

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุพาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2552
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MINIMUM RANK OF GRAPHS

Thesis Title	MINIMUM RANK OF GRAPHS
By	Mr. Sarawut Rattanaprayoon
Field of Study	Mathematics
Thesis Advisor	Associate Professor Wanida Hemakul, Ph.D.
Thesis Co-Advisor	Thiradet Jiarasuksakun, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

THESIS COMMITTEE

(Associate Professor Wicharn Lewkeeratiyutkul, PhD.)

 External Examiner
(Associate Professor Somporn Sutinuntopas, Ph.D.)

ศราวุติ รัตนประยูร : ค่าลำดับชั้นน้อยที่สุดของกราฟ. (MINIMUM RANK OF GRAPHS) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : รศ. ดร. วนิดา เหมะกุล, อ. ที่ปรึกษาวิทยานิพนธ์ ร่วม : จ. ดร. ธีระเดช เจียรสุขสกุล, 56 หน้า.

ค่าลำดับชั้นน้อยที่สุดบนฟีลค์ F ของกคราฟ G คือ ค่าลำดับชั้นน้อยที่สุดที่เป็นไปได้ใน บรรดาเมทริกซ์สมมาตรบนฟีลค์ F ซึ่งสมาชิกเถวที่ i หลักที่ $j(i \neq j)$ ไม่เป็นศูนย์ ถ้า $i j$ เป็นเส้น เชื่อมในกราฟ G และเป็นศูนย์ ถ้า $i j$ ไม่เป็นเส้นเชื้มมในกรรฟ G เมื่อ ศูนย์ คือ เอกลักบณ์การบวก บนฟีลค์ F เมทริกซ์เหมาะที่สุดเชิงอกกพของกราฟ G คือเมทริกซ์สมมาตร A ที่สมาชิกทุกตัวเป็น จำนวนเต็มแต่สมาชิกที่ไม่อยู่บนเนวทแยงมุมของเมทริกซ์ A คือ จำนวน 0,1 หรือ -1 และสำหรับ ทุกฟีลด์ F ค่าลำดับชั้นของเมทริกซ์ A เท่ากับค่าลำดับชั้นน้อยที่สุดบนฟีลด์ F ของกราฟ G ซึ่ง สมสัมฐานกับกราฟของเมทริกซ์ A เราเนะนำกราฟพัด กราฟทนังสืือ กราฟดอกบัว และกราฟ สะพานแขวน และแสดงค่าำดับชั้นน้อยที่สุดของกราฟเหล่านื้บนทุกฟีลด์ เราใช้เมทริกซ์เหมาะ ที่สุดเชิงเอกภพเพื่อแสคงว่าค่าลำคับชั้นน้อยที่สุดของกราเเนล่านี้ไม่ขึ้นอยู่กับฟีลด์ และให้ตัวอย่าง กราฟที่มีค่าลำดับชั้นน้อยที่สุดขึ้นอยุ่กับฟึ่ลด้

จุหาลงกรณ์มหาวิทยาลัย

ภาควิชา.คณิตศาสตร์..... สาขาวิชา....คณิตศาสตร์..... ปีการศึกยา. \qquad 2552 \qquad

ลายืือชื่อนิสิต... Sardurut Rattanaprayoon ลายมือชื่อ อ.ที่ปรึกยาวิทยานิพนธ์หลัก 7 r. Atemabul ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม... Jhit Guill
\# \# 5072477023 : MAJOR MATHEMATICS
KEYWORDS : MINIMUM RANK, UNIVERSALLY OPTIMAL MATRIX, FIELD INDEPENDENT, RANK, GRAPH, SYMMETRIC MATRIX

SARAWUT RATTANAPRAYOON : MINIMUM RANK OF GRAPHS. THESIS ADVISOR : ASSOC. PROF. WANIDA HEMAKUL, Ph.D. THESIS CO-ADVISOR : THIRADET JIARASUKSAKUN, Ph.D., 56 pp.

The minimum rank over a field F of a graph G is the smallest possible rank among all symmetric matrices over F whose (i, j) th entry $(i \neq j)$ is nonzero whenever $i j$ is an edge in G and is zero otherwise, where zero is the additive identity of F. A universally optimal matrix for a graph G is an integer symmetric $\operatorname{matrix} A$ such that every off-diagonal entry of A is 0,1 , or -1 and for all fields F, the rank of A is the minimun rank over F of G which is isomorphic to the graph of A. The fan graph, the book graph, the lotus graph and the hanging bridge graph are introduced and the minimum rank of these graphs over any field are presented. We use universally optimal matrices for these graphs to establish field independence of minimum rank. Examples verifying lack of field independence for

จุหาลงกรณ์มหาวิทยาลัย

Department	Mathematics....	Student's Signature : . Parauret
Field of Study	Mathematics....	Advisor's Signature :
Academic Year	2009	Co-Advisor's Signature : slit ght

ACKNOWLEDGEMENTS

I would like to thank Associate Professor Dr. Wanida Hemakul and Dr. Thiradet Jiarasuksakun, my thesis advisors, and Professor Leslie Hogben, Iowa State University, for their kind and helpful suggestions and guidance. Without their constructive suggestions and knewledgeable guidance in this study, this research would never have suecessfully been completed. I am also thankful to Associate Professor Dr. Imchit Termwuttipong, Associate Professor Dr. Wicharn Lewkeeratiyutkul and Associate Professor Dr. Somporn Sutinuntopas, my thesis committee, for their comments and assistance. Moreover, I would like to thank all teachers who have taught me all along. is

Finally, I feel very gratefut to my family for their compassion and untired encouragement throughout my life.

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES viii
LIST OF TABLES ix
CHAPTER I INTRODUCTION 1
CHAPTER II PRELIMINARIES 3
CHAPTER III FIELD INDEPENDENCERESULTS 17
3.1 Fan Graphs 17
3.2 Book Graphs 20
3.3 Lotus Graphs 22
3.4 Hanging Bridge Graphs 24
3.5 Path-cycle Graphs 30
 35
CHAPTER IVAFIELD DEPENDENCE RESULTS 39
 39
$4.2{ }^{9}$ The Join of Cycles and Complete Graphs 42
4.3 Clique Paths 47
4.4 Clique-cycle Paths 48
APPENDIX 51
REFERENCES 55
VITA 56

LIST OF FIGURES

2.1 The complete multipartite graph $K_{3,3,3}$ and the graph $\overline{P_{3} \cup 2 K_{3}}$ 8
2.2 A 2-tree H and its complement \bar{H} 9
2.3 A tree T and its complement \bar{T} 9
2.4 The graph G with $Z(G)=2$ 15
3.1 The graph G with $\operatorname{mr}^{F}(G) \equiv 27$ 35

LIST OF TABLES

2.1 Summary of field independence of the minimum rank over any field F
\qquad
2.2 Summary of field dependence of the minimum rank for graphs

CHAPTER I

INTRODUCTION

The minimum rank problem is, for a given graph and a field F, to determine the smallest possible rank among symmetric matrices over F whose off-diagonal pattern of zero-nonzero entries is described by the graph. Most work on minimum rank has been on the real minimum rank problem. S. Fallat and L. Hogben [5] provided a survey of known results and discussion of the motivation for the minimum rank problem. Catalogs of minimum rank and other parameters for families of graphs [7] and small graphs [8] were developed at the American Institute of Mathematics (AIM) worksper "Spectra of families of matrices described by graphs, digraphs, and sign patterns" [2] and are available on-line; these catalogs are updated routinely. The study of minimum rank over fields other than the real numbers was initiated in [3].

The minimum rank of a graph G is field independent if the minimum rank of G is the samefor abl fields. In [4f, LiAT. DeAlbert al. Optablished the field independence or dependence of minimum rank for most of the families of graphs listed in the AIM on-lige minimum bank gaph catalog and stabished the minimum rank of several additional families. For almost every graph discussed that has field independent minimum rank, they exhibited a single integer matrix that over every field has the given graph and has rank in that field equal to the minimum rank over the field (what they call a universally optimal matrix described in chapter II).

Here is the outline of this thesis.
In chapter II, we recall definitions and review results of the relevant works.
In chapter III, we introduce the fan graph, the book graph, the lotus graph, and the hanging bridge graph and establish the field independence of minimum rank for these graphs by constructing universally optimal matrices.

In chapter IV, we provide examples verifying lack of field independence of minimum rank for some graphs, such as $P, K_{2}, C_{6} \vee K_{4}$, the clique path $K P(5,4)$, and the clique-cycle path $K C(5,4)$.

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

CHAPTER II

PRELIMINARIES

We recall definitions and review the known results that are needed in our work.
A graph G means a simple undirected graph (i.e., neither loops nor multiple edges allowed). Denote by $V(G)$ and $E(G)$ the set of vertices and edges of G, respectively. Also, $|G|$ denotes the number of vertices in G, and $x y$ denotes the edge in $E(G)$ for some $x, y \in V(G)$.

The adjacency matrix of a graph G, denoted $\mathcal{A}(G)=\left[a_{i j}\right]$, is a $(0,1)$-matrix such that $a_{i j}=1$ if and only if $i j \in E(G)$

The degree of vertex v in graph G denoted $d(v)$, is the number of vertices adjacent to v. A leaf is a vertex of degree 1 .

The complementof a graph G is the graph \bar{G} such that vertex set is $V(G)$ and for each pair $u, v \in V(G), u v$ is an edge of \bar{G} if and only if $u v$ is not an edge of G.

A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. The subgraph $G[R]$ of G induced by $R \subseteq V(G)$ is the subgraph with vertex set R and edge set $\{i j \in E(G): i, j \in R\}$. The subgraph induced by \bar{R} is denoted by $G-R$, or in the case R is acingle vertex v, by $G-v C ?$ 6)

An induced subgraph H of a graph G is a clique if H has an edge between every pair of vertices of H. A set of subgraphs of G, each of which is a clique and such that every edge of G is contained in at least one of these cliques, is called a clique covering of G.

Let u and v be vertices in a graph G, a u, v-path in G is a list $u=v_{0}, v_{1}, \ldots$, $v_{n}=v$ of vertices in $V(G)$ such that $v_{i-1} v_{i} \in E(G)$ and v_{0}, v_{1}, \ldots, and v_{n} are all different.

A graph G is connected if it has a u, v-path in G whenever $u, v \in V(G)$; otherwise, G is disconnected.

A path is a graph P_{n} such that $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}\right.$: $i=1,2, \ldots, n-1\}$. A cycle is a graph C_{n} such that $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{v_{i} v_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{v_{n} v_{1}\right\}$. A complete graph is a graph K_{n} such that $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{n}\right)=\left\{v_{i} v_{j}: 1 \leq i<j \leq n\right\}$.

A vertex v of a connected graph G is a cut-vertex if $G-v$ is disconnected.
A graph G is isomorphic to a graph H, denoted $G \cong H$, if there is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.

The union of graphs $G_{1}, G_{2 n}$ tand, and G_{n}, denoted $\bigcup_{i=1} G_{i}$, is the graph with vertex set $\bigcup_{i=1}^{n} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1} F\left(G_{i}\right)$. When $V\left(G_{i}\right) \cap V\left(G_{j}\right)=\varnothing$ for all $i \neq j$, it is called the disjoint union of graphs $G_{1}, G_{2}, ?$, and G_{n}, denoted $G_{1}+$ $G_{2}+\cdots+G_{n} . n G$ denotes the disjoint union of n copies of a graph G.

The complete multipartite graph, denoted $K_{n_{1}, n_{2}, \ldots, n_{k}}$, is the complement of $K_{n_{1}}+K_{n_{2}}+\rho . \mathrm{F}_{n_{n_{k}}}$. When $\mathrm{R}_{2}=22$. if is called a cpmptete bipartite graph. A complete bipartite graph $K_{1, n-1}$ isccalled an n-vertex star.

Thepion of praphis G1 and Growith disjoipt zertex sets Y Gि1 fand $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, denoted $G_{1} \vee G_{2}$, is the union of G_{1} and G_{2} together with all the edges joining $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.

Next, we give the basic definitions and the association of matrices and graphs.
Let S_{n}^{F} denote the set of $n \times n$ symmetric matrices over a field F. For $A=$ $\left[a_{i j}\right] \in S_{n}^{F}$, the graph of A, denoted $\mathcal{G}^{F}(A)$, is the graph with vertex set $\{1,2, \ldots, n\}$ (or $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$) and edge set $\left\{i j: a_{i j} \neq 0,1 \leq i<j \leq n\right\}$. Note that the
diagonal of A is ignored in determining $\mathcal{G}^{F}(A)$. The superscript F is used because the graph of an integer matrix may vary depending on the field in which the matrix is viewed.

Example 2.1. Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right], B=\left[\begin{array}{cc|rc}
0 & 1 & \sqrt{2} & 0 \\
1 & 3.1 & 1.5 & 2 \\
\sqrt{2} & -1.5 & 1 & 1 \\
0 & 2 & 1 & 0
\end{array}\right] \text {, and } C=\left[\begin{array}{cccc}
0 & 1 & 3 & 0 \\
1 & -1 & 2 & 1 \\
3 & 2 & 2 & 1 \\
0 & 1 & 1 & 2
\end{array}\right] \text {. }
$$

These graphs $\mathcal{G}^{\mathbb{R}}(A), \mathcal{G}^{\mathbb{R}}(B)$, and $\mathcal{G}^{\mathbb{R}}(\mathbb{C})$ are the graph G and graph $\mathcal{G}^{\mathbb{Z}_{2}}(C)$ is the graph H, as shown below. Note thaf $\mathcal{G}^{\mathbb{R}}(C)$ is not isomorphic to $\mathcal{G}^{\mathbb{Z}_{2}}(C)$.

The minimum rank over theld F of a graph G with n vertices is

In case $F=\mathbb{R}$, the superscript \mathbb{R} may be omitted, so we write $\operatorname{mr}(G)$ for $\operatorname{mr}^{\mathbb{R}}(G)$

The minimum rank of a graph G is field independent if the minimum rank of

Recall the result from basic linear algebra.

Proposition 2.2. [4] Let S be a linearly dependent set of integer vectors over \mathbb{Q}. Then for every prime number p, S is linearly dependent over \mathbb{Z}_{p}. If A is a square integer matrix, then for every prime p, $\operatorname{rank}^{\mathbb{Z}_{p}}(A) \leq \operatorname{rank}(A)$, and if characteristic of a field F is 0 , then $\operatorname{rank}^{F}(A)=\operatorname{rank}(A)$.

Example 2.3. Let F be any field and G be the graph as shown below.

with

and $\mathcal{G}^{F}(A) \cong G$. Note that rank $(A)=2$. By Proposition $2.2, \operatorname{rank}^{F}(A) \leq 2$. Then $\operatorname{mr}^{F}(G) \leq \operatorname{rank}^{F}(A) \leq 2$. Next, show that $\mathrm{mr}^{F}(G) \geq 2$. Let

with $\mathcal{G}^{F}(B) \cong G$ where $a, b, \epsilon, d, e, d_{1}, d_{2}, d_{3}, d_{4} \in F$ and a, b, c, d, and e are nonzero in F. Since the third and the fourth rows of B are thdependent, $\operatorname{rank}(B) \geq 2$. Then $\operatorname{mr}^{F}(G) \geq 2$. Thus $\mathrm{mr}^{F}(G)=2$ for any field \bar{F}. Therefore the minimum

$$
\text { rank of } G \text { is field independent. }
$$ field incependenee ofothe minnum rank as follows. CRecallothat when A is an integer matrix and p is prime, A can be viewed as a matrix over \mathbb{Z}_{p}; the rank of A over \mathbb{Z}_{p} will be denoted by $\operatorname{rank}^{\mathbb{Z}_{p}}(A)$.

A universally optimal matrix for a graph G is an integer symmetric matrix A such that every off-diagonal entry of A is 0,1 , or -1 and $\mathcal{G}(A) \cong G$ and for all fields $F, \operatorname{rank}^{F}(A)=\operatorname{mr}^{F}(G)$.

Example 2.4. From example 2.3, the graph $G \cong \mathcal{G}(A)$ where

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

and $\operatorname{rank}^{F}(A)=2=\operatorname{mr}^{F}(G)$ for any field F. Therefore A is a universally optimal matrix for G.

In [4], L.M. DeAlba et al. showed the results about field independence of the minimum rank for families of graphs and these graphs have universally optimal matrices which is presented in Table 2.1. Definitions of graphs in this table can be found in the Appendix.

Table 2.1: Summary of field independence of the minimum rank over any field F for families of graphs

In [3], W. Barrett et al. showed that if

$$
J=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \text { and } A=\left[\begin{array}{ccc}
0_{3 \times 3} & J & J \\
J & 0_{3 \times 3} & J \\
J & J & 0_{3 \times 3}
\end{array}\right]
$$

where $\mathbf{0}_{3 \times 3}$ is the 3×3 zero matrix, then the matrix A is a universally optimal matrix for the complete multipartite graph $K_{3,3,3}$ shown in Figure 2.1 because if characteristic of a field F is $2, \operatorname{rank}^{F}(A)=2-m{ }^{F}\left(K_{3,3,3}\right)$; otherwise, $\operatorname{rank}^{F}(A)=$ $3=\mathrm{mr}^{F}\left(K_{3,3,3}\right)$. But $K_{3,3,3}$ does not have field independent minimum rank.

In [4], L.M. DeAlba et al. showed that if G is the disjoint union of $K_{3,3,3}$ and $\overline{P_{3} \cup 2 K_{3}}$ shown in Figure 2.1, then G has field independent minimum rank but G does not have a universally optimal matrix.

Figure 2.1: The complete multipartite graph $K_{3,3,3}$ and the graph $\overline{P_{3} \cup 2 K_{3}}$
Remark 2.5.[4] The existence of a/universallyoptimal matrix for the graph G implies $\mathrm{mr}^{F}(G)^{\varrho} \leq \operatorname{mr}(G)$ for all fields F, or equivalently, the existence of a field F such hatt mr $(G) 9$ mindies that G dees nothave कuniversally optimal matrix.

In [4], L.M. DeAlba et al. showed the results about the minimum rank of graphs are dependent of the field and these graphs does not have a universally optimal matrix which is presented in Table 2.2. Definitions of graphs in this table can be found in the Appendix.

G	$\operatorname{mr}(G)$	$\mathrm{mr}^{\mathbb{Z}_{2}}(G)$
W_{6} (wheel)	3	4
M_{5} (Möbius ladder)	6	8
$L\left(K_{7}\right)$	5	6
H_{3} (half-graph)	3	4
$K_{2,2,2,2}$	2	4
complement of 2-treo H in Figure 2.2	4	5
complement of tree T in Figure 2.3	3	4
$\overline{3 K_{2} \cup K_{1}}$	2	4
$\overline{C_{6} \cong K_{3} \square K_{2} \cong K_{3} \square P_{2} \cong C_{3} \square P_{2}}$	3	4
$C_{5} \square K_{3} \cong C_{5} \square C_{3}$	9	10
$P_{3} \boxtimes P_{3}$	4	6

Table 2.2: Summary of field dependence of the minimum rank for graphs

Figure 2.3: A tree T and its complement \bar{T}

In chapter IV, we present some graphs which do not have a universally optimal matrix by using Remark 2.5.

We introduce the following notation about specific matrices and a vector which will be used to determine universally optimal matrices.

1. I_{n} denotes the $n \times n$ identity matrix.
2. $0_{m \times n}$ denotes the $m \times n$ zero matrix.
3. $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ denotes the $n \times n$ matrix of the form

4. $\operatorname{diag}^{\prime}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ denotes the $n \times n$ matrix of the form

5. "repeat[]"means the sequence enclosed in parentheses appears as many times as needed (possibly zero times) to obtain a vector of the correct length.

For example, $(1,1,-1,0,0,-1,-1,0,0,-1, \ldots,-1,0,0,-1)^{T}=(1,1$, repeat

$$
[-1,0,0,-1])^{T}
$$

The result from the following proposition will be used to determine minimum ranks of graphs and universally optimal matrices.

Proposition 2.6. [4, 6]

1. The path P_{n} has a universally optimal matrix of the form $\mathcal{A}\left(P_{n}\right)+D$ where

2. The cycle C_{n} has a universallyoptimal matrix of the form $\mathcal{A}\left(C_{n}\right)+D$ where

3. The completewgraph K_{n} hastanniversally optimal matrix of the form $\mathcal{A}\left(K_{n}\right)+$

Example 2.7.

$$
A_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], A_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \text {, and } A_{3}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

are universally optimal matrices for P_{3}, C_{4}, and K_{5}, respectively.

The next results are tools to determine lower bounds or upper bounds for the minimum rank of graphs.

Proposition 2.8. [3, 5]

1. If H is an induced subgraph of a graph G, then $\mathrm{mr}^{F}(H) \leq \mathrm{mr}^{F}(G)$ for any field F.
2. If G_{1}, G_{2}, \ldots, and G_{n} are graphs and $G=\bigcup_{i=1}^{n} G_{i}$, then $\operatorname{mr}(G) \leq \sum_{i=1}^{n} \operatorname{mr}\left(G_{i}\right)$.

Example 2.9. We determine alower bound and an upper bound for the minimum rank of a graph G.

Let F be a field. Since the path P_{4} is an induced subgraph of G and by Proposition $2.8(1)$ mr $^{F}\left(P_{4}\right) \leq \mathrm{mr}^{F}(G)$. By Table 2.1. $\mathrm{mr}^{F}\left(P_{4}\right)=3$. Thus $3 \leq$ $\mathrm{mr}^{F}(G)$ for any field F. We can view that G is the union of K_{2} and 2 copies of K_{3}. By Table 2.1 and Proposition $2.8(2) \mathrm{mr}^{\mathrm{mr}}(G) \leq \operatorname{mr}\left(K_{2}\right)+2 \mathrm{mr}\left(K_{3}\right)=1+2=3$.
Thus $\operatorname{mr}(G) \leq 3$. In \$1, 9ु. Baroli et al. ussed the ideå of covering the eges of a graph with subgraphs to determine the upper bound for the minimum rank of a graph G.

An (edge) covering of a graph G is a set of subgraphs $\mathcal{C}=\left\{G_{i}, i=1,2, \ldots, n\right\}$ such that G is the union $G=\bigcup_{i=1}^{n} G_{i}$. A graph has many possible coverings, but some, such as clique coverings, are more useful than others. For a given covering $\mathcal{C}, c_{\mathcal{C}}(e)$ denotes the number of subgraphs that have edge e as a member.

Example 2.10. Let G be the graph shown below.

G:

Since $\mathcal{C}=\left\{K_{5}, C_{4}\right\}$ is a covering of G and K_{5} and C_{4} have only one common edge $v_{4} v_{5}, c_{\mathcal{C}}\left(v_{4} v_{5}\right)=2$ and $c_{\mathcal{C}}(e)=1$ for every edge $e \in E(G) \backslash\left\{v_{4} v_{5}\right\}$.

Proposition 2.11. [4] Let F be afield and let G be a graph. Suppose $\mathcal{C}=\left\{G_{i}, i=\right.$ $1,2, \ldots, n\}$ is a covering of G such that for each G_{i} there is a universally optimal matrix of the form $\mathcal{A}\left(G_{i}\right)+D_{i}$, where D_{i} is a diagonal matrix. If char $F=0$ or if $\operatorname{char} F=p$ and $c_{\mathcal{C}}(e) \not \equiv 0(\bmod p)$ where p is prime and for every edge $e \in E(G)$, then

Example 2.12. Let G be the graph shown below.

By Table $2 \cdot 1, \operatorname{mr}_{6}^{F}\left(P_{3}\right)=2 \operatorname{arr}^{F}\left(G_{4}\right)=2 \operatorname{amdamr}^{F}\left(F_{5}\right)$ Br $_{6}^{1}$ for any field F. no common edges, $c_{\mathcal{C}}(e)=1$ for every edge $e \in E(G)$. Then $c_{\mathcal{C}}(e) \not \equiv 0(\bmod p)$ where p is prime. By Proposition 2.11, $\mathrm{mr}^{F}(G) \leq \mathrm{mr}^{F}\left(P_{3}\right)+\mathrm{mr}^{F}\left(C_{4}\right)+\mathrm{mr}^{F}\left(K_{5}\right)=$ $2+2+1=5$ for any field F. Since the path P_{6} is an induced subgraph of G and by Table 2.1 and Proposition $2.8(1), 5=\mathrm{mr}^{F}\left(P_{6}\right) \leq \mathrm{mr}^{F}(G)$ for any field F. Then $\mathrm{mr}^{F}(G)=5$ for any field F. By Example 2.7, A_{1}, A_{2}, and A_{3} are universally
optimal matrices for P_{3}, C_{4}, and K_{5}, respectively. Consider

$$
A=\left[\begin{array}{ccc}
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 4} \\
\mathbf{0}_{3 \times 3} & A_{1} & 0_{3 \times 4} \\
\mathbf{0}_{4 \times 3} & 0_{4 \times 3} & 0_{4 \times 4}
\end{array}\right]+\left[\begin{array}{cc}
A_{2} & 0_{4 \times 6} \\
\mathbf{0}_{6 \times 4} & 0_{6 \times 6}
\end{array}\right]+\left[\begin{array}{cc}
0_{5 \times 5} & 0_{5 \times 5} \\
0_{5 \times 5} & A_{3}
\end{array}\right],
$$

which is

Then $\operatorname{rank}(A)=5$ and $\mathcal{G}(A) \cong G$ By Proposition 2.2, $\operatorname{rank}^{F}(A) \leq \operatorname{rank}(A)=5$ for any field F. We have $5=\mathrm{mr}^{F}(G) \leq \operatorname{rank}^{F}(A) \leq 5$ for any field F. Then $\operatorname{mr}^{F}(G)=\operatorname{rank}^{F}(A)$ for any field F. Thus A is a universally optimal matrix for G and G has field independent minimum rank.

Barions et al. defined-a zero forcing set as a tool to determine a lower

 bound for the minimum rank of a graph First, they defined the color-change rule as follows: If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor v of u is white, then change the color of v to black. Given a coloring of G, the derived coloring is the result of applying the color-change rule until no more change are possible. A zero forcing set for a graph G is a subset Z of vertices such that if initially the vertices in Z are colored black and the remaining vertices are colored white, the derived coloring of G isall black. The zero forcing number for G, denoted $Z(G)$, is the minimum of $|Z|$ over all zero forcing sets $Z \subseteq V(G)$. The parameter $Z(G)$ is a tool to determine a lower bound for $\mathrm{mr}^{F}(G)$.

The next examples show zero forcing set and zero forcing numbers for some graph.

Example 2.13. The graph G, as shown below, has $\left\{v_{3}, v_{4}\right\}$ as a zero forcing set by applying the color-change rute shown in steps (a)-(d) as shown in Figure 2.4 and so $Z(G) \leq 2$. The derived coloring of G by the only one vertex is not all black since more than one white yertices are neighbors of a black vertex. Then any set of only one vertex of G cannot be a zero forcing set for G. Thus $Z(G)=2$.

(d)

Example 2.14. Any set of $n-2$ leaves of the n-vertex star $K_{1, n-1}$ is a zero forcing set for $K_{1, n-1}$ and so $Z\left(K_{1, n-1}\right) \leq n-2$. The derived coloring of $K_{1, n-1}$ by any set of $n-3$ vertices is not all black since there are 2 or 3 vertices left which are colored white. Then any set of $n-3$ vertices of $K_{1, n-1}$ cannot be a zero forcing set for $K_{1, n-1}$. Thus $Z\left(K_{1, n-1}\right)=n-2$.

Proposition 2.15. [3] $Z\left(P_{n}\right)=1, Z\left(C_{n}\right)=2$ and $Z\left(K_{n}\right)=n-1$.

Proposition 2.16. [1] For any graph G, $\operatorname{mr}^{F}(G) \geq|G|-Z(G)$ for any field F.

The next examples, we determine a lower bound for minimum rank over a field F of some graph G.

Example 2.17. Consider the graph G in Example 2.13. We have $Z(G)=2$. By Proposition 2.16, $\operatorname{mr}^{{ }^{F}}(G) \geq|G|, Z(G)=5-2=3$ for any field F. Thus $\operatorname{mr}^{F}(G) \geq 3$ for any field F

Example 2.18. Consider the n-vertex star $K_{1, n-1}$. By Example 2.14, $Z\left(K_{1, n-1}\right)=$ $n-2$. By Proposition 2.16, $\mathrm{mr}^{F}\left(K_{ \pm, n-1}\right) \geq\left|K_{1, n-1}\right|-Z\left(K_{1, n-1}\right)=n-(n-2)=2$ for any field F. Thus $\operatorname{mr}^{F}\left(K_{1, n-1}\right) \geqslant 2$ for any field F.

It is not true, if H is an induced subgraph of a graph G, then $Z(H) \geq Z(G)$ or $Z(H) \leq Z(G)$, as shown in the next examples.

Example 2.19. Consider the graph G shown below with H as an induced subgraph. We obtain $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{1}, v_{2}, v_{5}\right\}$ are zere forcing sets for G and H, respectively. Thus $Z(G)=2<3=Z(H)$.

Example 2.20. Since the complete graph K_{3} is an induced subgraph of the complete graph $K_{5}, Z\left(K_{3}\right)=2<4=Z\left(K_{5}\right)$.

CHAPTER III

FIELD INDEPENDENCE RESULTS

In this chapter, we introduce definitions of the book graph, the fan graph, the lotus graph, the hanging bridge graph, the path-cycle graph, and the path-clique graph and establish field independence of the minimum rank for the families of these graphs. We show that these graphs have field independent minimum rank and universally optimal matrices.

First, we present the definition of the fan graph and give results about this graph.

Let n be a positive integer greater than 3 . The fan graph on n vertices, denoted F_{n}, is the graph for which $V\left(F_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(F_{n}\right)=\left\{v_{i} v_{n}\right.$:

Example 3.1. The fan graph F_{8} on 8 verticesis shown belowt

Proposition 3.2. For $n \geq 4, Z\left(F_{n}\right)=2$.

Proof. We claim that $\left\{v_{1}, v_{n}\right\}$ is a zero forcing set for F_{n}, and so $Z\left(F_{n}\right) \leq 2$. Assign v_{1} and v_{n} black and the other vertices white. For all $k, 2 \leq k \leq n-1$, we can change the color of v_{k} to black since v_{k} is the only white vertex adjacent to v_{k-1}. Now, the derived coloring of F_{n} is all black. Then $\left\{v_{1}, v_{n}\right\}$ is a zero forcing set for F_{n}, as desired. Thus $Z\left(F_{n}\right) \leq 2$. We see that any one vertex in F_{n} cannot force the remaining vertices because its degree is greater than $1, Z\left(F_{n}\right) \geq 2$. Thus $Z\left(F_{n}\right)=2$.

Next, we will show that for any field $F, \operatorname{mr} F\left(F_{n}\right)=n-2$ by establishing a universally optimal matrix for F_{n} which yields an upper bound for $\mathrm{mr}^{F}\left(F_{n}\right)$.

Theorem 3.3. For $n \geq 4$, there is.a diagonal matrix D such that $\operatorname{rank}\left(\mathcal{A}\left(F_{n}\right)+\right.$ $D)=n-2$. Moreover, F_{n} has field independent minimum rank, and $\mathcal{A}\left(F_{n}\right)+D$ is a universally optimal matrix for F_{n}...

Proof. Let D be a

Clearly, $\mathcal{G}\left(\mathcal{A}\left(F_{n}\right)+D\right) \cong F_{n}$. We exhibit two independent vectors \vec{z}_{1} and \vec{z}_{2} in the kernel of $\mathcal{A}\left(F_{n}\right)+D$ to show that $\operatorname{null}\left(\mathcal{A}\left(F_{n}\right)+D\right) \geq 2$. Consider the following 4 cases:

Case $n \equiv 0(\bmod 4)$. Then $\vec{z}_{1}=(1,0,-1 \text {, repeat }[0,1,0,-1], 0)^{T}$ and $\vec{z}_{2}=(0,-1$, -1 , repeat $[0,0,-1,-1], 1)^{T}$.

Case $n \equiv 1(\bmod 4)$. Then $\vec{z}_{1}=(-1,1,1 \text {, repeat }[-1,-1,1,1],-1,0)^{T}$ and $\vec{z}_{2}=$ $(-1,0,0 \text {, repeat }[-1,-1,0,0],-1,1)^{T}$.

Case $n \equiv 2(\bmod 4)$. Then $\vec{z}_{1}=(0,-1 \text {, repeat }[0,0,-1,-1], 0,0,-1,1)^{T}$ and $\vec{z}_{2}=$ $(-1,1 \text {, repeat }[0,-1,0,1], 0,-1,1,0)^{T}$.

Case $n \equiv 3(\bmod 4)$. Then $\vec{z}_{1}=(1,-1 \text {, repeat }[0,1,0,-1], 0)^{T}$ and $\vec{z}_{2}=(-1,0$, $\operatorname{repeat}[0,-1,-1,0], 1)^{T}$.

In any case, we obtain $\operatorname{rank}\left(\mathcal{A}\left(F_{n}\right)+D\right)=n-\operatorname{null}\left(\mathcal{A}\left(F_{n}\right)+D\right) \leq n-2$. Let F be any field. By Proposition 2.16 and $3.2, \mathrm{mr}^{F}\left(F_{n}\right) \geq\left|F_{n}\right|-Z\left(F_{n}\right)=n-2$. By Remark 2.2, $\operatorname{rank}^{F}\left(\mathcal{A}\left(F_{n}\right)+D\right) \leq \operatorname{rank}\left(\mathcal{A}\left(F_{n}\right)+D\right) \leq n-2$. We have $n-2 \leq \operatorname{mr}^{F}\left(F_{n}\right) \leq \operatorname{rank}^{F}\left(\mathcal{A}\left(F_{i n}\right)\right.$ 4 $\left.D\right) \leq n-2$. Then $\operatorname{mr}^{F}\left(F_{n}\right)=n-2=$ $\operatorname{rank}^{F}\left(\mathcal{A}\left(F_{n}\right)+D\right)$. Thus rank $\left(\mathcal{A}\left(\overline{F_{n}}\right) \pm D\right)=n-2$. Hence F_{n} has field independent minimum rank, and $\mathcal{A}\left(F_{n}\right)+D$ is a daniversally optimal matrix for F_{n}.

Example 3.4. For the fan graphts

is a uniyersally optimal matrix for F_{8} where $D=\operatorname{diag}(0,0,0,0,0,0,0,4)$ and $\mathrm{mr}^{F}\left(F_{8}\right)=6$ for any field F.

In the next section, we present the definition of the book graph and give results about this graph.

3.2 Book Graphs

Let n be a positive integer greater than 1 . The book graph on $2(n+1)$ vertices, denoted B_{n}, is the graph for which $V\left(B_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2(n+1)}\right\}$ and $E\left(B_{n}\right)=\left\{v_{1} v_{2 i+1}: i=1,2, \ldots, n\right\} \cup\left\{v_{2} v_{2(i+1)}: i=1,2, \ldots, n\right\} \cup\left\{v_{i} v_{i+1}: i=\right.$ $1,3,5, \ldots, 2 n+1\}$.

Example 3.5. The book graph B_{4} on 10 vertices is shown below.

For any field F, the next resultassociates a lower bound for $\operatorname{mr}^{F}\left(B_{n}\right)$.

Proposition 3.6. For $n \geq 2, Z\left(B_{n}\right) \leq n$.
Proof. We claim that $\left\{v_{1}, v_{5}, v_{7}, v_{9}, \ldots, v_{2 n+1}\right\}$ is a zero forcing set for B_{n} and so $Z\left(B_{n}\right) \leq n$. Assign $v_{1}, v_{5}, v_{7}, v_{9}, \ldots$, and $v_{2 n+1}$ black and the other vertices white. For all $k, 3 \leq k \leq n 4$, we can change the color of $v_{2 k}$ to black since $v_{2 k}$ is the only white vertextadjacent to $v_{2 k-1}$. That is, $v_{6}, v_{8}, v_{10}, v_{12}, \ldots$, and $v_{2 n+2}$ are black vertices. Then v_{6} can force white vertex v_{2} into black, Also, v_{1} and v_{2} can force white vertices v_{3} and v_{4} into brack, respectively. Now, the derived coloring of B_{n} is all black. Thus $\left\{v_{1}, v_{5}, v_{7}, v_{9}, \ldots, v_{2 n+1}\right\}$ is a zero forcing set for B_{n}, as desired. Hence $Z\left(B_{n}\right) \leq n$.

Theorem 3.7. For $n \geq 2$, there is a diagonal matrix D such that $\operatorname{rank}\left(\mathcal{A}\left(B_{n}\right)+\right.$ $D)=n+2$. Moreover, B_{n} has field independent minimum rank, and $\mathcal{A}\left(B_{n}\right)+D$ is a universally optimal matrix for B_{n}.

Proof. Let $D=\operatorname{diag}(0, n-2,1, \ldots, 1)$. Clearly, $\mathcal{G}\left(\mathcal{A}\left(B_{n}\right)+D\right) \cong B_{n}$. We will exhibit n independent vectors $\vec{z}_{1}, \vec{z}_{2}, \ldots$ and \vec{z}_{n} in the kernel of $\mathcal{A}\left(B_{n}\right)+D$ to show that $\operatorname{null}\left(\mathcal{A}\left(B_{n}\right)+D\right) \geq n$. Then $\vec{z}_{1}-(1,1,-1,0 \text {, repeat }[0,-1])^{T}, \vec{z}_{2}=(0$, $0,1,-1,-1,1,0, \ldots, 0)^{T}, \vec{z}_{3}=(0,0,0,0,1,-1,-1,1,0, \ldots, 0)^{T}, \ldots, \vec{z}_{n-1}=(0, \ldots$, $0,1,-1,-1,1,0,0)^{T}$, and $\vec{z}_{n}=(0,0,0,1,-1,-1,1)^{T}$. We obtain $\operatorname{rank}\left(\mathcal{A}\left(B_{n}\right)+\right.$ $D)=2 n+2-\operatorname{null}\left(\mathcal{A}\left(B_{n}\right)+D\right) \leq 2 n+2-n=n+2$. Let F be any field. By Proposition 2.16 and 3.6, $\mathrm{mr}^{F}\left(B_{n}\right) \geq\left|B_{n}\right|-Z\left(B_{n}\right) \geq 2 n+2-n=n+2$. By Remark $2.2, \operatorname{rank}^{F}\left(\mathcal{A}\left(B_{n}\right)+D\right) \leq \operatorname{rank}\left(\mathcal{A}\left(B_{n}\right)+D\right) \leq n+2$. We have $n+2 \leq \operatorname{mr}^{F}\left(B_{n}\right) \leq$ $\operatorname{rank}^{F}\left(\mathcal{A}\left(B_{n}\right)+D\right) \leq n+2$. Then $\mathrm{mi}^{F}\left(B_{n}\right)=n+2=\operatorname{rank}^{F}\left(\mathcal{A}\left(B_{n}\right)+D\right)$. Thus $\operatorname{rank}\left(\mathcal{A}\left(B_{n}\right)+D\right)=n+2$. Hence. B_{n} has field independent minimum rank, and $\mathcal{A}\left(B_{n}\right)+D$ is a universally optimal matrix for B_{n}.

Example 3.8. For the book graph B_{4},

is a universally optimal matrix for B_{4} where $D=\operatorname{diag}(0,2,1,1,1,1,1,1,1,1)$ and $\mathrm{mr}^{F}\left(B_{4}\right)=6$ for any field F.

In the next section, we present the definition of the lotus graph and give results about this graph.

3.3 Lotus Graphs

Let n be a positive integer greater than 2. The lotus graph on $2 n$ vertices, denoted $L t_{n}$, is the graph for which $V\left(L t_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ and $E\left(L t_{n}\right)=$ $\left\{v_{i} v_{i+1}: i=1,2, \ldots, 2 n-1\right\} \cup\left\{v_{1} v_{2 n}\right\} \cup\left\{v_{2 i} v_{2(i+1)}: i=1,2, \ldots, n-1\right\} \cup\left\{v_{2} v_{2 n}\right\}$. Example 3.9. The lotus graph fft5 on 10 vertices is shown below.
 so $Z\left(L t_{n}\right) \leq n$. Assign $v_{1}, v_{2}, v_{4}, v_{6}, \ldots$, and $v_{2 n-2}$ black andethe other vertices white. We can changel the colow of $92 n$ to black since ever is the only white vertex adjacent to v_{1}. For $k=1,2, \ldots, n-1$, orderly, we can change the color of $v_{2 k+1}$ to black since $v_{2 k+1}$ is the only white vertex adjacent to $v_{2 k}$, that is $v_{3}, v_{5}, v_{7}, \ldots$, and $v_{2 n-1}$ are black vertices. Now, the derived coloring of $L t_{n}$ is all black. Then $\left\{v_{1}, v_{2}, v_{4}, v_{6}, \ldots, v_{2 n-2}\right\}$ is a zero forcing set for $L t_{n}$, as desired. Thus $Z\left(L t_{n}\right) \leq$ n.

Theorem 3.11. For $n \geq 3$, there is a matrix D such that $\operatorname{rank}\left(\mathcal{A}\left(L t_{n}\right)+D\right)=$ n. Moreover, $L t_{n}$ has field independent minimum rank, and $\mathcal{A}\left(L t_{n}\right)+D$ is a universally optimal matrix for $L t_{n}$.

Proof. Let D be a $2 n \times 2 n$ matrix defined by
$D= \begin{cases}\operatorname{diag}(\text { repeat }[1,0,-1,0], 1,2)+\text { diag' }^{\prime}(\text { repeat }[0,0,-2,-2],-2) & \\ +\operatorname{diag}^{\prime \prime}(\operatorname{repeat}[0,0,0,-2], 0,0,0,0 & \text { if } n \text { is odd, } \\ \operatorname{diag}(1,0,-1,-2,-1, \text { repeat }[-2,-1,-2,-1], 0,1,2) & \\ \left.+\operatorname{diag}^{\prime}(0,0,-2,0, \text { repeat } /-2,0,-2,0],-2,-2,-2\right) & \text { if } n \text { is even. }\end{cases}$
Clearly, $\mathcal{G}\left(\mathcal{A}\left(L t_{n}\right)+\mathcal{D}\right) \cong L t_{n}$. We exhibit n independent vectors $\vec{z}_{1}, \vec{z}_{2}, \ldots$, and \vec{z}_{n} in the kernel of $\mathcal{A}\left(L t_{n}\right)+D$ to show that null $\left(\mathcal{A}\left(L t_{n}\right)+D\right) \geq n$. Then $\vec{z}_{1}=$ $(-1,1,1,0, \ldots, 0)^{T}, \vec{z}_{2}=(0,0,-1,1,1,0, \ldots, 0)^{T}, \ldots, \vec{z}_{n-1}=(0, \ldots, 0,-1,1,1,0)^{T}$,
 $\left.\operatorname{null}\left(\mathcal{A}\left(L t_{n}\right)+D\right)\right) \leq 2 n-n=n$. Eet \bar{F} belany field. By Proposition 2.16 and 3.10, $\operatorname{mr}^{F}\left(L t_{n}\right) \geq\left|L t_{n}\right|-Z\left(L t_{n}\right) \geq 2 n-n=n$. By Remark 2, $2, \operatorname{rank}^{F}\left(\mathcal{A}\left(L t_{n}\right)+D\right) \leq$ $\operatorname{rank}\left(\mathcal{A}\left(L t_{n}\right)+D\right)=n$. We have $n \leq \operatorname{mr}^{F}\left(L t_{n}\right) \leq \operatorname{rank}^{F}\left(\mathcal{A}\left(L t_{n}\right)+D\right) \leq n$. Then $\operatorname{mr}^{F}\left(L t_{n}\right)=n=\operatorname{rank}^{F}\left(\mathcal{A}\left(L t_{n}\right)+D\right)$. Thas $\operatorname{rank}\left(\mathcal{A}\left(L t_{n}\right)+D\right)=n$. Hence $L t_{n}$ has field independentminimum rank, and $\mathcal{A}\left(L t_{n}\right)+D$ isda universally optimal

Example 3.12. For the lotus graph L_{5},

$$
A=\left[\begin{array}{cccccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 2
\end{array}\right]=\mathcal{A}\left(t_{5}\right)+D
$$

is a universally optimal matrix for Its where $D=\operatorname{diag}(1,0,-1,0,1,0,-1,0,1,2)+$ $\operatorname{diag}^{\prime}(0,0,-2,-2,0,0,-2,-2,-2) \overline{T d i a g}^{\prime \prime}(0,0,0,-2,0,0,0,0)$ and $\mathrm{mr}^{F}\left(L t_{5}\right)=5$ for any field F.

In the next section, we extend the definition of the path into the hanging bridge graph and we give results about this graph.

3.4 Hanging Bridge Graphs

Let n be a positive integer greater than 1. The hanging bridge graph on $4 n$ vertices, denoted $A b_{n}$, is cthe graph contructed-from al path $P_{3 n}$ by appending n extra vertices, with each "extra" yertex adjacent to 3 sequential path vertices. Without loss of generality, let v_{1}, v_{2}, \ldots, and $v_{3 n}$ be the vertices on path $P_{3 n}$ such that v_{1} and $v_{3 n}$ have degree 2 and $v_{3 n+1}, v_{3 n+2}, \ldots$, and $v_{4 n}$ be extra vertices in $H b_{n}$.

Example 3.13. The hanging bridge graph $H b_{2}$ on 8 vertices is shown below.
$H b_{2}$:

Proposition 3.14. For $n \geq 2, Z\left(H b_{n}\right) \leq n+1$.

Proof. We claim that n extra vertices and one vertex of degree 2 form a zero forcing set for $H b_{n}$. Let $V\left(H b_{n}\right) \neq\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{4 n}\right\}$. Assign $v_{1}, v_{3 n+1}, v_{3 n+2}, \ldots$, and $v_{4 n}$ black and the other vertices white. Claim that $\left\{v_{1}, v_{3 n+1}, v_{3 n+2}, \ldots, v_{4 n}\right\}$ is a zero forcing set for $H b_{n}$. For $k=1,2, \ldots 3 n$, orderly, we can change the color of v_{k+1} to black since v_{k+1} is the only white vertex adjacent to v_{k}, that is $v_{2}, v_{3}, v_{4}, \ldots$, and $v_{3 n}$ are black vertices. Now, the derived coloring of $L t_{n}$ is all black. Thus $\left\{v_{1}, v_{3 n+1}, v_{\left.3 n+2 \sqrt{2}, y_{4 n}\right\}}\right.$ is a zero forcing set for $H b_{n}$, as desired. Hence $Z\left(H b_{n}\right) \leq n+1$.

Next we give result about the hanging bridge graph.
 $D)=3 n-1$. Proof. Qet 98 be a $3 n \times 3 n$ diagonabmatrix defined by 9 \&

$$
D= \begin{cases}\operatorname{diag}(0, \text { repeat }[1], 0) & \text { if } n \text { is odd } \\ \operatorname{diag}(0,1,0, \text { repeat }[0,1,1]) & \text { if } n \text { is even }\end{cases}
$$

Clearly, $\mathcal{G}\left(\mathcal{A}\left(P_{3 n}\right)+D\right) \cong P_{3 n}$. We exhibit \vec{z} in the kernel of $\mathcal{A}\left(P_{3 n}\right)+D$ to show that null $\left(\mathcal{A}\left(P_{3 n}\right)+D\right) \geq 1$. Consider the following 2 cases:

Case n is odd. Then $\vec{z}=(\text { repeat }[1,0,-1])^{T}$.
Case n is even. Then $\vec{z}=(1,0,-1 \text {, repeat }[0,1,-1])^{T}$.
In any case, we obtain $\operatorname{rank}\left(\mathcal{A}\left(P_{3 n}\right)+D\right)=3 n-\operatorname{null}\left(\mathcal{A}\left(P_{3 n}\right)+D\right) \leq 3 n-1$. By
Table 2.1, $\operatorname{mr}\left(P_{3 n}\right)=3 n-1$. We have $3 n-1=\operatorname{mr}\left(P_{3 n}\right) \leq \operatorname{rank}\left(\mathcal{A}\left(P_{3 n}\right)+D\right) \leq$ $3 n-1$. Thus $\operatorname{rank}\left(\mathcal{A}\left(P_{3 n}\right)+D\right)=3 n-1$.

Theorem 3.16. There exists a diagonal matrix D^{*} such that $\operatorname{rank}\left(\mathcal{A}\left(H b_{n}\right)+\right.$ $\left.D^{*}\right)=3 n-1$ for all $n \geq 2$. Moreover, $H b_{n}$ has field independent minimum rank, and $\mathcal{A}\left(H b_{n}\right)+D^{*}$ is a universally optimal matrix for $H b_{n}$.

Proof. Let $D=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}, \sqrt{3 n}\right)$ be a diagonal matrix defined in the proof of Lemma 3.15 and $\operatorname{rank}\left(\mathcal{A}\left(P_{3 n}\right)+D\right)=3 n-1$. Define $D^{*}=\operatorname{diag}\left(d_{1}^{*}, d_{2}^{*}, \ldots, d_{4 n}^{*}\right)$ where $d_{i}^{*}=d_{i}$ for all $i=1,2,3,3 n$ and $d_{j}^{*}=1$ for all $j=3 n+1,3 n+$ $2,3 n+3, \ldots, 4 n$. Clearly, $\mathcal{G}\left(\mathcal{A}\left(H b_{n}\right) \not \mathcal{A}^{-} D^{*}\right) \cong H b_{n}$. The matrix $\mathcal{A}\left(H b_{n}\right)+D^{*}$ has n duplicate rows and columns that can be deleted to leave $\mathcal{A}\left(P_{3 n}\right)+D$ without changing the rank, that is $\operatorname{rank}\left(\mathcal{A}\left(H b_{n}\right)^{+}+D^{*}\right)=\operatorname{rank}\left(\mathcal{A}\left(P_{3 n}\right)+D\right)=3 n-1$. Let F be any field. By Table 2.1, $\mathrm{mr}^{F}\left(P_{3 n}\right)=3 n-1$. Since $P_{3 n}$ is an induced subgraph of $H b_{n}$ and by Proposition $2.8(1), \mathrm{mr}^{F}\left(H b_{n}\right) \geq \mathrm{mr}^{F}\left(P_{3 n}\right)=3 n-1$.
 have $3 n-1 \leq \operatorname{mr}^{-E}\left(H b_{n}\right) \leq \operatorname{rank}^{E}\left(\mathcal{A}\left(H \theta_{n}\right)+D^{*}\right) \leq 3 n-\mathcal{Q}$. Then $\mathrm{mr}^{F}\left(H b_{n}\right)=$ $3 n-1=\operatorname{rank}^{F}\left(\mathcal{A}\left(H b_{n}\right)+D^{*}\right)$ Hence $^{H} b_{n}$ hasfield independent minimum rank, and $\mathcal{A}\left(H b_{n}\right)+D$ is a universally optimal matrix for $H b_{n}$.

Example 3.17. For the hanging bridge graph Hb_{2},

$$
A=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]=\mathcal{A}\left(H b_{n}\right)+D
$$

is a universally optimal matrix for $H b_{2}$ where $D=\operatorname{diag}(0,1,0,0,1,1,1,1)$ and $\mathrm{mr}^{F}\left(H b_{2}\right)=5$ for any field F

In the next example, we will construct the graph G by adding some "extra" vertex and appropriate edges to a hanging bridge graph $H b_{n}$ such that $H b_{n}$ is an induced subgraph of G and the minimum rank over a field F of G is equal to the minimum rank over F 等 $11 b_{n}$.

Example 3.18.

with $\operatorname{rank}(A)=5$ and G be the graph obtained from $H b_{2}$ by adding 5 extra
vertices and appropriate edges as shown below. We will show that $\mathrm{mr}^{F}(G)=$ $\mathrm{mr}^{F}\left(H b_{2}\right)$ for any field F.

Let F be any field. By Theorem $3.16, \mathrm{mr}{ }^{F}\left(H b_{2}\right)=5$. Since $H b_{2}$ is an induced subgraph of G and by Proposition 2.8 $(1), \mathrm{mr}^{F}\left(H b_{2}\right) \leq \mathrm{mr}^{F}(G)$. By Remark 2.2, $\operatorname{rank}^{F}(A) \leq \operatorname{rank}(A)=5$. We have $5 \leq \operatorname{mr}^{F}(G) \leq \operatorname{rank}^{F}(A) \leq 5$. Then $\mathrm{mr}^{F}(G)$ $=5=\operatorname{rank}^{F}(A)$. Clearly, $\mathcal{G}(A) \cong G$. Thus A is a universally optimal matrix for G. Hence G has a universally optimal matrix, field independent minimum rank,

In [4], L.M. DeAlba et al. showed that a mecklace with 3 -diamonds N_{s} has a universally optimal matri̊ $\left.\mathcal{A}\left(N_{s}\right)\right)^{+} I_{4 s}$, has field independentminimum rank, and $\mathrm{mr}^{F}\left(N_{s}\right)=3 s-2$ for any field F.

In the next example, we will construct the graph G by adding the "extra" vertex and appropriate edges to a necklace with s diamonds N_{s} such that N_{s} is an induced subgraph of G and the minimum rank over a field F of G is equal to the minimum rank over F of N_{s}.

Example 3.19.

Let
with $\operatorname{rank}(A)=7$ and G be the graph obtained from N_{3} by adding 5 extra vertices and appropriate edges as shown above. We will show that $\operatorname{mr}^{F}(G)=\operatorname{mr}^{F}\left(N_{3}\right)$ for any field F. Let F be any field. We know that $\operatorname{mr}^{F}\left(N_{3}\right)=7$. Since N_{3} is an induced subgraph of G and by Proposition 2.8 (1), $\operatorname{mr}^{F}\left(N_{3}\right) \leq \operatorname{mr}^{F}(G)$. By Remark 2.2, $\operatorname{rank}^{F}(A) \leq \operatorname{rank}(A)=7$. We have $7 \leq \operatorname{mr}^{F}(G) \leq \operatorname{rank}^{F}(A) \leq 7$. Then $\operatorname{mr}^{F}(G)=7=\operatorname{rank}^{F}(A)$. Clearly, $\mathcal{G}(A) \cong G$. Thus A is a universally
optimal matrix for G. Hence G has a universally optimal matrix, field independent minimum rank, and $\operatorname{mr}^{F}(G)=\operatorname{mr}^{F}\left(N_{3}\right)$ for any field F.

In next section, we give the definition of the path-cycle graph and show that this graph has field independent minimum rank directly. Then we determine a universally optimal matrix for this graph as well.

3.5 Path-cycle Graphs

Let k be a positive integer, Ap path-cycle graph, denoted $P C\left(m_{1}, m_{2}, \ldots, m_{k}\right.$; $n_{1}, n_{2}, \ldots, n_{k-1}$), is obtained from paths $P_{m_{1}}, P_{m_{2}}, \ldots$, and $P_{m_{k}}$ and cycles $C_{n_{1}}, C_{n_{2}}$, \ldots, and $C_{n_{k-1}}$ constructed so that for $i=2,3, \ldots, k$ and $j<i, V\left(P_{m_{i-1}}\right) \cap V\left(C_{n_{i-1}}\right)$ and $V\left(P_{m_{i}}\right) \cap V\left(C_{n_{i-1}}\right)$ have exactly one vertex and $V\left(P_{m_{j}}\right) \cap V\left(P_{m_{i}}\right), V\left(C_{n_{j-1}}\right) \cap$ $V\left(C_{n_{i-1}}\right), V\left(C_{n_{j-1}}\right) \cap V\left(P_{m_{i}}\right)$, and $V\left(P_{m_{j} f_{1}}\right) \cap V\left(C_{n_{i-1}}\right)$ have no vertices.

Clearly, $\left|P C\left(m_{1}, m_{2}, \ldots, \frac{m_{k}, n_{1}, n_{2}, \ldots, n_{k-1}}{}\right)\right|=\sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k-1} n_{i}-2(k-1)$.
Example 3.20. The path-cycle graph $P C(1,3,4 ; 5,4)$ is shown below.
$P C(1,3,4 ; 5,4)$:

Proposition 3.21. For $k \geq 1,2\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right) \leq k$.
Proof. Let v_{2}, v_{3}, \ldots, and v_{k} be any vertex of degree 2 in $C_{n_{1}}, C_{n_{2}}, \ldots$, and $C_{n_{k-1}}$, respectively such that each is adjacent to the common vertex of $P_{m_{i}}$ and $C_{n_{j}}$. If $m_{1}=1$, then let v_{1} be the common vertex of $P_{m_{1}}$ and $C_{n_{1}}$; otherwise, let v_{1} be the end vertex of $P_{m_{1}}$ but not the common vertex of $P_{m_{1}}$ and $C_{n_{1}}$. Then
$\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a zero forcing set of $P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$ because there is only one white vertex adjacent to a black vertex so the derived coloring of $P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$ is all black. Thus $Z\left(P C\left(m_{1}, m_{2}, \ldots\right.\right.$, $\left.\left.m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right) \leq k$.

Proposition 3.22. For $k \geq 1, \operatorname{mr}^{F}\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right)=$ $\sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k-1} n_{i}-2(k-1)-k$ for any field F. Thus $P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots\right.$, n_{k-1}) has field independent minimumarank.
Proof. Let F be any field. By Proposition 2.16 and $3.21, \sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k-1} n_{i}-2(k-1)-$ $k \leq\left|P C\left(m_{1}, m_{2}, . ., m_{k}, n_{1}, n_{2}, \vec{n}_{k-1}\right)\right|-Z\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots\right.\right.$, $\left.\left.n_{k-1}\right)\right) \leq \operatorname{mr}^{F}\left(P C\left(m_{1}, m_{2}, \ldots m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right)$. Let $S=\left\{P_{m_{1}}, P_{m_{2}}, \ldots\right.$, $\left.P_{m_{k}}, C_{n_{1}}, C_{n_{2}}, \ldots, C_{n_{k}-1}\right\}$ and clearly S is a covering of $P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}\right.$, $\left.n_{2}, \ldots, n_{k-1}\right)$. By Proposition 2.62 for any $i, j, 1 \leq i \leq k$ and $1 \leq j \leq k-1$, $P_{m_{i}}$ and $C_{n_{j}}$ have universallyoptimal matrices of the from $\mathcal{A}\left(P_{m_{i}}\right)+D_{i}$ and $\mathcal{A}\left(C_{n_{j}}\right)+D_{j}^{*}$, respectively where \mathcal{D}_{i} and D_{j}^{*} are diagonal matrices. Let e be any edge in $P C\left(m_{1}, m_{2} \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$. Since for $i=2,3, \ldots, k$ and $j<i$, $E\left(P_{m_{j}}\right) \cap E\left(P_{m_{i}}\right), E\left(\bar{C}_{n_{j-1}}\right) \cap E\left(C_{n_{i-1}}\right), E\left(P_{m_{i}}\right) \cap E\left(C_{n_{j}}\right)$ and $E\left(P_{m_{1}}\right) \cap E\left(C_{n_{i}}\right)$ have no edges, $c_{S}(e)=1$. ByProposition 2.11 $\mathrm{mr}^{F}\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots\right.\right.$, $\left.\left.n_{k-1}\right)\right) \leq \sum_{i=1}^{k} \operatorname{mrr}^{F}{ }^{2}\left(P_{m_{i}}\right)+\sum_{i=1}^{k-9} \operatorname{mr}^{E}\left(C_{n_{i}}\right)$. By Table 2.1, for any $i, j, 1 \leq i \leq k$
 $\operatorname{mr}^{F}\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right) \leq \sum_{i=1}^{k} \operatorname{mr}^{F}\left(P_{m_{i}}\right)^{6}+\sum_{i=1}^{k+1} \operatorname{mr}^{F}\left(C_{n_{i}}\right)=$ $\left(m_{1}-1\right)+\left(m_{2}-1\right)+\cdots+\left(m_{k}-1\right)+\left(n_{1}-2\right)+\left(n_{2}-2\right)+\cdots+\left(n_{k-1}-2\right)=$ $m_{1}+m_{2}+\cdots+m_{k}-k+n_{1}+n_{2}+\cdots+n_{k-1}-2(k-1)=\sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k-1} n_{i}-2(k-1)-k$.
Thus $\operatorname{mr}^{F}\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right)=\sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k-1} n_{i}-2(k-1)-k$ for any field F.

We also establish a universally optimal matrix for $P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}\right.$, $\left.\ldots, n_{k-1}\right)$.

Proposition 3.23. For $k \geq 1, P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$ has a universally optimal matrix.

Proof. Let $A_{1}, A_{1}^{\prime}, A_{2}, A_{2}^{\prime}, \ldots, A_{k-1}, A_{k-1}^{\prime}$, and A_{k} be universally optimal matrices for $P_{m_{1}}, C_{n_{1}}, P_{m_{2}}, C_{n_{2}}, \ldots, P_{m_{k-1}}, C_{n_{k-1}}$, and $P_{m_{k}}$, respectively. Then $\operatorname{rank}\left(A_{i}\right)=$ $\operatorname{mr}\left(P_{m_{i}}\right)=m_{i}-1$ and $\operatorname{rank}\left(A_{i}\right)=\operatorname{mr}\left(C_{n_{i}}\right)=n_{i}-2$ for all i. Let $s_{j}=m_{1}+$ $n_{1}+m_{2}+n_{2}+\cdots+m_{j-1}+n_{j} f_{1}-2(j-1)+1$ for all $j \in\{1,2, \ldots, k\}$. For $i=1,2, \ldots, k$, we construct the matrix B_{i} by embedding A_{i} into the $s_{k} \times s_{k}$ zero matrix at the s_{i} th row and s_{i} th column as shown below

and for $i=1,2, \ldots, k-1$, we define the matrix B_{i}^{\prime} by embedding A_{i}^{\prime} into the $s_{k} \times s_{k}$ zero matrix at the $\left(s_{i}+m_{i}-1\right)$ th row and $\left(s_{i}+m_{i}-1\right)$ th column as shown below

We see that $\operatorname{rank}\left(A_{i}\right)=\operatorname{rank}\left(B_{i}\right)$ and $\operatorname{rank}\left(A_{i}^{\prime}\right)=\operatorname{rank}\left(B_{i}^{\prime}\right)$ for all i. Let $A=\sum_{i=1}^{k-1}\left(B_{i}+B_{i}^{\prime}\right)+B_{k}$. Clearly, $\mathcal{G}(A) \cong P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$. We obtain $\operatorname{rank}(A) \leq \sum_{i=1}^{k} \operatorname{rank}\left(-B_{i}^{\prime}\right)^{\prime}+\sum_{i=1}^{k-1} \operatorname{rank}\left(B_{i}^{\prime}\right)=\sum_{i=1}^{k} \operatorname{rank}\left(A_{i}\right)+\sum_{i=1}^{k-1} \operatorname{rank}\left(A_{i}^{\prime}\right)=$ $\sum_{i=1}^{k}\left(m_{i}-1\right)+\sum_{i=1}^{k-1}\left(n_{2}-2\right)=\sum_{i=1}^{k} m_{i}-k+\sum_{i=1}^{k-1} n_{i}-2(k-1)=\sum_{i=1}^{k} m_{i}+\sum_{\substack{i=1 \\ k-1}}^{k} n_{i}-$ $2(k-1)-k$. Let F be any field. By Remark $2.2, \operatorname{rank}^{F}(A) \leq \operatorname{rank}(A) \leq \sum_{i=1}^{k} m_{i}+$ $\sum_{i=1}^{k-1} n_{i}-2(k-q)-k$ By Proposition $3.22, \sum_{i=1}^{6} m_{i}+\sum_{i=1}^{k-1} n_{i}-2(k-1)-k=$ $\operatorname{mr}^{F}\left(P Q\left(m_{1}, m_{2}, Q ., m_{k} ; n_{1}, n_{2}\right\}, n_{k} / 98\right) \leq \operatorname{rank}^{9} F(A) \leq \sum_{i=1}^{k} m_{i} \sum_{i=1}^{k-1} n_{i}-2(k-$ 1) $-k$. Then $\operatorname{mr}^{F}\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right)=\operatorname{rank}^{F}(A)$. Thus A is a universally optimal matrix for $P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$.

Example 3.24. By Proposition 3.23, $\mathrm{mr}^{F}(P C(1,3,4 ; 5,4))=10$ for any field F with

$$
\left[\begin{array}{ccccccccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

is a universally optimal matrix-and PC($1,3,4 ; 5,4)$ has field independent minimum rank.

The definition of the path-cycle graph can be extended by replacing some cycle in path-cycle graph with a polygonal path and show that the resulting graph has a universally optimal matrix and field independent minimum rank as shown in

Example 3.25. Thengraph G as shown in Figuye 3.1reonsists por paths $P_{2}^{(1)}$, $P_{3}^{(2)}, P_{3}^{(3)}$, and $P_{3}^{(4)}$, polygonal path G_{1} consisted of $C_{4}^{(5)}$ and $C_{6}^{(6)}$, polygonal path G_{2} consisted of $C_{5}^{(7)}, C_{4}^{(8)}$, and $C_{6}^{(9)}$, and polygonal path G_{3} consisted of $C_{5}^{(10)}$ and $C_{4}^{(11)}$ which $V\left(P_{2}^{(1)}\right) \cap V\left(C_{4}^{(5)}\right), V\left(C_{6}^{(6)}\right) \cap V\left(P_{3}^{(2)}\right), V\left(P_{3}^{(2)}\right) \cap V\left(C_{5}^{(7)}\right), V\left(C_{6}^{(8)}\right) \cap$ $V\left(P_{3}^{(3)}\right), V\left(P_{3}^{(3)}\right) \cap V\left(C_{4}^{(6)}\right)$, and $V\left(C_{4}^{(7)}\right) \cap V\left(P_{3}^{(4)}\right)$ have only one vertex. We show that G has a universally optimal matrix and field independent minimum rank.

Figure 3.1: The graph G with $\mathrm{mr}^{F}(G)=27$

We see that $Z(G) \leq 4$. Let F be any field. By Proposition 2.16, $\mathrm{mr}^{F}(G) \geq$ $|G|-Z(G) \geq|G|-4=27$. Let A_{1}, A_{2}, A_{3}, and A_{4} be universally optimal matrices for P_{2}, P_{3}, P_{3}, and P_{3}, respectively. An Table 2.1, G_{1}, G_{2}, and G_{3} have universally optimal matrices, say A_{5}, A_{6}, and A_{7} respectively. For all $i=1,2,3, \ldots, 7$, let B_{i} be constructed (similarly to the construction in Proposition 3.23) by embedding A_{i} in the appropriate place in a 27×27 matrix with $\operatorname{rank}\left(A_{i}\right)=\operatorname{rank}\left(B_{i}\right)$. Let $A=\sum_{i=1}^{7} B_{i}$. Then rank $(A) \leq \sum_{i=1}^{7} \operatorname{rank}\left(B_{i}\right)=\sum_{i=1}^{7} \operatorname{rank}\left(A_{i}\right)=(2-1)+(3-1)+$ $(3-1)+(3-1)+(8-2)+(11-2)+(7-2)=27$. We obtain that $27 \leq \mathrm{mr}^{F}(G) \leq$ $\operatorname{rank}^{F}(A) \leq \operatorname{rank}(A) \leq 27$. Thus $\operatorname{mr}^{F}(G)=27=\operatorname{rank}^{F}(A)$. Clearly, $\mathcal{G}(A) \cong G$. Hence G has Qunidersally optimal matrix and feld independent minimum rank. In μ ext section we give the definition of thepath-elique geaph and show that
 this graph has field independent minimum rank directly. Also a universally optimal matrix for this graph is determined.

3.6 Path-clique Graphs

Let k be a positive integer. A path-clique graph, denoted $P K\left(m_{1}, m_{2}, \ldots, m_{k}\right.$; $\left.n_{1}, n_{2}, \ldots, n_{k-1}\right)$, is obtained from paths $P_{m_{1}}, P_{m_{2}}, \ldots$, and $P_{m_{k}}$ and complete
graphs $K_{n_{1}}, K_{n_{2}}, \ldots$, and $K_{n_{k-1}}$ constructed so that for $i=2,3, \ldots, k$ and $j<i$, $V\left(P_{m_{i-1}}\right) \cap V\left(K_{n_{i-1}}\right)$ and $V\left(P_{m_{i}}\right) \cap V\left(K_{n_{i-1}}\right)$ have exactly one vertex and $V\left(P_{m_{j}}\right) \cap$ $V\left(P_{m_{i}}\right), V\left(K_{n_{j-1}}\right) \cap V\left(K_{n_{i-1}}\right), V\left(K_{n_{j-1}}\right) \cap V\left(P_{m_{i}}\right)$, and $V\left(P_{m_{j-1}}\right) \cap V\left(K_{n_{i-1}}\right)$ have no vertices.

Clearly, $\left|P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right|=\sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k-1} n_{i}-2(k-1)$.
Example 3.26. The path-clique graph PK $(1,3,4 ; 5,4)$ is shown below.

PK $(1,3,4 ; 5,4)$:

Proposition 3.27. For $\left.\left.k \geq 1, Z \overline{\operatorname{RK}\left(m_{1}\right.}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right) \leq \sum_{i=1}^{k-1} n_{i}$ $-2 k-3$.

Proof. Let $v_{1}^{(j)}, v_{2}^{(j)}, \ldots$, and $v_{n_{j}-2}$ be any vertex of degree $n_{j}-1$ in $K_{n_{j}}$ such that each is adjacent to the common vertex of $P_{m_{j}}$ and $K_{n_{j}}$. If $m_{1}=1$, then let v_{0} be the common vertex of $P_{n_{1}}$ and $K_{n_{1}}$; otherwise, let v_{0} be the end vertex of $P_{m_{1}}$ but not the common vertex of $P_{m_{1}}$ and $K_{n_{1}}$. Then $\left\{v_{0}, v_{1}^{(1)}, v_{2}^{(1)}\right\} \ldots, v_{n_{1}-2}^{(1)}, v_{1}^{(2)}, v_{2}^{(2)}, \ldots, v_{n_{2}-2}^{(2)}$, $\left.\ldots, v_{1}^{(k-1)}, v_{2}^{(k-1)} \ldots . v^{(k-1)}\right\}$ is a zero fôrcing set of $P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}\right.$, \ldots, n_{k-1}) becanse there is only one white vertex adjacent to a black vertex so
 $Z\left(P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right) \leq \sum_{i=1}^{k-1} n_{i}-2 k-3$.

Proposition 3.28. For $k \geq 1$, $m r^{F}\left(P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right)=$ $\sum_{i=1}^{k} m_{i}-1$ for any field F. Thus $P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$ has field independent minimum rank.

Proof. Let F be any field. By Table 2.1, $\mathrm{mr}^{F}\left(P_{m_{1}+m_{2}+\cdots+m_{k}}\right)=\sum_{i=1}^{k} m_{i}-1$. Since
$P_{m_{1}+m_{2}+\cdots+m_{k}}$ is an induced subgraph of $\operatorname{PK}\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$ and by Proposition $2.8(1), \sum_{i=1}^{k} m_{i}-1=\operatorname{mr}^{F}\left(P_{m_{1}+m_{2}+\cdots+m_{k}}\right) \leq \operatorname{mr}^{F}\left(P K\left(m_{1}, m_{2}\right.\right.$, $\left.\left.\ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)\right)$. Let $C=\left\{P_{m_{1}}, P_{m_{2}}, \ldots, P_{m_{k}}, K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k-1}}\right\}$ and cleary C is a covering of $\operatorname{PK}\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$. By Proposition 2.6, for any $i, j, 1 \leq i \leq k$ and $1 \leq j \leq k-1, P_{m_{i}}$ and $K_{n_{j}}$ have universally optimal matrices of the from $\mathcal{A}\left(P_{m_{i}}\right)+D_{i}$ and $\mathcal{A}\left(K_{n_{j}}\right)+D_{j}^{*}$, respectively where D_{i} and D_{j}^{*} are diagonal matrices. Let e be any oage in $P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots\right.$, $\left.n_{k-1}\right)$. Since for $i=2,3, \ldots, k$ and $j<i, \bar{E}\left(P_{m_{j}}\right) \cap E\left(P_{m_{i}}\right), E\left(K_{n_{j-1}}\right) \cap E\left(K_{n_{i-1}}\right)$, $E\left(P_{m_{i}}\right) \cap E\left(K_{n_{j}}\right)$, and $E\left(P_{m_{1}}\right) \cap E\left(K_{n_{i}}\right)$ have no edges, $c_{C}(e)=1$. By Proposition 2.11, $\mathrm{mr}^{F}\left(P K\left(m_{1}, m_{2}, ., m_{k}, n_{1}, m_{2}, \ldots, n_{k-1}\right)\right) \leq \sum_{i=1}^{h} \operatorname{mr}^{F}\left(P_{m_{i}}\right)+\sum_{i=1}^{k-1} \operatorname{mr}^{F}\left(K_{n_{i}}\right)$ $=\sum_{i=1}^{k} m_{i}-k+(k-1)=\sum_{i=1}^{k} m_{\text {hind }}$, Thus $\mathrm{mr}^{F}\left(P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}\right.\right.$, $\left.\left.\ldots, n_{k-1}\right)\right)=\sum_{i=1}^{k} m_{i}-1$ for any_field F :/h
Proposition 3.29. For $k \geq 1, \overline{\text { PK }}\left(m_{1} ; m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$ has a universally optimal matrix.

Proof. Let $A_{1}, A_{1}^{\prime}, A_{2} A_{2}^{\prime}, \ldots, A_{k-1}, A_{k-1}^{\prime}$, and A_{k} be universally optimal matrices for $P_{m_{1}}, K_{n_{1}}, P_{m_{2}} K_{n_{2}}{ }^{\sigma} \triangle P_{m_{m}-10} K_{n_{k}}$ and $P_{m_{k}}$ respectively. Then $\operatorname{rank}\left(A_{i}\right)=$ $\operatorname{mr}\left(P_{m_{i}}\right)=m_{i}^{(} 1$ andrank $\left(A_{i}^{\prime}\right)=\operatorname{mr}\left(K_{n_{i}}^{\boldsymbol{\partial}}\right)=1$ for all i. Let $s_{j}=m_{1}+n_{1}+m_{2}+$ $n_{2}+a_{j}+m_{j-a}$
let B_{i} and B_{i}^{\prime} be constructed (jimilarly to the construction in Proposition 3.23) by embedding A_{i} into the $s_{k} \times s_{k}$ zero matrix at the s_{i} th row and s_{i} th column with $\operatorname{rank}\left(A_{i}\right)=\operatorname{rank}\left(B_{i}\right)$ and $\operatorname{rank}\left(A_{i}^{\prime}\right)=\operatorname{rank}\left(B_{i}^{\prime}\right)$. Again, similar argument in Proposition 3.23 is applied. We obtain $\operatorname{mr}^{F}\left(P C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots\right.\right.$, $\left.\left.n_{k-1}\right)\right)=\sum_{i=1}^{k} m_{i}-1=\operatorname{rank}^{F}(A)$. Thus A is a universally optimal matrix for $P K\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k-1}\right)$.

Example 3.30. By Proposition 3.29, $\mathrm{mr}^{F}(\operatorname{PK}(1,3,4 ; 5,4))=7$. for any field F with

$$
\left[\begin{array}{lllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

is a universally optimal matrix-and PK $(1,3,4 ; 5,4)$ has field independent minimum rank.

CHAPTER IV

FIELD DEPENDENCE RESULTS

In our work, we also present some graphs which do not have field independence of minimum rank and these graphs do no have a universally optimal matrix.

4.1 The Join of Paths and Complete Graphs

Recall that for $t \geq 3, s \geq 2, P_{t}>K_{s}$ is the union of graphs P_{t} and K_{s}, with disjoint vertex sets $V\left(P_{t}\right)$ and $V\left(K_{s}\right)$, and all the edges joining $V\left(P_{t}\right)$ and $V\left(K_{s}\right)$.

First, we compute $\operatorname{mr}\left(P_{t} \vee K_{s}\right)$ and
Proposition 4.1. For $t \geq 3, s>2, \mathrm{mr}\left(P_{t} \vee K_{s}\right)=t-1$.
Proof. By Table 2.1, $\mathrm{mr}\left(P_{t}\right)=t=1$. Since P_{t} is an induced subgraph of $P_{t} \vee K_{s}$ and by Proposition $2.8(1), \operatorname{mr}\left(P_{t}\right) \leq m r\left(P_{t} \vee K_{s}\right)$. have $t-1 \leq \operatorname{mr}\left(P_{t} \vee K_{s}\right)$. We will exhibit $s+1$ independent vectors $\vec{z}_{1}, \vec{z}_{2}, \ldots$, and \vec{z}_{s+1} in the kernel of a matrix A such that $\mathcal{G}(A) \subsetneq P_{t} \vee_{K_{s}}$ Let $V(P t)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and $V\left(K_{s}\right)=$ $\left\{v_{t+1}, v_{t+2}, \ldots v_{t+s}\right\}$. Consider thê following 4 eases:
Case $t=3$. Let $A=\mathcal{A}^{2}\left(P_{3} \otimes R_{s}\right)+$ diag $(0,0,0, \underbrace{0,1, \ldots, 1}_{s})$. Then $\overbrace{1}^{e}=(\underbrace{0, \ldots, 0}_{s+1}, 1$, $-1)^{T}, \vec{z}_{2}=(\underbrace{0, \ldots, 0}_{s}, 1,-1,0)^{T}, \vec{z}_{3}=(\underbrace{0, \ldots, 0}_{s-1}, 1,-1,0,0)^{T}, \ldots, \vec{z}_{s-1}=(\stackrel{s+1}{0} 0,0,1$, $-1, \underbrace{0, \ldots, 0}_{s-2})^{T}, \vec{z}_{s}=(1,0,-1, \underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+1}=(0,1,0,-1, \underbrace{0, \ldots, 0}_{s-1})^{T}$.

Case $t \equiv 0(\bmod 4)$. Let $A=\mathcal{A}\left(P_{t} \vee K_{s}\right)+D$ where

$$
D=\operatorname{diag}(1,0,0, \text { repeat }[0,0,0,0], 1, \underbrace{1, \ldots, 1}_{s})+\left[\begin{array}{l}
\mathbf{0}_{t \times t} \\
\\
\mathbf{0}_{s \times t} \\
\\
\left.\begin{array}{ccc}
\frac{t-2}{2} & \cdots & \frac{t-2}{2} \\
\vdots & \ddots & \vdots \\
\frac{t-2}{2} & \cdots & \frac{t-2}{2}
\end{array}\right]_{s \times s}
\end{array}\right] .
$$

Then $\vec{z}_{1}=(\underbrace{0, \ldots, 0}_{t+s-2}, 1,-1)^{T}, \vec{z}_{2}=(\underbrace{0, \ldots}_{t+s-3}, 1,-1,0)^{T}, \vec{z}_{3}=(\underbrace{0, \ldots, 0}_{t+s-4}, 1,-1,0,0)^{T}$, $\ldots, \vec{z}_{s-1}=(\underbrace{0, \ldots, 0}_{t}, 1,-1, \underbrace{0, \ldots, 0}_{s=2})^{T},^{z_{s}} \triangleq(\text { repeat }[1,-1,-1,1], \underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+1}=($ repeat $[1,0,0$,

Case $t \equiv 1(\bmod 4)$.

$$
D=\operatorname{diag}\left(1 , 1 , 0 , 1 , \text { repeat } \left[0, ~\left(\begin{array}{ccc}
0,0,1,1, \cdots, 1 \\
0 & 0_{t \times s} \\
0_{t \times t}\left[\begin{array}{ccc}
\frac{t-3}{2} & \cdots & \frac{t-3}{2} \\
\vdots & \ddots & \vdots \\
\frac{t-3}{2} & \cdots & \frac{t-3}{2}
\end{array}\right]_{s \times s}
\end{array}\right]+\right.\right.
$$

Then $\vec{z}_{1}=(\underbrace{0, \ldots, 0}_{t+s-2}, 1,-1)^{T}, \underbrace{}_{2}=(\underbrace{0, \ldots, 0}_{t+s-3}, ~ 1, ~-1,0)^{T}, \vec{z}_{3}=(\underbrace{0, \ldots, 0}_{t+s-4}, 1,-1,0,0)^{T}$, $\ldots, \vec{z}_{s-1}=(\underbrace{0, \ldots, 0,1,-1, \underbrace{0, \ldots, 0}_{s-2})^{T}, \vec{z}_{s}=(1,-1,0,1}_{t})-1$, repeat $[-1,1,1,-1]$, $\underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+1}=(1,0,0,1,0 \text {, repeat }[0,1,1,0],-1, \underbrace{0, \ldots, 0}_{s-1})^{T}$.
Case $t \equiv 2(\bmod 4) . \operatorname{Let} A=\mathcal{A}\left(P_{t} \vee K_{s}\right) t P$ where

Then $\vec{z}_{1}=(\underbrace{0, \ldots, 0}_{t+s-2}, 1,-1)^{T}, \vec{z}_{2}=(\underbrace{0, \ldots, 0}_{t+s-3}, 1,-1,0)^{T}, \vec{z}_{3}=(\underbrace{0, \ldots, 0}_{t+s-4}, 1,-1,0,0)^{T}$,
$\ldots, \vec{z}_{s-1}=(\underbrace{0, \ldots, 0}_{t}, 1,-1, \underbrace{0, \ldots, 0}_{s-2})^{T}, \vec{z}_{s}=(1 \text {, repeat }[-1,-1,1,1],-1, \underbrace{0, \ldots, 0}_{s})^{T}$,
and $\vec{z}_{s+1}=(1 \text {, repeat }[0,0,1,1], 0,-1, \underbrace{0, \ldots, 0}_{s-1})^{T}$.

Case $t \equiv 3(\bmod 4)$ and $t \neq 3$. Let $A=\mathcal{A}\left(P_{t} \vee K_{s}\right)+D$ where
$D=\operatorname{diag}(1,1,0,1,0,0$, repeat $[0,0,0,0], 1, \underbrace{1, \ldots, 1}_{s})+\left[\begin{array}{c}\mathbf{0}_{t \times t} \\ \\ \mathbf{0}_{s \times t} \\ \mathbf{0}_{t \times s} \\ {\left[\begin{array}{ccc}\frac{t-3}{2} & \cdots & \frac{t-3}{2} \\ \vdots & \ddots & \vdots \\ \frac{t-3}{2} & \cdots & \frac{t-3}{2}\end{array}\right]_{s \times s}}\end{array}\right]$.
Then $\vec{z}_{1}=(\underbrace{0, \ldots, 0}_{t+s-2}, 1,-1)^{T}, \vec{z}_{2}=(\underbrace{0,1)}_{t+s+3}, 1,-1,0)^{T}, \vec{z}_{3}=(\underbrace{0, \ldots, 0}_{t+s-4}, 1,-1,0,0)^{T}$, $\ldots, \vec{z}_{s-1}=(\underbrace{0, \ldots, 0}_{t}, 1,-1, \underbrace{0, \ldots, 0}_{s-2})^{T}, \vec{z}_{s}=(1,-1,0 \text {, repeat }[1,-1,-1,1], \underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+1}=(1,0,0$, repeat $[1,0,0,1],-1,0$,

In any case, we obtain $s+1 \leq$ pull (A). Then $\operatorname{rank}(A)=(t+s)-\operatorname{null}(A) \leq$ $(t+s)-(s+1)=t-1$. We have $t-1 \leq \operatorname{mr}\left(P_{t} \vee K_{s}\right) \leq \operatorname{rank}(A) \leq t-1$. Thus $m r\left(P_{t} \vee K_{s}\right)=t-1$.

The next example, it is shown, that $P_{4} \vee K_{2}$ does not have field independent minimum rank.

Example 4.2. $P_{4} \vee K_{2}\left(\cong P_{4} \vee P_{2}\right)$ does not have field independent minimum rank.

Let $A \in S_{6}^{\mathbb{Z}_{2}}$ be such that $\mathcal{G}^{\mathbb{Z}_{2}}(A) \cong P_{4} \vee K_{2}$. We can write

$$
A=\left[\begin{array}{cccccc}
d_{1} & 1 & 1 & 1 & 1 & 1 \\
1 & d_{2} & 1 & 1 & 1 & 1 \\
1 & 1 & d_{3} & 1 & 0 & 0 \\
1 & 1 & 1 & d_{4} & 1 & 0 \\
1 & 1 & 0 & 1 & d_{5} & 1 \\
1 & 1 & 0 & 0 & 1 & d_{6}
\end{array}\right]
$$

where $d_{1}, d_{2}, \ldots, d_{6} \in \mathbb{Z}_{2}$. It is easily to show that vectors $\left(1,1, d_{3}, 1,0,0\right),(1,1$, $\left.1, d_{4}, 1,0\right)$, and ($1,1,0,1, d_{5}, 1$) are linearly independent. Then $\operatorname{rank}(A) \geq 3$. Suppose that $\operatorname{rank}(A)=3$. Then $\left\{\left(1,1, d_{3}, 1,0,0\right),\left(1,1,1, d_{4}, 1,0\right),\left(1,1,0,1, d_{5}, 1\right)\right\}$ is maximal independent subset of the row vector space of A. Thus $\left(1,1,0,0,1, d_{6}\right)=$ $a \cdot\left(1,1, d_{3}, 1,0,0\right)+b \cdot\left(1,1,1, d_{4}, 1,0\right)+c \cdot\left(1,1,0,1, d_{5}, 1\right)$ for some $a, b, c \in \mathbb{Z}_{2}$. We obtain $a=1, b=1, c=1, d_{3}=1, d_{4}=0, d_{5} \Rightarrow 0$, and $d_{6}=1$. Then $\left(1, d_{2}, 1,1,1,1\right)$ cannot be written as a linear combination of $(1,1,1,1,0,0),(1,1,1,0,1,0)$, and $(1,1,0,1,1,1)$, a contradiction. Thus $\operatorname{rank}(A) \geq 4$. Since A is arbitrary, $\operatorname{mr}^{\mathbb{Z}_{2}}\left(P_{4} \vee\right.$ $\left.K_{2}\right) \geq 4$. Let $B \in S_{6}^{Z_{2}}$ be such that

with $\operatorname{rank}(B)=4$. Clearly, $\mathcal{G}^{\mathbb{Z}_{2}}(B) \cong P_{4} \vee K_{2}$. Then $\mathrm{mr}^{\mathbb{Z}_{2}}\left(P_{4} \vee K_{2}\right)=4$. By Proposition 4.1, $\operatorname{mr}\left(P_{t} \vee K_{s}\right)=3$. Thus $\operatorname{mr}\left(P_{4} \vee K_{2}\right)=3<4=\mathrm{mr}^{\mathbb{Z}_{2}}\left(P_{4} \vee K_{2}\right)$, i.e., $P_{4} \vee K_{2}$ does not have field independent minimum rank. By Remark 2.5, $P_{4} \vee K_{2}$ does not have a miversally optiôal matrix.

4.2 The Join of Cycles and Complete Graph's

Recall that for $t \geq 3, s \geq 2, C_{t} \vee K_{s}$ is the union of graphs C_{t} and K_{s}, with disjoint vertex sets $V\left(C_{t}\right)$ and $V\left(K_{s}\right)$, and all the edges joining $V\left(C_{t}\right)$ and $V\left(K_{s}\right)$.

First, we compute $\operatorname{mr}\left(C_{t} \vee K_{s}\right)$.
Proposition 4.3. For $t \geq 3, s \geq 2, \operatorname{mr}\left(C_{t} \vee K_{s}\right)=t-2$.
Proof. By Table 2.1, $\operatorname{mr}\left(P_{t-1}\right)=t-2$. Since P_{t-1} is an induced subgraph of $C_{t} \vee K_{s}$ and by Proposition 2.8, $t-2=\operatorname{mr}\left(P_{t-1}\right) \leq \operatorname{mr}\left(C_{t} \vee K_{s}\right)$. We will exhibit
$s+2$ independent vectors $\vec{z}_{1}, \vec{z}_{2}, \ldots$, and \vec{z}_{s+2} in the kernel of a matrix A such that $\mathcal{G}(A) \cong C_{t} \vee K_{s}$. Let $V\left(C_{t}\right)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and $V\left(K_{s}\right)=\left\{v_{t+1}, v_{t+2}, \ldots, v_{t+s}\right\}$.

Consider the following 4 cases:
Case $t=3$. Let $A=\mathcal{A}\left(C_{3} \vee K_{s}\right)+I_{s+3}$. Then $\vec{z}_{1}=(1, \underbrace{0, \ldots, 0}_{s+1},-1)^{T}, \vec{z}_{2}=$ $(1, \underbrace{0, \ldots, 0}_{s},-1,0)^{T}, \vec{z}_{3}=(1, \underbrace{0, \ldots 0}_{s-1})^{1}, 0,0)^{T}, \ldots$, and $\vec{z}_{s+2}=(1,-1, \underbrace{0, \ldots, 0}_{s+1})^{T}$. Case $t=5$. Let

Then $\vec{z}_{1}=(1,1,1,1,1, \underbrace{0, \ldots, 0}-1)^{\pi}, \vec{z}_{2}=(1,1,1,1,1, \underbrace{0, \ldots, 0},-1,0)^{T}, \vec{z}_{3}=(1,1$,
$1,1,1, \underbrace{0, \ldots, 0}_{s-3},-1, \underbrace{(0,0)^{T}} \underbrace{s-1}, \vec{z}_{s}=(1,1,1,1,1,-1, \underbrace{0, \ldots}_{s-1})^{s-2}, \vec{z}_{s+1}=(0,1,1,0,-1$,
$\underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+2}=(-1,0,1,1,0, \underbrace{0, \ldots, 0}_{s 0})^{T}$.

Then $\vec{z}_{1}=(\operatorname{repeat}[1,1,0,0], \underbrace{0, \ldots, 0}_{s-1},-1)^{T}, \vec{z}_{2}=(\operatorname{repeat}[1,1,0,0], \underbrace{0, \ldots, 0}_{s-2},-1,0)^{T}$,
$\vec{z}_{3}=(\operatorname{repeat}[1,1,0,0], \underbrace{0, \ldots, 0}_{s-3},-1,0,0)^{T}, \ldots, \vec{z}_{s}=(\operatorname{repeat}[1,1,0,0],-1, \underbrace{0, \ldots, 0}_{s-1})^{T}$,
$\vec{z}_{s+1}=(\operatorname{repeat}[1,0,-1,0], \underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+2}=(\operatorname{repeat}[0,1,0,-1], \underbrace{0, \ldots, 0}_{s})^{T}$.

Case $t \equiv 1(\bmod 4)$ and $t \neq 5$. Let $A=\mathcal{A}\left(C_{t} \vee K_{s}\right)+D$ where

$$
D=\operatorname{diag}(1,2,1,1,0, \text { repeat }[0,0,0,0], 1,1,1,1, \underbrace{1, \ldots, 1}_{s})+
$$

$$
\left[\begin{array}{c}
\mathbf{0}_{t \times t} \\
\mathbf{0}_{s \times t}
\end{array}\left[\begin{array}{ccc}
\frac{t-5}{2} & \cdots & \frac{t-5}{2} \\
\vdots & \ddots & \vdots \\
\frac{t-5}{2} & \cdots & \frac{t-5}{2}
\end{array}\right]\right.
$$

Then $\vec{z}_{1}=(1,0,0,1,0, \underline{\text { repeat }[0,1}, 1,0], 0,1,0,0, \underbrace{0, \ldots, 0},-1)^{T}, \vec{z}_{2}=(1,0,0,1,0$, $\operatorname{repeat}[0,1,1,0], 0,1,0,0,0, \ldots, 0,-1,0)^{T}, \vec{z}_{3}=(1,0,0,1,0$, repeat $[0,1,1,0], 0,1,0$, $0, \underbrace{0, \ldots, 0}_{s-3},-1,0,0)^{T}, \ldots, \vec{z}_{s}=(1,0,0,1,0, \text { repeat }[0,1,1,0], 0,1,0,0,-1, \underbrace{0, \ldots, 0}_{s-1})^{T}$, $\vec{z}_{s+1}=(-1,0,1,-1,0 \text {, repeat }[1,0,-1,0], 1,-1,0,1, \underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+2}=(1,-1$, $1,0,-1$, repeat $[0,1,0,-1], 0,1,-1, \underbrace{T}_{\substack{0,1,0,0}}$.
Case $t \equiv 2(\bmod 4)$. Let $A=\mathcal{A}\left(\operatorname{Civ}_{4} \mathbb{I}_{s}\right)+D$ where

Then $\vec{z}_{1}=(0,1,0,0,1,0 \text { repeat }[0,1,1,0], 0, \ldots, 0,-1)^{T}, \vec{z}_{2}=(0,1,0,0,1,0$, repeat $[0,1,1,0], \underbrace{0, \ldots, 0,}_{s-2}, 1,0)^{T}, \vec{z}_{3} \neq(0,1,0,0,1,0$, repeat $00,1,1,0], \underbrace{0, \ldots, 0}_{s-3},-1,0,0)^{T}$,
 0 , repeat $[1,0,-1,0], \underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+2}=(0,1,-1,0,1,-1$, repeat $[0,1,0,-1]$, $\underbrace{0, \ldots, 0}_{s})^{T}$.
Case $t \equiv 3(\bmod 4)$ and $t \neq 3$. Let $A=\mathcal{A}\left(C_{t} \vee K_{s}\right)+D$ where

Then $\vec{z}_{1}=(0,1,0 \text {, repeat }[0,1,1,0], \underbrace{0, \ldots, 0}_{s-1},-1)^{T}, \vec{z}_{2}=(0,1,0$, repeat $[0,1,1,0]$, $\underbrace{0, \ldots, 0}_{s-2},-1,0)^{T}, \vec{z}_{3}=(0,1,0, \text { repeat }[0,1,1,0], \underbrace{0, \ldots, 0}_{s-3},-1,0,0)^{T}, \ldots, \vec{z}_{s}=(0,1,0$, $\operatorname{repeat}[0,1,1,0],-1, \underbrace{0, \ldots, 0}_{s-1})^{T}, \vec{z}_{s+1}=(1,-1,0 \text {, repeat }[1,0,-1,0], \underbrace{0, \ldots, 0}_{s})^{T}$, and $\vec{z}_{s+2}=(0,1,-1 \text {, repeat }[0,1,0,-1], \underbrace{0, \ldots, 0})^{T}$.
In any case, we obtain $s+2 \leq \operatorname{null}(A)$. Then $\operatorname{rank}(A)=(t+s)-\operatorname{null}(A) \leq$ $(t+s)-(s+2)=t-2$. We have $t-2 \leq \operatorname{mr}\left(G_{t} \vee K_{s}\right) \leq \operatorname{rank}(A) \leq t-2$. Thus $\operatorname{mr}\left(C_{t} \vee K_{s}\right)=t-2$.

The next example, it is shown that $C_{6} \vee K_{4}$ does not have field independent minimum rank.

Example 4.4. $C_{6} \vee K_{4}$ does not have field independent minimum rank.
$C_{6} \vee K_{4}:$

Let $A \in S_{10}^{\mathbb{Z}_{2}}$ be such that $\mathcal{G}^{\mathbb{Z}_{2}}(A) \cong \mathcal{C}_{6}$ ソ K_{4}. We can write
 ค 9 ค
where $d_{1}, d_{2}, \ldots, d_{10} \in \mathbb{Z}_{2}$. Claim that vectors $\left(1, d_{2}, 1,0,0,0,1,1,1,1\right),\left(0,1, d_{3}, 1\right.$, $0,0,1,1,1,1),\left(0,0,1, d_{4}, 1,0,1,1,1,1\right),\left(0,0,0,1, d_{5}, 1,1,1,1,1\right)$, and $(1,1,1,1,1,1$, $\left.d_{7}, 1,1,1\right)$ are linearly independent. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{5} \in \mathbb{Z}_{2}$ be such that $\alpha_{1}\left(1, d_{2}, 1\right.$, $0,0,0,1,1,1,1)+\alpha_{2}\left(0,1, d_{3}, 1,0,0,1,1,1,1\right)+\alpha_{3}\left(0,0,1, d_{4}, 1,0,1,1,1,1\right)+\alpha_{4}(0$, $\left.0,0,1, d_{5}, 1,1,1,1,1\right)+\alpha_{5}\left(1,1,1,1,1,1, d_{7}, 1,1,1\right)=(0,0,0,0,0,0,0,0,0,0)$ Then $\alpha_{1}+\alpha_{5}=0, \alpha_{1} d_{2}+\alpha_{2}+\alpha_{5}=0, \alpha_{1}+\alpha_{2} d_{3}+\alpha_{3}+\alpha_{5}=0, \alpha_{2}+\alpha_{3} d_{4}+\alpha_{4}+\alpha_{5}=0, \alpha_{3}+$ $\alpha_{4} d_{5}+\alpha_{5}=0, \alpha_{4}+\alpha_{5}=0, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} d_{7}=0, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}=0$. Suppose that $\alpha_{5}=1$. Then $\alpha_{1}=1, \alpha_{4}=1$, and $\alpha_{2}+\alpha_{3}=1$. If $\alpha_{2}=0$, then $\alpha_{3}=1$ which is impossible. If $\alpha_{2}=1$, then $\alpha_{3}=0$ which is impossible. Thus $\alpha_{5}=0$ which implies $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$, as desired. Then $\operatorname{rank}(A) \geq 5$. Since A is arbitrary, $\mathrm{mr}^{\mathbb{Z}_{2}}\left(C_{6} \vee K_{4}\right) \stackrel{(}{2}$. Let $B \in S_{10}^{\mathbb{Z}_{2}}$ be such that

 Proposition 4.3, $\operatorname{mr}\left(C_{6} \vee K_{4}\right)=4$. Thus $\operatorname{mr}\left(C_{6} \vee K_{4}\right)=4<5=\operatorname{mr}^{\mathbb{Z}_{2}}\left(C_{6} \vee K_{4}\right)$, i.e., $C_{6} \vee K_{4}$ does not have field independent minimum rank. By Remark 2.5, $C_{6} \vee K_{4}$ does not have a universally optimal matrix.

4.3 Clique Paths

For $i=1,2, \ldots, k, m_{i} \geq 3$. A clique path, denoted $K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)$, is the "path" of complete graphs built from complete graphs $K_{m_{1}}, K_{m_{2}}, \ldots$, and $K_{m_{k}}$ constructed so that for $i=2,3, \ldots, k$ and $j<i-1, E\left(K_{m_{i-1}}\right) \cap E\left(K_{m_{i}}\right)$ has exactly one edge and $V\left(K_{m_{j}}\right) \cap V\left(K_{m_{i}}\right)$ has no vertices.

Remark 4.5. $\left|K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)\right|=\sum_{i=1} m_{i}-2(k-1)$.
Proposition 4.6. $\operatorname{mr}\left(K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)\right)=k$.

Proof. Clearly, P_{k+1} is an induced subgraph of $K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. By Table 2.1 and Proposition $2.8(1), k=\operatorname{mr}\left(P_{k+1}\right) \leq \operatorname{mr}\left(K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)\right)$. We can view that $K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ is the union of the complete graphs $K_{m_{1}}, K_{m_{2}}, \ldots$, and $K_{m_{k}}$. By Table 2.1 and Proposition 2.8 (2), $\operatorname{mr}\left(K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)\right) \leq$ $\operatorname{mr}\left(K_{m_{1}}\right)+\operatorname{mr}\left(K_{m_{2}}\right)+\cdots+\operatorname{mr}\left(K_{m_{k}}\right)=k$. Thus $\operatorname{mr}\left(K P\left(m_{1}, m_{2}, \ldots, m_{k}\right)\right)=k$.

Example 4.7. $K P(5,4)$ does not have field independent minimum rank.

$$
A=\left[\begin{array}{ccccccc}
d_{1} & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & d_{2} & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & d_{3} & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & d_{4} & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & d_{5} & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & d_{6} & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & d_{7}
\end{array}\right]
$$

where $d_{1}, d_{2}, \ldots, d_{7} \in \mathbb{Z}_{2}$. It is easily to show that vectors $\left(1,1, d_{3}, 1,1,0,0\right),(1,1$, $\left.1, d_{4}, 1,1,1\right)$, and $\left(0,0,0,1,1, d_{6}, 1\right)$ are linearly independent. Then $\operatorname{rank}(A) \geq 3$. Since A is arbitrary, $\operatorname{mr}^{\mathbb{Z}_{2}}(K P(5,4)) \geq 3$. Let $B \in S_{7}^{\mathbb{Z}_{2}}$ be such that
with $\operatorname{rank}(B)=3$. Clearly, $g^{Z_{2}}(B)=K P(5,4)$. Then $\operatorname{mr}^{\mathbb{Z}_{2}}(K P(5,4))=$ 3. By Proposition 4.6. $\operatorname{mr}(K P(5,4))=2$. Thus $\operatorname{mr}(K P(5,4))=2<3=$ $\mathrm{mr}^{\mathbb{Z}_{2}}(K P(5,4))$, i.e., $K P(5,4)$ does not have field independent minimum rank. By Remark 2.5, $K P(5,4)$ does not have áuniversally optimal matrix.

4.4 Clique-cycle Paths

For $i=1,2, \ldots, k, m_{i} \geq 3$. A clique-cycle path, denoted $K C\left(m_{1}, m_{2}, \ldots, m_{k}\right.$; $\left.n_{1}, n_{2}, \ldots, n_{k}\right)$, is obtained from complete, graphs $K_{m_{1}}, K_{m_{2}}, \ldots$, and $K_{m_{k}}$ and cycles $C_{n_{1}}, C_{\eta_{2}}$, 9. . And $g_{n_{1}}$ constructed solthat for $\hat{i}=2,3, \ldots, k$ and $j<i$, $E\left(K_{m_{1}}\right) \cap E\left(C_{n_{1}}^{\text {थ }}\right), E\left(K_{m_{i}}\right) \cap E\left(C_{n_{i}}\right)$, and $E\left(K_{m_{2}}\right) \cap E\left(C_{n_{i-1}}\right)$ have exactly one edge and $V\left(K_{m}\right) \cap Q\left(\widehat{E Q}_{m_{i}}\right), V\left(C_{n_{j}}\right)$ QV $\left(C_{m_{i}}\right), \forall\left(K_{m_{j}}\right) \cap V\left(C_{m_{i}}\right)$, and $V\left(d_{n_{j-1}}\right) \cap V\left(K_{m_{i}}\right)$ have no vertices.

Remark 4.8. $\left|K C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k}\right)\right|=\sum_{i=1}^{k} m_{i}+\sum_{i=1}^{k} n_{i}-4 k+2$.

Proposition 4.9. $\operatorname{mr}\left(K C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k}\right)\right) \leq \sum_{i=1}^{k} n_{i}-k$.
Proof. We can view that $K C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k}\right)$ is the union of complete graphs $K_{m_{1}}, K_{m_{2}}, \ldots$, and $K_{m_{k}}$ and cycles $C_{n_{1}}, C_{n_{2}}, \ldots$, and $C_{n_{k}}$. By Table 2.1, $\operatorname{mr}\left(K_{m_{i}}\right)=1$ and $\operatorname{mr}\left(C_{n_{i}}\right)=n_{i}-2$ for all $i=1,2, \ldots, k$. By Proposition $2.8(2), \operatorname{mr}\left(K C\left(m_{1}, m_{2}, \ldots, m_{k} ; n_{1}, n_{2}, \ldots, n_{k}\right)\right) \leq \sum_{i=1}^{k} \operatorname{mr}\left(K_{m_{i}}\right)+\sum_{i=1}^{k} \operatorname{mr}\left(C_{n_{i}}\right)=$ $k+\sum_{i=1}^{k} n_{i}-2 k=\sum_{i=1}^{k} n$

Example 4.10. $K C(5 ; 4)$ does not have field independent minimum rank.

Let $A \in S_{7}^{\mathbb{Z}_{2}}$ be such that $\mathcal{G}(A) \cong K C(5 ; 4)$. We can write

where $d_{1}, d_{2}, \ldots, d_{7} \in \mathbb{Z}_{2}$. It is easily to show that vectors $\left(1,1, d_{3}, 1,1,0,0\right),(1,1$, $\left.1,1, d_{5}, 1,0\right),\left(0,0,0,0,1, d_{6}, 1\right)$, and $\left(0,0,0,1,0,1, d_{7}\right)$ are linearly independent. Then $\operatorname{rank}(A) \geq 4$. Since A is arbitrary, $\operatorname{mr}^{\mathbb{Z}_{2}}(K C(5 ; 4)) \geq 4$. Let $B \in S_{7}^{\mathbb{Z}_{2}}$ be
such that

$$
B=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

with $\operatorname{rank}(B)=4$. Clearly, $\mathcal{G}^{\mathbb{Z}_{2}}(B)=\mathbb{K}(5 ; 4)$. Then $\operatorname{mr}^{\mathbb{Z}_{2}}(K C(5 ; 4))=4$. By Proposition 4.9, $\operatorname{mr}(K C(5 ; 4)) \leq 3$. Clearly, P_{4} is an induced subgraph of $K C(5 ; 4)$. By Table 2.1 and Proposition 2.8, $3=\operatorname{mr}\left(P_{4}\right) \leq \operatorname{mr}(K C(5 ; 4))$. Then $\operatorname{mr}(K C(5 ; 4))=3$. Thus $\operatorname{mr}(K C(5 ; 4))=3<4=\operatorname{mr}^{\mathbb{Z}_{2}}(K C(5 ; 4))$, i.e., $K C(5 ; 4)$ does not have field independentiminimum rank. By Remark 2.5, $K C(5 ; 4)$ does not have a universally optimal matrix.

Question. Which values of t mathat the family $P_{t} \vee K_{s}, C_{t} \vee K_{s}, K P\left(m_{1}, m_{2}\right.$, $\left.\ldots, m_{k}\right)$, and $K C\left(m_{1}, m_{2}, \ldots, m_{k}, n_{1}, n_{2}, \ldots, n_{k}\right)$ have field independent minimum rank?

APPENDIX

The necklace with s diamonds, denoted N_{s}, is a graph that can be constructed from a cycle $C_{3 s}$ by appending s extra vertices, with each "extra" vertex adjacent to 3 sequential cycle vertices.

The m, k-pineapple (with $m \geq 3, k \geq 2$). denoted $P_{m, k}$, is the graph $K_{m} \cup K_{1, k}$ such that a vertex in $V\left(K_{m}\right) \cap V\left(K_{1, k}\right)$ is the vertex of $K_{1, k}$ of degree k.

A tree is a connected graph with n vertices and $n-1$ edges.
A unicyclic is a eonnected graph containing exactly one cycle.

A polygonal path is a "path" of cycles built from cycles $C_{m_{1}}, C_{m_{2}}, \ldots$, and $C_{m_{k}}$ constructed so that for $i=2,3, \ldots, k$ and $j<i-1, E\left(C_{m_{i-1}}\right) \cap E\left(C_{m_{i}}\right)$ has exactly one edge and $E\left(C_{m_{j}}\right) \cap E\left(C_{m_{i}}\right)$ has no edges.

polygonal path built from C_{5}, C_{4} and C_{6}

The Cartesian product of two graphs G and H, denoted $G \square H$, is the graph with vertex set $V(G) \times V(H)$ such that $\left(\overline{u, v)}\right.$ is adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if (1) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or (2) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$.

The strong product of two graphs G and H, denoted $G \boxtimes H$, is the graph with vertex set $V(G) \times V(H)$ such that (u, v) is adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if (1) $u u^{\prime} \in E(G)$ and $v v^{\prime} \in E(H)$, or (2) $u^{\prime}=u^{\prime}$ and $v v^{\prime} \in E(H)$, or (3) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$.

Thecogna of afaph G with a kraph H dennted $G \circ 6 H$, is the graph on $|G||H|+|G|$ vertices obtained by taking one copy of G and $|G|$ copies of H, and joining all the vertices in the i th copy of H to the i th vertex of G.

The nth supertriangle, denoted T_{n}, is a graph G with vertex set $V(G)=$ $\{(i, j): i=1,2, \ldots, n$ and $j=1,2, \ldots, i\}$ such that (i, j) is adjacent to $\left(i^{\prime}, j^{\prime}\right)$ if and only if (1) $\left|i-i^{\prime}\right|=1$ and $\left|j-j^{\prime}\right|=0$, or (2) $\left|i-i^{\prime}\right|=0$ and $\left|j-j^{\prime}\right|=1$, or (3) $\left|i-i^{\prime}\right|=1$ and $\left|j-j^{\prime}\right|=1$. Clearly, $\left|T_{n}\right|=\frac{1}{2} n(n+1)$.

$C_{5} \circ K_{2}$

T_{4}

A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. A block-clique graph is a-graph in which every block is a clique.

A graph is claw-free if it dose not contain an induced $K_{1,3}$.

block-clique graph G
claw-free block-clique H

The nth wheel, denoted W_{n}, is the graph $K_{1} \vee C C_{n-1}$.
The sth Möbius ladfersdenoted M_{s}, is öbtained from $C_{s} \square P_{2}$ by replacing one pair of parallel cyele edges with हैcrossed pair. ${ }^{\circ}$?

The line graph of a graph G, denoted $L(G)$, is the graph having vertex set $E(G)$, with two vertices in $L(G)$ adjacent if and only if the corresponding edges share an endpoint in G. Since we require a graph to have a nonempty set of vertices, the line graph $L(G)$ is defined only for a graph G that has at least one edge.

The sth half-graph, denoted $H_{s,}$ is the graph is constructed from (disjoint) graphs K_{s} and $\overline{K_{s}}$, having vertices u_{1}, u_{2}, \ldots, and u_{s} and v_{s+1}, v_{s+2}, \ldots, and $v_{2 s}$, respectively, by adding all edges $\psi_{i} \psi_{j}$ such that $i+j \leq 2 s+1$.

A Retrecis agaphbiuit from k_{3} by adding to it phe vertex afal time adjacent to exactly a pair of existing adjacent vertices.

REFERENCES

[1] AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander Meulen, and A. Wangsness), Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl., 428(2008), 1628-1648.
[2] American Institute of Mathematics "Spectra of families of matrices described by graphs, digraphs, and sign patterns,"[Online] Available: http://aimath.org/pastworkshops/matrixspectrum.html, (December 8, 2009).
[3] W. Barrett, H. van der Holst, and R. Loewy, Graphs whose minimal rank is two, Electronic Journal of Linear Algebra, 11 (2004), 258-280.
[4] L.M. DeAlba, J. Grout, L. Hogben, R. Mikkelson, and K. Rasumussen, Universally optimal matrices and field independence of the minimum rank of a graph, Electronic Journal:ofi Linear Algebra, 18(2009), 403-419.
[5] S. Fallat, and L. Hogben, The minimum rank of symmetric matrices described by a graph: A survey, Linear-Algebra Appl., 426(2007), 558-582.
[6] L. Hogben, Spectral graph theory and the inverse eigenvalue problem of a graph, Electronic Journal of Linear Algebra, 14(2005), 12-31.
[7] L. Hogben, W. Barrett, J. Grout, H. van der Holst, editors, AIM Minimum Rank Graph Catalog: Families of Graphs, [Online] Available: http:// aimath.org/pastworkshops/catalog2.html, (November 20, 2009).
[8] L. Hogbễ, 9J! Glout, 9A. Fan der Holst editors, AIIM Minimum Rank Graph Catalog: Small Graphs, [Online] Available: http://aimath.org/ pastworkshops/catalog1.html, (December 8, 2009).

VITA

Attended

- The Annual Mathematics Conference, 27-28 March 2008, Chulalongkorn University
- The International Conference on Algebra and Related

Topics, 28-30 May 2008, Chulalongkorn University

