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CHAPTER I 
INTRODUCTION 

 

Directional drilling is important in many today’s wells. Not only it requires an 

ability to drill directionally, but also accuracy in hitting the reservoir target precisely 

to minimize the operation cost and maximize the production.  Hence, there have been 

many applications for controlling inclination and direction of the drilling well. 

Adjustable Gauge Stabilizer (AGS) is normally used as a tool to control inclination 

while direction is controlled by steerable motor. The reservoir located at the deep 

section, 6-1/8” in particular, of the well in the Gulf of Thailand where petroleum 

reservoirs usually reside, exceptionally contains high temperature that the rubber part 

of the direction control tool is not able to effectively handle. As a result, AGS is 

solely used in the operation to control inclination without a directional control tool in 

place. This study is then attempting to address and model the bit directional behavior 

with the availably controllable parameters by using an Artificial Neural Network 

(ANN) as a tool. Consequently, an ability to control bit directional deviation, referred 

in this study as bit walk, using the controllable drilling parameters without the 

existence of steerable motor could be established. The modeling is carried out by 

using the field data from the Gulf of Thailand to train the ANN building the bit walk 

predictive tool. The study is divided into two perspectives of predicting bit walk 

direction (left or right) and quantity. 

Past studies were reviewed to obtain parameters affecting bit walk as well as 

comprehending their causes and effects. The parameters are categorized into many 

areas concerning bit model, bottom hole assembly (BHA) configuration, drill string 

mechanics, drilling parameters, and formation. However, not all of these are studied 

simultaneously in the bit walk prediction model. Only certain areas are selected to 

meet the objective of drilling runtime predictive tool that some parameters are not 

readily available at the drilling runtime, but can be collected after the drilling 

operation is finished through well log data acquisitions which mainly are the 

information associated with formation characteristics. The commonly used bit model 

and BHA configuration are selected without making change throughout the study. 

Formation is scoped to focus on the one closed to a petroleum reservoir. The 
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formation represents lower Miocene age with Fluvial channel depositional 

environment.  

Procedures in creating the bit walk predictive tool are to be described step by 

step in each following chapter. Chapter 2 outlines the review of past studies on 

parameters affecting bit walk and summary made by each researcher. Chapter 3 

explains the meaning and geometry of bit walk as well as describing the causes and 

effects of each parameter in details. As a result, important parameters affecting bit 

walk are identified to be the inputs of the ANN model. Moreover, ANN theory and 

concept are discussed. Chapter 4 mainly focuses on the model development and any 

conditions applied to this specific case. Firstly, field data are analyzed to ensure a 

qualified distribution before inputting into the model for training.  Secondly, the ANN 

model is trained, validated and tested with several configurations. Results and 

analysis are also discussed in this chapter. Chapter 5 ends with conclusion and 

recommendation for future works.  
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CHAPTER II 
LITERATURE REVIEW 

 

This chapter describes the past studies related to parameters and conditions 

affecting bit walk concerning several areas, such as bit model, gauge, profile, Bottom 

Hole Assembly (BHA) configuration, drilling parameters, and formation 

characteristics and anisotropy. The studies have been conducted through number of 

methods including field data observation, mathematical model, and experiment 

through drilling bench.  

Perry (1986) conducted a field data observation and survey from the drilling 

operations of several wells drilled in the Gulf of Thailand by different type of bit 

profiles coupled with the change in drilling parameters. The objective was to observe 

how much bit walk was affected. The case study focused on 8-1/2” hole section 

covering Fluvio-deltaic depositional environment formation. Bit profiles were divided 

into 5 types (A-E), ranging from very flat to ballistic profile. Weight on bit (WOB) 

and Rotational speed (RPM) were taken into account as part of drilling parameters 

variation. The results from the observation showed that most of the bits usually turn 

left at their optimum drilling parameters. Flat profile bit exhibited a tendency to a 

right walk. 

Bannerman (1990) studied a walk rate prediction on 23 wells in the Alwyn 

North Field, in the North Sea by Means of Data Analysis and 3D Computer Model. 

By analyzing data from both the 17-1/2” and 12-1/2” phases, an attempt was made to 

explain the variation of walk rates from well to well. The study found that bit walk 

was affected by several factors, namely BHA type, number and diameter of 

stabilizers, hole size, inclination, coefficient of friction. Another conclusion drawn 

which is in line with Perry is that walk rate or walk tendency is not affected by bit 

gauge length. 

Millhiem and Warren (1978) studied the side cutting characteristics of bits and 

stabilizers through full-scale, automated, drilling apparatus. Side cutting was 

measured in rate of displacement. The tests were conducted in Bedford Limestone and 

Carthage Marble. The paper also expressed the effect of drilling operation parameters 
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and rate of penetration on the displacement from the testing. The side force 

displacement data from the lab test can be used in conjunction with the finite element 

BHA program to develop a model for bit trajectory prediction.   

Ernst, Pastusek and Lutes (2007) conducted several tests on full scale drilling 

laboratory to investigate the effects of drilling parameters on the steerability of PDC 

bits. Rock samples were taken from the field classified as medium and hard 

limestone. They mostly represented homogenous blocks. The lab results were 

consistent with field results. Rotational speed (RPM) and weight on bit were found to 

create an effect on bit steerability. Formation hardness also established a significant 

effect as formation hardness increases, the ability of bit to drill laterally decreases. 

 Walker (1986) concluded factors controlling hole angle and direction which 

were quoted from the paper of Williamson and Lubinski (1986). Factors are such as 

bit geometry, BHA configuration, borehole shape and curvature, operating 

parameters. This paper mainly discussed on the BHA analysis which is the interaction 

between formation and types of BHA configuration. BHA analysis was carried out 

through the 2-D BHA model. Result revealed that each assembly behaves in a 

predictable manner for typical operating conditions and hole angles. 

 Menand, Sellami et. al (2003) presented a comprehensive analysis of the 

directional behavior of PDC bits, covering the effect of bit profile, gauge cutters and 

gauge length. Numerical simulations and laboratory tests have been carried out to 

better understand the mechanisms of PDC bit deviation and to evaluate the most 

important parameters affecting the directional behavior of PDC bits. The results 

obtained from the full-scale directional-drilling bench demonstrated that the bit 

profile, gauge cutters and gauge length exhibit a significant effect on the walking 

tendency of the PDC bits.  

  Chen, Collins and Thomas (2008) provided a reexamination on several past 

papers studied on PDC bit walk in both directional and horizontal wells. Furthermore 

a computerized numerical model was built and verified. The model could calculates 

bit walk and walk force with consideration of bit gauge geometry, hole size, 

formation compressive strength, steering mechanism of the Rotary Steerable System 

(RSS), bit rotational speed, penetration rate, dogleg severity. The study mainly 
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focused on PDC bit drilled with steerable system. It was concluded that the 

application of the bit model together with the BHA model to solve field problems has 

shown significant benefits.   

 Ho (1987) firstly summarized several previous studies concerning rock-bit 

interaction. Those studies were in the form of either 2D or 3D mathematical model. 

This paper is different from others that it incorporated both rock-bit and BHA analysis 

program into a single model called as a new rock-bit interaction model. By doing 

such, the model is able to predict directional behavior of the bit in the forward mode 

as well as generating anisotropy index of bit and formation through the inverse mode. 

The field data were used to generate average bit and formation anisotropy index 

through the inverse mode. The indexes were used in the forward mode to predict bit 

directional behavior accordingly. The results showed that, in average, the roller cone 

bit is quite anisotropic (Ib = 0.194), while the formation is quite isotropic (Ir

Boualleg, Sellami and Menand (2006) set a study focusing on anisotropic rock 

in two cases which are interbedded and laminated rocks. The paper coupled a 3D bit-

rock model with a 3D bottomhole assembly (BHA) model enabling the prediction of 

tortuosity occurrence (inclinational and directional deviation). The theoretical model 

was validated and calibrated on full-scale bench concerning many types of rocks. The 

model was concluded to be helpful for BHA and bit selections and design to minimize 

the effect of the formation anisotropy.  

 = 0) 

 Maldla, Campinas and Sampaio (1989) tried to create another rock bit 

interaction model with an attempt to complete some gaps of Ho’s model. In Ho’s 

model, bit anisotropy index is a function not only of the bit type but also of the bit 

conditions. So, it could be changed throughout its life. Ho’s model suppresses this 

uncertainty by averaging the index. The alternative model in this paper was verified 

by field data from 15 directional wells drilled in the offshore Campos Basis area in 

Brazil. The well trajectory prediction for 5 planned wells showed a capability in 

predicting bit walk rate, while not in some cases due to lacking of data on dip and 

strike of the formation.  
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CHAPTER III 

THEORIES AND CONCEPTS 

 

3.1 Bit directional tendency (Bit walk) 

 Directional drilling is a three dimensional process that the bit penetrates along 

both X and Y plane as shown in Figure 3.1. Bit demonstrates an inclination angle in 

the inclination plane Y, while presents a direction angle in direction plane X. 

Inclination angle is measured in a degree from vertical deviation and apparent 

direction angle is measured in degree of azimuth. Bit walk rate is the change of 

direction angle per a specified drilling depth, commonly measured in degree per 30 

meters or 100 feet. This study uses degree per 30 meters as a unit of measurement.    

 

 

Figure 3.1:  Inclination and direction angle (Bourgoyne Jr. A.T. et al., 1984) 
 

 

 

 
 



 

 

7 

In practice, well geometry design is divided into several sections while 

inclination and direction angle are varied in each section as shown in Figure 3.2. 

Inclination angle in a tangent section of the well is usually controllable through the 

size adjustment of the stabilizer to establish build or drop of the inclination angle. 

Direction angle can be controlled by a steerable motor. However, this directional 

control tool is not applicable with certain formation conditions especially ones having 

high temperature where the rubber part of the tool is not able to operate effectively. 

This is the case in the Gulf of Thailand studied in this thesis. In this case, without a 

directional control tool in place, the bit travels in direction plane governing by certain 

factors described in the following section. 

 

Figure 3.2: Drilling section (Bourgoyne Jr. A.T. et al., 1984) 
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3.2 Factors affecting bit walk 

 Factors affecting bit walk have been extensively studied by many researchers. 

Some of them have been summarized in this topic, with a special emphasize on the 

factors that are used for the model in this study.  

3.2.1 Bit Model  

This section shows the summary and latest information conducted by some 

researchers on the factors affecting bit walk tendency. This topic focuses on the bit 

model and its configuration such as bit profile, active and passive gauge. The 

conclusions on how these parameters affect bit walk tendency are summarized 

through field or laboratory test as well as mathematical model.  

Perry (1986) has conducted the real operation over 200 rotary bit runs in low-

toxic oil base mud in the Gulf of Thailand. This was to observe how bit profile and 

gauge give an effect on the walk direction. All of the bits shown in figure 3.3 have 

exhibited a left walk tendency, except bit D that has a natural tendency to walk right 

in approximate. This happens at the condition of bits’ optimum drilling parameters, 

namely 8 to 17 Klbs of weight on bit and 190-220 RPM of rotational speed. It is 

noticed that Bit D has a relatively flat profile comparing with other bits shown in 

Figure 3.3. The author has concluded that flat profile bit has a tendency to walk right 

than ones having ballistic profile. Also another conclusion drawn is that the bit gauge 

length as shown in table 3.1 does not seem to affect the bit walk. And the number of 

gauge cutters is about the same for bit type A, a “left walker”, and bit type D, a “right 

walker”.  
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Figure 3.3 Bit used in the drilling operation (Perry, 1986) 

 

Table 3.1: Bit configuration (Perry, 1986) 

Bit  
Body 
Type 

Total no. 
cutters 

No. gauge 
cutters 

Length of 
gauge 
(in.) 

A Steel 24 6 2.5 
B Steel 37 16 6.0 
C Matrix 36 9 3.0 
D Steel 41 5 3.0 
E Steel 42 10 3.3 

 

Menand, Sellami, et. al (2003) have developed a 3D theoretical rock-bit 

interaction model to reproduce the drilling test results observed from the field data 

and drilling-bench equipments. The author came up with the indicator to identify the 

walk tendency of the bit. It is called as bit steerability (Bs) corresponding to the 

ability of a bit to initiate a lateral deviation when submitted to lateral and axial forces. 

The bit steerability (Bs

D
DB

ax

lat
s =

) can be defined as the ratio of lateral to axial drillability.  

 (3.1) 
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The lateral drillability (Dlat) is defined as the lateral displacement per bit 

revolution over the side force. The axial drillability (Dax) is the axial penetration per 

bit revolution over the weight on bit (WOB). Bit steerability (Bs) which is equivalent 

to the bit anisotropic index is generally in the range of 0.001 to 0.1 for most PDC bits, 

depending on the cutting profile, gauge cutters, and gauge-pad characteristics. Lateral 

displacement and walk angle can be viewed in the figure 3.4 shown below. A bit with 

a high steerability means a strong tendency for lateral deviation. The rock-bit 

interaction model takes into account the three bit parts that interact with formation 

namely cutting structure, active gauge (trimmers or gauge cutters) and passive gauge 

(gauge pad), as shown in figure 3.5.  

 

 

Figure 3.4: Definition of the walk angle (Menand et. al, 2003) 
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Figure 3.5: Description of the PDC bit structure (Menand et. al, 2003) 

 

Three PDC bits having different profiles have been tested on the directional 

drilling bench namely bit A, B and C as shown in figure 3.6. The common 

characteristics of the bits are a 215.9 mm diameter, eight highly spiraled blades with 

13.3 mm PDC cutters, and four nozzles. To evaluate the effect of the three different 

parts of the bit (cutting structure, active and passive gauges), each bit was tested with 

five different configurations, as shown in figure 3.7. Firstly, each bit was tested with 

passive gauge length (LPG = 101.6, 50.8 and 25.4 mm). Then, the bits were tested 

with only their active gauge and cutting structure (no passive gauge). Lastly, each bit 

was tested with only the cutting structure (without any active or passive gauge).  

 

Figure 3.6: Bit A, B and C tested (Menand et. al, 2003) 
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Figure 3.7: Description of the five bit configurations tested. 

 

The result is summarized as shown in the table 3.2. From the various bit 

tested, it can be noticed that the bit steerability highly increases with the reduction of 

the passive gauge length. Consequently, it is concluded that passive gauge length 

highly contribute to the steerability or walk tendency of the bit. In addition, active 

gauge and bit profile also play the contributions. The active gauge contributes to the 

bit steerability with the same perspective as passive gauge. And bit profile is known 

as the flatter the profile is, the more steerable the bit is. Researchers can take into 

account of these parameters once a walk prediction model has to be developed.  

 

Table 3.2: Bit steerability and walk angle from varying bit models and configurations 
(Menand et. al, 2003) 
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3.2.2 Bottom Hole Assembly (BHA) 

Each component of the drillstring has a unique stiffness that contributes to the 

overall performance of the BHA. The stiffness or rigidity of any component is a 

function of its modulus of elasticity and its moment of intertia. The weight of each 

component of the BHA affects the assembly’s behavior. This weight is a function of 

the size and specific weight of the component and must include the buoyancy effect of 

the drilling fluid. In general, stabilizer placement and size are major factors in 

deviation control. The effects of location, size, shape, and properties of the BHA 

components on hole angle and direction can be analyzed by available BHA models 

(Walker, 1986). However, this study does not focus on the variation of the BHA 

configuration. In contrary, the configuration of the BHA remains in a particular set up 

according to the practice and actual operation that BHA configuration is usually not 

modified throughout the drilling operation in the 6-1/8” section.   

 

3.2.3 Well geometry 

The shape and curvature of the borehole has been the subject of much 

analysis, and the interaction between borehole trajectory and BHA elastic deflection 

can now be modeled in three dimensional spaces. The curvature of the borehole can 

cause the BHA to be deflected in a complex shape nearly independent of the BHA 

components (Walker, 1986). There was a proposal of a general rock-bit interaction 

model verified by field data which indicates an inverse relationship between well 

inclination and walk rate (Maldla and Sampaio, 1989) as 

( )
( )αSin

K II rb ,
∝  

where  

    I b  =  bit anisotropy 
    I r  =  rock (formation) anisotropy 
    α  =  inclination angle  
    K  =  walk rate 

 

(3.2) 
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3.2.4 Drilling operating parameters 

According to Ernst, Pastusek and Lutes (2007), with regards to operating 

parameters, weight on bit (WOB) is well-known to be beneficial in increasing the 

desired turn rate under certain drilling conditions. It is proposed that most of the 

weight on bit effects is actually due to its influence on rate of penetration and bit tilt. 

There is a general consensus in the industry that increasing the rotational speed of the 

bit provides more opportunities to cut the formation in a given amount of time. Also 

by slowing the forward ROP of the bit from reducing the weight on bit, side cutting 

time would be increased resulting in high steerability. Drillers have long known that 

controlled drilling parameters (weight on bit and rotational speed) could be used in 

order to effect build, drop and walk rates of a bit and BHA system. With the use of 

full scale drilling laboratory, the effects of drilling parameters have been investigated. 

The test apparatus simulates the bit tilt and side loading normally induced by a BHA 

inside the wellbore. Lateral displacements are recorded within thousands of an inch. 

The testing method produces well defined results that are consistent with field results. 

During the test, the resultant lateral displacement drilled and vertical depth drilled 

were recorded. The same bit design was used for all tests. The test results are shown 

in figure 3.8 which is the result of varying rotational speed and ROP (representing 

WOB) in the Bedford (Indiana) Limestone demonstrating medium hardness. Side 

cutting angle also represents a walk tendency. It is shown in the figure that at a 

constant rotational speed, side cutting angle is decreased when ROP is increased. 

While at a constant ROP, low rotational speed has a tendency to exhibit high side 

cutting angle. ROP is directly proportional with WOB. Therefore, in this case, it is 

summarized that WOB and rotational speed generally exhibit an inverse relationship 

with the walk tendency.  
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Figure 3.8: Side cutting angle vs. Operating parameters (WOB, RPM) (Ernst, 
Pastusek and Lutes, 2007) 

 

3.2.5 Formation characteristics  

3.2.5.1 Formation anisotropy 

According to Boualleg, Sellami and Menand (2006), Interbedded formations 

hard/soft or soft/hard are a major cause of borehole tortuosity. Cases history have 

demonstrated that this tortuosity induces a higher torque and drag, running tubular 

problems, stabilizers wear, pipe damage and trajectory controlling problems. In some 

fields, shale formations have a tendency to cause wellbore deviations to undesired 

directions. To understand these phenomena of tortuosity, an experimental drilling 

program has been carried out on a full scale bench using various PDC bits in different 

formations (hard/soft, soft/hard with different interface angles). The interface angle is 

also known as dip angle of the formation. These described characteristics represent 

the anisotropy of the formation. It is well recognized today, by the drilling industry, 

that deviations of well trajectories are influenced by the BHA design, borehole 

curvature and inclination, weight on bit, bit characteristics, and formation anisotropy. 

The last one is subjected to be discussed in this section. Deviation of the wellbore 

could be written in a function form as  
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Deviation = f (BHA, Bit, wellbore geometry, WOB, formation anisotropy) 

The author focused on the effect of the formation anisotropy and especially on the 

following cases. 

• Interbedded rocks: consisting in a sudden change of the rock’s mechanical 

characteristics. 

• Laminated rocks: presenting an orthotropic mechanical behavior. Mostly 

shales belong to this category.  

Interbedded rocks 

Considering a PDC bit drilling an isotropic rock, all PDCs cut similarly the 

same rock, so there is no reason to generate a side force except that imbalance force if 

the bit is not balanced. However, as seen in figure 3.9, when the bit drills sequence of 

hard/soft or soft/hard rock, some PDCs cut the hard rock and others cut the soft one 

resulting in a side force during the drilling of the interface.  

 

Figure 3.9: Origin of the anisotropic side force (Boualleg, Sellami and Menand 2006) 

From testing with the interbedded rock, the side force on the bit depends 

generally on the interface angle between the hard and soft rock. From the observation, 

drilling through a sequence with a higher dip angle causes more significant force and 

deviations as the bit remains a longer time drilling through the interface. The 

sequence of rock (soft to hard or hard to soft) also influences the side force and 

deviations. Some tests have proved that the hard to soft transition produces less effort 

and deviation. This is explained by the fact that when the bit starts to touch the soft 

rock, the gauge is still in the hard one and has more difficulty to generate deviation.  

(3.3) 
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eqR

Laminated rocks 

Ecole des Mines de Paris has developed a complete model which takes into 

account build-up edge of crushed materials chamfer and back cutter force. The Model 

uses limit analysis and Mohr-Coulomb criterion to calculate the specific energy  

defined as the ratio of horizontal cutting force over the cutting area. For laminated 

rock, the specific energy depends also on the orientation of the formation dip defined 

by the unit normal ( n ) It can be seen from the figure 3.10 below that it is easier to cut 

the rock in the configuration 1 than in the configuration 2. To calculate the specific 

energy, we assume that the stress state in the chip is homogeneous. In this case, the 

specific energy can be formally expressed as  

),,,,,,( 2121 fceqeq nRR θωαααα=  

Where 

      eqR                  =  specific energy 

      n                     =  normal to dipping plane 

      2121 ,,, αααα   =  material parameters 

      cω                   =  bake rake angle 

      fθ                   =  rock-cutter friction angle 

This model, taking into account the 3D variation of dip orientation ( n ), has 

been validated with circular tests. These tests consist in cutting a circular groove 

(figure 3.11) with a PDC in an orthotropic rock. The PDC cuts the rock in different 

configurations referred by the angular positionθ . Figure 3.12 presents a comparison 

between the experimental and theoretical results. It shows the evolution of the specific 

energy vs. the angleθ  for a test carried out with 8 mm PDC diameter in the Angers 

schist (laminated rock). It can be noted, in this case of orthotropic rock, that the 

specific energy is very sensitive to the angular position. This sensitivity that cannot be 

observed in isotropic rock is the origin of the side force on the bit. It can be seen that 

the cutting forces depend on the PDCs radial positions on the bit. If we consider two 

PDCs at the same level and with different radial positions, they have different 

reactions resulting in a side force creating a walk tendency to the bit consequently.   

(3.4) 
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Figure 3.10: Cutting configurations and formation dip (Boualleg, Sellami and 
Menand, 2006) 

 

 

 

Figure 3.11: Circular test schema (Boualleg, Sellami and Menand, 2006) 
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Figure 3.12: Results of a circular test (Boualleg, Sellami and Menand, 2006) 

 

3.2.5.2 Formation hardness 

Formation hardness has a significant effect on PDC bit steerability. As 

formation hardness increases, the ability of bit to drill laterally decreases (Ernst, 

Pastusek and Lutes, 2007). This also makes the bit walk rate decrease as a result. This 

has been summarized from the drilling bench testing. In this study, formation 

hardness information could be derived from the bit torque. According to Wolcott and 

Bordelon (1993), the bit torque can be used to identify the formation lithology into 

porous, shaly and tight. This corresponds to the hardness of formation as low, medium 

and high respectively. Torque will increase in soft formation because of good tooth 

penetration and therefore decrease in hard formations.  

 

3.3 Artificial Neural Network 

Artificial neural network (ANN) has been found acceptance in solving real 

world problems in many disciplines. ANN learns to create a representation of 

complex relationship between input and output samples by utilizing processing 

characteristics of biological system such as nonlinearity, high parallelism, fault and 

failure tolerance, and capability to generalize. ANN has been utilized in many forms 

of applications such as modeling, classification, pattern recognition (Basheer and 

Hajmeer, 2000). The idea of ANN was motivated from the biological nerve cell called 

neuron. Interconnection of billion of neurons composes a human nervous system. 
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ANN applies the same concept by interconnecting several neurons together with a 

connection link that can be newly established or updated to form a knowledge 

learning process. Figure 3.13 shows the components of biological neuron comprising 

of three major functional units namely dendrites, cell body and axon. The dendrites 

receive signals from other neurons and pass on to the cell body. After receiving the 

signal, cell body sums total incoming signals and fire an electrochemical signal when 

threshold is reached. The axon receives signals from the cell body and carries through 

the synapse to the dendrites of neighboring neurons. The connections between 

artificial neuron analogously represent axon and dendrites while connection weights 

represent the synapses. ANN as well as biological network learns the knowledge 

through adjusting magnitude of weight or synapses’ strengths. There are many types 

of artificial neural networks invented by several researchers. For this study, 

Backpropagation ANN (BPANN), known as one of the most famous artificial neural 

network architecture and algorithm, is selected as a tool. In every iteration of 

BPANNs, it performs two steps; 1) forward activation of the signal to produce an 

output. 2) backward the computed error to modify weight by the feedforward error-

backpropagation learning algorithm. Basic elements are one input, one output and a 

certain number of hidden layers. Each layer consists of processing units or neurons. 

Signals are passed from the neurons of input layer through hidden layer before 

arriving output layer. Each neuron of one layer to another is interconnected with 

connection link having its own associated weight. Figure 3.14 demonstrates a diagram 

of ANN. Each circle represents neuron interconnected with the link where weight is 

stored. The neurons receive weighted inputs from previous layer, summing and pass 

on through a threshold function having a sigmoidal shape. The output from sigmoid 

function ranges between 0 and 1, when input is a large negative and positive number 

respectively. Mathematical description of the neuron output is written as 

je
O j ε−+

=
1

1
 

∑= ijij Owε  

where jO is the output from a neuron in the jth
jε layer and  is the summation of 

weighted inputs of the previous layer (input layer in this case), while jiw is the 

associated weight of connection link between neurons of ith and jth layer. BPANN is 

(3.5) 

(3.6) 
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iterated to perform learning process to adjust the weight based on the error calculated 

from a difference between real sample and network generated output. The weight 

updating method is written as  

)()1()( twtwtw jijiji ∆+−=  

)1( −∆+=∆ twxw jijiji µηδ  
     

where )(tw ji∆  is the updated weight at tth η iteration, is the learning rate, and µ is the 

momentum coefficient. δ  is the error criterion. Giving an example of neuron at the 

output layer, error criterion is calculated from   

)1()( kkkk xxyx −−=δ  

where ky is the real sample output and kx  is the ANN output. Then an error criterion 

is propagated back through each neuron of the network and re-updates the weight of 

connection link used in the next iteration. ANN training is stopped by a condition, 

commonly using Mean Square Error (MSE) as a criterion to verify the model output 

against validation set of data. Details on how to calculate mean square error is 

described in the next chapter.  

 

 
 

Figure 3.13: Schematic of biological neuron (Basheer and Hajmeer, 2000) 

 
 

(3.7) 

(3.8) 

(3.9) 
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Figure 3.14: Schematic diagram of ANN 
 
 

Although the error backpropagation algorithm has been a significant milestone 

in neural network research area of interest, it has been known as an algorithm with a 

poor convergence rate (Wilamowski et. al, 2001). One of the attempt to improve the 

speed of the error backpropagation is to use the Levenberg-Marquardt (LM) 

optimization technique. LM algorithm is widely accepted as the most efficient one in 

terms of realization accuracy. LM algorithm has a similar concept of weight update to 

the normal error backpropagation algorithm. The weight updates are calculated using  

the following equation. 

t
T

ttt
T

ttt EJIJJww 1
1 )( −
+ +−= η  

 
Where  

[ ]TNwwww ...21= consists of all weights of the network 

J is the Jacobian of m  output errors with respect to n  weights of the neural network. 

Jacobian matrix can be written as follow 

(3.10) 
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I is an identity unit matrix 

η is a learning rate 

And lastly,  
[ ]TKPPKK eeeeeeE ......... 1212111= is the cumulative error vector (for all patterns) 

Where 
kpkpkp ode −=     Kk ,...,1=   Pp ,...,1=  

kpd  is the desired value of the kth output and the pth
kpo pattern, is the actual value of 

the kth output and the pth N pattern, is the number of the weights, P is the number of 

pattern, and K is the number of the network outputs. 

This LM algorithm is used in this study as a network training algorithm for 

calculating the error and back propagate to update the weight of the network. This 

should help the network to reach the convergence quicker than the normal back 

propagation algorithm.  
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CHAPTER IV 
BIT WALK PREDICTION MODEL DEVELOPMENT 

 

This chapter firstly covers an outline of the specific case and conditions 

applied to this study. Secondly, it describes the ANN tool, methodology and each case 

study in ANN model development. Thirdly, the chapter discusses the result and 

analysis. Certain parameters affecting bit walk behavior are selected for this study. 

The study mainly focuses on the available parameters which can be controlled or 

monitored at the drilling site. Field data used as the ANN inputs comes from several 

sources. They are all complied into a single format to facilitate the model 

development. Procedures and methods on information compiling and reformatting are 

also described. Furthermore, ANN model development is divided into cases. Each of 

which contains the ANN configurations adjusted to be suitable for the format and 

condition of dataset. The developed models passing the validating criteria are selected 

for performance testing with the real field data in order to locate the best network 

configuration. Finally, results from the ANN model prediction are discussed and 

analyzed.     

 

4.1 Model Parameters and Conditions 

 The previous chapter demonstrates the factors affecting bit walk in many 

aspects. However, the model development of this study does not take into 

considerations of all parameters.  As the development mainly focuses on the 

practicality and usability of the model in the real operation where selected parameters 

can be controlled or monitored at the drilling site or predefined at the well planning 

phase. In addition, the model is intended to scope down to focus on the frequently 

used drilling equipment and configurations. Formation is specific to the one where the 

petroleum reservoir is resided. Drilling operation in the formation closest to the 

reservoir is required to exhibit the accuracy in order to meet the reservoir target in an 

acceptable range maximizing the production.   
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4.1.1 Bit type 

According to the IADC classification of PDC bit, the selected PDC bit for this 

study is under M423 type. And this bit type is used throughout the study. The 

explanation of the codes is shown in table 4.1.  

Table 4.1: IADC classification of the PDC bit 

Code Description  

M Bit body:  Matrix 
4 Formation type: Medium 
2 Cutting structure: PDC, 19mm 
3 Bit profile : Medium profile 

 

4.1.2 BHA configuration 

 This study focuses on a single type of BHA configuration and component. 

This is according to the actual drilling operation that this BHA set up is normally used 

with the selected PDC bit type.  

Table 4.2: BHA components  
Item# Details Size(in) Length(m) 
1 Bit 6.125 0.240 

2 Near bit stabilizer 4.750 0.710 
3 Extension Sub 5.000 0.590 
4 AGS 5.000 3.180 

5 MWD tool 5.000 9.470 

6 Steel screen sub 4.750 1.900 
7 String Stabilizer 4.750 1.520 
8 Drill collar 4.750 36.880 
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4.1.3 Drilling parameters 

 Weight on bit (WOB) and Rotational speed (RPM) are selected for the inputs 

of the model. These two parameters are known to be the common parameters 

adjustable while performing drilling operation by a directional driller. They have 

exhibited the relationships with bit walk as previously described. Moreover, another 

model input, torque, is used as an indirect indicator of formation characteristic and 

hardness. Torque is not a directly adjustable drilling parameter. It is recorded by the 

drilling measurement system as a result of the change in drilling parameters and effect 

from the formation in each interval.  

4.1.4 Wellbore inclination 

 Wellbore inclination is selected to be another important parameter affecting bit 

walk. It is normally predetermined at well design phase and can be minimally 

adjusted during the drilling operations using AGS tool.  

4.1.5 Formation 

 The study focuses on the formation closest to the petroleum reservoir. The 

specific formation represents lower Miocene age with Fluvial channel depositional 

environment. It is a red bed unit composed of red and reddish gray clay stone, 

siltstone and sandstone. Individual sand beds can be as thick as 20 meters in total. 

Sand tends to be medium to coarse-grained. Thin sand bed of thickness less than 5 

meters can also be presented. An example of geological prognosis of a well is shown 

in figure 4.1. 
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Figure 4.1: Geological prognosis of the formation (selected from a well) 

  

4.2 Data compilation and formatting 

Field data are collected from the drilling operation of 13 wells drilled in the 

Gulf of Thailand area. They are mapped with the geological prognosis to determine 

the dataset from the operation performed in the studied formation. Information 

concerning parameters either controlled or resulted from the drilling operation is 

measured and captured in the “drilling parameters ascii file”. The parameters and unit 

of measurements in this file are such as 1) Measured and true vertical depth in meters 

2) Weight on bit (WOB) in Kilo pounds (Klbs) 3) rotational speed in revolution per 

minute (RPM) 4) Torque in Kilo pound * feet (Klbs*ft) 5) Rate of penetration in 

meters/hours (m/hr) 6) pump pressure in pound per square inches (psi) 7) flow rate 

measured in liters/minutes (l/min) 8) Mud weight in specific gravity (SG).  The 

frequency of each data collection is 0.5 meter. Moreover, another important 

measurement is associated with the inclination and direction angle of the bit. These 

are captured in the “definitive survey” file. And the data collection is carried out 

every 30 meters.  
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Since the information from the definitive survey is in a different scale from the 

drilling parameters ascii, namely the survey is measured every 30 meters while the 

drilling parameters are measured every 0.5 meters. Consequently, these two sources 

have to be aligned into the same unit of measurement by averaging the drilling 

parameters to be in accordance with the survey domain. Table 4.3 demonstrates the 

averaging procedure of the drilling parameters which are sampled from an interval of 

a drilled well. From the measured depth of 1623.71 and 1652.51 m, degree of azimuth 

is measured from the definitive survey as 140.23 and 139.88 degree respectively. Bit 

walk rate is calculated by the difference of degree of azimuth per measured interval 

length. In this case bit walk rate equal -0.35 deg/ 28.8 m (139.88 – 140.23) deg/ 

(1652.51-1623.71) m. Each measured interval may be varied, but every bit walk rate 

has to be in the same interval domain. Therefore, bit walk rate produced from every 

dataset has to be aligned into the same unit that is a deg/30m. Bit walk rate as -0.35 

deg/28.8 m is normalized to a deg/30m unit giving a result of -0.365 deg/30m. The 

negative sign represents the left direction, as there is a reduction in the degree of 

azimuth while the positive sign represents the right direction. Drilling parameters 

measurement frequency is higher than the survey. Hence, they have to be averaged to 

match the interval of the survey. The results from the average are displayed. In 

summary, from the interval of 1623.71 to 1652.51m, Bit walk rate is 0.365 deg/ 30m 

to the left direction given drilling parameters as WOB = 5.59 Klbs, Rotational Speed 

= 209.00 RPM and  Torque = 5897.88 Klbs*ft.  
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Table 4.3: Measured parameters from Drilling Parameters Ascii and Definitive 
Survey 

Drilling Parameters Ascii Definitive Survey 
 

MD (m)  
WOB 
(Klbs) 

Rotational 
Speed 
(RPM) 

Torque 
(Klbs*ft) 

MD 
(m) 

Inclination 
(deg) 

Azimuth 
(deg) 

 1624.00 6.00 202.00 6201.00 1623.71 15.33 140.23 
 1624.50 6.00 204.00 6087.00       
 1625.00 6.00 204.00 5929.00       
 1625.50 6.00 203.00 6231.00       
 1626.00 6.00 205.00 5990.00       
 1626.50 6.00 202.00 6165.00       
 1627.00 6.00 204.00 5994.00       
 1627.50 6.00 205.00 6108.00       
 1628.00 5.00 208.00 5697.00       
 1628.50 6.00 206.00 6022.00       
 1629.00 6.00 205.00 5941.00       
 1629.50 6.00 205.00 5925.00       
 . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

.  

    
     
     
 1646.50 4.00 212.00 5701.00     
 1647.00 4.00 212.00 5514.00       
 1647.50 4.00 212.00 5477.00       
 1648.00 4.00 212.00 5705.00       
 1648.50 4.00 211.00 5872.00       
 1649.00 4.00 212.00 5603.00       
 1649.50 4.00 211.00 5847.00       
 1650.00 4.00 211.00 5827.00       
 1650.50 4.00 212.00 5733.00       
 1651.00 3.00 211.00 5632.00       
 1651.50 4.00 211.00 5636.00       
 1652.00 4.00 211.00 5754.00       
 1652.50 4.00 211.00 5843.00 1652.51 15.15 139.88 
 

Average 5.59 209.00 5897.88 
  

-0.35 
deg/28.8 

m 
-0.365 

deg/30m 
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4.3 Bit walk prediction model development 

  The study on bit walk behavior in this thesis concerns two perspectives, 

namely bit walk quantity and direction.  Bit walk quantity is, in other word, presented 

as bit walk rate. Bit walk direction is represented in either left or right deviation. 

Three case studies are presented. Firstly, case 1 is an attempt to address parameters 

potentially affecting bit walk direction and builds a model if the availability of data 

allow.  Secondly, case 2.1 is a study on bit walk rate. For this case, absolute bit walk 

rate is modeled and later analyzed on the result and error occurred. Thirdly, case 2.2 is 

also in the area concerning bit walk rate but not focusing on predicting the absolute 

value of the bit walk rate, rather it tries to predict bit walk rate in range. Result and 

error analysis of this case are also discussed. Artificial neural network (ANN) is used 

as a tool to create a bit walk rate prediction model on case 2.1 and 2.2. The model is 

also verified against the real field data as well as checked for the alignment with the 

theories proposed by other researchers regarding factors affecting bit walk.   

 

4.3.1 Case 1 – Bit walk direction 

4.3.1.1 Bit walk direction data analysis 

From the observation of the total 140 dataset extracted from 13 wells of 

drilling operations in the Gulf of Thailand, there are only 20 right walk instance out of 

the total 140 dataset.  This is calculated as approximately 14 percent of right walk 

instance out of the totals. The rest represents left walk instance. It is well known by 

the information from the bit manufacturer that the selected PDC bit model mentioned 

in the previous section normally exhibits left walk tendency. Therefore, it is worth to 

study what could be the effects on the 20 instances of right walk. All of the 20 dataset 

are analyzed to observe the factors that could be related to the walk direction and 7 of 

them are captured for the examples as shown in table 4.4.  The observation is carried 

out by matching two dataset having similar quantity of the parameters that could 

affect the bit walk, one with left walk and another with right walk presentation. 
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Table 4.4: Comparison of left and right bit walk dataset 

 

Dataset # Inclination WOB 
Rotational 

speed Torque 
AGS 
size Walk rate 

Walk 
direction 

  (deg) (Klbs) (rpm) (Klbs*ft) (in.) (deg/30m) 
 1 15.33 3.67 214 6036 2.25 0.52 Right 

2 15.55 4.09 212 6356 2.25 0.52 Left 
3 18.72 12.03 222 9792 5.00 0.36 Right 
4 18.24 12.91 220 9444 5.00 0.36 Left 
5 21.98 12.38 220 9634 5.00 0.18 Right 
6 21.98 14.14 222 9740 5.00 0.35 Left 
7 22.78 14.03 221 9592 5.00 0.47 Right 
8 22.65 11.34 220 9570 5.00 0.35 Left 
9 23.35 12.76 142 8824 5.00 0.71 Right 

10 23.60 13.03 163 13586 5.00 0.82 Left 
11 31.77 13.25 223 9403 5.00 0.18 Right 
12 31.32 13.10 223 9873 5.00 0.70 Left 
13 55.24 12.28 220 9097 2.25 0.18 Right 
14 55.51 10.98 220 9369 2.25 0.18 Left 

 

4.3.1.2 Results and Discussion 

The result turns out that given the two datasets where each parameter has 

nearly the same quantity namely inclination, weight on bit (WOB), rotational speed 

(RPM), torque and AGS size (diameter). However, walk results in a total different 

direction. One walks to the left while another one walks to the right. The examples 

can be referred to dataset#1 and #2, and also other two adjacent datasets shown in 

Table 4.4. Dataset#1 representing right walk, demonstrates inclination angle as 15.33 

deg, weight on bit as 3.67 Klbs, rotational speed as 213.58, torque as 6035.65 Klbs*ft, 

and AGS size as 2.25 m. Whereas dataset#2, representing left walk, demonstrates 

inclination angle as 15.55 deg, weight on bit as 4.09 Klbs, rotational speed as 211.64, 

torque as 6356.28 Klbs*ft, and AGS size as 2.25 m. Both of them demonstrates an 

equal walk quantity but different in the direction. It could be noticed between the two 

dataset that the parameters are not exactly equal, but the difference are not significant. 

Giving an example of weight on bit 3.67 Klbs of dataset#1 and 4.09 Klbs of 

dataset#2, dataset#2’s weight on bit is different from dataset#1’s by 11%. However, 

this should not result in a total different in the walk direction. Therefore, it could be 

inferred that there are other parameters governing the walk direction that are not 

presented which could be the information that are not available in this study mainly 



 

 

32 

related to the formation characteristics such as dip angle and anisotropy indicator of 

the formation. Giving another example between dataset#5 and #6, parameters of the 

two dataset are quite close but result in a different walk direction. Even though the 

walk quantity is not exactly equal, the difference in direction has already confirmed 

the effect of the unpresented parameters related to the formation characteristics as 

mentioned above. And this case is concluded that ANN model is not used for the walk 

direction prediction due to unavailability of the information. However, the 

preliminary factors that could affect the walk direction are determined which are 

related to the formation characteristics.    

 

4.3.2 Case 2 – Bit walk quantity (rate)  

 The 20 dataset of right walk are excluded from the total 140 dataset. As a 

result, 120 dataset of left walk are remained. These left walk dataset are to be inputted 

into the ANN model to create the prediction model stating the relationship between 

the parameters and walk quantity (rate). Parameters that are selected for the model 

inputs are inclination, weight on bit (WOB), rotational speed (RPM), and torque. In 

this study, the left walk prediction model is created in two different cases. Firstly, 

case 2.1 attempts to predict the absolute value of walk rate, result and error analysis 

by comparing the predicted and desired output are to be discussed to evaluate the 

performance of the model. Secondly, case 2.2 attempts to predict the walk rate in 

range, rather than trying to find an absolute value of walk rate. Results and error 

analysis are also discussed to evaluate the performance. These two different cases are 

built and compared to find the most appropriate approach how to best utilize the 

model. Some example dataset that are used for both cases are shown in table 4.5. And 

ranges of each parameter are summarized in the table 4.6.  
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Table 4.5: Walk rate parameters (example dataset) 

Dataset# Inclination WOB 
Rotational 

speed Torque Walk rate 
  (deg) (Klbs) (rpm) (Klbs*ft) (deg/30m) 

1 55.23 12.42 180 11434 0.15 
2 48.28 11.71 214 12062 0.17 
3 27.01 11.71 222 12839 0.18 
4 53.97 8.26 180 11939 0.19 
5 45.90 12.68 179 12794 0.35 
6 21.11 13.31 217 10075 0.36 
7 55.22 11.72 179 10782 0.55 
8 31.32 13.10 223 9873 0.70 
9 40.71 12.72 185 11884 0.71 

10 22.38 14.48 220 9965 0.82 
11 36.42 14.47 140 12107 0.86 
12 46.43 12.67 223 11757 0.88 
13 43.00 13.64 188 11973 1.06 
14 24.29 12.00 160 13586 1.15 
15 23.07 13.45 146 13862 1.17 
16 25.92 11.90 208 14345 1.22 
17 48.15 11.72 222 11660 1.23 

 

 

Table 4.6: Walk rate parameters and their ranges 

Item Parameter Unit  Minimum Maximum 
1 Inclination deg 18.24 55.23 
2 Weight on bit  Klbs 8.25 15.45 
3 Rotational speed rpm 105 228 
4 Torque Klbs*ft 6298 14483 

 

Histograms of all parameters, as shown in figure 4.2 to 4.5, are plotted to 

observe the distribution pattern and also used for excluding some dataset that are not 

in accordance with the majority of the entire dataset. The result of the histogram plot 
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shows that there are some numbers of dataset existed at the lower end of the 

histogram and they are to be excluded which are ones having WOB as 8.26, 8.31 and 

8.54 Klbs (3 sets), Rotational Speed as 104.63, 123.93 and 129.83 rpm (3 sets) and 

torque as 6297.53, 6450.47 Klbs*ft (2 sets). Therefore, a total of 112 sets of data are 

remained after the screening process. Their ranges are shown in table 4.7. These 112 

sets of data are to be used for the ANN model training to be discussed in the 

following topics.  
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Figure 4.2: Histogram of Inclination of total dataset 

 

 

Figure 4.3: Histogram of Weight on bit (WOB) of total dataset 

 

Exclude 2 dataset having 
WOB as 8.26, 8.31 and 8.54 
Klbs 
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Figure 4.4: Histogram of Rotational speed of total dataset 

 

Figure 4.5: Histogram of Torque of total dataset 

Exclude 2 dataset having 
Torque as 6298 and 6451 
Klbs*ft  

Exclude 3 dataset having 
Rotational Speed as 105, 124 
and 130 rpm 
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Table 4.7: Walk rate parameters and their ranges (after screening) 

Item Parameter Unit  Minimum Maximum 
1 Inclination Deg 18.24 55.23 
2 Weight on bit  Klbs 9.54 15.45 
3 Rotational speed rpm 140 228 
4 Torque Klbs*ft 7492 14483 

 

MATLAB software, which is an integrated platform for Engineering and 

Science research in various areas, is used for the ANN model development, training 

as well as result analysis. The software was developed by The MathWorks Inc.  The 

software license is shared for the Engineering students provided by the Engineering 

computer center. The ANN library of the software is utilized for the model creation.  

The software is capable of developing several types of ANN networks and 

configurations namely transfer function, training algorithm, learning rate, momentum, 

number of cycles run, performance evaluation criteria. The partial model source code 

can be found in the figure 4.6. The captured code is intended to explain the general 

usage of MATLAB ANN library and how they are applied in this study for the model 

development.   

From the MATLAB code, Section 1 describes the general definition of the 

network including specification of numbers of neurons in each layer, learning rate, 

momentum. Learning rate can be set to any number in the range from 0 to 10, while 

momentum can be set to any number in the range from 0 to 1.0. These definitions are 

varied and adjusted case by case in order to create the model that is able to produce 

minimum errors relatively to others. In addition, the definition includes dataset which 

are divided into training: validating: testing based on 4:1:1 ratio which make the total 

dataset of 112 divide into 76:18:18 respectively.  Input dataset in this section covers 

training and validating set as they are used for the model training process where 

training sets are feed into the model and validating sets are used for validating in each 

training cycle as well as stopping once the model reach convergence criteria. The 

dataset can be inserted directly into the ANN model source code or using the 

MATLAB features to open a connection with spread sheet software.  
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 Section 2 covers the network building where the network’s specific 

configurations are described. These configurations are kept constant model to model 

covering the automatic initialization of network weight, transfer function, training 

function and stopping criteria.  The model is stopped when the minimum error criteria 

is reached, in this case written in the code as “goal”. The model is to be trained no 

further than 100,000 cycles, as known as epochs. The input and output sets from 

section 1 are divided into training and validating sets using in the model learning 

process. These two sets are kept unchanged in each model building. This is to make 

sure that each network configurations are tested on the same dataset. The 

“divideblock” command is used for this matter.     

Section 3 covers the model running process. Network that has been obtained 

the configuration together with input and output sets divided into the specified ratio 

are input into the “train” function of MATLAB. The predicted output is also 

simulated by inputting the dataset that were not participated in the model learning 

process. Moreover, the training and validating set that were used for model 

development are feed into the model again to see the model prediction performance. 

MATLAB has the feature to display the outputs from simulating the network through 

the workspace window as shown in figure 4.7. The network shown as “net” can also 

be saved for future use in the prediction with new testing dataset. Other parameters 

can be displayed in matrix or table format as shown in figure 4.8.  
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Figure 4.6: ANN model configuration (from MATLAB source code) 

 

Figure 4.7: ANN model workspace 
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Figure 4.8: Output from model testing (shown in the workspace matrix) 

 

 The ANN’s learning process and stopping criteria are discussed in details. 

Figure 4.9 is an example of error output graph while conducting networks training. At 

the beginning of training cycle, the error criteria measured in mean square error 

(MSE) is reducing for both training and validating sets, while the training sets having 

less MSE minimally than validating sets. This is normal due to the high exposure of 

the networks to the training sets making the result lean towards the majority of data. 

However, after the best validating performance is reached, there is a big difference in 

the gap as well as the inverse trend between training and validating sets that training 

sets show ongoing of the reduction of error criteria, while validating sets show the 

increasing trend. This is according to a behavior called over fitting where networks 

produce a result that is lacking of ability to generalize. Therefore, the network in this 

case is stopped at the best validation performance line where optimum MSE and 

updated weights are obtained. Furthermore, if the networks are not converged into this 

condition, there are also other criteria to stop the networks training which are 1) the 

specified training goal as known as the minimum error criteria. The networks are 

stopped if this minimum error is reached. However, it might be difficult to reach the 

condition if the minimum error is set for too low. 2) the training cycles or epochs. The 
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networks are stopped if the maximum epoch is reached even though the optimum 

condition has not yet been met. 

 

Figure 4.9: Learning process of ANN 

 

The error criterion used which is the mean square error (MSE) is defined as  

∑∑
= =

−=
N

p

M

i
pipi OtN

MSE
1 1

2)(1  

Where  

           Opi  =  the actual solution of the ith output node on the pth

t pi

 example. 

   =  the target(predicted) solution of the ith output node on the pth example. 

            N     =  the number of training or validating examples. 

             M    =  the number of output nodes. 
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4.3.2.1 Case 2.1 – Bit walk quantity in absolute amount 

In this case, factors or parameters affecting bit walk rate which were 

determined in previous topic are specified as the model inputs while the absolute walk 

rate is the output. The input layer contains four neurons, each of which represents 

inclination, weight on bit, rotational speed and torque.  Hidden layer and number of 

neurons in each hidden layer are varied in order to seek for the best model producing 

least error.  Figure 4.10 below illustrates the schematic diagram of the ANN model of 

this case.   

 

 

 

 

 

 

 

 

 

Figure 4.10: Schematic diagram of ANN model – Case 2.1 

 

Examples of dataset used for training the model of this case are shown in the 

table 4.8. During the learning process, the networks try to predict the correct walk rate 

according to the input parameters. The difference between the predicted and actual 

walk rate are calculated as a criteria to adjust the networks’ weights for improving the 

training accuracy in the following cycles. 
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Input layer 
4 inputs 

- Inclination 
- Weight on bit 
- Rotational speed 
- Torque 

Output layer 
1 output 

- Bit walk rate 

Hidden layer 
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Table 4.8: Examples of dataset used in the model learning process (Case 2.1) 

 
Model Inputs 

Model 
Output 

Dataset# Inclination WOB 
Rotational 

speed Torque Walk rate 
  (deg) (Klbs) (rpm) (Klbs*ft) (deg/30m) 

1 55.23 12.42 180 11434 0.15 
2 48.28 11.71 214 12062 0.17 
3 27.01 11.71 222 12839 0.18 
4 53.97 8.26 180 11939 0.19 
5 45.90 12.68 179 12794 0.35 
6 21.11 13.31 217 10075 0.36 
7 55.22 11.72 179 10781 0.55 
8 31.32 13.10 223 9873 0.70 
9 40.71 12.72 185 11884 0.71 

10 22.38 14.48 220 9965 0.82 
11 36.42 14.47 140 12107 0.86 
12 46.43 12.67 223 11757 0.88 
13 43.00 13.64 188 11973 1.06 
14 24.29 12.00 160 13586 1.15 
15 23.07 13.45 146 13862 1.17 
16 25.92 11.90 208 14345 1.22 
17 48.15 11.72 222 11660 1.23 

 

4.3.2.1.1 Data preprocessing 

In order to ensure the efficiency in generalization of the model, dataset that are 

partitioned into training, validating and testing sets should present a similar 

distribution and cover possible ranges of information as much as possible. 

Consequently, histograms of all input parameters for three partitioned dataset 

(training, validating and testing) are plotted to observe the distribution and reshuffled 

among partitioned group if necessary. The distributions of these partitioned dataset 

are kept unchanged throughout the training process. This is to ensure that the only 

changes applied are the network configuration such as learning rate, momentum and 

number of neurons. Histograms are shown in figure 4.11 to 4.22 The histograms of 
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each parameter also demonstrate similar distributions to that of the original data as 

shown in Figure 4.2 to 4.5 in the previous section. Moreover, statistical 

representations which are the mean, quartile and standard deviation are also calculated 

for the training, validating and testing sets of the four parameters. This is shown in the 

table 4.9. From the comparison of these statistical values of all sets, they exhibit a 

similar result. For example, the mean values of inclination for training, validating and 

testing sets are 36.98, 38.59 and 36.40 deg respectively. Another example is the 

standard deviation of the WOB. They are 1.22, 1.35 and 1.23 for training, validating 

and testing sets respectively. These values of inclination and WOB are shown to be 

closed among each other showing that the training, validating and testing sets have the 

same trend and figure. These similar trends of training, validating and testing sets also 

happen with other parameters.       

  

 

Figure 4.11: Histogram of Inclination of training sets  
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Figure 4.12: Histogram of Inclination of validating sets 

 

 

Figure 4.13: Histogram of Inclination of testing sets 
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Figure 4.14: Histogram of Weight on bit (WOB) of training sets 

 

 

Figure 4.15: Histogram of Weight on bit (WOB) of validating sets 
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Figure 4.16: Historgram of Weigth on bit (WOB) of testing sets 

 

 

Figure 4.17: Histogram of Rotational speed of training sets 
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Figure 4.18: Histogram of Rotational speed of validating sets 

 

 

Figure 4.19: Histogram of Rotational speed of testing sets 
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Figure 4.20: Histogram of Torque of training sets 

 

 

Figure 4.21: Histogram of Torque of validating sets 
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Figure 4.22: Histogram of Torque of testing sets 

 

Table 4.9: Summary of statistical represenation of training, validating and testing sets 

Statistical  
representations 

Dataset 
type 

Inclination 
(deg) 

WOB 
(Klbs) 

Rotational  
Speed 
(rpm) 

Torque 
(Klbs*ft) 

Mean 
Training 36.98 12.33 204 11241 

Validating 38.59 12.22 205 11011 
Testing 36.40 12.79 199 11513 

1st
Training 

 Quartile 
25.77 11.48 187 9880 

Validating 25.45 11.28 198 9750 
Testing 24.70 11.84 179 10067 

3rd
Training 

 Quartile 
46.17 13.10 221 12246 

Validating 46.43 13.07 219 12067 
Testing 45.69 13.40 221 12713 

Standard  
deviation 

Training 10.80 1.22 22.96 1714.11 
Validating 11.87 1.35 22.52 1625.34 

Testing 11.76 1.23 27.43 1744.22 
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4.3.2.1.2 Model training 

In this case, ANN model configurations namely number of hidden layers, 

number of neurons in each layer, learning rate and momentum are varied on a trial 

and error basis to locate the best configuration making the model converge as well as 

yielding the lowest MSE. 17 model runs are tried with different configurations. The 

results are summarized in the table 4.10 as shown below.  

 

Table 4.10: Model configuration – Case 2.1 
  No. of neurons   
Model 
# 

Hidden 
layer1 

Hidden 
layer 2 

Learning 
rate Momentum MSE 

1 6 0 0.6 0.6 0.0357 
2 6 0 0.2 0.2 0.0369 
3 9 0 0.2 0.2 0.0345 
4 9 0 0.2 0.5 0.0497 
5 9 0 0.2 0.1 0.0353 
6 12 0 0.2 0.2 0.0446 
7 15 0 0.2 0.2 0.0387 
8 15 0 0.2 0.4 0.0583 
9 18 0 0.2 0.2 0.0456 

10 21 0 0.2 0.2 0.0478 
11 24 0 0.2 0.2 0.0389 
12 27 0 0.2 0.2 0.0685 
13 30 0 0.2 0.2 0.0930 
14 10 5 0.2 0.2 0.0375 
15 20 5 0.2 0.2 0.0395 
16 20 10 0.2 0.2 0.0493 
17 30 20 0.2 0.2 0.0809 
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The trial starts with a single hidden layer and a minimum number of neurons 

and increase the neurons and hidden layer in the latters models. Jadid and Fairbrairn 

(1996) proposed the formula to suggest the number of hidden neurons which is  

)](/[ OUTINPTRN NNRNNHN ++=  

Where 

                                             NHN = Number of hidden neurons 

                                             TRNN  = Number of training sets 

                                             INPN   = Number of nodes in input layer 

                                             OUTN  = Number of nodes in output layer 

                                             R       = Any value from 5 to 10 

The first model is configured with the proposed number of neurons 

accordingly. Learning rate determines the acceleration of the weight updating. Setting 

it for too low will result in slow training, while too large of it could result in an 

unstable ANN model that the oscillation is occurred and the model is unconverged. 

Momentum is commonly used in weight updating to help the search escape local 

minima and reduce the likelihood of search instability. A high momentum will reduce 

the risk of the network being stuck in local minima, however it increases the risk of 

overshooting the solution.  

Model number 1 starts with a single hidden layer with number of neurons as 6 

according to the proposed formula. Learning rate and momentum are both set as 0.6. 

The model is run for about 11 epochs where the converged pattern is shown. At the 5th 

epoch, MSE of the validating sets reach the optimum point and start to increase after 

this point. Wheareas the MSE of training sets are still continuously reducing as could 

be due to the overfitting behavior of the ANN model. (This is depicted in the figure 

4.23.) Model number 2 still maintains the number of neuron and layer as the first one, 

but change the learning rate and momenum to be lower with the attempt to improve 

the training and reduce MSE. The next model, number 3, is tried with the increasing 

number of neurons but maintain the same learning rate and momentum. The 

increasing in the number of neurons in the model number 3 show that the training 

(4.2) 
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result is improved and MSE is reduced to 0.0345. Model number 4 is an attempt to 

see a result of adding more momentum to the model to accelerate the training and 

help the model to escape from local minima. The mometum is increased from 0.2 to 

0.5. This results in a higher MSE. The momentum is reduced to 0.1 in model number 

5, this makes the model producing less MSE than the 4th case. Setting learning rate 

and momentum as 0.2 looks promising that it tends to produce a low MSE result. 

Consequently, they are applied to the following cases. Number of neurons are 

increased in model number 6, with the same learning rate and momentum. However, 

by increasing the number of the neurons in this case, the MSE at the optimum point of 

the model is not decreased relatively with the  previous model having lower number 

of neurons. This same behavior happens with other following models from model 

number 6 to 13 where the number of neurons is increased given a single hidden layer 

configuration. This could be a result of the lack of generalization ability of the model 

that it is overfitted by the configuration of too many number of neurons relatively to 

the condition and number of dataset.  

The model number 12 with number of neurons as 27 is selected for an 

example. It is shown in figure 4.24 that the training sets of the entire curve starting 

from the beginning until the end of training exhibit a better performance (lower in 

MSE) than the validating sets. After the best performance line or the optimum point, 

the MSE of validating sets comparing with training sets show a big difference in the 

MSE. This is according to the large number of neurons setting which make the 

network overfitted to the traing sets and tend to loss the ability to generalize when the 

error criterion is checcked against the validating sets. Model number 14 is tried with 

two hidden layers with number of neurons as 10 and 5 respectively. Learning rate and 

momentum are set to 0.2. The network of this case is tranined until MSE does not 

improve further, or as it reaches optimum point. The MSE at the optimum point is  

0.0375 which is lower comparing with those configuration of one single layer with 

several number of neurons (model number 6 to 13). Model number 14 to 17 are tried 

with the increasing number of neurons given two hidden layers. Learning rate and 

moemtum are kept constant at 0.2 as they were proofed to yield a good training result, 

examples were shown in the model number 3 to 5. The result from model number 14 

to 17 turn out that increasing number of neurons in two hidden layers could not 

produce a lower MSE.  
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Figure 4.23: Learning curve of model number 1  

 

 

Figure 4.24: Learning curve of model number 12 

 

From the total of 17 runs, two models which generate the lowest MSE are 

picked up to further verify for locating best model representing the absolute walk rate 

Best performance line 

Optimum point 

Best performance line 

Optimum point 
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prediction model. Model number 3 and 5 are shown to produce the two lowest MSE 

as 0.0345 and 0.0353 respectively. Model number 3 is equipped with a single hidden 

layer with 9 hidden neurons and learning rate and momentum are set as 0.2. Model 

number 5 is also equipped with the same configurations as the model number 3 except 

that the momentum is set as 0.1. The learning curve of model number 3 and 5 are 

depicted in the figure 4.25 and 4.26 respectively. Model number 3 is trained for 12 

epochs until ensuring that the optimum condition arises at the 6th epoch where the 

optimum MSE is shown as 0.0345. Model number 5 also has a similar trend with the 

model number 3, but only different that the model reaches the optimum condition at 

the 8th epoch.    

 

Figure 4.25: Learning curve of model number 3 
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Figure 4.26: Learning curve of model number 5 

 

The two models yielding the lowest MSE, namely model number 3 and 5 are 

tested with the training and validating dataset to see how well the models are able to 

predict the result based on the information models have experienced. The result from 

the model (predicted walk rate) is compared with the actual walk rate. The 

comparison is carried out by the cross plot between predicted and actual walk rate for 

the training and validating dataset. Figure 4.27 and 4.28 represents model number 3 

while figure 4.29 and 4.30 represents model number 5. Moreover, the comparison 

result in another perspective is shown in table 4.11 and 4.12. The information in the 

table represents the percentage of error between the predicted and actual walk rate. 

Error differences are grouped into 5 ranges which are 0-10%, 10-20%, 20-30%, 30-

40% and >40%. The fraction shows the percentage of dataset that belongs to each 

error range. 

Regarding model number 3, the cross plot in figure 4.27 shows the difference 

between predicted and actual walk rate. The “y=x” line refers to the correct 

prediction. However, this correct prediction is not regularly occurred. Therefore, r 

(Correlation coefficient) is calculated to see how well the predicted walk rate is 

correlated with the actual one. In this case of the comparison between predicted and 
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actual walk rate of training sets of model number 3, r is equal to 0.85. Another 

perspective of comparison could also be seen from table 4.11, for model number 3, 

there are 14% (fraction = 0.14) of training sets that produce the difference between 

predicted and actual walk rate in the range of 0-10%. Moreover, there are 20%, 16%, 

18%, and 32% (fraction = 0.20, 0.16, 0.18 and 0.32) of training sets that produce the 

difference between predicted and actual walk rate in the range of 10-20%, 20-30%, 

30-40%, and >40% respectively. The same cross plot and table comparison concept 

applies to the validating sets. The cross plots of validating sets are displayed in figure 

4.28, while the table comparisons of predicted and actual walk rate is displayed in 

table 4.12.    

Regarding model number 5, the cross plot in figure 4.29 shows the difference 

between actual and predicted walk rate. The “y=x” line refers to the correct 

prediction. However, this correct prediction is not regularly occurred. Therefore, r 

(Correlation coefficient) is calculated to see how well the predicted walk rate is 

correlated with the actual one. In this case of the comparison between actual and 

predicted walk rate of training sets of model number 5, r is equal to 0.79. Another 

perspective of comparison could also be seen from table 4.11, for model number 3, 

there are 24% (fraction = 0.24) of training sets that produce the difference between 

predicted and actual walk rate in the range of 0-10%. Moreover, there are 25%, 11%, 

9%, and 31% (fraction = 0.25, 0.11, 0.09 and 0.31) of training sets that produce the 

difference between predicted and actual walk rate in the range of 10-20%, 20-30%, 

30-40%, and >40% respectively. The same cross plot and table comparison concept 

applies to the validating sets. The cross plot of validating sets is displayed in figure 

4.30, while the table comparison of predicted and actual walk rate for validating sets 

is displayed in table 4.12. 
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Figure 4.27: Cross plot of Predicted vs. Actual walk rate (Model number 3 – Training 
sets) 

 

 

Figure 4.28: Cross plot of Predicted vs. Actual walk rate (Model number 3 – 
Validating sets) 
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Figure 4.29: Cross plot of Predicted vs. Actual walk rate (Model number 5 – Training 
sets) 

 

 

Figure 4.30: Cross plot of Predicted vs. Actual walk rate (Model number 5 – 
Validating sets) 
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Table 4.11: Error fraction (Training sets) 
Training Sets 

  
Number of 

neurons Fraction of dataset in each error range 

Model# 
Hidden 
layer 1  

Hidden 
layer 2 0-10 % 10-20 % 20-30 % 30-40 % >40 % 

3 9 0 0.14 0.20 0.16 0.18 0.32 
5 9 0 0.24 0.25 0.11 0.09 0.31 

 

Table 4.12: Error fraction (Validating sets) 
Validating Sets 

  
Number of 

neurons Fraction of dataset in each error range 

Model# 
Hidden 
layer 1  

Hidden 
layer 2 0-10 % 10-20 % 20-30 % 30-40 % >40 % 

3 9 0 0.17 0.22 0.04 0.22 0.35 
5 9 0 0.17 0.13 0.13 0.13 0.44 

 

As seen from the prediction result, the model does not exhibit a high accuracy. 

Therefore, further work is carried out to analyze what could cause the error in the 

prediction. From the past studies, it can be seen that formation characteristics 

contribute quite significantly on the quantity of bit walk. Model 3 possesses a higher 

correlation coefficient (r) indicating stronger relationship between predicted and 

actual walk rate than model number 5. As a result, it is selected as a representative to 

study the formation effect. The comparisons between predicted and actual walk rate 

of model number 3 are alternatively plotted by dataset number. This is to give a closer 

view on the quantity difference between predicted and actual walk rate dataset by 

dataset. From the training sets of model number 3 (figure 4.31), the dataset exhibiting 

an error between the predicted and actual walk rate of more than 50% are selected for 

study. The dataset is checked against the gamma ray log on the specified depth 

interval and well. The 50% difference between predicted and actual walk rate could 

be divided into two cases, namely, either the actual is lower or higher than the 

predicted value. From analyzing the gamma ray well log, there is no gamma ray 

pattern to explain the former case. However, for the latter case that the actual is higher 

than predicted value, there are some patterns from the gamma ray log found which is 

in connection with the theory regarding laminated rock that usually represents the 
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shale formation. Figure 4.32 to 4.35 show the gamma ray log representing the interval 

of each dataset in table 4.13. If Gamma ray is higher than 80 API, the formation is 

considered as shale (Hilchie, 1978). It can be seen from the gamma ray of all 4 dataset 

that they are all in the shale domain. And they all exhibit the high fluctuation in 

gamma ray log. This shows the characteristic of laminated rock that there are several 

format of rocks gradually formed into shale layer. Therefore, if this kind of gamma 

ray pattern is found, high walk rate could be implied. However, in the drilling 

operation, such information might not be readily provided. So, geological prognosis 

could be used for this matter that if the continuous shale pattern is found, there is a 

likelihood of high walk rate occurrence.  

 

 

Figure 4.31: Comparing Predicted vs. Actual walk rate by order (Model number 3 – 

Training sets) 
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Table 4.13: Details dataset (Model number 3 – Training sets) 

Dataset 
no. Inclination WOB 

Rotational 
Speed Torque 

Actual 
walk rate 

Predicted 
walk rate 

  (deg) (Klbs) (RPM) (Klbs*ft) (deg/30m) (deg/30m) 
28 42.2 10.57 221 7492 0.35 0.13 
58 25.33 12.21 221 8936 0.71 0.34 
66 46.43 12.67 223 11757 0.88 0.44 
74 48.15 11.72 222 11660 1.23 0.47 

 

 

Figure 4.32: Gamma ray log (Dataset no. 28 of Model number 3 - Training sets) 

 

 

Figure 4.33: Gamma ray log (Dataset no. 58 of Model number 3 - Training sets) 

Dataset no. 28 

Dataset no. 58 
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Figure 4.34: Gamma ray log (Dataset no. 66 of Model number 3 – Training sets) 

 

 

Figure 4.35: Gamma ray log (Dataset no. 74 of Model number 3 – Training sets) 

 

The comparisons between predicted and actual walk rate of validating sets of 

model number 3 are alternatively plotted by dataset number. This is to give a closer 

view on the quantity difference between predicted and actual walk rate dataset by 

dataset. From the validating sets of model number 3 (figure 4.36), the dataset 

exhibiting an error between the predicted and actual walk rate of more than 50% are 

selected for study. The dataset is checked against the gamma ray log on the specified 

depth interval and well. The 50% difference between predicted and actual walk rate 

could be divided into two cases, namely, either the actual is lower or higher than the 

predicted value. From analyzing the gamma ray well log, there is no gamma ray 

pattern to explain the former case. However, for the latter case that the actual is higher 

Dataset no. 66 

Dataset no. 74 
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than predicted value, there are some patterns from the gamma ray log found which is 

in connection with the theory regarding laminated rock that usually represents the 

shale formation. Figure 4.37 to 4.38 show the gamma ray log representing the interval 

of each dataset in table 4.14. If Gamma ray is higher than 80 API, the formation is 

considered as shale. It can be seen from the gamma ray of the two dataset that they are 

all in the shale domain. And they all exhibit a high fluctuation in gamma ray log. 

However, the dataset number 13 extends minimally into the sand formation after the 

depth of 2620 meters but the majority of the interval is still in shale domain. This can 

be summarized as same as the case of the dataset of the training sets that if this kind 

of gamma ray pattern is found, high walk rate could be implied. And the information 

could be viewed through the geological prognosis. Moreover, the summary of 

formation effect from the training and validating sets cases should also give a 

precaution of implied error created by the formation anisotropy characteristics at 

some drilling interval when testing the model with testing dataset or any new actual 

data from the drilling operation.   

 

 

Figure 4.36: Comparing Predicted vs. Actual walk rate by order (Model number 3 – 

Validating sets) 
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Table 4.14: Details dataset (Model number 3 – Validating sets) 

Dataset 
no. Inclination WOB 

Rotational 
Speed Torque 

Actual 
walk rate 

Predicted 
walk rate 

  (deg) (Klbs) (RPM) (Klbs*ft) (deg/30m) (deg/30m) 
11 41.68 9.97 223 13862 0.52 0.29 
13 41.19 11.79 217 8966 0.53 0.27 

 

 

 

Figure 4.37: Gamma ray log (Dataset no. 11 of Model number 3 – Validating sets) 

 

Figure 4.38: Gamma ray log (Dataset no. 13 of Model number 3 – Validating sets) 
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4.3.2.1.3 Model testing results and discussion 

Model number 3 and 5 are tested with the testing dataset. The result from the 

model (predicted walk rate) is compared with the actual walk rate. The comparison is 

carried out by the cross plot between predicted and actual walk rate for the testing 

dataset. Figure 4.39 represents model number 3 while figure 4.40 represents model 

number 5. Moreover, the comparison result in another perspective is shown in table 

4.15. The information in the table represents the percentage of error between the 

predicted and actual walk rate. Error differences are grouped into 5 ranges which are 

0-10%, 10-20%, 20-30%, 30-40% and >40%. The fraction shows the percentage of 

dataset that belongs to each error range. 

Regarding model number 3, the cross plot in figure 4.39 shows the difference 

between predicted and actual walk rate. The “y=x” line refers to the correct 

prediction. However, this correct prediction is not regularly occurred. Therefore, r 

(Correlation coefficient) is calculated to see how well the predicted walk rate is 

correlated with the actual one. In this case of the comparison between predicted and 

actual walk rate of training sets of model number 3, r is equal to 0.71. Another 

perspective of comparison could also be seen from table 4.15, for model number 3, 

there are 11% (fraction = 0.11) of training sets that produce the difference between 

predicted and actual walk rate in the range of 0-10%. Moreover, there are 11%, 26%, 

16%, and 36% (fraction = 0.11, 0.26, 0.16 and 0.36) of training sets that produce the 

difference between predicted and actual walk rate in the range of 10-20%, 20-30%, 

30-40%, and >40% respectively.    

Regarding model number 5, the cross plot in figure 4.40 shows the difference 

between actual and predicted walk rate. The “y=x” line refers to the correct 

prediction. However, this correct prediction is not regularly occurred. Therefore, r 

(Correlation coefficient) is calculated to see how well the predicted walk rate is 

correlated with the actual one. In this case of the comparison between actual and 

predicted walk rate of training sets of model number 5, r is equal to 0.70. Another 

perspective of comparison could also be seen from table 4.15, for model number 3, 

there are 14% (fraction = 0.14) of training sets that produce the difference between 

predicted and actual walk rate in the range of 0-10%. Moreover, there are 5%, 16%, 

23%, and 42% (fraction = 0.05, 0.16, 0.23 and 0.42) of training sets that produce the 
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difference between predicted and actual walk rate in the range of 10-20%, 20-30%, 

30-40%, and >40% respectively.  

 

Figure 4.39: Cross plot of Predicted vs. Actual walk rate (Model number 3 – Testing 
sets) 

 

 

Figure 4.40: Cross plot of Predicted vs. Actual walk rate (Model number 5 – Testing 
sets) 

 

 

y = x 
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y = x 

r = 0.70 
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Table 4.15: Error fraction (Testing sets) 
Testing Sets 

  
Number of 

neurons Fraction of dataset in each error range 

Model# 
Hidden 
layer 1  

Hidden 
layer 2 0-10 % 10-20 % 20-30 % 30-40 % >40 % 

3 9 0 0.11 0.11 0.26 0.16 0.36 
5 9 0 0.14 0.05 0.16 0.23 0.42 

 

Model number 3 and 5 are compared to locate which one is better in terms of 

prediction performance. r values prescribed at the bottom right of each figure between 

4.39 and 4.40 are used for the prediction performance comparison. Figure 4.39 

representing testing sets of model number 3 give a value of r as 0.71. Figure 4.40 

representing testing sets of model number 5 give a value of r as 0.70. Comparing the 

cross plot representing testing sets between model number 3 and 5 using r values, it is 

found out that model number 3 yields slightly better result than another one. As a 

result, model number 3 is selected to represent the absolute bit walk quantity 

prediction (Case 2.1).  

Figure 4.41 shows the comparison between predicted and actual walk rate of 

testing sets of model number 3. It is alternatively plotted by dataset number. This is to 

give a closer view on the quantity difference between predicted and actual walk rate 

dataset by dataset. It is shown in the figure that there is no existence of the case where 

the actual is significantly higher than the predicted value. However, from the gamma 

ray pattern found in the case of training and validating sets, it could be implied that if 

the continuous shale formation is found throughout the specified drilling interval from 

the geological prognosis, high walk rate could be implied and precaution that the 

model could likely yield a lower prediction value than the actual case has to be taken 

place.  
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Figure 4.41: Comparing Predicted vs. Actual walk rate by order (Model number 3 – 

Testing sets) 

As observed from the entire dataset, it could be noticed that the actual walk 

rate exhibits a clustering pattern that there are certain number of dataset yielding the 

same amount of the actual walk rate. Moreover, according to the error from the testing 

shown in either cross plot or error fraction (figure 4.39, 4.40 and table 4.15), it could 

be seen that both models do not exhibit a high accuracy in the prediction. This could 

be because there are certain effects from the formation. For examples, the drilling 

interval that experience high formation anisotropies could result in a higher walk rate 

than usual while drilling in the interval where low anisotropies are experienced will 

give an opposite result. Even though the formation anisotropies could give an effect to 

the walk rate, but it is based on the assumption that it should generally gives a 

moderate effect to the walk rate that it could make the walk rate to be higher or lower 

than usual in certain range. With these given two reasons above, there is an attempt to 

establish another case study to try predicting bit walk rate in range rather than the 

absolute amount. The case study is described and analyzed in the following topic.    
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4.3.2.2 Case 2.2 – Bit walk quantity in range 

 This case is the extension of the previous case that it tries to model the bit 

walk rate given an output in range instead of the absolute walk amount. The rationale 

behind is to build a model that is best suitable with the information currently 

available. It has been known that the formation anisotropies contribute quite 

significantly in affecting the bit walk rate and they are the unknown parameters. The 

model of this case focus on predicting bit walk rate in range. This could more or less 

suppress the uncertainty created by the unknown parameters. The walk rate is grouped 

into three ranges namely group A covers a range of 0.1 to 0.3 deg/30m, group B 

covers a range of 0.3 to 0.7 deg/30m and group C covers a range of 0.7 to 1.3 

deg/30m. The dataset belonging to each group of the walk rate are divided to nearly 

equally as 38, 40 and 34 respectively from the total of 112 dataset. The model is 

configured with an input layer consisted of four neurons representing inclination, 

weight on bit, rotational speed and torque. The output layer is consisted of 3 neurons 

representing group A, B or C of walk rate range. The number of hidden layers and 

neurons are varied to search for the configurations resulting in low error. The 

schematic diagram of the ANN model of this case is shown in figure 4.42.     

 

 

 

 

 

 

 

 

 

 

Figure 4.42: Schematic diagram of ANN model – Case 2.2 
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4.3.2.2.1 Data preprocessing 

Table 4.16 demonstrates the examples of dataset that are grouped into three bit 

walk range. In order to apply these walk range groups with the ANN model, three 

neuron nodes at the output layer are required to represent all three cases of group A, B 

or C. The reformatting of the output is shown in table 4.17. For example, a walk rate 

as 0.17 deg/30m which is under group A is transformed into the ANN output where 

node1 has a value of 1, node2 as 0 and node3 as 0. Each node of the neurons could 

give a result ranging from 0 to 1. The details on how to translate the output from the 

model prediction back to the bit walk range are to be discussed in the results and 

discussion section.   

Table 4.16: Model output in group 
  Model Inputs Model Output 

Dataset# Inclination WOB 
Rotational 

speed Torque Walk rate Group 
  (deg) (Klbs) (rpm) (Klbs*ft) (deg/30m)   

1 48.28 11.71 214 12062 0.17 A 
2 27.01 11.71 222 12839 0.18 A 
3 53.97 8.26 180 11939 0.19 A 
4 45.90 12.68 179 12794 0.35 B 
5 21.11 13.31 217 10075 0.36 B 
5 55.22 11.72 179 10782 0.55 B 
6 31.32 13.10 223 9873 0.70 C 
8 40.71 12.72 185 11884 0.71 C 
9 22.38 14.48 220 9965 0.82 C 

*Note: Group A = 0.1-0.3 deg/30m; Group B = 0.3-0.7 deg/30m; Group C = 0.7-1.3 deg/30m 

 

Table 4.17: Output node representation 

Group 
Output layers 

Node 1 Node 2 Node 3 
A 1 0 0 
B 0 1 0 
C 0 0 1 

*Note: Group A = 0.1-0.3 deg/30m; Group B = 0.3-0.7 deg/30m; Group C = 0.7-1.3 deg/30m 
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In order to ensure the efficiency in generalization of the model, dataset that are 

partitioned into training, validating and testing sets should present a similar 

distribution and cover possible ranges of information as much as possible. The same 

partitioned dataset with the case 2.1 are also applied to this case. Therefore, the 

histogram of each partitioned dataset can be referred to the figure 4.11 to 4.22 as 

shown in the case 2.1.   

4.3.2.2.2 Model training 

In this case, ANN model configurations namely number of hidden layers, 

number of neurons in each layer, learning rate and momentum are varied on a trial 

and error basis to locate the best configuration making the model converge as well as 

yielding the lowest MSE. 15 model runs are tried with different configurations. The 

results are summarized in the table 4.18 as shown below.  

Table 4.18: Model configuration – Case 2.2 
  No. of neurons   
Model 
#  

Hidden 
layer1 

Hidden 
layer 2 

Learning 
rate Momentum MSE 

1 3 0 0.20 0.2 0.1481 
2 4 0 0.25 0.9 0.1469 
3 4 0 0.20 0.2 0.1546 
4 6 0 0.25 0.9 0.1450 
5 7 0 0.25 0.9 0.1440 
6 8 0 0.25 0.9 0.1396 
7 9 0 0.25 0.9 0.1434 
8 10 0 0.25 0.9 0.1269 
9 15 0 0.25 0.9 0.1575 

10 20 0 0.25 0.9 0.1629 
11 25 0 0.25 0.9 0.1463 
12 30 0 0.25 0.9 0.1628 
13 20 10 0.25 0.9 0.1704 
14 20 15 0.25 0.9 0.1721 
15 20 20 0.25 0.9 0.1568 

 

The trial starts with a single hidden layer and a minimum number of neurons 

and increase the neurons and hidden layer in the latter models. The first model is 

configured with the proposed number of neurons  as 3 and hidden layer as 1 according 
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to the proposed formula by Jadid and Fairbairn (1996). The proposed formula 

calculates the number  of neurons to be as 3 from the equation 4.2 as same as in the 

case 2.1. ( )](/[ OUTINPTRN NNRNNHN ++= ) TRNN (No. of training sets) is equal to 

76, INPN  is equal to 4, OUTN  is equal to 3, R  could be any number from 5 to 10. The 

calculated NHN (No. of hidden neurons) is 4.5. The author suggested that this is an 

upper bound. So, we set the initial no. of hidden neurons to be lower than 4.5 which is 

3.  Learning rate determines the acceleration of the weight updating. Momentum is 

used in weight updating to help the search escape local minima and reduce the 

likelihood of search instability. Therefore, Learning rate and momentum of the first 

model is minimally set as 0.2. The model is run for about 12 epochs where the 

converge pattern is shown. At the 6th epoch, MSE of the validating sets reach the 

optimum point and start to increase after this point. Wheareas the MSE of training 

sets are still continuously reducing as could be due to the overfitting behavior of the 

ANN model. This is depicted in the figure 4.43.  

 

Figure 4.43: Learning curve of model number 1 (Case 2.2) 

Model number 2 is increased the number of neurons to 4. Learning rate is set 

to 0.25 and momentum as 0.9. These learning rate and momentum setting follows the 

suggestion proposed by Swingler (1996) that setting such values are recommended for 
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every model configuration unless a good solution could not be obtained. This 

proposal is also tested by keeping the number of neurons and layers contstant and 

vary the learning rate and momentum. Model number 2 having hidden layer as 1 , 

number of hidden neurons as 4, learning rate as 0.25 and momentum as 0.9, gives the 

result of MSE as 0.1469. For model number 3, number of neurons is set to 4 as same 

as model number 2,while learning rate is set to 0.2 and also the same for the 

momentum. The MSE results in the value of 0.1546. Model number 2 and 3 are 

compared, given the same number of neurons but different in learning rate and 

momentum. This is to test the model performance of model number 3 when learning 

rate and momentum is changed from 0.25 and 0.9 respectively. It turns out that MSE 

of model 3 is higher than that of model number 2. This could be generally conclude 

that learning rate as 0.25 and momentum as 0.9 yield a good result of MSE. 

Consequently, these configurations are also applied to other followed models. 

Number of neuron is increased to 6 in model number 4 with learning rate as 0.25 and 

momentum as 0.9. This results in a better model performacne giving lower MSE as 

0.1450. Model number 5 is configured with 7 number of neurons and one hidden 

layer. Learning rate is also set as 0.25 and momentum as 0.9. It results in the MSE as 

0.1440. Additional number of hidden neurons have been put into the model for 

lowering the MSE. This is conducted in model number 6 to model number 15 with the 

same learning rate and momentum as 0.25 and 0.9 repectively. Model number 13 to 

15 are configured with 2 hidden layers. However, the result does not show a better 

result of MSE than the model with one hidden layer.  

From the entire testings, two outstanding models giving lowest MSE are 

captured for examples. They are model number 6 and 8. Model number 6 gives MSE 

as 0.1396 with a configuration of 1 hidden layer and 8 number of hidden neurons. 

Model number 8 gives MSE as 0.1269 with a configuration of 1 hidden layer and 10 

number of hidden neurons. Learning rate and momentum for these two models are 

also set as 0.25 and 0.9 respectively.  Model number 6, as shown in figure 4.44, from 

the beginning of the training cycles, MSE of training set start to decline in parallel 

with that of the validating set. Until the optimum point is reached at 2th epoch, where 

validating set start to produce higher MSE but training set still produce a lower MSE. 

This is according to the overfitting behavior that the network is extensively exposed 

to the training set making the network lack of the ability to generalize. This is tested 
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by the validating set that the MSE is increased after the optimum point. Model 

number 8 also exhibits a minimal MSE which is 0.1269. This is lower than the model 

number 6’s. Its learning curve is shown in figure 4.45. The learning curve is similar to 

that of model number 6 but it is different only that the model number 8 converges at 

the 5th epoch where the MSE of training and validating sets start to set apart. Model 

number 6 and 8 are compared by testing the model with the entire dataset to see how 

good the model can predict the walk rate resulting in one of the predefined walk 

range. This is discussed in the next topic.   

 

Figure 4.44: Learning curve of model number 6 (Case 2.2) 

 

Best performance line 
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Figure 4.45: Learning curve of model number 8 (Case 2.2) 

 

4.3.2.2.3 Model testing results and discussion 

Below in table 4.19 is an example of results from the model prediction.  The 

model gives the output of node 1, 2 and 3 in a range from 0 to 1. The model ideally 

gives the answer as 1 for the output node that represents the answer while returning 0 

for other output nodes. In practice, the model does not give the absolute answer as 0 

nor 1 but rather a number between 0 and 1 depending on the strength and condition of 

the inputs. In general, the threshold can be set up to transform the model output into a 

binary number, namely 0 or 1. For examples, for a model that exhibit a strong answer, 

threshold as 0.8 can be set up that higher than such is transformed to 1 else to 0. 

However, according to the observation of the outputs from the model prediction of 

this study, not every dataset exhibits a strong output. This can be seen from dataset 

number 3 and 4 in the table 4.19 that the node representing highest output gives an 

answer between 0.45 and 0.65. Therefore, transforming the model output to a binary 

number via a threshold regime as mentioned earlier is not applicable to the data of this 

study. As a result, the answer of the model is based on the maximum regime that the 

node out of the three exhibiting the highest value than the others is selected as the 
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answer of the model prediction. Table 4.20 shows how the model outputs in table 4.19 

are transformed into a binary number to show which walk range the model predict for 

each dataset. For examples, the dataset number 1 in the table 4.18 shows that the 

model predicts the walk range as 0.3-0.7 deg/30m.  In other words, from the input of 

dataset number 1, inclination as 39.83 deg, WOB as 11.53 Klbs, Rotational speed as 

177.46 rpm and Torque as 12000.32 Klbs*ft yield a result of walk range as 0.3-0.7 

deg/30m.  

 

Table 4.19: Result from ANN model prediction (Case 2.2) 
  Model Inputs Model Outputs 

Dataset# Inclination WOB 
Rotational 

speed Torque Node 1 Node 2 Node 3 

  (deg) (Klbs) (rpm) (Klbs*ft) 
(0.1-0.3 
deg/30m)  

 (0.3-0.7 
deg/30m) 

 (0.7 – 1.3 
deg/30m) 

1 39.83 11.53 178 12000 0.07900 0.83732 0.18072 
2 26.57 11.62 214 13966 0.13872 0.02023 0.94844 
3 18.24 12.91 220 9444 0.20973 0.64235 0.13884 
4 20.09 11.88 179 9843 0.45062 0.35603 0.18924 

 

Table 4.20: Result from ANN model prediction (after transforming to binary) 
  Model Inputs Model Outputs 

Dataset# Inclination WOB 
Rotational 

speed Torque Node 1 Node 2 Node 3 

  (deg) (Klbs) (rpm) (Klbs*ft) 
(0.1-0.3 
deg/30m)  

 (0.3-0.7 
deg/30m) 

 (0.7 – 1.3 
deg/30m) 

1 39.83 11.53 178 12000 0 1 0 
2 26.57 11.62 214 13966 0 0 1 
3 18.24 12.91 220 9444 0 1 0 
4 20.09 11.88 179 9843 1 0 0 

 

This predicted output can be compared with the actual walk range. Not every 

dataset is correctly predicted by the neural network. The example of both correct and 

incorrect walk rate prediction is shown in table 4.21. Dataset number 1 shows the 

correct prediction as the result from the model gives a result of 0.3-0.7 deg/30m walk 

range, the actual result is also in this range. Dataset number 2 is the example of 

mismatch between the model prediction and the actual value, the model output predict 
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that these parameters result in walk range of 0.3-0.7 deg/30m, in fact the actual output 

of the input parameters is in walk range of 0.1-0.3 deg/30m. Therefore, a performance 

evaluation of the model has to be built. In this case, hit fraction is used for this matter. 

Hit fraction represents the proportion of correct prediction over total number of 

dataset. Giving an example from table 4.22 below, model number 8 gives a hit 

fraction of testing set as 0.72. This means that the model is able to 72% correctly 

predict the range of walk rate resulting in any of the walk ranges of 0.1-0.3, 0.3-0.7 or 

0.7-1.3 deg/30m. From the comparison of the two models, model number 8 yields a 

better result than another one when testing the model with the testing sets. Figure 4.46 

and 4.47 also show the comparison between predicted and actual walk range in details 

dataset by dataset which are the extension of the result in table 4.22.  

 

Table 4.21: Example of the comparison between the predicted and actual walk range 

  Model Inputs Model Outputs Vs. Actual 

Dataset# Inclination WOB 
Rotational 

speed Torque Node 1 Node 2 Node 3 

  (deg) (Klbs) (rpm) (Klbs*ft) 
(0.1-0.3 
deg/30m)  

 (0.3-0.7 
deg/30m) 

 (0.7 – 1.3 
deg/30m) 

1 39.83 11.53 178 12000 0 1 0 
Actual 0 1 0 

2 40.31 11.33 214 9620 0 1 0 
Actual 1 0  0 

 

 

Table 4.22: Hit fraction – Case 2.2 

Model # Hit fraction of testing dataset 
6 0.67 
8 0.72 
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Figure 4.46: Comparing Predicted vs. Actual walk range by order (Model number 6 – 

Testing sets) 

 

 

Figure 4.47: Comparing Predicted vs. Actual walk range by order (Model number 8 – 

Testing sets) 
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From the model prediction result, it is seen that some incorrect prediction is 

still occurred even though it is to the less extent than the case 2.1. The explanation 

could be drawn as same as the case 2.1 that it could be according to the formation 

effect creating higher or lower walk range than usual. In addition, there is an attempt 

to verify currently available data if each model parameter complies with the theory 

described in the past studies. This is conducted by inventing some test dataset and 

input them into the ANN model to see how much the prediction is varied according to 

the change of each parameter. The model number 8 which gives a better performance 

as shown in table 4.22 is used for this matter. As a result, a relationship between each 

parameter and walk rate (in range) can be generally summarized in table 4.23. The 

result confirms that following parameters, inclination, weight on bit (WOB) and 

rotational speed exhibit an inverse relationship, while torque demonstrates a direct 

relationship with walk rate. These summaries are in line with the past papers.  

 

Table 4.23: Change in walk according to each parameter 

Inclination WOB 
Rotational 
Speed Torque 

Walk 
range 

Input 
Observation 
 

Output 
Observation 
 (deg) (Klbs) (RPM) (Klbs*ft)  (deg/30m) 

42.20 10.57 220.48 7491.50 0.3-0.7 
  
WOB increase 

  
Walk 
decrease 42.20 14.50 220.48 7491.50 0.1-0.3 

18.24 12.91 219.52 9444.04 0.3-0.7 
  
RPM decrease 

  
Walk 
increase 18.24 12.91 150.50 9444.04 0.7-1.3 

27.09 11.86 228.31 13793.10 0.7-1.3   
Inclination 
increase 

  
Walk 
decrease 50.50 11.86 228.31 13793.10 0.3-0.7 

42.25 13.22 217.16 8441.72 0.1-0.3   
Torque 
increase 

  
Walk 
increase 42.25 13.22 217.16 13650.00 0.3-0.7 
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Moreover, the model number 8 could be further utilized to generate a general 

guideline on how much bit walk is varied according to the changes of the drilling 

parameters, namely weight on bit and rotational speed, as they are frequently adjusted 

during the drilling operation. The guideline is designed to cover three ranges of 

inclination which is normally kept unchanged during the design phase or minimally 

changed during the drilling operation. The entire range of inclination, namely 18-56 

deg, is divided into low range covering 18-35 deg, medium range covering 35-45 deg, 

and high range covering 45-56 deg. In each inclination range, drilling parameters are 

set and input into the model to generate the bit walk range. Weight on bit covers the 

range of 9-16 Klbs, while rotational speed covers the range of 140-230 RPM. These 

are according to the range taken from the actual field data indicating the optimum 

ranges used in the drilling operation. Torque which is another input of the model is 

constantly set as 11000 Klbs*ft to represent a moderate formation hardness. This 

value is a median from the range of actual torque taken from field data. The bit walk 

ranges generated by the model are illustrated in the figure 4.48 to 4.50 as walk 

prediction plots.  

 

Figure 4.48: Bit walk range under low inclination range (18-35 deg) 
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The drilling parameters regime could be summarized to give a guideline on a 

proper scenario of varying the parameters namely weight on bit and rotational speed. 

As a result, the bit walk range is resulted in an expected and acceptable range. From 

figure 4.48, at low inclination range (18-35 deg), it can be summarized that WOB 

from 9 to 9.5 Klbs and rotational speed from 140 to 170 RPM make the bit walk to be 

in the range of 0.7 to 1.3 deg/30m at any inclination degree from 18 to 35 deg. WOB 

as 10 to 12.5 Klbs and rotational speed as 140 to 230 RPM yield bit walk either in the 

range of 0.3-0.7 or 0.7-1.3 deg/30m considering the range of inclination from 18 to 35 

deg. If the exact inclination angle is input into the model, the model will yield the 

exact bit walk range. WOB as 13 to 16 Klbs and rotational speed as 140 to 230 RPM 

yield bit walk in the range of 0.3 to 0.7 deg/30m; eventhough the inclination angle is 

changed from 18 to 35 deg, it does not affect the bit walk range given these ranges of 

WOB and rotational speed. WOB as 15 to 16 Klbs and rotational speed as 160 to 230 

RPM give bit walk in the range of either 0.1-0.3 or 0.3-0.7 deg/30m considering the 

range of inclination from 18-35 deg. WOB as 15 to 16 Klbs and rotational speed as 

210 to 230 RPM could yield bit walk range from 0.1 to 0.3 deg/30m.  

There are two points to be noted. Firstly, the described WOB and rotational 

speed might not be exactly matched with the walk prediction plots since the range of 

bit walk as displayed generally is not in a rectangular shape. Therefore, the ranges 

descirbed here are considered as an approximation, the exact details could be viewed 

directly from the plots. Secondly, an uncertainty could be implied to the answer from 

the model that the predicted might be different from the actual walk range in some 

cases especially the case where there is a formation anistropies effect as seen in the 

case 2.1 and 2.2 discussed earlier.  
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Figure 4.49: Bit walk range under medium inclination range (35-45 deg) 

From the figure 4.49, at medium inclination range (35-45 deg), it can be 

summarized that WOB from 9 to 9.5 Klbs and rotational speed from 140 to 180 RPM 

could make the bit walk to be either in the range of 0.3 to 0.7 or 0.7 to 1.3 deg/30m 

depending on the exact inclination degree ranging from 35 to 45 deg. WOB as 9 to 10 

Klbs and rotational speed as 190 to 230 RPM as well as WOB as 10 to 13.5 Klbs and 

rotational speed as 140 to 230 RPM yield bit walk in the range of 0.3-0.7 deg/30m at 

any inclination from 35 to 45 deg. WOB as 14 to 16 Klbs and rotational speed as 140 

to 230 RPM yield bit walk either in the range of 0.1 to 0.3 or 0.3 to 0.7 deg/30m 

depending on the exact inclination degree from 35 to 45 deg. WOB as 15 to 16 Klbs 

and rotational speed as 160 to 230 RPM give bit walk in the range of 0.1-0.3 deg/30m 

at any inclination in the range of 35-45 deg. There are two cautions noted as same as 

the low inclination case above.  
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Figure 4.50: Bit walk range under high inclination range (45-56 deg) 

From the figure 4.50, at high inclination range (45-56 deg), it can be 

summarized that WOB from 9 to 11.5 Klbs and rotational speed from 140 to 210 

RPM could make the bit walk in the range of 0.3 to 0.7 deg/30m at any inclination 

angle ranging from 45 to 56 deg. WOB as 11 to 14 Klbs and rotational speed as 140 

to 180 RPM as well as WOB as 9 to 12 Klbs and rotational speed as 180 to 230 RPM 

yield bit walk in either the range of 0.1-0.3 or 0.3-0.7 deg/30m depending on the exact 

inclination angle from 45 to 56 deg. WOB as 14 to 16 Klbs and rotational speed as 

140 to 230 RPM yield bit walk in the range of 0.1 to 0.3 deg/30m at any inclination 

angle from 45 to 56 deg. There are two cautions noted as same as the low inclination 

case above.   

 In conclusion, from the generated walk prediction plots, it can be applied to 

the drilling operation as follows. The inclination is normally predefined at the drilling 

design phase. Therefore, the range of the inclination is initially determined that one of 

the three plots is chosen. The formation hardness is generally considered as a 

moderate hardness. The drilling parameters, namely weight on bit and rotational 

speed as the most frequently adjustable parameters, can be varied and their effect to 

the bit walk range can be viewed through the change of the bit walk range shown in 

the walk prediction plots.  
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CHAPTER V 
CONCLUSIONS AND RECOMMENDATIONS 

 
 

5.1 Conclusions 

 This thesis utilized an artificial neural network to create a model to predict the 

bit walk rate for the drilling operation in the Gulf of Thailand, particularly in the 6-

1/8” drilling section. The model is trained with the actual field data obtained from 

several drilled wells. To develop the neural network model, four main steps are 

conducted as follows. Firstly, identify inputs and outputs of the neural network model 

through the reviewing and summarizing of the past studies to determine the factors 

and their effects to the bit walk. Secondly, screen and filter the data before training 

the network to ensure the qualified distribution of the data as well as the quality of the 

model training and prediction. Thirdly, develop the model training with several 

configurations to locate the best model configuration. And lastly evaluate the 

performance of the models by testing with the actual field data.  

The conclusions drawn from the study and model applications are summarized 

as follows.  

1. The selected parameters affecting bit walk tendency cover the domains of 

wellbore geometry represented by inclination, drilling parameters represented by the 

two important operating parameters which are weight on bit and rotational speed, and 

formation hardness represented by torque.  

 2. The total dataset of 140 mostly represent bit walk left. 20 of which 

represents bit walk right. This is concluded that given the selected bit and BHA 

configuration, bit walk exhibits a left tendency. The right direction is minimal and 

implied by the effect from the formation anisotropies which are dip angle for 

interbedded formation and laminated characteristic for shale formation.  

 3. The model is used for predicting bit walk quantity in an absolute amount as 

well as in range. Predicting the bit walk in range yields more precise result than the 

absolute amount case. The error occurred in the absolute amount case could be due to 
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the formation anisotropies. The percentage of correct prediction for the bit walk range 

case is 72% when tested with testing dataset. 

 4. The model is also used for checking the alignment with the previous 

studies. The result shows that the neural network model gives the same result in terms 

of relationship (either direct or inverse) between each parameter and walk rate. 

 5. Drilling parameters adjustment can be previewed by the walk prediction 

plots generated by the model covering three ranges of inclination. The plots display 

the variation of drilling parameters, namely weight on bit and rotational speed, 

affecting the change of bit walk range given moderate formation hardness. 

As seen from the model development and testing, the models exhibit some 

errors. The main factor could be from the formation anisotropies corresponding to dip 

angle for interbedded formation and laminated characteristic for shale formation. The 

conclusion drawn from both absolute walk rate and walk range prediction cases shows 

that laminated characteristic demonstrated in the continuous shale formation could 

account for a high walk rate. This could be found from the geological prognosis. 

However, this is considered as qualitative information that cannot be directly input 

into the model.   

5.2 Recommendations 

The recommendations for future work are summarized as follows.  

1. The formation anisotropies are seen to be disregarded from the model 

development due to the insufficiency of the information as well as the difficulties in 

obtaining the anisotropy information in a quantitative manner. When the formation 

anisotropies could be quantitatively identified and incorporated as parameters of the 

model in conjunction with synchronized directional data, the model should be able to 

extend its capability to predict more precise bit walk rate as well as bit walk direction. 

2. This study scopes down to focus on a certain bit, BHA configuration and 

formation type. Therefore, the model could be further extended to cover several types 

of bits, BHA configurations and formation types so that the model can be utilized 

with more general and various types of applications.  
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3. It is also worth to be aware that the number of training dataset required for 

training the neural network model is according to the number of network inputs and 

outputs. Once model parameters are increased, additional inputs are added to the 

model. Consequently, the number of training dataset has to be increased to ensure the 

sufficiency of training samples.  
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APPENDIX A 

Details of 140 dataset from the drilling operation in the Gulf of Thailand 

Dataset 
no. Inclination WOB 

Rotational 
Speed Torque Walk rate 

Walk 
direction 

  (deg) (Klbs) (RPM) (Klbs*ft) (deg/30m)   
1 15.33 3.67 214 6036 0.52 Right 
2 18.24 12.91 220 9444 0.36 Left 
3 18.72 12.03 222 9792 0.36 Right 
4 19.04 11.28 214 6450 0.18 Left 
5 19.34 13.90 223 9803 0.71 Left 
6 19.92 14.79 218 9632 0.18 Left 
7 20.09 11.88 179 9843 0.18 Left 
8 20.33 14.59 208 10078 0.35 Left 
9 20.64 14.03 209 9866 0.35 Left 

10 21.11 13.31 217 10075 0.36 Left 
11 21.24 11.48 210 6298 0.88 Left 
12 21.43 12.57 130 13522 0.69 Left 
13 21.76 12.41 124 13724 0.89 Left 
14 21.98 12.38 220 9634 0.18 Right 
15 21.98 14.14 222 9740 0.35 Left 
16 22.33 12.90 154 14241 1.08 Left 
17 22.38 14.48 220 9964 0.82 Left 
18 22.65 11.34 220 9570 0.35 Left 
19 22.78 14.03 221 9592 0.47 Right 
20 23.04 12.83 222 10822 0.53 Left 
21 23.07 13.45 146 13862 1.17 Left 
22 23.13 13.10 222 9437 0.35 Left 
23 23.35 12.76 142 8824 0.71 Right 
24 23.44 12.29 222 9453 0.35 Right 
25 23.60 13.03 163 13586 0.82 Left 
26 23.61 15.38 222 10766 0.53 Left 
27 23.79 14.10 223 9310 0.35 Left 
28 23.91 11.04 174 13786 1.05 Left 
29 24.19 13.54 126 8500 0.70 Right 
30 24.19 13.66 222 9179 0.18 Left 
31 24.29 12.00 160 13586 1.15 Left 
32 24.54 15.45 221 10711 0.71 Left 
33 24.59 11.90 221 8994 0.18 Left 
34 24.98 12.10 221 9307 0.17 Left 
35 25.09 12.10 180 13333 1.30 Left 
36 25.18 11.21 198 13464 0.82 Left 
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Dataset 
no. Inclination WOB 

Rotational 
Speed Torque Walk rate 

Walk 
direction 

  (deg) (Klbs) (RPM) (Klbs*ft) (deg/30m)   
37 25.20 13.07 119 8034 0.36 Right 
38 25.33 12.24 222 10610 0.70 Left 
39 25.33 12.21 221 8936 0.71 Left 
40 25.48 11.00 206 13621 1.28 Left 
41 25.92 11.90 208 14345 1.22 Left 
42 26.21 14.17 223 10719 0.35 Left 
43 26.30 10.93 138 7966 0.88 Right 
44 26.57 11.62 214 13966 0.71 Left 
45 26.87 12.88 219 12613 0.53 Right 
46 27.00 14.18 223 10448 0.53 Left 
47 27.01 11.71 222 12839 0.18 Left 
48 27.07 12.55 221 12976 0.19 Left 
49 27.09 11.86 228 13793 0.88 Left 
50 27.10 11.53 222 12891 0.70 Left 
51 27.36 13.84 221 12234 1.59 Right 
52 27.49 14.93 215 10525 0.17 Right 
53 27.97 14.97 222 10369 0.70 Left 
54 28.15 13.86 221 12280 0.88 Right 
55 28.46 13.97 222 10280 0.18 Right 
56 29.03 13.97 222 10525 0.36 Left 
57 29.34 12.72 215 12522 1.06 Right 
58 30.13 11.56 220 12408 0.17 Right 
59 30.35 13.39 223 10136 0.35 Left 
60 30.66 12.45 223 10097 0.35 Left 
61 30.88 11.97 223 10155 0.18 Left 
62 31.32 13.10 223 9873 0.70 Left 
63 31.77 13.25 223 9403 0.18 Right 
64 31.81 13.10 223 9796 0.17 Right 
65 36.42 14.47 140 12107 0.86 Left 
66 37.45 13.67 142 11771 0.88 Left 
67 37.53 11.37 105 14296 0.71 Left 
68 37.71 10.84 209 11008 0.35 Left 
69 37.76 12.12 217 10589 0.53 Left 
70 38.02 11.37 217 10332 0.35 Left 
71 38.33 12.76 212 10183 0.18 Left 
72 38.50 11.41 213 10021 0.35 Left 
73 38.68 10.00 214 9852 0.35 Left 
74 38.77 12.66 164 12163 0.71 Left 
75 38.94 9.71 215 9698 0.18 Left 
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Dataset 
no. Inclination WOB 

Rotational 
Speed Torque Walk rate 

Walk 
direction 

  (deg) (Klbs) (RPM) (Klbs*ft) (deg/30m)   
76 39.03 10.14 214 9679 0.35 Left 
77 39.12 8.54 214 9555 0.35 Left 
78 39.34 10.64 214 9721 0.36 Left 
79 39.43 11.38 162 14483 0.36 Left 
80 39.78 11.34 214 9698 0.35 Left 
81 39.83 11.53 177 12000 0.35 Left 
82 40.31 11.33 213 9620 0.18 Left 
83 40.58 10.55 214 9362 0.35 Left 
84 40.71 12.72 185 11884 0.71 Left 
85 40.84 12.53 216 9401 0.35 Left 
86 41.19 11.79 217 8966 0.53 Left 
87 41.50 12.67 217 8964 0.18 Left 
88 41.63 13.60 192 11690 0.70 Left 
89 41.68 9.97 223 13862 0.52 Left 
90 41.81 13.40 217 8807 0.17 Left 
91 42.03 12.84 218 8570 0.18 Left 
92 42.16 12.84 218 8412 0.17 Left 
93 42.16 10.90 195 13897 0.36 Left 
94 42.20 10.57 220 7492 0.35 Left 
95 42.25 13.22 217 8442 0.18 Left 
96 42.25 11.19 218 7886 0.18 Left 
97 42.38 14.16 190 11781 1.06 Left 
98 43.00 13.64 188 11973 1.06 Left 
99 43.30 11.29 222 14321 0.35 Left 

100 43.74 11.43 220 13929 0.35 Left 
101 45.20 8.31 180 13145 0.18 Left 
102 45.29 12.52 223 11585 0.53 Left 
103 45.37 9.81 178 13169 0.53 Left 
104 45.46 10.60 179 12811 0.17 Left 
105 45.73 11.21 179 12789 0.53 Left 
106 45.90 12.68 179 12794 0.35 Left 
107 45.99 13.41 209 12118 0.52 Left 
108 46.08 14.34 179 12587 0.36 Left 
109 46.43 12.67 223 11757 0.88 Left 
110 46.52 12.91 214 12119 0.18 Left 
111 46.52 13.19 179 12532 0.35 Left 
112 46.87 11.81 214 12016 0.18 Left 
113 46.96 13.97 179 12638 0.17 Left 
114 47.14 11.77 214 12062 0.35 Left 
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Dataset 
no. Inclination WOB 

Rotational 
Speed Torque Walk rate 

Walk 
direction 

  (deg) (Klbs) (RPM) (Klbs*ft) (deg/30m)   
115 47.22 12.19 178 12451 0.18 Left 
116 47.49 12.43 214 12183 0.18 Left 
117 47.75 12.67 179 12448 0.53 Left 
118 47.84 12.60 214 12147 0.17 Left 
119 47.93 13.65 214 12086 0.18 Left 
120 48.15 11.72 222 11660 1.23 Left 
121 48.28 11.71 214 12062 0.17 Left 
122 48.63 13.45 214 12027 0.36 Left 
123 48.81 9.82 213 11969 0.35 Left 
124 49.07 9.54 214 11725 0.18 Left 
125 53.70 12.32 181 10532 0.18 Left 
126 53.94 7.41 179 12324 0.23 Left 
127 53.97 8.26 180 11939 0.19 Left 
128 54.11 12.17 181 11911 0.15 Left 
129 54.23 10.95 219 9876 0.18 Left 
130 54.28 11.96 220 9998 0.17 Left 
131 54.45 12.53 212 10263 0.18 Left 
132 54.51 12.82 180 12308 0.18 Left 
133 54.58 11.09 212 9888 0.18 Left 
134 54.67 12.22 220 9891 0.18 Left 
135 54.86 12.62 180 11836 0.10 Left 
136 55.07 12.72 220 9816 0.18 Left 
137 55.22 11.72 179 10782 0.55 Left 
138 55.23 12.42 180 11434 0.15 Left 
139 55.24 12.28 220 9097 0.18 Right 
140 55.68 12.39 220 9436 0.18 Right 
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APPENDIX B 

Results from testing model number 3 with entire dataset (Case 2.1) 

Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Walk rate 
(Actual) 

Walk rate 
(Predicted) 

(deg) (Klbs) (RPM) (Klbs*ft) (deg/30m) (deg/30m) 
1 Train 18.24 12.91 220 9444 0.36 0.40 
2 Train 19.34 13.90 223 9803 0.71 0.47 
3 Train 20.09 11.88 179 9843 0.18 0.12 
4 Train 21.11 13.31 217 10075 0.36 0.45 
5 Train 21.98 14.14 222 9740 0.35 0.47 
6 Train 22.33 12.90 154 14241 1.08 1.04 
7 Train 22.38 14.48 220 9964 0.82 0.52 
8 Train 22.65 11.34 220 9570 0.35 0.36 
9 Train 23.04 12.83 222 10822 0.53 0.43 

10 Train 23.07 13.45 146 13862 1.17 1.10 
11 Train 23.13 13.10 222 9437 0.35 0.39 
12 Train 23.60 13.03 163 13586 0.82 1.13 
13 Train 23.79 14.10 223 9310 0.35 0.44 
14 Train 24.29 12.00 160 13586 1.15 0.93 
15 Train 24.59 11.90 221 8994 0.18 0.34 
16 Train 25.09 12.10 180 13333 1.29 1.18 
17 Train 25.18 11.21 198 13464 0.82 0.90 
18 Train 25.33 12.24 222 10610 0.70 0.41 
19 Train 25.33 12.21 221 8936 0.71 0.34 
20 Train 25.92 11.90 208 14345 1.22 0.97 
21 Train 26.21 14.17 223 10719 0.35 0.49 
22 Train 26.57 11.62 214 13966 0.71 0.86 
23 Train 27.00 14.18 223 10448 0.53 0.48 
24 Train 27.07 12.55 221 12976 0.19 0.63 
25 Train 27.09 11.86 228 13793 0.88 0.59 
26 Train 27.10 11.53 222 12891 0.70 0.66 
27 Train 27.97 14.97 222 10369 0.70 0.54 
28 Train 30.66 12.45 223 10097 0.35 0.40 
29 Train 30.88 11.97 223 10155 0.18 0.40 
30 Train 31.32 13.10 223 9873 0.70 0.39 
31 Train 36.42 14.47 140 12107 0.86 0.94 
32 Train 37.45 13.67 142 11771 0.88 0.80 
33 Train 37.71 10.84 209 11008 0.35 0.49 
34 Train 38.02 11.37 217 10332 0.35 0.46 
35 Train 38.50 11.41 213 10021 0.35 0.41 
36 Train 38.94 9.71 215 9698 0.18 0.15 
37 Train 39.34 10.64 214 9721 0.36 0.31 
38 Train 39.43 11.38 162 14483 0.36 0.48 
39 Train 39.83 11.53 177 12000 0.35 0.57 
40 Train 40.31 11.33 213 9620 0.18 0.34 
41 Train 40.71 12.72 185 11884 0.71 0.78 
42 Train 40.84 12.53 216 9401 0.35 0.33 
43 Train 41.63 13.60 192 11690 0.70 0.96 
44 Train 42.03 12.84 218 8570 0.18 0.23 
45 Train 42.16 12.84 218 8412 0.17 0.21 
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Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Walk rate 
(Actual) 

Walk rate 
(Predicted) 

(deg) (Klbs) (RPM) (Klbs*ft) (deg/30m) (deg/30m) 
46 Train 42.16 10.90 195 13897 0.36 0.38 
47 Train 42.20 10.57 220 7492 0.35 0.13 
48 Train 42.25 11.19 218 7886 0.18 0.16 
49 Train 42.25 13.22 217 8442 0.18 0.20 
50 Train 42.38 14.16 190 11781 1.06 0.93 
51 Train 43.74 11.43 220 13929 0.35 0.26 
52 Train 44.14 13.30 194 11851 1.30 0.84 
53 Train 45.37 9.81 178 13169 0.53 0.36 
54 Train 45.46 10.60 179 12811 0.17 0.42 
55 Train 45.90 12.68 179 12794 0.35 0.43 
56 Train 46.43 12.67 223 11757 0.88 0.44 
57 Train 46.52 12.91 214 12119 0.18 0.52 
58 Train 46.96 13.97 179 12638 0.17 0.34 
59 Train 47.14 11.77 214 12062 0.35 0.48 
60 Train 47.49 12.43 214 12183 0.18 0.48 
61 Train 47.84 12.60 214 12147 0.17 0.46 
62 Train 47.93 13.65 214 12086 0.18 0.29 
63 Train 48.15 11.72 222 11660 1.23 0.47 
64 Train 48.28 11.71 214 12062 0.17 0.40 
65 Train 48.63 13.45 214 12027 0.36 0.32 
66 Train 48.81 9.82 213 11969 0.35 0.25 
67 Train 49.07 9.54 214 11725 0.18 0.24 
68 Train 53.70 12.32 181 10532 0.18 0.24 
69 Train 54.11 12.17 181 11911 0.15 0.18 
70 Train 54.45 12.53 212 10263 0.18 0.28 
71 Train 54.51 12.82 180 12308 0.18 0.08 
72 Train 54.58 11.09 212 9888 0.18 0.17 
73 Train 54.67 12.22 220 9891 0.18 0.24 
74 Train 54.86 12.62 180 11836 0.10 0.07 
75 Train 55.07 12.72 220 9816 0.18 0.15 
76 Train 55.23 12.42 180 11434 0.15 0.17 
77 Validate 20.33 14.59 208 10078 0.35 0.52 
78 Validate 21.43 12.57 130 13522 0.69 1.12 
79 Validate 24.19 13.66 222 9179 0.18 0.40 
80 Validate 24.54 15.45 221 10711 0.71 0.63 
81 Validate 24.98 12.10 221 9307 0.17 0.36 
82 Validate 37.76 12.12 217 10589 0.53 0.49 
83 Validate 38.68 10.00 214 9852 0.35 0.22 
84 Validate 39.03 10.14 214 9679 0.35 0.23 
85 Validate 39.78 11.34 214 9698 0.35 0.36 
86 Validate 40.58 10.55 214 9362 0.35 0.24 
87 Validate 41.19 11.79 217 8966 0.53 0.27 
88 Validate 41.68 9.97 223 13862 0.52 0.29 
89 Validate 43.00 13.64 188 11973 1.06 0.92 
90 Validate 45.73 11.21 179 12789 0.53 0.44 
91 Validate 45.99 13.41 209 12118 0.52 0.57 
92 Validate 46.87 11.81 214 12016 0.18 0.51 
93 Validate 47.22 12.19 178 12451 0.18 0.43 
94 Validate 54.23 10.95 219 9876 0.18 0.18 
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Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Walk rate 
(Actual) 

Walk rate 
(Predicted) 

(deg) (Klbs) (RPM) (Klbs*ft) (deg/30m) (deg/30m) 
95 Test 19.92 14.79 218 9632 0.18 0.54 
96 Test 20.64 14.03 209 9866 0.35 0.48 
97 Test 21.76 12.41 124 13724 0.89 1.12 
98 Test 23.61 15.38 222 10766 0.53 0.64 
99 Test 23.91 11.04 174 13786 1.05 0.95 

100 Test 27.01 11.71 222 12839 0.18 0.64 
101 Test 30.35 13.39 223 10136 0.35 0.41 
102 Test 38.33 12.76 212 10183 0.18 0.45 
103 Test 38.77 12.66 164 12163 0.71 0.51 
104 Test 41.50 12.67 217 8964 0.18 0.27 
105 Test 41.81 13.40 217 8807 0.17 0.25 
106 Test 43.30 11.29 222 14321 0.35 0.19 
107 Test 45.29 12.52 223 11585 0.53 0.50 
108 Test 46.08 14.34 179 12587 0.36 0.43 
109 Test 46.52 13.19 179 12532 0.35 0.43 
110 Test 47.75 12.67 179 12448 0.53 0.38 
111 Test 54.28 11.96 220 9998 0.17 0.27 
112 Test 55.22 11.72 179 10782 0.55 0.33 

 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDIX C 

Results from testing model number 8 with entire dataset (Case 2.2) 

Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Model Outputs (Actual walk 
range)  

Model outputs (Predicted walk 
range) 

(deg) (Klbs) (RPM) (Klbs*ft) Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 
1 Train 18.24 12.91 220 9444 0 1 0 0.210 0.642 0.139 
2 Train 19.34 13.90 223 9803 0 1 0 0.189 0.648 0.154 
3 Train 20.09 11.88 179 9843 1 0 0 0.451 0.359 0.183 
4 Train 21.11 13.31 217 10075 0 1 0 0.186 0.612 0.192 
5 Train 21.98 14.14 222 9740 0 1 0 0.282 0.563 0.149 
6 Train 22.33 12.90 154 14241 0 0 1 -0.008 0.118 0.868 
7 Train 22.38 14.48 220 9964 0 0 1 0.326 0.485 0.183 
8 Train 22.65 11.34 220 9570 0 1 0 0.409 0.414 0.175 
9 Train 23.04 12.83 222 10822 0 1 0 0.347 0.489 0.150 

10 Train 23.07 13.45 146 13862 0 0 1 0.154 0.163 0.960 
11 Train 23.13 13.10 222 9437 0 1 0 0.364 0.489 0.139 
12 Train 23.60 13.03 163 13586 0 0 1 -0.033 0.123 0.883 
13 Train 23.79 14.10 223 9310 0 1 0 0.370 0.533 0.093 
14 Train 24.29 12.00 160 13586 0 0 1 -0.025 0.246 0.760 
15 Train 24.59 11.90 221 8994 1 0 0 0.668 0.161 0.165 
16 Train 25.09 12.10 180 13333 0 0 1 0.123 0.131 0.720 
17 Train 25.18 11.21 198 13464 0 0 1 -0.014 0.470 0.661 
18 Train 25.33 12.21 221 8936 0 1 0 0.704 0.140 0.150 

19 Train 25.33 12.24 222 10610 0 1 0 0.414 0.491 0.084 
 



 

 

Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Model Outputs (Actual walk 
range)  

Model outputs (Predicted walk 
range) 

(deg) (Klbs) (RPM) (Klbs*ft) Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 
20 Train 25.92 11.90 208 14345 0 0 1 0.266 0.209 0.518 
21 Train 26.21 14.17 223 10719 0 1 0 0.405 0.516 0.080 
22 Train 26.57 11.62 214 13966 0 1 0 0.150 0.340 0.508 
23 Train 27.00 14.18 223 10448 0 1 0 0.396 0.603 0.004 
24 Train 27.07 12.55 221 12976 1 0 0 0.528 0.241 0.222 
25 Train 27.09 11.86 228 13793 0 0 1 0.252 0.463 0.290 
26 Train 27.10 11.53 222 12891 0 1 0 0.084 0.545 0.371 
27 Train 27.97 14.97 222 10369 0 1 0 0.191 0.687 0.113 
28 Train 30.66 12.45 223 10097 0 1 0 0.505 0.626 0.133 
29 Train 30.88 11.97 223 10155 1 0 0 0.612 0.542 0.151 
30 Train 31.32 13.10 223 9873 0 1 0 0.245 0.803 -0.062 
31 Train 36.42 14.47 140 12107 0 0 1 -0.069 0.084 0.939 
32 Train 37.45 13.67 142 11771 0 0 1 0.181 -0.045 0.821 
33 Train 37.71 10.84 209 11008 0 1 0 0.085 0.859 0.041 
34 Train 38.02 11.37 217 10332 0 1 0 0.291 0.709 -0.021 
35 Train 38.50 11.41 213 10021 0 1 0 0.359 0.618 0.002 
36 Train 38.94 9.71 215 9698 1 0 0 0.444 0.463 0.079 
37 Train 39.34 10.64 214 9721 0 1 0 0.350 0.589 0.049 
38 Train 39.43 11.38 162 14483 0 1 0 0.116 0.970 0.000 
39 Train 39.83 11.53 177 12000 0 1 0 0.116 0.658 0.215 
40 Train 40.31 11.33 213 9620 1 0 0 0.457 0.520 0.005 
41 Train 40.71 12.72 185 11884 0 1 0 0.093 0.435 0.443 
42 Train 40.84 12.53 216 9401 0 1 0 0.555 0.424 -0.006 

43 Train 41.63 13.60 192 11690 0 1 0 0.128 0.357 0.481 
 



 

 

Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Model Outputs (Actual walk 
range)  

Model outputs (Predicted walk 
range) 

(deg) (Klbs) (RPM) (Klbs*ft) Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 
44 Train 42.03 12.84 218 8570 1 0 0 0.692 0.302 -0.020 
45 Train 42.16 12.84 218 8412 1 0 0 0.712 0.284 -0.024 
46 Train 42.16 10.90 195 13897 0 1 0 0.149 1.042 0.156 
47 Train 42.20 10.57 220 7492 0 1 0 0.454 0.439 0.097 
48 Train 42.25 13.22 217 8442 1 0 0 0.698 0.285 -0.011 
49 Train 42.25 11.19 218 7886 1 0 0 0.629 0.326 0.026 
50 Train 42.38 14.16 190 11781 0 0 1 0.200 0.354 0.417 
51 Train 43.74 11.43 220 13929 0 1 0 -0.066 1.000 0.088 
52 Train 44.14 13.30 194 11851 0 0 1 0.265 0.257 0.452 
53 Train 45.37 9.81 178 13169 0 1 0 0.382 0.628 -0.095 
54 Train 45.46 10.60 179 12811 1 0 0 0.353 0.587 0.029 
55 Train 45.90 12.68 179 12794 0 1 0 0.418 0.364 0.243 
56 Train 46.43 12.67 223 11757 0 0 1 0.653 0.114 0.201 
57 Train 46.52 12.91 214 12119 1 0 0 0.592 0.163 0.220 
58 Train 46.96 13.97 179 12638 1 0 0 0.486 0.364 0.168 
59 Train 47.14 11.77 214 12062 0 1 0 0.481 0.253 0.252 
60 Train 47.49 12.43 214 12183 1 0 0 0.651 0.114 0.215 
61 Train 47.84 12.60 214 12147 1 0 0 0.688 0.084 0.208 
62 Train 47.93 13.65 214 12086 1 0 0 0.546 0.189 0.244 
63 Train 48.15 11.72 222 11660 0 0 1 0.563 0.213 0.205 
64 Train 48.28 11.71 214 12062 1 0 0 0.544 0.207 0.240 
65 Train 48.63 13.45 214 12027 0 1 0 0.638 0.107 0.236 
66 Train 48.81 9.82 213 11969 0 1 0 0.501 0.665 0.143 

67 Train 49.07 9.54 214 11725 1 0 0 0.541 0.604 0.140 
 



 

 

Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Model Outputs (Actual walk 
range)  

Model outputs (Predicted walk 
range) 

(deg) (Klbs) (RPM) (Klbs*ft) Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 
68 Train 53.70 12.32 181 10532 1 0 0 0.965 0.034 -0.008 
69 Train 54.11 12.17 181 11911 1 0 0 1.137 -0.037 -0.045 
70 Train 54.45 12.53 212 10263 1 0 0 0.853 -0.034 0.165 
71 Train 54.51 12.82 180 12308 1 0 0 1.206 -0.018 -0.094 
72 Train 54.58 11.09 212 9888 1 0 0 0.704 0.341 -0.045 
73 Train 54.67 12.22 220 9891 1 0 0 0.863 0.065 0.055 
74 Train 54.86 12.62 180 11836 1 0 0 1.175 -0.107 -0.001 
75 Train 55.07 12.72 220 9816 1 0 0 0.856 -0.023 0.146 
76 Train 55.23 12.42 180 11434 1 0 0 1.148 -0.108 -0.002 
77 Validate 20.33 14.59 208 10078 0 1 0 0.200 0.457 0.330 
78 Validate 21.43 12.57 130 13522 0 1 0 -0.054 0.258 0.777 
79 Validate 24.19 13.66 222 9179 1 0 0 0.417 0.460 0.118 
80 Validate 24.54 15.45 221 10711 0 1 0 0.309 0.431 0.257 
81 Validate 24.98 12.10 221 9307 1 0 0 0.599 0.255 0.140 
82 Validate 37.76 12.12 217 10589 0 1 0 0.261 0.699 0.009 
83 Validate 38.68 10.00 214 9852 0 1 0 0.390 0.529 0.068 
84 Validate 39.03 10.14 214 9679 0 1 0 0.388 0.528 0.071 
85 Validate 39.78 11.34 214 9698 0 1 0 0.435 0.543 0.004 
86 Validate 40.58 10.55 214 9362 0 1 0 0.386 0.542 0.061 
87 Validate 41.19 11.79 217 8966 0 1 0 0.631 0.366 -0.021 
88 Validate 41.68 9.97 223 13862 0 1 0 -0.037 1.206 0.180 
89 Validate 43.00 13.64 188 11973 0 0 1 0.185 0.333 0.457 
90 Validate 45.73 11.21 179 12789 0 1 0 0.457 0.549 0.032 

91 Validate 45.99 13.41 209 12118 0 1 0 0.455 0.257 0.264 
 



 

 

Dataset 
no. 

Data 
type Inclination WOB 

Rotational 
Speed Torque 

Model Outputs (Actual walk 
range)  

Model outputs (Predicted walk 
range) 

(deg) (Klbs) (RPM) (Klbs*ft) Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 
92 Validate 46.87 11.81 214 12016 1 0 0 0.481 0.249 0.252 
93 Validate 47.22 12.19 178 12451 1 0 0 0.610 0.237 0.184 
94 Validate 54.23 10.95 219 9876 1 0 0 0.705 0.337 -0.041 
95 Test 19.92 14.79 218 9632 1 0 0 0.285 0.520 0.188 
96 Test 20.64 14.03 209 9866 0 1 0 0.175 0.556 0.258 
97 Test 21.76 12.41 124 13724 0 0 1 -0.057 0.277 0.763 
98 Test 23.61 15.38 222 10766 0 1 0 0.316 0.362 0.316 
99 Test 23.91 11.04 174 13786 0 0 1 -0.016 0.507 0.649 

100 Test 25.48 11.00 206 13621 0 0 1 -0.017 0.508 0.656 
101 Test 27.01 11.71 222 12839 1 0 0 0.176 0.484 0.338 
102 Test 30.35 13.39 223 10136 0 1 0 0.241 0.806 -0.055 
103 Test 38.33 12.76 212 10183 1 0 0 0.274 0.616 0.080 
104 Test 38.77 12.66 164 12163 0 1 0 0.078 0.516 0.380 
105 Test 41.50 12.67 217 8964 1 0 0 0.636 0.353 -0.016 
106 Test 41.81 13.40 217 8807 1 0 0 0.627 0.327 0.018 
107 Test 43.30 11.29 222 14321 0 1 0 -0.013 1.129 0.035 
108 Test 45.29 12.52 223 11585 0 1 0 0.591 0.178 0.196 
109 Test 46.52 13.19 179 12532 0 1 0 0.275 0.433 0.306 
110 Test 47.75 12.67 179 12448 0 1 0 0.188 0.591 0.249 
111 Test 54.28 11.96 220 9998 1 0 0 0.863 0.100 0.021 

112 Test 55.22 11.72 179 10782 0 1 0 0.895 -0.053 0.048 
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APPENDIX D 

MATLAB source code 
 
clear; 
%--- Section 1 - definition ---% 
% No. of neuron 
  
hidden1 = 10; 
hidden2 = 20; 
  
% Learning rate and momentum 
lr = 0.1; 
mc = 0.1; 
  
% Dataset (train, validate, test) 
% input directly 
% (examples) 
input = [26.57 11.62 214.41 13965.52 ;  39.83 11.53 177.46 12000.32 ; 
24.98 12.1 220.52 9307.34 ]'; 
output = [0 0 1 ; 0 1 0 ; 1 0 0 ]'; 
testing = [47.84 12.6 214.14 12146.55 ;  48.81 9.82 213.42 11969.09 ; 
54.11 12.17 180.83 11911.14]'; 
  
  
% or via excel read function 
% (example) 
input = xlsread('input.xls',1); 
  
%--- Section 2 - Network building ---% 
net = newff(input, output, [hidden1,hidden2], {'logsig'}); 
  
% Weight initialization 
net = init(net); 
  
% Training function  
net.trainFcn = 'trainlm'; 
  
  
% Configuration 
net.trainParam.lr = lr; 
net.trainParam.mc = mc;   
net.trainParam.goal = 1e-5;  
net.trainParam.epochs = 100000; 
net.trainParam.show = 50;  
  
% Dataset partitioning 
  
net.divideFcn = 'divideblock'; 
[trainP,valP,testV,trainInd,valInd,testInd] =  divideblock(input, 
0.75, 0.25, 0); 
[trainT,valT,testT] = divideind(output,trainInd,valInd,testInd); 
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%--- Section 3 - Training, Validating and testing process ---% 
net = train(net,input,output); 
y = sim(net, testing); 
  
% Result outputs 
  
y = y'; 
x = sim(net, input); 
x = x'; 
  
  
trainP = trainP'; 
valP = valP'; 
testV = testV'; 
trainT = trainT'; 
valT = valT'; 
testT = testT'; 
input = input'; 
output = output'; 
testing = testing'; 
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