' o w 3 Y d'
ﬂWﬁ"Iﬂ‘lJ%uuﬂﬂVlf!ﬂ‘U@ﬁﬂi"lw

¥

AULINENINYINT
IR TN TN

a v a

a a 4 Y 1 % Y a
Tnfnuwuﬁﬁnd_lumuﬂﬁwmmiﬁﬂmmwaﬂqmﬂimumnwmmﬁmwmmm

g

UNIHATATAAT MAITIAIAFAAT
AUZINOINEAT PNAINTAINININGNSD
Umsdnu 2552

= 4

AUANTUDIPNIAINIANIING Y



MINIMUM RANK OF GRAPHS

ﬂuﬁﬁwﬂw%wﬂwns

A Th is Submitted in Partial Fulfill ment of the Re irements
HARIATA HHAN IR
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2009

Copyright of Chulalongkorn University



Thesis Title MINIMUM RANK OF GRAPHS
By Mr. Sarawut Rattanaprayoon
Field of Study Mathematics

Thesis Advisor Associate Professor Wanida Hemakul, Ph.D.

Thesis Co-Advisor ~ Thiradet, Jiarasuksakun, Ph.D.

Accepted by the Faeulty of S@alongkorn University in

Partial Fulfillment o ; er’s Degree

=77/ g\\

(Professor 3up, 3?‘?

&Iu-l

e Faculty of Science

THESIS COMMITTE

.......... . # ... Chairman

S GJ—AdVlsor

NIRRT AN T

Examiner

(Associate Professor Wicharn Lewkeeratiyutkul, Ph.D.)

.......... ,/Qf ........ External Examiner

(Associate Professor Somporn Sutinuntopas, Ph.D.)



v

S v

A Al Sauddssys ¢ mdMusuiesigavesns . (MINIMUM RANK OF
GRAPHS) 8. M/3nu1ineniinusvan : 361 a3.21a1 muzna, 0. AUTauIneriinug

59U : 0. A3, 32y Rusquana, 56 1.

madusutiesfiqauuilad # vpsnsid ¢ e sdwutudieuiigeiiuly1dly
ussmumindanasuuilad 7 Gaandni@an i and j =) Tidugud & i Gudu
doulunsml G wozilugud 815 Widhududionliing il ¢ e qud fe wndnuaimsuan
wiilad F umSndimneiigaiiuenaiueinsin G fo imsndaunas A fmnsngnaaiiu
nu‘mmmmtmwn'n'luog‘uuummwwwfmmmnm A £19 $1uu 0, 1 30 -1 uazdmiy
yniltad F mdduiueeuming A mmummﬁwuuaunqﬂuuﬂaﬂ F voansm G %
ﬁuﬁmgmnmﬂﬂﬂmmﬁ‘ nd 4 Sumzinsin nalmisde nsmleenta uazns
ATWULYIY umuﬂmmmﬂuwueunqnﬁimnﬂﬂmmuuunnﬂaﬂ 1S ndining
nqﬂmmnnwmauﬂma1mﬁmuwuaunqmmnsMmmu'luwagnuﬂaﬂ uazl¥dred

.:- F‘

ﬂﬂvlnummnuwuounqm:uagﬂuﬂaﬂ Sdda




# # 5072477023 : MAJOR MATHEMATICS
KEYWORDS : MINIMUM RANK, UNIVERSALLY OPTIMAL MATRIX,
FIELD INDEPENDENT, RANK, GRAPH, SYMMETRIC MATRIX

SARAWUT RATTANAPRAYOON : MINIMUM RANK OF GRAPHS.

\ / NIDA HEMAKUL, Ph.D.
THESIS CO-ADVISO AD ASUKSAKUN, Ph.D., 56 pp.

Nthe smallest possible rank

The minimum rM .
entry (i # j) is nonzero

among all symmetci

THESIS ADVISOR : ASSO

—

whenever ij is an here zero is the additive
identity of F'. A univ: imal matri h G is an integer symmetric
matrix A such that eve i g 15 ), 1, or —1 and for all fields F',
the rank of A is the mini uﬂj—ﬁﬂ{ over F of. G which is isomorphic to the graph
of A. The fan graph, thejﬂ;k@hgl& 1 . ptus graph and the hanging bridge
graph are introdiced 2 he min e graphs over any field are
presented. We use ﬁ ve: Lﬁse graphs to establish field

independence of mlnlnlnm rank. Examples verifying lack of field independence for

*°megfaphﬂu%ﬁ’mim‘§°ﬂiﬂﬂ§
AR ANNIUNRIINYIAY

Department  :...Mathematics....  Student’s Signature : Awrnaprt

Field of Study : ....Mathematics....  Advisor’s Signature : W, A g

Academic Year : .......... 2009........... Co-Advisor’s Signature : WM



vi

ACKNOWLEDGEMENTS

I would like to thank Associate Professor Dr. Wanida Hemakul and Dr. Thi-

radet Jiarasuksakun, my thesi VIS A rofessor Leslie Hogben, lowa State
University, for their kind_and. he suggestions and guidance. Without their
constructive suggestio . - : geable guidance in this study, this research
also thankful to Associate
-ofessor Dr. Wicharn Lewkeer-

Professor Dr. Imchit

atiyutkul and Associ

' 350 Dr \ \\b
mittee, for their co - ‘ \ OV
'.

\
T

Finally, T feel very grate ‘:E:--s_--, Iy for their compassion and untired

LTRIN T

nuntopas, my thesis com-
, I would like to thank all

teachers who have taug

encouragement thr one

(7

X

1
] 7
W i¥ |

ﬂiJEI’J'VIEWlﬁWEI’]ﬂ‘i
’QW]NT]‘EEUNWTJWEH&EJ



CONTENTS

page
ABSTRACT IN THAL ..o iv
ABSTRACT IN ENGLISH ... v
ACKNOWLEDGEMENTS _ 7 7 I vi
CONTENTS ........... : i vii
LIST OF FIGURES 7 . vii
LIST OF TABLES ... " £ 4/0 BN e ix
CHAPTER I INTRODMC pE AN 1
CHAPTER 11 PRECININ ARfES (- . Ny JOUUURRRRRRRRRRR 3
CHAPTER III FIEL WIS 17
3.1 Fan Graphs .... . B 17
3.2 Book Graphs ..... __ ,,u; = 20
3.3 Lotus n. WL ¥V S 22
3.4 Hanging y_e; : ........................ 24
3.5 Path-cycle G aphs e N . 30
-3 o ,
3.6 Patﬂliw Ejﬂlﬂ EJW]? tw El/]ﬂ ta‘ .................. 35
CHAPTER IVUFIELD DEPENDPNCE RESULTS .......................... 39
QEIRAFHUNIINEIRY
4. 2 The Join of Cycles and Complete Graphs .......................... 42
4.3 Clique Paths ... ... 47
4.4 Clique-cycle Paths ... . . 48
AP PEN DX 51
REFERENCES .. 55



LIST OF FIGURES

2.1 The complete multipartite graph K333 and the graph PsU2K;3 ... .....

2.2 A 2-tree H and its complement H .......... ... .. ... .. ... ...

2.3 A tree T and its complement T .. .. .....oooiiie

2.4 The graph G with Z(Q) f 7 P U

3.1 The graph G with P

AULINENINYINT
IR TN TN



LIST OF TABLES

2.1 Summary of field independence of the minimum rank over any field F’
for families of graphs ... ... ..

2.2 Summary of field dependence of the minimum rank for graphs ............

AULINENINYINT
IR TN TN



CHAPTER I

INTRODUCTION

%aph and a field F', to determine

the smallest possible r Sy™H me@es over F' whose off-diagonal

pattern of zero- nonzew agcribe ph. Most work on minimum
rank has been on th un r ob ;u‘ S. Fallat and L. Hogben
"%

0
ol
[

The minimum rank pro

\; of the motivation for the
mk and other parameters for
elo ped at the American Institute
of Mathematics (AIM) w q-t,g- “Spee f families of matrices described by
graphs, digraphs, and 81gn itjm e available on-line; these catalogs
are updated routi # —the Study ot IR iR svetfields other than the real
numbers was initia,t‘ in |3

The minimum rank‘of a graph G is ﬂ{}d independent if the minimum rank of

o el 85 VLRI R BT s he i e

pendence or dependence of minimwm rank for gaost of the families of graphs listed
o he AT b i b e ot cobo e b b B8 he i
rank of sqeveral additional families. For almost every graph discussed that has field
independent minimum rank, they exhibited a single integer matrix that over every
field has the given graph and has rank in that field equal to the minimum rank
over the field (what they call a universally optimal matrix described in chapter

10).



Here is the outline of this thesis.

In chapter II, we recall definitions and review results of the relevant works.

In chapter III, we introduce the fan graph, the book graph, the lotus graph,
and the hanging bridge graph and establish the field independence of minimum

rank for these graphs by constructing universally optimal matrices.

LTI

\Z
i
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CHAPTER I1

PRELIMINARIES

%ul‘cs that are needed in our work.

dire tem., neither loops nor multiple

of vertices and edges of G,

We recall definitions an
A graph G means

edges allowed). Denote by

\"*"
.\

respectively. Also, |G s in GG, and xy denotes the

edge in E(G) for some

Y

The adjacency matyi
such that a;; = 1 if and @

The degree of vertex uf ;;45.;55' ed d(v), is the number of vertices
adjacent to v. A leaf is a ver irz%. i

The Compleme QT e L IIU‘I-'-I--IIIA_-..llluI-ii--:v--- Tle¥: t Vel"teX Set 1S V(G) ELIld
E}u ']
for each pair u,v € 1} -

y if uv is not an edge of G.
A graph H is a Sub@@h of a graph gif V(H C.V(G) and E(H) C E(G).

e saoff uogpgdwa&},w@w o Fa T S—

and edge set {Z] € E(G) :14,j € R}. The subgraph induced WR is denoted by
o quaaammummma d

An 1nduced subgraph H of a graph G is a clique if H has an edge between
every pair of vertices of H. A set of subgraphs of G, each of which is a clique and
such that every edge of GG is contained in at least one of these cliques, is called a

clique covering of G.



Let u and v be vertices in a graph G, a u,v-path in G isalist u = vg, vy, ...,
v, = v of vertices in V(G) such that v;_jv; € E(G) and vy, vq, ..., and v, are
all different.

A graph G is connected if it has a w,v-path in G whenever u,v € V(G);

otherwise, G is disconnected.

A path is a graph P, such Vo, ..., U} and E(P,) = {v;v;41 :

t V(C,) = {v1,va,...,0,} and
omplete graph is a graph K,

such that V(K,,) = 1 <i<yj<n}.

A vertex v of a f G — v is disconnected.

A graph G is iso phy H; denoted H , if there is a bijection
f:V(G)— V(H) su v ¢ E(GYif and N i f(u)f(v) € E(H).
The union of grap M. | " ‘i“' ed U G, is the graph with

\ i=1

vertex set U V(G))

i=1
i # 7, it is called the

When V(G;) N V(G;) = @ for all
» ., and G,,, denoted G +

Gy+ -+ G,. !;-no. n -wn es of a graph G.

.....

K, + Ky, +ﬂ w '?'ﬂw E]:VI f§' ﬂlﬁ’]cﬂﬁﬁte bipartite graph. A

complete blpar“te graph Ky, 1%called an n- vertex star.
ST BRI B B v
edge sets E(Gy) and E(G3), denoted G V Gy, is the union of Gy and G5 together
with all the edges joining V(G;) and V(Gy).
Next, we give the basic definitions and the association of matrices and graphs.
Let SE denote the set of n x n symmetric matrices over a field F. For A =
laij] € SE, the graph of A, denoted G (A), is the graph with vertex set {1,2,...,n}

or {vy,vs,...,0,}) and edge set {ij : a;; # 0,1 < i < 57 < n}. Note that the
J



diagonal of A is ignored in determining G¥'(A). The superscript F is used because
the graph of an integer matrix may vary depending on the field in which the

matrix is viewed.

Example 2.1. Let

011 0 1 30
A— 1 11 Cand C = 1 -1 21
1 11 3 2 21
011 0 1 2

These graphs G%(A), G and graph G%2(C) is the

graph H, as shown orphic to GZ2(C)).

2

The minimum rank over-a-ficld I" of h G with n vertices is
mA(C ) ~ ¢y,

In case F' = R, the sup?rscrlpt R may be omitted, so we write mr(G) for mr®(G)

wis @i ANYNTNYINT

The mlmmﬁ'!n rank of a grapheG is field i ependent if the minimum rank of

s i B 3 T mn'n ngag

Recall the result from basic linear algebra.

Proposition 2.2. [4] Let S be a linearly dependent set of integer vectors over Q.
Then for every prime number p, S is linearly dependent over Z,. If A is a square

integer matriz, then for every prime p, rank? (A) < rank(A), and if characteristic

of a field F is 0, then rank’ (A) = rank(A).



Example 2.3. Let F' be any field and G be the graph as shown below.

1 2
G
3 4
with
and GF'(A) 2 G. N sosition 2.2, rank”(A) < 2
Then mrf'(G) < ra (G) > 2. Let

VT

=

with G¥'(B) 2 G where a, byéids ¢y, day and a, b, ¢, d, and e are nonzero

2

in F. Since the gf"ff"'-?"“""ﬁ’—' : "ll,;_-""r rank(B) > 2.

Then mrf(G) > 2. I hus F field . Therefore the minimum
L Al

rank of G is field indepéndent.

o BB ENEONS

efined a universally optimal matrix to establish

TN TN TNV 4=
integer fhatrix and P is prime, A can be viewed as a matrix over Zj; the rank of
A over Z, will be denoted by rank? (A).

A universally optimal matriz for a graph G is an integer symmetric matrix A

such that every off-diagonal entry of A is 0, 1, or —1 and G(A) = G and for all

fields F, rank” (A) = mr’(G).



Example 2.4. From example 2.3, the graph G = G(A) where

01 10
A — 1 1 11
1111
0110
and rank” (A4) = 2 = mrf (G) vy field . Therefore A is a universally optimal

matrix for G.

In [4], L.M. DeAlba et al: out field independence of the

7/

minimum rank for famili sja; s have universally optimal
matrices which is pregente 1 1,} 2.1 f graphs in this table can
Ji
be found in the Appeudix -
$ -
G F el mrF (G)
1
P, (path) ol : s?—s
‘mﬂ;u:' .
C, (cycle) =2 s?—(s+2 %))
K, (complete gra » 25 —2
K, 4 (complete «clique | # of blocks
graph) ' (i.e.,line graphiof tree)
. oo 101 A 1N A N2 ) |11
s (neckla | A5 SIK, +
FLLEI BN
P,.1 (pineapiple), 3 ¢ CioKy,t>4 2t — | L]
" R R NI 8
T(trge) CioKg s >2 2t -2
unicyclic T, (supertriangle) sn(n—1)
polygonal path n—2

Table 2.1: Summary of field independence of the minimum rank over any field F’

for families of graphs



In [3], W. Barrett et al. showed that if

111 0303 J J
J=11 1 1| and A= | J 03435 J
111 J J 0343

where 03,3 is the 3 x 3 zero matrix, then the matrix A is a universally optimal

matrix for the complete multip K333 shown in Figure 2.1 because if

&(K&&g); otherwise, rank! (A) =
1 ’d

pendent minimum rank.

tha isjoint union of K333 and
: N s."l’-

P3; U 2K3 shown in rof en, G ha ndent minimum rank but

characteristic of a field F'1i

3= HlI'F(K3’373). But

In [4], L.M. DeA

G does not have a

Remar 2 GBI DI I PO I BIA Fre o e ot G

implies mr’ (G"ug mr(G) for all fields F, or eguivalently, the existence of a field

ronioiffert @S F4@ Bl iKbbl Sl opima

matrix.

Figure 2.1: The complete > 3,%and the graph P; U 2K3

In [4], L.M. DeAlba et al. showed the results about the minimum rank of
graphs are dependent of the field and these graphs does not have a universally
optimal matrix which is presented in Table 2.2. Definitions of graphs in this table

can be found in the Appendix.



G mr(G)

=
5
&

Ws (wheel)

Ms (Mobius ladder)

Hs (half—graph) oN ‘
N\ 77/

K92 --..,, /

complement l"""'

3
6
L(K7) 5
3
2

comple

= | e Ot e e O | 00

—
)

6

Table 2.2: Summary of fie g:al' } .é 0 the minimum rank for graphs

q WW MIASOHIMIAREIAY

Figure 2.3: A tree T and its complement T’
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In chapter IV, we present some graphs which do not have a universally optimal
matrix by using Remark 2.5.
We introduce the following notation about specific matrices and a vector which

will be used to determine universally optimal matrices.

1. I, denotes the n x n identit

of the form

4. diag/(al, as, . .. of the form

‘ a.
,;|, i

s mofUE BN NGIRG e
ammn%ﬁnimn;ﬁmnaﬂ

0 [¢5) 0 0 Ayp—2

6. “repeat| |"means the sequence enclosed in parentheses appears as many

times as needed (possibly zero times) to obtain a vector of the correct length.
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For example, (1,1,—1,0,0,—-1,-1,0,0,—1,...,—1,0,0,—1)T = (1, 1, repeat

[—1,0,0,—1])T.

The result from the following proposition will be used to determine minimum

ranks of graphs and universally optimal matrices.

Proposition 2.6. [4, 6]

1. The path P, has a w4y - & of the form A(P,)+ D where

2. The cycle C,, fthe form A(Cy) + D where

= 0(mod4),

n = 1(mod4) and n # 5,

D = < o=y =2(mod4),
| x4
U

dlagg;) 0,—1,—1,— ) if n=>5.

s e cok 1812 V] EJL?/] ANEIDT oo arcrs
QW? ANNIUNAIINYIAY

(mod4),

Examp27
i 7 11111
0101
010 Lot o 11111
Ai=11 0 1|,4 = ;and A3 =11 1 1 1 1
0101
010 11111
1010
5 i 11111

are universally optimal matrices for P3, Cy4, and K5, respectively.
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The next results are tools to determine lower bounds or upper bounds for the

minimum rank of graphs.

Proposition 2.8. [3, 5]

1. If H is an induced subgraph of a graph G, then mrf (H) < mrf(G) for any

' é@ Gi, then mr(G) < Zmr

Example 2.9. We dM )0 d 4 \ per bound for the minimum

rank of a graph G.

field F.

2. If G1,Go, ..., and G

Let F' be a field. imduced subgraph of G and by

Proposition 2.8 y'— ______ )1 Jmr? (P,) = 3. Thus 3 <

(@) for any ﬁeldB We can view that G'is the u@n of K3 and 2 copies of K3.

e ﬁd‘iﬁfﬁ”ﬁ g
SRR FAURAGHHNEE o

subgrap%s to determine the upper bound for the minimum rank of a graph G.
An (edge) covering of a graph G is a set of subgraphs C = {G;,i =1,2,...,n}
such that G is the union G' = U G;. A graph has many possible coverings, but
i=1

some, such as clique coverings, are more useful than others. For a given covering

C, cc(e) denotes the number of subgraphs that have edge e as a member.
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Example 2.10. Let G be the graph shown below.
U1

Us Ve

(25 V4 (%4

5 and Cy have only one common

' e e € E(G)~{vvs}.
o —

.{ graph. Suppose C = {G;,i =
1,2,...,n} is a coveriug & Lt | '\o\; ere is a universally optimal

NN

) ' cre D); 18 \ wgonal matriz. If charF' = 0 or if
charF = p and cc(e) # where pis'p ‘X’ for every edge e € E(G),

By 2-.]1, ﬁﬁitﬁ?ﬁf - ﬁ rE () =1 r any field F.
Since Ci= P3,§ K5} is a covering m gramﬂ:j @,g and K5 have
no common edges, cc(e) = 1 for every edge e € E(G). Then cc(e) #Z 0 (mod p)
where p is prime. By Proposition 2.11, mr’ (G) < mr? (P3)+mr? (Cy)+mr? (K5) =
2+ 2+ 1 =5 for any field F. Since the path F is an induced subgraph of G

and by Table 2.1 and Proposition 2.8 (1), 5 = mr’ (P) < mr’(GQ) for any field F'.

Then mr!' (G) = 5 for any field F. By Example 2.7, A, Ay, and Aj are universally
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optimal matrices for P3, Cy, and Kj, respectively. Consider

O3x3 0O3x3 03x4
Ay Ouxe O5x5 Osx5
A= 10503 A1 Oguu| T + ;
O6xs Ogxe Os5x5 As

O4x3 O4x3 Oyxq

which is

Jf'l

Then rank(A) = 5 and G(A ) ition 2.2, rank’ (A4) < rank(A) =5

for any field F'. have 5 = mr* ( L_——-----.—:--; -5 for any field F. Then
mrf' (@) = rank” (A) dor ¢ ‘rjli ersally optimal matrix for
i

G and G has field ind e}%endent mlnlmum rank.

o [0, F @uﬂmg m PLBL IT)oQ o esormine » tower
ol o) TR IDF L ) L MESE. M

black vertex of GG, and exactly one neighbor v of u is white, then change the color
of v to black. Given a coloring of GG, the derived coloring is the result of applying
the color-change rule until no more change are possible. A zero forcing set for a
graph G is a subset Z of vertices such that if initially the vertices in Z are colored

black and the remaining vertices are colored white, the derived coloring of G is
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all black. The zero forcing number for G, denoted Z(G), is the minimum of |Z|
over all zero forcing sets Z C V(G). The parameter Z(G) is a tool to determine
a lower bound for mr’ (G).

The next examples show zero forcing set and zero forcing numbers for some

graph.

Example 2.13. The graph \ ‘

by applying the color-chau go-tule she @)-(d) as shown in Figure 2.4

and so Z(G) < 2. Th ring of ' the only one vertex is not all black

since more than one whi \ black vertex. Then any set

\\\ ,\\. G. Thus Z(G)

of only one vertex of G = 2.

Vg V4 E Vg N ' '. v4 () V4

Us

(d)

ﬂUEl’JVIEWI?WEJ']ﬂ‘i
AR ASMTTHNITNE TR Y

Example 2.14. Any set of n—2 leaves of the n-vertex star K ,_; is a zero forcing
set for K ,_1 and so Z(K,-1) < n —2. The derived coloring of K, 1 by any
set of n — 3 vertices is not all black since there are 2 or 3 vertices left which are

colored white. Then any set of n — 3 vertices of K;,_; cannot be a zero forcing

set for K4 ,—1. Thus Z(K;,,-1) =n— 2.
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Proposition 2.15. [3] Z(P,) =1, Z(C,) =2 and Z(K,) =n — 1.
Proposition 2.16. [1] For any graph G, mr"(G) > |G| — Z(G) for any field F.

The next examples, we determine a lower bound for minimum rank over a field

F of some graph G.

mple 2.13. We have Z(G) = 2.

By Proposition 2.16, mri (& G - — 2 = 3 for any field F. Thus

Example 2.18. Consi .. By.Example 2.14, Z(Kip-1) =

n —2. By Proposition (Kip—1)=n—(n—2) =2
It is not true, if H i Subg a graph G, then Z(H) > Z(G)

Example 2.19. G ;_-_;_---—___;;_—_—;;—_;;---—'f—-----m,--:-,- -------- 3 ; h H as an induced sub-
T L)

graph. We obtain '3," -forcing sets for G and H,

iR

respectively. Thus Z G) =2<3=Z(H )u
=)

"r
1

Example 2.20. Since the complete graph Kj is an induced subgraph of the

complete graph K5, Z(K3) =2 < 4 = Z(Ks3).



CHAPTER III

FIELD INDEPENDENCE RESULTS

In this chapter, we introduc it book graph, the fan graph, the

@le graph, and the path-clique

nlmum rank for the families of
@ o] ¢ e ; \\
. \\ b and give results about this

Spadd "J 4
3.1 Fan Graphs f”ﬂ-’

\F e
Let n be a V' ~_‘
.: | T

h for which V(F) = {v1, vg, .

ﬁﬁ?ﬁf’i NENTNHINT

Example 3.1. The fan graph Fgon 8 verticessis shown belowss

ARIANNTEY MWI’JWEJ']@EJ

V2 Ve

lotus graph, the hanging
graph and establish field i
these graphs. We showgtha

dependent minimum rank

and universally optima

First, we present

graph.

an graph on n vertices,

denoted F),, is the gra ,unt and E(F,) = {v;v, :

ng

U1 Ug (%4
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Proposition 3.2. Forn >4, Z(F,) = 2.

Proof. We claim that {vi,v,} is a zero forcing set for F,, and so Z(F,) < 2.
Assign vy and v, black and the other vertices white. For all k, 2 < k <n —1, we
can change the color of v, to black since v, is the only white vertex adjacent to

vk—1. Now, the derived coloring of I, iis all black. Then {vy,v,} is a zero forcing

¢é that any one vertex in F}, cannot
force the remaining verti Tse iff de; ter than 1, Z(F,) > 2. Thus

Z(F,) = 2. 0

Next, we will sh = n — 2 by establishing a

universally optimal pper bound for mr”(F,).

Theorem 3.3. For itrie D such that rank(A(F,) +

D) =n — 2. Moreover, F,Shas field independenty ninimum rank, and A(F,) + D

Vi
|miag(o, ...,0,2 1f@ 0(mod4),

2

ﬁgusiﬁw BNy AT
diag(1,1,0,.¢.,0,1,1,%52) if n = 2(mqd4),

WIARAIUNBNINLAAY

Clearly, G(A(F,)+ D) = F,. We exhibit two independent vectors Z; and 2, in the

kernel of A(F},) + D to show that null(A(F,,) + D) > 2. Consider the following 4
cases:
Case n = 0 (mod 4). Then z; = (1,0, —1,repeat[0, 1,0, —1],0)T and 2, = (0, —1,

—1,repeat|0, 0, —1, —1], 1)T.
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Case n = 1 (mod 4). Then Z; = (—1,1,1,repeat[—1,—1,1,1],—1,0)" and z, =
(—1,0,0,repeat[—1,—1,0,0], —1,1)T.
Case n =2 (mod 4). Then z; = (0, —1,repeat|0,0,—1,—1],0,0,—1,1)T and %, =
(—1,1,repeat[0, —1,0,1],0,—1,1,0)7.

Case n = 3 (mod 4). Then Z; = (1, —1,repeat[0, 1,0, —1],0)" and 2, = (1,0,

repeat|0, —1,—1,0],1)"

In any case, we obtain rank(A g, ‘ U&mll(.A(Fn) + D) < n—2. Let
e F) =

F' be any field. By P

By Remark 2.2, ra D) < n —2. We have

n—2 < mrf'(F,) hen mrf'(F,) = n —2 =
rank! (A(F,)+D). ce F, has field independent

minimum rank, and A(F) al matrix for F,. O

Example 3.4. For the fa

ammmm@ﬂw N,

is a uniyersally optimal mat

rf'(Fy) = 6 for any field F.

In the next section, we present the definition of the book graph and give results

about this graph.
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3.2 Book Graphs

Let n be a positive integer greater than 1. The book graph on 2(n + 1)
vertices, denoted B,, is the graph for which V(B,) = {vi,vs,..., 0241y} and
E(Bn) = {Ulv2i+1 1= 1,2, N ,n} U {’U2’U2(i+1) D= ]_,2, N ,TL} U {Uivi—i—l D=

1,3,5,...,2n + 1},

For any field F', themexdt res M;&

ower bound for mr'(B,).

oideid

o —

Proposition 3.6. For n > %W

Proof. We claim ‘isf’" U7,

l-" orcing set for B, and so
Z(By) < n. Assign vy fvs, v, vy, black and the other vertices white.

For all k, 3 < k < n 4 Ay we can changer the color of vy, to black since vy, is

the only Whitﬂemgenﬂgm.ihmiﬂgﬂjm, ..., and vg, o are
black vertic .qlT en vg an,for e(x_f ite vertex*», into black. &$o, v; and vy can
force v%‘ﬁ;](é g‘njm ﬂmggiﬂﬁig,aeﬂrived coloring
of B, is all black. Thus {vy, vs,v7,v9,...,v2,41} is a zero forcing set for B, as

desired. Hence Z(B,,) < n. O
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Theorem 3.7. For n > 2, there is a diagonal matriz D such that rank(A(B,) +
D) =n+2. Moreover, B,, has field independent minimum rank, and A(B,) + D

18 a universally optimal matriz for B,,.

Proof. Let D = diag(0,n — 2,1,...,1). Clearly, G(A(B,) + D) = B,. We will

-,

exhibit n independent vectors 2.z and Z, in the kernel of A(B,) + D to

show that null(A(B,,) + D) =1 ,—1,0, repeat[0, —1])T, Z, = (0,
L0 2 =(0,. ..,

. We obtain rank(A(B,) +

0,1,-1,-1,1,0,...,0)"
0,1,-1,-1,1,0,0)", a
D) = 2n +2 — null(ABN £ 24 “ i+ 2. Let F be any field. By
Proposition 2.16 and 3 | v' : = 2n+2—n = n+2. By Remark
2.2, rank” (A(B,) —I—‘D). « .ﬁ ’ - ‘ We have n+2 < mrf(B,) <
) 42 = rank” (A(B,) + D). Thus
rank(A(B,) + D) = n + 2 He ‘& ' =< ependent minimum rank, and

A(B,) + D is a universally o ;g%{, O

Example 3.8. V—— N

O =
L
R

o@»—l o
=)o -
=9

oD

2

=2

) e

=

@ (

3
»—-o»—uoﬁ'—‘sw*—‘
-

—

=
»—nr—nooo_aoenob—‘

0
1
0
0
8¢
0
0
1
1

o = O = @
o O O O
o O O O
o O =

is a universally optimal matrix for By where D = diag(0,2,1,1,1,1,1,1,1,1) and

r’'(B,) = 6 for any field F.
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In the next section, we present the definition of the lotus graph and give results

about this graph.

3.3 Lotus Graphs

Let n be a positive integer greateérjthan 2. The lotus graph on 2n vertices,

denoted Lt,, is the graph for which V(Lf o= {vi,vs, ..., v5,} and E(Lt,) =

n—1}U{vave,}.

For any field j;;"—"""' Tesu .‘:'6! 1d for mrf(Lt,).

U

Proposition 3.10. gr n >3, Z(Lt,) <

- clmuﬂ ANYUN 5 w QM) g st for 2, and

so Z(Lt,) < n Assign vy, Vg, V4,0, . . ., and @9,_o black andathe other vertices
white q\]nflﬁﬂtm im M m’;]:q m ﬂ f]t@ cEllr white vertex
adJacent to vy. For k=1,2,...,n — 1, orderly, we can change the color of vori1
to black since vgxy1 is the only white vertex adjacent to vey, that is vs, vs, vy, ...,

and vy, 1 are black vertices. Now, the derived coloring of Lt, is all black. Then

{v1, V2,04, V6, ...,09n_o} is a zero forcing set for Lt,, as desired. Thus Z(Lt,) <

n. O
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Theorem 3.11. For n > 3, there is a matriz D such that rank(A(Lt,) + D) =
n. Moreover, Lt, has field independent minimum rank, and A(Lt,) + D is a

universally optimal matriz for Lt,.

Proof. Let D be a 2n x 2n matrix defined by

(

diag(repeat|1, 0, —1,0], 1,2) > eat|0,0, -2, —2], —2)
+ diag” (repeat]0, if n is odd,
D= ,
diag(1, 0, 1,2)
+ diag (0,0, — —2) if n is even.
\
Clearly, G(A(Lt,) + ndent vectors 7, 25, ..., and

t,) + D) > n. Then 2z} =
(-1,1,1,0,....0)T, % 21 =(0,...,0,—1,1,1,0)7,
and 2, = (—1,0,...,0,1 obtain rank(A(Lt,) + D) = 2n —
null(A(Lt,)+D)) < 2n—n =4 : eld. By Proposition 2.16 and 3.10,

rF(Lt,) > |Lt,| = '—-f:———?——% 212, rank! (A(Lt,) + D) <
rank(A(Lt,) + D) —E

mr?’ (Lt,) =n = rank Thus rank(.A = n. Hence Lt,

o i G AN ENIHEINDS s e
m““““ﬁﬁmmfu YR1INY1A Y

F(A(Lt,) + D) < n. Then
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Example 3.12. For the lotus graph Lts,

o 0 o o 0 0 0 1

11 0 O O 0 0 1

-1 -1 0 0 0 O 0 O

-1 0 -1 -1 0 0 0 O

A= P00 Y Aty + D

10 0

0

1

_ O O O O O O O = =
_ O O O O O = = O =

is a universally opti ,0,-1,0,1,0,-1,0,1,2)+

diag (0,0, —2, —2,0, 0,0,0,0) and mr? (Lts) = 5

for any field F.

In the next section, cond the definition of the path into the hanging

bridge graph and we give res &'@f

;.

Let n be a EOSltlve‘lﬂ er ijater than 1. The hanging bridge graph on 4n

3.4 Hangmg

vertices, denot ubgj ’J }njrnﬂ’lﬂ Eh Ps, by appending
n extr V ﬁl ﬁj ﬁ‘ﬁ ﬂﬁuéfg\] path vertices.
Withoa ss of g eral 1, U9,y .. , dvs, b ertice path P, such

that v; and vs, have degree 2 and vs,11, Usni2, ..., and vy, be extra vertices in

Hb,,.
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Example 3.13. The hanging bridge graph Hby on 8 vertices is shown below.

(%rd Vg
. /N /[\

Proposition 3.14. Forn > j;,h &

—

Proof. We claim tha‘( ice eX of degree 2 form a zero
forcing set for Hb,,. Let I' N

and va, black and the fices -‘ - \>\\ '

color of vy, to black si 73 COr « o vertex adjacent to vy, that is

U1 V2 U3 Uy Us Vg

Assign v1, Vsn g1, Usn2, - - -

\w\- {’Ul, Usn+1, U3n+2y - - - ,U4n}

n, orderly, we can change the

Vg, U3, Vs, ..., and vs, are ices ow, the derived coloring of Lt, is all

black. Thus {vy,v3,41, U3ni9; 7 '_ Ugrs i ero forcing set for Hb,, as desired.

Hence Z(Hb,) < gefid O
Voo X

Next we give res about the ging bridge gr%ﬁ.
¢ o/

Lemma 3.1 ﬁl i ' ' ch that rank(A(Ps,)+
Ut e ey
ot et o GONEL SN Vi) 1 61 E

diag(0, repeat][1],0) if n is odd,

D —
diag(0, 1,0, repeat|0, 1,1]) if n is even.

Clearly, G(A(Ps,) + D) = P3,. We exhibit Z in the kernel of A(Ps,) + D to show

that null(A(Ps,) + D) > 1. Consider the following 2 cases:
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Case n is odd. Then z = (repeat[1, 0, —1])7.

Case n is even. Then Z' = (1,0, —1,repeat[0, 1, —1])T.

In any case, we obtain rank(A(Ps,) + D) = 3n — null(A(Ps,) + D) < 3n — 1. By
Table 2.1, mr(Ps,) = 3n — 1. We have 3n — 1 = mr(FPs,) < rank(A(Ps,) + D) <

3n — 1. Thus rank(A(Ps,) + D) = 3n — 1. O

Theorem 3.16. There exi ' atriz D* such that rank(A(Hb,) +
D*)=3n—1 foralln i & independent minimum rank,

and A(Hb,,) + D* is a uniwerse M "v,.,{ Hb,.

Proof. Let D = dia . d A diagonalimatrix defined in the proof
: e D = diag(d;, s, ..., dj,)
I for all j = 3n+ 1,3n +
2,3n+3,...,4n. Clear 1) + D)~ i, he matrix A(Hb,) + D* has
: leted to leave A(Ps,) + D without
rank(A(Ps,) + D) = 3n — 1.

1| Since Pj,, is an induced

changing the rank, that. is 7a

Let F' be any field v——--—————_ -

subgraph of Hb, anmay Proposition 2.8°(1), mr m) > mrl(Ps,) = 3n — 1.
By Remark 2. rank@ﬂ@H &/ rank(A =3n—1. We
have 3n — 1 u ﬂiﬂﬂ[{jw ﬁﬁi Then mr?(Hb,) =
3n — gﬁ ﬁ pf1 ﬁ!(glmmum rank,
and .Ai 1s a umve sal ly opti matr X EI
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Example 3.17. For the hanging bridge graph Hb,,

_ O = O O

= o O O

. o o o o
D O O = = =
—__ 0 O O

o = O O O O = O
O O O = =

is a universally optima i / A by wheré dlag(O 1,0,0,1,1,1,1) and

In the next exa fw | ‘Construct ¢ graph G by adding some “ex-
vertex and appro a‘hangin > graph Hb,, such that Hb,

is an induced subgrap 1 over a field F' of GG is equal

Example 3.18.

-,
el

it
ARIAINI S TINY”

m\

0001‘1100001
0

lg)
0
0
0
1
1
1

—_ == O O O
—_ == O O O
O O O = o=

1
1
1
0
0
0

o O O = = =
o O O = = =

11
11
11
0 0
0 0
00

S O O = o=
—_ = = O O

with rank(A) = 5 and G be the graph obtained from Hb, by adding 5 extra
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vertices and appropriate edges as shown below. We will show that mrf'(G) =

r'(Hby) for any field F.

Hbgi

G
Let F be any field. By 'he ;-, 3.16 / ) = 5. Since Hby is an induced
subgraph of G and by Propositioit 2.8 F(Hby) < mrf(G). By Remark 2.2,

rank”(A) < rank(4) ank! (A) < 5. Then mr"(G)

=5 = rank(A). g -r'-.v‘- optimal matrix for

G. Hence G has a unlversally optimal matrlx field 1ndependent minimum rank,

et W%@%ﬁ%’ﬁ WEINYS
ﬁ\/l DeAlba et al. shbwed that aftecklace with §-fliamonds N has
o i N AN A L ANEL LR EL i e
and mrf’ = 3s — 2 for any field F'.
In the next example, we will construct the graph G by adding the “extra” vertex

and appropriate edges to a necklace with s diamonds N, such that N is an induced

subgraph of G and the minimum rank over a field F' of G is equal to the minimum

rank over F of Nj.
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Example 3.19.

Let

_ O O O O O O = =

0
1
1
1
0
0
0
0
0
0
0
1
1

0 1 1 -%1

‘11000000011
0

AN NSHYIDS

00001 ¥100 Q0000 lgd
Y WIAINGEU NWRVINBIA L)

with ranl(A) = 7 and G be the graph obtained from N3 by adding 5 extra vertices

_— O O O O O O O = = = O o o ©
_— o O O O O O O = = = O o o ©

_ = O O O O O O O = = = O o o ©

and appropriate edges as shown above. We will show that mr'(G) = mr(N;)
for any field F. Let F be any field. We know that mr’(N;) = 7. Since N3 is
an induced subgraph of G and by Proposition 2.8 (1), mrf'(N3) < mrf(G). By
Remark 2.2, rank!’(A) < rank(A4) = 7. We have 7 < mr(G) < rank?(A) < 7.

Then mrf(G) = 7 = rank” (A). Clearly, G(A) = G. Thus A is a universally
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optimal matrix for G. Hence G has a universally optimal matrix, field independent

minimum rank, and mr’'(G) = mrf'(N3) for any field F.

In next section, we give the definition of the path-cycle graph and show that

this graph has field independent minimum rank directly. Then we determine a

universally optimal matrix for thi W well.

3.5 Path-cycle

Let k£ be a positi enoted PC(my, ma, ... my;

N1, Moy vy Ng—1), 1S d P, and cycles Cy,,, Cy,,

,and C,

Nk—1

constr i : Lj <4, V(Pp,_, )NV (Ch,_,)
' (Pr) NV (Pry), V(Cryy)N
V(Ch,_,)s V(C’nj_l) aR% A% ) have no Vertices

Clearly, |PC(my,ma, ... *“-" Z m; + Z n; —2(k —1).

4) »- shown below.

PC(1,3,4:5,4) :

AU 13
eroo ol SR 9113 AUNNANANY,, ..

Proof. Let vg,vs, ..., and vy, be any vertex of degree 2 in C,,,,C,,, ..., and C,, .,

respectively such that each is adjacent to the common vertex of P, and C,,.
If my = 1, then let v; be the common vertex of P,,, and C,,; otherwise, let vy

be the end vertex of P,,, but not the common vertex of P,, and C,,. Then
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{v1,v9,..., v} is a zero forcing set of PC(my, ma,...,my;n1,n9,...,Ng_1) be-
cause there is only one white vertex adjacent to a black vertex so the derived color-
ing of PC'(my, ma,...,mg;ny, na,...,nk_1) is all black. Thus Z(PC(my, ma,...,

Mi; Ny, Na, ..., g—1)) < k. O

Proposition 3.22. For k > 1, mu e M N, Ny e 1)) =

St S 205 1) ORI s Pl i

k k-1

nd"3:21, E mi—l-g n;—2(k—1)—
\ =1 i=1
ny, Moy ...y Mg;Ny, N, ...,

Proof. Let F be any
k < |PC(my,ma,.
nk—1)) < mrf(PC Let S ={Pun,Punys---,
Pr, Cn i Crygy - of PC(my,ma, ..., my;ny,
Na,....nk_1). By Propési gy i jol < i<kandl<j<k-—1,
P, and C,; have universally ] ces of the from A(P,,) + D; and
A(C.,;) + Dj, respectively diagonal matrices. Let e be any
edge in PC’(ml,m 3 n:" =23,...,kand j <1,

ONE(CHSE C% and E(P,,,)NE(C,,) have
no edges, cg FPro osition 2!1 PC(my,ma,...,my;ny, N, ...,
z@u :J;fL AR
and 1.< Wg.f q %, — 2. We have

] ‘ﬁ‘mﬂm@‘l A g
1)

m17m27" y M3 My, N2, .. Pm) + mrF(Cni) =

7

i=1 =1

(mi—1) 4+ (myg—1) 4+ (mp — 1)+ n1—2—|—n2—2)+ —|—(nk 1—2) =

mi+mot- - +mp—k4ni+ng+- - +np_1—2(k—1) Zmﬁ-an

Thus mr? (PC(my, ma, ..., mp;n1,na,s ... Ng_1)) = Zmﬁ- Zn, —2(k—1)—k

for any field F. - O
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We also establish a universally optimal matrix for PC(my, ms,. .., mg;ny, ne,
PN ,’I’Lk_l).
Proposition 3.23. For k > 1, PC(my,ma,...,my;n1,n9,...,Ng_1) has a uni-

versally optimal matrizx.

ny +mg +ng + - o A Tfor all j € {1,2,...,k}. For
1=1,2,...,k, wec ‘ latrix B by i lding A; into the s; X sy zero

matrix at the s;th r

«— s;th row

ik FHYINT
QRIANNIUNRIINENY

- Sk XSk
and for i = 1,2,...,k — 1, we define the matrix B by embedding A} into the
Sk X Sy zero matrix at the (s; +m; — 1)th row and (s; +m; —1)th column as shown

below
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(s; +m; — 1)th column
!

— (s; +m; — 1)th row

B =
L ; S . . = SEp XSk
We see that rank(A; )f=ranl ‘b,q : 1 rank(AY) = rank(B]) for all i. Let
A= Z(BZ + B!) + By. VG (A >O (W e MU T My e 1)
B ' k k—1
We obtain rank(A) < 3) = Zrank )+ Zrank (AL)
| i i— i=1
k G- P, k k-1
D (mi 1)+ 3l k1) = > S met 3 e
i=1 =t 7 I i=1 =1
W iF |

2(k—1)—k. Let F be a‘nLﬁeld By Rem%} 2.2, rank (A) < rank(A4) < Z m; +
k 1
—2(k

_ ﬂuﬂ oposm()wg]@
@wmmmumammmm_

1) — k. Then mr? (PC(my, ma, ..., mg;ni, g, ..., Np_1)) = rankF(A) Thus A is

a universally optimal matrix for PC(my, ma, ..., my; ny,na, ..., Ng_1). O
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Example 3.24. By Proposition 3.23, mrf(PC(1,3,4;5,4)) = 10 for any field F

with

O O O = O =
o O O O

o O O o O

o O O O O

_ o O O O o O

£

i

-

SO PR O B O O O o o o o o o
_ = = O O O O O o o o o o
_ = O O O O O O o o o o o

SO O O O O O O o+ O O = ©o©

is a universally optima has field independent mini-

mum rank.

The deﬁnltlon '_—-‘_—-"T‘_.—?—\ 1 by replacing some cycle

in path-cycle graph ‘ﬁh T wmmt the resulting graph has

a universally optimal r@ekx and field i pendent minimum rank as shown in

thenextexaﬂutl’mﬂmwam‘i
eIV e AL .
Pf), P3 , and 3 polygonal ath (G; consiste on @: , polygonal path

G5 consisted of C’§7),C’4 , and C’ég), and polygonal path G5 consisted of Cj (10)

and C" which V(P nv (), V(e nv (P&, v (PPYnv(eD), V(e n
V(P:,f N, V(P(3)) NV (C), and V(") N V(P3f4)) have only one vertex. We show

that G has a universally optimal matrix and field independent minimum rank.
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We see that Z(G) =1 odany ‘ .roposition 2.16, mr*' (G) >
|G| —Z(G) > |G| —4 =27. . v..‘ and Ay b ¢ universally optimal matrices
for Py, P, P3, and P, G Gé, and G3 have universally
optimal matrices, say A ‘ of alli=1,2,3,...,7, let B;
be constructed (similarly §6 th ﬁi,y in Proposition 3.23) by embedding
A; in the approprlate place 2 T"’ 74,>g; rix with rank(A;) = rank(B;). Let
A= Z B;. Then: .»_, (A} < N s ,....:;;E—_zau;.ﬁ =2-1D)+@B-1)+
(3— 1 (3—1)+ 8m btain that 27 < mrf(G) <
rank!’(A) < rank(A _‘27 Thus mr’ Gb 97 = rank” (A). Clearly, G(A) = G.

Hence G s ﬂ%@@mr@% Y BB Faent miniomum ranic
Ina*me@ ARTY PO/ MIN F T

this graph ha 1n epen ent minimum rank direc so a universally opti-

mal matrix for this graph is determined.

3.6 Path-clique Graphs

Let k be a positive integer. A path-clique graph, denoted PK (my, ma, ..., mg;

ni,Na,...,Nk—1), is obtained from paths P, P,,..., and P, and complete
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graphs K,,,, K,,,..., and K, constructed so that for i =2,3,... k and j < 1,

k—1
V(P )NV (K, ) and V (P, )NV (K,,_,) have exactly one vertex and V' (F,,;)N
V(Pr,), V(EKn,_ )NV (Ky,_,), V(Ky,_, )NV (Py,), and V(P ) NV (I,,_,) have

no vertices.

Clearly, |PK (my,ma, ..., mg;ny,na, .

k k—1
)| =Y mi+ > ng —2(k = 1),
. d . =1 1=

1
Example 3.26. The path-clig e grap 4;5,4) is shown below.
o —

PK(1,3,4;5,4) :

Proposition 3.27. Foy 2 IS (m ' Y k;rnl,ng,...,nk_l)) < n;

—2k — 3.

Proof. Let vgj), véj), e ex of degree nj — 1 in K, such that

each is adjacent to the con 1 = 1, then let vy be the

common vertex of Primand I, ; othery Ii¢ ¢nd vertex of P,,, but not

1 2 2 2
(@ . 7’U£L1)—27 ’U§ ), ’Ué ), cee ,Uéz)_%

O?U]_ ,U2
k—1) (k=1 .
( (k=1) S a_zero ng set of PK (mq, ma, ..., my;n,na,

A ),02 ‘,...Udzﬂ_ i Hrein

ce s Mg1) be%suh&g mﬂmgeﬂﬂ :mljflnsto a black vertex so
the deriyve 1y ‘ ‘ ‘2'. T . ‘ﬁ{ black. Thus
gL CR (p LU E VAL L

the common vertex OE)ml and A, The

1,12, ooy M N, N2y e ey

Proposition 3.28. For k > 1, mr' (PK(my,ma,...,mg;ny,ne, ..., ng_1)) =
k
Zmi — 1 for any field F. Thus PK(my,ma,...,mg;n1,n9, ...,nk_1) has field

i=1
independent minimum rank.

k
Proof. Let F be any field. By Table 2.1, mr¥ (P, sy toim,) = Zmi — 1. Since
i=1
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Py tmotetm,, 15 an induced subgraph of PK(my,ma,...,my; ny,Nay ..., Ng_1)
and by Proposition 2.8 ( Z m; —1 = mr? (P, ymototm,) < mrf (PK(my, ma,

MM, Ny ey Mg—1)). Let C={Pn,, Py, Py, Ky, Ky, - ... } and

nkl

cleary C' is a covering of PK(my, ma,...,my;n1,n9,...,nx_1). By Proposition

2.6,foranyi,j, 1 <i<kand1<j < k-1, Py, and K, have universally optimal

matrices of the from A(P,, + Dj, respectively where D; and

D7 are diagonal matric

J .7K(mlam%'"7mk;n17n27~"7

ng_1). Since for i = 2 P, E(Knj_l) NE(Kn,_,),

E(Pn,)NE(K,,), a (e) = 1. By Proposition

211, mr" (PK (my, "' (Py,) + ZmrF(K
i=1
= Zml—k—i-(k— PK my, ma, mg; Ny, N,
i=1
k
7nk—1)) - Zml - O
i=1
Proposition 3.29. For k > %{J’ 4 ‘_ My Ny, Ny .., Ng—1) has a uni-

versally optimal matriz
»vr.l

Proof. Let Ay, A}, Amél’z, o Apn AT and Ay, be‘mﬂversally optimal matrices

for Py, Ky, B, respectively. Then rank(A4;) =
N1/ 1 ) 3117 N
}a"ﬁ ~1,2,...
let B; QW be corSruct?MMe C(ifructlon n zr([ osition 3.23)

by embedding A; into the s X s, zero matrix at the s;th row and s;th column

with rank(A;) = rank(B;) and rank(A}) = rank(B]). Again, similar argument
in Proposition 3.23 is applied. We obtain mr? (PC(my, ma, ..., myny,no, ...,
Ng-1)) = Zmi — 1 = rank”(A). Thus A is a universally optimal matrix for

PK(my,ma, ..., my; ny,Nay ...y Ng—1). O
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Example 3.30. By Proposition 3.29, mrf' (PK(1,3,4;5,4)) = 7. for any field F

with
111 110000O00O00O0
1111 10000O00O00O0
1111100000000
11 111,0,000000°0
040 0 0 00
0 040 ‘ 000
0wl 0 00
§ 00
Et 00
00
10
11
11
is a universally optima' Tix Lo :_ 15, 4) has field independent mini-
S
mum rank.

AT

(7 Y

) )
AULINENINYINT
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CHAPTER IV

FIELD DEPENDENCE RESULTS

In our work, we also present some gr# do not have field independence

of minimum rank and these.gia ﬁnversally optimal matrix.

on of graphs P, and K, with

‘\-c’. s joining V' (P;) and V(Kj).

—"!—

Proposition 4.1. Fort > 3
WJ

Proof. By Table 2 5‘,‘_—515::"_'_?; ced subgraph of P, V K

and by Proposition % (1), < I'K). \% have t — 1 < mr(F; V Kj).

We will exhibit s + 1 ifidependent vectorsszy, Z5, ..., and Zsy; in the kernel of a

matrix A sucﬂhu&k’l%l EkVEA W) oy and v,
z;::aw SR,

1T, % = (0,...,0,1,—1,0)7, z = (0,...,0,1,—1,0,0)T,...,zs_1 = (0 0,0,1,
—— T

-1,0,...,0)7, 2, =(1,0,—1,0,...,0)", and Z,,; = (0,1,0,—1,0,...,0)T.
—— ~——

s—2 s s—1



Case t = 0(mod4). Let A = A(P, V K;) + D where

0t><t Oth

D = diag(1,0,0, repeat[0,0,0,0],1,1,...,1) + 2 2
~—— Ot :

Then 7 = (0,...,0,1,—
——

t+s—2
cyRs—1 = (0,
——

Zs11 = (repeat[1, 0,0,

40

0t><s

t—3 t—3

D = diag(1,1,0,1,r 2
=3 =3
2 2 S§XSsd

"(, f ’_ "
Then z; = (0, ... — 0 3=(0,...,0,1,—1,0,0)T,
~—— : ~——
t+s—2 t+s—4

L e R ——
0,...,0)T, andstE —%, ( ...,O)T.

Case t = 2(mod4). Let‘A A(P, Vv Ky) Ji}) where

ﬂuﬂawﬂwsw 1ﬂ§% -
Wﬁﬁﬁﬁ“fw—m % ’IGEL

01, —1,repeat[—1, 1,1, —1],

Then % = (0,...,0,1,—1)T, % = (0,...,0,1,—1,0)7, 2 = (0,...,0,1,—1,0,0),
~—— ~—— ~——

t+s—2 t+s—3 t+s—4
o Ze1 = (0,...,0,1,—-1,0,...,0)7, Z, = (1,repeat[—1,—1,1,1], —
—— ——

t s—2

and Z,1; = (1,repeat|0,0,1,1],0,—1,0,...,0)T.
——

s—1

1,0,...,0)7,
——
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Case t = 3(mod4) and ¢t # 3. Let A = A(F; V K;) + D where

Otxt 0t><s

D = diag(1,1,0,1,0,0,repeat[0,0,0,0],1,1,...,1) +
~— Osxt

L S§X s

Then z; = (0,...,0,1,—1)T, -1,0)%, z3 = (0,...,0,1,—1,0,0)T,
~——

t+s—2

S Zs21=(0,...,0,1,—=1,0 ,repeat[l, —1,—1,1],0,...,0)T,

and Zz11 = (1,0, 0, repe

In any case, we obtan & ) = (t+s)—null(4) <

(t+s)—(s+1)=t— 1 - < rank(A) <t — 1. Thus

mr(P, vV Ky) —t 1 O

The next example, i oes not have field independent

minimum rank.

d independent minimum

Example 4.2. Py

rank.

QW’] RINIUNRINYAR

Let 1 S22 be such that G%2(A) = P,V K,. We can write

d 1 1 1 1 1
1 d 1 1 1 1
A_ |1 1 d 1 00
1 1 1 d 1 0
1 1 0 1 dy 1
1 1 0 0 1 dg
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where dy,ds, ..., ds € Zy. It is easily to show that vectors (1,1,ds,1,0,0), (1,1,
1,d4,1,0), and (1,1,0,1,ds,1) are linearly independent. Then rank(A) > 3. Sup-
pose that rank(A) = 3. Then {(1,1,d3,1,0,0),(1,1,1,d4,1,0),(1,1,0,1,ds5,1)} is
maximal independent subset of the row vector space of A. Thus (1,1,0,0,1,ds) =
a-(1,1,d3,1,0,0)+b-(1,1,1,d4,1,0)+¢-(1,1,0,1,d5, 1) for some a, b, c € Zy. We

&0, and dg = 1. Then (1,d»,1,1,1,1)

inati 1100 ),(1,1,1,0,1,0), and

obtaina=1,b=1,c=1,d3
cannot be written as a li
(1,1,0,1,1,1), a contragi - Lhus ran -u"- Jince A is arbitrary, mr?2( P,V

K;) > 4. Let B € Si#he

with rank(B) = 4., Cle hen.mr?2(Py V K,) = 4. By

Proposition 4.1, _iiii___‘_—'_"" r,é' 3<4=mr?2(PV K,),

ie., PV Ky does nﬁ have ROl MAEPERACt minidhm rank. By Remark 2.5,
AT WEA N
e ’&T 'WT RS AR R

Recal that for t > 3,s > 2, C; V K, is the union of graphs C; and K, with
disjoint vertex sets V' (C;) and V(Kj), and all the edges joining V(C}) and V (K).
First, we compute mr(C; V Kj).

Proposition 4.3. Fort > 3,s > 2, mr(Cy V Ky) =t — 2.

Proof. By Table 2.1, mr(P,_y) = t — 2. Since P,_; is an induced subgraph of

Cy V K and by Proposition 2.8, t —2 = mr(FP,_;) < mr(C; V K;). We will exhibit
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s+ 2 independent vectors 77, 2, . .., and Zs, o in the kernel of a matrix A such that
G(A) =2 CyV K. Let V(Cy) = {v1,v9,... 0} and V(Ky) = {0411, V12, -, Vprs )
Consider the following 4 cases:

Case t = 3. Let A = A(C3V K,) + I,;3. Then 2, = (1,0, ...,0,-1)T, % =
——

s+1
1,0,...,0,—1,0)", z = (1, T ..., and Z 1,—1,0,...,0)T.
( )" 7 = ( ) +2 = ( 1)
S s+
Case t = 5. Let
A=
(s+5)x (s+5)

Then 7, = (1,1,1,1,1,0,. ,0,—1,007, 7 = (1,1,

4 — —_— " ) 5—2 .
1L,1,1,0,...,0,—1 00 5 107, 2 = (0,1,1,0,—1,

0""0);’_3&”‘]1Zs+2( LO L1000, i)’
C“”—“ﬁuﬂﬁwmwmm
QIR I U] TAneiid|

Then 7, = (repeat[1,1,0,0],0,...,0,—1)T, Z, = (repeat|[1,1,0,0],0,...,0,—1,0)T,
~—— ~——

s—1 s—2

73 = (repeat[1,1,0,0],0,...,0,—1,0,0)T, ..., Z, = (repeat[1,1,0,0],—1,0,...,0)T,
N—— ~——

5s—3 s—1
Zop1 = (repeat[1,0,—1,0],0,...,0)T, and Z,,» = (repeat[0,1,0,—1],0,...,0).



Case t = 1(mod4) and ¢t # 5. Let A = A(C; V Ky) + D where

D = diag(1,2,1,1,0,repeat[0,0,0,0],1,1,1,1,1,..., 1) +
H,_/

Otxt Otxs

0s><t

Then z; = (1,0,0,1,0,

repeat[0,1,1,0],0,1,0

0,0,...,0,—1,0,0)7,
———

3 " , AN N
’5)3—1—1:(_17071)_17 A . ‘ ‘ \ '70)Ta a‘nd Zs-ﬁ-2:

vl

1,0, —1, repeat[0, 1, 0,

Case t = 2(mod4). Let

44

0t><s
t—4 t-a
D = diag(1,1,1,1,1
vl t— t—
Then z; = (0,1,0, 0,1,q,repeat [0,1,1,0], 0 ,0,— )T =(0,1,0,0,1,0, repeat

0.1,1.0,0.. ﬂoumm &l‘%@ﬂ&ﬁoﬂﬁo 100

Wﬁ%ﬁﬁ“fi‘ﬁ u%‘ﬁﬁmaﬁ ;

0, repeaf[1, 0, ,and Z,4o = 1,0,1,—1, repeat[0, 1,0, —

0,...,0)
Case t = 3(mod4) and ¢ # 3. Let A = A(C; V Ky) + D where

0t><t Otxs

T
w

t—3

D = diag(1, 1, 1, repeat[0,0,0,0],1,...,1) + 2 2
—— Ogt : :

T
w

=3
2

l\D|

- SX s
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Then z; = (0,1,0,repeat[0,1,1,0],0,...,0,—1)T, % = (0,1,0,repeat|0, 1, 1, 0],
——

s—1

0,...,0,—1,0)7, Z3 = (0, 1,0,repeat[0,1,1,0],0,...,0,—1,0,0)%, ...,z = (0,1,0,
—2 -3

repeat|0,1,1,0],—1,0,...,0)T, Z,,1 = (1,—1,0,repeat[1,0,—1,0],0,...,0)T, and
H,l_/ ——

Ziro = (0,1, —1,repeat[0, 1,0, —1],0,...,0)T.
——

hen rank(A) = (¢t + s) — null(A) <

In any case, we obtain s + 2

(t+3s)— (s +2) =t —2. We have ¢ — 24&m¥(Gy v K,) < rank(A) < t — 2. Thus

mr(C; vV K) =t — 2. /
The next examp\/
minimum rank.

Example 4.4. Cg5 V K.  hayon mdependent minimum rank.

“H RS

o Y ,dl, 1 70‘0 70 ld 71 17 lal
ARIAINTUNRIINGNN Y
q 0 1 ds 1 0 0 1 1 1 1

0 0 1 d 1 0 1 1 1 1
4|00 0 1 d 1 1 1 1 1
1 0 0 0 1 dg 1 1 1 1
1 1 1 1 1 1 dy 1 1 1
1 1 1 1 1 1 1 dg 1 1
1 1 1 1 1 1 1 1 dy 1
1 1 1 1 1 1 1 1 1 dy
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where dy,ds, .. .,dig € Zy. Claim that vectors (1,ds,1,0,0,0,1,1,1,1),(0,1,ds, 1,
0,0,1,1,1,1),(0,0,1,dy4,1,0,1,1,1,1),(0,0,0,1,ds5,1,1,1,1,1), and (1,1,1,1,1,1,
d7,1,1,1) are linearly independent. Let oy, o, ..., a5 € Zy be such that a4 (1, ds, 1,
0,0,0,1,1,1,1) + a2(0,1,d3,1,0,0,1,1,1,1) + a3(0,0,1,d4,1,0,1,1,1,1) + a4(0,

0,0,1,d5,1,1,1,1,1) + a5(1,1,1,1,1,1,d7,1,1,1) = (0,0,0,0,0,0,0,0,0,0) Then

=0, = 0,a00+a i f ot 05 = 0, aotasds+ay+as =0, as+
agds+as =0, a4+ a5 = 0,00 +a ‘ @—O o t+agtast+agt+as =0.
= : + a3 = 1. If ay = 0, then

a3 = 1 which is im e M / \then. & which is impossible. Thus
a5 = 0 which impli = oo £ - o = ‘ ,-as desired. Then rank(A) > 5.

10 be such that

\

171 1
11111110

AUt mw‘i’ﬂmﬂ]ﬁ
o QA § STV NI R - o

Proposﬂon 4.3, mr(Cs V K;) = 4. Thus mr(Cs V Ky) =4 <5 = mr2(Cy V Ky),

i.e., Cg V K4 does not have field independent minimum rank. By Remark 2.5,

Cg V K4 does not have a universally optimal matrix.
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4.3 Clique Paths

Fori=1,2,...,k,m; > 3. A clique path, denoted K P(my,ma, ..., my), is the
“path”of complete graphs built from complete graphs K,, , K,,,,..., and K,,,
constructed so that for ¢ = 2,3,...,k and j < i — 1, E(K,,,_,) N E(K,,) has

exactly one edge and V (K, (/) has no vertices.

Remark 4.5. |KP(my,
Proposition 4.6. m

Proof. Clearly, Py, 2(m1, ma,...,my). By Table
2.1 and Proposition ‘ <\nb( KPR mi, ma,...,my)). We can
view that K P(my, mo omplete graphs K, , Ky, - - -
and K, . By Table 2 Imr(KP(ml, Mo, . ..,my)) <

mr( K, )+ mr(K,,, )+ - (KP(my,mg,...,mg))=4k. O

D
VERT %“7 1\. 19
ARARIAID wamg 28y

Example 4.7. KP(5,4 es not have nd 9 minimum rank.
T — .fl

d1 1 1.1 1 0 0
1 do 1 1 1 0 0
1 1 d3 1 1 0 0
A=11 1 1 d, 1 1 1
1 1 1 1 d3 1 1
0 0 0 1 1 dg 1
00 0 1 1 1 dr
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where dy,ds, ... ,d; € Zs. 1t is easily to show that vectors (1,1,ds,1,1,0,0), (1,1,
1,d4,1,1,1), and (0,0,0,1,1,ds, 1) are linearly independent. Then rank(A) > 3.

Since A is arbitrary, mr?2 (K P(5, 4)) > 3. Let B € S22 be such that

with rank(B) = Then mr?2(KP(5,4)) =

3. By Proposition 4. r(KP(5,4)) =2 < 3 =
72(KP(5,4)), ie dependent minimum rank.

By Remark 2.5, K P(5, : & dni crsally optimal matrix.

4.4 Clique-cy

N1, Noy ...y M), 1S obtakned from compleb graphs Kml,sz,..., and K,,, and

wﬂﬂ&k’@%&%%ﬁmnrﬂ%

E(Kp, )NE(Cy,), E(Kp,)NE(Chg), and E(K,gNE(C,,_,) haye exactly one edge

- V’é}%ﬂ mmmw %}Wcﬂ'}n&& V()

have no vertlces

Y
, de oted KC(mq,ma, ..., my;
]

Fori=1,2,...

k
Remark 4.8. |KC(my, ma, ... ,mg;ny,ng, ... ,ng)| = Zmi + an — 4k + 2.
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k
Proposition 4.9. mr(KC(my,ma,...,mg;ny,na, ..., ng)) < an —

Proof. We can view that KC(my, ma, ..., my;n1,na,...,ng) is the union of com-
plete graphs K,,,, K,,, ..., and K,,, and cycles C,,,C,,,..., and C,,. By Table

2.1, mr(K,,,) = 1 and mr(C,,) =n; —2 forall i = 1,2,... k. By Proposition
k

))SZmr s +Zmr ) =

O

2.8 (2), mr(KC(my,ma,...,

k k
k+> ni—2k=>» n =k
i=1 i=1

Example 4.10. KC(5;4) e (/v fiele endent minimum rank.

KC’(S; 4oF

Z f‘r.“‘ ‘} .
Let A € S22 be such that GEAF = AC(5:1). We can write

ﬂum amswmm
QW]NT] m%wémﬁ" ¢)

where d?, dy,...,d; € Zy. 1t is easily to show that vectors (1,1,ds,1,1,0,0), (1,1,
1,1,ds,1,0), (0,0,0,0,1,ds,1), and (0,0,0,1,0,1,d;) are linearly independent.

Then rank(A) > 4. Since A is arbitrary, mr?(KC (5;4)) > 4. Let B € SZ* be
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such that

O = = = = =
O R = =

0
0
0
0
1
1
1

SO = O = O O O

with rank(B) = 4.
By Proposition 4.9,
KC(5;4). By Table 2.1 _afid § ) < mr(KC(5;4)). Then
mr(KC(5;4)) = 3. y 2(KO(5 1), ie., KC(5;4)
does not have field indepe Remark 2.5, KC'(5;4) does

not have a universally opt

Question. Which values € ik that 2 P, VK, C;V K, KP(my,ma,

mg), and KC(mq, m 2 rE‘:{f s ave field independent minimum

]
e

Yy —d|

rank?

] )
ﬂUEJ’J'VIWI?WEﬂﬂ‘i
’QW’]ﬂﬁﬂ‘imﬁJiﬁ’mEﬂﬂB



APPENDIX

The necklace with s diamonds, denoted Ny, is a graph that can be constructed
from a cycle Cs3s by appending s extra vertices, with each “extra”vertex adjacent

to 3 sequential cycle vertices.

The m, k-pineapple (with « 3, | 2 oted P, k, is the graph K, U K

such that a vertex in V(K A 28 é of K, of degree k.

f sad "'.-:.{ ,
A treeis a connected gra oﬁ%‘;ﬁw

s and n — 1 edges.

A unicyclic is a-eonnected graph containing

exactly-one cycle.
2)

AY |

]
| Afieaneninenns
RN TUANIINIAY

A polygonal path is a “path”of cycles built from cycles C,,,, C,, ..., and C,,

constructed so that fori = 2,3,..., kand j < i—1, E(Cp,_,)NE(C,,,) has exactly

%

one edge and E(C,,;) N E(Cy,,) has no edges.
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The Cartesian product @ ‘ , denoted GOH, is the graph
with vertex set V(G) x » jacent to (u',v’) if and only if
(1) u =" and vo’

The strong prod G X H, is the graph with
vertex set V(G) x V4 o (u/,v") if and only if (1)
wu' € E(G) and v/ E(H), or (3) v = v and

wu' € E(G).

X

a v
ﬂ”‘HEl'J NnanNIneInNe~
m‘au
P Y B LTI B o
|G| H| £ |G| vertices obtained by taking one copy of G and |G| copies of H, and
joining all the vertices in the ith copy of H to the ith vertex of G.
The nth supertriangle, denoted T,,, is a graph G with vertex set V(G) =
{(4,j) :i=1,2,...,nand 7 = 1,2,...,4} such that (¢,7) is adjacent to (¢, ;') if
and only if (1) |i —i'|=1and |j — 7| =0,0r (2) |i —i|=0and |j — | =1, or

(3) li—7|=1and |j — j/| = 1. Clearly, |T,| = in(n+1).
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rge block-clique H

\Z R
The nth wheel, :! oted W, 18 aph K1 V Gyt 1.

47 |

The sth Mobius ladderndenoted M, is.obtained from C,0P, by replacing one

el AN LU S HENS

QW@mm‘wﬁ@

W M;

block—cliqu T2
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The line graph of a graph G, denoted L(G), is the graph having vertex set
E(G), with two vertices in L(G) adjacent if and only if the corresponding edges
share an endpoint in G. Since we require a graph to have a nonempty set of
vertices, the line graph L(G) is defined only for a graph G that has at least one

edge.

; \ Is constructed from (disjoint)
graphs K, and K, havi fices iy, tgy - %, and w, and vy, 1, Veto, ..., and vy,

J<2s+1.

V4 Vg ui |

AULINENINYINT
QIR TRAUNN VG

to exactay a pair of existing adjacent vertices.
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