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CHAPTER I 

INTRODUCTION AND PRELIMINARIES 

The theory of sequence spaces has long been studied. Linear operators, 

especially infinite matrix transformations, between sequence spaces have been 

widely studied in this area. However, some nonlinear operators between 

sequence spaces are well-known. Superposition operators between sequence 

spaces are nonlinear. The research on superposition operators has been 

continuously done. The definition of superposition operators is given as follows: 

For any g:NxR--)R, the superposition operator Pg is defmed by Pg«X.I;)~l) 

= (g(k, X.I;»;=l for every real sequence (X.I;)~l. In [1], J. Robert has characterized 

the superposition operator Pg between any two Orlicz sequence spaces which is 

continuous at the sequence (0) under the following additional conditions of g: 

("') g(k,O) = 0 for every kE N. 

("'''') g(k, .) is continuous at 0 for every kE N. 

I. V. Shragin [2] has introduced a class of sequence spaces which contains all 

Orlicz sequence spaces and he has characterized ?g between some types of 

sequence spaces in this class. U sing the same idea of the proof given by I. V. 

Shragin [2], Chew Tuan Seng and Lee Peng Yee [3] have given characterizations 

in explicit forms of the superposition operators ?g: ip--) f1 (1 s P < 00) and Fe: Co--) i1 

under the condition: 

("''''II<) g(k, .) is continuous on R for every kE N. 

Then they used their characterizations to give representations of orthogonally 

additive continuous functionals on ip (1 sp <00) and co. The superposition 
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operator.?g with conditions (*) and ("''''''') from Wo into f\ has been characterized 

by Chew Tuan Seng in [4], where Wo is the space of all real sequences (Xk)':..1 
n 

such that lim 12; IXkl = O. The following condition of g is weaker than ("'''''''): 
n~oo nk=1 

("'''''''''') For each kE N, g(k, .) is bounded on every bounded subset of1R. 

By assuming only condition ("'''''''II<) of g, Ryszard Pluciennik [5] has proved the 

same result gi~en by Chew Tuan Seng [4]. 

The sequence spaces tP, fp (1':;' P < (0), cs, Co, c, bs, loo and OJ are classical. 

Among these sequence spaces, tP, tp (1 .:;, p < (0), Co, c, t"" and OJ are also standard 

and well-known. We consider the following.?g for any X E { tP, lq (1.:;, q <(0), cs, 

Co, c, bs, £"", OJ} and Y E { tP, tp (l.:;,p <(0), Co, c, l(Xl, OJ}: 

(1) ~:X~Y. 

(2) ~ is continuous at every point of X where ~:X ~ Y. 

The purpose of this research is to give necessary and sufficient conditions of g 

for .?g in (1) and (2) above in tenns of mathematical analysis of the sequence 

«g(k, .) );=1 of real-valued functions. These results are given in Chapter II and 

Chapter ill, respectively. 

Throughout this research, our scalar field is the field 1R of real numbers. 

By a sequence, we mean a sequence of real numbers. Let N denote the set of all 

natural numbers. 

Let x be a sequence. For kE N, the e~ tenn of the sequence x IS 

denoted by Xk' Then x = (X .. )':..I' Let Ixi denote the sequence (IXkl):'I' For n E N, 

let e (n) be the sequence such that 

(n) 
ek = 

if k = n, 

if k ~ n. 

For t E 1R, let (t) denote the constant sequence such that each coordinate is t. 
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For sequences x and y, we defme x sy if XkSYk for all kE IN. A 

sequence space X is said to be solid if for any sequence x, Ixi S Iyl for some y EX 

implies that x EX. 

A K-space is a topological sequence space in which each coordinate 

mapping is continuous. 

F or a nomed linear space X, let II . IIx denote the norm of X. 

The space of all sequences is denoted by (j) and I/J denotes the space of 

all fmite sequences, that is, 

= the space of all sequences x such that XI: = 0 

for all but a fmite number of k. 

N 

Hence for X E (j), x E I/J if and only if x = ~ Xke(k) for some N E IN. The standard 
k=1 

metric dm on (j) is defmed by 

We use the norm II· II~ for I/J to be the sup-norm, that is, 

"x,,~ = ( = max IXkl ). 
Ie 

Other classical sequence spaces with their standard norms which are used in this 

research are as follows: 

= 

= 

c 

IIxl~ 

Co 

the space of all bounded sequences, 

sup IXkl, 
Ie 

the space of all convergent sequences, 

sup IXkl, 
Ie 

the space of all null sequences 

the space of all sequences x such that lim Xk = 0, 
Ie:-+ 00 

sup IXkl, 
Ie 

CD 

the space of all sequences x such that ~ IXklP < OCJ 
.1:=1 



bs = 

= 

cs 

= 

where 1::;; p < 00, 

" the space of all sequences x such that (L XA):=t is 

bounded, 

sup Itxtl, 
11 t=t 

k=t 

OJ 
the space of all sequences x such that L Xt is a 

convergent series and 

sup ItXkl. 
11 t=t 

k=t 

4 

The following diagram shows the relationships under set inclusion among the 

sequence spaces mentioned above: 

where 1 ::;; p, q < 00. The following statements are well-known: 

(1) tlJ, tp (l::;;p <00), cs, Co, c, bs, tOJ and (f) are K-spaces. 

(2) fp (1::;; p < 00), cs, Co, c, bs, Roo and (f) are complete but t/J is not. 

(3) tlJ, £p (l ::;; p < 00), Co, foo and (f) are solid but cs, c and bs are not. 



5 

(4) If X , x( .. ) E OJ for all n E N, then lim x(,,) = x m (j) if and only if 
n~ex> 

lim xr) = Xk in R for all kE N. 
n~ex> 

ex> 

For x E £p (l:<:;;p <(0), n E N, we have Ix,,1 = (Ix .. n IIp:<:;; (2: IXkIPf'P= IIxlit. Also, for 
k=1 p 

" ,,-1 .. ,,-1 

X E bs, n E N, we have Ix .. 1 = 12: Xk - 2: Xkl :<:;; 12: Xkl + 12: X10 I :<:;; 2lixllbs. These imply 
k=1 k= 1 10=1 10= I 

that IIxlit :<:;; Ilxlit on £p (l:<:;;p <<X» and lixll, :<:;; 211xllbs on bs . 
., p ., 

Let g:N xR--)R. Then for each kE N, g(k, ·):R--)R and so (g(k, ·»;=1 

is a sequence of real-valued functions on R. Hence (g(k, X1o) );=1 E OJ for every 

x E OJ. The map Pg: OJ --) OJ defmed by 

Pg(x) = (x E OJ) 

is called a superposition operator. Chew Tuan Seng and Lee Peng Yee [3] have 

characterized certain superposition operators as follows: 

Theorem 1. ([3]) Let g:N xR--)R be such that g(k,·) is continuous on R for 

all kEN. Then Pg: Co--) £1 if and only if there exist a> 0 and (Ck)':=1 E £1 such that 

for each kE N, 

Ig(k, t) I :<:;; Ck whenever I tl :<:;; a. 

An equivalent theorem of Theorem 1 is 

Theorem 2. Let g: N x 1R --) 1R be such that g(k, .) is continuous on R for all 

kEN. Then Pg: CO--) £1 if and only if there exists a> 0 such that 

ex> 

L sup Ig(k, t) I < 00. 
10=1 te[ - a,a] 

Theorem 3. ([3]) Let g: N x R --) R be such that g(k, .) is continuous on R for 

all kEN. Thenfor l:<:;;p < oo, Pg:£p--) £1 ifand only if there exist a > O, P > O and 

(Ck);=1 E £1 such that for each kEN, 
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Ig(k,t)1 :=;; ct-+PltI P wheneverltl:=;;a. 

The defInition of continuous convergence of a sequence of real-valued 

functions is given in [6] as follows: Let (/"):=1 be a sequence of real-valued 

functions on R and let f: R ~ R. The sequence (/"):=1 is said to be continuously 

convergent or converge continuously at tE R to f if for any e>O there exist 

8> 0 and N E.lN such that for all n E N, s E R, 

n~N and Is-tl < 8 imply I/"(s) - f(s)1 <e. 

It is clear that if (/")~=1 converges continuously at t E R to f, then lim /,,( t) = f( t) 
n~'" 

and if (/")~=1 converges uniformly to f on R, then (/")~=1 converges continuously 

to f at every point of R. Moreover, it is routine to show that if (/"):=1 converges 

continuously at t to f and /" is continuous at t for every n E N, then f is 

continuous at t. 

The following theorem will be used later. 

Theorem 4. Let (/"):=1 be a sequence of real-valued functions on 1R and 

f:1R~R. Then: 

(i) If (/")~=1 converges continuously at tE R to f, limf(s) exists and 
s~t 

g:R~R is such that limg(s)=limf(s) and g(t)=f(t), then (/"):=1 converges 
s~t s~t 

continuously at t to g. 

(ii) (/"):=1 converges continuously to f at every point of R if and only if 

(/")~=1 converges uniformly to f on every bounded subset of R. 

(iii) If f is continuous on R, then (/")~=1 converges continuously at t to f(t) 

for all t E 1R if and only if (/")~=1 converges uniform~v to f on every bounded 

subset ofR. 
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Proof. (i) To prove (f,,):=1 converges continuously at t to g, let E> 0 be given. 

By assumption, lim [f(s) - g(s)] = 0 = f(t) - gCt). Then there exists 8> 0 such 
s-H 

that for s E R, 

Is-tl < 8 implies If(s)-g(s)1 < E. 
2 

(1) 

Since (f,,):=1 converges continuously at t to f, there exist N E IN and 8' E R with 

o < 8' s 8 suc~ that for all n E IN, S E R, 

n~N and Is-tl<8' imply 1f,,(s)-/(s)1 < ~. (2) 

Then (1) and (2) yield that for all n E IN, s E R, 

n~N and Is- tl < 8' imply If,,(s) - g(s)1 < E. 

Hence (f,,)~=1 converges continuously at t to g. 

(ii) Assume that (f,,):=1 converges continuously to 1 at every point of R 

and let S be a bounded subset of R . To show that (f,,)~=1 converges uniformly to 

f on S, let E>O. Since S is bounded, S<;;. [-a, a] for some a>O. Since (f,,):=1 

converges continuously to 1 at every point of R, for every t E [-a, a] there exist 

~>O and ME IN such that for all n E IN, s E R, 

n~M and Is-tl < ~ imply If,,(s) - I(s) 1 <E. (3) 

Since [-a, a] IS compact in R and [-a, a] <;;. U (t -~, t +~), [-a, a] <;;. 
tE[- a.a] 

III 

~l(ti -~j' ti+~) for some mE IN and tJ,"" tmE [-a, a]. If s E [-a, a], then 

S E (tj - 81, tj+8~) for some jE {I, ... , m}, so by (3), If,,(s) - I(s) 1 <E for all 

n ~ max { M
1

, ••• , Nt", }. This implies that Cf,.)~=l converges uniformly to 1 on 

[-a, a] and hence it does on S. 

Conversely, assume that (f,,):=1 converges uniformly to f on every 

bounded subset of R. To prove that (f,,)~=1 converges continuously to 1 at every 

point of R , let t E R. Then by assumption, (f,,)~=1 converges uniformly to 1 on 
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(t -1, t + 1). This implies that for any e> 0 there exists N E IN such that for all 

nElN, sER, 

nzN and Is-tl<1 imply IIn(s)-f(s)l<e. 

Hence (1n):=1 converges continuously at t to f 

(iii) follows directly from (i), (ii) and the fact that limf(s) = f(t) 
s-'>t 

= limf(t) for all t E R . 
s-'>t 

o 



CHAPTER II 

CHARACTERIZATION OF SUPERPOSTION OPERATORS 

ON CLASSICAL SEQUENCE SPACES 

The purpose of this chapter is to characterize the superposition operator 

Pg:X -) Y where g: N x R -) R in tenns of the sequence (g(k,.) );=1 of functions 

forallXE {tP, £p(l::;p<oo), CS, Co, c, bs, £"", m} and YE {tP, £p(l::;p<oo), Co, C, 

£""}. 

For convenience, let p, q denote real numbers such that 1 <p, q <00. 

Throughout this research, let g: N x R -) Rand Pg denote the 

superposition operator induced by g, that is, Pg(x) = (g(k, XA;) );=1 for every x E m. 

For sER, the notation g" denotes the function g .. :NxR-)R defmed by g,,(k,t) 

= g(k, t+s), so we have Pg.(x) = (g(k,XA;+S»;=t= Pg(X + (s» for every x Em and the 

following statements: 

(1) For sequence space X, Y, Pg: (s) + X -) Y if and only if Pes:X -) Y. 

(2) For kE Nand a>O, {g,,(k, t) Iltl<a} = {g(k, t) Iit-sl<a}. 

Superposition Operators into I."" 

First, we give a characterization of Pg: tP -) Y for any sequence space Y 

containing tP as follows: 

Lemma 1. (i) If X and Yare sequence spaces and Pg:X -) Y, then 

(g(k, 0) );=1 E Y. 
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(iv) There exists.N EN such that (g(k, ·»;=N is uniformly bounded on some 

neighborhood of o. 

Proof. Since II ex C co, the implications (i)~(ii) and (ii)~(iii) are directly 

obtained. 

To show (iii) ~ (iv), suppose that (iv) is not true. Then for all n E N, 

a> 0, (g(k,.) );=,. is not uniformly bounded on [-a, a]. Hence for all n E N, 

there exist k>n and tE [-T", 2-"] such that Ig(k,t)l>n. This implies that there 

exist a subsequence (nS:=1 of (n);=l and a sequence (X"k):'t such that 

X"lE[-Tl~2-.t] and Ig(n,t,x"l)l>k for all kEN. Then (X"k):'lElt and 

g(n.t,x"l»;';'t (it la>. Let (y,,);=l be a sequence de.fmed by 

y,. = 
if n= nk for some kE N, 

otherwise. 

Then (Y,.);=t E II and (g(n,y,,) ):=t (it la,. Hence~: ld-'l>la,. 

Finally, to show (iv)~(i), assume that (iv) holds. Then there exist 

NEN, a>O andM>O such that 

Ig(k, t)1 s M for all k~N and tE [- a, a]. ( ... ) 

Let x E co. Then there exists N'~N such that IX.t1 s a for all k~Nf which implies 

by ( ... ) that Ig(k,Xk)1 sM for all k~N~ Hence (g(k,x.t»;=1 E la,. This proves that 

o 

Theorem 4. If X is one of the sequence spaces f p , cs and co, then ~:X ~ fa> if 

and only if there exists N E N such that (g(k, .) );=N is uniformly bounded on some 

neighborhood of O. 
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The next theorem characterizes ?g: c -. i.x, and ?g: f..,-. f oo. It is shown in 

this theorem that these characterizations are the same. 

Theorem 5. The following statements are equivalent: 

(i) ?g: foo-' f oo. 

(ii) p,:.c-' foo. 

(iii) For every bounded subset S of JR., there exists N EN such that 

(g(k, . ) );;N is uniformly bounded on S. 

Proof. That (i) =:> (ii) holds since cC £a>' 

To show (ii) =:> (iii), assume that ?g:c~ £.... To prove (iii), it IS 

equivalent to show the following statement: 

For every a> 0, there exists N E N such that 

(g(k, '»;;N is uniformly bounded on [-a, a]. 

Since for a>O, [-a, a] is a compact set in JR., (1) follows from the statement: 

For every s E R, there exist r> 0 and N E:IN such that 

(g(k,'»);;N is uniformly bounded on (s-r,s+r). 

(1) 

(2) 

Next, we shall prove (2). Let SEJR.. Since ?g:c~foo and (s)+co (;;c, 

?g:(s)+co~fa>' Then ?g.:co~foo. It follows from Theorem 4 that there exist r>O 

and N EN such that (gs(k, '»);;N is uniformly bounded on (-r, r). But {gs(k, t) I 
I t 1< r} = {g(k, t) II t -s I < r } for all kEN, so (g(k, '»;;N is uniformly bounded 

on(s-r,s+r). 

To prove (iii) =:> (i), assume that (iii) holds. Then (1) holds. To prove 

?g: £ro~ £00, let x E £"". Then there exists a> 0 such that Ix kl ~ a for all k E 1N. By 

(1), there exist N E Nand lv! > 0 such that Ig(k, 1)1 ~ M for all k'c Nand 

tE [-a, a]. Since IXkl~a for all kEN, we have Ig(k,xA:)1 ~lv! for all k'cN. This 

implies that (g(k, XA:) );=1 E £a>' o 
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To characterize Pg: bs ~ fro, the following lemma is required. 

Lemma 6. If Y is a solid sequence space and Pg: bs ~ Y, then Pg: fro~ Y. 

Proof. Let x E fro. Then there exists a >0 such that IXkls a for all kE N. 

{ x, if kis odd, 
Yk = 

-Xk_1 if kis even 
and 

{ -Xh , 
if kis odd, 

Zk 
xk if kis even, 

Then for all n E N, 

" { x" if n is odd, 
LYk = 
k=1 0 if n is even 

and 

" { -:~' if n is odd, 
LZk = 
k=1 if n is even. 

" " Since XE ~ we have (LYk):=IE 1- and (LZk):=1E fro. Then (yS~:h(Zk)%1E bs. 
k=t k~t 

Since Pg: bs ~ Y, (g(k,Yk»;=t E Y and (g(k, Zk»;=l E Y. Defme the sequences 

(Uk):'1 and (Vk):'l by 

{ g(k,y~J if kis odd, 
Uk = 

0 if kiseven 
and 

{ 0 if kis odd, 
Vk 

g(k,Zk) if kis even. 
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Then IUtl s Ig(k,Yt)1 and IVtl s Ig(k, Zt)1 for all kE IN. Since Y is solid, we have 

(Uk):'h (Vk):'t E Y. But g(k,Yk) = g(k, Xk) if k is odd and g(k, Zk) = g(k, Xk) if k is 

even, so (g(k, Xk) );=t = ( Uk):'t + (Vk):'t E Y. 0 

We know that fa, is solid. The next theorem follows from this fact, 

bs C fa>, Lemma 6 and Theorem 5. 

Theorem 7. Pg: bs ~ fa, if and only if for every bounded subset S of R, there 

exists N E N such that (g(k, .) );=N is uniformly bounded on S. 

The following corollary is obtained from Theorem 5 and Theorem 7. 

Corollary 8. If X is one of the sequence spaces c, bs and fa>, then p,:X ~ fa> 

if and only if for every bounded subset S of R, there exists N E N such that 

(g(k, . »;=N is uniformly bounded on S. 

The last theorem of this section gives a characterization of P,: (iJ ~ ia> as 

follows: 

Theorem 9. P,: (iJ ~ fa, if and only if there exists N EN such that (g(k, .) );=N is 

uniformly bounded on JR. 

Proof. Suppose that for every n E N, (g(k,·) );=" is not unifonnly bounded on 

JR. Then there exist a subsequence (nk):'t of (n):=! and a sequence (X"k):'1 such 

that Ig(rZt,x,.JI>k for all kEN. Then (g(nt,xn~»:=I~fa> . Let (Yn)~=1 be a 

sequence de:fmed by 



y" = 
if n = nk for some kE N, 

othetWise. 
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Then (Y,,)==lE (J) and (g(n,Y"»:=lE.!.e,,, since (g(n,t,x"k»;=l is a subsequence of 

(g( n, Y II) ):=1' 

This proves that if Pg: (J) ~ .e"" then there exists N E N such that 

(g(k, '»);=N is uniformly bounded on R. The converse of this statement is 

obvious. 0 

Superposition Operators into c 

Since the sequence space c contains (/1, the following theorem follows 

directly from Lemma 1. 

Theorem 10. Pg: (/1 ~ c if and only if lim g(k, 0) exists. 
k--+", 

We obtain a necessary condition for Pg mapping a solid sequence space 

into c as follows: 

Lemma 11. For a solid sequence space X, if Pg:X ~ c, then for any x EX, 

lim g(k, Xk) = lim g(k, 0). 
k--+ '" k--+ '" 

Proof. Since (0) EX, Pg«O») = (g(k, O»;=IE c. Then lim g(k, 0) exists. Given 
k--+ <Xl 

x E X, we have Pg(x) = (g(k, Xk) );=1 E c, that is, lim g(k, Xk) exists. Defme the 
Ic--+ '" . 

if kis odd, 

if k is even. 
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Then (Y2k)~t= (0), (Y2A:-t)~I= (X2k-l)~1 and IYkl s IXkl for all kE 1N. It follows that 

(Yk)~tEX since X is solid. Therefore, lim g(k,Yk) exists. Hence lim g(k, 0) 
~m ~m 

= lim g(2k, 0) = lim g(2k,Y2A:) = lim g(k,Yk) = lim g(2k-l,Y2A:-1) = lim g(2k-l, X2k-t) 
k~m k~m k~oa k~oa k~oo 

o 

In order to characterize Pg from lp, cs and Co into c, the following lemma 

is required. . 

Lemma 12. Let X be a sequence space such that 1.1 c X C co. Then the 

following statements are equivalent: 

(i) Pg: co~ c. 

(ii) Pg:X ~ c. 

(iii) Pg: I.t~ c. 

(iv) lim g(k, 0) exists and (g(k, '»);=1 converges continuously at 0 to 
k~m 

limg(k, 0). 
k--+ 00 

Proof. Since '-I cXc co, (i)~(ii) and (ii)~(iii) hold. 

To prove (iii)~(iv), suppose that (iv) does not hold. Iflimg(k, 0) does 
k--+oo 

not exist, then Pg: ld~c since (0) E 1.1, Assume that lim g(k, 0) exists but 
k--+ 00 

(g(k, '»;=1 does not converge continuously at 0 to lim g(k, 0). Let L = lim g(k, 0). 
k--+ 00 k--+ 00 

Then there exists c> 0 such that for all 8> 0, n E 1N, there exist k E lN, t E 1R such 

that k> n, I t 1< 8 and Ig(k, t) - Liz c. This implies that there exist a subsequence 

(nk)~t of(n)~=1 and a sequence (t"t)~t such that It"tl<2-
k 

and Ig(nk,t"J-Llz c for 

all kE 1N. Then (t"k)~IE ft. Defme the sequence (x,,)~=t by 

if n = nk for some kE 1N, 
XII = 

otherwise. 
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Then (X .. );=IE i l and Ig(nk,x"t)-LI2 & for all kE 1N. If lim g(n,x,,) does not exist, 
n~oo 

then P,: id~c. Assume that lim g(n,x,,) exists. Then lim g(n,x .. ) = lim g(nhx/It) 
n~CX) n~m ic~oo 

:t:L=limg(k,O). Since i l is solid, it follows by Lemma 11 thatp':il~c. 
~m . 

Finally, to show that (iv) =:> (i), assume that (iv) holds. Let L= lim g(k, 0) 
ic--) m 

and let &>0 be given. Since (g(k, '»;=1 converges continuously at 0 to L, there 

exist 8> 0 and N E 1N such that for all k E 1N, t E JR, 

k2N and Itl<8 imply Ig(k, t)-LI < &. 

If x E Co, then there exists N'2N such that IXkl <". for all k2N~ which implies by 

(*) that Ig(k,xk)-LI s & for all k2N~ Hence lim g(k,Xk) = L for all x E co. This 
ic-tm 

shows that p,: Co~ c. o 

Theorem 13. If X is one of the sequence space~ f", cs and co, then p':X ~ c if 

and only if limg(k,O) exists and (g(k, ·»);=1 converges continuously at ° to 
ic-tm 

limg(k, 0). 
c~m 

The next theorem gives a characterization of P,: c ~ c. Theorem 1.4 is 

required to prove this theorem. 

Theorem 14. Pg: c~ c if and only if 

(i) limg(k, t) exists for all t E R, 
1c~1D 

(ii) h == limg(k,·) is continuous on Rand 
C-t1D 

(iii) (g(k,· »;=1 converges uniformly to h on every bounded subset of R. 

Proof. Assume that Pg: c~ c. Since (t) E C for all t E 1R, we have limg(k, t) 
ic-t m 

exists for all tER. Then h(t) = limg(k, t)=lirogt(k, 0) for all fER. To prove 
ic~oo ic-too 

(iii), it suffices by Theorem 1.4 (iii) to show that (ii) holds and (g(k, ·»);=1 
converges continuously at t to h(f) for all t E R. 
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Let tER. Since (t)+co c c, p':(t)+co~c which implies that P,,:Co~C. 

By Theore~ 13, (gt(k, '»;=1 converges continuously at 0 to h(t). Since {gt(k,8) I 
Isl<a} = {g(k,8) Iis-tl<a} for kEN and a>O, it follows that (g(k"»;=1 

converges continuously at t to h(t). It remains to show that h is continuous at t, 

let &>0 be given. Since (g(k, '»;=1 converges continuously at t to h(t), there 

exist 8>0 and N EN such that for all kE N, 8 E R, 

<k-cN and 18-tl<8 imply Ig(k,s)-h(t)1 < ~. (1) 

Let s E R be such that Is- tl <8. Since limg(k, t) = h(t), there exists N'-cN such 
k~1X) 

that 1 g(N~ t) - h(t)1 < &. Then by (1), 1 h(s) - h(t)1 ~ 1 h(8) - g(N~ 8)1 + 
2 

1 g(N~ s) - h(t)1 < & + & = &. 
2 2 

Conversely, assume that (i), (ii) and (iii) hold. To prove that p,:c~c, 

let XE c and let t = limx,t. Claim that limg(k,x,t) = h(t). Let &>0 be given. 
k~1X) k~1X) 

Since h is continuous at t, there exists 8> 0 such that for all 8 E R, 

18-tl<8 implies Ih(8)- h(t)1 < &. 
2 

(2) 

Since t = limx,t and (g(k, '»;=1 converges uniformly to h on (t -8, t+ 8), there 
k--+ '" 

exists N E N such that for each kEN, s E R, 

and 

k-cN and Is-tl<8 imply Ig(k,s)-h(s)1 < & 
2 

(3) 

(4) 

By (2), (3) and (4), we have that I h(x,t) - h(t)1 < & and Ig(k,x,t) - h(x,t)1 < & for 
2 2 

all k-cN. These imply that Ig(k,xt)-h(t)1 < & for all k-cN. Then limg(k,xt) 
k~", 

= h(t) and hence P'(x) = (g(k,Xt»;=IE C. 0 

We know that the space llX) is solid. Using Lemma 11, we obtain a 

characterization of p,: l",~ c as follows: 
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Theorem 15. Pg: lrt>~ c if and only iflimg(k, 0) exists and (g(k, ·»;=1 converges 
k-HO 

uniformly to limg(k, 0) on every bounded subset of R. 
k-}rt> 

Proof. Assume that P,: lm~ c. Then limg(k,O) exists. Let L = limg(k, 0). By 
k-HO k-}oo 

Lemma 11, 

limg(k'Xk) = L for all x E£,.,. 
k-}oo 

(1) 

To show that (g(k, ·»;=lconverges uniformly to L on every bounded subset of R, 

suppose not. Then there exist a>O and £>0 such that for each n E N, there 

exist k> nand t E [-a, a] such that I g(k, t) - L 12 £. It follows that there exist a 

subsequence (nk):'1 of (n):=1 and a sequence (/",,);=1 such that for each kE N, 

It".I:s;; a and Ig(nk' 1".)-LI2 £. (2) 

Define the sequence (y,,):=1 by 

{ ~ if n = nk for some kE:IN, 

otheIWise. 

Then ly"l:s;; a for all n E 1N, so (y,,):':tE loo. By (1), limg(k,y.t) = L. 
k-}m 

Thus 

lim g(n." tlf.) = lim g(n.t,Ylf.) = L which contradicts (2). 
k~oo k~oo 

Conversely, assume that limg(k,O) exists and (g(k, ·»;=1 converges 
k-}oo 

uniformly to L on every bounded subset of R. Let L = limg(k, 0). To show that 
k~oo 

Pg: .e..,~ c, let x E loo. Then there exists a> 0 such that I x.tl :s;; a for all kEN. By 

assumption, (g(k, ·»;=1 converges uniformly to L on [-a, a]. This implies directly 

that limg(k,x~) = L since XtE [-a, a] for all kE N. Then Pg(x) = (g(k,Xt»;=IE c.o 
K-}<XJ 

To characterize Pg: bs ~ c, the following two lemmas are required. 

Lemma 16. If Pg: bs ~ c, then lim g(k,Xt) = lim g(k, 0) for all x E bs. 
k-}<XJ k-~()Q 
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" Proof. By assumption, lim g(k, 0) exists. Let x E bs. Then (~XIJ:=IE lm and 
k-) 00 k=1 

lim g(k, Xk) exists. Defme the sequence (Yk):'1 by 
k-)m 

XI: if k == 0 (mod3), 

= XI: + Xk+1 if k == 1 (mod3), 

o if k== 2 (mod3), 

{ 
... 1 

LXI: if n == 1 (mod3), 
" 1:-1 

~Yk k=1 " LX); othetwise. 
k-1 

" " Since (~Xk):=IE lm, (~Yk):=IE lm. Then (Yk):'IE bs and limg(k,Yk) exists. Hence 
k=1 k=1 . k-)m 

= lim g(3k-l, 0) = lim g(k, 0) . 
k-)oo k-)oo 

o 

Lemma 17. Pg: bs ~ c if and only if Pg: loo~ c. 

Proof. Assume that Pg: bs ~ c. To show that Pg: loo~ c, let X E loo. Defme the 

sequences (Yk):'1 and (Zk):'t by 

{ X k if kis odd, 
Yk = 

-xk_1 if kis even 
and 

{ -Xk+1 if kis odd, 
Zk = 

xk if kis even, 

Then for n E lN, 

" { Xo" ~Yk = 
k=1 

if n is odd, 

if n is even 
and 



" LZt = t=1 { 

- X".I if n is odd, 

o if n is even. 

assumption, lim g(k,Yt) and lim g(k, Zt) exist. By Lemma 16, we have that 
/c~1lO /c~1lO 

lim g(k,Yt) = lim g(k,Zt). It follows that limg(2k-l,x2H)=limg(2k-l'Y2t_l) 
/c~m /c~oo /c~1XJ /c~1XJ 

= lim g(k,Yt) = lim g(k, Zt) = lim g(2k, Z2t) = lim g(2k,X2t). This implies that 
~oo ~oo ~ro ~oo 

lim g(k,xt) exists. Thus Pg(x) = (g(k,xt»;=IE C. 
/c~oo 

The converse follows from the fact that bs ~ fro. o 

Theorem 18. Pg: bs ~ C if and only if limg(k,O) exists and (g(k,·) ):=1 
/c~oo 

conVergeN uniformly to limg(k, 0) on every bounded subset of R. 
/c--} ro 

Proof. It follows directly from Lemma 17 and Theorem 15. o 

The last theorem of this section gives a characterization of Pg: OJ ~ c. 

We recall that OJ is solid. Lemma 11 is required to prove this theorem. 

Theorem 19. Pg: OJ ~ c if and only iflimg(k, 0) exists and (g(k, '»;=1 converges 
/c--} 00 

uniformly to limg(k, 0) on JR.. 
/c~m 

Proof. Assume that Pg: OJ ~ c. Then limg(k,O) exists. Let L = limg(k, 0). To 
/c--}m /c~m 

show that (g(k, ·»;=1 converges uniformly to L on JR., suppose not. Then there 

exist c> 0, a subsequence (nS;=l of (n)~=1 and a sequence (t"J~=1 such that for 

each kE N, 

Ig(n,t, t,,~)-LI2 c. 

Defme the sequence (Xn)~=1 by 



x" = { ~ if n = nk for some kE N, 

otherwise. 
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Then (X .. );=IE (j) and by Lemma 11, limg(k,xk) = L. This contradicts (*) since 
/c--:, 00 

Conversely, assume that limg(k,O) exists and (g(k, ·»);=1 converges 
/c--:, CIO 

uniformly to limg(k,O) on JR. Let L= limg(k, 0). Then for e> 0, there exists 
k,-,>a> /c~aJ 

NEN such tliat Ig(k,t)-LI<e for all k'?N and tER and hence Ig(k,Xk)-LI<e 

for all k'?N and XE (j). This proves that limg(k,xk) = L for all XE (j). Hence 
k~", 

~: (j)~ c. o 

Superposition Operators into Co 

Since 0 is the limit of x for all x E Co, by Lemma 1, we have 

Theorem 20. ~: f/J ~ Co if and only if lim g(k, 0) = O. 
/c--:,oo 

The next lemma is similar to Lemma 12. It is used to characterize 

~:X ~ Co where X is one of the sequence spaces £p, cs and Co. 

Lemma 21. Let X be a sequence space such that II c X C;;;;; Co. Then the 

following statements are equivalent: 

(i) ~: co~ co. 

(ii) ~:X ~ Co. 

(iii) ~: fl~ Co· 

(iv) (g(k, ·»;=1 converges continuously at 0 to o. 

Proof. The implications (i) ~ (ii) and (ii) ~ (iii) follow directly from the 

assumption that £1 cxc Co. 
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Assume that (iii) holds. Then lim g(k, 0) = 0 and ~: 11~ c, so by 
k~CIO 

Lemma 12, (g(k, '»;=1 converges continuously at 0 to O. Hence (iv) holds. 

Next, assume that (iv) holds. Then lim g(k, 0) = 0 (see Chapter I, page 
k~CIO 

6). Now we have that (g(k, '»;=1 converges continuously at 0 to lim g(k, 0). By 
k~CIO 

Lemma 12, ~: Co~ c. Since Co is solid, by Lemma 11, lim g(k,x.t) = lim g(k, 0) 
k~CIO k~CIO 

= 0 for all x E Co. This proves ~: Co~ co. Hence (i) holds. 0 

Theorem 22. If X is one of the sequence spaces lp, cs and Co, then ~:X ~ Co if 

and only if (g(k, '»:=1 converges continuously at 0 to O. 

The following theorem characterizes p':X ~ Co where X is one of the 

sequence spaces c, bs and 100' 

Theorem 23. If X is one of the sequence spaces c, bs and loo, then ~:X ~ c if 

and only if (g(k, .) ):=1 converges uniformly to 0 on every bounded subset of R. 

Proof. To prove the theorem, we shall prove that the following statements are 

equivalent: 

(i) p,: c~ co· 

(ii) (g(k, '»;=1 converges uniformly to 0 on every bounded subset of R. 

(iii) ~: .eoo~ co. 

(iv) ~:bs~co. 

If (i) holds, then ~: c ~ c and lim g(k, t) = 0 for all t E 1R which implies 
k~oo 

by Theorem 14 that (ii) holds. 

Next, assume that (ii) holds. Then lim g(k, 0) = 0 and (g(k,·) );=1 
k~m 

converges uniformly to lim g(k, 0) on every bounded subset of R . . By Theorem 
k~oo 
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15, Pg: f..,~ c. Since f.., is solid, by Lemma 11, lim g(k,X1c) = lim g(k, 0) = 0 for all 
k~.., k~.., 

X E f..,. Hence Pg: ftl>~ Co. 

The implications (iii)~(i) and (iii)~(iv) hold since cef.., and bsef.." 

respectively. Since Co is solid, (iv)~(iii) follows from Lemma 6. o 

The last theorem of this section gives a characterization of Pg: m ~ Cf). 

Theorem 24. Pg: m ~ Co if and only if (g(k, '»);=1 converges uniformly to 0 on 

R. 

Proof. Assume that Pg: m ~ Co. Then Pg: m ~ c and lim g(k, 0) = 0, so by 
k~.., 

Theorem 19, (g(k, '»);=1 converges uniformly to 0 on R. 

Conversely, assume that (g(k, '»);=1 converges uniformly to 0 on R. 

Then lim g(k, 0) = O. By Theorem 19, Pg: m ~ c. Since m is solid, by Lemma 
lc~aJ 

11, lim g(k, XIe) = lim g(k, 0) = 0 for all x E m. Hence Pg: m ~ Co. 
k~", k~", 

o 

Superposition Operators into I., 

The first theorem of this section follows directly from Lemma 1 and the 

defmition of fpo 

aJ 

Theorem 25. Pg: (JJ ~ fp if and only if L Ig(k, 0) IP < 00. 
1e=1 

A characterization of Pg: fq~ fl has been given by Chew Tuan Seng and 

Lee Peng Yee in [3] under the condition that g(k,·) is continuous on R for all 

kE N (see Theorem 1.3). Our generalization of this fact is . given by the 
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following theorem. However, the idea of our proof is taken from the one given 

by Chew Tuan Seng and Lee Peng Yee. 

Theorem 26. Pg: '-'l~ '-p if and only if there exist a neighborhood Va of 0 in R., 

a> 0, N E IN and (C.,I);=l E fl such that 

for all t E Va and k'c. N 

Proof. Assume that Pg: f'l~ '-po Then Pg: £q~ fu:, since fpc '-eo. By Theorem 4, 

there exist Po>O and N E IN such that (g(k, '»:=N is uniformly bounded on 

[-Po, Po]. Then for k'CN, sup Ig(k,t)IP<oo. For all k'CN, a>O and P>O, 
te[-po.pol 

defme A(k, a, P) C [-Po, Po] by 

A(k,a,[3) = 

and 

B(k, a, P) = sup Ig(k, t)IP (2) 
teA (Ir, a.P) 

Observe that 0 EA(k, a, P) for all k'CN, a>O and P>O. To show that (*) holds, 

we consider the following stat~ments: 
QO 

(i) For all a> 0 and P> 0, ~ B(k, a, P) diverges. 
Ic=N 

(ii) There exists x E '-'I such that Pg(x) ~ f p , that is, Pg: '-'I ~ '-po 

We claim that (i) implies (ii). First, we assume that this claim is true. Since 
co 

Pg: fq~ fp , (i) is false. Then there exist a> 0 and P > 0 such that ~ B(k, a, P) <00. 
Ic=N 

Let y= min{po, plI'l}, Va= [- y, y] and 

= { 

0 

B(k,a, fJ) if k ~ N. 

if 1 ~ k < N, 

This implies that Va~[-Po, Po], Itlq~ P for all tE Va and (CIc)~lE '-1.' Let k 'C N and 

tE Va. If Itlq ~ a-1Ig(k,t) IP, then by (1), tEA(k, a,p) and hence by (2), we have 
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Ig(k,t)IPsB(k,a,p)=CtsCt+altlq. If Itlq>a-llg(k,t)IP, then Ig(k,t)IP<altlqs 

Ct+ alt\q. Hence (II<) holds. 

It remains to show that (i) implies (ii). Assume that (i) holds. Then 
co .. 

~ B(k, 2J
, 2-J

) diverges for all} E INu{O}. This implies that for all} E INu{O}, 
t=N 

n ~ N, there exists m > n such that 

f B(k, 2j, 2-
j
) > 1. (3) 

t=,,+l 

"'I 

Then there exists ml > N such that ~ B(k, 2°, 2-°» 1. Let nl= mint m E IN \ 
t=N+l 

m>N and f B(k,2°,2-o»1}. By (3), there exists ml>nl such that 
t=N+1 

"'2 m 

~ B(k,2\r
l»1. Let n2=min{m EINI m>nl and ~ B(k,2\2-

1» 1}. By 
t="I+1 t="l+l 

induction process, there exists a subsequence (nt):'1 of (n):=l such that nl> Nand 

for all) E IN, 

". .. 

nj+l = min{m E NI m> nj and ~ B(k, 2J
, 2-J» I}. (4) 

A:="j+1 

Hence for all} E IN, 

"i+l-1 .. 

~ B(k, 2J
, 2-J

) s 1. (5) 
t="j+1 

If kE {1, ... , nl}, let Xt = O. If k> nil then there exists unique j E IN such that 

nj<ks nj+1 and hence by (2), there exists Xt such that 

and by (1), 

(7) 

Then for all m E IN, 

m < 

""'" 
< ~ {!g(k,xt)\P+2-

t
} (by (6» 

t= "1+1 

11.+1 00 

< ~ Ig(k,Xt)\P+ ~ 2-", 
t=l t=l 
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which implies that Ci; Ig(k,XA)IP):=1 is not bounded. Thus Pg(Xk);=I) = 
k=1 

(g(k, Xk) );=1 ~ iF" Next, to show that (Xk)::"1 E i q, it is equivalent to show that 
" "I 

(L IXkI Q):=1 is bounded. Let s = L IXklq and let n E IN. Then there exists m E 1N 
k=1 k= 1 

such that n s nm+h and hence 

"-I 

S + L IXkl
q 

k="1+1 
". "'1+1 

= S + L L IXkl
q 

)=1 k="J+1 
m "i+1-] 

S + L { L IXkl
q 

+ IX"j+/} 
J=1 k="J+1 . 

Nt • ~+I-l . 

S S + L {2-J L Ig(k,Xk)IP + 2-J
} (by (7» 

)=1 k="1+1 
m . ~+1-1 . . . 

s S + L {TJ L B(k, 2J, 2-cJ) + 2-J
} (by (6) and (2» 

)=1 k="1+1 

CID • 

< s + 2LTJ. 
)=1 

" This shows that (L IXklq):=1 is bounded. Hence (ii) holds. 
k=1 

Conversely, assume that there exist a neighborhood Vo of ° in JR, a> 0, 

NElN and (Ck)::"IE.I\ such that Ig(k,t)IPsCk+altlq for all tE Vo and kElN. Since 

Vo is a neighborhood of 0, [-13, Pl C Vo for some P> 0. To show that Pg: £q~ £p, 
CID 

let x E i q • Then L IXklq <00 and limxk = 0, so there exists N'-c.N such that IXkl <P 
k=1 /c--';CID 

for all k 2. N~ Thus, by assumption, Ig(k, xk)IP S Ck + a Ixkl
q 

for all k '? N~ This 
00 OJ CD 00 

implies that Llg(k,Xk)IP<oo smce L[ck+alxkn=Lck+aLlxklq<oo. Hence 
k=1 k=1 k=1 k=1 

Chew Tuan Seng and Lee Peng Yee have given a characterization of 

Pg: Co~ £1 under the condition that g(k~ .) is continuous on JR for all k E IN (see 

Theorem 1.1). Using the idea of their proof, we generalize this result by 
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characterizing .?g: Co-)o Rp- The continuity of each g(k, .) is not assumed in our 

generalization. 

Theorem 27. .?g: Co-)o Rp if and only if there exist a neighborhood Vo of 0 and 
IX) 

N E 1N such that I: sup Ig(k, t)IP 
<00. 

/c=N tEIji 

Proof. Assume that .?g: Co-)o fp- Then.?g: Co-)o fIX), so by Theorem 4, there exist 

a>O and N E 1N such that (g(k, ·»;=N is uniformly bounded on [-a, a]. Then for 

each k2.N, sup Ig(k, t)IP 
<00. Set 

tE[-a.a] 

B(k,P) sup Ig(k, t) IP (1) 
tE[-P.P] 

ex> 

for all 13 E R., 0 < 13 s a. Claim that I: B( k, 13) < 00 for some 13 E R., 0 < P s a. If 
/c=N 

CXl 

the claim holds, let Vo= [-JJ,f3], so we have I: sup Ig(k, x/c)IP < 00, as required. To 
/c=N tEIji 

CXl 

prove that the claim is true, suppose not. Then I: B( k, .Q) diverges for all j E 1N. 
/c=N J . ... 

This implies that for all j E 1N, n 2. N, there exists m > n such that I: B( k, .Q ) > 1 . 
.t=~+1 J 

It follows that there exists a subsequence (n/c)':::1 of (n):=1 such that nl> N and for 

allj E 1N, 
"j+J 

I: B(k,.Q) > 1. 
/c="i+1 J 

(2) 

Let x/c= 0 for all kE {I, ... , nl}. If k> nil then there exists unique j EN such that 

nj < ks nj +1 and hence by (1), there exists X/cE [_.Q, .Q] such that 
J J 

(3) 

By the choice of X/c) we have limxk = O. Then (Xk):'1 E Co, and for m E lN, 
k-'> a> . 

m "1+1 

m < I: I: B(k,.Q) (by (2» 
)=1 k="1+1 J 

"mtl 

< 1: {lg(k,Xk)(+T"'} (by(3» 
k="I+l 
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which implies that (i: Ig(k,x}JIP):;1 is not bounded. 
k;1 

(g(k, Xk) ):;1 fl ipo This is a contradiction since ~: Co---)- ipo 

Conversely, assume that there exist a neighborhood Va of 0 and N E 1N 
co 

such that L suplg(k,Xk)IP<oo. Then there exists a>O such that 
k;N teVo 

m 

L sup Ig(k, t)IP < 00 (4) 
k;N te[-a,a) 

To show that ~: Co---)- in let x E Co- Then limxk = 0, so there exists N''2N such 
• ~co 

co 

that IXkl<a for all k'2N~ It implies by (4) that Llg(k,Xk)IP<oo. Hence 
k;1 

We recall that i p IS solid. To characterize Pg: cs ---)- in the following 

lemma is required. 

Lemma 28. If Y is a solid sequence space and ~: cs ---)- Y, then ~: Co---)- Y. 

= 

and 

= 

Then for all n E 1N, 

n 

LYk = 
'<;1 

and 

II 

LZk = 
. t;1 

{ x 
" 

0 

{ -:~' 

if kis odd, 

if kis even 

if kis odd, 

if kis even, 

if n is odd, 

if n is even 

if n is odd, 

if n is even . 
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n n 

Since x E Co, lim l:Yt = 0 = lim l: Zt. Then (Yt)~h (Zt)~l E cs. Since P,: cs ~ Y, 
n-HO t=! n~oo t=! 

{ g(k'Yk) if kis odd, 
Ut = 

0 if kis even 
and 

{ 0 if kis odd, 
Vt 

g(k,Zk) if kis even. 

Then IUtl ::; Ig(k,Yt)1 and Iv"l ~ Ig(k, zk)1 for all kE N. Since Y is solid, we have 

(Ut)~h (Vk)~1 E Y. But g(k,Yt) = g(k, Xt) if k is odd and g(k, Zt) = g(k, Xk) if k is 

o 

Theorem 29. P,: cs ~ fp if and only if there exist a neighborhood Vo of 0 and 
oo 

NEN such that l: suplg(k,t)IP<oo. 
k=N teVo 

Proof. It follows from Lemma 28, Theorem 27 and the facts that fp is solid and 

cs ~ co. o 

The next theorem give a characterization of Pg:X ~ fp where X is one of 

the sequence spaces c, bs and foo. 

Theorem 30. If X is one of the sequence spaces c, bs and fro, then P,:X ~ fp if 

and only if for every bounded subset S of lR., there exists N E.IN such that 
oo 

l: sup Ig(k, t)IP <<X). 
t=N teS 

Proof. To prove the theorem, we shall prove that the following statements are 

equivalent: 
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(ii) For every bOWlded subset S of R, there exists N EN such that 
00 

2: sup Ig(k, t)IP <00. 
k=N teS 

(iii) Pg: '-oo~ ipo 

(iv) Pg: bs ~ ipo 

To show (i) => (ii), assume that Pg: c ~ ipo Claim that the following 

statement holds: 

F or every s E R, there exist r > 0 and N E IN such that 
<XI 

2: sup /g(k, t)/P <00. 
(I) 

ic=N te(G-r.s+r) 

Let S E R. Since Pg: c~ ip and (s)+co k c, Pg: (s) +co~ '-po Then Pg,: co~ ipo It 

follows from Theorem 27 that there exist r> 0 and N E N such that 
00 

L sup /gs(k,t)IP<oo. But {g..{k,t) Iltl<r} = {g(k,t) Iit-sl<r} for all kElN, 
Ic=N te(-r.r) 

CD 

so 2: sup Ig(k, t)IP <00., Then we have the claim. To show (ii), it is equivalent 
Ic=N te(c-r.S+r) 

to show that the following statement holds. 

00 

For every a> 0, there exists N EN such that 2: sup /g(k, t)IP <00. (2) 
k=N te[-a.a] 

To prove (2), let a>O be given. Then by (1), we have that for every sElR, 
ClO 

there exist r .. >O and N:E N such that 2: sup Ig(k, t)IP <00. For each 
k=N. te (s-r,.s+r,) 

s E [-a, a], let 1(s) = (s-r.., s+ rs). Then [-a, a] c U 1(s). Since [-a, a] is 
Ge[-a.a] 

" compact, [-a,a]kU1(si) for some nEN, st, ... ,s"E[-a,a]. Let N= 
i=1 

CD 

max{NS1 , ••• ,Ns,,}. Then we have 2: suplg(k,f)IP<oo for all iE{I, ... ,n} and 
k=N tel(",) 

thus 
ro n n m 

2: (2: sup Ig(k, f)I P
) = 2: (2: sup Ig(k, f)I P

) < 00 
ic=N i = 1 tel(&j) i = 1 Ic=N tEl(Sj) 

(3) 

If t'E [-a, a], then f'E 1(sj) for some j E {I, ... , n}, which implies that for kz.N, 

" Ig(k, t')IP s sup Ig(k, t)IP S L sup Ig(k, t)!p. Thus for all kz.N, sup Ig(k, t)IP S 
te I(Sj) i = 1 tel(&j) te[ -a,aJ 

n 00 

L sup Ig(k, t)IP
• By (3), we have that l; sup Ig(k, t)IP <00. Hence (2) holds. 

J = 1 tel(Sj) k=N te[-a.a] 
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To prove (ii) =:> (iii), assume that (ii) holds. Then (2) holds. To prove 

that Pg: f",,--» f p , let x E f"". Then there exists a> 0 such that IXkl s a for all kEN. 

"" By (2), there exists N EN such that L sup Ig(k, t)IP <00. This implies that 
k=N tel-a,a! 

f Ig(k,Xk)IP <00. Hence Pg(x) = (g(k,Xk));=IE fpo 
k=1 

The implications (iii)=:>(i) and (iii)=:>(iv) hold since eef"" and bsef"", 

respectivel)'. Since fp is solid, (iv) =:> (iii) is obtained by Lemma 6. o 

The last theorem of this section gIves a necessary and sufficient 

condition for Pg: OJ --» fpo 

Theorem 31. Pg: OJ --» fp if and only if there exists N E N such that 

'" L sup Ig(k, t)IP 
<00. 

k=N re1R 

Proof. Assume that Pg: OJ --» fpo Then P,: OJ --» f",. By Theorem 9, there exists 

N E 1N such that (g(k, ');=N is uniformly bounded on 1R. Then for aU k'2N, 

sup Ig(k, t)IP <00, and hence for each k'2N, there exists XkE 1R such that 
telR 

Let Xk=O for all kE{l, ... ,N-l}. Then (Xk):'IEOJ. 

'" "" L Ig(k, xk)IP <00. It implies by (*) that L sup Ig(k, t)IP 
<00. 

k=1 k=N telR 

The converse of the theorem is obvious. o 

Superposition Operators into tIl 

By Lemma 1 and the definition of f/J, we have 

Theorem 32. Pg: f/J --» f/J if and only if (g(k,O));=I= f g(k, 0) e(k) for some 
k=1 

NEN. 
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The next theorem characterizes Pg:X ----)- foo where X is one of the 

sequence spaces '-p, cs and co. The theorem follows directly from the following 

lemma. 

Lemma 33. Let X be a sequence space such that '-I C X C co. Then the 

follOWing statements are equivalent: 

(i) Pg: co~ (/J. 

Oi) Pg:X ~ (/J. 

(iii) Pg: f l ----)- (/J. 

(iv) There exist a neighborhood Vo of 0 and N E 1N such that g(k, .) = 0 on Vo 

for all k'?N. 

Proof. Since '-I ~ X C co, the implications (;)=>(ii) and (ii)=>(iii) are directly 

obtained. 

To show (iii) => (iv), suppose that (iv) is not true. This implies that 

there exist a subsequence (nS:=1 of (n):=1 and a sequence (X"t)~1 such that 

X"tE [_Tk, Tt] and g(nk,X"t):j:. 0 for all kE N. Then (X"J~IE '-I and (g(n.t,x"J)7=1 

~ (/J. Let (Y,,):lbe a sequence defmed by 

Y,. = 
if n= nt for some kE 1N, 

othetWise. 

Then (Y,,):=1 E fl and (g(n,y,,) ):=1 ~ (/J. Hence Pg: f 1-#- (/J. 

Finally, to show (iv) =;> (i), assume that (iv) holds. Then there exist 

a>O and N E 1N such that for all k'?N, 

g(k, .) o on [-a, a). 
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LetXECo. Then there exists N'2N such that IXtlsa for all k2N'which implies 

by (II<) that g(k,xt) = 0 for all k2N~ Hence (g(k,xt»;=t E (/J. This proves that 

o 

Theorem 34. If X is one of the sequence spaces lTn os and co, then ~:X ~ (/J if 

and only if there exist a neighborhood Va of 0 and N EN such that g(k, .) = 0 

on Va for all k2N. 

A characterizations of ~:X ~ (/J where X is one of the sequence spaces 

c, bs and ltxJ is as follows: 

Theorem 35. If X is one of the sequence spaces c, bs and 4 then ~:X ~ (/J if 

and only if for every bounded subset S of R, there exists N E N such that 

g(k,.) = 0 on S for all k2N. 

Proof. To prove the theorem, we shall prove that the following statements are 

equivalent: 

(i) ~:c~ (/J. 

(ii) For every bounded subset S of R, there exists N E N such that 

g(k, .) = 0 on S for all k2N. 

(iii) ~: l..,~ (/J. 

(iv) p':bs~ (/J. 

To show (i)~(ii), assume that ~:c~ (/J. Since every bounded subset of 

R is contained in a compact subset of R, we have that (ii) is equivalent to the 

following statement: 

For every s E R, there exist r > 0 and N E IN such that . 

g(k,·) = 0 on (s-r,s+r) for all k2N. 
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Next, to prove that ( ... ) holds, let 8 E JR. Since Pg: c ~ (/J and (8) + Co C c, 

Pg: (8) + co4 (/J. Then Pgs: co~ (/J. It follows from Theorem 34 that there exist r> 0 

and NE IN such that gik,') = 0 on (-r, r) for all k'?N. But {g6(k, t) Iltl<r} = 

{g(k, t) Ilt-81<r} for all kE N, so g(k,·) == 0 on (8-r,8+r) for all k'?N. 

To prove (ii):::.:> (iii), assume that (ii) holds. To show that Fe: ta:J~ (/J, let 

x E too. Then there exists a > 0 such that IXkl s a for all kEN. By (ii), there 

exists N E N such that g(k,·) = 0 on [- a, a] for all k'?N. Then g(k,Xk) = 0 for 

all k'?N. This shows that (g(k~Xk»);=lE (/J. Hence (iii) holds. 

The implications (iii) :::.:>(i) and (iii):::.:>(iv) hold since -cet"" and b8et"", 

respectively. Since (/J is solid~ (iv) :::.:> (iii) follows from Lemma 6. o 

We end this section by characterizing Pg: OJ ~ (/J. 

Theorem 36. Pg: OJ ~ (/J if and only if there exists N E N such that g(k,·) = 0 

on R for all k'?N. 

Proof. Suppose that for every n E N, there exist k > II and t E R such that 

g(k, t):t: O. Then there exist .a subsequence (nk)~l of (n):~1 and a sequence (X"k)~1 

such that g(nk, x"k):t:O for all kE N. Then (g(nA:,X"k»;=l ~ (/J. Let (Y,,):=l be a 

sequence defmed by 

y" = 
if n = nk for some kE IN, 

otherwise. 

Then (y,,):=lE OJ and (g(n'Y"»):=I~ (/J since (g(nk,x"J);=1 is a subsequence of 

(g(n,Y"»):=I' This proves that if Pg: OJ ~ f/J, then there exists N EN such that 

g(k, .) = 0 on lR for all k'?N. The converse of this statement is obvious. 0 



CHAPTER III 

CONTINUITY OF SUPERPOSITION OPERATORS 

The work on continuity of superposition operators we have seen has 

been done by I.Robert [1]. Under the conditions of g:NxR~1R that 

g(k,O) = 0 and g(k,·) is continuous at 0 for all kE N, he has given a 

characterization determining when the superposition operator ~ between any two 

Orlicz sequence spaces is continuous at (0). By making use of our results in 

Chapter IT, without any additional conditions of g, we characterize ~:X ~ Y 

which is continuous at every point of X where X E {(/J, lp, CS, co, c, bs, la., (j)} 

and Y E {(/J, lp, Co, c, la., (j)}. The topologies for these sequence spaces are 

standard ones given in Chapter I. 

We recall that all classical sequence spaces we consider contain (/J. For 

each tE R, we have t/k)E (/J for all kEN. Then for a sequence space X 

containing (/J, we have te (k) E X for all t E 1R and kEN. An important 

consequence of this fact is as follows: Let X and Y be topological sequence 

spaces, (/JcX and p':X ~Y. Then (1) implies (2) where 

(1) for XEX, ~ is continuous at x if and only if g(k,·) is continuous at XI; 

for all keN and 

(2) ~ is continuous on X if and only if g(k,·) is continuous on R for all 

keN. 
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Continuous Superposition Operators into OJ 

We recall that OJ is a metric K-space with the metric dID defined by 

and for x, xC,,) E OJ (n EN), lim XCII) = x in (j) if and only if lim x~) = Xt in 1R. for all 
n~m n~m 

kE N. The following two lemmas are useful for this section. 

Lemma 1. Let X be a metric K-space. For XEX, if g(k,·) is continuous at Xt 

for all kE IN, then l>g:X ~ OJ is continuous at x. 

Proof. Let XEX and assume that g(k,·) is continuous at Xt for all kE N. To 

show that l>g:X ~ OJ is continuous at x, it is equivalent to show that for any 

sequence (x("»;=1 in X, lim xCIf) = x in X implies lim l{(X(If» = l{(x) in OJ. Let (x(II»;=1 
11-+00 11-+00 

be a sequence in X such that lim X(II) = x in X. Since X is a K-space, we have that 
n-+oo 

lim x~) = Xk in 1R. for all kEN. Then by the continuity of each g( k, .) at Xt, 
n-+" 

limg(k,xi"»=g(k,xk) in 1R. for all kElN which implies that lim(g(k,x~»);=1 
n~m n~m 

= (g( k, Xt) );=1 in OJ. Hence lim l{(X(If» = l{(x) in OJ. 0 
11-+00 

Lemma 2. Let X be a normed sequence space containing (/J. Assume that there 

exists a>O such that lIe(")lIxs a for all n E 1N. For x EX, if l>g:X ~ OJ is 

continuous at x, then g(k,·) is continuous at Xt for all kE N. 

Proof. Let x EX and assume that ~:X ~ (j) is continuous at x. Let kE IN. To 

prove that g( k, .) is continuous at Xt, let e> 0 be given. Set p = min {2£+1 ' 

i'(:+&)}· Then O<ps i'(:+&) which implies that 2tpse(1-i:p). But PS)+I' 

501-2"p>0. Then (l~~P) s £. Since l>g is continuous at x, there exists 8>0 

such that for each Z EX, 
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liz -xlix < 8 implies d,/?g(z), ?g(x») < P. (*) 

Let tE R be such that It-xA:I<!. Let u = (t-xA:)e(A:) +x. Then UA: = t. Since 

(fJc;;;;,X and XEX, we have UEX. Then lIu-xllx = lI(t-xA:)e(A:)lIx = It-xA:llle(A:)llx < 
o Ig(k,t)- g(k,x~1 
(ia = 8, so by (*), we have i;(l+lg(k,t)-g(k,XA:)I) s d,/?g(u),?g(x») < p. It 

~ follows that Ig(k, t)-g(k,XA:) I «l~tp) s c. o 

The sequence spaces (fJ, fp, cs, Co, c, bs and fa. are nonned K-spaces 

containing (fJ and in these spaces, the nonn of e ( .. ) is 1 for every n E IN. Then the 

following theorem follows directly from Lemma 1 and Lemma 2. 

Theorem 3. Let X be one of the sequence spaces (fJ, fp, cs, Co, c, bs and fa.. 

Then under considering Fe:X ~ 0), the follOWing statements hold: 

(i) For x EX, Fe is continuous at x if and only if g(k,·) is continuous at XA: 

for all k E IN. 

(ii) Fe is continuous on X if and only if g(k,·) is continuous on R for all 

kElN. 

In order to characterize the continuous superposition operator Fe: 0) ~ 0), 

we need Lemma 1 and the next lemma. 

Lemma 4. Let Y be a metric K-space and assume that Fe: 0) ~ Y. For x E 0), if 

?g is continuous at x , then g(k,·) is continuous at XA: for all kE IN. 

Proof. Let x EO) and assume that Fe is continuous ~t x. Let kE IN. To show 

that g(k,·) is continuous at XA:, let (y .. );=l be a sequence such that limy .. = Xk in R. 
n....,oo 

For each n E lN, defme the sequence z(") by 



(,,) 
Zi = 

{

' y" 

XI 
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if i = k, 

if i:;t:. k, 

that is, z <n) = (Xh ... ,Xk-hYn,Xk+I, ... ). Then lim z~n) = limy" = Xk in R and if i:;t:. k, 
n~CII II~OD 

we have lim z;) = lim Xi = Xi in R. This implies that lim z<1f) = X in (j). Since Pg is 
n~DO n-+m n~oo 

continuous at x, lim Pg(z<n» = Pg(x) in Y. But (Pg(z<1f»)k=g(k,zr»=g(k,y,,) and 
II~OD 

(Pg(X»k= g(k,Xk), so lim g(k,y,,) = g(k,Xk) in R since Y is a K-space. This shows 
. n~m 

that g( k, .) is continuous at Xk. o 

Since (j) is a metric K-space, by Lemma 1 and Lemma 4 we have 

Theorem 5. Under considering Pg: (j) -701= the follOWing statements hold: 

(i) For X E (j), Pg is continuous at X if and only if g(k,·) is continuous at Xk 

for all kE N. 

(ii) Pg is continuous on (j) if and only if g(k,·) is continuous on R for all 

kEN. 

Continuous Superposition Operators into ir» 

We begin this section by recalling that 1I·llt s II· lit on fp and 1I·lIt s 211·lIbs co p co 

on bs. Then II· lit .. s 211· lies on cs since cs is a normed subspace of bs. Since the 

norm in each of t/J, co, and c is the sup-norm, we have that II· lit .. = 1I·llx on X if 

X is one of t/J, Co, and c. 

Lemma 6. Let X be a normed sequence space containing t/J and Y a normed 

sequence space such that Y C fr». Assume thai 

(i) Pg:X -7 Y, 

(ii) there exists a> 0 such that II e (")lIx s a for all n E 1N and 
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(iii) 1I·lIt , s PII·lly on Y for some p>o . .. 
For x E X, if p" is continuous at x, then for any &> 0, there exists 8> 0 such that 

for all kE lN, tE R, 

It -xkl < 8 implies Ig(k, t) - g(k, Xk) I < e. 

Proof. Assume that p" is continuous at x EX. Let & > 0 be given. Then there 

exists 8> 0 such that for each z E X, 
\ 

liz -xlix < 8 implies 1IP"(z) - P,,(x) lIy < p. 

, 0 
LetkElN and tER be such that It-Xkl<a-. Let U=(t-xk)e(k)+x. Then Uk=t. 

Since (/JcX, u EX. Then by (ii), lIu-xllx = 1I(t-xk)e(k)lIx = I t-xkllle(k)lIx < ~a = 8-

By (*), we have that 1IP"(u)-P"(x)lIy <p' Hence by (iii), Ig(k,t)-g(k,Xk)l< 

1IP"(u)-P"(x)lIt s PIIP"(u)-P"(x)lIy < &. 0 ., 

Lemma 7. Let Y be a normed subspace of faJ and X a normed sequence space 

such that X C faJ and II· lit s a 1I·lIx on X for some a> O. Assume that P":X ~ Y . .. 
Then for x EX, p" is continuous at x if the following statement holds: 

For any &>0, there exists 8>0 such thatfor all kE lN, tE R, 

It-Xkl < 8 implies Ig(k,t)-g(k,Xk)1 < &. 

Proof. First, we note that 1I'lIy = II· lit on Y. Assume that (*) holds. To show ., 

that p" is continuous at x, given &>0. Then by (*), there exists 8>0 such that 

for all k E lN, t E R, It -xkl < 8 implies Ig(k, t) - g(k, Xk) I < &. Let z E X be such 

that I:z-xllx < ~. Then by assumption, we have that IZCXkl < IIz-xllt., s a liz-xlix 

< 8 for all kE IN. This implies that Ig(k, Zk)- g(k,Xk) 1< & for all kE IN. Hence 

1IP,,(z)-P,,(x)lIy = 1IP"(z)-P"(x)lIt .. s 1::. This shows that p" is continuous at x. 0 
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The following theorem is an immediate consequence of Lemma 6 and 

Lemma 7. 

Theorem 8. If X is one of the sequence spaces (/J, fp, cs, co, c, bs and f"" and 

.?g:X ~ fro, then for x EX, .?g is continuous at x if and only if for any 8>0, there 

exists 8> 0 such that for all kEN, t E R, 

It-Xtl < 8 implies Ig(k, t)-g(k,xt) 1< e. 

Characterizing when .?g is continuous at every point of (j) where 

.?g: (j) ~ frn is a part of the next lemma. The lemma is also referred in the next 

section. 

Lemma 9. Let Y be a normed subspace of l,., and assume that ~: (j) ~ Y. Then 

for x E (j), .?g is continuous at x if and only if 

(i) g(k,·) is continuous at Xt for all kE IN and 

(ii) for any 8> 0, there exists N E N such that for all kEN, t E R, 

k ~ N implies Ig(k, t) - g(k, Xt) I < 8. 

Proof. Assume that .?g is continous at x E (j). Since fro is a norrned K-space and 

Y is a norrned subspace of f"", Y is a norrned K-space. Then by Lemma 4, (i) 

holds. To show that (ii) holds, suppose not. Then there exists 8>0 such that 

for all n E 1N there exist k~ nand t E R such that 

Ig(k, t) - g(k, Xt) I ~ e. (1) 

Let 8 >0 be given. Then there exists mE 1N such that 2-m < 8, so by (1), there 

existj~m and s E R such that Ig(j,s) - g(j,Xj) I ~ 8. Let Z = (s-xj)e U
) +X. Then 

h h d Is - ~ I -j -m ~ d II II we avetatzEaJ, ",(z,x)=2j(1+ls_x))~2 ~2 <van .?g(z)-.?g(x)y~ 
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Ig(j, s) - g(j, Xj) I ~ c. This proves that Pg is not continous at x, a contradiction. 

Hence (ii) holds. 

Conversely, assume that 0) and (ii) are true. To show that Pg is 

continous at x, let c>O be given. Then by (ii), there exists N EN such that for 

all kE N, tE R, 

k ~ N implies Ig(k, t) - g(k, Xk) I < c. (2) 

By (i), there exists 0'>0 such that for all kE {I, ... ,N-1}, tE R, 

It -xkl < 0' implies Ig(k, t)- g(k,Xk) I < c. (3) 

L t S:I- • {I a} Th 2N a' < s: I t b h th t e u -nun 2N+ 1' 2N(l+S)' en (l-2Na')- u. Je ZE 0) e suc a 

d.l.,z, x) < O'~ Then by (2), Ig(k, Zk)- g(k, Xk) 1< c for all k~N. For 
IZk -xkl 1 

kE{1, ... ,N-1}, we have that i;(l+lzk_xkl)~d",(z,x)<O'. Then for 

k {I N I} IZk-Xkl 2k S:I 2N S:I hi h' li h I I 2
N

a' 
E , ... , - 'l+l zk- xk'< o~ U w c unpestatzk-xk<(1_2Na')~ 

0. It follows from (3) that Ig(k, Zt) - g(k, Xk) I < c for all k E {I, ... ,N -I}. 

Hence Ig(k,Zk)-g(k,xk)l<c for all kEN. This implies that IIPg(z)-Pg(x)lIy= 

IIPg(z)-Fe(x)lI l ~ c. This shows that Fe is continuous at x. ., 

Theorem 10. If Pg: 0) -+ i m, then for x E 0), Pg is continuous at x if and only if 

(i) g(k,·) is continuous at Xk for all kE Nand 

(ii) for any c>O, there exists N EN such thatfor all kE N, tE 1R, 

k ~ N implies Ig(k, t)- g(k, Xk) I < c. 

Continuous Superposition Operators into c 

o 

Since II e ("i ll~ = 1 for all n E: Nand II· lit., = II· n~ on lP, we have the 

following theorem by Lemma 6 and Lemma 7. 
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Theorem 11. If Pg: (/J ~ c, then for x E (/J, Pg is continuous at x if and only if 

for any £ > 0, there exists 8> 0 such that for all kEN, t E JR, 

It -xtl < 8 implies Ig(k, t) - g(k, Xt) I < £. 

Our next step is to determine a necessary and sufficient condition for 

Pg:X ~ c to be continuous on X where X is one of t p , cs and co. It is an 
\ 

immediate consequence of Lemma 6, the relationships of norms mentioned in the 

beginning of the section entitled "Continuous Superposition Operators into t..," 

and the following lemma. 

Lemma 12. Let Y be a normed subspace of c and X a normed sequence space 

such that t1 C X c;;;, Co and II· lit., ~ a II· IIx on X for some a> O. Assume that 

Pg:X ~ Y. Then for x EX, if g(k,·) is continuous at Xk for all kE N, then Fe is 

continuous at x. 

Proof. Let x E X and assume that g( k, .) is continuous at Xt for all k E 1N. To 

show that Fe is continuous at x, by Lemma 7, it suffices to show that for any 

£>0, there exists 8>0 such that for all kE N, tE 1R, 

It -xtl < 8 implies Ig(k, t) - g(k, Xt) I < e. (1) 

Let £>0 be given. Since Pg:X~Y, t1cXCCO and Ycc, by Lemma IT.12, 

lim g(k, 0) exists and (g(k, '»);=1 converges continuously at 0 to lim g(k, 0). Let 
~oo ~oo 

L = lim g(k, 0). Then there exist 8> 0 and N E N such that for all kEN, t E lR, 
k-'i ttl 

k ~ Nand It I < 8 imply Ig(k, t)-LI < ;. (2) 

Since x E X C co, there exists N'~N such that I xti < g for all k~ N~ By (2), we 

have Ig( k, Xt) - L I <; for all k~ N: Since g( k, .) is continuous at Xt for all 
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kE{1, ... ,N'-1}, there exists 8'ER with 0<8's g such that for all 

kE {1, ... ,N'-1}, tER, 

It -x.tl < 8' implies Ig(k, t) - g(k, x.t) I < £. (3) 

Let kE Nand tE R be such that It-x.tl < 8~ If kz.N; then Ig(k,x.t)-LI <; and 

It I sit -x.tl + IX.t1 < 8'+ g s ; + ; = 8, so by (2), we have that Ig(k, t)-L 1< ; and 

thus Ig(k,t)--;g(k,x.t)lslg(k,t)-LI+IL-g(k,x.t)I<; +; =8. If kE{1, ... , 

N'-1}, then by (3), Ig(k, t)-g(k, x.t) 1< 8. This proves that (1) holds, as 

required. o 

Theorem 13. If X is one of the sequence spaces in cs and Co and .?g:X ~ c, then 

the following statements hold: 

(i) For XEX, .?g is continuous at x if and only if g(k,·) is continuous at x.t 

for all kE N. 

(ii) .?g is continuous on X if and only if g(k,·) is coniinuous on R for all 

kEN. 

To study the continuity of.?g: c~ c, we prove the following lemma. The 

lemma yields the next theorem directly. 

Lemma 14. Let Y be a normed subspace of c and assume that .?g: c ~ Y. Then 

for x E C, .?g is continuous at x if and only if g( k, .) is continuous at X.t for all 

kEN. 

Proof. It follows from Lemma 6 that if .?g is continuous at x E c, then g( k, .) is 

continuous at X.t for all kEN since II e (")ll
c 
= 1 for all n E Nand 11'lI

le 
= II, Ily on Y. 

Conversely, let x E c and assume that g(k,·) is continuous at X.t for all 

kEN. Since x E c Cia>, there exists a> 0 such that IX.t1 s a for all kEN. Since 
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Pg:c-)Yand YC;;;;;c, by Theorem II.14, we have limg(k,t) exists for all te1R, 
k--+ 00 

h == limg(k,·) is continuous on 1R and (g(k, '»:=1 converges uniformly to h on 
k--+ 00 

[-2a,2a]. Since h is continuous on Rand [-2a, 2a] is a compact subset of 1R, 

h is uniformly continuous on [-2a, 2a). To prove that Pg is continuous at x, by 

Lemma"7, it is enough to show that for any &>0, there exists 8>0 such that for 

allkElN, tE1R, 

It -xtl < 8 implies Ig(k, t)-g(k,xt) I < &. (1) 

Let &>0 be given. Since (g(k, '»):=1 converges uniformly to h on [-2a,2a), 

there exists N E IN such that 

Ig(k, t)-h(t)1 < ; for all k-z.N and tE [-2a, 2a). (2) 

Then Ig(k,Xk)-h(Xk)1 < ; for all k-z.Nbecause IXkl ~ a for all kEN. By uniform 

continuity of h on [-2a,2a), there exists 8E 1R with 0 < 8~ a such that for all 

(3) 

Since g(k,·) is continuous at Xk for all kE {1, ... ,N-1}, there exists 8'E 1R with 

o < 8'~ 8 such that for all kE {1, ... ,N-1}, tE 1R, 

It -Xtl < 8 / implies Ig(k, t) - g(k, Xk) I < &. (4) 

Let k E 1N and t E 1R be such that It -xkl < 8~ Then I t I ~ It -xkl + IXkl < 8' + a ~ 

a+a= 2a, so by (3), we have Ih(t)-h(XAJI < ;. If k-z.N, then by (2), we have 

that Ig(k,t)-h(t)I < ; and hence Ig(k,t)-g(k,Xk)I ~ lg(k,t)-h(t)I+lh(t)-h(Xk)1 

+lh(Xk)-g(k,xt)1 < ; +; +; = &. If kE {I, . . . ,N-l}, then by (4), we have 

Ig(k, t) - g(k, Xk) I < &. This proves that (1) holds. 0 
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Theorem 15. If Pg: c ~ c, then the following statements hold: 

(i) For x E C, Pg is continuous at x if and only if g(k,·) is continuous at Xk 

for all kEN. 

(ii) Pg is continuous on c if and only if g(k,·) is continuous on JR. for all 

With ,the help of the statements mentioned at the beginning of the 

section entitled "Continuous Superposition Operators into l",", Lemma 6 and the 

next lemma characterize when Pg is continuous on X where X is anyone of bs 

and loo and Pg:X ~ c. 

Lemma 16. Let Y be a normed subspace of c and X a normed sequence space 

such that bs cX<;;;;;; foo and 1I·llt~:S all·llx on X for some a>O. Assume that 

Pg:X ~ Y. Then for x EX, if g(k,·) is continuous at Xk for all kE N, then Pg is 

continuous at x. 

Proof. Let XEX and assume that g(k,·) is continuous at Xk for all kE N. To 

show that Pg is continuous at x, by Lemma 7, it suffices to show that for any 

&>0, there exists 8>0 such that for all kE N, tE JR., 

It -xkl < 8 implies Ig(k, t) - g(k, XA) I < e. (1) 

Let & > ° be given. Since x EX C too, there exists fJ> ° such that IXkl:s fJ for all 

kEN. Since Pg:X~Y, bs<;;;;;;X<;;;;;;loo and ycc, we have Pg:bs~c. Then by 

Theorem II.I8, we have that limg(k,O) exists and (g(k, ·»:=1 converges 
K-HO 

uniformly to lim g(k, 0) on [-2fJ,2fJ]' Let L = lim g(k, 0). Then there exists 
~oo ~ oo 

N EN such that for all kE N, t E JR., 

Ig(k,t)-LI < ; for all k~N and tE [-2fJ, 2fJJ. (2) 
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Since IXtl s P for all k E IN, by (2) we have Ig(k, Xt) - L I < ; for all k'2 N. Since 

g(k,·) is continuous at Xt for all kE {l, ... ,N-l}, there exists OE R. with 

0< 0 s P such that for all k E {I, ... ,N -I}, t E R, 

It -xtl < 0 implies Ig(k, t) - g(k, Xt) I < 8. (3) 

Let kE IN and t E R. be such that It -xtl < O. Then It I s It -xtl + IXkl < p+ps 2p. If 

k'2 N, then by (2), we have that Ig(k, t) - L I <; and thus Ig(k, t) - g(k, Xk) I s 
\ 

Ig(k,t)-LI+IL-g(k,xt)1 < ; +; =8. If kE{l, ... ,N-l}, then by (3) 

Ig(k, t)- g(k,Xk) 1< 8. This proves that (1) holds. 0 

Theorem 17. If X is one of the sequence spaces bs and too and .?g:X ~ c, then 

the following statements hold: 

(i) For x EX, .?g is continuous at x if and only if g(k,·) is continuous at Xt 

for all kE IN. 

(ii) .?g is continuous on X if and only if g(k,·) is continuous on .R for all 

kElN. 

The last theorem of this section is a special case of the following lemma. 

Lemma 18. Let Y be a normed subspace of c and assume that .?g: OJ ~ Y. Then 

for x E OJ, .?g is continuous at x if and only if g( k, .) is continuous at Xk for all 

Proof. According to Lemma 9, we have that if Pg is continuous at x E OJ, then 

g(k, .) is continuous at Xt for all kE IN. 

Conversely, let x E OJ assume that g( k, .) is continuous at Xk for aU 

kE IN. To show that .?g is continuous at x, by Lemma 9, it suffices to show that 

for any 8 > 0, there exists N E IN such that 



48 

Ig(k, t)-g(k,x.lJI < & for all k~N and tE R. 

Let &> 0 be given. Since.?g: m ~ Y and Y ~ c, .?g: m ~ c. Then by Theorem II .19, 

we have that lim g(k, 0) exists and (g(k, ·»);=1 converges uniformly to lim g(k, 0) 
~oo ~oo 

on R. Let L = lim g(k, 0). Then there exists N E IN such that 
Ic~m 

Ig(k, t)-LI < ; for all k~N and tE R. 

In particular, Ig(k,Xk)-LI < ; for all k~N. By this inequality and (*), we have 

that Ig(k, t)- g(k,XAJ I::; & for all k ~ Nand tE R. 0 

Theorem 19. If~: m ~ c, the following statements hold: 

(i) For x E m, .?g is continuous at x if and only if g(k, -) is continuous at Xk 

for all kE IN. 

(ii) .?g is continuous on m if and only if g(k,·) is continuous on R for all 

kElN. 

Continuous Superposition Operators into Co 

The frrst theorem follows directly from Lemma 6 and Lemma 7. 

Theorem 20. If.?g: (/J ~ co, then for x E (/J, .?g is continuous at x if and only if 

for any &>0, there exists 8>0 such that for all kE IN, tE R, 

It -xkl < 8 implies Ig(k, t) - g(k, Xk) I < &. 

Lemma 6, Lemma 12, Lemma 14, Lemma 16 and Lemma 18 lead us to 

have the following theorem. 
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Theorem 21. If X is one of the sequence spaces fp, cs, co, c, bs, foo and OJ and 

Pg:X -)- co, then the following statements hold: 

(i) For x EX, Pg is continuous at x if and only if g(k,·) is continuous at Xt 

for all kE IN. 

(ii) Pg is continuous on X if and only if g(k,·) is continuous on 1R for all 

kElN. 

Proof. By Lemma 14 and Lemma 18, the theorem holds for the case that X= c 

or OJ. 

Recall that if X is anyone of fp, cs, co, bs and foo, then II e (n)llx = 1 for aU 

n E IN. Then by Lemma 6 we have that for X = fp, cs, co, bs and foo, if Pg is 

continuous at x EX, then g(k,·) is continuous at Xt for all kE IN. The converse 

is true by Lemma 12 and Lemma 16 since 1I·lIt~S /I·lItp on fp, 1I·lIt~S 211·/lcs on cs, /I. 

lit., = 11·llco on Co and II· lit., S 211·lIbs on bs. 0 

Continuous Superposition Operators into I., 

We first prove a lemma. It is useful for the next two theorems in 

characterizing when Pg:X -)- fp is continuous on X where X is anyone of f1j, cs 

and co. 

Lemma 22. Let X be a normed sequence space such that cs eX <;;;; Co and 

1I·lle.,s all·llx on X for some a>O. Assume that Pg:X-)-fr Then for XEX, if 

g(k,·) is continuous at x* for all kE IN, then Pg is continuous at x. 

Proof. Let x E X and assume that g( k, .) is continuous at x* for all k E 1N. Since 

Pg:X-)-fp and cs<;;;;X, we have Pg:cs-)-Rr By Theorem II.29, there exist p>O 
00 

and mlElN such that l: sup Ig(k,t)IP<oo. Since XEXCCo, there exists m22ml 
t=ml tE[-P.P] 
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such that IXtl <-if for all k~ m 2' To show that Pg is continuous at x, let e>O be 
00 00 

given. Since L; sup Ig(k, t)IP <<X), lim L; sup Ig(k, t)IP= O. Then there exists 
t=ml t e [-p.p] n~oo t=,. te[-p.p] 

N ~ m 2 such that 

CD P E P 

L; sup Ig(k, t)1 < 2P+I' 
t=N te[-p.p] 

(1) 

Since g( k, .) is continuous at Xt for all k E. {1, ... , N - 1 }, there exists 8 E JR with 
Ji . o < 8 ~ 2 suc~ that for all k E {1, ... , N - 1 }, t E JR, 

( 
EP)11p 

It -xtl < 8 implies Ig(k, t) - g(k, Xt) I < 2N . (2) 

8 Let zEXbe such that IIz-xllx< a' Then I ZCxtl ~ IIz-xllt.,~ a liz-xlix < 8 for all 

p EP 

kEN. By (2), Ig(k, Zt)-g(k, x.) I < 2N forallkE{1 , ... ,N-1}. Fork ~N, we 

have that IZtl ~ IZk-Xtl + IXtl < 8 +-if ~ -if +-if = f1 Then for k ~N, 

Ig(k, Zt) - g(k, Xt) IP 
~ (Ig(k, zk)1 + Ig(k, Xt) I)P 

:S 2P max{ Ig(k, Zt)!P, Ig(k, Xt) IP} 

~ 2P sup Ig(k, t)IP. 
te[-p.PJ 

By (1), we have 

co 00 

L; Ig(k, Zt) - g(k, Xt) IF ~ 2FL; sup Ig(k, t)IP 

t=N t=N te[-p.p] 

< F E P EP 

2 2P+ 1 = 2 . 

Hence 

This implies that IIPg(z)-Pg(x)lI
l 
= (t Ig(k, Zt)-g(k, Xt) 0 lip < e. 

p t = l 
o 

Theorem 23. If Pg: (fJ ~ i p , then for x E tlJ, Pg is continuous at x ~f and only if 

(i) g(k,·) is continuous at Xt for all kE Nand 
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(ii) there exist a neighborhood Va of 0 and N E IN such that 

'" L sup Ig(k, t)IP <<X). 
k=N teVo 

Proof. Let x = i: Xte(k)E (/J. Assume that Pg is continuous at x. By Lemma 6, 
1..=1 

g(k, .) is continuous at XI.. for all kE IN. Since Pg is continuous at X, there exists 

8> 0 such that for each Z E (/J, 

IIz-xlI~ < 8 implies IIPg(z)-Pg(x)lIt ::; 1. 
p 

(1) 

Claim that 

ro 

l: sup Ig(k, t)- g(k, O)r ::; 1. (2) 
1..=",+1 te[-8.b] 

_" (I..) 
To prove (2), let n ~ m + 1 and tm+1, ... , tlfE [-8, 8]. Set u - l: tke + x. Then 

1..=",+1 

Ilu-xlI~ = II i: tke(k) II~::; 8, so by (1), t Ig(k, t.l;)- g(k, O)IP::; (IIPg(u)-~(x)lIt )p$ 
1..=",+1 1..=",+1 p 

1. This implies that sup { i: Ig(k, tk)-g(k, O)IP I tm+h ... , t"E [-8, 8]} $ 1 for all 
k=m+l 

n> m. But i: sup Ig(k, t)-g(k, O)IP 
= sup { i: Ig(k, tt)- g(k, O)IP I tm+h • •• , tltE 

1..=",+1 te[-c.b] 1..=",+1 

[-8,8]} for all n>m, so ~ sup Ig(k,t)-g(k,O)IP~ 1. Next, to show that 
k=m+l te[-c.51 

<Xl 

there exist a neighborhood Va of 0 and N E IN such that L sup Ig(k, t)IP 
<00, by 

k=N teVo 

Theorem IT. 27, it is equivalent to show that Pg: Co-)- 'po Let Z E co. Then there 

'" exists N> m such that I zkl < 8 for all k~ N, so by (2), l: Ig(k, Z.I;)- g(k, O)IP::; l. 
k=N 

. '" 
Since~: (/J-)- fp and (0) E (/J, l: Ig(k, O)IP < 00. Then for n~N, 

k=1 
It " L Ig(k, z~) IP 

$ L (Ig(k, Zk) - g(k, 0) 1+ Ig(k, 0) I)P 
k=N k=N 

ro 

which implies that L Ig(k, zk)IP <<X). Then Pg(z) = (g(k, Z'»);=IE £p~ This proves 
k=1 
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Conversely, assume that (i) and (ii) hold. The assumption (ii) implies 

that Pg: Co~ fp by Theorem II .27 and hence Pg is continuous at x by (i) and 

Lemma 22. Since l/J is a normed subspace of Co, it follows that Pg is continuous 

at x under the consideration of Pg: l/J ~ fr 0 

Theorem .24. If X is one of the sequence spaces cs and Co and Pg:X ~ fp, then 

the following'statements hold: 

(i) For x EX, Pg is continuous at x if and only if g(k,·) is continuous at Xk 

for all kEN. 

(ii) Pg is continuous on X if and only if g(k,·) is continuous on 1R for all 

kEN. 

Proof. It follows from Lemma 6 and Lemma 22. o 

The next theorem deals with the continuity of .?g: fq~ fr 

Theorem 25. If Pg: fq~ fp, then the following statements hold: 

(i) For x E f q , Pg is continuous at x if and only if g(k, .) is continuous at Xt 

for all kEN. 

(ii) Pg is continuous on fq if and only if g(k, ·) is continuous on 1R for all 

kEN. 

Proof. let x E f q • By Lemma 6, we have that if Pg is continuous at x, then g(k, .) 

is continuous at Xt for all kE N. To show the converse, assume that g(k,·) is 

continuous at X k for all kE N. To show that Pg is continuous at x, given &> 0. 

Since Pg: fq~ fp, by Theorem II.26, there exist a >O, /3> 0, mE:IN and (Ct)'~;)=I E fl 

such that 

Ig(k, t)IP S Ck + Pltl
q for all k 2 m and tE [-a, a] . (1) 
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ro '" 

Since x E lq and (CA)';,IE II we have that limxb lim 2: IX,tlq and lim 2: Cot are all O. 
K-HO n ..... oo ,t=n n ..... ro k=n 

Then there exists N~ m such that 

IXkl s a for all k ~ N, (2) 
ro . {( ar 1 ( ~) ~} 2: IXAt s mm 2 ' 2q p2P+3 , p2P+3 and (3) 

k=N 
ro sP 2: Ck S 2P+ 1' 

(4) 
k=N 

Then by (1)' and (2), Ig(k,Xk)IPs Ck+ PIXAt for all k~N. Since g(k,·) is 

continuous at Xk for all kE {I, ... ,N-l}, there exists 8E R with 0 < 8s 

. {a 1 ( ~ )lIq} mm 2'2 p2P+3 suchthatforallkE{l, ... ,N-l}, tER, 

( 
SP)IIP It -xkl < 8 implies Ig(k, t) - g(k, Xk) I < 2N . (5) 

Let ZE fq be such that liz-xii, < 8. Then II(Zk)%N-(XA)';,NII, s liz-xII, < 8, so for 
q q q 

k~N, 

IZkl 

and 

/I (Zk)';,N III 
q 

S II (Zk)';,Nll i q 

s II(Zk):=N-(Xk)';,Nlli + II(XIJ';,NlIl q q 

< 8+~ 
2 (by (3» 

s ~+..E: = a 2 2 

S lI(zk)~N-(XA)~Nlll + li(xA)';,NII, 
q q 

< t5 J...(~)lIq 
+ 2 p2P+3 (by (3» 

S J...(~)lIq + J...(~)lIq 
2 p2P+3 2 P2P+> 

( ~ )lIq 
p273 . 

(6) 

Then %)zlr = (11(Zk)';,ull'qf < p~+3' By (1) and (6), we have that for kzN, 

Ig(k,Zk)!PS Ck+ PIZklq and thus 

Ig(k, z;;) - g(k, Xk) iP s ( Ig(k, Zk) 1+ Ig(k, XI;) I )p 

s 2P max{ Ig(k,Zk)I P
, Ig(k,x.)I P

} 

s 2P (Ig(k, zk)I P + Ig(k, Xk) n 
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It then follows that 

co 

L \g(k,zt)-g(k,xt)\P s 
t=N 

< 2P+
1 

EP + 2PP "..P + 2PP e (by (3) and (4)) 
2P+ 3 jJ2P+3 jJ2P+3 

= 2 . 

For all kE{l~ ... ,N-l}, we have that Izcxtlsllz-xllt<8 and thus by (5), 
q 

N-J <Xl 

= L Ig(k, Zt)- g(k,xt) IP + L Ig(k, Zt)- g(k,xt) IP 

t=1 t=N 
E P If 

< (N-l) 2N +2 < 

(

<Xl )IIP 
HenceIlPg(z)-Pg(x)lIt= L Ig(k,zt)-g(k,Xk)IP <e. 

p k=1 
o 

The next theroem is obtained from Lemma 6 and the following lemma. 

Lemma 26. Let X be a normed sequence space such that X c 1.00 and X contains 

cor bs and 1I·lIt s all·llx onX for some a>O. Assume that Pg:X~fp" Thenfor 
'" 

X EX, if g(k,·) is continuous at Xk for all kE N, then Pg is continuous at x. 

Proof. Let x E X and assume that g( k, .) is continuous at Xt for all kEN. Since 

X EX C 1.00, there exists p:2 0 such that I Xtl S P for all kEN. Since Pg:X ~ fp and 

X contain c or bs, by Theorem II .30, there exists mE:IN such that 
00 
L sup Ig(k, t)\P <co. To show that Pg is continuous at x, let e> 0 be given. 
k=m re[-2P.2Pl 

<Xl <Xl 

Since L sup Ig(k, t) t < co, lim L sup Ig(k, t) \P = O. Then there exists N:2 m 
k=m te[-2P.2Pl 1J~<Xl t=n re[-2P.2Pl 

such that 

00 
L sup Ig(k, t)IP < (1) 
k=N te[-2P. 2PJ 
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Since g( k, .) is continuous at Xt for all k E {I, ... , N - I}, there exists 8 E 1R with 

o < 8::; 13 such that for all k E {I, ... , N - 1 }, t E R, 

( 
SP)I/P 

It -xtl < 8 implies Ig(k, t)- g(k,xt) I < 2N . (2) 

Let Z EX be such that liz-xlix <!. Then IzcXtl::; liz-xiii",::; a liz-xlix < 8 for all 

kElN. By (2), Ig(k,Zt)-g(k,xt)IP < 2~ for all kE {I, ... ,N-I}. For kElN, we 

have that IZtl::; IZt-xtl+lxtl < 8+ {3s, p+{3= 2ft Then for k~N, 

Ig(k, Zt) - g(k, Xi) IP s, (Ig(k, Zt)1 + Ig(k, Xi) I)P 

::; 2P max { Ig(k, Zi) (, Ig( k, Xt) I P} 

S, 2P sup Ig(k, t)IP
• 

tE(-2P. 2Pl 
(3) 

00 sP 
By (I) and (3), we have that t~)g(k,zt)-g(k,xt)IP<T' Therefore, we have that 

< 
sP sP 

(N-I)- +-
2N 2 

< 

o 

Theorem 27. ffX is one of the sequence spaces c, bs and I.", and ~:X ~ I.p , then 

the following statements hold: 

(i) For x EX, ~ is continuous at x if and only if g(k,·) is continuous at Xt 

for all kE IN. 

(ii) ~ is continuous on X if and only if g(k,·) is continuous on R for all 

kElN. 

The -tast theorem of this section characterizes when ~:X ~ I.p IS 

continuous on m. 



Theorem 28. If~: OJ ~ fp, then the following statements hold: 

(i) For x E OJ, ~ is continuous at x if and only if g(k,·) is continuous at Xk 

for all kE IN. 

(ii) ~ is continuous on OJ if and only if g(k,·) is continuous on R for all 

kElN. 

Proof. Let x E OJ. By Lemma 4, if ~ is continuous at x, then g( k, .) is , 

continuous at Xk for all kE IN. To prove the converse, assume that g(k,·) is 

continuous at Xk for all kE IN. To show that ~ is continuous at x, given &>0. 

Since ~:OJ~fp' by Theorem II.31, there exists mElN such that 
m ro 

~ suplg(k, t)IP < 00. Then lim ~ suplg(k, t)IP = 0, so there exists N'2m such that 
k=m rEIR n-Ho k=1I rEIR 

(1) 

Since g( k, .) is continuous at Xk for all k E {I, ... , N - I}, there exists 8> 0 such 

that for all kE {I, ... ,N-1}, tE R, 

( 
&P)lIP 

It -xkl < 8 implies Ig(k, t) - g(k, Xk) I < 2N . (2) 

L 8'- . {I t5} et - rom 2N+1' 2N(1+ 0) . Let Z E OJ be such that 

dfI)(z, x) < 8~ For k '2N, we have that 

Ig(k, Zk) - g(k, Xk) IP ~ (Ig(k, Zt) 1+ Ig(k, Xt) I )P 

~ 2P max{ Ig(k,zt)I P
, Ig(k,xt)I P

} 

~ 2P sup Ig(k, t)IP
• (3) 

reIR 

00 P 

Then inequalities (1) and (3) imply that {;)g(k, Z.I;)- g(k,x.I;) t < ;. For kE lN, 
IZt-Xtl . , 

we have that i(l + Iz.I;- X.I;I) ~ d",(z,x) < ". Then for kE {I, ... ,N-1}, 

IZ.I;-xtl < 2t5' ~ 2
N
,,' which implies that IZt-Xtl ~ (1~N~~t5,) ~ " for all 

1 + Iz}: - xtl 
&p 

kE{1, ... ,N-1}. By (2), Ig(k,zt)-g(k,x.I;)1<2N for all kE{1, ... ,N-1}. 

Hence 
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o 

Continuous Superposition Operators into l/J 

The results of this section are analogous to those of the section entitled 

"Continuous Superposition Operators into co". 

, Theorem 29. If.Pg: l/J ---)- l/J, then for x E l/J, .Pg is continuous at x if and only if for 

any &>0, there exists 8>0 such that for all kE N, tE R., 

It-Xtl < 8 implies Ig(k, t)-g(k,Xt) I < &. 

Proof. It is obtained directly from Lemma 6 and Lemma 7. o 

Theorem 30. If X is one of the sequence spaces '-I" CS, co, c, bs '-aJ) and OJ and 

.Pg:X ---)- l/J, then the follOWing statements hold: 

(i) For x EX, .Pg is continuous at x if and only if g(k,·) is continuous at Xt 

for all kEN. 

(ii) .Pg is continuous on X if and only if g( k, .) is continuous on R. for all 

kEN. 

Proof. By referring Lemma 6, Lemma 12, Lemma 14, Lemma 16 and Lemma 

18, the proof is given similarly to that of Theorem 21. o 



58 

REFERENCES 

1. Robert, J. Continuite d'un operateur nonlineaire sur certains espaces de 

suites. C. R. Acad. Sci. Paris. Ser. A 259 (1964): 1287-1290. 
, 

2. Shragin, lV. Conditions for embedding of classes of sequences and their 

consequences. Mat. Zametki 20, No.5 (1976) (in Russian): 681-

692. 

3. Chew, T. S. and Lee, P. Y. Orthogonally additive functionals on sequence 

spaces. SEA Bull. Math. 9, No.2 (1985): 81-85. 

4. Chew, T.S. Superposition operators on Wo and Wo. Comment. Math. 29 

No.2 (1990): 149-153. 

5. Pluciennik, R. Boundedness of superposition operators on woo SEA Bull. 

Math. 15, No.2 (1991): 145-151. 

6. Goffman, Casper. Introduction to Real Analysis. New York: Harper&Row, 

1966. 




	Cover(Thai)
	Cover(English)
	Accepted
	Abstract(Thai)
	Abstract(English)
	Acknowledgements
	Contents
	Chapter I Introduction and Preliminaries

	Chapter II Characterization of Superposition Operators on Classical Sequence Spaces 
	Chapter III Continuity of Superposition Operators

	References

	Vita


