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Chapter 1

INTRODUCTION

In Quantum Chromodynamies (QE€D), there is an important problem that
the coupling constant of the strong interaction becomes nonperturbatively strong
in the low energy regime. Quarks and gluons arc confined within colorless hadrons
and the chiral symmetey s hroken. However, as the energy scale or the temper-
ature of the system im€reases the coupling tends to get weaker and eventually
quarks and gluon becomes degonfined. Additionally, if quarks and gluons are ex-
tremely compressed, quarks strongl‘y" inzce‘fact with other quarks from neighbouring
hadrons and become effegtively dec—onﬁged; from the mesonic and baryonic bound
state despite of the strong coupling. “-ii-‘{ven though the coupling is strong, the

effective deconfinement is possﬂ)lé ;bccaéi:sié of the extremely high density.

Lately, there are many e_‘icperimental}éé_j:dences from heavy ions collision sug-
gesting that quark-gluon pl@gma;:(QGP)i.‘}g__ie" nuclear matter in which the quarks
and gluon become deconfined, might have been produced. The results from the
relativistic heavy 1oﬁs collider (RHIC) show that QE_%P act like a fluid with a

small viscosity. This behavior cannot be explained by thinking of quarks and

gluons as a hot gas sgfstem consisting of high energy’i’)articles. For example, the
lattice simulatiéns show that the pressurecof QGPyissxelatively high above de-
confinement tempeérature 7, which again“cannot-be described by weakly coupled
quarks and gluons gas [1, 2|. Additionally, itds, proposed that/mon color singlet
and coler-singlet bound states jof quarks/and gluons could exist in the plasma at
the temperature (1 — 3)7. [3, 2, 4]. The additional existence of the colored bound
states could solve the high pressure problem and the small viscosity problem at

once.

To study QCD in the large coupling limit, the use of perturbative method
in QCD is meaningless. The attempt to find the suitable way to perform reliable
calculation in this region has been developed. For instance, available tools for non-
perturbative QCD at low energy such as MIT bag model and Lattice QCD have

been proposed. The bag model promotes the nature of quark confinement and



asymptotic freedom. One can think of behavior of quarks inside a hadron as free
quarks in an elastic bag. If one try to pull a quark out of the hadron, the energy
required to separate will be greater than quark-antiquark pair creation. Conse-
quently instead of pulling out a single quark, one surprisingly produces mesons.
Accordingly the bag model is suitable for the nuclear matter in confined phase
but it originally does not address the situation in the deconfined phase. For more
information on MIT bag model, one can consult a good review for this topic in
[5].The lattice QCD is famous as a nonperturbative tool for low energy QCD.
Originally, it is formulated on a discrete Euclidean spacetime grid which intro-
duces a new kind of parameters relating to lattice spacing. The discrete Euclidean
spacetime behave like a nonperturbative regularization scheme. At the finite value
of a lattice spacing a, the discrete spz-;cetime automatically introduces a cutoff at
T At the moment, thig.technique is reliable i the domain of low density and
ﬁigh temperature. At higher donsitiép, the fermion sign problem and the slow
convergence of statistical flugtuation m the numerical integration procedure make
results of the calculation problematie. z;‘good introductory review on lattice QCD

can be found in [6] whilg'the Toview,onrecont development in lattice QCD at finite

density can be found in [1] and.[7]. J é

Apart from the mainstr_eﬁan‘r resef;i'{f_l_‘e%sp in QCD mentioned above, there is
an alternative approach to nd‘h'pérturbatié_éfgauge theory using holographic prin-
ciple. The prototype one is Auti-de Sifzfé‘fﬁ‘space an(,:l Conformal Field Theory
(AdS/CFT) duality Eronosed by Maldacena [8]. Tt is é_n.--important outcome from

superstring theories ""(;onjecturing that a gauge theory i1 the spacetime boundary
is equivalent to a superstring theory defined in higher dimensional space of that
boundary. The duality €omes with an outstanding feature that there is a strong-
weak coupling”duality associated: with the gauge-gravity duality in a particular
background. This allows us to solve the strongly coupled gauge theory by the
weakly~conpledy superstringstheory. nBynusing thesknewn-zrelation between those
two theories ‘called *dictionary™ onecan interpret the result of the-weakly coupled
superstring theory and identify with that of the strongly coupled gauge theory.
This is an excellent way to solve the strong coupling problem; therefore this work

will focus on the applications based upon this idea.

After the development of AdS/CFT correspondence, many holographic mod-
els have been proposed. Holographic models of meson were proposed by J. Mada-
cena, S. Rey, S. Theisen, and J. Yee [9, 10, 11]. The Coulomb type potential and

screening effect of the potential between quark and antiquark are calculated from



Nambu-Goto action of the string in the bulk spacetime at zero and finite tempera-
ture. Additionally, the holographic baryons are proposed, by E. Witten, D. Gross,
and H. Ooguri, to be a D5-brane wrapping the S® subspace of the background
spacetime with N, strings connected and stretching out to the boundary. The
fundamental requirement is the cancellation between a total of N, charges from
the endpoint of the strings and the charges of the vertex itself. Generally this
condition allows more strings coming in and out of the vertex on the condition
that the total charges of the string endpoints amount to N, [12, 13, 14, 15, 16, 17].
Baryon vertex together with string eonfiguration of the latter case represents the
holographic model of color charged boundstate called multiquark state which can

exist only in deconfined phase.
4

The color multiquark phase was studied inthe Sakai-Sugimoto model (SS)
at the moderate temperature ranging from the ghion deconfinement (lower) to
the chiral symmetry restoration tempélrature (higher) [20]. The multiquark phase
was found to be thermedyuamically stable and preferred to the other phase in
gluon-deconfined plasia Only if.‘_th’e d(%siyy is sufficiently large [17]. The condi-
tion that the high dengity and the intcrfﬁ_ediate temperature coexist can be found
in a dense warm star. Thergfore 1t is inferesting to explore the thermodynamical
properties of multiquark nucleqt'ﬂmtte%ép_d( its influence on the stability of the
dense star. In this thesis, The massive sta,r__wéé assumed to be spherical symmetric
and entirely in a mulitquark state due to ‘ohe%ngh density and a uniform moderate

temperature throu—g}‘i'_out the star. The equation of stéte for multiquark star can

be obtained from thé Sakai-Sugimoto(SS) model and sithplified by the power-law
approximation. Finally, using the Tolman-Oppenheinier-Volkoff (TOV) equation
[21, 22] and the equation=of states of thesmultiquarks from the Sakai-Sugimoto
model, the mass, [density, and pressure distribution of thelstar are acquired nu-
merically. Thélmass-radius relation and the mass limits of the multiquark star
are alsevanalyzed ~Additienally=the important Jydredynamical, properties such as

sound speed ‘within'the star ‘are investigated.

This thesis is organized as the following. In Chapter 2, the general idea of the
AdS/CFT correspondence will be introduced briefly. Chapter 3 provides the ba-
sics to understand the entire work in this thesis. This chapter reviews the specific
holographic model, namely the Sakai-Sugimoto model which is used in most cal-
culation to find the thermodynamics relation of nuclear matter for many possible
cases in the chapter 4. In chapter 4, the equation of the states and calculation of

various phases for nuclear matter with finite baryon number density are described.



Chapter 5 introduces a special kind of bound state called multiquark state which is
a new state with color charges. We study the stability of the multiquarks state by
examining the force condition on the superstring configuration of multiquark in the
bulk. Chapter 6 is the main theme of this work. It focuses on thermodynamics of
multiquark to acquire an equation of the state for the multiquark. A hypothetical
multiquark star is the studied using the Tolemann-Oppenhiemer-Volkov equation
[21, 22] and equation of state for multiquark obtained from Sakai-Sugimoto model.

Translation of unit from the superstring theory in Sakai-Sugimoto model to ST unit

is provided in the Appendices.
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Chapter 11

REVIEW OF HOLOGRAPHIC PRINCIPLE

Holographic principle is an equivalence between the description of physics
in the volume and that is encoded on' its‘lower dimensional boundary. It was
first proposed by 't Hooftrand Sussljind afidewas inspired by a study of black
hole thermodynamics neaz.the Plank’s scale: After the second revolution of su-
perstrings theories, a new kimcl.of holographic principle exists in the framework
of superstrings theory galled gauge—grlllavity duality relating superstring theories
in the bulk to supersymmetric gauge theories defined at the spacetime boundary
(sometime we interchénge’thie sord s@e}"_gravity with superstrings since super-
gravity is a low energylimit of S-uperstiin'g theory). Additionally, it comes with
some exciting features giving us an alter_‘riatiive descaription of the strongly coupled
gauge theory due to the fact that therériisl!a strong-weak duality between those
two classes of theories. Desp“lite" of theis’:éjﬂvantage in describing real nuclear
matter that there is still no exact (supeigj-‘gﬁavity dual of QCD, the duality has

made a remarkable épntribution on the understanding_—bf,QCD—like gauge theories

which shares certah;’qommon properties with the QdD and offers a geometrical
perspective of confinement and quark-glion plasma. In this section we will focus
on basics of gauge-gravity. duality via the prototype one, namely the AdS/CFT
duality following the Ref! [23,24].

Originally, a study of the gauge-gravity duality depends on the understand-
ing of D3-branes. «Otherdtype of branes Have heen stiidied butithetbest understood
ones are, D-braies based on'the ‘work of Polchinski [28]. D-brames are primarily
locations in the ten-dimensional spacetime at which open strings can end. D3-
branes is D-brane with 3 extending spatial dimension as well as in the time direc-
tion. At low energy, excitation of a single D3-brane can be described by N' = 4
supersymmetric U(1) gauge theory. Stack of N D3-branes corresponds to NV = 4
supersymmetric U(N) Yang-Mills theory (N = 4 SYM theory). The theory can
be divided into (a) the U(1) component which is free and relating to center of
mass motion of the stack of the branes: (b) the SU(N) component which refers

to the interaction among each brane in the stack. In this kind of gauge theories, a



gluon is represented by a string having its ends on the N stack of brane where N is
a number of color charges associated with the theory. For QCD-like gauge theory
(N = 3 labeling R-brane, G-brane, and B-brane.), a gluon with color charges RB
is represented by a strings having one end on R-brane and the other end on B-
brane. Without mentioning to spin, all particles are in the adjoint representation

of the gauge group.

D3-branes have a fixed mass density and a certain charge under five-form
field strength. Placing D3-branes in the 10-dimensional spacetime, it will curve
the spacetime into 10-dimensional Einstein equation coupled to a five-form field.
It is found that the problem of finding black branes solution reduce to the problem
of finding black hole solution {25, 26, 27]. Inthé near horizon limit, the solution
to the Einstein equatiomsbeécomcs the direct product form of AdSs; x S° where
AdSj is 5-dimensional Anti dé Sitter space which is a type of space with negative
(attractive) cosmological comsiant and S? is a 5-dimensional sphere.

i -

-

2.1 AdS/CEX duaiity -* |

To understand the gauge- grawtvnduahtjy’, _1)ne can get the first step by starting
with the prototype called AdS/CET cornespcrndence In short it is an equivalence
between string theory in the-bulle AdSs X S5and N = 4 SYM in 4-dimensional
boundary of the bulk spacetime [8].

First, we need t6 understand the metric of cxtremal D3-branes. The word
extremal means that the branes is at the zero temperature which can be described
by a vacuum state and satisfies the Bogomol nyi-Sommerfield-Prasat (BPS) con-

dition. The metrigdor.thetspacetime outside thehorizon isigiven by
dsPy=pHAA(=dt? 4 dF) + B H(dnd +2d98)g (2.1)

where H = 1+ f—:, R* = N, ko= = /87G = gravitational coupling in 10-

dimensional supergravity, N is the number of D3-branes and o’ is Regge slope

parameter of fundamental string which is inversely proportional to the string ten-

sion. The horizon now locates at r = 0. In the large r limit (r >> R), the

metric becomes asymtotically flat. D3-branes can be thought of a defect in the

bulk spacetime; however, in the small r limit, the metric takes the following form
2

2
ds? = = (=dt* + i) + 1:“—2 (dr? 4 r2d02) . (2.2)



It means that if we zoom in close to the horizon of the D3-branes,the resulting
geometry takes AdS5 x S° product space. This is how D3-branes are replaced by
a curved geometry. Accordingly, the essential claim of AdS/CFT is that;

“Dynamics of SYM gauge theory on the boundary of string theory is equiva-
lently described by the superstring theory in the curved geometry given in Eq.(2.2)”.

The AdS5 geometry can be clearly seen by considering transformation of

radial variable. Usually, there are two common choices: z = RTZ and u = 4.
Using
R? WL/ R . r?  R?
z - _ e —_— =
D R . R2 22’
2 o
R X
v
72\
a7 <—2> dr
i |
22 :R2 2
NS
R? B2 J 4
?d22 = ﬁer? ] (23)
the metric becomes . L
REIGEL -
ds’ = —{=dt*=+dae + d2°) + R*d3. (2.4)

4 -

The symmetry of fch_is solution takes form of AdSs»AS?. AdSs is conformal to
the region z > 0 of_half 5-dimensional R*!. It has a,_‘ia'oundary at z = 0 which
is Minkowski spacetine R>Y.""The dual supersyminetric gauge theory lives on
this boundary whereassstrings theory liye, in bulk of AdSs x S°. The precise

correspondenc¢e s given in Ref.[8]

“String theory on the whole of AdSsx S® is equivalent to A" = 4 SYM theory

on R34

2.2 More about AdS space

To become more familiar with AdSs, let’s consider two thought experiments de-
scribed as the following: (a) An observer at fixed zy sends light to the boundary
at z = 0(r — oo) away from horizon of D3-branes. A light ray has to propagate
along z(t) = zy —t, therefore it reaches the boundary at t = z. It is assumed

that some light reflects at boundary and comes back at the finite time interval



t = 2z for the observer at z > 0. (b) The observer continues extending the
rod toward the boundary. Surprisingly, the rod never reaches the boundary. The
reason is the proper distance [ between the observer and the boundary goes to

infinity according to the integral below

S 20
/ ds =1 = / dzg. (spacelike distance) (2.5)
0 0

The integral diverges as z — 0. In brief, AdS becomes infinitely large near the
boundary but light can take a complete tour within a finite time interval. What

a strange universe!

Interestingly, there is an indispensablé symmetry associated with the action
of dilaton in the AdS/CEi*eorresporidence. On gavge theory side, the 3 function
of N = 4 SYM theory vauishcs identically. In the theory that the stress tensor
is traceless, the renormalization grouﬁi demands that dilaton acts trivially as an
identity operator. Om"the’ogher side of the duality, dilaton should only act as
a coordinate transformation &' j> _me where " = (t,z,y,z) and K is a
constant. Obviously, the coordinate ’rr%m‘formation does not preserve the metric

n (2.2) or (2.4). However, if one (xsbomates dilaton symmetry of NV = 4 SYM
theory with the radial part of tl_le metrlfr) ie. ¥ = % or equivalently u — &
and z — Kz, preservation of the nletrlc__lq,,restored Choosing K > 1 means

that things become bigger in ’Jc dlrcc‘non—ﬁnd u — 4 means that location in the

,,.‘._ d =

radial direction becomes smaller as one goes further from the boundary.

The geometry@f AdSj5 plays a significant role to: sdpersymmetrlc gauge the-
ory. In large limit of w, the geometry corresponds to ultraviolet (UV) physics,
whereas in small limit of u, the geometry, relates to infrared (IR) physics. To
make a distinetion clearer, consider the more generalization of AdSs part to the
Eq.(2.4):

ds?. =. R [u2 (—hdt2 + de) + h_ldug} + R2dSY:, (2.6)
4

where hij= 1 — U—Z. This geometry satisfies Einstein equation with the five-form
u

field supporting as same as the original AdSs x S° metric. Eq.(2.6) describes near
horizon geometry of near extremal D3-branes which means that small amount of
mass in form of thermal energy has been added to the brane. The background
metric introduces a finite temperature which manifests itself as a Hawking tem-
perature of the horizon at v = wy, (T = %) One can consider v as a typical

energy scale connecting to the process in AdSs at a depth u.



2.3 Supporting evidences of AdS/CFT conjec-

ture

Although, the AdS/CFT duality has not been proved exactly, there are some
evidences supporting the conjecture: (a) The symmetry structure between those
dual theories are identical.(b) many study on Green’s function of the gauge in-
variance operator, Wilson loop operator [8, 10] and thermal state [29, 30] lead to

the dictionary for physical translation between the dual theories.

To understand the calculation of ‘Green’s function in AdS/CFT or other
gauge-gravity duality, it is helpful to consSidcistring theory in the asymptotically
flat region where D3-brames is just a defect. To explore D3-branes physical prop-
erties, the matter wave wagseniinto the branes, then observing how it is reflected
or get absorbed. A large numbew of litefature reviews devoted to this kind of study
are [31, 32, 33, 34, 35486 'Lé main goal is to compute absorption cross section of
graviton by D3-brane /By means bf thé,(l)ptica,l theorem, the cross section relates
to the two points Green§ funcgtion of tl";e vertex operator. Higher points function
can be treated as a lineariged approximéﬁpg Heuristically, calculations of Green’s
function in supersymmetric gaug_’é theorzt_géing AdSs x S° background based on
the following ideas: (1) A"graviton pert—u—;b@tion hpmn creates environment that
the D3-branes can sense and i"espond to?@) On the gravity side, the graviton

perturbs 10-dimensional spacetime in' AdSs x S° causing a metric deformation at

the large value of 4 ~Consequently; the pProcess o cai:c'l}',l‘ate the Green’s function
can be summarized a8 the following: (a) Enforce tlic metric deformation in the
large u limit. (b) Take the calculation of path integral n the AdSs x S° depending
on the boundawy «condition of the defermation.Qutcome of the path integral in
AdSs x S° must be‘the.gerierating-functiénal for.color singlét operator in the dual
field theory. However, path integrdl in the AdSs x S® is poorly understood. The
best-kmow1 one isits\approximation, the saddle point éxpression €7 where S is an
extremized gravitational action which is subjected to appropriate boundary condi-
tions. This approximation is good when the curvature of AdSs is small comparing

to Plank scale(N >> 1) and to the string scale (g3, >> 1).

2.4 Addition of fundamental matters

To include fundamental matters or quarks into the large number of color super-

symetric gauge theory in AdS/CFT, one must admit the big difference from the
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real QCD. Topologically, the fundamental representation quarks introduce the
boundaries into double lined Feynman diagram. Each fundamental loop diagram
associates with a power of N. Consequently, the dynamics of fermionic loop are
suppressed at large N taking place in the background of the strongly coupled
gluon. Addition of fundamental matters to the conformal N = 4 SYM gauge the-
ory will make the g function become positive and lose their asymptotic freedom.
The coefficient of 8 function would be of order %, so that the conformal symmetry

breaking and the appearance of Landau pole can be ignored at large N.

Consequently, the addition of fundamental matters leads to the introduction
of additional flavor branes on the dual gravitySide in the bulk. Individually, quark
in the gauge-gravity model ean be theught of as a string having its ends on the
boundary. There mustebe an additional brane apart from the D3-branes that
the other end of the st¥ingscan end, Existence of Additional D-branes cause
spacetime to curve; hewever, /{the soJ‘rce term to Einstein equation is of order
G NTﬁ_bm"es ~ % whigh vanish'at laisg'e N limit. The effect of adding branes is
minimized in the préSengé of the given background geometry. In this situation,
there are also fermiounic fieldton the b‘fr.ane In gauge theory, the dynamics of
gluons are unchanged in fhe presen(e of ﬁavor branes at leading order N. A good
example can be found in 1)3- DZ sjystem Where D7 acts as a probe brane (branes
in the limit that back reactioft can be negeefed) in AdSs x S°.

Recently, several holographlc models have been developed in order to imitate

the dynamics of QCB The first advancement in the prpgless was the construction
of a non-conformal éa'uge—gravity duality without an iﬂtroduction of flavor brane
[20]. On the contrary, ‘the construction of a gauge-gravity duality in cooperation
with flavor degrees offreedom can he found,in [37],~As-mentioned before, adding
flavor branes ¢an héthought of a small petturbation on'the background spacetime;
therefore, the back reaction of thefbrane can he neglected at the large number of
color, N, limait.| The'approximation is trustable when Ny <<“N where N; is the
number of flavor. Additionally, there is a large number of research [38, 39, 40, 41,
42,43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] which apply

the approximation to several supergravity models.

Despite of the excitement in the mainstream development of gauge-gravity
duality, it is still considered to be far from an acceptably good theory to describe
the dynamics of QCD. Their works investigate many aspects of low energy QCD;
however, one crucial disadvantage is the absence of massless pions as Nambu-

Goldstone bosons associated with chiral symmetry breaking in real QCD.



Chapter 111

REVIEW OF SAKAI-SUGIMOTO MODEL

Recently, there is a holographic model of QCD which addresses the chi-
ral symmetry breaking, called Sakai-Sugimot6 model. The model is built based
on Witten’s model for pure Yang-Mills gange theory that introduces 4-branes
wrapped on Scherk-Schwarz ¢irele [30], and Ny probe D8-branes and Ny probe anti
D8-branes are added tsamsverse to the circle. The eonstruction provides massless
chiral fermions (left-hamded from 8—br|'anes and right-handed from anti 8-branes)
in fundamental representation of -bothig’;'auge group U(N,) and the flavor group
U(Nyg)r x U(Ny)g. W this chapter, we?x}vi,ll study Sakai-Sugimoto model in more

details. J,

Sakai-Sugimoto meodel'is a holograéhié maodel of massless QCD constructed
by using D4-branes and D& branes in _type: -HA string theory. Additionally, the x*
direction is compactified on a mrcle of a ﬁus M3, with anti-periodic boundary

condition for fermiomns Where My KK 1S a mass scale Obtamed from Kaluza-Klien

compactification. In the low energy limit, the dual gauge theory effectively be-
comes 4-dimensional € (N.) gauge theory in D4- brame world volume. D8-branes
and anti D8-branes are introduced as probe branes. In the decoupling limit, the
D4/D8/DS system will give a-holographic-dual of latge N, gauge theory with chiral

fermions.

One_of, the most exiting feature of the Sakai-Sugimoto model is that the
model breaks chiral symmetay inda simple geometrical way. "{ln the near horizon
limit, the Scherk-Schwarz circle disappears in a finite radial coordinate. D8-branes
and anti D8-branes smoothly connect into U-shaped configuration with an asymp-
totic separation L at infinity. Indeed the brane dynamics can be obtained by

solving the DBI equation of motion with this boundary condition.

The model exhibits various properties similar to QCD [19, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70]. Particularly, its phase structure at finite temperature is inter-
esting. At low temperature, the phase structure of the model is required to be the

same as that of zero temperature to describe confined gauge theory with broken
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chiral symmetry. At high temperature, the gauge theory becomes deconfined and
the chiral symmetry is restored. The situations can be described geometrically by
the separation between D8-branes and anti D8-branes. Decreasing of the separa-
tion L leads to decreasing in the phase transition temperature of the model. For
the sufficiently small L, there is a possible phase structure that the gauge theory

is deconfined but chiral symmetry is still broken.

In brief, we review the Sakai-Sugimoto model following Ref.[71]. First, we
focus on basic brane configuration of the model. Second, the configuration of con-
fined phase is discussed in great details. /Finally, many superstring constructions

in deconfined phase are explored in various aspects.

-

3.1 Finite Brane Configurations

:
The basic brane configuration, éorresponding to the gauge theory which is confined
with broken chiral symmettys consists c{f Ny D8-branes and Ny anti D8-branes in
the near horizon backgeound of N D4—bf’anes wrapping z* direction into a circle for
N. >> Ny. At zero temperature; the background is sealed and the circle become
topologically insignificant. Consequently,jBEB branes and anti D8-branes connects

into a U-shaped configuration: At the ﬁmjze temperature the model is heated up

and could become deconfined. Equnalent}y,. “the background metric is replaced

by the black hole gedmetrv. Therefore the Conﬁgura‘rlo_.n. ‘will experience Hawking
temperature Which;"ré" considered to be the temperatu_{:e"'of a whole configuration.
In this case, both U-ghaped 8-branes and the separated parallel 8-branes and anti
8-branes exist. Additiehally, there is a ghiral restoration at the second critical
temperature fér the sufficiently small value of L [72].; At this temperature, the

separated 8-brames and anti 8-branes begin to outweigh.

In the supergtring” configuration,” baryon mumber current'is related holo-
graphically to diagonal U(1) part of the gauge field living on the 8-branes. To
study the configurations duals to the plasma with finite baryon number density, it
is necessary to include this gauge field into the 8-branes action. The first place for
the gauge field to enter is DBI action of the D8 brane which takes the following

form

Sps = — g / nge_¢\/— det(gmn + 27/ Tr(Fun)), (3.1)

where

F=dA+iAAA, (3.2)
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and F is U(Ny) field strength and A is the U(Ny) non abelian gauge field. The
U(Ny) gauge field can be decomposed into SU(Ny) part and U(1) part as follows

A=A+ A (3.3)
where A is SU(N;) non abelian gauge field, and A is U(1) abelian gauge field.
The effect of turning on this gauge field on the brane configuration will be clearly

seen in various different phases.

) (i - )
(3.4)

: W
where X ~ XF +77 a1 ( 872 /3 are the volume form
and the volume of a unit S*, espec ively. R and U | are constant parameters.

R is related to the strifigecoupling g, and string length I, as R® = wg,N.I>. For

ﬁ%ﬁi TS t%ﬂ an ‘i

XE;XZ

ammmm e ik 7 T

The meftic and the parameters become

ds®* = R**?((dr)* + (dx)* + f(u)(dzy)?) + R*u™3/? <% + U2dﬂi> ;

b —

— gt

Consider the contribution of field strength to the D8-branes. In general A =

A+ \/?Tf = AOT 4 \/;Tf where T" is the SU(N;) generators normalized as
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o 1._..
Tr(T",1°] = 56”. The field strength takes the following form

o dA oA - A
F = dAOT 4 + (AT 4 A (AT 4 :
Norril v M v

Funy = [0mAY — oAU + Ovi Ay — O And]

1
V2N,
+i(AY AD — AD AN TITI
i )1 1 A A AW AW i g
= [0nAY — oy AUIT + ~ [0 Ax — On Ay + (A A [T, 1)),

= FyNTO +

where
AR, 3.8)
(3.9)
Let’s consider the cas
I3
MY (3.10)
2Ny
The U(1) gauge field consists 0 mponents: A, (1 =0,1,2,3), A,, Ay(a=
5,6,7,8) — S% Let’s ider only ‘th 94 by setting A, = 0 to get

: 0 and turning on only Ay,
: Amordingly, the field strength

SO(5) singlet ":;-- -------------------
the construction prowes hary

tensor becomes

ﬂ%’ﬂ’ﬂﬁ‘%%&lﬂﬂ@

2ra’R -~ ool Ag

AN a\ﬁ“ﬁm Gnvmyiay

Consequently,
‘/2N 3 anenty

where a ao =
go 0 - —R%p - 0\
0 gn :

gMN + 27TO/R2.FMN = 2.,\,
R#ag Guu

\5 ’ o)
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where the spacetime metric can be calculated from the induced metric gy ny =
GO X"On XY, The determinant turns into

det(garn + 270/ R2Farn) = Googui Go2 -+ gss + REap(—Rag)g11 goo g3 955+ Jss-

(3.12)
where goo = g11 = g2 = ¢33 = Ru 32, Juu = R? ( f(i/)z +u3/2f(u)(a:ﬁl(u))2>,
and gss ges 977 9ss = R2u?sin®(#;) sin*(6,) sin?(f3). Eventually, the determinant

becomes
det(gyn + 27’ R Fary) in®(6,) sin*(6y) sin?(0s) x {
u) + u® f(u)(@)(u)?]
01) sin(0,) sin?(6s) {
Dt |77 - @]} )
Consider the Ny stack ration for the confined gauge theory.
According to Eq.(3.1) a 3) the D8y action takes the form
T 3/4N= Y | 1
Sov = maly [ dr o dbh, dE{ YR \/ )+ | 7~ (2]
PLSNng ‘ I = [ 1 A1\
= = ) —(a )
PR e [
ALSNfQ4V33ES 1 JURNS
——(ao) ,

- v LU mnma@ 3 o
A EANIBTUUMN NN Y

The Leg%ndre transformed actlon is given by

Sps = Sps + /dud(u)&g(u), (3.15)
where
1 5SD8 ud{)
dlu) = - = 3.16
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Clearly we found that

) (F? + o |- @e|) = e
o (T @wr+ o) = @2 (e T,
i = % P ) + 7o (3.17)
Consequently, the Legendre-transformed D8-brane action turns into
Sps = N/duu ( B u.; : 7 . wju’ (f(u)(:z:ﬁl(u))z-i-f(i)u?’)})l/z
—|—J\/'/dud f) :
_—Y / duu F () (@) (w))?
& (u )(+u5f \/ (u) (2} (u)? + f(ul)u3’
— N/duu { f(i)@}l/;

_ ./\/’/du __ﬁ_:__ ‘
:N/duu e s Lul/;%*y
- N/ﬁuumwm daf 19

Consider the constants of motiofl associated swith the D8-bfahe action. Since

ot (] lenbob & b dlebdord LY 1S AB) 29, a0 =

constant of motion). In the same manner ,the other constant of motion can be

obtained from S ps(Go, T4, 1),

Y e K (0 N
e {1+ } [f (u)(y(u))? + f(ul)u?)}w
= [+ 2 o

= const. (3.19)
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The shape of D8-branes configuration can be determined from

(F(w)(y(w))? = f@@m

2
u® <1+ d—5)
u

ud +udd® 1

ud + udd? f(u)u?

1 [ flw) (uf +uPd?) 1} -
f(uo) (ug + ujd?) '
(3.20)

II:. anes deform into U-shape in

(u,74) plane and coincideat iy Fon the cas so that d # 0, D8-branes and anti

Instantons, or equivalently D4 fan s wrap] - _ are only sources for d 7é 0

case. For a uniform d

% PRl ‘ :
Scs = — o A). 3.21
cs 6 Y 2/R4XR+W5( ) ( )
i : |
The relevant term is the one the U(1) to the SU(Ny):
o ) ABR (3.22)
Assuming D4—branesE R3 at u =",

AU FVE NS o2

where ny is thﬂ dimensionless) d‘ensu:y of D4- branes Wrapped on S* The D8-

bme'efwmwﬂﬁsguywnﬂmaﬂ

'dPx Ag(u)d( Ue),

— 6];;]314 /du’d%do(u')é(u—uc),
N.n4Vs R
ﬁzT%j / du’ o (u') 8 (u — ). (3.24)
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Recalling Siorr = Sps + Scs, the equation of motion for the U(1) gauge field can

be determined from

_Loos 1S
Nousay — Néag '
dd(u ) 1 BNy V3
ou N 2ra/R? Sz O o)
/ o BN n4VE";
d(u) = 27ra’R2N5(u wo)
BNcn4‘/3
Therefore '
(3.26)
The instanton distributie :23) can alsovbe a source to the equation of

motion for x4(u) and ifiguration of the D8-branes.

Physically, the D4-bra

tribution has a finite e (the S4 they wrap plus the
R?), it will form a ettsp in the D8-branes (like. a 1.; on a string). Away from
the cusp the D8-branes w ) ) e , es of a U-shaped solution,
which are truncated at o i. ove ug. The value of u, can be

(3.27)

(3.28)

¢ a

AN T

m
SDS *I MU’S

wing ol bbb Gl ol i o) Y %lformed action

becomes ”
Sps = N/dzu13/4 [1+ d*(u )] .
Therefore ~ 12
68 d?(ue
fos = =575 = Nul! [1 + %] : (3.29)
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In order to calculate the D4-branes action, let’s consider the wrapped 4-sphere

metric by identifying

gmMN =
(3.30)
therefore
(3.31)
From
S
(3.32)
Using (3.26)
AUSINERIINT e
R SR TIneat
- QZQNR (z4w4<1a'>5/2> () et ““2
2 (@) (g ) (55 ) Vet
Spa = %Nucd, (3.34)
where we use R 7(a’)*? in the last equation.

9sN¢
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3.2.1 Balance condition

The force due to D4-brane can be obtained from

0Sps 1
auc V guu

The configuration is in equilibrium when these forces are balanced,

1
= 5/\fd w2 (3.35)

U=Uc

fpa =

fpscos = fpy, (3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

¢ a \/f2 Ue @mﬁ(uc» +1

e FUHINUNTNEINS
awmm‘a‘WWﬂ At

)t (3.42)
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The cosine becomes

cos) = ,

(3.43)

Therefore,

LA, 2
cosf) = —u_5/2 , 1 : \ % - } :

> the asymptotic separation of

(3.44)

Aiming to solve for the wva '%

D8-branes and anti D8-bra tic separation is given by

(3.45)

<3
3.3 Deconﬁﬁe ba m

e MBI AR

a%daﬁ%ﬁw AEh e,

After 11: s Eucideanized, the metric takes the following form

ds® = (%)% (f(U)AXF)? + (dX)? + (dX4)?) + <§> <(dU) +U2dQ2)

f(U)
U 3/4 273 (o 3/2Nc U3
et = g, <§> Fy = (2m) (34) e, f(U)=1— ;SK (3.47)

where XF ~ XF + 8 and X, ~ Xy + 4. €4 and Q4 = 87?/3 are the volume form

and the volume of a unit S*, respectively. R and Ugg are constant parameters.
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R is related to the string coupling g, and string length [, as R® = wg,N.I>. For

convenience, we define dimensionless quantities

U xFo, Xt ., X' . 2ndA
U= —=,T=—F7/,TT = —, T = a = .

R’ R’ R

(3.48)

The metric and the parameters become

ds®* = R**?(f(u)(dr)® + (dx)* + (dzy)?) + R*u™/? (% + udei> :

b —

— gt

Similarly, the DBI action , lod 4 e same manner as the confined

case. Therefore

det(gMN + QWQIszM ) 083"+ 2 I —R ao)gll 322 433 955 * * * 988,

(3.50)
,guu = G0, X"0, X" =
6(6,) sin*(6) sin®(f3). The

where goo = R*f(
—3/2
R (U + (e,

determinant turn into

FTW EW?T
i mﬁ)“@@ﬂ'ﬂ“

NQ
_ 5 fg4V3>5R/ 4\/f +u‘3[1—( )2],
_ N/duu4\/f P — (@, (3.52)
N;Q g
where we define N' = HsNy UV BR . The Legendre-transformed action is given
Js

by
Sps = Sps + / du d(w)ag(u) (3.53)
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where
1 5SD8 o u%

Nbay(u) — / Flu)(@h(w)? + a2 [1— (ap)?]

Clearly we found that

du) = —

(3.54)

u?(ag)*
(ag)* (u* +u” 3dQ( )

) T

HMZEL .

ormed ct1on takes the form

+$$K*]Hm

d*(u) (f (w)(a(w))* +u™ [1 = (ap)*])
d*(u) (f (w)(a)(w))* +u”?)

A~

Consequently, the Lege

Sps = N/duu4

u? + u3d?(u)

__N/wﬁ{u,;,;i  Fstater)”

AP A2 o
=N / au{ut | sy (L )* : ]
A mY SRTE

QWW%%%M efraere-)”).
- [N u5+df“3“]1/2[ )]

— N/du u))?u® + 1 1/2[u5+d2 }
2 1/2
_ N/duu 2y (u))? +u?]"? [1+ d (“)] , (3.56)

ud

_ N / duf. (3.57)
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Similarly, the constant of motion associated with 2/ (u) can be obtained from

53 ps o 2w fu)w)(u)
_— u 1 )
5, (u) { T } @)@, (w)? + 37

271/2
— e G e,
Ug

= const. (3.58)

(u) (u® + u3d?)
f(uo) (uf + ugd?)

- 1} B .(3.59)

ﬂUB?Wﬁﬂﬁﬂﬁﬂﬂi
%Wﬁmﬁﬁ‘w w3 ey

diag(R*u 3/2f (u.), R*u 1/2 R*u 1/28111 6., R*u 1/28111 6 sin” 6,
R%u}/?sin? 0, sin” 6 sin® 63). (3.60)

Therefore
det(gan) = R™u’/?f(u.) sin® 6, sin® 6, sin” 0. (3.61)
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From
14 Vs
Spy = 4R§“4 / d0,d0,d05d0, dre=*/det(garn) |
1
= n4§;ﬂ4 /d01d02d93d94 dr <—3/4> det(gMN),
gs Uc
- M ~3/4 (5, 7/4
- s R4 U (R f(uc)) )
_ 714V3M4ﬂQ4R T (3.62)
9s teltle
Using (3.26)
(3.63)
the D4-branes action can-beob ained as. follo ws
2@
Sps =
= "\; C V f(uc)d>
_ )N@fﬁy
Sps = (3.64)
R3
where we use JN. ,:

-

Y
3.3.2 String seurc

The remalmiﬁosmblefsnrces of electrie.displacement in this phase are strings

ﬂdﬁ‘q t%‘]ghm % W“H ’ilﬂpﬁmse relation between

the density ofgtrmg ns and the ‘glectrlc dlsplacement d can be determined by

QZEfﬂWﬁ P00 T TV S g oo

stretching fr

SwalB] = —p [ d%ey/=detge P, (3.65)
smm:=N/M“VM%@V+M“w*wm+WwT@
(3.66)

ng V-
SnlB] = -5 / dtdu <\/—det gMN—BOH) . (3.67)
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Varying the actions with respect to By, gives,

0Ssve  _ OLsva 9, OLsuc
1
= 520 ‘ge‘2¢8“Bou) =0, (3.68)
0Sps Y ut(—u?) (Bou + ap(u))
OBou(w) [Fa) @) + u = u (Bou + ay(w)?]"*
_ 0Sps
= m = Nd, (3.69)
05k nsV3

d By (1) 2wl

Consequently, invariance

\ Vi
W . (3.70)

(3.71)
For deconfined backgretind
det gun = ST = —R". (3.72)
y 4"-' _'J; - )U_3/2
The string action in deconﬁ T-ﬁ*- o:i,.-e* es the form
Iﬂ B 27ra’R2
ll'

(ue — uT ’] ﬂ i (3.73)

ﬁlan \NT qzu UA1AINYAY

According to the configuration in the deconfined phase, addition of D4-brane

3.3.3 ¢

source or string source suggests a new reference at u = u,, however in (3.59), we
use ug as a reference position. Therefore we will use the u. as a reference point
instead of ug. Consequently, the reference function f(ug) (ud + u3d?) turns into

the new function F'(u.). The relation in (3.59) becomes

S S A O il B
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where F'(u.) can be determined from

N U [ f(ue) (ug + ugd?) 1
(374(Uc)) - Ug f(uc) FQ(’U,C) —1
Flue) (8 + ) 1 1
Pl wl ) @e)?
_ flue) (@) (ue))® +u®
S (ue) (@) (uc))?
flue)yug +udd®
F(ue) = () (2 (we))? + uz3 (@ (uc)) - (3.75)
Note that we can determine lance condition in Appendix A.

AULINENINYINg
PRIAATUAMINYAE



Chapter IV

THERMODYNAMICS WITH FINITE
CHEMICAL POTENTIAL

We now consider theimplication of.€oufieuration in the bulk to the gauge
theory at the boundary basedon Ref.[71]. Themain goal of this chapter is to study
many different phases of the gauge theory at the finite temperature and finite
baryon chemical poténtialf /. The slllperstring construction in Sakai-Sugimoto
model introduces ansadditional parameter apart from the parameters of QCD
that is the asymptotic separation. [ bef_yvleen D8-branes and anti D8-branes. For
convenience, we will fix £ =1, Generai:ly ‘we will later consider the variation of [
that take no quantitative €hange in the":_i_r-de'sg_lts.

' )
g /N

4.1 Baryon chentical pé%é%tial

The grand canonical potanﬁal_isgatunaﬂy;abiainedbyeyaluating D8-branes action
on the solution. For convenience, we will normalize thé‘lpotential by dividing out

the normalization constant A/, -

07 e Sorftariny b gn (4.1

Note that the potential and all other thermodynamic quantities associated with
the matten sealesas Ny MNe. ALhes(dimensionless), haryonchemicalypotential 1 can

be identified using'the'asymptotietvalue ofthe U{1) gauge potentialin the solution
= ao(00). (4.2)

With the normalization factor, the baryon number density d can be obtained from
o0t

ny = L0t _ d, (4.3)
o

For computational convenience, we will express p in terms of d using the canonical

ensemble. Correspondingly, the free energy take the following form

F(t,d) = Q(t,u) + pd, (4.4)
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and the chemical potential is given by

_ OF(t,d)

N (4.5)

t
The free energy is then related to the Legendre-transformed D8-branes action on
the solution. In the cusp configuration, there is an influence of sources such as
D4-branes or strings. Therefore, we have to include the contribution of the sources
determined at position of the cusp.

F(t,d) == ./%/— <S’D8[tax4(u);d(u>]solution TL Ssource(tadv Uc)) . (46)

The dependence on d comes from three réasons: S pg and S,ource are explicit func-
tion of d, the solution for#/ on d is also anexplicit function of d, and the depen-

dence on d of u.. Including.all of them, the chemical potential becomes

s i{ /oodu 6SD8 —1[_ 5'§’D8 axi solution
N ulf ddiu) = daty(u) Od e
au;f OSDS- _aSz;unce K a‘s’source }
SR . ) 4.7
od 4y, < 0] [ aﬁ!ﬂc ) ditd od ;). (.7)

The second term vanishés sifice 655 / 0y () is constant by the equation of motion
for z, and the integral term svith 0z’ /dd atfixed u. gives 0l/0d = 0 since [ is
fixed. The third and forth ’g@rmsiare carfq'@}eg_by the zero-force condition at the

cusp(see Appendix).}

Ll

s = A 108 source ‘_J‘
leﬁmmnﬁ WT

where aj(u) is related “té=d by solving fof the inverse relation. The fact that

(4.8)

t,lue

chemical potential ig identified with the valué of gauge potential at infinity, reflects
a specific choice'of gauge, in which.ag(u,) is identified with mags of the source. In
the patalleli¢onfiguration the sourcé is abseént and the' lowerdimit of the integral
becomes;the value at the horizon u = ur. Tn this case the gauge choice (4.2) gives
ao(ur) = 0, which is in agreement with the fact that the source becomes massless

at the horizon.

4.2 Confined phase

In confined phase, only connected D8-branes and anti-D8-branes is possible. For

a given p which is at fixed ag(00), there are two connected solutions, a U-shape
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configuration with d = 0 and a D4-branes sourced cusp configuration with d # 0.
The former refers to the QCD vacuum, while the latter corresponds to a phase of
nuclear matter. In vacuum phase, ag is constant, and the electric displacement d
disappears. Therefore the grand canonical potential, €2, is independent of y in this
phase. For nuclear matter phase ao(u) is sourced by D4-branes. Therfore using
(4.8), (3.17), and (3.20) chemical potential for the confined phase yields

< 108

)
t,luc
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The grand canonical potential for nuclear matter can be obtained by using Eq.(4.1),

and (3.14),

cli) = | duu‘*\/ P+ 55 | = @0

- /:o du [1 - ﬁ:ﬁ] " {f(u)(fcl(u))2 + f(ul)us]mv

1/2 . 1/2
I N BT / 1 flu(d® +u®) 1
= [l s Genaerg ) f(U)u3] ’

oWy
B /: )]1/27

_ /

_ / ,

- /°°d y/

Yo

0, (o) = | ' s (4.12)

F s

Y

)= & Low)

where uq is the Flmmuﬁlmlue for the nuelear matter phase and uyg, is that of the

b hbigalogniale oy divrsent at - o

,however the difference is finite ang is given by

o A LGN EL RN UA1INYAY

vacuum phase.

(4.11)

/ du u — / du u
I+ 3) = 7o)+ 5) e frw) — 5 flue)
/ " uB/? - w2
VIO +5) = S wo)(1+ %) \/rw) - % fluo)

/

uOv )

/ du \/f . (4.13)
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4.3 Deconfined phase

In deconfined phase, the thermodynamics turns to be more interesting since there
are more possible configurations for a given value of . Apart from the U-shaped
and D4-branes cusp configurations, there are also the parallel configuration, with
vanishing or non-vanishing density, and the string-cusp configuration. The parallel
configuration represent a phase with restored chiral symmetry. At finite u, there is
also the quark-gluon plasma (QGP). Interestingly, in the string cusp-configuration,
there are strings stretched between 8-branes and the horizon. This refer to the
quark matter in the corresponding gauge theory, however, it will become clear
later that this phase is actually unstable atleast for a uniform distribution of
baryon charge. Consequently, the refriaining three phase will be compared using
phase diagram in the (¢, w)plane:
i
4.3.1 Unstable guark méttéf
NE v

In this section, we will'show that the d’].}ark mafter phase is thermodynamically
unstable. Attempt to evaltiate the "qllelniéﬁl potential in the deconfined phase with

string sources (3.73) yields ~ vlia

- 1@5

tluc

J - + (e — ur)y

fuad@ +d*) "\
(Fmder @t

(eit 1) 2
O @)

1/2

u5—|—d2 1/2 [@( )—@(uo)] + (ue —ur),
9] du3/2f1/2( ) N (u _UT)
] (& 9

f’c“u)u (ry(u))* + 1
= ud +d?
1/2

+ (UC _UT)7

o0

du

u5—|—d2 AR

/

A
::/*um+ﬂm

I,

.

1/2
+ (uc - UT) )

QU

(> Q]

U
ﬁ

du

( ) 1/2
[ i
I + ) — 5 o) + @)

+ (ue — ur) . (4.14)

It is obvious from the plot that
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and therefore the string-cusp configuration is thermodynamically unstable to the
fluctuations in density. Similarly the instability was found in the D3-D7 model at
finite density.

4.3.2 Comparison of the possible phase

In this section we will compare the vacuum phase to the quark-gluon plasma

phase. The vacuum phase can be described by the U-shape configuration, while

ibed by the parallel configuration. The

ﬂgobtained by using Eq.(4.1), and

the quark-gluon plasma phase ¢
grand canonical potential
(3.52) with additional co

Quac(p) = R

- ,, _1)_1+1 " )

1/2 -
- ;’ © __ ___________ )
- [ u/f ()
= %
i TMEPTNYINT-
Y P 1) (4.16)

AR AT EUGE

The poténtial of the QGP is given by using Eq.(4.1), and (3.52) with 2/,(u) = 0,

Qugp(p) = /1: duu*y/ f(w)(2,(u)2 + u=3[1 — (a))?]
= /oo du® {JC(U)(JL"Q(U))%3 + 1] 1/2

d? +ud

)
z) (u)=0

)
x) (u)=0

T
Ood u5
= U ———. 4.17
/UT Vd? + ud ( )
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The chemical potential is obtained as a function of density d, by using Eq.(3.55),
(3.59), and (4.8)

o= [ dudyw
ur

u® + d? xg(u)zo,
= h du 4 . (4.18)
The grand chemical potential ark-gluon plasma phase and vacuum

(4.19)

We now turn to the co e \ e vacuunl phase and the nuclear decon-

/ liral-s \.\.\\ aking in deconfined phase,

) expect that nuclear matter

o I \ car phase is given by
Qnuc(/_l,) = [ fv-’::.

Mﬁ;. t
1!’.@.'!

—

fined matter phase. g I
based on the Sakai-S !
could also form in this case &9 o

- . . 1/2
— (e ______t—————’:._.g, - 1) +1]
/B Trew jﬂ ]1/2
” "AUS d2]1/2 AOu ;
FigEldd] 11@4@3“ fra
awm@ﬂﬁﬁéﬁﬁmﬂmaa
e /T |
/ ‘ V@)W + ) — 2 f (o) (uf + )
_ u () (4.20)

du
/UO \/f(u)(l—l—z—?,)_%f(uo)(l"i"%):
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where d is again given implicitly in terms of p using with 4-branes sources (3.64).

The chemical potential becomes

. o ) 1 0Sp4
poo= /uc duao(u)-i-N 94

)
t,luce

[ [ w)? £ 1]
_ /u dud[ i + e/l
_ 1/2
o d (u)u?(u® + d?) ! 1
- d -1 1 = Uce c)s
/uc U [P + d2(u)]/? [( (uo)ud (ud + d?) + + 3U fue)

e Ue f(uc) ’

= f(uC) )

— i TR Jue). (4.21)
The difference between the pot of the'nuelear phase and the vacuum phase
is then B

(4.22)

The final part of phase diagrai comes froi nparison. between grand canonical
potential of the n ‘E?ﬁiff??:rf-:'f?t‘fiﬁ-‘ggi—f hase:

j Aopaomey Tl (4.23)

55 W URININNT
B D TRCTX ) I WIER (LRI R e

The pressure of the system can be obtained in a function of the baryon

number density p(d,t) from

o0
—_— = — 4.24
5 =~ (424)

and op
= d. (4.25)

a_



Using (4.21), we find that, at small baryon number density,

d f(U)

Heo= / d“w )

d f(U)

4 (o) (uf + )

+ /»l’onset )

/ d“w )

d f(U)

4 (o) (uf + )

ot / " S + @) -

Q

Q

d

Q

where fionset = p(d =
Consequently,

Therefore

UG f (o) (ul + d2)
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+ 1uc f(uc) )

(4.26)

hemical potential at zero density.

Amgedem@ua’?%*n%*wmnﬁ

awwﬂﬁﬁ%

ub

BB

+—uc fue) .

du
/ N u5+1 f<u0><z—s+1> ’

Using,

1
gdzu_4dv ,

1d2/5,v—4/5d,v
5 b

(4.27)

(4.28)

(4.29)

(4.30)
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the chemical potential becomes

1 ° 1
o= 3al2/5/ dvv™/° f(z) + guc fue),
v VIO +1) = B fwg) (v + 1)
~ S / Sy VI
5 3 ’
ve f(v) = % f(w)
~ §d2/5 :
u 5/2
d = = . 4.31
(£) 3y
Therefore, d ~ 1%/ and t
(4.32)

Interestingly, we have
for pu(d) show that the
the DBI action responses

le they are but the results

. This is a consequence of

The entropy is determin c A t10 the temperature s(t) from the
free-energy F(t,d). The gripping phase \nh{‘ phase since there is no

temperature denpendence i  ‘confined ase. 7 low temperature, where the

chiral symmetry is broken; we discover f h small and large densities that
(4.33)

and at the high te V : b is restored, we find

|
|
¥

s(t) ~ t6 ' (4.34)

ﬂUEJ’JVIEJVI‘ﬁWEJ’]ﬂﬁ
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Chapter V

HOLOGRAPHIC MULTIQUARK AND ITS
THERMODYNAMICS

In the deconfined phase, there are mowre various possible states than that
of confined phase. Interestinely, a néw kind of bound state consisting of quarks
and anti-quarks without coletless condition can be formed. Generically, its con-
struction consists of 'k}, strings hangipg from the probe brane down to baryon
vertex and some addifional /iy btlmgs stretchlng from the vertex to horizon. The
configuration is called #multiguark”. In, this chapter, we focus on the multiquark
configuration in Sakai-Sagimoto maodel _based on the Ref.[17, 73].

d

-4 )

sl *dlia
5.1 Balance COH_.dl_flOHS..,_.. 2

configuration is there = N
‘ S = Syt ﬁhspﬁ A (5.1)

|
where Sp, = §N uenf fuc)d, for baryon vertex in the deconfined phase(see
(3.64)), Sp1 and 57, are the hanging strings|action and the radial string action
which can be détermined from the following procedure. For the hanging strings

in deconfined background

L
det (g n =
o) R (a2 () + f(pt)]
= —R'[(W)+ f(u)u®] . (5.2)
Therefore,
Sr = e [ dedu (@) + f]

_ —Nd/du[( N2y fu)®] 2
(5.3)
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(@ ©

-branes in the background field

del hat @o the phases of (a) ys-QGP,

Figure 5.1: Different confi
following the Sakai-Sugi

(b) vacuum and (c) se
For the radial strings i - x: nd, the action takes the following
form A ',‘

(5.4)
The balance condition for h ;..;-i—,;___ ion can be determined from variation
of the action with respect to Uz since iryon vertex is assumed to be located

at u = u,. Conseq ently.

term. e \, ‘,

S = Nduc\/@ N

N [N,

N N 1/2 _
e %%ﬁ j g
Based upon t assumptlon the surface term prov1 es us he additional balance
L AEh MTINENRY
AN
5Ssurface 0 = Edp\?/ﬁ f (uc Ylg

he volume term and the surface

k,
1/2 + —Nd (ue — ur),

)? + fue)ul
+kr}6uc>
N {NC L+3 () ul }
= —d — — k - k, 0 cH
VUS| ()| YR Ty
N (N[ 1-1—73 B ul,
B Vcd{? | V1—a? V(W) + f(ue) +k’"}5uc >0
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3

14+ £ u’
For simplicity, let’s define Gy(x) = 2_ and A = - , then
P W= V7 + T
N,
?Go(li) + ]Cr = khA,
N, k
- - = A< 1. .
3th0(x) + o (5.7)
The balance condition becomes
N,
kn > —Go(z) + ky. (5.8)

5.2 Thermod

In this section, we con

CS oﬁgraphic multiquark
\*\-\?’zn of some important thermody-
i k\ he calculation will become

1t ST
A prop Q\ enice point. From (3.74), the
N be determined from

AN

namical variables of t

(2 ) _ 1] B (5.9)

where
| () (5.10)
According to bala _:F k configuration (see Ap-

pendix A. at (A.8) a@ (A.9)),

(5.11)
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(5.12)
F?(u,) = % (1 —i—1 (Z—T> + 3n, f(uc)>

F2(u) = udf( (5.13)
where n(u.) = (1 +
/ f ey
5.3 Calculatlo ;=-3 juation of state
In order to acquire &F:i we will first investigate

the relation between the p dﬂsity According to the for-

mer section (see the grand potential density and the chemical

o “i:rﬂ ﬁ;ﬂﬂ SNHINT N
BT T i e

)(u® 4+ udd?) N

(5.15)

respectively where the reference is now turning to u.. From piopset = p(d =0) =
uer/ f(ue) +ns(ue. — ur), the chemical potential is then
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o T —1/2
= du|l — — onset »
p /u T @ uSdZ)] s i Homse

ul f(ue) [u5 L P 2(( ))] “1/2

= 1— T onset -
/uc a flu)(u® + u3d2) Vs + d?  Honset

(5.16)

Originally, the differential tw grand potential G can be written
as

(5.17)

where the parametely \ \\. , volume, entropy, tempera-
ture, and total numbeér o 1 : \\ Spectively. Since the volume

, S, and N to be €2, s, and

, we have

is not our interest,

d, respectively. Accordi
(5.18)

With assumption that te uniformly, we obtain

(5.19)

Using the chain r

(5.20)

we get

Wﬁ%ﬂﬂ’ﬂ%ﬂdﬂﬂﬂﬁi(d’) , (5.21)

where we havelassumed that the Ppressure is regulated to zero when there is no

TIRITAIN I UA1AINYAY

Small d limit

In the very small d limit, u. approaches ug, and n(u.) becomes n(ug) +O(d). From

(5.16), the baryon chemical potential can then be approximated to be

—-1/2
o 0o by Flug)ud fuo)ud (1 — %) d? e &2
= / B T f s ! ( B ﬂ)

+,usource ; (522)
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where fisource = %uc\/ f(ue) +ns(u. —ur). After using the binomial expansion, the

above equation can be approximated by keeping only the terms of order O(d?).

Consequently, the chemical potential becomes

0o —5/2
H— Hsource = d / duu—s
ug 1 _ f(UO)uo
V fluud

(1 %) (1 . (f(lﬁ)ﬁgi{ff:%)ug) (1 2t d2> /} |

fu)u®

"B éz

1(f (ug) nﬂ u®)

12

(-5)7))}

12

12

ﬂ?%@%ﬁwﬂﬂ? )3}
awwwf‘f'ﬁ’mummmaa o

where

)

u=5/2
/ d————
f(uO)uo
\/ flu)u®

Bo(ns) = /u Oo d“E 1__5f/(io)u8 ( f(u)qu(lﬁ))fu(io)ug (1_ 3;(@3))) _%)

fw)u®




44

Using (5.19), the pressure as a function of baryon number density is then

op 9P ad .
a(ﬂ/ - Nonset) od 8(:“’ - Monset) ’
8_P _ a(,u - Honset)d
od od ’
~ (Oéo — 3ﬁo(n5)d2) d,
oP
5 ~ ayd — 3By(ns)d*,

P =~ %dQ—Zﬂo(ns)d‘*. (5.26)

Large d limit

In the large d limit a 16), the chemical potential

becomes
oo
n = / du 1-— - f + Honset 5
e () (2 - N2
~ du|l— ——— + Honset »
/u . /—u5 + d2 Honset
oo e e e
~ / dul|l 1}.’. = ' + Honset
Uce

2 EZ AN HY l]fh T
AR idfﬂﬁﬂ%%ﬁﬁﬂﬂ+

Nonset
(5.27)
Using
u? 5ut 1 &
’U:ﬁ—)d’(}:?du—)du = gmdv,
1 d2/5

505
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the chemical potential becomes

d2/5 v—4/5 1 2(u,) ] d2/3
\/ 9f(uc)] 5
X / h d 1 +
v Honset 5
o Vs
d2/5 v—4/5 1 2(u,) ] d—4/5
Sy S )
\/ 9f(uc)] 5
00 —3/5
X / 3/2 + Honset
0
The term containing d is large, therefore
(5.28)
Using beta function
. X ]m+n+2 ’
a1 ’ D (5.29)
SONE '
we conclude that | A e
e | 4
= gt ——2
m 1} + 5 ,

Consequently, the ¢lie

Honset »

ﬂuEAMEﬂﬁﬁﬁﬂﬂi -
“Smg‘amaiﬁfjﬁz@ww I TNE

ﬂ' ,U/onset) B ad a N ,U/onset)
a_P _ 8(,“/ ,uonset) d
od od ’

12
7 N
O]
QL
w
~
ot
'1
—~
U=
S~—
’1
—~
Sles
S~—
~
ISH

2 T Go) s (5.31)
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Furthermore, the energy density can be obtained via the relation dp = ud(d).

Next, we consider the entropy of the multiquarks phase. From the differential

of the free energy,

dFp = —PdV — SdT + pdN, (5.32)
the entropy is given by
g9 (5.33)
o '

The entropy density can then be written as

2 % (5.34)
where Fg is the free en s 3 '@to the grand potential density
as Frg = Q+ pud. Since we ha i e 2= —() we can write

/4 (5.35)

For both small « ¢ 2 16 formula of the pressure (see

(5.26),(5.31), noting th " seh erature) and the chemical

potential (see (5.23), (5.30)) aéglfe. bution comes from fisource,
thus WIELY .

%, (5.36)

The baryon chemical poten .:'Lé,» : _“ ~branes is insensitive to the changes of

temperature. Thisamplies that the main contributiog o the entropy density of
the multiquark nu ’: ar : namely the vertex and

strings.

- FJJ;%TEI ﬁ%ﬂ%@lﬂ?ﬂl (5.37)

=4

PANIUMIIEANY

3
1= ()

where we have used the fact that u. is approximately constant with respect to
the temperature in the range between the gluon deconfinement and the chiral
symmetry restoration (see Fig. 5.2). Therefore, we obtain

3
7r2
(169 ) T°d 32m%Td
S =~ + ng 9 .

(5.39)
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Figure 5.2: The graphs shiow'tlie relations between u, and T at small density (left)

- -

and at large density (right). ) \

4

For small ng, the entropy ,-densitl;»:..is“: proportional to 7°. When n, gets
larger (carrying color chargge), the ’entroﬁguﬁgnsity becomes dominated by the color
term s oc n,T. This is confirnied ﬂumeric@;{fl the next section. It has been found
that the entropy density of the 4 ¢-:QGP qu_leg as T° [71] corresponding to the fluid

of mostly free qualjks and gluons. We can see that thé cffect of the color charge

of the multiquarks ‘od quasi-particles is to make thenl,‘iess like free particles with

the temperature dependence ~n T e much less sensitive to the temperature.

It is interesting to éompare the dependence of pressure on the number den-
sity, (5.26) and (5.34); to the confined case ati zerp temperature studied in Ref. [74].
The power-law Telations for both small and large density of the confined and de-
confinéd tialtiquaik phases‘are in [the stie form (for Gid =0).Tlid reason is that
the main contributions to the pressure for both phases are given by the D8-branes
parts and they have similar dependence on the density for both phases. For the
deconfined multiquark phase, the additional contributions from the source terms
in (5.15), fisource, are mostly constant with respect to the density (this is because
u. becomes approximately independent of d for small and large d limits). Conse-

quently, the constant contributions cancel out and affect nothing on the pressure.

On the contrary, the entropy density for the deconfined phase is dominated

by the contributions from the sources namely the vertex and strings. The contri-
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bution of the D8-branes is insensitive to the change of temperature and therefore
does not affect the entropy density significantly. On the other hand, the addi-
tional source terms depend on the temperature and thus contribute dominantly
to the entropy density. Once the temperature rises beyond the gluon-deconfined
temperature, entropy density will increase abruptly (for sufficiently large density
d) and become sensitive to the temperature according to (5.39), due to the release
of quarks from colorless confinement appearing as the sources. However, we will
see later on using the numerical study in the section that for low densities and for

small ng, the numerical value of the entropy density is yet relatively small.

5.4 Numericalstudies of thethermodynamic re-

lations :

From the analytic approximations in tlj}e"'previous section, we expect the pressure
to appear as a straight line in the légar?thglic scale for small and large d with the
slope approximately 24and 7 /5 respectfyely. The relation between pressure and
density of the multiquarks feom the full _éi;‘%:'p‘r‘.essions can be plotted numerically as
shown in Fig. 5.3-5.5. The pressu‘i"'é does:"ﬂ"_(f‘j'_t really depend on the temperature and
we therefore present only the-"’plo-ts at— =_—Glf)3 Remarkably, the transition from
small to large d is clearly visible in thejj‘iégarithmic—spale plots. The transition
occurs around d. -0.072. Interestingly, as shown i Fig. 5.5, the multiquarks
with larger n, has le§s pressure than the ones with smaller n, for d < d, and vice
versa. The dependence on ng remains to be seen for.small d as we can see from

(5.26). For large d, the mgdependence is highly suppressed as predicted by (5.31).

The entropy“densitytas'a function of the temperature for various ranges of
the density is shown in Fig. 5.6. The temperature dependencegfor both small and
large dhare/in thevsame leading order of ~ T°. The haryorynumber density is
linearly proportional to the pressure in the logarithmic-scale plot. For ng, > 0, we
can see from (5.39) that the linear term in 7" should become more important. This
is confirmed numerically as is shown in Fig. 5.6. The slope of the graph between
the entropy density s and 7" in the double-log scale for ny = 0 (the left plot) and
ns = 0.3 (the right plot) is approximately 5 and 1 respectively. Regardless of the
temperature dependence, it should be emphasized that the numerical value of the

entropy density for small densities and low ng in Fig. 5.6 is quite small.

Finally, the relations between the baryon number density and chemical po-
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tential are shown in Fig. 5.7. Temperature has a very small effect on these curves
and is negligible for the range of temperature between the gluon deconfinement and
the chiral-symmetry restoration. The baryon chemical potential depends linearly
on the number density for small d. For large d, the relation between the chemical
potential and number density becomes p = d?/®. Interestingly, the multiquark

quasi-particles behave like fermions as a result of being the electrical response to
the DBI action [71].

AU INENTNYINS
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Figure 5.4: Pressure and density in logarithmic scale at T" = 0.03, zoomed in

around the transition region.
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Chapter VI

GRAVITATIONAL STABILITY OF THE
DENSE WARM STAR IN THE DECONFINED
PHASE

When a dying stareollapges under its own gravity, it is generically believed
that the degeneracy preéssuue of citherielectrons or neutrons would be able to stop
the collapse to form agwhite dwarl or |'a neutron star. If the star is more massive
than the upper mass limit of the noufron star, it would collapse into a black hole
eventually. The mass limit of the neutr(}n ‘star is sensitive to the physics of warm
dense nuclear matter but Jittle isknown about the equation of state of nuclear
matter under high temperature-' ahd 1arg-;a-}‘dénsity Even though the original mass
limit of the neutron star e%tlmated by 6ppenhe1mer and Volkoff was only 0.7

solar mass [21, 22|, the new lirtiit VVh(‘H th&nuclear interactions are included could

.1..

within hadrons could be-ficed-and-wandei-arouid the-mterlor of the star. In other
words, quarks are effeetively deconfined from the localized hadrons but confined
by gravity within the‘star. Using the bag model to“describe the state of being
confined by grayity but possibly deconfified from the hadrons, it turns out that
quark matter phase, €.g. ;strange star, is possible under extreme pressure and

density.

However, physies of the deconfinement is largely" unknown, due to the non-
perturbative nature of the strong interaction and the difficulty of lattice approach
to deal with finite baryon density situation. The bag model are not always served
as a reliable theoretical tool to explore the behaviour of quarks in the dense star
when the deconfinement exists. It is therefore interesting to use the equation of
state of the deconfined nuclear matter from the holographic model to investigate
the behaviour of the dense star as a complementary tool to the bag model and

other approaches.
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In this chapter, we study a hypothetical multiquark star containing only the
multiquark matter with uniform constant temperature [73]. The relations between
pressure and density will be adopted directly from the holographic model as the
equations of state of the quasi-particles. Since the pressure and density have very
small temperature dependence for the range of temperatures under consideration,

the results are valid generically.

A study into the gravitational stability of a spherically symmetric dense

star can be performed using the Tolman-Oppenheimer-Volkoff equation [21, 22].

'ff 1as a metric of the form
2d§22 : (6.1)

Generically, any spherical symm tri

(6.2)
(6.3)
and ip 3 g
dr | r—A*(r))
The last equation is known as h ol imer-Volkoff (TOV) equation.
The accumulated mass of n be determined by A*(r) = 2M(r)
It has been proposed in Ref. 7 e-C emical potential defined in the term
of background metxjl )y == . will'a mati solve the TOV equation.
Since - =

(6.5)

Accordingly, ﬁ TOV fakes the followin

IgbL %“mnm ,
AR MATA NI NEAT Y. - e

consider'the assisting relation from the first law of thermodynamics
dU = TdS — PdV + pdN. (6.7)

In the case of compact dense warm star, it can be thought of an isolate system.
After dividing out with infinitesimal in volume dV/, the first law of thermodynamics

becomes

p = —P+ud,
p+ P = pud, (6.8)
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d dN
u and d = —. Substituting (6.8) into (6.6) gives

where p = v v

P'(r) = dp/(r). (6.9)
After differentiating the first law of thermodynamics (6.8) with the radius r (i.e.

dp

= p'), the law becomes
dr

P+ P = yd+ ud. (6.10)

Using chain rule,

(6.11)

Together with the first ‘ \\\ = pd, the TOV equation

(6.12)

Obviously, the chemical l'canbed nined, as a function of the number
density ‘

Jan + Honset (613)

where fionset = p(d = ditionally, considering from the TOV equation (6.12)

together with (6. 1004/t
4
p= ,ud’ (6.14)

The density aﬂ:ul@j % ﬂél %}g%}ﬁtw EJ ’] ﬂ ‘j
I ey

For a po er-law equation of state, P = kd*, the chemical potential in Eq.(6.13),

oP
/,l,(d) - /0 d (87]) d’l] + Honset 5

d
= / Ak‘n)\_gdn + Honset »
0

Ak
= N dA ! + Honset - (616)

becomes
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and eventually the equation of state is given by

d
AR
= 3 4 onse d 3
P A {)\ — 177 +u t:| Ui
1 1/
= —)\ 1P+N’onset (k) . (617)

For ngy = 0, at the transition point d = d., the energy density is given by
Eq. (6.17),

(6.18)

where P = k'd" (Eq. (5. ‘ @ the equation of state of the

small d region. We re
which match with thi

poo= e+ Ak (6.19)
Py A
_ AN A-1 [ 2 2
p = pe = % (k> (6.20)
Numerical results and /5 for the large d region
For ng, > 0, assume the ‘¢q ate for small d is in the form of P =
ad +bd* (Eq. (5 ical potential and energy
density for the sm
—_— 21
bl a1 (6.21)
ﬂ‘UEJ’J A4 mmmﬂ‘i
onse .22
DY DARYES (6.22)
wORRIRENT W‘ WHTE 5 8
dM bd)?
Pec = /fbonsetd + ¢ (623)

SV v

For n, = 0, numerical fittings suggest that k¥ = 1074 X\ = 7/5,d, =
0.215443, 1. = 0.564374 (core) and k' = 1, N = 2, fionser = 0.17495 (crust). For
= 0.3, good fit parameters are k = 1074 X\ = 7/5.d, = 0.086666, i1, =
0.490069 (core) and a,b = 0.375,180.0,; \12 = 2,4; tionset = 0.32767 (crust).

Varying the central density py of the star, we obtain the mass-density relation
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Figure 6.2: The accumulated pothetlcal multiquark star
for the central den81ty 0 = = 20 and ng = 0 The inner (outer) red (dashed-blue)
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Figure 6.3: The density, and pressure distribution in the hypothetical multiquark
star for the central density py = 20 and ny = 0. The inner (outer) red (dashed-

blue) line represents the core (crust) region.
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region.

Figure 6.5: Comp' of the accumu S; iribution in the hypothetical
multiquark star for.the > ‘ ng = 0 and 0.3. The
(dashed) blue line reﬂsents cava. ark star with ny = 0.3 (0).

The red lines representthe core region of,which both cases are almost the same.
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Figure 6.6: Comparison of the density, and pressure distribution in the hypothet-
ical multiquark star for the central density py = 20 between ny = 0 and 0.3. The
(dashed) blue line represents the crust region of multiquark star with ng = 0.3 (0).

The red lines represent the core region of which both cases are almost the same.
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region.
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in Fig. 6.1. Each curve has two maxima, a larger one in the small density region
and a smaller one in the large density region. Each maximum corresponds to each
power-law of the equation of state, the low density to the crust and the large den-
sity to the core. Interestingly, the contribution to the total mass of the multiquark
star comes dominantly from the crust. This is shown in Fig. 6.2. Even though the
density is much lower, the volume of the crust is proportional to the second power
of the radius and thus makes the contribution of the crust to the total mass larger

than the core’s.

Figure 6.3 shows the pressure and density distribution within the multiquark
star for the case of ng = 0 for the central density po = 20. Even though the density
and pressure decrease rapidly with respect-tothe radius of the star, they never
quite reach zero. It turns.eut that - when the density and pressure reach the critical
values where the equation oisstate changes into the different power-law for small
d, the crust region countinues for a lallge fraction of the total radius of the star.

This makes the crust mags gondribution to the total mass of the star dominant as
is shown in Fig. 6.2. » —' 4
' J

Some remarks should be made regarding the hydrodynamic properties of the

multiquark phase (taken‘as fuclear liqui'_dj,. At constant temperature and entropy,
F I

we can define the adiabatie ir_;c_le;(_u

7l

por
LS AW = s .24
) o
= —c 2
P S ] (6 5)

where ¢, is the sound épeed in the multiquark liquid. rthey depend on the equation
of state of the multiquark and their distributions within the multiquark star are
shown in Figl6.4 forin, = 0:/ The sound, speed never exceeds the speed of light
in vacuum. It ig also found that the adiabatic index and the sound speed change

within_a small fraction as the central densities'are varied for a‘given n,.

The multiquark ‘star with 7, =" 0.3" (having colour charges) converge to a
smaller mass and radius at high central density (Fig. 6.5). Multiquarks with
colour charges has lower pressure (and therefore smaller density) than the colour-
less ones for small density (Fig. 6.6). This smaller pressure makes the coloured
multiquark star smaller and thus less massive than the colourless one. In more
realistic situations, all of the possible multiquarks with varying n, coexist in the
multiquark phase. The mass limit and mass radius relation will vary between the
two typical cases we consider here. Since the equations of state are found NOT to

be sensitive to the temperature within the range between the gluon deconfinement
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and the chiral symmetry restoration, our results should also be valid even when

the temperature varies within the star (but not too high and too low, of course).
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Figure 6.9: The relation between mass and sédius of the multiquark star with (a)
ns =0, (b) ny = 0 (red).and g = 0.34black).

Moore MCOTG
0.14 o \ R
0.12 p 02
- q
01 f o LN
0.08 s ¢ -
0.06 \ 4\ 0
0.04 v
000 4 0,05
02 03 04 0508 @ f 02 04 06 08 1o

add v ol o

Figure 6.10: The relation betieen mass a_:_léié'}_‘;’adius of the core of the multiquark
star with (a) n, = 0, (b) ng =0 (bluc) and ny = 0.3 (black).

The baryon chemical potential distributions in tﬁe' multiquark star for ng =
0, 0.3 are shown in Figﬁi_ 6.7. Inthe core region, the che;fnical potential distributions
of both cases are similar due to the similarity of the equations of state for large
density. A sniall jump of thé cheémical potential at' the tramsition radius between
core and crust gegion is the artifact from the power-law approximation. The value
of the chemical potential at_the transition radinis from the full’expression which
we used in'the nmmerical simulations.is slightly different from thel approximated

value using the power-law.

The adiabatic index and sound speed of the multiquark phase for ny, = 0.3
are shown in Fig. 6.8. The adiabatic index is higher than n, = 0 case but the
sound speed in the low density region is distinctively higher. Around the transition
density, the sound speed reaches the maximum value of about 0.986 of the speed of
light in vacuum. For both ny, = 0,0.3 cases, it is obvious that the adiabatic index
is closer to 1 in the core reflecting the fact that the density distribution is more

condensed in the core region. The adiabatic index reaches A’ = 2 at the star surface
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since the the equation of state at zero density is P oc p* (i.e. I'(p — 0) = X for
Eq. (6.17)).

The spiral relation between mass and radius of the multiquark star is shown
in Fig. 6.9. As the central density is increasing, the mass and radius of the ngy =
0 (0.3) multiquark star converge to the value of 0.659 (0.440) and 3.132 (1.704)
respectively. For the core, the mass and radius of the core for ng, = 0 (0.3) converge
to the value of 0.108 (0.169) and 0.471 (0.737).

Finally, we would like to estimate these limits of mass and radius in the
physical units. Since our dimensionless quangities are related to the physical quan-
tities through conversion faetors given i 4able'B.1 (Appendix B), both physical

mass and radius vary with the energy density of the nuclear matter phase as

x 1/+/energy density scale.«For'a multiquark nuclear phase with energy density
scale 10 GeV/ fm3, thé conwersion factdir of the mass and radius are 5.91 M, and
8.71 km respectively.Fhisavoild ¢orrespond fo the converging mass and radius (in
the limit of very large €entral deﬁéi‘ty)b% 3.89 (2.60)Mu1qr and 27.29 (14.85) km
for ng = 0 (0.3) multiquark star respect')vely

Id

In realistic situatiou; the nuclear pHase in the outer region could lose heat out
to the space in the form of @ diation. Theiirgl‘clear matter in the outer region of the
crust will cool down and mosf;ly"bfecome i_(’):-‘fifi‘ned into neutrons and hadrons (e.g.
hyperons, pions). This would make the Ii}{;tlti-quark crust to end at shorter radius

than the estimated vadue and render the multiquark star to be smaller and less

massive than the estlmated values in the hypothetlcal prototype. For example,
for the energy densitylscale 10 GeV/frn , the critical density is p. = 1.5 x 10"
kg/m? (n, = 0). This isstill a sufficiently.large density for the neutron layer to be
formed. If thestemperature of the nuclear matter in the Crnust region falls below
the deconfinemient temperature, the multiquarks will be confined into extremely
dense neutrons.and hadrons.instead, [For a.typical neutron star, the distance of
the neutron'layerjoutito the starisurtace lis roughly 5-6 km J77).If we add this
number to the radius of the multiquark core, 0.471 x 8.71 ~ 4.10 km, we end
up with a more realistic estimation for the multiquark star with radius ~ 10 km.
Regardless of the name, only the core region is in the deconfined multiquark phase

and the content of the outer layers are the confined nucleons.



Chapter VII

DISCUSSION AND SUMMARY

In this work, we have reviewed many holographic models ranging from
AdS/CFT (Chapter 2) to Sakai-Sugimote model(Chapter 3). The confined and
deconfined nuclear matter have been studied in Sakai-Sugimoto model. Their ther-
modynamics and manyamporianut parameters have-been calculated in Chapter 4.
Interestingly, deconfinemengat the moderate temperature below chiral restoration
temperature in the high density limit]' exhibits various phase structures. A par-
ticular state of the decgfifig@dfuliclearsmatter consisting of fundamental nuclear
matter called multiquarlg'has been‘stuaied in Sakai-Sugimoto model. Addition-
ally, the holographic multiquark model‘-f-@nd its thermodynamics at the range of
temperature between deconﬁneﬁ{ant to d}lral syminetry restoration temperature

have been explored in Chapter 5." ;J';f_ .
T

.--‘.

In the gluon- deconﬁned phase of tHe general Sakai-Sugimoto model, mul-

tiquark states can éxist in the 1ntermed1ate range of temperatures between the

deconfinement and -_t_he chiral symmetry restoration ten[l_perature at the sufficiently
high density (Chapter 6). They are thermodynamicalléf more stable than the other
phases and therefore fhey can play important role in the physics of compact warm
stars. By analyitical and numerical methods; itheequationrof state of the multi-
quark nuclear matter-ean*be’ approximated by two power-laws in the small and
large density region. Roughly speaking, the pressure is proportional to d> and d’/°

for thefsmall and Jarge number density (d) regions respectively:

It 1s also found that the effect of the colour charges of the multiquark is
to reduce the pressure of the multiquarks when the density is small. At higher
densities, multiquarks with color charges exert slightly larger pressure than the
colorless ones. The temperature dependence of the entropy density shows an
s o< T® relation and the color charge dependence Sepiour X 15T (see Fig. 5.6 and
Eq. (5.39)). This implies that the multiquarks with color charges have larger
entropy but their number of degrees of freedom depend less sensitively on the

temperature. Multiquarks in the deconfined phase behave like quasi-particles with
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the entropy density being less sensitive to the temperature than the gas of mostly

free gluons and quarks in the xs5-QGP phase.

Using the power-law equations of state for both small and large density re-
gions, a spherically symmetric Einstein field equation was solved to obtain the
Tolman-Oppenheimer-Volkoff equation. By solving this equation numerically, we
establish the mass, density and pressure distribution of the hypothetical multi-
quark star. It turns out that the multiquark star is separated into two layers, a

core with higher density and a crust with lower density. Mass limit curve is also

obtained as well as the mass se (s between the mass and radius of the
multiquark star. They show t3 . havior of the star sequence plots.
The mass limit curve shows twe eab; c@g to the equation of state of

the small and the lar he most contribution to the

total mass is mainly index at constant entropy,
I', and the sound spe ' il tiquan phase within the star are

roughly within rang ‘or small density, I' is in the

range 1.3 —2.0 (2.0 — s isaougl ) —0.99) for multiquark with
n, =0 (0.3). LR
JA I
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Appendix A

BALANCE CONDITION FROM
VARIATIONAL PRINCIPLE

7,

Another way to fi ance ¢ an be obtained from variation

of the total action with res the cusp-position Ue.

7 &y t) + Ssource

- z.\% ™
05| 3 4%\ 05 , OB
Ou, it . "'_ ﬁ\\\* el du, dtl
0 — ﬁ . n l:'%‘; i a%;tme » (A.1)
Since we use a proper coo it '_ o o\ ‘ngth
W, (A2)
we get 1 777777777777 ' :‘
‘ 7 /
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EJ] ujﬂtqm OEJE%) - c d, ,IH ]ﬁ% dpt|l
_ ;ﬂj N ﬁ @g{q o/
ARIANNTBRIR IR Y
9 ry(ue) = du 8? (A.3)
Ue cldl

After substituting (A.3) into (A.1) and requiring the total action to be stationary

with respect to variation of u., we obtain

a‘S’SOU.I‘CG
ou,

. Sps
L(ue) — ) (ue)——
(1) = 40 2

(A4)

Ue

dit,l

/ T 8Ssource
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(A.5)
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For multiquark phase,

Sps = / du L(u) (from Eq. 3.56)

= N/Oo duu/f (u) (2 (u)? +u3 /1 + Z—z (A.6)

o = N[ e/ + e ) (A7)

Using (3.56),(3.74), and (A.7)
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Appendix B

DIMENSIONAL TRANSLATION TABLE

quantity | dimen Mi{} Ja ble | physical variable

pressure

density '
mass /
radius v A

'

4
C
anl

02
Gzl

. [ : r
Table B.1: Dimensio I o1 fable of relevant physical quantities, 7o =
_1/2 i ¥ 5 :
(cfrjyfs) - (%(ener Aghispys 0
N #d‘ﬂ "‘
%-

by .é

:
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