
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )

= fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

+ An(fi(T )).

Case n is even, i is odd.

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− 1−
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )

= fi(T )fi+1(T ) . . . fn+i(T )

(
1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− An(fi(T )).

Case n is odd, i is even

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− 1 +
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )

= fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

+ An(fi(T )).
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Case n, i are odd.

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

1−
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )

= fi(T )fi+1(T ) . . . fn+i(T )

(
1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− An(fi(T )).

Therefore, for all n, i ≥ 0,

An(fi(T )) = An+i(T ) +D(T )fi(T ) or An(fi(T )) = −An+i(T ) +D(T )fi(T ),

for some D(T ) ∈ Z[T ].

In this section, two main theorems which give some classes of real numbers rep-

resented by palindromic regular continued fractions are proved.

The first main theorem reads:

Theorem 4.1.2. Let f(T ) be the polynomial of the form

f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2, (4.4)

g(T ) ∈ Z[T ], where the leading coefficient of g(T ) is positive, and let T1 = T1(f) ≥ 3 be

the smallest integer such that 2s−2 < f(s) for all integers s ≥ T1. If T̃ (≥ T1(f))

is an integer, then

θ0(T̃ ; f) = [0; T̃ ],

and for all n ≥ 0, θn+1(T̃ ; f) is given recursively by the following regular continued
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fraction

θn+1(T̃ ; f) =


[0; b1, . . . , bk − 1, 1, dn+1(T̃ ), 1, bk − 1, . . . , b1] ; if n is odd

[0; b1, . . . , bk, dn+1(T̃ ), bk, . . . , b1] ; if n is even,

(4.5)

if the regular continued fraction which the last partial quotient is different from 1 of

θn(T̃ ; f) is [0; b1, . . . , bk], where

dn+1(T̃ ) =


[
fn+1(T̃ )

Bn(T̃ )

]
− 1 ; if n is odd[

fn+1(T̃ )

Bn(T̃ )

]
; if n is even.

In particular,

θ(T̃ ; f) = [0; T̃ , d1(T̃ ), T̃ − 1, 1, d2(T̃ ), 1, T̃ − 1, d1(T̃ ), T̃ , d3(T̃ ), . . .].

To prove Theorem 4.1.2, we make use of the following Lemma 4.1.3 to Lemma

4.1.7.

Lemma 4.1.3. Let f(T ) be the polynomial of the form (4.4). If T̃ (6= 0) is an

integer, then T̃ | (A2
n(T̃ )− 1) (n ≥ 0).

Proof. Since f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2,

f1(0) = 2 and fn(0) = −2 (n ≥ 2).

Because A0(T ) = 1, then by (4.1) we have

A1(0) = (−1)1 + f1(0) · A0(0) = −1 + 2 · 1 = 1,

A2(0) = (−1)2 + f2(0) · A1(0) = 1 + (−2) · 1 = −1,

A3(0) = (−1)3 + f3(0) · A2(0) = −1 + (−2) · (−1) = 1,

proceed inductively we get
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An(0) = (−1)n+1 (n ≥ 1),

Hence we obtain for all n ≥ 0,

A2
n(T )− 1 = T ·D(T ), for some D(T ) ∈ Z[T ],

and so the desired result follows.

Lemma 4.1.4. Let f(T ) be the polynomial of the form (4.4), and let T1 = T1(f) ≥ 3

be the smallest integer such that 2s−2 < f(s) for all integers s ≥ T1. If T̃ (≥ T1)

is an integer, then Bn(T̃ ) 6= 0 and Bn(T̃ ) | (A2
n(T̃ )− 1) (n ≥ 0).

Proof. If T̃ (≥ T1), then from the definition of T1,

3 ≤ T̃ < 2T̃ − 2 < f(T̃ ) < 2f(T̃ )− 2 < f2(T̃ ) < . . . ,

so that

3 ≤ f0(T̃ ) < f1(T̃ ) < f2(T̃ ) < . . . . (4.6)

Therefore Bn(T̃ ) 6= 0 for all n ≥ 0. Now from Lemma 4.1.3, we get

fn(T̃ ) | (A2
n(fn(T̃ ))− 1), for all n ≥ 0. (4.7)

But we have from Lemma 4.1.1 that for any non-negative integers n, i,

A2
n(fi(T̃ )) = A2

n+i(T̃ ) + 2Dfi(T̃ )An+i(T̃ ) +D2f 2
i (T̃ ),

or A2
n(fi(T̃ )) = A2

n+i(T̃ )−2Dfi(T̃ )An+i(T̃ )+D2f 2
i (T̃ ),

for some D ∈ Z. Thus by (4.7)

fi(T̃ ) | (A2
n+i(T̃ )− 1) for all n, i ≥ 0.
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More precisely,

fi(T̃ ) | (A2
(n−i)+i(T̃ )− 1) = (A2

n(T̃ )− 1) ; i = 0, 1, . . . n. (4.8)

It remains to prove that

Bn(T̃ ) = f0(T̃ )f1(T̃ ) . . . fn(T̃ ) | (A2
n(T̃ )− 1). (4.9)

Since for any non-nengative integers j, k such that j < k

fk(T̃ ) = fk−j(fj(T̃ )) ≡ fk−j(0) (mod fj(T̃ )),

noticing here, from the proof of Lemma 4.1.3, that

fk−j(0) =


2 for k = j + 1

−2 for k > j + 1,

we obtain

gcd(fj(T̃ ), fk(T̃ )) = gcd(fj(T̃ ), 2) = 1 or 2. (4.10)

We consider the following cases

(1◦) T̃ is odd, g(T̃ ) is even,

(2◦) T̃ is odd, g(T̃ ) is odd,

(3◦) T̃ is even.

Case (1◦) T̃ is odd, g(T̃ ) is even.

Claim that for all i ≥ 1 fi(T̃ ) is odd. Since f1(T̃ ) = T̃ (T̃ + 2)(T̃ − 2)g(T̃ )− T̃ 2 + 2,

f1(T̃ ) is odd. Assume that fm(T̃ ) (m ≥ 1) is odd. Then g(fm(T̃ )) is even. Hence

fm+1(T̃ ) = fm(T̃ )(fm(T̃ ) + 2)(fm(T̃ )− 2)g(fm(T̃ ))− f 2
m(T̃ ) + 2 is odd. Thus we have
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the claim. Therefore, (4.9) follows from (4.8) and (4.10).

For the cases (2◦) and (3◦), we make use of the following identity for n ≥ 2,

fn = f(fn−1) = fn−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− f 2
n−1 + 2

= fn−1(fn−1 + 2)(fn−1 − 2)g(fn−1)

− (fn−2((fn−2 + 2)(fn−2 − 2)g(fn−2)− fn−2) + 2)2 + 2

= fn−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− f 2
n−2((fn−2 + 2)(fn−2 − 2)g(fn−2)− fn−2)

2

− 4fn−2((fn−2 + 2)(fn−2 − 2)g(fn−2)− fn−2)− 2,

fn + 2 = fn−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− f 2
n−2((fn−2 + 2)(fn−2 − 2)g(fn−2))

2

+ 2f 3
n−2(fn−2 + 2)(fn−2 − 2)g(fn−2)− 4fn−2(fn−2 + 2)(fn−2 − 2)g(fn−2)

− f 4
n−2 + 4f 2

n−2

= fn−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− fn−2(fn−2 + 2)(fn−2 − 2)×(
fn−2(fn−2 + 2)(fn−2 − 2)g2(fn−2)− 2f 2

n−2g(fn−2) + 4g(fn−2) + fn−2

)
. (4.11)

Case (2◦) T̃ is odd, g(T̃ ) is odd.

Then f(T̃ ) = T̃ (T̃ + 2)(T̃ − 2)g(T̃ ) − T̃ 2 + 2 is even. Let u be the positive integer

such that 2u | f(T̃ ) and 2u - f(T̃ ), denoted by 2u ‖ f(T̃ ). Hence

f2(T̃ ) ≡ 2 (mod 2u+1), (4.12)

since f2−2 = f(f1)−2 = f1(f1 +2)(f1−2)g(f1)−f 2
1 = f1((f1 +2)(f1−2)g(f1)−f1).

By (4.11), we have

f3 + 2 = f2(f2 + 2)(f2 − 2)g(f2)− f1(f1 + 2)(f1 − 2)×

(f1(f1 + 2)(f1 − 2)g2(f1)− 2f 2
1 g(f1) + 4g(f1) + f1) ,

then, by using (4.12), f3(T̃ ) ≡ −2 (mod 2u+2), and so by induction, (4.11) and
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(4.12) we obtain

fn(T̃ ) ≡ −2 (mod 2u+n−1) (n ≥ 3). (4.13)

Claim that 2u+n | (A2
n(T̃ )− 1) for all n ≥ 0. We prove the claim by induction.

It is clear that 2u | 0 = A2
0(T̃ ) − 1 and A2

1 − 1 = (f1 − 1)2 − 1 = f1(f1 − 2), and

then 2u+1 | (A2
1(T̃ )− 1). From (4.1), we get

A2
2 − 1 = (1 + f2A1)

2 − 1 = f2(f2A
2
1 + 2A1) = f2((f2 − 2)A2

1 + 2A2
1 + 2A1)

= f2((f2 − 2)A2
1 + 2A1(A1 + 1)) = f2((f2 − 2)A2

1 + 2A1(f1 − 1 + 1)),

so by (4.12), we obtain 2u+2 | (A2
2(T̃ )−1). Now assume 2u+k | (A2

k(T̃ )−1) for all k =

0, 1, . . . , n− 1 (n ≥ 3). By the hypothesis

2u+n−1 | (A2
n−1(T̃ )− 1) and 2u+n−2 | (A2

n−2(T̃ )− 1),

and so the latter leads to 2 - An−2(T̃ ). Hence we have

2u+n−2 | (fn−1(T̃ )An−2(T̃ ) + 2(−1)n−1), (4.14)

since, by (4.2), A2
n−1−1 = fn−1An−2(fn−1An−2 +2(−1)n−1) and, by (4.12) and (4.13),

2‖fn−1. Thus the claim follows from (4.3), (4.13) and (4.14).

But (4.12) and (4.13) lead to 2u+n−1 ‖ f0f1 . . . fn. Therefore, (4.9) follows from

(4.8) and (4.10).

Case (3◦) T̃ is even.

Let u be the positive integer such that 2u ‖ T̃ . Since f1(T̃ ) − 2 = T̃ ((T̃ − 2)(T̃ +

2)g(T̃ )− T̃ ),

f1(T̃ ) ≡ 2 (mod 2u+1). (4.15)
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By (4.11), we have

f2(T̃ ) + 2 = f1(T̃ )(f1(T̃ ) + 2)(f1(T̃ )− 2)g(f1(T̃ ))− T̃ (T̃ + 2)(T̃ − 2)×(
T̃ (T̃ + 2)(T̃ − 2)g2(T̃ )− 2T̃ 2g(T̃ ) + 4g(T̃ ) + T̃

)
,

then by using (4.15), f2(T̃ ) ≡ −2 (mod 2u+2), and so by induction, (4.11) and

(4.15) we obtain

fn(T̃ ) ≡ −2 (mod 2u+n−1) (n ≥ 2). (4.16)

Claim that 2u+n | (A2
n(T̃ )− 1) for all n ≥ 0. We prove the claim by induction.

It is clear that 2u | 0 = A2
0(T̃ )−1 and A2

1 = f1(f1−2), and then 2u+1 | (A2
1(T̃ )−1).

Now assume 2u+k | (A2
k(T̃ )−1) for all k = 0, 1, . . . , n−1 (n ≥ 2). By the hypothesis

2u+n−1 | (A2
n−1(T̃ )− 1) and 2u+n−2 | (A2

n−2(T̃ )− 1),

and so the latter leads to 2 - An−2(T̃ ). Hence we have

2u+n−2 | (fn−1(T̃ )An−2(T̃ ) + 2(−1)n−1), (4.17)

since, by (4.2), A2
n−1−1 = fn−1An−2(fn−1An−2 +2(−1)n−1) and, by (4.15) and (4.16),

2‖fn−1. Thus the claim follows from (4.3), (4.16) and (4.17).

But (4.15) and (4.16) lead to 2u+n ‖ f0f1 . . . fn. Therefore, (4.9) follows from

(4.8) and (4.10).

Lemma 4.1.5. Let f(T ) be the polynomial of the form (4.4), and let T1 = T1(f) ≥ 3

be the smallest integer such that 2s−2 < f(s) for all integers s ≥ T1. If T̃ (≥ T1)

is an integer, then

0 <
2An(T̃ )

Bn(T̃ )
= 2θn(T̃ ; f) < 1 (n ≥ 0).
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Proof. It is clear by (4.6) that for all n ≥ 0, Bn(T̃ ) > 0, then we will show

for all n ≥ 0, θn(T̃ ; f) > 0 by proving that for all n ≥ 0, An(T̃ ) > 0. It is obvious

by the definition that

A0(T̃ ) = 1 > 0,

and, by (4.1) and (4.6), we have

A1(T̃ ) = f1(T̃ )− 1 > 2 > 0,

A2(T̃ ) = 1 + f2(T̃ )A1(T̃ ) > 11 > 0.

Assume that Ak−1(T̃ ) > 0 (k ≥ 3). Then by (4.1), (4.6), and the hypothesis

Ak(T̃ ) = (−1)k + fk(T̃ ) · Ak−1(T̃ ) > 11 > 0.

It remains to prove that θn(T̃ ; f) ≤ 1
3

for all n ≥ 0.

Case n is even.

θn((T̃ ; f)) =
1

f0

−
(

1

f0f1

− 1

f0f1f2

+ . . .− 1

f0f1 . . . fn

)
=

1

f0

−
(
f2 − 1

f0f1f2

+
f4 − 1

f0f1f2f3f4

+ . . .+
fn − 1

f0f1 . . . fn

)
.

Case n is odd.

θn(T̃ ; f) =
1

f0

−
(

1

f0f1

− 1

f0f1f2

+ . . .− 1

f0f1 . . . fn−1

)
− 1

f0f1 . . . fn

=
1

f0

−
(
f2 − 1

f0f1f2

+
f4 − 1

f0f1f2f3f4

+ . . .+
fn−1 − 1

f0f1 . . . fn

)
− 1

f0f1 . . . fn
.

Thus, by (4.6)

θn(T̃ ; f) =
1

f0(T̃ )
<

1

T̃
≤ 1

3
, for all n ≥ 0.

Therefore, the lemma is established.
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Lemma 4.1.6. Let f(T ) be the polynomial of the form (4.4), and let T1 = T1(f) ≥ 3

be the smallest integer such that 2s−2 < f(s) for all integers s ≥ T1. If T̃ (≥ T1)

is an integer, then for n ≥ 0,

[
fn+1(T̃ )

Bn(T̃ )

]
=


fn+1(T̃ )

Bn(T̃ )
+ 2An(T̃ )

Bn(T̃ )
− 1 ; if n is odd

fn+1(T̃ )

Bn(T̃ )
− 2An(T̃ )

Bn(T̃ )
; if n is even.

Proof. Let n ≥ 0. Combining Lemma 4.1.4, Bn(T̃ ) | (A2
n(T̃ )− 1) and (4.2) leads to

fn+1(T̃ )A2
n(T̃ ) + 2(−1)n+1An(T̃ )

Bn(T̃ )
=
fn+1(T̃ )(fn+1(T̃ )A2

n(T̃ ) + 2(−1)n+1An(T̃ ))

Bn+1(T̃ )

=
A2
n+1(T̃ )− 1

Bn+1(T̃ )
∈ Z.

Since A2
n(T̃ ) = D ·Bn(T̃ ) + 1 for some D ∈ Z, we have that

fn+1(T̃ ) + 2(−1)n+1An(T̃ )

Bn(T̃ )
∈ Z,

i.e.,
fn+1(T̃ )

Bn(T̃ )
= E − 2(−1)n+1An(T̃ )

Bn(T̃ )
for some E ∈ Z. (4.18)

But we have from Lemma 4.1.5

0 <
2An(T̃ )

Bn(T̃ )
= 2θn(T̃ ; f) < 1.

Hence we obtain by (4.18) that

[
fn+1(T̃ )

Bn(T̃ )

]
=


E − 1 = fn+1(T̃ )

Bn(T̃ )
+ 2An(T̃ )

Bn(T̃ )
− 1 ; if n is odd

E = fn+1(T̃ )

Bn(T̃ )
− 2An(T̃ )

Bn(T̃ )
; if n is even.
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Lemma 4.1.7. Let f(T ) be the polynomial of the form (4.4), and let T1 = T1(f) ≥ 3

be the smallest integer such that 2s−2 < f(s) for all integers s ≥ T1. If T̃ (≥ T1)

is an integer, then for each n ≥ 0, dn+1(T̃ ) defined by

dn+1(x̃) =


[
fn+1(T̃ )

Bn(T̃ )

]
− 1 ; if n is odd[

fn+1(T̃ )

Bn(T̃ )

]
; if n is even,

is a positive integer.

Proof. From Lemma 4.1.5 - 4.1.6, it suffices to show that

fn+1(T̃ )

Bn(T̃ )
> 2, for all n ≥ 0.

We proceed by induction. For n = 0, Lemma 4.1.6 and 3 ≤ T̃ < f1(T̃ ) lead to

d1(T̃ ) =

[
f1(T̃ )

B0(T̃ )

]
=
f1(T̃ )

B0(T̃ )
− 2

A0(T̃ )

B0(T̃ )
= (T̃ + 2)(T̃ − 2)g(T̃ )− T̃ ≥ 2,

and then by Lemma 4.1.5 we get f1(T̃ )

B0(T̃ )
> 2. Now assume that fk+1(T̃ )

Bk(T̃ )
> 2 (k ≥ 0).

Since fk+2(T̃ ) = fk+1(T̃ )(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− f 2
k+1(T̃ ) + 2 and, by

(4.6), fk+1(T̃ ) ≥ 4 and fk+2(T̃ ) ≥ 5, g(fk+1(T̃ )) ≥ 1. Then

(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− fk+1(T̃ ) > 2fk+1(T̃ )− fk+1(T̃ ) = fk+1(T̃ ).

Hence

2 <
fk+1(T̃ ) · fk+1(T̃ )

Bk(T̃ ) · fk+1(T̃ )

<
fk+1(T̃ ) · ((fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− fk+1(T̃ ))

Bk+1(T̃ )
<
fk+2(T̃ )

Bk+1(T̃ )

as desired.

Now by making use of the above lemmas, we are ready to prove Theorem 4.1.2.
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Proof of Theorem 4.1.2 For any non-negative integer r, denoted by k(r) the length

of the regular continued fraction which the last partial quotient is different from 1

representing θr(T̃ ; f) = Ar(T̃ )

Br(T̃ )
.

The proof will be completed by induction. We have by a direct calculation

θ0(T̃ ; f) = [0; T̃ ] and θ1(T̃ ; f) = [0; T̃ , (T̃ + 2)(T̃ − 2)g(T̃ )− T̃ , T̃ ],

which, by Lemma 4.1.6, d1(T̃ ) = f1(T̃ )

B0(T̃ )
− 2A0(T̃ )

B0(T̃ )
= (T̃ + 2)(T̃ − 2)g(T̃ ) − T̃ , and

hence the statement (4.5) holds for n = 0. Now assume for n ≥ 1 that the regular

continued fraction which the last partial quotient is different from 1 of θn(T̃ ; f) is

expressed as

θn(T̃ ; f) =


[0;α1, . . . , αk(n−1) − 1, 1, dn(T̃ ), 1, αk(n−1) − 1, . . . , α1] ; if n-1 is odd

[0;α1, . . . , αk(n−1), dn(T̃ ), αk(n−1), . . . , α1] ; if n-1 is even,

if the regular continued fraction which the last partial quotient is different from 1 of

θn−1(T̃ ; f) is [0;α1, . . . , αk(n−1)]. Then we have k(n) is odd, and we write

θn(T̃ ; f) = [0; b1, . . . , bk(n)] =
pk(n)

qk(n)

.

By using Lemma 4.1.4 we have An(T̃ ) and Bn(T̃ ) are relatively prime, so that

An(T̃ ) = pk(n) and Bn(T̃ ) = qk(n).

Since k(n) is odd, we have by (1.7),

qk(n)pk(n)−1 = pk(n)qk(n)−1 − 1, (4.19)
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and hence by the hypothesis [0; b1, . . . , bk(n)] is palindromic we have by Remark 1.2.6

pk(n) = qk(n)−1. (4.20)

Case n is odd.

By (1.5) we have
qk(n)

qk(n)−1
= [bk(n); bk(n)−1, . . . , b1] and then a simple manipulation leads

to

−(dn+1(T̃ ) + 2) +
qk(n)−1

qk(n)
= [0;−1, 1, dn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1].

Hence by (2.24) and (1.6)

[0; b1, . . . , bk(n) − 1, 1, dn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1]

= [0; b1, . . . , bk(n), 0,−1, 1, dn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1]

=

(
−dn+1(T̃ )− 2 +

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−dn+1(T̃ )− 2 +
qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

.

From Lemma 4.1.6 we have

−dn+1(T̃ )− 2 = −fn+1(T̃ )

Bn(T̃ )
− 2An(T̃ )

Bn(T̃ )
= −fn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

.

Thus we get

[0; b1, . . . , bk(n) − 1, 1, dn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1]

=

(
−fn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,

and so we obtain by (4.19) and (4.20) that(
−fn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
fn+1(T̃ )pk(n) + 1

fn+1(T̃ )qk(n)

=
pk(n)

qk(n)

+
1

fn+1(T̃ )qk(n)

=
An(T̃ )

Bn(T̃ )
+

1

Bn+1(T̃ )
= θn+1(T̃ ; f).
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Case n is even.

We have by (1.5) that dn+1 + qk−1

qk
= [dn+1; bk, bk−1, . . . , b1]. Hence by (1.6)

[0; b1, . . . , bk(n), dn+1(T̃ ), bk(n), bk(n)−1, . . . , b1] =

(
dn+1(T̃ ) +

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

dn+1(T̃ ) +
qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

.

From Lemma 4.1.6 we have

dn+1(T̃ ) =
fn+1(T̃ )

Bn(T̃ )
− 2An(T̃ )

Bn(T̃ )
=
fn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

.

Thus we get

[0; b1, . . . , bk(n), dn+1(T̃ ), bk(n), bk(n)−1, . . . , b1]

=

(
fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,

and so we obtain by (4.19) and (4.20) that

(
fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
fn+1(T̃ )pk(n) − 1

fn+1(T̃ )qk(n)

=
pk(n)

qk(n)

− 1

fn+1(T̃ )qk(n)

=
An(T̃ )

Bn(T̃ )
− 1

Bn+1(T̃ )
= θn+1(T̃ ; f).

Therefore,

θn+1(T̃ ; f) =


[0; b1, . . . , bk(n) − 1, 1, dn+1(T̃ ), 1, bk(n) − 1, . . . , b1] ; if n is odd

[0; b1, . . . , bk(n), dn+1(T̃ ), bk(n), . . . , b1] ; if n is even,

which Lemma 4.1.7 leads to these continued fractions which the last partial quotients

are different from 1 are regular. �

The following theorem is the second main theorem.
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Theorem 4.1.8. Let f(T ) be the polynomial of the form

f(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2, (4.21)

g(T ) ∈ Z[T ], where the leading coefficient of g(T ) is positive, and let T2 = T2(f) ≥ 3 be

the smallest integer such that 2s−2 < f(s) for all integers s ≥ T2. If T̃ (≥ T2(f))

is an integer, then

θ0(T̃ ; f)/T̃ = [0; T̃ 2],

and for all n ≥ 0, θn+1(T̃ ; f)/T̃ is given recursively by the following regular continued

fraction

θn+1(T̃ ; f)/T̃ =


[0; b1, . . . , bk − 1, 1, cn+1(T̃ ), 1, bk − 1, . . . , b1] ; if n is odd

[0; b1, . . . , bk, cn+1(T̃ ), bk, . . . , b1] ; if n is even,

(4.22)

if the regular continued fraction which the last partial quotient is different from 1 of

θn(T̃ ; f)/T̃ is [0; b1, . . . , bk], where

cn+1(T̃ ) =


[
fn+1(T̃ )

T̃Bn(T̃ )

]
− 1 ; if n is odd[

fn+1(T̃ )

T̃Bn(T̃ )

]
; if n is even.

In particular,

θ(T̃ ; f)/T̃ = [0; T̃ 2, c1(T̃ ), T̃ 2 − 1, 1, c2(T̃ ), 1, T̃ 2 − 1, c1(T̃ ), T̃ 2, c3(T̃ ), . . .].

The following Lemma 4.1.9 to Lemma 4.1.13 are built to establish the proof of

Theorem 4.1.8
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Lemma 4.1.9. Let f(T ) be the polynomial of the form (4.21). If T̃ (6= 0) is an

integer, then T̃ 2 | (A2
n(T̃ )− 1) (n ≥ 0).

Proof. Similar to the proof of Lemma 4.1.3, we obtain

f1(0) = 2, fn(0) = −2 (n ≥ 2), (4.23)

and for all n ≥ 0,

A2
n(T )− 1 = T ·D(T ) for some D(T ) ∈ Z[T ].

Hence we will prove this lemma by showing that

d

dT
(A2

n(T )− 1) = 0 at T = 0, for all n ≥ 0. (4.24)

It is obvious for the case n = 0. Now we consider the cases n ≥ 1. By (4.2), we have

d

dT
(A2

n(T )− 1) = 2fn(T )f ′n(T )A2
n−1(T ) + 2f 2

n(T )An−1(T )A′n−1(T )

+ 2(−1)nf ′n(T )An−1(T ) + 2(−1)nfn(T )A′n−1(T ),

then, to prove (4.24), it suffices to show that

f ′n(0) = 0 and A′n−1(0) = 0, for all n ≥ 1.

Since f1(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2,

f ′1(T ) = 2T (T + 2)(T − 2)g(T ) + T 2((T + 2)(T − 2)g(T ))′ − 2T,

and so f ′1(0) = 0. Now assume that f ′k(0) = 0 (k ≥ 1). From the definition of

fk+1, we get

f ′k+1(T ) = 2fk(T )f ′k(T )(fk(T ) + 2)(fk(T )− 2)g(fk(T ))

+f 2
k (T )(fk(T ) + 2)(fk(T )− 2)(g(fk(T )))′

+ f 2
k (T ) (f ′k(T )(fk(T )− 2) + (fk(T ) + 2)f ′k(T )) g(fk(T )) + 2fk(T )f ′k(T ).
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Hence the induction hypothesis and (4.23) lead to f ′k+1(0) = 0. Thus for all n ≥ 1

we have that f ′n(0) = 0, and so by the mathematical induction, the definition of A0

and (4.1) we also have for all n ≥ 1, A′n−1(0) = 0.

Lemma 4.1.10. Let f(T ) be the polynomial of the form (4.21), and let T2 = T2(f) ≥

3 be the smallest integer such that 2s − 2 < f(s) for all integers s ≥ T2. If T̃ (≥

T2) is an integer, then T̃Bn(T̃ ) 6= 0 and T̃Bn(T̃ ) | (A2
n(T̃ )− 1) (n ≥ 0)

Proof. If T̃ (≥ T2), then from the definition of T2,

3 ≤ T̃ < 2T̃ − 2 < f(T̃ ) < 2f(T̃ )− 2 < f2(T̃ ) < . . . ,

so that

3 ≤ f0(T̃ ) < f1(T̃ ) < f2(T̃ ) < . . . . (4.25)

Therefore T̃Bn(T̃ ) 6= 0 for all n ≥ 0. Now from Lemma 4.1.9, we get for all n ≥ 0,

fn(T̃ ) | (A2
n(fn(T̃ ))− 1). (4.26)

But from Lemma 4.1.1, we have for any non-negative integers n, i,

A2
n(fi(T̃ )) = A2

n+i(T̃ ) + 2Dfi(T̃ )An+i(T̃ ) +D2f 2
i (T̃ ),

or A2
n(fi(T̃ )) = A2

n+i(T̃ )− 2Dfi(T̃ )An+i(T̃ ) +D2f 2
i (T̃ ),

for some D ∈ Z. Thus (4.26) implies

fi(T̃ ) | (A2
n+i(T̃ )− 1) for all n, i ≥ 0.

More precisely,

fi(T̃ ) | (A2
(n−i)+i(T̃ )− 1) = (A2

n(T̃ )− 1) ; i = 0, 1, . . . n. (4.27)
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Also, we have from Lemma 4.1.9 that

T̃ 2 | (A2
n(T̃ )− 1) (4.28)

It remains to prove that

T̃Bn(T̃ ) = T̃ 2f1(T̃ ) . . . fn(T̃ ) | (A2
n(T̃ )− 1). (4.29)

Since for any non-nengative integers j, k such that j < k

fk(T̃ ) = fk−j(fj(T̃ )) ≡ fk−j(0) (mod fj(T̃ )),

noticing here, from (4.23), that

fk−j(0) =


2 for k = j + 1

−2 for k > j + 1,

we obtain

gcd(fj(T̃ ), fk(T̃ )) = gcd(fj(T̃ ), 2) = 1 or 2. (4.30)

We consider the following cases

(1◦) T̃ is odd, g(T̃ ) is even,

(2◦) T̃ is odd, g(T̃ ) is odd,

(3◦) T̃ is even.

Case (1◦) T̃ is odd, g(T̃ ) is even.

Since f(T̃ ) = T̃ 2(T̃ + 2)(T̃ − 2)g(T̃ )− T̃ 2 + 2, fi(T̃ ) (i = 0, 1, 2, . . .) is odd.

Thus (4.29) follows from (4.27), (4.28) and (4.30).
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For the cases (2◦) and (3◦), we make use of the following identity for n ≥ 2,

fn = f(fn−1) = f 2
n−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− f 2

n−1 + 2

= f 2
n−1(fn−1 + 2)(fn−1 − 2)g(fn−1)

−
(
f 2
n−2((fn−2 + 2)(fn−2 − 2)g(fn−2)− 1) + 2

)2
+ 2

= f 2
n−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− f 4

n−2((fn−2 + 2)(fn−2 − 2)g(fn−2)− 1)2

− 4f 2
n−2((fn−2 + 2)(fn−2 − 2)g(fn−2)− 1)− 2,

fn + 2 = f 2
n−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− f 4

n−2((fn−2 + 2)(fn−2 − 2)g(fn−2))
2

+ 2f 4
n−2(fn−2 + 2)(fn−2 − 2)g(fn−2)− 4f 2

n−2(fn−2 + 2)(fn−2 − 2)g(fn−2)

− f 4
n−2 + 4f 2

n−2

= f 2
n−1(fn−1 + 2)(fn−1 − 2)g(fn−1)− f 2

n−2(fn−2 + 2)(fn−2 − 2)×(
f 2
n−2(fn−2 + 2)(fn−2 − 2)g2(fn−2)− 2f 2

n−2g(fn−2) + 4g(fn−2) + 1
)
. (4.31)

Case (2◦) T̃ is odd, g(T̃ ) is odd.

Then f(T̃ ) = T̃ 2(T̃ + 2)(T̃ − 2)g(T̃ )− T̃ 2 + 2 is even. Let u be the positive integer

such that 2u | f(T̃ ) and 2u - f(T̃ ). Hence

f2(T̃ ) ≡ 2 (mod 22u), (4.32)

since f2−2 = f(f1)−2 = f 2
1 (f1 + 2)(f1−2)g(f1)−f 2

1 = f 2
1 ((f1 + 2)(f1−2)g(f1)−1).

By (4.31), f3 + 2 = f 2
2 (f2 + 2)(f2 − 2)g(f2)− f 2

1 (f1 + 2)(f1 − 2)×

(f 2
1 (f1 + 2)(f1 − 2)g2(f1)− 2f 2

1 g(f1) + 4g(f1) + 1) ,

then, from (4.32), f3(T̃ ) ≡ −2 (mod 22u+2), and so by induction, (4.31) and (4.32)
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we obtain

fn(T̃ ) ≡ −2 (mod 22u+n−1) (n ≥ 3). (4.33)

Claim that 2u+n | (A2
n(T̃ ) − 1) for all n ≥ 0. We prove the claim by the

mathematical induction. It is clear that 2u | 0 = A2
0(T̃ ) − 1 and A2

1 − 1 =

(f1 − 1)2 − 1 = f1(f1 − 2), and then 2u+1 | (A2
1(T̃ )− 1). From (4.1), we get

A2
2 − 1 = (1 + f2A1)

2 − 1 = f2(f2A
2
1 + 2A1) = f2((f2 − 2)A2

1 + 2A2
1 + 2A1)

= f2((f2 − 2)A2
1 + 2A1(A1 + 1)) = f2((f2 − 2)A2

1 + 2A1(f1 − 1 + 1)),

so by (4.32), we obtain 2u+2 | (A2
2(T̃ )−1). Now assume 2u+k | (A2

k(T̃ )−1) for all k =

0, 1, . . . , n− 1 (n ≥ 3). By the hypothesis

2u+n−1 | (A2
n−1(T̃ )− 1) and 2u+n−2 | (A2

n−2(T̃ )− 1),

and so the latter leads to 2 - An−2(T̃ ). Hence we have

2u+n−2 | (fn−1(T̃ )An−2(T̃ ) + 2(−1)n−1), (4.34)

since, by (4.2), A2
n−1−1 = fn−1An−2(fn−1An−2 +2(−1)n−1) and, by (4.32) and (4.33),

2‖fn−1. Thus the claim follows from (4.3), (4.33) and (4.34).

But (4.32) and (4.33) lead to 2u+n−1 ‖ T̃ f0f1 . . . fn. Therefore, (4.29) follows

from (4.27), (4.28) and (4.30).

Case (3◦) T̃ is even.

Let u be the positive integer such that 2u ‖ T̃ . Since f1(T̃ ) − 2 = T̃ 2((T̃ − 2)(T̃ +

2)g(T̃ )− 1),

f1(T̃ ) ≡ 2 (mod 22u). (4.35)
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By (4.31), we have

f2(T̃ ) + 2 = f 2
1 (T̃ )(f1(T̃ ) + 2)(f1(T̃ )− 2)g(f1(T̃ ))− T̃ 2(T̃ + 2)(T̃ − 2)×(
T̃ 2(T̃ + 2)(T̃ − 2)g2(T̃ )− 2T̃ 2g(T̃ ) + 4g(T̃ ) + 1

)
,

then, by using (4.35), f2(T̃ ) ≡ −2 (mod 22u+2), and so by induction, (4.31) and

(4.35) we obtain

fn(T̃ ) ≡ −2 (mod 22u+n) (n ≥ 2). (4.36)

Claim that 22u+n | (A2
n(T̃ ) − 1) for all n ≥ 0. We prove the claim by the

mathematical induction. It is clear that 22u | 0 = A2
0(T̃ )− 1 and A2

1 = f1(f1 − 2),

then by (4.35) 22u+1 | (A2
1(T̃ ) − 1). Now assume 22u+k | (A2

k(T̃ ) − 1) for all k =

0, 1, . . . , n− 1 (n ≥ 2). By the hypothesis

22u+n−1 | (A2
n−1(T̃ )− 1) and 22u+n−2 | (A2

n−2(T̃ )− 1),

and so the latter leads to 2 - An−2(T̃ ). Hence we have

22u+n−2 | (fn−1(T̃ )An−2(T̃ ) + 2(−1)n−1), (4.37)

since, by (4.2), A2
n−1−1 = fn−1An−2(fn−1An−2 +2(−1)n−1) and, by (4.35) and (4.36),

2‖fn−1. Thus the claim follows from (4.3), (4.36) and (4.37).

But (4.35) and (4.36) lead to 22u+n ‖ T̃ f0f1 . . . fn. Therefore, (4.29) follows from

(4.27), (4.28) and (4.30).

Lemma 4.1.11. Let f(T ) be the polynomial of the form (4.21), and let T2 = T2(f) ≥

3 be the smallest integer such that 2s−2 < f(s) for all integers s ≥ T2. If T̃ (≥ T2)

is an integer, then

0 <
2An(T̃ )

Bn(T̃ )
= 2θn(T̃ ; f) < 1 (n ≥ 0).
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Proof. By using (4.25), the proof is same as that of Lemma 4.1.5.

Lemma 4.1.12. Let f(T ) be the polynomial of the form (4.21), and let T2 = T2(f) ≥

3 be the smallest integer such that 2s−2 < f(s) for all integers s ≥ T2. If T̃ (≥ T2)

is an integer, then for n ≥ 0,

[
fn+1(T̃ )

T̃Bn(T̃ )

]
=


fn+1(T̃ )

T̃Bn(T̃ )
+ 2 An(T̃ )

T̃Bn(T̃ )
− 1 ; if n is odd

fn+1(T̃ )

T̃Bn(T̃ )
− 2 An(T̃ )

T̃Bn(T̃ )
; if n is even.

Proof. Let n ≥ 0. Combining Lemma 4.1.10, Bn(T̃ ) | (A2
n(T̃ ) − 1) and (4.2) leads

to

fn+1(T̃ )A2
n(T̃ ) + 2(−1)n+1An(T̃ )

T̃Bn(T̃ )
=
fn+1(T̃ )(fn+1(T̃ )A2

n(T̃ ) + 2(−1)n+1An(T̃ ))

T̃Bn+1(T̃ )

=
A2
n+1(T̃ )− 1

T̃Bn+1(T̃ )
∈ Z.

Since A2
n(T̃ ) = D · T̃Bn(T̃ ) + 1 for some D ∈ Z , we have that

fn+1(T̃ ) + 2(−1)n+1An(T̃ )

T̃Bn(T̃ )
∈ Z,

i.e.,
fn+1(T̃ )

T̃Bn(T̃ )
= E − 2(−1)n+1An(T̃ )

T̃Bn(T̃ )
for some E ∈ Z. (4.38)

But we have from Lemma 4.1.11 that

0 <
2An(T̃ )

T̃Bn(T̃ )
< 1. (4.39)
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Hence we obtain by (4.38) that

[
fn+1(T̃ )

T̃Bn(T̃ )

]
=


E − 1 = fn+1(T̃ )

T̃Bn(T̃ )
+ 2 An(T̃ )

T̃Bn(T̃ )
− 1 ; if n is odd

E = fn+1(T̃ )

T̃Bn(T̃ )
− 2 An(T̃ )

T̃Bn(T̃ )
; if n is even.

Lemma 4.1.13. Let f(T ) be the polynomial of the form (4.21), and let T2 = T2(f) ≥

3 be the smallest integer such that 2s−2 < f(s) for all integers s ≥ T2. If T̃ (≥ T2)

is an integer, then for each n ≥ 0, cn+1(T̃ ) defined by

cn+1(T̃ ) =


[
fn+1(T̃ )

T̃Bn(T̃ )

]
− 1 ; if n is odd[

fn+1(T̃ )

T̃Bn(T̃ )

]
; if n is even.

is a positive integer.

Proof. From Lemma 4.1.12 and (4.39), it suffices to show that

fn+1(T̃ )

T̃Bn(T̃ )
> 2, for all n ≥ 0.

We proceed by induction. For n = 0, Lemma 4.1.12 and 3 ≤ T̃ < f1(T̃ ) lead to

c1(T̃ ) =

[
f1(T̃ )

T̃B0(T̃ )

]
=

f1(T̃ )

T̃B0(T̃ )
− 2

A0(T̃ )

T̃B0(T̃ )
= (T̃ + 2)(T̃ − 2)g(T̃ )− 1 ≥ 2,

and then by (4.39) we get f1(T̃ )

T̃B0(T̃ )
> 2. Now assume that fk+1(T̃ )

T̃Bk(T̃ )
> 2 (k ≥ 0).

Since fk+2(T̃ ) = f 2
k+1(T̃ )(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− f 2

k+1(T̃ ) + 2 and, by

(4.25), fk+1(T̃ ) ≥ 4 and fk+2(T̃ ) ≥ 5, g(fk+1(T̃ )) ≥ 1. Then

fk+1(fk+1(T̃ )+2)(fk+1(T̃ )−2)g(fk+1(T̃ ))−fk+1(T̃ ) > 12fk+1(T̃ )−fk+1(T̃ ) > fk+1(T̃ ).
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Hence

2 <
fk+1(T̃ ) · fk+1(T̃ )

T̃Bk(T̃ ) · fk+1(T̃ )

<
fk+1(T̃ ) · (fk+1(T̃ )(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− fk+1(T̃ ))

T̃Bk+1(T̃ )

<
fk+2(T̃ )

T̃Bk+1(T̃ )

as required

Now by making use of the above lemmas, we are ready to prove Theorem 4.1.8.

Proof of Theorem 4.1.8 For any non-negative integer r, denoted by k(r) the length

of the regular continued fraction which the last partial quotient is different from 1

of θr(T̃ ; f)/T̃ = Ar(T̃ )

T̃Br(T̃ )
.

The proof will be completed by induction. We have by a direct calculation

θ0(T̃ ; f)/T̃ = [0; T̃ 2] and θ1(T̃ ; f)/T̃ = [0; T̃ 2, (T̃ + 2)(T̃ − 2)g(T̃ )− 1, T̃ 2],

which, by Lemma 4.1.12, c1(T̃ ) = f1(T̃ )

T̃B0(T̃ )
− 2A0(T̃ )

T̃B0(T̃ )
= (T̃ + 2)(T̃ − 2)g(T̃ ) − 1, and

hence the statement (4.22) holds for n = 0. Now assume for n ≥ 1 that the regular

continued fraction which the last partial quotient is different from 1 of θn(T̃ ; f)/T̃ is

expressed as

θn(T̃ ; f)/T̃ =


[0;α1, . . . , αk(n−1) − 1, 1, cn(T̃ ), 1, αk(n−1) − 1, . . . , α1] ; if n-1 is odd

[0;α1, . . . , αk(n−1), cn(T̃ ), αk(n−1), . . . , α1] ; if n-1 is even,

if the regular continued fraction which the last partial quotient is different from 1 of

θn−1(T̃ ; f)/T̃ is [0;α1, . . . , αk(n−1)]. Then we have k(n) is odd, and we write

θn(T̃ ; f)/T̃ = [0; b1, . . . , bk(n)] =
pk(n)

qk(n)

.
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By using Lemma 4.1.10 we have An(T̃ ) and Bn(T̃ ) are relatively prime, so that

An(T̃ ) = pk(n) and T̃Bn(T̃ ) = qk(n).

Since k(n) is odd, we have by (1.7),

qk(n)pk(n)−1 = pk(n)qk(n)−1 − 1, (4.40)

and hence by the hypothesis [0; b1, . . . , bk(n)] is palindromic we have by Remark 1.2.6

pk(n) = qk(n)−1. (4.41)

Case n is odd.

By (1.5) we have
qk(n)

qk(n)−1
= [bk(n); bk(n)−1, . . . , b1] and a simple manipulation leads to

−(cn+1(T̃ ) + 2) +
qk(n)−1

qk(n)
= [0;−1, 1, cn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1].

Hence by (2.24) and (1.6)

[0; b1, . . . , bk(n) − 1, 1, cn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1]

= [0; b1, . . . , bk(n), 0,−1, 1, cn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1]

=

(
−cn+1(T̃ )− 2 +

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−cn+1(T̃ )− 2 +
qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

.

From Lemma 4.1.12 we have

−cn+1(T̃ )− 2 = −fn+1(T̃ )

T̃Bn(T̃ )
− 2An(T̃ )

T̃Bn(T̃ )
= −fn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

.

Thus we get

[0; b1, . . . , bk(n) − 1, 1, cn+1(T̃ ), 1, bk(n) − 1, bk(n)−1, . . . , b1]

=

(
−fn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,
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and so we obtain by (4.40) and (4.41) that(
−fn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
fn+1(T̃ )pk(n) + 1

fn+1(T̃ )qk(n)

=
An(T̃ )

T̃Bn(T̃ )
+

1

T̃Bn+1(T̃ )
= θn+1(T̃ ; f)/T̃ .

Case n is even.

We have by (1.5) that cn+1(T̃ ) +
qk(n)−1

qk(n)
= [cn+1(T̃ ); bk(n), bk(n)−1, . . . , b1].

Hence by (1.6)

[0; b1, . . . , bk(n), cn+1(T̃ ), bk(n), bk(n)−1, . . . , b1] =

(
cn+1(T̃ ) +

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

cn+1(T̃ ) +
qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

.

From Lemma 4.1.12 we have

cn+1(T̃ ) =
fn+1(T̃ )

T̃Bn(T̃ )
− 2An(T̃ )

T̃Bn(T̃ )
=
fn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

.

Thus we get

[0; b1, . . . , bk(n), cn+1(T̃ ), bk(n), bk(n)−1, . . . , b1]

=

(
fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,

and so we obtain by (4.19) and (4.20) that(
fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

fn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
fn+1(T̃ )pk(n) − 1

fn+1(T̃ )qk(n)

=
An(T̃ )

T̃Bn(T̃ )
− 1

T̃Bn+1(T̃ )
= θn+1(T̃ ; f)/T̃ .

Therefore,

θn+1(T̃ ; f)/T̃ =


[0; b1, . . . , bk − 1, 1, cn+1(T̃ ), 1, bk − 1, . . . , b1] ; if n is odd

[0; b1, . . . , bk, cn+1(T̃ ), bk, . . . , b1] ; if n is even,

which Lemma 4.1.13 leads to these continued fractions which the last partial quotients

are different from 1 are regular. �
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4.2 Formal series case

Throughout this section, we let F be a field of characteristic zero.

Analogues of Theorems 4.1.2 and 4.1.8 are investigated for continued fractions in

the field of formal series over a field F. We begin with the following analogous setup.

For n ≥ 0, define θn(T ; f) to be the series expressed as follows

θn(T ; f) =
n∑

m=0

(−1)m

f0(T )f1(T ) . . . fm(T )
, (4.42)

where f(T ) ∈ (F[x]) [T ] r {0}; f0(T ) = T and for all i ≥ 1, fi(T ) = f(fi−1(T )) with

T ∈ F[x] r {0}, and for those T ∈ F[x] r {0} for which the limit exists we define

θ(T ; f) = lim
n→∞

θn(T ; f).

For any f(T ) ∈ (F[x])[T ] r {0}, we put

An = An(T ) = (−1)n +
∑n

m=1(−1)m+1fm(T )fm+1(T ) . . . fn(T ), (n ≥ 1) ; A0 = 1,

Bn = Bn(T ) = f0(T )f1(T ) . . . fn(T ) (n ≥ 0).

Similar to the classical case, for any f(T ) ∈ (F[x]) [T ]r{0} and n ≥ 0, An and Bn are

the numerator and denominator of the series θn(T ; f) given by (4.42), respectively,

and for n ≥ 1,

An(T ) = (−1)n +
n∑

m=1

(−1)m+1fm(T )fm+1(T ) . . . fn(T )

= (−1)n + fn(T )

(
(−1)n−1 +

(
n−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fn−1(T )

))

= (−1)n + fn(T ) · An−1(T ), (4.43)

A2
n(T )− 1 = ((−1)n + fn(T )A2

n−1(T ))2 − 1

= fn(T )(fn(T )A2
n−1(T ) + 2(−1)nAn−1(T )) (4.44)
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Lemma 4.2.1. For any f(T ) ∈ (F[x]) [T ] r {0}, we have for all n, i ≥ 0,

An(fi(T )) = An+i(T ) +D(T )fi(T ) or An(fi(T )) = −An+i(T ) +D(T )fi(T ),

for some D(T ) ∈ (F[x]) [T ].

Proof. It is obvious for the case i = 0. If i > 0 and n = 0, then the desired result

follows from the definition of A0 and (4.43). Now consider for n, i ≥ 1,

An+i(T ) = (−1)n+i +
n+i∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fn+i(T )

= (−1)n+i +
i∑

m=1

(−1)m+1fm(T )fm+1(T ) . . . fn+i(T )

+
n+i∑

m=i+1

(−1)m+1fm(T )fm+1(T ) . . . fn+i(T ).

Case n, i are even.

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

1 +
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )

= fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

+ An(fi(T )).

Case n is even, i is odd.

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− 1−
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )
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= fi(T )fi+1(T ) . . . fn+i(T )

(
1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− An(fi(T )).

Case n is odd, i is even

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− 1 +
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )

= fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

+ An(fi(T )).

Case n, i are odd.

An+i(T ) = fi(T )fi+1(T ) . . . fn+i(T )

(
1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

1−
n∑

m=1

(−1)m+1fm+i(T )fm+1+i(T ) . . . fn+i(T )

= fi(T )fi+1(T ) . . . fn+i(T )

(
−1 +

i−1∑
m=1

(−1)m+1fm(T )fm+1(T ) . . . fi−1(T )

)

− An(fi(T )).

Therefore, for all n, i ≥ 0,

An(fi(T )) = An+i(T ) +D(T )fi(T ) or An(fi(T )) = −An+i(T ) +D(T )fi(T ),

for some D(T ) ∈ (F[x]) [T ].
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Lemma 4.2.2. Let f(T ) be the polynomial of the form

f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) ∈ (F[x]) [T ]. If T̃ ∈ F[x] r {0}, then for all n ≥ 0,

T̃ | (A2
n(T̃ )− 1).

Proof. Since f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2,

f1(0) = 2 and fn(0) = −2 (n ≥ 2).

Because A0(T ) = 1, then by (4.43) we have

A1(0) = (−1)1 + f1(0) · A0(0) = −1 + 2 · 1 = 1,

A2(0) = (−1)2 + f2(0) · A1(0) = 1 + (−2) · 1 = −1,

A3(0) = (−1)3 + f3(0) · A2(0) = −1 + (−2) · (−1) = 1,

proceed inductively we get

An(0) = (−1)n+1 (n ≥ 1).

Hence we obtain for all n ≥ 0,

A2
n(T )− 1 = T ·D(T ) for some D(T ) ∈ (F[x]) [T ],

and so the desired result follows.

Lemma 4.2.3. Let f(T ) be the polynomial of the form

f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) ∈ (F[x]) [T ]. If T̃ ∈ F[x] r F, then for all n ≥ 0,

|Bn(T̃ )|∞ 6= 0 and Bn(T̃ ) | (A2
n(T̃ )− 1).
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Proof. Since f(T̃ ) = T̃ (T̃ + 2)(T̃ − 2)g(T̃ )− T̃ 2 + 2 and T̃ ∈ F[x] r F,

2 ≤ |f0(T̃ )|∞ < |f1(T̃ )|∞ < |f2(T̃ )|∞ < . . . . (4.45)

Thus |Bn(T̃ )|∞ 6= 0 for all n. Now from Lemma 4.2.2, we get

fn(T̃ ) | (A2
n(fn(T̃ ))− 1), for all n ≥ 0. (4.46)

But we have from Lemma 4.2.1 that for any non-negative integers n, i,

A2
n(fi(T̃ )) = A2

n+i(T̃ ) + 2Dfi(T̃ )An+i(T̃ ) +D2f 2
i (T̃ ),

or A2
n(fi(T̃ )) = A2

n+i(T̃ )−2Dfi(T̃ )An+i(T̃ )+D2f 2
i (T̃ ),

for some D ∈ F[x]. Thus by (4.46)

fi(T̃ ) | (A2
n+i(T̃ )− 1) for all n, i ≥ 0.

More precisely,

fi(T̃ ) | (A2
(n−i)+i(T̃ )− 1) = (A2

n(T̃ )− 1) ; i = 0, 1, . . . n. (4.47)

It remains to prove that

Bn(T̃ ) = f0(T̃ )f1(T̃ ) . . . fn(T̃ ) | (A2
n(T̃ )− 1). (4.48)

Since for any non-negative integers j, k such that j < k

fk(T̃ ) = fk−j(fj(T̃ )) ≡ fk−j(0) (mod fj(T̃ )),
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noticing here, from the proof of Lemma 4.2.2, that

fk−j(0) =


2 for k = j + 1

−2 for k > j + 1,

we obtain

gcd(fj(T̃ ), fk(T̃ )) = gcd(fj(T̃ ), 2) = 1. (4.49)

Therefore, (4.48) follows from (4.47) and (4.49).

Lemma 4.2.4. Let f(T ) be the polynomial of the form

f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) ∈ (F[x]) [T ]. If T̃ ∈ F[x] r F, then for all n ≥ 0,

0 <

∣∣∣∣∣An(T̃ )

Bn(T̃ )

∣∣∣∣∣
∞

< 1 and

∣∣∣∣∣fn+1(T̃ )

Bn(T̃ )

∣∣∣∣∣
∞

≥ 2.

Proof. It is obvious by the definition that

∣∣∣∣∣A0(T̃ )

B0(T̃ )

∣∣∣∣∣
∞

=
1

|f0(T̃ )|∞
=

1

| T̃ |∞
.

For n ≥ 1, we have by (4.45)

2 ≤ |f0(T̃ )|∞ < |f1(T̃ )|∞ < |f2(T̃ )|∞ < . . .,

and hence by (1.1)∣∣∣∣∣An(T̃ )

Bn(T̃ )

∣∣∣∣∣
∞

=

∣∣∣∣∣(−1)n +
∑n

m=1(−1)m+1fm(T̃ )fm+1(T̃ ) . . . fn(T̃ )

f0(T̃ )f1(T̃ ) . . . fn(T̃ )

∣∣∣∣∣
∞
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=

∣∣∣∣∣f1(T̃ )f2(T̃ ) . . . fn(T̃ )

f0(T̃ )f1(T̃ ) . . . fn(T̃ )

∣∣∣∣∣
∞

=
1

|f0(T̃ )|∞
=

1

| T̃ |∞
.

Thus we get for all n ≥ 0,

0 <

∣∣∣∣∣An(T̃ )

Bn(T̃ )

∣∣∣∣∣
∞

< 1,

since T̃ ∈ F[x] r F.

Next, we will show
∣∣∣fn+1(T̃ )

Bn(T̃ )

∣∣∣
∞
≥ 2 by using the induction. Since

∣∣∣∣∣ f1(T̃ )

B0(T̃ )

∣∣∣∣∣
∞

=

∣∣∣∣∣ T̃ (T̃ + 2)(T̃ − 1)g(T̃ )− T̃ 2 + 2

T̃

∣∣∣∣∣
∞

=

∣∣∣∣∣ T̃ (T̃ + 2)(T̃ − 1)g(T̃ )− T̃ 2

T̃

∣∣∣∣∣
∞

=
∣∣∣(T̃ + 2)(T̃ − 1)g(T̃ )− T̃

∣∣∣
∞

= max {
∣∣∣(T̃ + 2)(T̃ − 1)g(T̃ )

∣∣∣
∞
,
∣∣∣T̃ ∣∣∣
∞
}

≥ 2,

the statement holds for n = 0. Now assume
∣∣∣fk+1(T̃ )

Bk(T̃ )

∣∣∣
∞
≥ 2 (k ≥ 0). Since

|fk+1(T̃ )|∞ < |fk+1(T̃ )|∞|(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− fk+1(T̃ )|∞,

we obtain by the hypothesis

2 ≤

∣∣∣∣∣fk+1(T̃ )

Bk(T̃ )

∣∣∣∣∣
∞

=
|fk+1(T̃ )|∞|fk+1(T̃ )|∞
|fk+1(T̃ )|∞|Bk(T̃ )|∞

<
|fk+1(T̃ )|∞|(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− fk+1|∞

|Bk+1(T̃ )|∞
=
|fk+2(T̃ )|∞
|Bk+1(T̃ )|∞

.

Now we are ready to state the analogue of Theorem 4.1.2.

Theorem 4.2.5. Let f(T ) be the polynomial of the form

f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) ∈ (F[x]) [T ]. If T̃ ∈ F[x] r F, then

θ0(T̃ ; f) = [0; T̃ ],
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and for all n ≥ 0,

θn+1(T̃ ; f) = [0; b1, . . . , bk, un+1(T̃ ), bk, . . . , b1], (4.50)

if [0; b1, . . . , bk] is a palindromic continued fraction representing θn(T̃ ; f) and

un+1(T̃ ) = (−1)nδ2
n

fn+1(T̃ )

Bn(T̃ )
− 2

An(T̃ )

Bn(T̃ )
,

where δn is the element in Fr{0} such that An(T̃ ) = δnpk and Bn(T̃ ) = δnqk provided

pk

qk
is the kth (last) convergent of θn(T̃ ; f) respect to [0; b1, . . . , bk].

In particular,

θ(T̃ ; f) = [0; T̃ , u1(T̃ ), T̃ , u2(T̃ ), T̃ , u1(T̃ ), T̃ , u3(T̃ ), . . .].

Proof. For any non-negative integer r, denoted by k(r) the length of a continued

fraction representing θr(T̃ ; f) = Ar(T̃ )

Br(T̃ )
which all partial numerators are 1.

The proof will be completed by induction. We have by a direct calculation

θ0(T̃ ; f) = [0; T̃ ] and θ1(T̃ ; f) = [0; T̃ , (T̃ + 2)(T̃ − 2)g(T̃ )− T̃ , T̃ ],

which u1(T̃ ) =
(−1)0δ20f1(T̃ )

B0(T̃ )
− 2A0(T̃ )

B0(T̃ )
= f1(T̃ )

T̃
− 2

T̃
= (T̃ + 2)(T̃ − 2)g(T̃ )− T̃ , and hence

the statement (4.50) holds for n = 0. Now suppose for n ≥ 1 that

θn(T̃ ; f) = [0;α1, . . . , αk(n−1), un(T̃ ), αk(n−1), . . . , α1],

if [0;α1, . . . , αk(n−1)] is a palindromic continued fraction representing θn−1(T̃ ; f) and

un(T̃ ) = (−1)n−1δ2
n−1

fn(T̃ )

Bn−1(T̃ )
− 2

An−1(T̃ )

Bn−1(T̃ )
,

We write

θn(T̃ ; f) = [0; b1, . . . , bk(n)] =
pk(n)

qk(n)

,
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and then k(n) is odd. By using Lemma 4.2.3, we have An(T̃ ) and Bn(T̃ ) are relatively

prime, so that there exists δn ∈ F r {0} such that

An(T̃ ) = δnpk(n) and Bn(T̃ ) = δnqk(n).

Since k(n) is odd, we have by (1.7),

qk(n)pk(n)−1 = pk(n)qk(n)−1 − 1, (4.51)

and hence by the hypothesis [0; b1, . . . , bk(n)] is palindromic we have by Remark 1.2.6

pk(n) = qk(n)−1. (4.52)

Case n is odd.

We have by (1.5) that

−δnfn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

+
qk(n)−1

qk(n)

=
−δ2

nfn+1(T̃ )

Bn(T̃ )
− 2An(T̃ )

Bn(T̃ )
+
qk(n)−1

qk(n)

= [un+1(T̃ ); bk(n), . . . , b1].

Hence by (1.6)

[0; b1, . . . , bk(n), un+1(T̃ ), bk(n), . . . , b1]

=

(
−δnfn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,

and so we obtain by (4.51) and (4.52) that

(
−δnfn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
pk(n)

qk(n)

+
1

δnfn+1(T̃ )qk(n)

=
An(T̃ )

Bn(T̃ )
+

1

Bn+1(T̃ )
= θn+1(T̃ ).
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Case n is even.

We have by (1.5) that

δnfn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

+
qk(n)−1

qk(n)

=
δ2
nfn+1(T̃ )

Bn(T̃ )
− 2An(T̃ )

Bn(T̃ )
+
qk(n)−1

qk(n)

= [un+1(T̃ ); ak(n), . . . , a1].

Hence by (1.6)

[0; b1, . . . , bk(n), un+1(T̃ ), bk(n), . . . , b1]

=

(
δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,

and so we obtain by (4.51) and (4.52) that

(
δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
pk(n)

qk(n)

+
−1

δnfn+1(T̃ )qk(n)

=
An(T̃ )

Bn(T̃ )
+

−1

Bn+1(T̃ )
= θn+1(T̃ ).

Therefore, the theorem is established.

Remark 4.2.6. Different from the case of real numbers, we cannot assure that the

continued fractions produced by the above theorem are regular. Because for each

n ≥ 0, un+1, that we added into a given palindromic continued fraction of θn to

produce a continued fraction of θn+1, is in F[x] only the case δn = ±1. This fact

is proven in the following lemma.

Lemma 4.2.7. Let f(T ) be the polynomial of the form

f(T ) = T (T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) ∈ (F[x]) [T ]. Let T̃ ∈ F[x] r F. Then for n ≥ 0, un+1(T̃ ), defined as in

Theorem 4.2.5, is in F[x] if and only if δn = ±1.
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Proof. Let n be a non-negative integer. From Lemma 4.2.3 and (4.44), we have

fn+1(T̃ )A2
n(T̃ ) + 2(−1)n+1An(T̃ )

Bn(T̃ )
=
fn+1(T̃ )(fn+1(T̃ )A2

n(T̃ ) + 2(−1)n+1An(T̃ ))

Bn+1(T̃ )

=
A2
n+1(T̃ )− 1

Bn+1(T̃ )
∈ F[x] (4.53)

Since, by Lemma 4.2.3, Bn(T̃ ) | (A2
n(T̃ )− 1),

A2
n(T̃ ) = D ·Bn(T̃ ) + 1 for some D ∈ F[x].

Then from (4.53), we have

fn+1(T̃ ) + 2(−1)n+1An(T̃ )

Bn(T̃ )
∈ F[x],

i.e.,
fn+1(T̃ )

Bn(T̃ )
= E − 2(−1)n+1An(T̃ )

Bn(T̃ )
for some E ∈ F[x]. (4.54)

We have by Lemma 4.2.4 that

0 ≤

∣∣∣∣∣2(δ2
n − 1)An(T̃ )

Bn(T̃ )

∣∣∣∣∣
∞

< 1. (4.55)

Hence the lemma is established by considering

un+1(T̃ ) =
(−1)nδ2

nfn+1(T̃ )

Bn(T̃ )
− 2An(T̃ )

Bn(T̃ )

= (−1)nδ2
n

(
fn+1(T̃ )

Bn(T̃ )
+

2(−1)n+1An(T̃ )

Bn(T̃ )

)
+

2(δ2
n − 1)An(T̃ )

Bn(T̃ )
,

with (4.54) and (4.55).

From the above lemma, if there exist n ≥ 0 such that δn 6= ±1, then continued

fractions produced by Theorem 4.2.5 are not regular. In this case, it is natural to

worry about the convergence of [0; T̃ , u1(T̃ ), T̃ , u2(T̃ ), T̃ , u1(T̃ ), T̃ , u3(T̃ ), . . .].
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This problem is treated by using a classical theorem of Pringsheim:

For each i ≥ 1, denoted by ai and bi the ith partial numerator and denominator of

[0; T̃ , u1(T̃ ), T̃ , u2(T̃ ), T̃ , u1(T̃ ), T̃ , u3(T̃ ), . . .], respectively. By using Lemma 4.2.4 we

have that

|ai|∞ = 1 and |bi|∞ ≥ 2 for all i ≥ 1.

Therefore, the convergence of [0; T̃ , u1(T̃ ), T̃ , u2(T̃ ), T̃ , u1(T̃ ), T̃ , u3(T̃ ), . . .] is guaran-

teed by Theorem 1.2.3.

Next, the following lammas are prepared to organize an analogue of Theorem

4.1.8.

Lemma 4.2.8. Let f(T ) be the polynomial of the form

f(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2,

g(T ) ∈ (F[x]) [T ] r {0}. If T̃ ∈ F[x] r F, then for all n ≥ 0,

T̃ 2 | (A2
n(T̃ )− 1).

Proof. Similar to the proof of Lemma 4.2.2, we obtain

f1(0) = 2, fn(0) = −2 (n ≥ 2), (4.56)

and for all n ≥ 0,

A2
n(T )− 1 = T ·D(T ) for some D(T ) ∈ (F[x]) [T ]. (4.57)

Hence we will prove this lemma by showing that

d

dT
(A2

n(T )− 1) = 0 at T = 0, for all n ≥ 0. (4.58)
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It is obvious for the case n = 0. Now we consider the cases n ≥ 1. By (4.44), we have

d

dT
(A2

n(T )− 1) = 2fn(T )f ′n(T )A2
n−1(T ) + 2f 2

n(T )An−1(T )A′n−1(T )

+ 2(−1)nf ′n(T )An−1(T ) + 2(−1)nfn(T )A′n−1(T ),

then, to prove (4.58), it suffices to show that

f ′n(0) = 0 and A′n−1(0) = 0, for all n ≥ 1.

Since f1(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2,

f ′1(T ) = 2T (T + 2)(T − 2)g(T ) + T 2((T + 2)(T − 2)g(T ))′ − 2T,

and so f ′1(0) = 0. Now assume that f ′k(0) = 0 (k ≥ 1). From the definition of

fk+1, we get

f ′k+1(T ) = 2fk(T )f ′k(T )(fk(T ) + 2)(fk(T )− 2)g(fk(T ))

+f 2
k (T )(fk(T ) + 2)(fk(T )− 2)(g(fk(T )))′

+ f 2
k (T ) (f ′k(T )(fk(T )− 2) + (fk(T ) + 2)f ′k(T )) g(fk(T )) + 2fk(T )f ′k(T ).

Hence the induction hypothesis and (4.56) lead to f ′k+1(0) = 0. Thus for all n ≥ 1,

we have that f ′n(0) = 0, and so by the mathematical induction, the definition of A0

and (4.43) we also have for all n ≥ 1, A′n−1(0) = 0.

Lemma 4.2.9. Let f(T ) be the polynomial of the form

f(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2,

g(T ) ∈ (F[x]) [T ] r {0}. If T̃ ∈ F[x] r F, then for all n ≥ 0,

|T̃Bn(T̃ )|∞ 6= 0 and T̃Bn(T̃ ) | (A2
n(T̃ )− 1).

Proof. Since f(T̃ ) = T̃ 2(T̃ + 2)(T̃ − 2)g(T̃ )− T̃ 2 + 2 and T̃ ∈ F[x] r F,

2 ≤ |f0(T̃ )|∞ < |f1(T̃ )|∞ < |f2(T̃ )|∞ < . . . .
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Thus |T̃Bn(T̃ )|∞ 6= 0 for all n. Now from Lemma (4.57), we get for all n ≥ 0,

fn(T̃ ) | (A2
n(fn(T̃ ))− 1). (4.59)

But from Lemma 4.2.1, we have for any non-negative integers n, i,

A2
n(fi(T̃ )) = A2

n+i(T̃ ) + 2Dfi(T̃ )An+i(T̃ ) +D2f 2
i (T̃ ),

or A2
n(fi(T̃ )) = A2

n+i(T̃ )− 2Dfi(T̃ )An+i(T̃ ) +D2f 2
i (T̃ ),

for some D ∈ F[x] and so (4.59) implies

fi(T̃ ) | (A2
n+i(T̃ )− 1) for all n, i ≥ 0.

More precisely,

fi(T̃ ) | (A2
(n−i)+i(T̃ )− 1) = (A2

n(T̃ )− 1) ; i = 0, 1, . . . n. (4.60)

Also, we have from Lemma 4.2.8 that

T̃ 2 | (A2
n(T̃ )− 1). (4.61)

It remains to prove that

T̃Bn(T̃ ) = T̃ 2f1(T̃ ) . . . fn(T̃ ) | (A2
n(T̃ )− 1). (4.62)

Since for any non-nengative integers j, k such that j < k

fk(T̃ ) = fk−j(fj(T̃ )) ≡ fk−j(0) (mod fj(T̃ )),
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noticing here, from (4.56), that

fk−j(0) =


2 for k = j + 1

−2 for k > j + 1,

we obtain

gcd(fj(T̃ ), fk(T̃ )) = gcd(fj(T̃ ), 2) = 1. (4.63)

Therefore, (4.62) follows from (4.60), (4.61) and (4.63).

Lemma 4.2.10. Let f(T ) be the polynomial of the form

f(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) = wmT
m+ . . .+w1T +w0 with m ≥ 0, wi ∈ F[x] (0 ≤ i ≤ m), wm 6= 0

and |wm|∞ ≥ |wi|∞ for all 0 ≤ i ≤ m− 1. If T̃ ∈ F[x] r F, then for all n ≥ 0,

0 <

∣∣∣∣∣An(T̃ )

Bn(T̃ )

∣∣∣∣∣
∞

< 1 and

∣∣∣∣∣fn+1(T̃ )

Bn(T̃ )

∣∣∣∣∣
∞

≥ 2.

Proof. It is obvious that

∣∣∣∣∣ A0(T̃ )

T̃B0(T̃ )

∣∣∣∣∣
∞

=
1

|f0(T̃ )|∞
=

1

| T̃ 2 |∞
.

The definitions of f(T ), g(T ) and T̃ lead to

2 ≤ |f0(T̃ )|∞ < |f1(T̃ )|∞ < |f2(T̃ )|∞ < . . . .

Then we obtain, by (1.1), for n ≥ 1,
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∣∣∣∣∣ An(T̃ )

T̃Bn(T̃ )

∣∣∣∣∣
∞

=

∣∣∣∣∣(−1)n +
∑n

i=1(−1)i+1fi(T̃ )fi+1(T̃ ) . . . fn(T̃ )

T̃ f0(T̃ )f1(T̃ ) . . . fn(T̃ )

∣∣∣∣∣
∞

=

∣∣∣∣∣ f1(T̃ )f2(T̃ ) . . . fn(T̃ )

T̃ f0(T̃ )f1(T̃ ) . . . fn(T̃ )

∣∣∣∣∣
∞

=
1

|f0(T̃ )|∞
=

1

| T̃ 2 |∞
.

Thus we get for all n ≥ 0,

0 <

∣∣∣∣∣ An(T̃ )

T̃Bn(T̃ )

∣∣∣∣∣
∞

< 1,

since T̃ ∈ F[x] r F.

Next, we will show
∣∣∣fn+1(T̃ )

T̃Bn(T̃ )

∣∣∣
∞
≥ 2 by using the induction.

We have by the definition of g(T ) that

|g(S)|∞ ≥ 1 for all S ∈ F[x] r F.

Hence ∣∣∣∣∣ f1(T̃ )

T̃B0(T̃ )

∣∣∣∣∣
∞

=

∣∣∣∣∣ T̃ 2(T̃ + 2)(T̃ − 1)g(T̃ )− T̃ 2 + 2

T̃ 2

∣∣∣∣∣
∞

=
∣∣∣(T̃ + 2)(T̃ − 1)g(T̃ )− 1

∣∣∣
∞
> 2,

and so the statement holds for n = 0. Now assume
∣∣∣fk+1(T̃ )

T̃Bk(T̃ )

∣∣∣
∞
≥ 2 (k ≥ 0).

Since

|fk+1(T̃ )|∞ < |fk+1(T̃ )|∞|fk+1(T̃ )(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− fk+1(T̃ )|∞,

we obtain by the hypothesis

2 ≤

∣∣∣∣∣fk+1(T̃ )

T̃Bk(T̃ )

∣∣∣∣∣
∞

=
|fk+1(T̃ )|∞|fk+1(T̃ )|∞
|fk+1(T̃ )|∞|T̃Bk(T̃ )|∞

<
|fk+1(T̃ )|∞|fk+1(T̃ )(fk+1(T̃ ) + 2)(fk+1(T̃ )− 2)g(fk+1(T̃ ))− fk+1(T̃ )|∞

|T̃Bk+1(T̃ )|∞

=
|fk+2(T̃ )|∞
|T̃Bk+1(T̃ )|∞

.
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Theorem 4.2.11. Let f(T ) be the polynomial of the form

f(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) = wmT
m+ . . .+w1T +w0 with m ≥ 0, wi ∈ F[x] (0 ≤ i ≤ m), wm 6= 0

and |wm|∞ ≥ |wi|∞ for all 0 ≤ i ≤ m− 1. If T̃ ∈ F[x] r F, then

θ0(T̃ ; f)/T̃ = [0; T̃ 2],

and for all n ≥ 0,

θn+1(T̃ ; f)/T̃ = [0; b1, . . . , bk, vn+1(T̃ ), bk, . . . , b1], (4.64)

if [0; b1, . . . , bk] is a palindromic continued fraction representing θn(T̃ ; f)/T̃ and

vn+1(T̃ ) = (−1)nδ2
n

fn+1(T̃ )

T̃Bn(T̃ )
− 2

An(T̃ )

T̃Bn(T̃ )
,

where δn is the element in F r {0} such that An(T̃ ) = δnpk and T̃Bn(T̃ ) = δnqk pro-

vided pk

qk
is the kth convergent of θn(T̃ ; f)/T̃ respect to [0; b1, . . . , bk].

In particular,

θ(T̃ ; f)/T̃ = [0; T̃ 2, v1(T̃ ), T̃ 2, v2(T̃ ), T̃ 2, v1(T̃ ), T̃ 2, v3(T̃ ), . . .].

Proof. For any non-negative integer r, denoted by k(r) the length of a continued

fraction representing θr(T̃ ; f) = Ar(T̃ )

Br(T̃ )
which all partial numerators are 1.

The proof will be completed by induction. We have by a direct calculation

θ0(T̃ ; f)/T̃ = [0; T̃ 2] and θ1(T̃ ; f)/T̃ = [0; T̃ 2, (T̃ + 2)(T̃ − 2)g(T̃ )− 1, T̃ 2],

which v1(T̃ ) =
(−1)0δ20f1(T̃ )

T̃B0(T̃ )
− 2A0(T̃ )

T̃B0(T̃ )
= f1(T̃ )

T̃ 2 − 2
T̃ 2 = (T̃ + 2)(T̃ − 2)g(T̃ )− 1, and hence

the statement (4.64) holds for n = 0. Now suppose for n ≥ 1 that

θn(T̃ ; f)/T̃ = [0;α1, . . . , αk(n−1), vn(T̃ ), αk(n−1), . . . , α1],
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if [0;α1, . . . , αk(n−1)] is a palindromic continued fraction representing θn−1(T̃ ; f)/T̃

and

vn(T̃ ) = (−1)n−1δ2
n−1

fn(T̃ )

T̃Bn−1(T̃ )
− 2

An−1(T̃ )

T̃Bn−1(T̃ )
.

We write

θn(T̃ ; f)/T̃ = [0; b1, . . . , bk(n)] =
pk(n)

qk(n)

,

and then k(n) is odd. By using Lemma 4.2.9, we have An(T̃ ) and T̃Bn(T̃ ) are

relatively prime, so that there exists δn ∈ F r {0} such that

An(T̃ ) = δnpk(n) and T̃Bn(T̃ ) = δnqk(n).

Since k(n) is odd, we have by (1.7),

qk(n)pk(n)−1 = pk(n)qk(n)−1 − 1, (4.65)

and hence by the hypothesis [0; b1, . . . , bk(n)] is palindromic, we have by Remark 1.2.6

pk(n) = qk(n)−1, (4.66)

Case n is odd.

We have by (1.5) that

−δnfn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

+
qk(n)−1

qk(n)

=
−δ2

nfn+1(T̃ )

T̃Bn(T̃ )
− 2An(T̃ )

T̃Bn(T̃ )
+
qk(n)−1

qk(n)

= [vn+1(T̃ ); bk(n), . . . , b1].

Hence by (1.6)

[0; b1, . . . , bk(n), vn+1(T̃ ), bk(n), . . . , b1]

=

(
−δnfn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,
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and so we obtain by (4.65) and (4.66) that

(
−δnfn+1(T̃ )

qk(n)
− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

−δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
pk(n)

qk(n)

+
1

δnfn+1(T̃ )qk(n)

=
An(T̃ )

T̃Bn(T̃ )
+

1

T̃Bn+1(T̃ )
= θn+1(T̃ )/T̃ .

Case n is even.

We have by (1.5) that

δnfn+1(T̃ )

qk(n)

−
2pk(n)

qk(n)

+
qk(n)−1

qk(n)

=
δ2
nfn+1(T̃ )

T̃Bn(T̃ )
− 2An(T̃ )

T̃Bn(T̃ )
+
qk(n)−1

qk(n)

= [vn+1(T̃ ); bk(n), . . . , b1].

Hence by (1.6)

[0; b1, . . . , bk(n), vn+1(T̃ ), bk(n), . . . , b1] =

(
δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

,

and so we obtain by (4.51) and (4.52) that

(
δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
pk(n) + pk(n)−1(

δnfn+1(T̃ )
qk(n)

− 2pk(n)

qk(n)
+

qk(n)−1

qk(n)

)
qk(n) + qk(n)−1

=
pk(n)

qk(n)

+
−1

δnfn+1(T̃ )qk(n)

=
An(T̃ )

T̃Bn(T̃ )
+

−1

T̃Bn+1(T̃ )
= θn+1(T̃ )/T̃ .

Therefore, the theorem is established.

Similar to Theorem 4.2.5, the continued fractions produced by Theorem 4.2.11

may not be regular described by the following lemma. The problem about the conver-

gence of [0; T̃ 2, v1(T̃ ), T̃ 2, v2(T̃ ), T̃ 2, v1(T̃ ), T̃ 2, v3(T̃ ), . . .] is handled by using Lemma

4.2.10 and then Theorem 1.2.3.
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Lemma 4.2.12. Let f(T ) be the polynomial of the form

f(T ) = T 2(T + 2)(T − 2)g(T )− T 2 + 2,

where g(T ) = wmT
m+ . . .+w1T +w0 with m ≥ 0, wi ∈ F[x] (0 ≤ i ≤ m), wm 6= 0

and |wm|∞ ≥ |wi|∞ for all 0 ≤ i ≤ m − 1. Let T̃ ∈ F[x] r F. Then for n ≥ 0,

vn+1(T̃ ), defined as in Theorem 4.2.11, is in F[x] if and only if δn = ±1.

Proof. Let n be a non-negative integer. From Lemma 4.2.9 and (4.44), we have

fn+1(T̃ )A2
n(T̃ ) + 2(−1)n+1An(T̃ )

T̃Bn(T̃ )
=
fn+1(T̃ )(fn+1(T̃ )A2

n(T̃ ) + 2(−1)n+1An(T̃ ))

T̃Bn+1(T̃ )

=
A2
n+1(T̃ )− 1

T̃Bn+1(T̃ )
∈ F[x]. (4.67)

Since, by Lemma 4.2.9, T̃Bn(T̃ ) | (A2
n(T̃ )− 1),

A2
n(T̃ ) = D · T̃Bn(T̃ ) + 1 for some D ∈ F[x].

Then from (4.67), we have

fn+1(T̃ ) + 2(−1)n+1An(T̃ )

T̃Bn(T̃ )
∈ F[x],

i.e.,

fn+1(T̃ )

T̃Bn(T̃ )
= E − 2(−1)n+1An(T̃ )

T̃Bn(T̃ )
for some E ∈ F[x]. (4.68)

We have by Lemma 4.2.10 that

0 ≤

∣∣∣∣∣2(δ2
n − 1)An(T̃ )

T̃Bn(T̃ )

∣∣∣∣∣
∞

< 1. (4.69)
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Hence the lemma is established by combining

vn+1(T̃ ) =
(−1)nδ2

nfn+1(T̃ )

T̃Bn(T̃ )
− 2An(T̃ )

T̃Bn(T̃ )

= (−1)nδ2
n

(
fn+1(T̃ )

T̃Bn(T̃ )
+

2(−1)n+1An(T̃ )

T̃Bn(T̃ )

)
+

2(δ2
n − 1)An(T̃ )

T̃Bn(T̃ )
,

with (4.68) and (4.69).

Using the same proof as in Theorem 4.2.5 and Theorem 4.2.11, analogues of The-

orem 1 and Theorem 2 of Tamura [27] can also be established in Theorem 4.2.13 and

Theorem 4.2.14, respectively.

For n ≥ 0, define θ̃n(T ; f) to be the series expressed as follows

θ̃n(T ; f) =
n∑

m=0

1

f0(T )f1(T ) . . . fm(T )
,

where f(T ) ∈ (F[x]) [T ] r {0}; f0(T ) = T and for all i ≥ 1, fi(T ) = f(fi−1(T )) with

T ∈ F[x] r {0}, and for those T ∈ F[x] r {0} for which the limit exists we define

θ̃(T ; f) = lim
n→∞

θ̃n(T ; f).

For any f(T ) ∈ (F[x])[T ] r {0}, we put

Ãn = Ãn(T ) = 1 +
∑n

m=1 fm(T )fm+1(T ) . . . fn(T ), (n ≥ 1) ; Ã0 = 1,

B̃n = B̃n(T ) = f0(T )f1(T ) . . . fn(T ) (n ≥ 0).

Theorem 4.2.13. Let f(T ) be the polynomial of the form

f(T ) = T (T + 2)(T − 2)g(T ) + T 2 − 2,

where g(T ) ∈ (F[x]) [T ]. If T̃ ∈ F[x] r F, then

θ̃0(T̃ ; f) = [0; T̃ ],
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and for all n ≥ 0,

θ̃n+1(T̃ ; f) = [0; b1, . . . , bk, yn+1(T̃ ), bk, . . . , b1],

if [0; b1, . . . , bk] is a palindromic continued fraction representing θ̃n(T̃ ; f) and

yn+1(T̃ ) = −δ2
n

fn+1(T̃ )

B̃n(T̃ )
− 2

Ãn(T̃ )

B̃n(T̃ )
,

where δn is the element in Fr{0} such that Ãn(T̃ ) = δnpk and B̃n(T̃ ) = δnqk provided

pk

qk
is the kth (last) convergent of θ̃n(T̃ ; f) respect to [0; b1, . . . , bk].

In particular,

θ̃(T̃ ; f) = [0; T̃ , y1(T̃ ), T̃ , y2(T̃ ), T̃ , y1(T̃ ), T̃ , y3(T̃ ), . . .].

Theorem 4.2.14. Let f(T ) be the polynomial of the form

f(T ) = T 2(T + 2)(T − 2)g(T ) + T 2 − 2,

where g(T ) = wmT
m+ . . .+w1T +w0 with m ≥ 0, wi ∈ F[x] (0 ≤ i ≤ m), wm 6= 0

and |wm|∞ ≥ |wi|∞ for all 0 ≤ i ≤ m− 1. If T̃ ∈ F[x] r F, then

θ̃0(T̃ ; f)/T̃ = [0; T̃ 2],

and for all n ≥ 0,

θ̃n+1(T̃ ; f)/T̃ = [0; b1, . . . , bk, zn+1(T̃ ), bk, . . . , b1],

if [0; b1, . . . , bk] is a palindromic continued fraction representing θ̃n(T̃ ; f)/T̃ and

zn+1(T̃ ) = −δ2
n

fn+1(T̃ )

T̃ B̃n(T̃ )
− 2

Ãn(T̃ )

T̃ B̃n(T̃ )
,

where δn is the element in F r {0} such that Ãn(T̃ ) = δnpk and T̃ B̃n(T̃ ) = δnqk pro-

vided pk

qk
is the kth convergent of θ̃n(T̃ ; f)/T̃ respect to [0; b1, . . . , bk].

In particular,

θ̃(T̃ ; f)/T̃ = [0; T̃ 2, z1(T̃ ), T̃ 2, z2(T̃ ), T̃ 2, z1(T̃ ), T̃ 2, z3(T̃ ), . . .].
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Remark 4.2.15. Similar to Theorem 4.2.5 and Theorem 4.2.11, the continued frac-

tions produced by Theorem 4.2.13 and Theorem 4.2.14 are regular if and only if

δn = ±1 and we can guarantee convergences for infinite continued fractions.
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