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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

The theory of sequence spaces has long been studied. Linear operators,
especially mﬁmte matrix transformations, between sequence spaces have been
widely studied in this area. However, some nonlinear operators between
sequence spaces are well-known. Superposition operators between sequence
spaces are nonlinear. The research on superposition operators has been
continuously done. The definition of superposition operators is given as follows:
For any g:INxIR—IR, the superposition operator P, is defined by P((x.)r:)
=(g(k, x:));-, for every real sequence (x,)r-,. In [1], J.Robert has characterized
the superposition operator /, between any two Orlicz sequence spaces which is

continuous at the sequence (0) under the following additional conditions of g:

(*) 2(k,0) = 0 for every ke N.
) g(k, -) is continuous at 0 for every ke N.

I. V. Shragin [2] has introduced a class of sequence spaces which contains all
Orlicz sequence spaces and he has characterized B between some types of
sequence spaces in this class. Using the same idea of the proof given by 1. V.
Shragin [2], Chew Tuan Seng and Lee Peng Yee [3] have given characterizations
in explicit forms of the superposifion operators F: £,— £, (1< p <w) and B:c,— 4,

under the condition:
(»xv) g(k, +) is continuous on R for every ke IN.

Then they used their characterizations to give representations of orthogonally

additive continuous functionals on £, (1<p<ew) and ¢. The superposition



operator F, with conditions (*) and (***) from w, into ¢, has been characterized
by Chew Tuan Seng in [4], where w, is the space of all real sequences (x,)i.

such that lim ’%ti'.l |x;| = 0. The following condition of g is weaker than (*#*):
(#wn%) For each k€ N, g(k, -) is bounded on every bounded subset of IR.

By assuming only condition (***%) of g, Ryszard Pluciennik [5] has proved the
same result given by Chew Tuan Seng [4].

The sequence spaces @, £, (1< p <), cs, ¢, ¢, bs, £, and @ are classical.
Among these sequence spaces, @, £, (1<p <w), ¢, ¢, £, and @ are also standard
and well-known. We consider the following P, for any X { @, £, (1< g <), cs,
cp,cbs, b, }and Ye{ @ £ (1<p <o), 6, ¢, s, @}

(1) B:X>7Y.

(2) F is continuous at every point of X where F: X — Y.
The purpose of this research is to give necessary and sufficient conditions of g
for B, in (1) and (2) above in terms of mathematical analysis of the sequence
((g(k, -));-y of real-valued functions. These results are given in Chapter IT and
Chapter II1, respectively.

Throughout this research, our scalar field is the field R of real numbers.
By a sequence, we mean a sequence of real numbers. Let IN denote the set of all
natural numbers.

Let x be a sequence. For ke N, the £ term of the sequence x is
denoted by x,.  Then x=(x.)i.,. Let |x| denote the sequence (|x.|)i-;. For ne N,

let ¢ be the sequence such that

1 if k=n,
& =
0 if k=n.

For te R, let (¢) denote the constant sequence such that each coordinate is 1.



For sequences x and y, we define x<y if x,<y for all keIN. A
sequence space X is said to be solid if for any sequence x, |x|< |y| for some yeX
implies that x € X,

A K-space is a topological sequence space in which each coordinate
mapping is continuous.

For a normed linear space X, let ||- |, denote the norm of X.

The space of all sequences is denoted by @ and @ denotes the space of

all finite sequences, that is,

@ =  the space of all sequences x such that x, =0

for all but a finite number of k.

N

Hence for x€ @, x< @ if and only if x = 3 x,¢” for some Ne N. The standard
k=]

metric d, on @ is defined by

%= ¥l

do(x,y) 1 21+ -yl

We use the norm || ||, for @ to be the sup-norm, that is,
ﬁ'rlfﬂ = 31113 T m?x EXDN

Other classical sequence spaces with their standard norms which are used in this

research are as follows:

£, = ' the space of all bounded sequences,
lxfly, = suplxl,

¢ = the space of all convergent sequences,
Il = " suplxl,

¢ =  the space of all null sequences

= the space of all sequences x such that E{ﬂ x=10,
Ixl, = suplxd,

£, = the space of all sequences x such that } [x,|” <«
k=1



where 1< p <w,

e, = (Ei)",
bs =  the space of all sequences x such that (glxk}:,,, is
bounded,
Il = sup | Ex,
cs = the space of all sequences x such that Eﬁlx* is a
convergent series and
el = sup [Xx)

The following diagram shows the relationships under set inclusion among the

sequence spaces mentioned above:

>

bs

]

@
M

yo s

4

@

where 1< p,g <«. The follcwing statements are well-known:
(1) @ £ (1<p<w), cs, G, ¢, bs, £, and @ are K-spaces.
(2) £, (1<p<w), cs, ¢, ¢, bs, £, and @ are complete but @ is not.

(3) @ £ (1<p<w), ¢, £, and @ are solid but ¢s, ¢ and bs are not.



(4) If x, x"c @ for all ne N, then lim x” = x in @ if and only if

LE T

lim "= x, in R for all ke N,
Forxe £, (1<p <w), ne N, we have |x,| = (Jx.|")'" < (E: x:l”)"*=|lx]l, . Also, for
k=1 P
o m=1 " a=1
xebs, ne N, we have [x,| = Lgxk- ;IIJ < |?_:1x*| +}?‘_‘1xt| < 2||x|l,,, These imply

that [jx]|, < |x[l, on & (1< p <co) and |, <2]xl}, on bs.

Let g: N xR R. Then for each ke IN, g(k,-):IR > R and so (g(k, -));.,
is a sequence of real-valued functions on R. Hence (g(k,x));.,€ @ for every
x€ ®. The map P: @ —» @ defined by

Bx) = (g(k ). (xc )

is called a superposition operator. Chew Tuan Seng and Lee Peng Yee [3] have

characterized certain superposition operators as follows:

Theorem 1. ([3]) Let g: N xR —> R be such that g(k,-) is continuous on R for
all ke N. Then F;:c,—» £, if and only if there exist a>0 and (¢;)i-1€ £ such that
for each ke N,

gtk t)] < o whenever |t|< a.
An equivalent theorem of Theorem 1 is

Theorem 2. Let g:IN xR > IR be such that g(k,-) is continuous on IR for all

keIN. Then F;: c,—» £ if and only if there exists a >0 such that

2 sup |g(k 1)| <o
k=] tel-a, a)

Theorem 3. ([3]) Let g:IN«IR >R be such that g(k, -) is continuous on R for

all ke N. Then for 1< p <cw, F: £, £, if and only if there exist a>0, >0 and

(ci)i=1 € £ such that for each ke N,



gtk 1)l <= c+ Blt]° whenever|t| < a.

The definition of continuous convergence of a sequence of real-valued
functions is given in [6] as follows: Let (f)%: be a sequence of real-valued
functions on R and let /1R - R. The sequence ( f,).., is said to be continuously
convergent or converge continuously at te R to f if for any £>0 there exist

&>0 and INELN such that for all neN, sc R,
n=Nand |s—t|<d imply |f(s)-f(s)|<e

It is clear that if ( )., converges continuously at t R to f, then !‘Lﬂ; ()= ()
and if ( f,)-.; converges uniformly to f on IR, then (f.);., converges continuously
to f at every point of R. Moreover, it is routine to show that if ( /)%., converges
continuously at ¢ to f and f, is continuous at ¢ for every ncN, then f is

continuous at 1.
The following theorem will be used later.

Theorem 4. Let ()., be a sequence of real-valued functions on R and
S RoR. Then:

(1) If (f)s) converges continuously at te R to f, lrEl;l f(s) exists and
2:R-> R is such that 11_{!{1 g(s)= !l_gl f(s) and g(1) = (1), then (f)s-, converges
continuously at t to g.

(i1} (f.)ne) converges continuously to f at every point of R if and only if
(f.)%-1 converges uniformly to | on every bounded subset of R.

(iir) If f is continuous on R, then ( f,),., converges continuously at t to f(t)
for all te R if and only if (f.)e: converges uniformly to f on every bounded
subset of K.



Proof. (i) To prove (f,).., converges continuously at ¢ to g, let £>0 be given.
By assumption, lil'l;l [f(s)—g(s)]1= 0 = f(t)— g(t). Then there exists §>0 such
that for se IR,

ls—1] < & implies |/(s)- ()| < £. )

Since ()5 converges continuously at { fo f; there exist Ne N and 6’ R with
0< &' <4 such thatfor all nc N, sc R,

nzN and |s—t|<d" imply [fi(s)-f(s)| < % (2)
Then (1) and (2) yield that for all ne N, se R,
nzN and |s—¢|<6" imply | fi(s) — g(s)| <&

Hence ( f;)»-; converges continuously at ¢ to g.

(i¥) Assume that ( /)., converges continuously to f at every point of R
and let S be a bounded subset of R. To show that ( f,)i-; converges uniformly to
fon S, let £>0. Since § is bounded, S C [-a, a] for some a>0. Since (f)w
converges continuously to f at every point of R, for every t€ [-a, a] there exist
8,>0 and Ne N such that forall ne N, se R,

nzN, and |s—t|<d, imply |[f(s)-f(s)|<e (3)

Since [-a,a] is compact in IR and [-e a]cC 'ﬂ_l_“lml{fuﬁ_.,fﬂﬁ:}, [, a]l ©
JL:JI{I‘—:S;,.:,JrﬁI) for some ‘melN and 4,.. . €[+a,a) If se€[-a, a], then
se(t,-9,+4,) for some je{l,...,m}, so by (3), |f(s)—f(s)|<e for all
nzmax {MN,,..., N}~ This implies that ( £).- converges uniformly to f on
[-e&, ] and hence it does on 5.

Conversely, assume that (f).., converges uniformly to f on every
bounded subset of IR. To prove that ( f,),., converges continuously to /" at every

point of R, let r€R. Then by assumption, ( f,).., converges uniformly to f on



(t-1,t+1). This implies that for any £>0 there exists Ne N such that for all
nelN,seR,

imply |/(s) -f(s)| <&

SONUUINYUINNT )
RN TN INENAY



CHAPTER II

CHARACTERIZATION OF SUPERPOSTION OPERATORS
ON CLASSICAL SEQUENCE SPACES

The purpose of this chapter is to characterize the superposition operator
B:X—Y where g:INxIR > R in terms of the sequence (g(k,-));., of functions
forall Xe {@, £.(1sp <w), cs, 5, €, bs, £y, @} and Fe { @, £(1< p <w), ¢, ¢,
£}

For convenience, let p, ¢ denote real numbers such that 1 <p, g <e0.

Throughout this research, let g:INxIR—>R and F, denote the
superposition operator induced by g, that is, B(x) = (g(k, x.));., for every x € o.
For se€ R, the notation g, denotes the function g.:IN xR — R defined by g.(%, )
= g(k, t+5s), so we have B, (x) = (g(k, x,+5));.,= B(x+(s)) for every xc @ and the
following statements:

(1) For sequence space X, ¥, B:(s)+X—> Y ifand only if B, : X > ¥.

(2) ForkeNand a>0, {g(k1)||tl<a} = {gk D) ||t-s|<a}.

Superposition Operators into £,

First, we give a characterization of B: @ — Y for any sequence space ¥

containing @ as follows:

Lemmal. (i) If X and Y are sequence spaces and FE:X—>Y, then
(g(kin}}:ﬂey‘
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() If Y is a sequence space containing ® and (g(k,0));..€¥, then
B:d-Y.

Proof. (i) follows from the fact that (0) c .X.

N
(if) Let x€ @. Then x = ¥ x,&” for some N € N and hence

B(x) = (g(k x));-

(8(1, %), 2(2, %), . ..., 2(V; x), g(N+1,0), g(N+2,0),....)

= (g(1,x)—2(1,0), g(2 %)~ (2 0), ..., gV, xx)-g(N,0),0,0,...)
+(2(1,0), 22, 0),2(3,0),...)

= S1s0b 5 -5k 0)]1e” + (g0, ). *)

It

If ¥ is a sequence space such that @CY and (g(k,0));.,c¥, then by (%),
F(x)< Y. This proves (ii). 0

By Lemma 1 and the definition of £, we have

Theorem 2. F,: @ £, if and only if (g(k,0));., is a bounded sequence.

We kriow that the sequence spaces 4,, cs and ¢, lic between £, and c,.
Characterizations of £, from these sequence spaces into £, are obtained from the

following lemma.

Lemma 3. Let X be a sequence space such that £, CX C c,. Then the following
statements are equivalent:

() Py L.

(i) P:X—> £

(iii) P:4,—> ¢,



(iv) There exists Ne N such that (g(k,-));.y is uniformly bounded on some
neighborhood of 0.

Proof. Since £, € X C ¢, the implications (i/)=> (i7) and (i/) = (iii) are directly
obtained.

To show (iff)=:(iv), suppose thal (iv) is not true. Then for all ne N,
a>0, (g(k,«))';_, is not uniformly bounded on [-a, @]. Hence for all ne N,
there exist k>n and t€ [-27,27%] such that |g(k, )|>n. This implies that there
exist a subsequence (m)., of (n),., and a sequence (x,)r; such that
x.€[-27%2"] and |g(n,x,)|>k for all keN. Then (x,)i,cf and
8(71, %) )ret € Lo Let (32)7 be a sequence defined by

X, Af n=n, forsome ke N,
P
0  otherwise.

Then (y,)5-1€ £, and (g(n, y,))f._.é f.. Hence B:£,4>1,.
Finally, to show (iv)=(7), assume that (7v) holds. Then there exist
NeN, a>0 and M>0 such that

lgtk,)] < M forallk=N andic[-a,al (*)

Let x€ ¢,. Then there exists N’=N such that |x,|< a for all k=N’ which implies
by (*) that |g(k,x,)|< M for all k=N’ Hence (g(k,x.));., < f=. This proves that
P': > L. (]

Theorem 4. [f X is one of the sequence spaces £,, cs and ¢, then B:X—» £, if
and only if there exists N € N such that (g(k,-));.y is uniformly bounded on some
neighborhood of 0.
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The next theorem characterizes B:c— £, and B:£,— £,. It is shown in

this theorem that these characterizations are the same.

Theorem 5. The following statements are equivalent:
() Bl L.
(i) PRie— L.

(iif) For évery bounded subset S of R, there exists Ne N such that
(2(k, -))ru is uniformly bounded on S.

Proof. That (i) = (ii) holds since ¢ £..
To show (ii) = (iii), assume that B:c— £,. To prove (i), it is

equivalent to show the following statement:

For every a>0, there exists Ne N such that

(g(k,-));- is vniformly bounded on [-a, a]. (1)

Since for >0, [-a, ] is a compact set in IR, (1) follows from the statement:

For every s€ R, there exist »>0 and Ne N such that

{E’GJ, ')):.y is “-'I'Iifﬁml'y bounded on (s—r, s+ 7). (2)

Next, we shall prove (2). Let seR. Since Bic—¥f, and (s)+c, S,
F:(s)+cy—> £.. Then B :co—> £.. Tt follows from Theorem 4 that there exist >0
and N e N such that (g,(k, -));. is uniformly bounded on (-r,r). But {g/(k 1) |
lt|<r} = {g(k 1) | |t—s|<r} for all ke N, so (g(k, -));.x 18 uniformly bounded
on(s-r,s+r).

To prove (iii) => (i), assume that (i77) holds. Then (1) holds. To prove
B:f.— 1, let xe £, Then there exists a >0 such that |x,|<a for all ke N. By
(1), there exist NeIN and M >0 such that |g(k,)l<M for all k=N and
te[-a, a). Since |x,/<a for all ke N, we have |g(k,x,)| <M for all k>N. This
implies that (g(k, x,))};., € fe- 0
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To characterize F: bs —» £, the following lemma is required.

Lemma 6. If Y is a solid sequence space and F,:bs - ¥, then E: £, Y.

Proof. Let xe £, Then there exists & =0 such that |x,/<a for all ke N.
Define the sequences ()5, and (z,)5, as follows:

{ x, if kis odd,
/A% ~x,, if kiseven
and
[—x,,,, if kis odd,
2, =

X, if kiseven,
that is, (¥a)i1= (%1, =%, %5, —X3, X5, ~ X5, ... ) A (2)pr= (=2, X2, —Xs, X1, —Xe, X .. ).

Then for all ne N,

- x, if nis odd,

Loi. < =

=t 0 if niseven
and

. —x,, if nis odd,

e —

S 0 if niseven.

Since x € £, we have ( j‘y,‘.)‘:_,e ¢. and (:z:l 2o € b Then (32)5 (250 bs.
Since B:bs— ¥, (glk,y))i.c¥ and (g(k z.));.,€ ¥. Define the sequences

()= and (v,)5; by
{ g(k,y,) if kis odd,

uk - - -
0 if k is even
and
{ 0 if kis odd,
v —- 4
' g(k,z,) if kis even.
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Then | < |g(k, )| and |v,| < |g(k, z.)| for all ke N. Since ¥ is solid, we have
(u)re1s (Vi€ Y. But g(k,y,) = g(k,x:) if k is odd and g(k, z,) = g(k, x) if k is
even, 80 (S{k, X)) eer= (U )e=r+ (V)i € ¥ O

We know that £, is solid. The next theorem follows from this fact,
bs € £,, Lemma 6 and Theorem 5.

Theorem 7. FE:bs—» £, if and only if for every bounded subset S of R, there

exists Ne N such that (g(k, -));_y is uniformly bounded on 8.

The following corollary is obtained from Theorem 5 and Theorem 7.

Corollary 8. If X is one of the sequence spaces ¢, bs and f., then P X— £,
if and only if for every bounded subset 8 of R, there exists Ne N such that
(g(k, )}y is uniformly bounded on S.

The last theorem of this section gives a characterization of B: @ — £, as

follows:

Theorem 9. B: @ —» £, if and only if there exists N e NN such that (g(k, ).y is
uniformly bounded on R.

Proof. Suppose that for every ne N, (g(k, -));.. is not uniformly bounded on
R. Then there exist a subsequence (m,),-; of (n),., and a sequence (x,,)i., such
that |g(n,,x,)|>k for all ke IN. Then (g(n,x.,));- €% Let (y.)m be a
sequence defined by
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{ x,, if n=n, forsome ke NN,

0 otherwise.

Then (.)€ @ and (g(n,v,)),.,€ £, since (g(n,x,)),., is a subsequence of

(&(m, )

This proves that if F:w-»£, then there exists NelN such that
(g(k, -)):.,,,_ is uniformly bounded on R. The converse of this statement is
obvious. . O

Superposition Operators into ¢

Since the sequence space ¢ contains @, the following theorem follows

directly from Lemma 1.
Theorem 10. F:® ¢ if and only if lim g(k, 0) exists.

We obtain a necessary condition for F, mapping a solid sequence space

into ¢ as follows:

Lemma 11. For a solid sequence space X, if B:X— ¢, then for any xeX,

lim g(%, x4 = lim g(%, 0).

Proof. Since (0)eX, P((0))=(g(k 0));.,€ . Then E’."ﬂ g(k,0) exists. Given
xeX, we have B(x)=(g(k x:))i€c¢ that is, lim g(k, x,) exists. Define the

sequence (y)i: by

¥ == . g
; 0 if & is even.

{ x, if kisodd,
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Then (¥a)i1= (0), (¥2-1)e=1= (X2:-1) 5= and |y, <|x| for all ke N. It follows that
(V)€ X since X is solid. Therefore, }rljli g(k,»:) exists. Hence 11__1{! g(k, 0)
= fim g(2k, 0) = Jim g(2k y2) = lim g0k, y) = lim 2(2k—1,y21-1) = lim g(2k—1, %:1.)
= lim g(k, x,). 0

In order to characterize P, from £, ¢s and ¢, into ¢, the following lemma

is required. -

Lemma 12. Let X be a sequence space such that £, € X C ¢,. Then the
following statements are equivalent:

() P:g—c.

(i) B:X—e

(iif) B:4,—c.

(iv) 11_.:{: g(k,0) exists and (g(k,-));., converges continuously at 0 (o

tim g(k 0).

Proof. Since £, € X C ¢, (/)= (ii) and (if)=> (iii) hold.

To prove (iif)=>(iv), suppose that (iv) does not hold. If Erll g2(k, 0) does
not exist, then PB:{4, ¢ since (0)e¥,. Assume that 1:_1,1; 2(k,0) exists but
(g(k,-)):., does not converge continuously at 0 to lim g(k,0). Let L= ]d_’n;li g(k, 0).
Then there exists £>() such that for all §>0, n € N, there exist ke N, 1< IR such
that k>n, |t|<& and |g(k,f)—L|=¢£ This implies that there exist a subsequence
(m)5, of (n)r., and a sequence (£, )5 such that |z,|<2™ and |g(m, £,)—L| > £ for
all ke N. Then (t,)i., € £,. Define the sequence ( x,);., by

{ t,, if n=n, forsome ke N,
x, =

0  otherwise.
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Then (x,)w: € £, and |g(ny, x,,)—L| 2 £ for all ke N. lf!riﬂg{n,x,) does not exist,
then B:£,#»c. Assume that il_}!tl 2(n,x,) exists. Then !.'ﬂ g(n,x,)= Eﬂ g(n, x..)
2L =]&l_ﬂ g(k,0). Since 4, is solid, it follows by Lemma 11 that B: £, -»¢.

Finally, to show that (iv) == (i), assume that (iv) holds. Let L= Liﬂ 2(k,0)
and let £>0 be given. Since (g(k, -));., converges continuously at 0 to L, there

exist 6>0 and Ne N such that for all ke N, te R,
kzN and [t|<d imply |g(k,0)-L|<e (*)
If x € ¢, then there exists N'>N such that |x,| <& for all £>N’, which implies by

(*) that |g(k,x,)-L|<¢£ for all k=N’ Hence ym g(k,x,)=L for all xe¢,. This

shows that B:e,— e. O

Theorem 13. [f X is one of the sequence spaces £,, cs and ¢, then B X > c if
and only if limg(k0) exists and (g(k,-)),., converges continuously at 0 to
lim g(k, 0).

The nexi theorem gives a characierization of F:c— ¢. Theorem 1.4 is

required to prove this theorem.

Theorem 14. B:c—+c¢ if and only if
(i) lﬂ'ﬁ g(k, 1) exists for all te R,
(i) h= !rim g(k,-) is continuous on R and

(iii) (g(k, )., converges uniformly to h on every bounded subset of R.

Proof. Assume that F:c—>c. Since (f)€c for all 1€ R, we have 1im gk, 1)
exists for all re R. Then A(r) = lim g(k, r}ﬂi_gﬁg.(k, 0) for all teR. To prove
(#i7), it suffices by Theorem 1.4 (iif) to show that (i7) holds and (g(k,-));.,

converges continuously at ¢ to h(r) for all re R.



18

Let te R. Since (1) + ¢, C ¢, B:(t) +¢,—» ¢ which implies that F,:¢c,— c.
By Theorem 13, (g, -));., converges continuously at 0 to h(t). Since { gi(k, s) |
Is|l<a} = {gk,s) | Is—t|<a} for ke N and a>0, it follows that (g(k,-));.,
converges continuously at ¢ to A(f). It remains to show that 4 is continuous at f,
let £>0 be given. Since (g(k, -));., converges continuously at ¢ to A(t), there
exist >0 and Ne N such that for all ke N, se R,

k2N-and |s~7|<6 imply |g(ks)- k()| < Z. (1)

Let s R be such that |s—¢]<4J. Since Eﬂg{k, t) = h(1), there exists N'=N such
that | gV}~ h(@®)| < £, Then by (1), | h(s)-h()| < |h(s)-gW5s)| +
|gV3s) - k(@) <& + 2= &

Conversely, assume that (i), (#/) and (ii7) hold. To prove that B:c—»c,
let xec and let £ = xﬁ-.“lx"‘ Claim that E..“lgfkﬁk}: h(t). Let £>0 be given.

Since A is continuous at ¢, there exists 8> 0 such that for all se R,

|s—t]<& implies |h(s)— h(1)| < % (2)
Since 1=limx; and (g(k, -));., converges uniformly to 4 on (1—&,1+ &), there
exists N e N such that for each ke N, se R,

k=N implies |x,—t] <é. (3)
and

k=N and |s—t|<d imply |g(k,s)- h(s)| < -2*-"1 (4)
By (2), (3) and (4), we have that | A(xy) —#(1)] "% and |g(k,x,) — h(x,)| ‘f-—';- for
all k=N. These imply that |g(k,x.)—h(1)| <& for all k=N. Then Ei_{llg{k,xd
= h(t) and hence B(x) =(g(k,x));. i€ ¢ O

We know that the space £, is solid. Using Lemma 11, we obtain a

characterization of F: £,—» ¢ as follows:
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Theorem 15. F;: 4~ c if and only if lim g(k, 0) exists and (g(k,-));., converges

uniformly to li.mg(k, 0) on every bounded subset of R.

Proof. Assume that B:£,—¢c. Then lim 2(k,0) exists. Let L= }rim g(k,0). By
Lemma 11,

ii_lﬂg{k,x..} = L forallxecf. (1)

To show that (g(k, -));.,converges uniformly o . on every bounded subset of R,
suppose not. Then there exist @ >0 and £>0 such that for each ne N, there
exist k>n and f€ [-a, @] such that | g(k, f) - L|=& It follows that there exist a

subsequence (ny)r; of (n)%, and a sequence (%, );., such that for each ke N,
|t,| = @ and |g(n,4,)-L|ze. (2)
Define the sequence (¥,)5.; by
t,, if n=n, forsome ke N,
e 0  otherwise.
Then |y|<e for all neN, s0 (y.)m€f. By (1), Egg(k,yg) =L. Thus
P—ﬂ g(n, )= I.i_'n_lz 2(ny, v,,) = L which contradicts (2).

Conversely, assume that mg(k 0) exists and (g(k,-));.,converges
uniformly to L on every bounded subset of R. Let L= Liﬂ g(k,0). To show that
F:f,— ¢, let x€ £,. Then there exists a>0 such that |x,|<a for all ke N. By
assumption, (g(k, -));.,converges uniformly to L on [-a, a]. This implies directly
that lim g(k, x,) = L since x,€ [~a, @] for all k€ N. Then F(x) = (g(k,x));€c

To characterize F.: bs — ¢, the following two lemmas are required.

Lemma 16. If FB:bs—>c¢, then 11_?1 glk,x) = P_{E g(k,0) for all x € bs.
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Proof. By assumption, lim g(k,0) exists. Let xebs. Then (*ixk]:ﬂe f, and

!;i-'.“ g(k, x,) exists. Define the sequence (¥:)i; by

x, if k=0 (mod3),

W x,+x,., if k=1 (mod3),

0  if k=2 (mod3),

that iﬂ, (_}'}}:.q: (.'h"‘xz, ﬂ, X3y X4+ X5, ﬂ, i o } Then for ne N,

:E_.:xk if n=1(mod3),
o =

k=1 N

2x, otherwise.
k]

Since (g ) b, (:2, 4)is€ for Then (34)3i€ bs and fim g(k, ) exists. Hence
lim g(k,x,) = lim g(3k, x5;) = lim g(3k, y3,) = lim g(k, ) = lim g(3k— 1, y5.1)
= lim g(3k~1,0) = lim g(k 0) . O

Lemma 17. P:bs—» ¢ if and only if B: b~ c.

Proof. Assume that 5:bs—>c. To show that 5:4,—c, let x€ £, Define the
sequences (¥,)e; and (z,)i, by
x, if kis odd,
e T { — x> if kiseven
and

=X, . if kisodd,
zt = - -
X, if kis even,
ﬂ'lﬂ! iS., (Pt}::"i_-” (.1‘1, =Xy X3y K3y Xy Xy e e ) ﬂnd (z_t)T=-|= (—xh Xoy =Xy Xay — Xy Xig o+ - }+

Then for ne N,

0 if n1s even

p { x, if nisodd,

and
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k=1

~x_, if nisodd,
{ 0 if niseven.
Since x€ fo, (Ey)iicte and (Bz)lcle Then (3, (2)imcbs. By
assumption, M g(k,») and E“l g(k,2,) exist. By Lemma 16, we have that
}Ei_lilig(h_}'t}=£i_ﬂg{k,z*). It follows that yﬂg{Zk—l,xub,}=£i_1'1;|.g{2k-l,yn-;}
= lim g(k,32) = lim g(k 7) = lim g(2k 74) = lim g(2k,x,.).  This implies that
lim g(k, x.) exists. Thus B(x) = (g(kx))5€ c.

The converse follows from the fact that bs C £.. O

Theorem 18.  FL:bs—>c if and only if limg(k,0) exists and (g(k,))em

converyes uniformly to lmg{k 0) on every bounded subset of R.

Proof. It follows directly from Lemma 17 and Theorem 15. 0

The last theorem of this section gives a characterization of B: @ —>c.

We recall that @ is solid. Lemma 11 is required to prove this theorem.

Theorem 19. B: @ — ¢ if and only if Eﬂg{l’, 0) exists and (g(k,-));., converges
uniformly to i!_'ll'.l; g(k,0) on R.

Proof. Assume that P:@ >¢ Then li_ﬂg(k, 0) exists. Let L =1i_.r2 2(k,0). To
show that (g(k, -));., converges uniformly to L on R, suppose not. Then there
exist £>.0, a subsequence ()5, of (1) and a sequence (f,)5., such that for
ecach ke N,

lg(ns 2,)-L| = . *)

Define the sequence (x,),., by
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[ t, if n=mn, forsome ke N,
X =

0  otherwise.

Then (x,),-;€ @ and by Lemma 11, 1@313{.3:, x,)=L. This contradicts (*) since
(1,,)r=1 18 a subsequence of (x, )=

Conversely, assume that Eﬂg(k, 0) exists and (g(k,-));.,converges
uniformly to 1’1{[13{&, O)on R, Let L= li_ﬂg{k, 0). Then for £>0, there exists
Ne N such that |g(k,#)—L| <& for all k=N and ¢t R and hence |g(k,x,)-L|<¢&
for all k=N and xe @. This proves that E.."-', glk,x,)=L for all xe @. Hence

Pra—>ec. 0
Superposition Operators into ¢,

Since 0 is the limit of x for all x € ¢, by Lemma 1, we have
Theorem 20. P: @ —»c, if and only if lt_ﬂ 2(k,0)=0.

The next lemma is similar to Lemma 12. It is used to characterize

F:X = ¢, where X is one of the sequence spaces £, ¢s and ¢,.

Lemma 21.° Let X be a sequence space such that #; C© X C ¢,. Then the
following statements are equivalent:

() Pic> a.

(i) B:X—c,.

(iit) B:4i—>cp.

(iv) (g(k, )., converges continuously at 0 o 0.

Proof. The implications (/)= (ii) and (if)=>(iii) follow directly from the

assumption that #, C X C ¢,.
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Assume that (iif) holds. Then 11_1;2 2(k,0)=0 and B:f4,—¢, so by
Lemma 12, (g(k, -));., converges continuously at 0 to 0. Hence (iv) holds.

Next, assume that (iv) holds. Then 11_1;1;1' g(k,0) =0 (see Chapter I, page
6). Now we have that (g(k, -));., converges continuously at 0 to lim 2(k, 0). By
Lemma 12, P:¢—+¢. Since ¢, is solid, by Lemma 11, 1i_1’1;:ng{k,xt}= }Ei_l;l;lng'{k, 0)

=0 for all x€ ¢,. This proves £: ¢;— 6. Hence (7) holds. 0

Theorem 22. [fX is one of the sequence spaces £,, ¢s and c,, then P X— ¢, if

and only if (g(k;+));., converges continuously at 0 to 0.

The following theorem characterizes F: X — ¢, where X is one of the

sequence spaces ¢, bs and £,

Theorem 23. If X is one of the sequence spaces ¢, bs and f., then F:X—c if

and only if (g(k, -));.: converges uniformly to 0 on every bounded subset of R.

Proof. To prove the theorem, we shall prove that the following statements are
equivalent:

(i) B:c—cy.

(i) (g(k,-))i., converges uniformly to 0 on every bounded subset of R.

(i) B £ o

(iv) B:bs —» c,.

If (i) holds, then F:¢—> ¢ and ll_l;l;l‘ g(k, 1) = 0 for all e R which implies
by Theorem 14 that (i) holds.

Next, assume that (i) holds. Then lim g(k,0)=0 and (g(k, )
converges uniformly to ll_,nl 2(k, 0) on every bounded subset of R. By Theorem
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15, F: £.—» ¢. Since £, is solid, by Lemma 11, li_l}:gg(k,x,,) = !:i_,ngg{k; 0)=0 for all
x€{,. Hence P: £, c,. .
The implications (iif)=> (i) and (iif)=> (iv) hold since cC £, and bsC £,

respectively. Since ¢, is solid, (iv)=>(iii) follows from Lemma 6. 0
The last theorem of this section gives a characterization of B: @ — ¢,.

Theorem 24. B:@ ¢ if and only if (g(k,-));., converges uniformly to 0 on
R.

Proof. Assume that B.® —>c¢. Then P:®—>c¢ and !Lnlg(k, 0)=0, so by
Theorem 19, (g(k, -));., converges uniformly to 0 on R.

Conversely, assume that (g(k,-));., converges uniformly to 0 on R.
Then lim g(£,0) =0. By Theorem 19, F:@—>c¢. Since o is solid, by Lemma

11, !ng{k,xk)=£i_)mg(k,{!}=ﬂ for all x € . Hence B: @ — ¢,. O
Superposition Operators into £,

The first theorem of this section follows directly from Lemma 1 and the
definition of £,.

Theorem 25. B: @ > £, if and only if 3, |g(k; 0)[ <w.
k=1
A characterization of F,: £,—» £, has been given by Chew Tuan Seng and

Lee Peng Yee in [3] under the condition that g(k,-) is continucus on R for all

keN (see Theorem I.3). Our generalization of this fact is given by the
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following theorem. However, the idea of our proof is taken from the one given

by Chew Tuan Seng and Lee Peng Yee.

Theorem 26. PB:£,— £, if and only if there exist a neighborhood V, of 0 in R,
a>0, Ne N and (¢ )€ £, such that
gt Of < a+altf (*)

for all te V, and k=N

Proof. Assume that P:f —» £, Then F:£—» £, since {,Cf, By Theorem 4,
there exist #,>0 and NeIN such that (g(k -)),.y is uniformly bounded on
[, Bo]l. Then for k=N, m_sﬁt,:gdlg(k, t)["<ew. For all k=N, a>0 and >0,
define A(k, &, B) € [P, Fu) by

Atk o, ) = {te[-Po Bl | l1I'<min{p o '|gk 1) }} (1)
and
Bka,f) =  sup |g(kn)l )

Observe that 0 € A(k, @, f) for all k=N, >0 and f>0. To show that (*) holds,
we consider the following statements:

(/) For all >0 and >0, Enﬂ(k, a, ) diverges.

(i7) There exists x & £, such that B(x) & £,, that is, F: £, £,.
We claim that (/) implies (7). First, we assume that this claim is true. Since
F:f,— £, (i)is false. Then there exist & >0 and #>0 such that éyﬂ(k, a, ) <.
Let y=min{f, A"}, Vo= [ 7] and

&G =

{ 0 if 1<k<N,
B(k,a, B) if k= N.

This implies that V,C[-f,, fo], [1|°< B for all t€ V; and (¢,)i-.€ £,. Let k=N and
teV,. If |t'< a'|g(k t)I’, then by (1), te A(k, a, ) and hence by (2), we have
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lg(k, )< B(k, a, f) = c.< e+ alt|’. If |t|"> a |g(k, 1), then |g(k, 1)< alt|'<
o+ a|t|". Hence (*) holds.

It remains to show that (/) implies (i7). Assume that (/) holds. Then
E‘,HB{IC, 2,27) diverges for all je Nw{0}. This implies that for all j€ NU{0},

n =N, there exists m > n such that

% B(2,27)>"1. 3)

k=t
Then there exists m >N such that 3 B(k,2°,2°)>1. Let ni=min{meN |
k= M+
m>N and i B(k,2°,27"y>1}. By (3), there exists m,>n, such that

k=N+1
m3

Y B(k2',29>1. Let m=min{fmeN| m>n, and 3 B(*2,2")>1}. By

t-ul-ﬂ kmpy ¥l

induction process, there exists a subsequence (1,);., of (n);.-, such that n,>N and

for all j& N,
mw = mingm e N|m>n, and hi';mﬂ(k, 2,2%>1}.  4)
Hence for all je N,
:ﬁ::la{k, 2,27 < 1. (5)

If ke{l,...,m}, let x;, = 0. If k=n,, then there exists unique j< IN such that

ny<k<n;, and hence by (2), there exists x, such that

neA(k2,27) and 0< Bk 2,27) <|g(kx)["+ 2™, (6)
and by (1),
lxl? < min§27,27|g(k, x|} (7)

Then for all m e N,

- el

m < £ 3 Bk2,2) (by)

< T {glexl+2"} (by (6)

] o
< E |E’Uf: x-t}!P-l- 2 2_#:
=] km]
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which implies that (*i lg(ex)lP)o., is not bounded. Thus B((x)r.) =
|
(g(k, %)) 24,. Next, to show that (x,)i..€ £, it is equivalent to show that
tl ol }
(Ehd'}f—: is bounded. Let s = ?_," |x,|* and let ne IN. Then there exists mec N
= -

such that n<n,_,,, and hence

> el < PN

k=] k=

[}

£s

.
1
t42
F

mye1=1

/[ - 2R

J=1 k=ag+
. +1=1
+ 275 leteml + 27} Gy ()
il
+ B 5 B62,2)+2%) (by (6) and ()
= =yt

+ %1427 Gy )

< AN R,
=1

=]

it
B

1A
£~

1A
ta

This shows that {*i_ll |x&l*)5-; is bounded. Hence (if) holds.

Conversely, assume that there exist a neighborhood V; of 0 in R, a>0,
NeN and (¢.)i- € £, such that |g(k, 0)|"< e+alf]” for all te V; and ke N. Since
V, is a neighborhood of 0, [-£ ] € F; for some f>0. To show that B:£,— ¢,
let xc £,. Then :2‘ [x4]* <oo and li_ﬂx" =(, so there exists N'>N such that |x,|<f
for all k=N’ Thus, by assumption, |g(k,x.)|"<c,+a|x|" for all k=N’ This
impliés that glg(k,x*}l’{m since f:. fot afxd= :ﬁ; ot :E, lxd"<eo. Hence

P(x) = (g(k,x,))s. € £, 0

Chew Tuan Seng and Lee Peng Yee have given a characterization of
F,:c—> £, under the condition that g(k,-) is continuous on R for all ke N (see

Theorem 1.1). Using the idea of their proof, we generalize this result by



characterizing P:c,— £,. The continuity of each g(k,-) is not assumed in our

generalization.

Theorem 27. F:c—> ¥4, if and only if there exist a neighborhood V; of 0 and
Ne N such that i sup |g(k, 1)|" <eo.
=N reig

Proof. Assume that F:e,> £,. Then F:c,—> £, so by Theorem 4, there exist
a>0 and N e N such that (g(k, -)); ., is uniformly bounded on [-a, @]. Then for
each k>N, sup |g(k, 1)|" <®. Set

Fa.al

tel=aa

Bkp) = suplek.1)| (1)

for all Be R, 0<f=<a Claim that ENE(&, f)<w for some BeR, 0<f<a. If
the claim holds, let ;= [-/#, f], so we have i}u !iv;lg |g(k, x.)|" <o, as required. To
prove that the claim is true, suppose not. Then Eyﬂ{k’ T‘?‘) diverges for all je IN.
This implies that for all je N, n=N, there exists m>n such that Jt:,E,;‘HJBU:,.;-if]l-:-" 1.
It follows that there exists a subsequence (#,)5-, of (n);-, such that »,>N and for
all je N,

S Blk) > 1. )
k=nptl J

Let x,= 0 for all ke {1,...,m}. If k>n,, then there exists unique j € N such that

n;<k<n,, and hence by (1), there exisis x,e [_-}'E, Z] such that
0" < Bk &) < |glkx"+27, (3)

By the choice of x;, we have limx, =0. Then (x.)i€ ¢, and for m e N,

- M

m < £3 Bk (by(2)

J=1 k=g

Nl

< X legtex)+27} (by 3)

P | -]
< > gtk x)"+ 227,
k=1 k=]
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which implies that (i lg(k,x)").., is not bounded. Thus B((x)) =
k=]
(g(k,x:))i1€£,. This is a contradiction since B,: c;—» £,.
Conversely, assume that there exist a neighborhood ¥; of 0 and Ne N

such that iﬂ sug |g(k,x)|" <eo. Then there exists >0 such that
k= te

5 suplglenl’ < o 4)

k=N tef-aa
To show thztl Ficy> £, let xec,. Then giﬂx*= 0, so there exists N'=N such
that |x,|<a for all k= N* It implies by (4) that éllg(ﬁ:,xﬁf*im. Hence
R(x) = (g(k x))i sk, 0

We recall that £, is solid. To characterize F:cs— £, the following

lemma is required.

Lemma 28. If Y is a solid sequence space and P:cs— Y, then P:c,—» Y.

Proof. Let x € ¢,. Define the sequences (¥,).., and (z,);., by

{ x, if kis odd,
Y = S
~-x,, if kiseven
and
{ —x,, if kisodd,
z o
' X if kis even,

that is, (3)5e1= (g5 —X1, 23, %3, X5, — X5y ... )-ANA (251 = (X2, X2, —Xiy Xy, —Xe, Xy ... ).
Then for all ne N,
p { x, if nis odd,
0 if nis even
and

= {-x_, if nis odd,

0 if mniseven.



Since x € ¢, lim i} ye=0=1lim kf_',‘zt. Then (¥.)r-1, (Z:)e-1€ c5.  Since B:cs— ¥,

A=+ fal A+ fm

(g(k,31))imr€ ¥ and (g(k, z,));..€ ¥. Define the sequences ()i and (vi)i-, by

{ g(k,y,) if kis odd,

L ey
0 if kis even
and
{ 0  if kisodd,
W =
g(k,z,) if kiseven.

Then |u,| < |g(k v.)| and || < |g(k, z)| for all ke N. Since ¥ is solid, we have
()i, (V)€ Y. But gk, yy) = gk, x,) if & is odd and g(k, z,) = gk, x,) if k is

even, 50 (g(k. %)) e = ()imt (V)i € F. O

Theorem 29. F:es— £, if and only if there exist a neighborhood V, of 0 and
) <
NeN such that Exa;lyg(k, ) <eo0.

Proof. It follows from Lemma 28, Theorem 27 and the facts that ¥, is solid and

o5 C ¢ (]

The next theorem give a characterization of £: X — £, where X is one of

the sequence spaces ¢, bs and £..

Theorem 30. If X is one of the sequence spaces ¢, bs and {., then F: X £, if
and only if for every bounded subset S of R, there exists Ne N such that
o P

Xusup|g(k, )| <<o.

Proof. To prove the theorem, we shall prove that the following statements are
equivaient:

(D Pic— L.
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(if) For every bounded subset S of IR, there exists NeIN such that
up |g(k, 1)|" <<o.

k#k e
(iil) B> L.

(iv) P:bs— £,
To show (i)=>(ii), assume that P:c— £, Claim that the following

statement holds:

For cvery s € R, there exist >0 and N € N such that
2 sup |g(k )] <eo.

k=N te(g—ratr)

(1)

Let seR. Since B:c—> ¥, and (s)+¢, Cc, Bi(s)+cy>4,. Then B :co—> £, It
follows from Theorem 27 that there exist r>0 and NeWN such that
E sup [2.06 1)) <co. But {g.kd) | I¢]<r } = {g(k ) | lt-s|<r} for all ke N,

1{—1- P

80 E sup |g(k, 1)’ <w. Then we have the claim. To show (i), it is equivalent

k=N e

to show that the following statement holds.

For every a >0, there exists Ne N such that E sup |g(k, t)|" <. (2)

=N tel-a,a)

To prove (2), let @>0 be given. Then by (1), we have that for every sc R,
there exist r.>0 and N, eIN such that z: sup |g(k t)"<w». For each
Ne [elz—r. b))
s€|-a al, let I(s)=(s—r,s+r,). Then [-a, a] ;‘ﬁ_U II (5). Since [-a, a] is
compact, [—e, a];;gf(s.) for some nelN, s5,...,5.€[-a,a]l. Let N=
o B X
max{N,,...,N._}. Then we have EHﬂJg‘(k,f}l < for all ie{l,...,n} and

thus

5 Gauplek o) /5 (S wp e < » (3)

IR € lig)
If t’e [-a, a], then t’e I(s,) for some je {1,...,n}, which implies that for k=N,
lg(k, 1) i lg(k, )" < E sup lg(k, (). Thus for all k=N, sup |g(k, 1) <

1E][—o o

}_' sup lg(k, :}|"‘ By (3), we havc that E sup |g(k, 1)|" <. Hence (2) holds.

=1 ta i N = e, ]
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To prove (if)=>(iii), assume that (i7) holds. Then (2) holds. To prove
that B: £, £, let x € £,. Then there exists a>0 such that |x,|<a for all ke IN.

By (2), there exists Ne IN such that 3 sup |g(k, t)|"<ew. This implies that
]

k=N - o

£ I8l x)f <co. Hence R(x) = (g0k x0));-i€ 6.
The implications (iii)=>(7) and (7ii)=> (iv) hold since cC £, and bsC £,

respectively. Since £, is solid, (iv)=>(/ii) is obtained by Lemma 6. D

The last theorem of this section gives a necessary and sufficient

condition for F: @ = £,.

Theorem 31. FE:w-—£ if and only if there exists NeWN such that

;— sup|g(k, t)|" <.

Proof. Assume that F,@ - £,. Then F,: @ £,. By Theorem 9, there exists
NeN such that (g(k,-));_, is uniformly bounded on R. Then for all k=N,
s!ugig(k, 1)|" <, and hence for each k=N, there exists x,€ R such that

0 = suplgtk O < ig(hkxl"+2". *)

Let x,=0 for all ke{l,...,N-1}. Then (x)~c® Since Fo—§,

L |g(kx,)[ <co. It implies by (*) that 3, sup|g(k, 1) <.

The converse of the theorem is obvious. 0
Superposition Operators into @
By Lemma 1 and the definition of @, we have

N

Theorem 32. P:@—> @ if and only if (g(k,0));.= Y g(k 0)e” for some
k=1

NelN.
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The next theorem characterizes P:X— £, where X is one of the

sequence spaces £,, ¢s and ¢;. The theorem follows directly from the following

lemma.

Lemma 33. Let X be a sequence space such that £, € X C ¢. Then the
Jollowing statements are equivalent:

() BiceH> .

(if) B:X—> @,

(iii) F.é— .

(iv) There exist a neighborhood V; of 0 and N € IN such that g(k,-) =0 on ¥}
for all k=N.

Proof. Since £, © X < c,, the implications ()= (if) and (if) => (iii) are directly
obtained.

To show (iii) = (iv), suppose that (iv) is not true. This implies that
there exist a subsequence ()i, of (n),., and a sequence (x, )y, such that
x,. € [-27,27"] and g(ny x,,) # 0 for all ke N. Then (x, )i, £, and (g(n, x.,))5.,
€ @. Let (y,)e be a sequence defined by

Yo =

x, if n=n, forsome ke N,
0" otherwise.

Then (y,)5.€ £, and (g(n,»,))...€ @. Hence B: 4,5 D.
Finally, to show (iv)=>(i), assume that (iv) holds. Then there exist
a >0 and N e N such that for all k=N,

gk,r) = 0 on[-aa] (*)



Let x€ ¢,. Then there exists N'=N such that |x,|< & for all k=N’which implies
by (*) that g(k,x,) =0 for all k>N’ Hence (g(k,x:));.,€ @. This proves that

.P‘: o D, 0

Theorem 34. [fX is one of the sequence spaces £,, cs and ¢,, then B:X— @ if
and only if there exist a neighborhood V; of 0 and Ne N such that g(k,-)=0
on V, for all k=N.

A characterizations of F,:X - @ where X is one of the sequence spaces

¢, bs and £, is as follows:

Theorem 35. IfX is one of the sequence spaces c, bs and £, then B X— @ if
and only if for every bounded subset S of R, there exists Ne N such that
g(k,-)=0o0nS8 for all k=N.

Proof. To prove the theorem, we shall prove that the following statements are
equivalent:

(D) Fie—> .

(if) For every bounded subset S of R, there exists Ne N such that
g(k,-)=0 on S forall k=N.

(iii) B > @,

(iv) B:bs—> @.

To show (#) = (i), assume that F,: ¢ — @. Since every bounded subset of
R is contained in a compact subset of R, we have that (if) is equivalent to the

" following statement:

For every s € IR, there exist r>0 and N € N such that

*
g(k,-)=0 on (s—r,s+r) forall kzN. )
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Next, to prove that (*) holds, let seR. Since Pic—> @ and (s)+aCe,
F:(s)+co—> @. Then F,:c,—» @. It follows from Theorem 34 that there exist >0
and Ne N such that g(k,-)=0 on (-r,r) for all k=N. But {g(k )| |ti<r} =
{gk,0)|lt—s|<r} forall ke N, so g(k,-) =0 on (s—r,s+r) for all k=N.

To prove (ii)=> (i), assume that (i7) holds. To show that F: £, @, let
x& £, Then there exists @ >0 such that |x,/<« for all ke N. By (i), there
exists N e N such that g(k,-) =0 on [-a, &] for all k=N. Then g(k,x.)=0 for
all k>N. This shows that (g(k, x,));.,€ @. Hence (iir) holds.

The tmplications (i) = (1) and (iif) = (iv) hold since ccC £, and bsc £,
respectively. Since @ is solid, (iv)=> (iir) follows from Lemma 6. il

We end this section by characterizing P: @ —» @.

Theorem 36. P:w —» @ if and only if there exists Ne N such that g(k,-)=0
on R for all k= N.

Proof. Suppose that for every ne N, there exist k># and /e R such that
g(k, 1) # 0. Then there exist a subsequence (n,)-, of (n)7., and a sequence (x, ).,
such that g(n,x,)#0 for all ktcN. Then (g(n,x,));..€¢ @. Let ()i be a

sequence defined by

MYa' =

{ x,, if n=n, forsome kelN,
0 otherwise.

Then (y,)i-€ @ and (g(n,y,))..,€ @ since (g(n,x,)),., is a subsequence of
(g(n,».)),. This proves that if B: @ — @, then there exists Ne N such that

g(k,-)=0on R for all k=N. The converse of this statement is obvious. a

TihhSK D 5



CHAPTER III

CONTINUITY OF SUPERPOSITION OPERATORS

The work on continuity of superposition operators we have seen has
been done h;r J.Robert [1]. Under the conditions of g:INxR—+ R that
g(k,0)=0 and g(k,-) is continuous at 0 for all keIN, he has given a
characterization determining when the superposition operator F, between any two
Orlicz sequence spaces is continuous at (0). By making use of our results in
Chapter II, without any additional conditions of g, we characterize [ X—>7T
which is continuous at every point of X where X< {®, £, cs, ¢, ¢, bs, Lo, @}
and Ye {@®, £, ¢, c, fs, @}. The topologies for these sequence spaces are
standard ones given in Chapter L

We recall that all classical sequence spaces we consider contain @. For
cach te R, we have te®”e @ for all ke N. Then for a sequence space X
containing @ we have te”cX for all teR and keN. An important
consequence of this fact is as follows: Let X and F be topological sequence
spaces, @ X and F: X —F. Then (1) implics (2) where

(1) for x € X, B, is continuous at x if and only if g(k, -) is continuous at x,
for all k € N and

(2) F, is continuous on X if and only if g(k, -) is continuous on R for all
keNN.
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Continuous Superposition Operators into @

We recall that @ is a metric K-space with the metric d, defined by

Ixe =3l
" T T 1)
k=1 2°(1 + |xp— )

do(x,y)
and for x, x"c @ (ne N), nunx”—xm @ if and only if 11m:cm—x. in R for all
ke IN. The following two lemmas are useful for this section.

Lemma 1. Let X be a meiric K-space. For xe X, if g(k,-) is continuous at x,

Jor all ke N, then B:X~» @ is continuous at x,

Proof. Let x&X and assume that g(%, ) is continuous at x, for all ke IN. To
show that £:X - @ is conlinuous at x, it is equivalent to show that for any
sequence (x™)5, in X, Hﬂxm=x in X implies L‘r._}naﬂ(x"’) =P(x)in @. Let (x™).,

)

be a sequence in X such that lim x =xinX. Since X is a K-space, we have that

P.Ex*:_x* in R for all ke N. Then by the continuity of each g(k,-) at x,,

lim g(k, ) =g(k,x) in R for all ke N which implies that hm(g(k )
= (g(k,x))}., in @. Hence lim B(x") = B(x) in ®. O

Lemma 2. Let X be a normed sequence space containing @. Assume that there
exists a=>0 such that |iemﬁ <a- for all neN. For xeX, if B:X—> o is

continuous at x, then g(k, ) is continuous at x, for all ke N.

Proof. Let xcX and assume that F: X — @ is continuous at x. Let ke N. To
prove that g(k,.) is continuous at x,, let £>0 be given. Set ﬂ=min{11—,

= {H )} Then 0< ﬂgm which implies that 2'f<e(1-2"8). But ,6*-’-—3—,

so 1-2°4>0. Thcn(—%l—ﬁ} <& Since F, is continuous at x, there exists §>0

such that for cach ze X,



|z—xl, <& implies d.(B(z),B(x)) <A *)
Let te IR be such that |1—x,;|{-gﬂ. Let u={t—xt]em +x. Then u, =t. Since

@ X and xe X, we have ucX. Then ||u—x|, = H{r—xt)emli_r= |I~—.vc,[||.e‘m||Jr <

ko)-

grx = &, so by (*), we have 1*(:34-{&{1.;5&3?34}” < dP(u),B(x)) < £ Tt
1+ laC

follows that |g(k, 1)~ gk, x)| < “%%—ﬂ} <e 0

L]

The sequence spaces @, £, cs, ¢, ¢, bs and £, are normed K-spaces
containing @ and in these spaces, the norm of e™ is 1 for every ne N. Then the

following theorem follows directly from Lemma 1 and Lemma 2.

Theorem 3. Let X be one of the sequence spaces @, £,, cs, ¢, ¢, bs and £,.
Then under considering P:X— o, the following statements hold:

(i) For xe X, B is continuous at x if and only if g(k,-) is continuous at x,
for all ke IN.

(if) F, is continuous on X if and only if g(k,-) is continuous on R for all
ke N.

In order to characterize the continuous superposition operator B: @ — o,

we need Lemma 1 and the next lemma.

Lemma 4. Let ¥ be a metric K-space and assume that F,:o0 Y. For xec @, if

F, is continuous at x, then g(k, ) is continuous at x, for all ke IN.

Proof. Let x< @ and assume that P, is continuous at x. Let ke IN. To show
that g(k,-) is continuous at x;, let (v,),., be a sequence such that ii_1.:n y.=x in R

For each n e N, define the sequence z™ by



- {y_ =k,

X if i=k,

that is, 2™ = (x), ..., %1, Vs Xsers .. ). Then lim zJ” =lim y, = x, in R and if i = k,

we have lim z/” =lim x, =x, in R. This implies that lim z"” =x in @. Since £, is
continuous at x, Eﬂﬂ(ﬂtﬂ}:fﬂﬂ in ¥. But (B(z")),=g(k,z}") = g(k,y.) and
(R(x)),= g(k, x;), so ]iﬂ e(k,v,) = g(k,x,) in R since ¥ is a K-space. This shows

that g(k, -) is continuous at x;. ]
Since @ is a metric K-space, by Lemma 1 and Lemma 4 we have

Theorem 5. Under considering F;: @ — @. the following statements hold:

(i) For x€ w, F, is continuous at x if and only if g(k,-) is continuous at x,
Jor all ke N.

(if) B, is continuous on @ if and only if g(k,-) is continuous on R for all
ke N.

Continuous Superposition Operators into £,

We begin this section by recalling that |-||, <||-|, on £ and ||-[|, <2]|-|,
on bs. Then |||, < 2||:||, on cs since ¢s is a normed subspace of bs. Since the
norm in each of @, ¢, and ¢ is the sup-norm, we have that |-||, = ||-||, on X if

X is one of @, ¢, and e.

Lemma 6. Let X be a normed sequence space containing ® and ¥ a normed
sequence space such that I' € £,. Assume that
() FX-7Y,

(i) there exists >0 such that ||| <a for allne N and



(i) ||-ll, < Bl-l, on ¥ for some f>0.
For x € X, if F, is continuous at x, then for any £>0, there exists §>0 such that

forallke N, te R,

lt—x| <& implies |g(kt)-g(kx)| <&

Proof. Assume that £, is continuous at xeX. Let £>0 be given. Then there

exists 5> 0 such that for each ze X,
llz—=ll, <& implies [E(z)-Rx)|, ::%. (*)

Let ke N and <R be such that ir~x*|*=:—gn Let u=(1—x,)e® +x. Then u,=1.
Since @C X, ucX. Then by (ii), flu—x|, = [I(t-x)e®], = |t-x|e®|, < Za = &
By (*), we have that |B(1)~F@), < Hence by (iil), |g(k )~g(kx)| <
IBGw) - B, < BIPLw)~ B, < & 0

Lemma 7. Let ¥ be a normed subspace of £, and X a normed sequence space
such that X C £, and ﬂ'";_ﬂ al-|, on X for some a>0. Assume that F:X— Y.

Then for x€ X, F, is continuous at x if the following statement holds:

For any £>0, there exists 6>0 such that for allke N, te R,
[t-x| <& implies |g(k,t)—glkx)| <& @
Proof. First, we note that |-|, = lI:ll,, on ¥. Assume that (*) holds. To show
that F, is continuous at x, given £>0. Then by (*), there exists >0 such that
for all ke, teR, |[t—x,| <8 implies |g(k,t)—g(k,x,)| <& Let ze X be such
that | z—x||, < %. Then by assumption, we have that |z,— x| < Hz—xlléﬁs alz—x|,
< & for all ke N. This implies that |g(k, z,)—g(k, x.)| < & for all ke N. Hence

15:(2) — F(x)ll, = || F(2) — B(x) ||, < & This shows that £, is continuous at x. O
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The following theorem is an immediate consequence of Lemma 6 and

Lemma 7.

Theorem 8. If X is one of the sequence spaces @, &, cs, ¢, ¢, bs and £, and
P:X— £, then for x€ X, F, is continuous at x if and only if for any £>0, there
exists >0 such that for all ke N, te R,

v ltxl =6 implies |g(k1)-glkx)| <&

Characterizing when £, is confinuous at every point of @ where
F:@w— £, is a part of the next lemma. The lemma is also referred in the next

section.

Lemma 9. Let ¥ be a normed subspace of £, and assume that B: @ — Y. Then
for x € o, P, is continuows at x if and only if
(i) g(k,-) is continuous at x; for all ke N and
(ii) for any £>0, there exists Ne N such that for all ke N, te R,
k=N implies |g(kt)—g(kx)| <&

Proof. Assume that P, is continous at x€ @. Since £, is a normed K-space and
Y is a normed subspace of £., ! is a normed K-space. Then by Lemma 4, (i)
holds.. To show that (ii) holds, suppose not. Then there exists £>0 such that

for all ne N there exist k= n and ¢ € R such that

lg(k, ) -glkx)| = & (1)

Let >0 be given. Then there exists m € N such that 2™ < §, so by (1), there
exist j>m and s € R such that |g(j,s) - 2(j,x)| 2 & Letz=(s—x)e" +x. Then

je=nl. . 27 <27 < § and ||F(2)- B0, =

we have that zc @, d,{z,x)=m_
7
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lg(j,s)—g(j,x)| = & This proves that F, is not continous at x, a contradiction.
Hence (i7) holds.

Conversely, assume that (/) and (i/) are true. To show that B, is
continous at x, let £>0 be given. Then by (if), there exists N IN such that for
all keN, 1R,

k>N implies |g(k1)-g(kx)| <& (2)
By (i), there exists 6>0 such that for all ke {1,...,N-1}, 1R,
lt=x <& implies |g(k t)-g(kx)| <& 3)

Let 5'=rnin{-2-;;]¢qs?(f—;-5}. Then fl—i:g-;q—-ﬂéci Let ze @ be such that
dfz,x)<d" Then by (2), |g(kz)-glkx)|<e for all k=N For
ke{l,...,N-1}, wWe have that ?-'—zilﬂi——l—sd,{z,x)qt Then for

(14 |z,-x,

Izt—x_tl |- ¥ o . . . ENJF
ke{l,...,N-1}, m-x_z &’< 2" §” which implies that |z;.-xk|"-'-_p—{l_2 5.}£

d. It follows from (3) that |g(k z)-g(kx)|<g for all ke{l,...,N-1}.
Hence |g(k, z)—g(k,x;)| <& for all ke N. This implies that ||[F(z)-F(x)||,=
I15(2) - Fi(x)]|, < & This shows that £, is continuous at x. 0

Theorem 10. If F: @ — £, then for x € @, F, is continuous at x if and only if
(i) g(k,-)is canrinu.aus at x; for all ke N and
(ii) for any £€>0, there exists N e N such that for allke N, te R,
k=N implies |g(k,t)—g({kx)|<e&

Continucus Superposition Operators into ¢

Since [le”|,=1 for all neN and |-, =|-l, on @ we have the

following theorem by Lemma 6 and Lemma 7.
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Theorem 11. If F,: @ ¢, then for xe @, F, is continuous at x if and only if

for any £>0, there exists >0 such that for allke N, te R,

lt—xi| <& implies |g(k,t)—g(k x)| <&

Our next step is to determine a necessary and sufficient condition for
F:X—>c¢ to be continuous on X where X" is one of £, es and ¢. It is an
immediate cohscqucnce of Lemma 6, the relationships of norms mentioned in the
beginning of the section entitled “Continuous Superposition Operators into £,”
and the following lemma.

Lemma 12. Let ¥ be a normed subspace of ¢ and X a normed sequence space
such that £,CXC ¢ and |||, < al-l, on X for some a>0. Assume that
P:X—>Y. Then for xe X, if g(k,-) is continuous at x, for all ke N, then B, is

continuous at x.

Proof. Let x€ X and assume that g(k,-) is continuous at x, for all kcIN. To
show that F, is continuous at x, by Lemma 7, it suffices to show that for any
£>0, there exists §>0 such that for all ke N, tc R,

|t—x,| <& implies |g(k,1)-g(kx)| <& (1)
Let £>0 be given. Since P:A—7Y, 4 XCTy¢ and YSe¢, by Lemma I1.12,
lim g(k, 0) exists and (g(%, -));., converges continuously at 0 to lim g(k, 0). Let
L= i_im 2(k, 0). Then there exist 5>0 and Ne N such that for all ke N, re R,

k=N and |t|] <& imply |g(k,r]—L|*i-25. (2)

Since x € X' C ¢, there exists N'=N such that |x,] {TJ for all k2 N7 By (2), we

have lg(k,xt}"LI{TE for all k>N’ Since g(k,-) is continuous at x, for all



ke{l,...,N—1}, there exists '€ R with ﬂ‘iﬁ’ﬁ% such that for all
ke{l,...,.N-1} teR,

[t —x| < 6" implies |[g(k, t)-g(kx)| <& (3)

Let ke N and ¢ R be such that | ~x| < &% If k> N/, then |g(k,x,)-L| <-= and

2
1] <t x|+ < 842 <2 +2 = 5 s0by (2), we have that |g(k, )~ L| <5 and
thus |g(k, 1)=gle®)| <|glk -L|+|L-glhm)|<t+5=¢. If kefl,...,
N’—1}, then by (3), |g(k)-g(kx)|<& This proves that (1) holds, as

required. O

Theorem 13. [fX is one of the sequence spaces £,, cs and ¢, and B: X —» ¢, then
the following statements hold:

(i) For xeX, B, is continuous at x if and enly if g(k,-) is continuous at x;
for all ke N.

(if) F, is continuous on X if and only if g(k,-) is coniinuous on R for all

ke N.

To study the continuity of B:¢—» ¢, we prove the following lemma. The
lemma yields the next theorem directly.

Lemma 14. Let ¥ be a normed subspace of ¢ and assume that F;:c— Y. Then

for xe e, B is continuous at'x if and only if g(k,-) is continuous at x, for all

ke N.

Proof. It follows from Lemma 6 that if F, is continuous at x € ¢, then g(k,-) is
continuous at x; for all ke N since [|e™|| =1 for all ne N and ||-||, = -]l on Y.
Conversely, let x € ¢ and assume that g(k,-) is continuous at x, for all

ke N. Since xe ¢ C £, there exists & >0 such that |x,| < o for all ke N. Since



45

B:c— Y and Y C ¢, by Theorem II.14, we have li_ﬂg{k, f) exists for all re R,
h=limg(k-) is continuous on R and (g(k, ));., converges uniformly to 4 on
[-2e, 2a). Since A is continuous on R and [-2e, 2a] is a compact subset of R,
h is uniformly continuous on [-2e¢, 2a]. To prove that P, is continuous at x, by
Lemma 7, it is enough to show that for any £> 0, there exists >0 such that for

al ke N, te R,
|t-x| <& implies [g(k)-g(kx)|<e (1)

Let £>0 be given. Since (g(k, -));.; converges uniformly to h on [-2a,2a],
there exists N e IN such that

|g(k t)—h(t)| < % for all k= N and t€ [-2q, 2a]. (2)
Then |g(k, x.)— h(x)| < -;; for all k= N because |x,| < a for all ke N. By uniform
continuity of 4 on [-2a, 2a], there exists d€ IR with 0 < §< e such that for all

h, € [-2a, 2a],
|-t <& implies |ht)—h(t)| <. 3)

Since g(k,-) is conlinuous at x, for all ke {1,...,N—1}, there exists 6’ R with
0 < &’< & such that for all ke {1,...,N-1}, te R,

|t—x,] < & implies |g(k t)-g(kx)| <& (4)

Let k€ IN-and t€ R be such that |t—x,| <&% Then |t} <|t—x|+|x| <F'+a<
a+e=2a, so by (3), we have |h(f)=h(x;)| <. If k>N, then by (2), we have
that |g (k1) - h(1)|< 3-and hence |g(k, ) ~g(k x| < |g(k )= A +[h(t)— h(x)|
+h(x)~glh x)| <5 +5+5 =& If ke {1,0..,N=1}, then by (4), we have
lg(k, t)-g(k,x,)| < & This proves that (1) holds. a



Theorem 15. [f B:c—» ¢, then the following statements hold:

(i) For x€c, F, is continuous at x if and only if g(k,-) is continuous at x,
for all ke N.

(ii) B, is continuous on ¢ if and only if g(k,-) is continuous on R for all

ke N.

With the help of the statements mentioned at the beginning of the
section entitled “Continuous Superposition Operators into £.”, Lemma 6 and the
next lemma characierize when £, is continuous on X where X is any one of bs

and £, and B:X—»c.

Lemma 16. Let ¥ be a normed subspace of ¢ and X a normed sequence space
such that bs CXC £, and |||, < a|:, on X for some a>0. Assume that
F:X— Y. Then for x X, if g(k,-) is continuous at x; for all ke N, then F, is

continuous at x.

Proof. Let xeX and assume that g(k,-) is continuous at x, for all ke N. To
show that P, is continuous at x, by Lemma 7, it suffices to show that for any
£>0), there exists §>0 such that for all ke N, te R,

|t—x,| <& implies |g(k)—g(kx)| <& (1)

Let £>0 be given. Since x € X' C ¥, there exists 5> 0 such that |x,| < # for all
keIN. Since F; XY, bsCXC ¥, and Y C¢, we have F:bs—>c. Then by
Theorem I1.18, we have that lim g(k,0) exists and (g(k,*));., converges
uniformly to ﬂﬁ g(k,0) on [-2820]. Let L::!-LIE 2(k,0). Then there exists
Ne NN such that for all ke N, te R,

gk, 0)-L| < % forall k=N and te [-252/]. (2)
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Since |x;| < § for all ke N, by (2) we have |g(k, x,)-L| {?E for all k= N. Since
g(k,-) is continuous at x, for all ke {l,...,N-1}, there exists SR with

0<6< g such that for all ke {1,...,N-1}, ie R,

[t—x| <& implies |g(k,0)-g(k,x)| <& (3)

Let ke IN and 1< IR be such that [t —x,] <&, Then |t|<|t—x|+|x| < pf+8<28 If
k=N, then by (2), we have that |g(k,1)~L| <5 and thus |g(k, 1)-g(k x)| <
le(k, )—L|+ iL ~o(kxy)| “'"if' +-§— =& If ke{l,...,N-1}, then by (3)
lg(k, t)—g(k, x)| <& This proves that (1) holds. ]

Theorem 17. IfX is one of the sequence spaces bs and £, and F:X—» ¢, then
the following statements hold:

(i) For xeX, B, is continuous at x if and only if g(k,) is continuous at x,
for all ke .

(if) B, is continuous on X if and enly if g(k,-) is continuous on R for all

ke N.
The last theorem of this section is a special case of the following lemma.

Lemma 18. Let Y be a normed subspace of ¢ and assume that B: @ — Y. Then
for x& a, B, is continuous at x if and only if gk, ) is continuous at x, for all

ke M.

Proof. According to Lemma 9, we have that if £ is continuous at x € @, then
g(k, ) is continuous at x, for all ke IN.

Conversely, let x€ @ assume that g(k,-) is continuous at x, for all
keIN. To show that £, is continuous at x, by Lemma 9, it suffices to show that

for any £> (), there exists N € N such that



lg(k, t)—g(k,x)| < £ forallk=Nand teR.

Let £>0 be given. Since B:@w —> Y and Y C ¢, B: @ —c. Then by Theorem I1.19,
we have that }rlﬂ g(k, 0) exists and (g(k, -));., converges uniformly to ll.ﬂ 2(k, 0)
onR. LetL= }_im g(k,0). Then there exists N € N such that

lglk,t)-L| < gi forall k=N and re R. (*)

In particular, |g(k, x,) L] *’-:-25 for all k= N. By this inequality and (*), we have
that |g(k, t)—g(k, x)|< eforall k=N and re R. O

Theorem 19. IfF: @ —»c, the following statements hold:

(i) For xe @, P is continuous at x if and only if g(k, ) is continuous at x,
Jor all ke N.

(ii) P, is continuous on & if and only if g(k,-) is continuous on R for all

ke N.
Continuous Superposition Operators into ¢,
The first theorem follows directly from Lemma 6 and Lemma 7.

Theorem 20. If B: @ —» c,, then for x € @, B, is continuous at x if and only if

for any £>0, there exists =0 such that for all ke N, tc R,

“ _I.t'l <=d fmph'e.&‘ |2'U5,. f}_g'[ka-ﬁ)l <&

Lemma 6, Lemma 12, Lemma 14, Lemma 16 and Lemma 18 lead us to

have the following theorem.
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Theorem 21. [fX is one of the sequence spaces £,, cs, ¢, ¢, bs, £, and @ and
B:X —> ¢, then the following statements hold:

() For x€X, P, is continuous at x if and only if g(k,-) is continuous at x,
Jor all ke IN.

(if) B, is continuous on X if and only if g(k,-) is continuous on R for all

ke N.

L

Proof. By Lemma 14 and Lemma 18, the theorem holds for the case that X =¢
or @.

Recall that if X is any one of £, cs, ¢, bs and £, then [le™],=1 for all
neN. Then by Lemma 6 we have that for X=£,, cs, ¢, bs and £, if F, is
continuous at x € X, then g(k,-) is continuous at x, for all ke IN. The converse
is true by Lemma 12 and Lemma 16 since |||, < ||'1|;, on £, “'“:_5 2||-|l, on es, |-
o= Il on co and [+, < 2}, on bs. 0

Continuous Superposition Operators into £,

We first prove a lemma. It is useful for the next two theorems in
characterizing when B:X— £, is continuous on X where X is any one of @, cs

and c..

Lemma 22. Let X be a normed sequence space such that es CX C ¢, and
I, < al:ll, on X for some a@>0. Assume that F:X—» £, Then for xcX, if

g(k,-) is continuous at x, for all ke N, then F, is continuous at x.

Proof. Let x <X and assume that g(k, -) is continuous at x, for all ke IN. Since
F:X—>{, and es CX, we have F:es— ¢, By Theorem II.29, there exist >0

and m,c N such that ¥, sup |g(k, )| <w. Since x € X C ¢, there exists m,>m,
|

k=my re]-4



such that |.rk["~f-:££ for all k> m,. To show that F, is continuous at x, let £>0 be

given. Since i suﬁg |g(k, )" <<, lim i sup |g(k, 1)["=0. Then there exists
k=my te[=4.0] Rb® kmn te[-f0]

Nz i stICh that

3 suplgkof < 7w M

k=N &

Since g(k,-) is continuous at x; for all ke {1,...,N-1}, there exists 5e R with
0< 8<% such thatfor all ke {1,...,N-1}, teR,

bl <5 implies (g 0-gkx)|<GE)". (@)

Let z€ X be such that Itz—x]jx*:—:%. Then |z:—x|<|lz-x||, < a|lz-x|, < & for all
keN. By (2), gk, z)-g(k x| {—L‘:; for all ke {1,...,N-1}. For k=N, we

have that |z,| < jz—x| +[xf < 6+ £ <2 + £ = § Then for k2N,

gtk z)-glkx)” = (lglkz)l+|gk x)|)”
= 2’ m,ax{ 13(';:1 Zt}r- Fg(k: xt) ] P}
= Igy&lg{k, Hi™.
By (1), we have
Slekay-gtkxyt < 25 supleteol
r £° » P
—T — U
Hence
g gk, z:)—glh,x )" = = jZ:llg{k, 7))~ gk x)| + grlgtk, z) - gk, xy)|*
< (N—l}ﬁ‘: +-§P =< &
This implies that J1A(:)= B, = (X le(k 20-g0kx0 1) "< 2 O

Theorem 23. [fB: @ — £, then for x€ @, F, is continuous at x if and only if

(7) g(k,-) is continuous at x, for all ke N and
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(ii) there exist a neighborhood V, of 0 and NeIN such that

EN sup |g(k, 1) <o,

Proof. Let x= f:xteme @. Assume that B is continuous at x. By Lemma 6,
k=]

g(k,-) is continuous at x; for all ke N. Since P, is continuous at x, there exists

& >0 such that for each z € @,

7 lzxllg < & implies ||£(z)-R()l, < 1. (1)
Claim that
o2, Sup 1gth )~ gk 0) <1. 2)

To prove (2), let n>m+1 and t.y, ..., 0 [-6, 8]. Set u=k;“:ﬂnem+x. Then
lu-xllg=I 2 e, %5 soby (1) 3 80k ) =gk ) < (1BG)-R,)'s
1. This implies that sup {éﬂl.g{k, )20 0| tuer, ..., t,e [-8, 81} < 1 for all
n>m. But ¥ SUp [2(k 1)~ (K, O)" =sup {,_im 18k 1) =2 (K, 0 | tusss .., 1y
[-8, 8]} for all n>m, so k%. sup lg(k,0)-g(k ) <1. Next, to show that
there exist a neighborhood ¥; of 0 and Ne N such that EN s:z:g |g(k, )" <0, by
Theorem I1.27, it is equivalent to show that B:e,»#,. Let z€¢,. Then there
exists N> m such that |z,| <& for all k=N, so by (2), éﬂ lg(k, z,)-g(k 0)) < 1.

Since B: @ — £, and (0) @, 3, |g(k, 0)]’ <. Then for n>N,
km]

2 18zl < 3 (lekz0)- gk 0)] +1g(k,0)|)’

-l

<" 22 maxtlg(hk z) - gt O)1, gk 0)1'}
5 0 7 Epletn)agk0) etk 0
< 2(E Igtkz)-g(k O+ £ [g(k0))

< 201+ 21k 0P)
-1

k.

which implies that i lg(k, z)|" <. Then P(z2) =(g(k,2z));.,€£,. This proves
k=

that F:c,— £,.



Conversely, assume that (7) and (i7) hold. The assumption (7i) implies
that P:c,—» £, by Theorem I1.27 and hence F, is continuous at x by (i) and
Lemma 22. Since & is a normed subspace of ¢, it follows that £, is continuous

at x under the consideration of F: @ - §£,. O

Theorem 24. If X is one of the sequence spaces cs and ¢, and B:X £, then
the following'statements hold:

(i) For xc X, P, is continuous at x if and only if g(k,-) is continuous at x;
for all ke N.

(i) B, is continuous on X if and only if g(k,-) is continuous on R for all

ke IN.

Proof. It follows from Lemma 6 and Lemma 22. O

The next theorem deals with the continuity of 5: £, £,.

Theorem 25. If F: £,— £, then the following statements hold:
(i) For xe ¥, F, is continuous at x if and only if g(k,-) is continuous at x,

for all ke N.

(i) B, is continuous on £, if and only if g(k,-) is continuous on R for all

ke N.

Proof. let xe £, By Lemma 6, we have that if £, is continuous at x, then g(k, -)
is continuous at x, for all ke N. To show the converse, assume that g(k,-) is
continuous at x, for all ke IN. To show that £ is continuous at x, given £>0.
Since B:£,—> £,, by Theorem I1.26, there exist >0, >0, me N and (c,), € £

such that

gk, )" < e+ Blt]" forallkzm and te[-a,a]. (1)
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Since x € £, and (¢,)i-, € £, we have that hm X, lim E |x,|” and hm E ¢ are all 0.

P -
Then there exists N=m such that

|x] £ a forallk=N, (2)

Sl < winf(£), 1o, 5o} and 3)

Then by (1) and (2), lg(k,x)|’<ee+ Blx” for all k=N. Since g(k,-) is
continuous at x, for all ke {l,...,N-1}, there exists JeR with 0<d<

n'un{z, 2(152*"” )“} such that for all ke {1,...,N-1}, te R,
lt-xf <& implies |g(ht)-g(kx)| <Gy ) (5)

Let z € £, be such that tlz—xﬂfﬂ"i d. Then il(zk}f.u;-—{x,]f,yllf'ﬂ Hz—xl}q'i 4, so for

k=N,
fzl = 2w,

< z)en—{ -‘-‘k}f—unf‘"“ [1(xe)ien ”g‘

< s+7 (by(d)

S o g (6)
and

Iz, < Izdhew— (Rdielly + Yol
< +%(W)”‘ (by (3))

lig

1 I
s T{W)” 151 ﬂm}
= ( 1?*3 }"‘"

Then fﬁﬁh&[f % (Ii(z,,}':.yﬂtt)‘ < ﬁ—;:.p By (1) and (6), we have that for k=N,
13“:1 zt)!Pg ct ﬂlleq and thus

Ig{k, Z,) —3{35, Xi) |’ = (lglk, z.)I+|g (k. x,) | )P
< 2" max{|g(k z.)l", |g(kx) "}
< 2 (lglhkz)|" + gk x)]")
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S 2" (2 + ﬁlxtt‘ + ﬂ[ztl‘.)-
It then follows that
Zlgthz)-glex)l < XX o+ BT |nl'+ BT 2l

< 2’”1?*1 + Z’ﬂﬁzf‘l + Z’ﬂﬁz.m (by (3) and (4))
g?

5
For all ke {l,...;N—1}, we have that iz,t—.tk|£1|z—x[|ﬁ{§ and thus by (5),
g0k 20— gk x) I < 5. Then

I

2 lethk 2= g x| 3 I8 20~ + £ |tk 2206 x) P

< (Nul)——+-;—" < £

Hence |B(2)<RCll, = (3, |2(k 2)-g(k,x)[) “< & 0
The next theroem is obtained from Lemma 6 and the following lemma.

Lemma 26, Let X be a normed sequence space such that X C £, and X contains
¢ or bs and ||-||, < a|-|l, on X' for some a>0. Assume that F:X—> £,. Then for

xe X, if g(k,+) is continuous at x, for all ke N, then F, is continuous at x.

Proof. Let x<X and assume that g(k, -) is continuous at x;, for all ke IN. Since
xe X C £, there exists #>0 such that |x,| < B for all ke IN. Since B:X— £, and

X contain ¢ or bs, by Theorem I1.30, there exists meIN such that

A ’w% |g(k, ) <o. To show that F, is continuous at x, let £>0 be given.

k=m e

Since E sup |g(k, )" <o, lim E sup lg(k, )= 0. Then there exists N =m

k=m pe|= iﬂ,ﬂiﬂ A=m kmy ref-20 28]
such that
- i
su En < — i
EwN e[-2 ﬂls,ﬂ‘]lg( Dl ar (1)
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Since g(k, ) is continuous at x; for all ke {1,...,N-1}, there exists §c R with

0 < < f such that for all ke {1,...,N-1}, te R,
. i 1ip
lt=xl < & implies |g(k)-glhx)|<GE) - ()

Let ze X be such that ||z—x![,r{-g~. Then |z,—x|< [|z—x[|, < a|lz-x|,< & for all
ke N. By (2), gk, z.)—g(k,xp) | {-2% for all ke {1,...,N-1}. For keN, we
have that |z,| < |gi—x| +lxd <5+ f< f+5=28 Then for k=N,

lgthz)-gex)l” <= (gt z)l+|g(x)])”

5 2, max{ Ig{ku 21-) l"l !g(k: I;;:l |P}
F P
= Z up jlg(k, DI’ (3)

By (1) and (3), we have that iﬁlstk, z) =gk, x)| < -;—'- Therefore, we have that

Elstez)-gthol = Blethzd-ghx)l + 5 180k 2) -0k x)l
< (N—l}ﬁ‘: +—2‘—’ T

0 1B~ B, = (£ I8t z)-2ghx) < & 0

Theorem 27. If X is one of the sequence spaces ¢, bs and £, and P2 X — £,, then
the following statements hold:

(i) For xe X, F, is continuous at x if and only if g(k,-) is continuous at x,
for all ke IN.

(7i) F, is continuous on X if and only if g(k,-) is continuous on R for all

ke IN.

The last theorem of this section characterizes when F:X — £, is

continuous on @.



Theorem 28. If B: @ —» £,, then the following statements hold:

(i) For xe @, P, is continuous at x if and only if g(k,-) is continuous at x;
Jor all ke N.

(if) F, is continuous on @ if and only if g(k,-) is continuous on R for all

ke N.

Proof. Let XE . By ILemma 4, if B is continuous at x, then g(k,-) is
continuous at x; for all ke IN. To prove the converse, assume that g(k,-) is
continuous at x; for all k€ IN. To show that P, is continuous at x, given £>0.
Since F:w—4£, by Theorem 11.31, there exists melN such that

*f: sup |g(k, )" < . Then !‘Jﬂ :E sup lg(k, 1)|"= 0, so there exists N =m such that
] . E‘P v
Z suplgk Ol < o (1)
Since g(k,-) is continuous at x, for all ke {1,...,N-1}, there exists §>0 such

that for all ke {1,...,.N-1}, re R,

lt—xi <& implies |g(k)-gtbx)|<GS) - (@)

N
Let ﬂ"=min{?;in1-:?£—a}}. Then ﬁp‘s—,} <8 Let ze @ be such that

dfz,x)< &’ For k=N, we have that

gk, z)-glh,x)” < (lgk z)|+|g(k x))”
< 1 2" max{|g(k z)| " 1g(kx) |}
g 2 suplg(k, . (3)

Then inequalities (1) and (3) imply that j}uigtk, ) - gk x,) |"{7€P . For ke N,

Iz —x|

we have that = a+h xljgd.,{z,x}tié'{ Then for ke{l,...,N-1},
|

Iz.k_xi:l kE g N oo . + - g 2"5-

e T |zk—xt[{ 2°4” < 276" which implies that |z,—x,| < TR < & for all

ke{l,...,N-1}. By (2), lgtbz)-glx)| <55 for all ke{l,...,N-1}

Hence
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}E_E:lg(k, z)— gk, x:) |’+ti”|g(k,2t}— gk, x)["
< (N—l)ﬁ,fnfgf < £,

3 Ig(k 2)-glex)l

0 |B(2)- B, = (2 leCh 20 gz ) < & D
Continuous Superposition Operators into @

The results of this section are analogous to those of the section entitled

“Continuous Superposition Operators into &,".

.Theorem 29. I/ F: @ — @, then for x € @, F, is contfinuous at x if and only if for

any £>0, there exists 6> 0 such that for all ke N, tc R,
[t—x| <& implies |g(k1)-g(kx)| <e&

Proof. It is obtained directly from Lemma 6 and Lemma 7. 0

Theorem 30. [f X is one of the sequence spaces £, s, ¢, ¢, bs £,, and @ and
F.X— @, then the following statements hold:

(i) ForxeX, F, is continuous at x if and only if g(k,-) is continuous at x,
Jor all ke N.

(#1) EF, is continuous on X if and only if g(k,-) is continuous on R for all
ke N.

Proof. By referring Lemma 6, Lemma 12, Lemma 14, Lemma 16 and Lemma
18, the proof is given similarly to that of Theorem 21. 0
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