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CHAPTER |
INTRODUCTION

Directional drilling is important in many today’s wells. Not only it requires an
ability to drill directionally, but also accuracy in hitting the reservoir target precisely
to minimize the operation cost and maximize the production. Hence, there have been
many applications for controlling. inclination and direction of the drilling well.
Adjustable Gauge Stabilizer (AGS) is normally..used as a tool to control inclination
while direction is controlied Dy steerable motor.-The reservoir located at the deep
section, 6-1/8" in particulaiy-of the well in the Gulf of Thailand where petroleum
reservoirs usually residggexceptionaly contains high temperature that the rubber part
of the direction controlstoolsisinot able to effectively handle. As a result, AGS is
solely used in the operation o control inclination without a directional control tool in
place. This study is then attempting to adﬂress and model the bit directional behavior
with the availably controlleble parameters by using an Artificial Neural Network
(ANN) as atool. Consequently, an ahilityto control bit directional deviation, referred
in this study as bit walk, using-the controlleble drilling parameters without the
existence of steerable motor_could be &stébljghed. The modeling is carried out by
using the field data from the Gulf of Thailand to train the ANN building the bit walk
predictive tool. The-study Is divided into two perspectives of predicting bit walk
direction (left or right).and quantity.

Past studies were reviewed 10 ‘obtan parameters affecting bit walk as well as
comprehendingatheir causes and effects. The parameters are categorized into many
areas concerning bit model, bottem hole assembly (BHA), cenfiguration, drill string
mechanics, drilling parameters, and formation."However;-not at of ‘these are studied
simultaneoudly in the bit walk prediction model. Only certain areas are selected to
meet the objective of drilling runtime predictive tool that some parameters are not
readily available at the drilling runtime, but can be collected after the drilling
operation is finished through well log data acquisitions which mainly are the
information associated with formation characteristics. The commonly used bit model
and BHA configuration are selected without making change throughout the study.
Formation is scoped to focus on the one closed to a petroleum reservoir. The



formation represents lower Miocene age with Fluvia channel depositional

environment.

Procedures in creating the bit walk predictive tool are to be described step by
step in each following chapter. Chapter 2 outlines the review of past studies on
parameters affecting bit walk and summary made by each researcher. Chapter 3
explains the meaning and geometry of bit walk as well as describing the causes and
effects of each parameter in details. As a result, important parameters affecting bit
walk are identified to be the inputs of the/ANN model. Moreover, ANN theory and
concept are discussed. Chapter 4 mainly foeuses on the model development and any
conditions applied to this.specific casel Firstly, field data are analyzed to ensure a
qualified distribution before inputiing into the moddl for training. Secondly, the ANN
model is trained, validated and fested with several configurations. Results and
analysis are also disetissed in this chapter. Chapter 5 ends with conclusion and

recommendation for futtre works.



CHAPTER I
LITERATURE REVIEW

This chapter describes the past studies related to parameters and conditions
affecting bit walk concerning several areas, such as bit model, gauge, profile, Bottom
Hole Assembly (BHA) configuration, drilling parameters, and formation
characteristics and anisotropy. The studies have been conducted through number of
methods including field data observation, smathematical model, and experiment

through drilling bench.

Perry (1986) conducied a field data observation and survey from the drilling
operations of severa wells diilled in the Gulf of Thalland by different type of bit
profiles coupled with'the ghange'in.drilling parameters. The objective was to observe
how much bit walk was affected. The Case study foeused on 8-1/2" hole section
covering Fluvio-deltaic depasitional envi ronment formation. Bit profiles were divided
into 5 types (A-E), ranging from very flat to balistic profile. Weight on bit (WOB)
and Rotational speed (RPM) were taken iﬁtb, account as part of drilling parameters
variation. The results from the observation sf10§)ved that most of the bits usually turn
left at their optimum, drilling parameters. Flat profile bii-exhibited a tendency to a
right walk.

Bannerman (1990) studied a walk rate prediction on 23 wells in the Alwyn
North Field, in.the North ‘Sea by Means of Data Analysis.and 3D Computer Moddl.
By analyzing data from.both the 17-1/2"! and 12-1/2" phases, @n attempt was made to
explain the variation of walk rates from well towell. The studysfeund that bit walk
was affected by ‘severd factors, namely. BHA type,” humber and diameter of
stabilizers, hole size, inclination, coefficient of friction. Another conclusion drawn
which is in line with Perry is that walk rate or walk tendency is not affected by bit
gauge length.

Millhiem and Warren (1978) studied the side cutting characteristics of bits and
stabilizers through full-scale, automated, drilling apparatus. Side cutting was
measured in rate of displacement. The tests were conducted in Bedford Limestone and

Carthage Marble. The paper also expressed the effect of drilling operation parameters



and rate of penetration on the displacement from the testing. The side force
displacement data from the lab test can be used in conjunction with the finite element
BHA program to develop amodel for bit trajectory prediction.

Ernst, Pastusek and Lutes (2007) conducted several tests on full scale drilling
laboratory to investigate the effects of drilling parameters on the steerability of PDC
bits. Rock samples were taken from the field classified as medium and hard
limestone. They mostly represented homogenous blocks. The lab results were
consistent with field results. Rotational speed (RPM) and weight on bit were found to
create an effect on bit steerability. Formatien-hardness also established a significant
effect as formation hardness increases, the ability of bit to drill laterally decreases.

Walker (1986) cencluded factors controlling hoele angle and direction which
were quoted from the paper of Williamson and Lubinski (1986). Factors are such as
bit geometry, BHA configuration; borehole shape and curvature, operating
parameters. This paper mainly discussed on the BHA analysis which is the interaction
between formation and"types of BHA configuration. BHA analysis was carried out
through the 2-D BHA model. Result revealed that each assembly behaves in a
predictable manner for typica operating conditions and hole angles.

Menand, Sellami et. a (2003) pr@‘eh’téd a comprehensive analysis of the
directional behavior ef PDC bits; covering the effectof bit profile, gauge cutters and
gauge length. Numerical simulations and laboratory tests have been carried out to
better understand the mechanisms of PDC bit deviation and to evaluate the most
important parameters ‘affecting the directional | behavior- of“PDC bits. The results
obtained from «the full-scale directiona-drilling bench demonstrated that the bit
profile,~gauge cutters and-gauge-length exhibit.a significant, effect, on the walking
tendency of the PDC hits!

Chen, Collins and Thomas (2008) provided a reexamination on several past
papers studied on PDC bit walk in both directional and horizontal wells. Furthermore
a computerized numerical model was built and verified. The model could calculates
bit walk and walk force with consideration of bit gauge geometry, hole size,
formation compressive strength, steering mechanism of the Rotary Steerable System

(RSS), hit rotational speed, penetration rate, dogleg severity. The study mainly



focused on PDC bit drilled with steerable system. It was concluded that the
application of the bit model together with the BHA model to solve field problems has
shown significant benefits.

Ho (1987) firstly summarized several previous studies concerning rock-bit
interaction. Those studies were in the form of either 2D or 3D mathematical model.
This paper is different from others that it incorporated both rock-bit and BHA analysis
program into a single model called as a new rock-bit interaction model. By doing
such, the model is able to predict directionel behavior of the bit in the forward mode
as well as generating anisotropy index of bii‘and fermation through the inverse mode.
The field data were used. .10 generate average bit.and formation anisotropy index
through the inverse mode. Theindexes were used in the forward mode to predict bit
directional behavior accordingly. The results showed that, in average, the roller cone

bit is quite anisotropie(l, =0.194), while the formation'is quite isotropic (I, = 0)

Maldla, Campinas’ aiitl [Sampaio, (1989). tried to create another rock bit
interaction model with“an attempt t0 complete some gaps of Ho's model. In Ho's
model, bit anisotropy index is a function-net only of the bit type but also of the bit
conditions. So, it could be changed throughout its life. Ho's model suppresses this
uncertainty by averaging the index. The aI,té_rngtive model in this paper was verified
by field data from 15 directional wells drilled in the offshore Campos Basis area in
Brazil. The well trajéectory prediction for 5 planned wells showed a capability in
predicting bit walk rate, while not in some cases due 1o lacking of data on dip and

strike of the formation.

Boualleg, Sellami and Menand (2006) set a study focusing on anisotropic rock
in two caseswhich-are.interbedded and |aminated-rocks. The-paper coupled a 3D bit-
rock model with'a3D bottomiole assembly (BHA) model’ enabiing the prediction of
tortuosity occurrence (inclinational and directional deviation). The theoretical model
was validated and calibrated on full-scale bench concerning many types of rocks. The
model was concluded to be helpful for BHA and bit selections and design to minimize

the effect of the formation anisotropy.



CHAPTER I11
THEORIES AND CONCEPTS

3.1 Bit directional tendency (Bit walk)

Directional drilling is a three dimensional process that the bit penetrates along
both X and Y plane as shown in Figure 3.1. Bit demonstrates an inclination angle in
the inclination plane Y, while presents ‘a direction angle in direction plane X.
Inclination angle is measured in a degree irom vertical deviation and apparent
direction angle is measured in degreetof azimuth. Bit walk rate is the change of
direction angle per a specified-drilling depth, commonly measured in degree per 30
meters or 100 feet. This'Siudy uses degréﬁe per 30 metersas a unit of measurement.

e 4 dd
-‘_jlﬁcum.rlou
. ANGLE
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DIRECTIOMN AMNGL E

Figure 3.1: Inclination and direction angle (Bourgoyne Jr. A.T. et al., 1984)



In practice, well geometry design is divided into several sections while
inclination and direction angle are varied in each section as shown in Figure 3.2.
Inclination angle in a tangent section of the well is usually controllable through the
size adjustment of the stabilizer to establish build or drop of the inclination angle.
Direction angle can be controlled by a steerable motor. However, this directional
control tool is not applicable with certain formation conditions especially ones having
high temperature where the rubber part of the tool is not able to operate effectively.
This is the case in the Gulf of Thailand studied in this thesis. In this case, without a
directional control tool in place, the bit travelsin direction plane governing by certain

factors described in the following section.
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Figure 3.2: Drilling section (Bourgoyne Jr. A.T. et al., 1984)



3.2 Factors affecting bit walk

Factors affecting bit walk have been extensively studied by many researchers.
Some of them have been summarized in this topic, with a special emphasize on the
factorsthat are used for the model in this study.

3.2.1 Bit Model

This section shows the summary and latest information conducted by some
researchers on the factors affecting bit walk tendency. This topic focuses on the bit
model and its configuration such as bit' praiile, active and passive gauge. The
conclusions on how these parameters, affect-bit“walk tendency are summarized
through field or laboratory-test aswell as mathematieal model.

Perry (1986) has cenducted the real operation over 200 rotary bit runsin low-
toxic oil base mud in the Gulf of Thailand. This was to observe how bit profile and
gauge give an effect on the walk direction. All of the bits shown in figure 3.3 have
exhibited a left walk temdency, except bit"'D that has a natural tendency to walk right
in approximate. This happens & the conditfo"r'i of bits optimum drilling parameters,
namely 8 to 17 Klbs of weight on bit an6190220 RPM of rotational speed. It is
noticed that Bit D has a relativeély flat proTleé' comparing with other bits shown in
Figure 3.3. The author has concluded that flat _Er-dfile bit nas a tendency to walk right
than ones having ballistic profile. Also another conclusion drawn is that the bit gauge
length as shown in table 3.1 does not seem to affect the bit walk. And the number of
gauge cutters is about the same for bit type A, a“left walker”, and bit type D, a*“right
walker”.
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and drllllng -bench equipments. The author came up with the indicator to identify the
walk tendency of the bit. It is called as bit steerability (Bs) corresponding to the
ability of abit to initiate a lateral deviation when submitted to lateral and axial forces.
The bit steerability (Bs) can be defined astheratio of lateral to axial drillability.

m|O|O|m|>
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The lateral drillability (D) is defined as the lateral displacement per bit
revolution over the side force. The axial drillability (D) is the axia penetration per
bit revolution over the weight on bit (WOB). Bit steerability (Bs) which is equivalent
to the bit anisotropic index is generally in the range of 0.001 to 0.1 for most PDC hits,
depending on the cutting profile, gauge cutters, and gauge-pad characteristics. Lateral
displacement and walk angle can be viewed in the figure 3.4 shown below. A bit with
a high steerability means a strong tendency for latera deviation. The rock-bit
interaction model takes into account three bit parts that interact with formation
namely cutting structure, activ: s or gauge cutters) and passive gauge
(gauge pad), as shown in f

22

o Walk mge

Figure 3.4: Definition of the walk angle (Menand et. al, 2003)
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Three PDC bitsthaving drfferent profrles have been tested on the directiond
drilling bench namely bit A, B and C as shown in figure 3.6. The common
characteristics of the bits are a, 215 9 mm dl an)eter eight highly spiraled blades with
13.3 mm PDC cutters, and four nozzles TtTeval uate the effect of the three different

parts of the bit (cuttrng structure active and pa$|ve gauges) each bit was tested with

five different conflguratlons as shown in figure 3.7. Fi rstly, each bit was tested with
passive gauge length QLPG = 101.6, 50.8 and 25.4 mfﬂ)- Then, the bits were tested
with only their active gauge and cutting structure (no passive gauge). Lastly, each bit
was tested withionly the cutting structure (without any active or passive gauge).

Figure 3.6: Bit A, B and C tested (Menand et. al, 2003)
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Cutting structure \
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Figure 3.7: Description of the fii/e’_Ei-trconfigurati ons tested.
J

- H
The result is stmmarized as sl'lown in the table 3.2. From the various bit
tested, it can be noticed thai'the bit steerability highly increases with the reduction of
the passive gauge len %éetquently,-—it IS concluded that passive gauge length
I

highly contribute to the Ii-'tfy.or v»}alk tendency of the bit. In addition, active

gauge and bit profile aso the contributions. The active gauge contributes to the

-

bit steerability with the sam p_ers_éective‘-é;pgssive gauge. And bit profile is known

e

as the flatter the profile is, the frore steéiéﬁfé‘the bit is. Researchers can take into
account of these parameters onice awalk prediction model has to be devel oped.

-
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Table 3.2: Bit steerab'rH"ty and walk angle from varying bit models and configurations
(Menand ety al, 2003)

BIT STEERABILITY AND WALK ANGLE COMPUTED FROM THE 3D ROCK-BIT MODEL

Bit A BitB BitC
Steerabilityy (Walk.angle Steerability Walk gngle Steerability Walk angle
Configuration 1 (CS+AG+PG =101.6 mm) 01032 -11° 0.016 =10° 0.012 -11°
Configuration 2 (CS+AG+PG = 50.8 mm) 0.080 -11° 0.033 -11° 0.038 -12°
Configuration 3 (CS+AG+PG = 25.4 mm) 0.110 -12° 0.118 =11° 0.093 -12°
Configuration 4 (CS+AG) 1.6 -12° 14 -12° 0.5 -12°
Configuration 5 (CS) 5.4 +23° 9.2 +7° 35 -30°

NOTE: CS = cutting structure, AG = active gauge, and PG = passive gauge,
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3.2.2 Bottom Hole Assembly (BHA)

Each component of the drillstring has a unique stiffness that contributes to the
overall performance of the BHA. The stiffness or rigidity of any component is a
function of its modulus of elasticity and its moment of intertia. The weight of each
component of the BHA affects the assembly’s behavior. This weight is a function of
the size and specific weight of the component and must include the buoyancy effect of
the drilling fluid. In general, stabilizer placement and size are major factors in
deviation control. The effects of lacation, size, shape, and properties of the BHA
components on hole angle and direction can'be analyzed by available BHA models
(Walker, 1986). However, this study does hot-focus on the variation of the BHA
configuration. In contrarysthe configuration of the BHA remainsin a particular set up
according to the practiee andactual operation that BHA configuration is usualy not
modified throughout the'drilling operation |n the 6-1/8" section.

3.2.3 Well geometry

The shape and curyeature of the'borehole has been the subject of much
analysis, and the interaction between borehbleﬂ‘irajectory and BHA élastic deflection
can now be modeled.in three dimensional spaces. The curvature of the borehole can
cause the BHA to e deflected tn-a compiex shape nesily independent of the BHA
components (Walker, 1986). There was a proposal of a general rock-bit interaction
model verified by field data which indicates an inverse relationship between well
inclination and'walk rate!(Maldla and Sampai ,/1989) as

e on (sli; ,(Ia,)) (3.2)

where

= bit anisotropy

—
o

rock (formation) anisotropy

—
—

inclination angle
walk rate

A K
I
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3.2.4 Drilling operating parameters

According to Ernst, Pastusek and Lutes (2007), with regards to operating
parameters, weight on bit (WOB) is well-known to be beneficia in increasing the
desired turn rate under certain drilling conditions. It is proposed that most of the
weight on bit effects is actually due to its influence on rate of penetration and bit tilt.
There is a general consensus in the industry that increasing the rotational speed of the
bit provides more opportunities to cut the formation in a given amount of time. Also
by slowing the forward ROP of the bit from reducing the weight on bit, side cutting
time would be increased resulting in high steerability. Drillers have long known that
controlled drilling parameters (weight en bit and rotational speed) could be used in
order to effect build, drepand walk rates of a bit'and BHA system. With the use of
full scale drilling laboratory .iheeifects of drilling parameters have been investigated.
The test apparatus simulaiesthe bit tilt and side loading normally induced by a BHA
inside the wellbore. Lateral displacement;s.jare recorded within thousands of an inch.
The testing method produceswell defined results that are consistent with field results.
During the test, the resultant lateral displ'acement drilled and vertica depth drilled
were recorded. The same bit design was used for all tests. The test results are shown
in figure 3.8 which is the result of varying. fb‘fational speed and ROP (representing
WOB) in the Bedford (Indiang) Limestoné;-démonstrating medium hardness. Side
cutting angle also represents a walk tendency. 1t 1s shown in the figure that at a
constant rotational Speed, side cutting angle Is decreased when ROP is increased.
While at a constant ROP, low rotational speed has atendency to exhibit high side
cutting angle. ROP is directly. proportional with WOB. Therefore, in this case, it is
summarized that WOB.andcrotational speed generally exhibitian inverse relationship
with the walk tendency.
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Figure 3.8: Side cuiting angle vs. Operating parameters (WOB, RPM) (Ernst,
Pastusek and L utes, 2007)

3.2.5 Formation characteristics

3.2.5.1 Formation anisotropy =

According to Boualleg, -Sellami. and Menand (2006), Interbedded formations
hard/soft or soft/hard-are a major cause of borehole torfuosity. Cases history have
demonstrated that this-tortuosity induces a higher torgue and drag, running tubular
problems, stabilizers wear, pipe damage and trajectory controlling problems. In some
fields, shale formations have a.tendency to cause wellbore.deviations to undesired
directions. To' understand these' phenomefia of tortuosity, an experimental drilling
program has been carried out on afall scale bench:using various PDC bits in different
formations (hard/soft, soft/hard with different interface angles). Theinterface angle is
also known as dip angle of the formation. These described characteristics represent
the anisotropy of the formation. It is well recognized today, by the drilling industry,
that deviations of well trgectories are influenced by the BHA design, borehole
curvature and inclination, weight on bit, bit characteristics, and formation anisotropy.
The last one is subjected to be discussed in this section. Deviation of the wellbore

could be written in afunction form as
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Deviation = f (BHA, Bit, wellbore geometry, WOB, formation anisotropy) (3.3)

The author focused on the effect of the formation anisotropy and especially on the

following cases.

e Interbedded rocks: consisting in a sudden change of the rock’s mechanical
characteristics.

e Laminated rocks: presenting an orthotropic mechanical behavior. Mostly

shales belong to this category. / //
/s

I nterbedded rocks S 3-:_’__

Considering a:;ls—m/"éki ing%an isotropierock, all PDCs cut similarly the

same rock, so thereis gen ate a side force except that imbalance force if

the bit is not balanced seen in flgure 3.9, when the bit drills sequence of

hard/soft or soft/hard r | DCs _yt the hard rock and others cut the soft one

Figure 3.9: Ori‘gi.n of the anilszotropic side force (Bdﬁalleb, Sellami and Menand 2006)
From testi ng with-the mterbedded roek;-the side force- on .the bit depends
general ly on the interface angle betiveen the hard and softrock. From the observation,
drilling through a sequence with a higher dip angle causes more significant force and
deviations as the bit remains a longer time drilling through the interface. The
sequence of rock (soft to hard or hard to soft) also influences the side force and
deviations. Some tests have proved that the hard to soft transition produces less effort
and deviation. This is explained by the fact that when the bit starts to touch the soft

rock, the gaugeis still in the hard one and has more difficulty to generate deviation.
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L aminated rocks

Ecole des Mines de Paris has developed a complete model which takes into
account build-up edge of crushed materials chamfer and back cutter force. The Model

uses limit analysis and Mohr-Coulomb criterion to calculate the specific energy R,

defined as the ratio of horizontal cutting force over the cutting area. For laminated
rock, the specific energy depends also on the orientation of the formation dip defined
by the unit normal () It can be seen from the figure 3.10 below that it is easier to cut
the rock in the configuration 1 than in the cenfiguration 2. To calculate the specific
energy, we assume that the stress state inthe.ehip.is homogeneous. In this case, the

specific energy can be formally expressed as

Req =Req(r_i’a:L70[2’671’672’a)c19f) (34)
Where

Ry = specific energy

q] = normal to dipping plane

= material parameters

)

NQ

)

5
|

S
I

bake rake angle

0, rock-cutter friction angle

This model, taking into account the 3D variation of dip orientation (n), has
been validated with cireular tests. These tests consist in cutting a circular groove
(figure 3.11) with a PDC in an orthotropic rock. The PDC cuts the rock in different
configurations referred by the angular position&. Figure 3.12 presents a comparison
between the experiinental and-theoretical results. 1tishiowsthe evalution of the specific
energy vs. the angleé for atest carried out with 8 mm PDC diameter in the Angers
schist (laminated rock). It can be noted, in this case of orthotropic rock, that the
specific energy is very sensitive to the angular position. This sensitivity that cannot be
observed in isotropic rock is the origin of the side force on the bit. It can be seen that
the cutting forces depend on the PDCs radial positions on the bit. If we consider two
PDCs at the same level and with different radial positions, they have different

reactions resulting in aside force creating awalk tendency to the bit consequently.
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Figure 3.12: Results of a circular test (Boualleg, Sellami and Menand, 2006)

3.2.5.2 Formation-har dness

Formation haidness has/a significant effect on PDC bit steerability. As
formation hardness increases, the abilitﬁ‘_ df bit to drill laterally decreases (Erngt,
Pastusek and L utes, 2007)4 Thi's @10 makes the bit walk rate decrease as aresult. This
has been summarized from the drilling'“’ib_.“e_njgzh testing. In this study, formation
hardness information could be deriVed frorﬁ?(ﬁé bit torque. According to Wolcott and
Bordelon (1993), the,bit tofdue can be used to identify the formation lithology into
porous, shaly and ti ght; This corresponas to the hardness of formation as low, medium
and high respectively. Torque will increase in soft formation because of good tooth

penetration and therefore decrease in hard formations,

3.3 Artificial.Neur al Network

Artificial neural network (ANN) has been found acceptance in solving real
world problems in many disciplines. ANN learns to create a representation of
complex relationship between input and output samples by utilizing processing
characteristics of biological system such as nonlinearity, high paraleism, fault and
failure tolerance, and capability to generalize. ANN has been utilized in many forms
of applications such as modeling, classification, pattern recognition (Basheer and
Hajmeer, 2000). The idea of ANN was motivated from the biological nerve cell called

neuron. Interconnection of billion of neurons composes a human nervous system.



20

ANN applies the same concept by interconnecting several neurons together with a
connection link that can be newly established or updated to form a knowledge
learning process. Figure 3.13 shows the components of biological neuron comprising
of three major functional units namely dendrites, cell body and axon. The dendrites
receive signals from other neurons and pass on to the cell body. After receiving the
signal, cell body sums total incoming signals and fire an electrochemical signal when
threshold is reached. The axon receives signals from the cell body and carries through
the synapse to the dendrites of neighboring neurons. The connections between
artificial neuron analogously represent axon and. dendrites while connection weights
represent the synapses. ANN as well as biolegical network learns the knowledge
through adjusting magnitude of-weight or synapses’ strengths. There are many types
of artificial neura netwerks«invented by several researchers. For this study,
Backpropagation ANN (BPANN), known as one of the most famous artificial neural
network architecture and algorithm,- is selected as a tool. In every iteration of
BPANNS, it performstwo steps; 1) forward activation of the signal to produce an
output. 2) backward the computed error t@ modify weight by the feedforward error-
backpropagation |earning @ gorithm. Basic _éléments are one input, one output and a
certain number of hidden layers: Each Iayéf "col_nsists of processing units or neurons.
Signals are passed from the neurons. of Vinpﬁt_ layer through hidden layer before
arriving output layery Each neuron of one iaﬂ/er to another is interconnected with
connection link having its own associated weight. Figure 3.14 demonstrates a diagram
of ANN. Each circle represents neuron interconnected with the link where weight is
stored. The neurons receive weighted inputs from previous layer, summing and pass
on through a threshald-function having a sigmoidal ' shape. The output from sigmoid
function rangesbetween 0 and 1, when input is a large negative and positive number
respectively. Math€matical ‘déescription of the neuron‘output is written as

0. = 178_
1+e ™!

]

(3.5)

£ =Y W0, (36)
where O;is the output from a neuron in the i™ layer and ¢ ; Is the summation of
weighted inputs of the previous layer (input layer in this case), while wjis the

associated weight of connection link between neurons of i and j™ layer. BPANN is
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iterated to perform learning process to adjust the weight based on the error calculated
from a difference between real sample and network generated output. The weight
updating method is written as

W, (8) = W (t—1) + Aw, (t) (3.7)

AW =noX; + pAw;; (t-1) (3.8

. . th - . . . .
where Awj (t) isthe updated weight at t™ iteration, 7 isthe learning rate, and wisthe

momentum coefficient. & is the error criterion. Giving an example of neuron at the

output layer, error criterion is calculated from
— (Xk 4 Yi )Xk an Xk) (3.9

where vy, is the real sample ettpui and )fk 1S the ANN output. Then an error criterion

is propagated back throughreach neuron;of. the network and re-updates the weight of
connection link used in the next |teFaI|0ﬁ ANN training is stopped by a condition,
commonly using Mean Square Error (M SE) as a criterion to verify the model output
against validation set of data Details on-- how to calculate mean square error is

i '

described in the next chapter. =

Colaterals
[

Figure 3.13: Schematic of biological neuron (Basheer and Hajmeer, 2000)
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Figure 3.14: Schematic diagram of ANN

Although the error backpropaga'ff on algorithm has been a significant milestone
in neural network research-areaof interest, it has been known as an algorithm with a
poor convergence rate (\Wilamowski et. ial 2001). One of the attempt to improve the
speed of the error backpropagation is to use the Levenberg-Marquardt (LM)
optimization technique. L v algori_t_hrﬁ isdy\/i dely accepted as the most efficient onein
terms of realization accuracy. .M algoritf;m has a similar concept of weight update to
the normal error backpropagat on aiigorith;ﬁﬁ;_ 'Fhe weight updates are calculated using

the following equation. s
Ws = (3 30m) ,E, (310)

|

Where -4 !
W= [wlw2 Wy ]T consists of all weights of the network. -

J isthe Jacobian of m_output errors with réspect to n weights of the neural network.

Jacobian matrix candbe written as follow
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And lastly, . A A% \
E=le € €p-E, L theeumulative error vector (for al patterns)
Where _
d,, isthe desired value »1; pattern, Oy, is the actual value of
L o i " ' . .
the k™ output and the p™ patterit. N is the | er of the weights, P is the number of

This LM ’-'.:;7%;;;:::;;::ﬁ::::.f:::;:;ﬁ.%;:;:g;%n " training algorithm for
calculating the error and e Weight of the network. This

should help the netwerk to reach the convergence quicker than the normal back
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CHAPTER IV
BIT WALK PREDICTION MODEL DEVELOPMENT

This chapter firstly covers an outline of the specific case and conditions
applied to this study. Secondly, it describes the ANN tool, methodology and each case
study in ANN model development. Thirdly, the chapter discusses the result and
analysis. Certain parameters affecting bit walk behavior are selected for this study.
The study mainly focuses on the available parameters which can be controlled or
monitored at the drilling site. Field data used @s.ihe ANN inputs comes from several
sources. They are all_complied into a single.format to facilitate the model
development. Proceduresand.amethods an information compiling and reformatting are
also described. Furthermore,/ANN model development is divided into cases. Each of
which contains the ANN configurationsédj usted to be suitable for the format and
condition of dataset. The developed models passing the validating criteria are selected
for performance testing with the real field data in order to locate the best network
configuration. Finaly, results fromi-the ANN model prediction are discussed and
analyzed. #4244

4.1 Modd Parameters and Conditions

The previous chapter demonstrates the factors affecting bit walk in many
aspects. However, the, model. development . of. this study. does not take into
considerations' of 'all “parameters. As the ‘development mainly focuses on the
practicality and usability of the modéel in the real .operation whereisel ected parameters
can be‘controlled or monitored at the drilling site or predefined.at the well planning
phase. In addition, the model is intended to scope down to focus on the frequently
used drilling equipment and configurations. Formation is specific to the one where the
petroleum reservoir is resided. Drilling operation in the formation closest to the
reservoir is required to exhibit the accuracy in order to meet the reservoir target in an

acceptabl e range maximizing the production.
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4.1.1 Bit type

According to the IADC classification of PDC bit, the selected PDC bit for this
study is under M423 type. And this bit type is used throughout the study. The

explanation of the codesis shown in table 4.1.

Table4.1: IADC classification of the PDC bit
Code | Description
M Bit body: Matrix

4 Formation type:Medium
2 Cutting structurerPDC, 19mm
3 Bit profile: Medium profile

4.1.2 BHA configuration

This study focuses ona si‘ng|e type of BHA configuration and component.
Thisis according to the actual driliing opéteﬁi on that this BHA set up is normally used
with the selected PDC bit iype. o

2
J

Table4.2: BHA components

Item# | Details __1Size(in) | Length(m)

1 Bit 6125 0.240
Near bit stabilizer | 4.750 0.710
Extension Sub 5.000 0.590
AGS 5.000 3.180
MWD, tool 5.000 9.470

Steel'screen sub 4750 1.900
String Stabilizer 4:750 1.520
Drill'collar 4.750 36.880

Cov | Nfor—o1 |~ W |N
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4.1.3 Drilling parameters

Weight on bit (WOB) and Rotational speed (RPM) are selected for the inputs
of the model. These two parameters are known to be the common parameters
adjustable while performing drilling operation by a directiona driller. They have
exhibited the relationships with bit walk as previously described. Moreover, another
model input, torque, is used as an indirect indicator of formation characteristic and
hardness. Torgue is not a directly adjustable drilling parameter. It is recorded by the
drilling measurement system as a result of the change in drilling parameters and effect

from the formation in each interval .

4.1.4\Wellboreinclination

Wellbore inclination is'salecied to be another important parameter affecting bit
walk. It is normally predeiermined at well design phase and can be minimally
adjusted during the drilling operations usi‘pg AGStoal.

4.1.5 For mation

The study focuses on the formation closest to the petroleum reservoir. The
specific formation represents lower Miocehe‘age with Fluvial channel depositiona
environment. It is a red bed unit:composed of red and reddish gray clay stone,
siltstone and sandstene. Individual sand beds can be as thick as 20 meters in total.
Sand tends to be medium to coarse-grained. Thin sand bed of thickness less than 5
meters can also be presented. An example of geological.prognosis of awell is shown

infigure 4.1.
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Field data are coIIected ffﬂfﬁ the dﬂﬂmg operation of 13 wells drilled in the

ol R

Gulf of Thailand area They aré mapped V\f th the geolo:clycal prognosis to determine
the dataset from t"hé—operatron—paformed—m—theﬁadigd formation. Information
concerning parameterslather controlled or resulted fmm the drilling operation is
measured and captured in the “drilling parameters ascii file”. The parameters and unit
of measurements in this file'are/such as1)“M easured andtruevertical depth in meters
2) Weight on bit: (WOB) in Kilo pounds (Klbs) 3) rotational speed in revolution per
minute.(RPM).4) Torque.in.Kilo pound.*. feet (Klbs*ft) 5), Rate of, penetration in
meters/hours'(m/hr) '6)“pump‘pressuréin pound per 'square inches (psi) 7) flow rate
measured in litersminutes (I/min) 8) Mud weight in specific gravity (SG). The
frequency of each data collection is 0.5 meter. Moreover, another important
measurement is associated with the inclination and direction angle of the bit. These
are captured in the “definitive survey” file. And the data collection is carried out

every 30 meters.
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Since the information from the definitive survey isin a different scale from the
drilling parameters ascii, namely the survey is measured every 30 meters while the
drilling parameters are measured every 0.5 meters. Consequently, these two sources
have to be aigned into the same unit of measurement by averaging the drilling
parameters to be in accordance with the survey domain. Table 4.3 demonstrates the
averaging procedure of the drilling parameters which are sampled from an interval of
adrilled well. From the measured depth of 1623.71 and 1652.51 m, degree of azimuth
is measured from the definitive survey as 140.23 and 139.88 degree respectively. Bit
walk rate is calculated by the difference of (degree of azimuth per measured interval
length. In this case bit walk raie equal -0:35+deg/ 28.8 m (139.88 — 140.23) deg/
(1652.51-1623.71) m. Each measured interval may be varied, but every bit walk rate
has to be in the same inteival_domain. Therefore, bit walk rate produced from every
dataset has to be aligneddntothe same unit that is a deg/30m. Bit walk rate as -0.35
deg/28.8 m is normalized'to a deg/30m unit giving a result of -0.365 deg/30m. The
negative sign represents the left direction, @s there is a reduction in the degree of
azimuth while the positive sign repr%eﬁt_s the right direction. Drilling parameters
measurement frequency is higher than the survey Hence, they have to be averaged to
match the interval of the survey. The re;s‘ij'ltnsl_lfrom the average are displayed. In
summary, from the interval of 1623.71 to 165_2:_51m, Bit walk rate is 0.365 deg/ 30m
to the left direction diven drilling parameteré a;WOB = 5.59 Klbs, Rotational Speed
=209.00 RPM and Terque = 5897.88 Klbs*ft.
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Table 4.3: Measured parameters from Drilling Parameters Ascii and Definitive

Survey
Drilling Parameters Ascii Definitive Survey
Rotational

wOB Speed Torque MD | Inclination | Azimuth
MD (m) | (Klbs) | (RPM) | (Klbs*ft) | (m) (deg) (deg)
1624.00 6.00 202.00 | 6201.00 | 1623.71 15.33 140.23
1624.50 6.00 204.00 | 6087.00
1625.00 | 6.00 204.00 | 5929.00
1625.50 6.00 203.00 | 6231.00
1626.00 | 6.00 205.00 | 5990.00
1626.50 6.00 202.00 | 6165.00
1627.00 6.00 204.00 | 5994.00
1627.50 | 6.00 205.00 | 6108.00
1628.00 | 5.00 208.00-- 5697.00
1628.50 | 6.00 206:00"_-6022.00
1629.00 6.00 205100, .5941.00
1629.50 | 6.00 2051004 /5625.00 }
164650 | 4.00| 2142.00 | 570100
1647.00 | 4.00 212400)| . 5514.00°
164750 | 4.00 212.00 |"5477.00)
1648.00| 4.00| 212.00| 570500 |«
1648.50 | 4.00 211°00425872.00 {4
1649.00 | 4.00 212.00 | 75603.00 -
1649.50 | 4.00 211.00 { 5847.00 |~
1650.00 | 4.00 |~ 211.00| 5827.00
1650.50 | 4.00 |/ 212.00 | 5733.00
1651.00 | 3.00 211.00 | 5632.00
1651.50 | 4.00 <211.00 | 5636.00
1652.00 | 4.00 211.00 | 5754.00
165250 | 4.00 211.00'|'] 5843:001652.51 15.15 139.88

-0.35
deg/28.8 | -0.365

Average [, 5589 209.00.| ~5897.88 m deg/30m

%[_/

Bit walk rate




30

4.3 Bit walk prediction model development

The study on bit walk behavior in this thesis concerns two perspectives,
namely bit walk quantity and direction. Bit walk quantity is, in other word, presented
as bit walk rate. Bit walk direction is represented in either left or right deviation.
Three case studies are presented. Firstly, case 1 is an attempt to address parameters
potentially affecting bit walk direction and builds a model if the availability of data
allow. Secondly, case 2.1 is a study on bit walk rate. For this case, absolute bit walk
rate is modeled and later analyzed on the result and error occurred. Thirdly, case 2.2 is
also in the area concerning bit walk rate buishet focusing on predicting the absolute
value of the bit walk rate, rather it tries to preaict bit walk rate in range. Result and
error analysis of this case-are also discussed. Artifieial neural network (ANN) is used
as atool to create a bitwalk.rate prediction model onease 2.1 and 2.2. The model is
also verified against the'real field data as well as checked for the alignment with the
theories proposed by other researchers reg'érdi ng factors affecting bit walk.

4.3.1 Case 1 - Bit walk direction
4.3.1.1 Bit walk direction data analysis

From the observation of the totalr 140 | dataset extracted from 13 wells of
drilling operations in the Gulf of Thailand, there are only 20 right walk instance out of
the total 140 dataset. This is calculated as approximately 14 percent of right walk
instance out of the totals: The rest represents left walk instance. It is well known by
the informatiom:from the bit manufacturer that the selected PDC bit model mentioned
in the previous'section normally exhibits left walk tendency. Therefore, it is worth to
study whaticould beithe effects anithe:20 instances,of: right wal k<Al lof the 20 dataset
are analyzed to observe the factors that could be related tothe walk direction and 7 of
them are captured for the examples as shown in table 4.4. The observation is carried
out by matching two dataset having similar quantity of the parameters that could
affect the bit walk, one with left walk and another with right walk presentation.



31

Table 4.4: Comparison of left and right bit walk dataset

Rotational AGS Walk
Dataset # | Inclination | WOB speed Torque | size | Wak rate | direction
(deg) (Klbs) (rpm) (Klbs*ft) | (in.) | (deg/30m)

1 15.33| 3.67 214 6036 | 2.25 0.52 | Right

2 1555| 4.09 212 6356 | 2.25 0.52 | Left

3 18.72 | 12.03 222 9792 | 5.00 0.36 | Right

4 18.24 | 12.91 220 9444 | 5.00 0.36 | Left

5 21.98 | 12.38 220 9634 | 5.00 0.18 | Right

6 21.98 | 14.14 222, 9740 | 5.00 0.35 | Left

7 22.78 | 14.03 221 9592 | 5.00 0.47 | Right

8 22.65| 1134 220 9570 | 5.00 0.35 | Left

9 23.35 |wd2.76 142 8824 | 5.00 0.71 | Right
10 23.60,@d803 163 13586 | 5.00 0.82 | Left
11 31.77 | #4825 223 9403 | 5.00 0.18 | Right
12 31.32 | 438.10 223 98/3| 5.00 0.70 | Left
13 55.24"" 12.28 220 9097 | 2.25 0.18 | Right
14 55.51 #1093 220 9369 | 2.25 0.18 | Left

4.3.1.2 Results and Discussion

The result turns out that given thé':f\A(,Q datasets where each parameter has
nearly the same quantity namely inclinatiqn,_“vx-/eight on bit (WOB), rotational speed
(RPM), torque and AGS size (diameter). Hdv&ever, walk results in a total different
direction. One walks io the left while another one walks fo the right. The examples
can be referred to dataset#1 and #2, and also other two adjacent datasets shown in
Table 4.4. Dataset#1 representing right walk, demonstrates inclination angle as 15.33
deg, weight onbit as 3.67 Klbs, rotational speed as213.58, torque as 6035.65 Klbs*ft,
and AGS size as 2.25 m. Whereas, dataset#2, representing left walk, demonstrates
inclination‘angle as 1555 deg; weight'on it as4:09'K1bs, rotaticnal 'speed as 211.64,
torque as 6356.28 Klbs*ft, and AGS size as 2.25 m. Both of them demonstrates an
equal walk quantity but different in the direction. It could be noticed between the two
dataset that the parameters are not exactly equal, but the difference are not significant.
Giving an example of weight on bit 3.67 Klbs of dataset#1 and 4.09 Klbs of
dataset#2, dataset#2’'s weight on bit is different from dataset#1’'s by 11%. However,
this should not result in atotal different in the walk direction. Therefore, it could be
inferred that there are other parameters governing the walk direction that are not

presented which could be the information that are not available in this study mainly
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related to the formation characteristics such as dip angle and anisotropy indicator of
the formation. Giving another example between dataset#5 and #6, parameters of the
two dataset are quite close but result in a different walk direction. Even though the
walk quantity is not exactly equal, the difference in direction has already confirmed
the effect of the unpresented parameters related to the formation characteristics as
mentioned above. And this case is concluded that ANN model is not used for the walk
direction prediction due to unavailability of the information. However, the
preliminary factors that could affect.the walk direction are determined which are
related to the formation characteristics.

4.3.2 Case 2 — Bit walk-gquantity (rate)

The 20 dataset of sight walk are excluded from the total 140 dataset. As a
result, 120 dataset of left walk are remained. These left walk dataset are to be inputted
into the ANN model to createthe prediciion model stating the relationship between
the parameters and wall¢ quantity (rete). ‘Péfameters that are selected for the model
inputs are inclination, weight on' bit (WOB), rotationa speed (RPM), and torque. In
this study, the left walk predictien model'{is created in two different cases. Firstly,
case 2.1 attempts to predict theabsolute val ué"l'bf walk rate, result and error analysis
by comparing the predicted and desired OIJt'puf are.to be discussed to evauate the
performance of the medet—Secondty;-case-2.2 aitempis t0 predict the walk rate in
range, rather than trymg to find an absolute value of-walk rate. Results and error
analysis are also discussed to evaluate the performance. These two different cases are
built and compared ite: find, theymost appropriate: approach<how to best utilize the
model. Some example dataset that ‘are used for both cases are shown in table 4.5. And
ranges of each parameter are summarized in the table 4.6.



33

Table 4.5: Walk rate parameters (example dataset)

Rotational
Dataset# | Inclination | WOB Speed Torque | Walk rate
(deg) (Klbs) (rpm) (Klbs*ft) | (deg/30m)
1 55.23 12.42 180 11434 0.15
2 48.28 11.71 214 12062 0.17
3 27.01 11.71 222 12839 0.18
4 53.97 8.26 180 11939 0.19
5 45.90 12.68 179 12794 0.35
6 2111 13.31 217 10075 0.36
7 55.22 11.72, 179 10782 0.55
8 3132 13.10 el 9873 0.70
9 40171 12)72 185 11884 0.71
10 22.38 14.48 : 220 9965 0.82
11 3642 1447 47 140 12107 0.86
12 2643 F1267 |\ 4\ 1228 11757 0.88
13 43.00 13.64 f'l;. 188 11973 1.06
14 24204 “1200/ " 160 13586 1.15
15 2307 | 4545 % 16| 13862 1.17
16 25.92 11.90 = !Jlj 208 14345 1.22
17 48451 1172| " a2z | . 11660 1.23
Table 4.6 Walk rate parameters.and.their ranges
Item Parameter Unit Minimum | Maximum
1 I nelination deg 18.24 55,23
2 Weight on bit Klbs 8.25 15.45
3 Rotational speed rpm 105 228
4 Torque Klbs* ft 6298 14483

Histograms of all parameters, as shown in figure 4.2 to 4.5, are plotted to
observe the distribution pattern and also used for excluding some dataset that are not
in accordance with the mgjority of the entire dataset. The result of the histogram plot



34

shows that there are some numbers of dataset existed at the lower end of the
histogram and they are to be excluded which are ones having WOB as 8.26, 8.31 and
8.54 Klbs (3 sets), Rotational Speed as 104.63, 123.93 and 129.83 rpm (3 sets) and
torque as 6297.53, 6450.47 Klbs*ft (2 sets). Therefore, a total of 112 sets of data are
remained after the screening process. Their ranges are shown in table 4.7. These 112
sets of data are to be used for the ANN model training to be discussed in the
following topics.

]
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Figure 4.3: Histogram of Weight on bit (WOB) of total dataset
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Figure 4.5: Histogram of Torque of total dataset
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Table 4.7: Walk rate parameters and their ranges (after screening)

[tem Parameter Unit Minimum | Maximum
1 Inclination Deg 18.24 55.23

2 Weight on bit Klbs 9.54 15.45

3 Rotational speed rpm 140 228

4 Torque Klbs*ft 7492 14483

MATLAB software, which is an integrated platform for Engineering and
Science research in varigusareas, is used for the ANN model development, training
as well as result analysis’ The software was developed by The MathWorks Inc. The
software license is shared for the Engi neerjng students provided by the Engineering
computer center. The ANN library of the éoftware is utilized for the model creation.
The software is capable of developing several types of ANN networks and
configurations namely transfer function, training & gorithm, learning rate, momentum,
number of cycles run, performance evaluation criteria The partial model source code
can be found in the figure 4.6.Fhe captured ¢ode is intended to explain the general
usage of MATLAB ANN library-and how they are applied in this study for the model
devel opment.

From the MATLAB code, Section 1 desCribes the general definition of the
network including specification of numbers of neurons in each layer, learning rate,
momentum. Learning rate can be set to any, number in the range from 0 to 10, while
momentum can‘be set to any number in the range from 0 to 1.0. These definitions are
varied-and adjustedhcaseby case'iniordenito create the model,that is able to produce
minimum errors relatively to others. In addition, the definition includes dataset which
are divided into training: validating: testing based on 4:1:1 ratio which make the total
dataset of 112 divide into 76:18:18 respectively. Input dataset in this section covers
training and validating set as they are used for the model training process where
training sets are feed into the model and validating sets are used for validating in each
training cycle as well as stopping once the model reach convergence criteria. The
dataset can be inserted directly into the ANN model source code or using the
MATLAB features to open a connection with spread sheet software.
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Section 2 covers the network building where the network’s specific
configurations are described. These configurations are kept constant model to model
covering the automatic initialization of network weight, transfer function, training
function and stopping criteria. The model is stopped when the minimum error criteria
is reached, in this case written in the code as “goal”. The model is to be trained no
further than 100,000 cycles, as known as epochs. The input and output sets from
section 1 are divided into training and validating sets using in the model learning
process. These two sets are kept unchanged in each model building. This is to make
sure that each network configurations are tested on the same dataset. The
“divideblock” command is used for this mateer.

Section 3 covers'the model running process. Network that has been obtained
the configuration together with«nput and output sets divided into the specified ratio
are input into the “train’s function .of MATLAB. The predicted output is also
simulated by inputtingsthe daiaset thai were not participated in the model learning
process. Moreover, the'training and Validati ng set that were used for model
development are feed into'the model* agai ﬁ-.-torsee the model prediction performance.
MATLAB has the feature to display the oUtbuts from simulating the network through
the workspace window as shown.in figure 4;f.'jjirhe network shown as “net” can also
be saved for future use in the prediction with new testing dataset. Other parameters
can be displayed in maiiix-or-table formal-as-showi-h-tHgure 4.8.
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% Section 1 - Definition
% — No. of neurons
hiddenl = 10:

hiddenz = 20:

% — Learning rate and Momentum

lr = 0.1:

me = 0.1;

% - Dataset (train, wvalidate, test)

input = []':
output = []';
testing = []':
% Section 2 - Network building

net = newff (input, output, [hiddenl, hidden2], {'logsig'}):
% — Weigth initialization
net = init (net);

% — Training function
net.trainfFecn = 'trainlm’
% — Configuration
net.trainParam.lr = lr:

net.trainfaram.me = mc?
net.trainParam. goal
net.trainfFaram.epo
% — Dataset partitd
net . divideFen = ‘'divid Y .
[trainP,valP, test 1 d] " B ocki{input, 0.75, 0.25,
[trainT,valT, testT] e i

% Section 3 - Trag
nst = train(nes
= siminet, testi
— Besults outp
= YI'.
= gim(n=st, input

B
|

= x';
trainP = trainP':
valP = wvalP';
testV = testV':

,;'T‘.I""I :

ajy:

P tagnt:

Edit

File

Mame = j | 1!] Max
FH hiddant 10 10 10
HH input [ 2=94x4 double= 9.5400 1.44583e+04

E'»ﬂﬂﬂ%ﬂﬂﬂi"ﬁﬂﬁ’]ﬂﬁ

<1x1 netwark:

EE| utput <94x3 double>
BT eIty UANINYINY
ol testing <19x4 double> 9.7100 1.3793e+04

1 trainind =1x71 doubla> 1 71

trainP <7 1x4 double> 9.5400 1.4483e+H04
trainT <7 1%3 double> 0 1
vallnd <1%23 double> 72 94
valP «23x4 double= 10.9000 1.3897e+04
valT <23x3 double> 0 1
=94x3 double= -0.2224 1.1170
<19x3 double> -0.2948 0.7358

Figure 4.7: ANN model workspace
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HH v <193 doubles

1 2 3

0.3816 0.4008 0.1963
0.3707 0.4283 0.1822
0.3243 06135 0.0534
0.3031 0371 0.3910
0.3296 0.3396 0.3286
0.3780 0.3751 0.2338
0.3625 0.2546 0.3006
0.5460 0.0859 0.0013
g 0.4905 0.4455 -0.0825

10 o403 P B 1111 0.5268

11 02321 15448 0.2692

1 05333 [/ 08758 02948
80 as670 D0 01834
Ti~—g 352 | e 04770
1500 4048 (02440}, 0.2008|
o . DdDas, 04065
1 _/0iie ﬁ_._EEUﬁl___ 2858
ﬁsﬁr 0865 02624 " 0.2607 |
La" /7 fdees "Eﬁ?{r"—o.fﬂ

oo | e [un | e (e o |

Figure 4.8: Output from mode_l tesliﬁg (shown in the workspace matrix)

The ANN'’s learning proc& and stopplng criteria are discussed in details.
Figure 4.9 is an example of error output graph whlle conducting networks training. At
the beginning of training cycle the error—cnterla measured in mean square error

(MSE) is reducing for, both traini ng and valldatl ng Sets, Whlle the training sets having

less MSE mini mally_ ;han validating sets. Thisis normal}_,, _o_lue to the high exposure of
the networks to the traii_ni ng sets making the result lean towards the mgjority of data.
However, after the best validating performance is reachad, thereisabig differencein
the gap as wellsas the inverse trend between training and validating sets that training
sets show ongoing of the reduction of error criteria, while validating sets show the
increasingctrend; This is-according ta)a kehavior-call ed overfitting:where networks
produce a result that is lacking of ability to generdize. Therefore, the network in this
case is stopped at the best validation performance line where optimum MSE and
updated weights are obtained. Furthermore, if the networks are not converged into this
condition, there are also other criteria to stop the networks training which are 1) the
specified training goa as known as the minimum error criteria. The networks are
stopped if this minimum error is reached. However, it might be difficult to reach the

condition if the minimum error is set for too low. 2) the training cycles or epochs. The
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networks are stopped if the maximum epoch is reached even though the optimum

condition has not yet been met.

Best Validation Performance is 0.092965 at epoch 5
10° T T T . =
E Optimum point Validating sets after the \T;:‘L!m" i

: best performanceline | |- Best

2 Training sets after the
best performance line

Mean Squared Error (mse)

0 1| 2 ‘ Jt"‘ = v é I? 8 9 10 B
Yyt .
Figue 4°9; Learni ng process of ANN

= ‘-J

The error criterion used which-is the mean squate error (MSE) isdefined as

MSE :%Zz(tpi—Opi)z (4.1)

p=1 i=1
Where
O, = the actual solution of the i elitput node anithe p" example.

[ e=rthetarget(predicted) isol ution ofithe 1™ output:nodeomithe p™ example.
£, h (predicted)sol ution ofithe,i deomthe p™ |

N = the number of training or validating examples.

M = the number of output nodes.
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4.3.2.1 Case 2.1 — Bit walk quantity in absolute amount

In this case, factors or parameters affecting bit walk rate which were
determined in previous topic are specified as the model inputs while the absolute walk
rate is the output. The input layer contains four neurons, each of which represents
inclination, weight on bit, rotational speed and torque. Hidden layer and number of
neurons in each hidden layer are varied in order to seek for the best model producing
least error. Figure 4.10 below illustrates the schematic diagram of the ANN model of

this case.

Input layer Hidden layer Output layer
4 inputs 1 output

- Inclination - Bitwalk rate
- Weight on bit

- Rotational speed
- Torque

Figure 4:30: Schematic diagram of ANN model — Case 2.1

Examples ofdataset:used for training the model of this case are shown in the
table 4.8. During the learning process, the networks try to predict the correct walk rate
according to the input, parameters. The difference between the predicted and actual
walk rate are calculated as a criteria to adjust the networks weights for improving the

training accuracy in the following cycles.
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Table 4.8: Examples of dataset used in the model |earning process (Case 2.1)

Model
Model Inputs Output
Rotational

Dataset# | Inclination | WOB Speed Torque | Walk rate
(deg) (Klbs) (rpm) (Klbs*ft) | (deg/30m)

1 5523 | 1242 180 | 11434 0.15
2 4828| 1171 214| 12062 0.17
3 2701| 1171 222 |  12839 0.18
4 53.97 | . 1826 180| 11939 0.19
5 45.90.]  12.68 179| 12794 0.35
6 21111330 217| 10075 0.36
7 5899|2172 179 10781 0.55
8 el 324" 4240 203 9873 0.70
9 0.7 /.72 185| . 11884 0.71
10 20033l [ fhagt 220 9965 0.82
11 o2 faad7 [\ 4 | adp| 12107 0.86
12 #6548 [ 1267, . . 223| 11757 0.88
13 4300 " 13640, 88| 11973 1.06
14 24.20 |, 1200 1 160| 13586 1.15
15 2307|1345 .. 146| 13862 1.17
16 2502 | 1190| 208/ s 14345 122
17 4815| 1172 200+ | 11660 1.23

4.3.2.1.1 Data pr epr ocessing

In order to ensure the efficiency in generalization of the medel, dataset that are
partitioned ‘into; training, validating .and ' testing sets™ should’ present a similar
distribution and cover possible ranges of information as much as possible.
Consequently, histograms of all input parameters for three partitioned dataset
(training, validating and testing) are plotted to observe the distribution and reshuffled
among partitioned group if necessary. The distributions of these partitioned dataset
are kept unchanged throughout the training process. This is to ensure that the only
changes applied are the network configuration such as learning rate, momentum and

number of neurons. Histograms are shown in figure 4.11 to 4.22 The histograms of
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each parameter also demonstrate similar distributions to that of the original data as
shown in Figure 4.2 to 45 in the previous section. Moreover, statistical
representations which are the mean, quartile and standard deviation are also calculated
for the training, validating and testing sets of the four parameters. Thisis shown in the
table 4.9. From the comparison of these statistical values of all sets, they exhibit a
similar result. For example, the mean values of inclination for training, validating and
testing sets are 36.98, 38.59 and 36.40 deg respectively. Another example is the
standard deviation of the WOB. They 1 22, 1.35 and 1.23 for training, validating
and testing sets respectively. Th&e\e\l lination and WOB are shown to be

closed among each other sb,gskhat thet idating and testing sets have the
<

same trend and figure. W trends o? , validating and testing sets also
happen with other paraya(a" \

\
PR Y A\ N\ -

aty
ol I -
i
=
—
0 i g
- A \
3

L
=

Frequency

Inclination {deg)

Figure 4.11: Histogram of Inclination of training sets
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Figure 4.13: Histogram of Inclination of testing sets



Figure 4.14: Histogram of Weigh H OB) of training sets
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Figure 4.15: Histogram of Weight on bit (WOB) of validating sets
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Figure 4.17: Histogram of Rotational speed of training sets
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Figure 4.19: Histogram of Rotational speed of testing sets
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Figure 4.21: Histogram of Torgue of validating sets
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Table 4.9: Summary of statistical represenétléqof training, validating and testing sets

Figure 4.22: Histograrf?J of Torque of testing sets

o

[ Tl Rotational

Statistical Dataset = | Inclination | WOB Speed Torque

representations .~ type (deg) (Kibs) [* - (rpm) (Klbs*ft)
/Training 36.98| 12.33 204 11241
Mean Validating 3859 | 12.22 205 11011
Testi ng 36.40| 12.79 199 11513
Training 25.77.|,, 11.48 187 9880
1% Quartite || Validating 2545 11.28 198 9750
Testing 2470 11.84 179 10067
Jraining A6 17+, 13410 221 12246
3 Quartile 1| Validating 46.43 | 43.07 219 12067
Testing 45.69 | 13.40 221 12713
Standard Trgi ni hg 10.80 122 22.96 171411
deviation Vali d-atl ng 11.87 1.35 22.52 1625.34
Testing 11.76 1.23 27.43 1744.22

50
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4.3.2.1.2 Modd training

In this case, ANN model configurations namely number of hidden layers,
number of neurons in each layer, learning rate and momentum are varied on a trial
and error basis to locate the best configuration making the model converge as well as
yielding the lowest MSE. 17 model runs are tried with different configurations. The
results are summarized in the table 4.10 as shown below.

Table 4.10: Model coniiguration — Case 2.1

No. of neurons
Model | Hiddea*|"Hidden || L earning
# layerde"1 layer 2 || rate Momentum | MSE
1 6 0 0.6 0.6 | 0.0357
2 6 0l 0.2 0.2| 0.0369
3 9 “o® \AZ 0.2| 0.0345
4 9 0\ 4 02 0.5 | 0.0497
5 9 ol o2 0.1] 0.0353
6 12 1G04 403 0.2| 0.0446
7 15 20 Ak 02 0.2 | 0.0387
8 B e 0. . 0.4 | 0.0583
9 18 |~ = 0. are.2 0.2 | 0.0456
10 217777 o 0.2| 0.0478
iy o—— = ——— 02—+ 02| 0.0389
12 N027 0 0.2 © 02| 0.0685
13 30 0 02| | 02] 00930
14 10 5 0.2 0.2 | 0.0375
15 20 5 012 02 | 0.0395
16 20 10 0.2 02 | 0.0493
17 30 20 0.2 0.2 |, 0.0809
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Thetria starts with a single hidden layer and a minimum number of neurons
and increase the neurons and hidden layer in the latters models. Jadid and Fairbrairn
(1996) proposed the formula to suggest the number of hidden neurons which is

NHN = Ny /[R+ (N + Ngyr)] (4.2)

Where
NHN = Numberof+hidden neurons

N = NumberGistraining sets

N = Number of nedes.in input layer
Ny = Number of nodes ineutput layer
R

= Any vgluefrom 51010

The first model Js configurediwith the proposed number of neurons
accordingly. Learning réte determines the accel eretion of the weight updating. Setting
it for too low will result"insslow sftraining, while too large of it could result in an
unstable ANN model that the oscitlation is occurred and the model is unconverged.
Momentum is commonly used in weight ,updgi ng to help the search escape local
minima and reduce the likelihood of search instability. A high momentum will reduce
the risk of the netwerk being stuck in local minima, however it increases the risk of

overshooting the solution.

Model numiber (1 startswith'a single hidden'| ayer with-number of neurons as 6
according to the proposed formula. Learning rate and momentum are both set as 0.6.
The model.is.run for, about-11-epochs where the cofiverged pattern.isshown. At the 5"
epoch, MSE 'of the'validating sets'reach the optimum point and'start-to increase after
this point. Wheareas the MSE of training sets are still continuously reducing as could
be due to the overfitting behavior of the ANN model. (This is depicted in the figure
4.23.) Model number 2 still maintains the number of neuron and layer as the first one,
but change the learning rate and momenum to be lower with the attempt to improve
the training and reduce MSE. The next model, number 3, is tried with the increasing
number of neurons but maintain the same learning rate and momentum. The

increasing in the number of neurons in the model number 3 show that the training
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result is improved and MSE is reduced to 0.0345. Model number 4 is an attempt to
see a result of adding more momentum to the model to accelerate the training and
help the model to escape from local minima. The mometum is increased from 0.2 to
0.5. Thisresults in a higher MSE. The momentum is reduced to 0.1 in model number
5, this makes the model producing less MSE than the 4™ case. Setting learning rate
and momentum as 0.2 looks promising that it tends to produce a low MSE resullt.
Consequently, they are applied to the following cases. Number of neurons are
increased in model number 6, with the same learning rate and momentum. However,
by increasing the number of the neurons in thiscase, the MSE at the optimum point of
the model is not decreased rélatively with the~previous model having lower number
of neurons. This same behavior happens with other following models from model
number 6 to 13 where the.atimiger of neurons is increased given a single hidden layer
configuration. This coulddbe aresult of the lack of generalization ability of the model
that it is overfitted by the'Configuration of too many number of neurons relatively to
the condition and number of dataset.

The model number 12 with number of neurons as 27 is selected for an
example. It is shown in figure 4.24 that the training sets of the entire curve starting
from the beginning until the end of trainirig é)’(hi bit a better performance (lower in
MSE) than the validating sets. After the best performance line or the optimum point,
the MSE of validating seis-comparing-with-traifing-seis:show a big difference in the
MSE. This is according to the large number of neurens setting which make the
network overfitted to the traing sets and tend to loss the ability to generalize when the
error criterion is checcked-against thevalidating sets.-Madel-number 14 is tried with
two hidden layers with'number of neurons as 10'and 5 respectively. Learning rate and
momentum are set to 0.2, The network of this ¢ase is tranined 'until MSE does not
improve further, ar ‘as'it reaches optimum point.cThe MSE at the optimum point is
0.0375 which is lower comparing with those configuration of one single layer with
several number of neurons (model number 6 to 13). Model number 14 to 17 are tried
with the increasing number of neurons given two hidden layers. Learning rate and
moemtum are kept constant at 0.2 as they were proofed to yield a good training result,
examples were shown in the model number 3 to 5. The result from model number 14
to 17 turn out that increasing number of neurons in two hidden layers could not

produce alower MSE.
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Figure 4.24. Learning curve of model number 12

From the total of 17 runs, two models which generate the lowest MSE are
picked up to further verify for locating best model representing the absolute walk rate
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prediction model. Model number 3 and 5 are shown to produce the two lowest MSE
as 0.0345 and 0.0353 respectively. Model number 3 is equipped with a single hidden
layer with 9 hidden neurons and learning rate and momentum are set as 0.2. Mode
number 5 is also equipped with the same configurations as the model number 3 except
that the momentum is set as 0.1. The learning curve of model number 3 and 5 are
depicted in the figure 4.25 and 4.26 respectively. Model number 3 is trained for 12
epochs until ensuring that the optimum condition arises at the 6" epoch where the
optimum MSE is shown as 0.0345. Model number 5 also has a similar trend with the
model number 3, but only different that the'medel reaches the optimum condition at
the 8" epoch.

‘{f})ﬂ(&lalidatinr‘ Performance is 0:034438 at e;Eh 6
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Figure 4.25: Learning curve of model number 3
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Figure 4,26/ earning ‘pUrve of model number 5

The two models yi€lding the lowest MSE, namely model number 3 and 5 are
tested with the training andvalidating datééfét’ to see how well the models are able to
predict the result based on the infermaiion mocni'els have experienced. The result from
the model (predicted walk rate) is corhﬁérxéd with ihe actua wak rate. The
comparison is carried out by the cross plot between predicted and actual walk rate for
the training and validating dataset. Figure 4.27 and 4.28 represents model number 3
while figure 4.29 and 4.30 represents model number 5. Moreover, the comparison
result in another perspective isishawnin table 4.11 and 4.12.The information in the
table representsithe percentage of error between the predicted and actual walk rate.
Error differences are grouped:inte 5 ranges whieh are 0:10%, 10-20%, 20-30%, 30-
40% and >40%. The fraction shows the percentage of dataset thatbelongs to each

error range.

Regarding model number 3, the cross plot in figure 4.27 shows the difference
between predicted and actual wak rate. The “y=x" line refers to the correct
prediction. However, this correct prediction is not regularly occurred. Therefore, r
(Correlation coefficient) is calculated to see how well the predicted walk rate is

correlated with the actual one. In this case of the comparison between predicted and
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actual walk rate of training sets of model number 3, r is equal to 0.85. Another
perspective of comparison could also be seen from table 4.11, for model number 3,
there are 14% (fraction = 0.14) of training sets that produce the difference between
predicted and actual walk rate in the range of 0-10%. Moreover, there are 20%, 16%,
18%, and 32% (fraction = 0.20, 0.16, 0.18 and 0.32) of training sets that produce the
difference between predicted and actual walk rate in the range of 10-20%, 20-30%,
30-40%, and >40% respectively. The same cross plot and table comparison concept
applies to the validating sets. The cross plots of validating sets are displayed in figure
4.28, while the table comparisons of predieted and actual walk rate is displayed in
table 4.12.

Regarding model"number.5, the cross plot in figure 4.29 shows the difference
between actual and ‘predieted walk raie. The “y=x" line refers to the correct
prediction. However,-this eorrect predicti,gn IS not regularly occurred. Therefore, r
(Correlation coefficient) is calculated tor see how: well. the predicted walk rate is
correlated with the actua one, In this case of the comparison between actua and
predicted walk rate of traifing sets‘of model number 5, r is equal to 0.79. Another
perspective of comparison could-also be seen from table 4.11, for model number 3,
there are 24% (fraction = 0.24) of training sets that produce the difference between
predicted and actual walk raté in the range of 0-10%. Moreover, there are 25%, 11%,
9%, and 31% (fraction-=-0:25,-0:11,-0.09-ahd-0:31)-0i-training sets that produce the
difference between predicted and actual walk rate in the range of 10-20%, 20-30%,
30-40%, and >40% respectively. The same cross plot and table comparison concept
applies to the validating;sets. (T he:crass;plot of validating-sets is displayed in figure
4.30, while the table’ comparison of ‘predicted ‘and"actual ‘walk rate for validating sets
isdisplayed in table 4.12.
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Table 4.11: Error fraction (Training sets)
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Training Sets
Number of
neurons Fraction of dataset in each error rang
Hidden | Hidden
Model# | layer1 | layer2 | 0-10% | 10-20% | 20-30% | 30-40% | >40 %
3 9 0 0.14 0.20 0.16 0.18 0.32
5 9 0 0.24 0.25 0.11 0.09 0.31
Table 4.12: Error fraction(Validating sets)
Validaiing Sets
Number of
neurons Fraction of dataset in each error rang
Hidden | Hidden
Model# | layer 1 | layer 21 0-10 % | 10-20% | 20-30% | 30-40% | >40%
3 9 0 0.17 0.22 0.04 0.22 0.35
5 9 0 017 0.13 0.13 0.13 0.44

As seen from the prediction result, th'e"model does not exhibit a high accuracy.
Therefore, further work is carried out to .évhélyze what could cause the error in the
prediction. From the past studies; it can be seen that formation characteristics
contribute quite significantly on the quantity of b|t walk./Model 3 possesses a higher
correlation coefficient (r) Indicating stronger relationship between predicted and
actual walk rate than model number 5. As aresult, it is selected as a representative to
study the formation effegt. The comparisons between predicted and actual walk rate
of model number 3 are aternatively. plotted by dataset number. Thisisto give a closer
view on the quantity difference between predicted and actual walk rate dataset by
dataset:From the trai ning-sets:of:-model number 3 (figure4:31), the dataset exhibiting
an error between the predicted and actua walk rate of more than 50% are selected for
study. The dataset is checked against the gamma ray log on the specified depth
interval and well. The 50% difference between predicted and actual walk rate could
be divided into two cases, namely, either the actual is lower or higher than the
predicted value. From analyzing the gamma ray well log, there is no gamma ray
pattern to explain the former case. However, for the latter case that the actual is higher
than predicted value, there are some patterns from the gamma ray log found which is
in connection with the theory regarding laminated rock that usually represents the
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shale formation. Figure 4.32 to 4.35 show the gammaray log representing the interval
of each dataset in table 4.13. If Gamma ray is higher than 80 API, the formation is
considered as shale (Hilchie, 1978). It can be seen from the gammaray of all 4 dataset
that they are al in the shale domain. And they all exhibit the high fluctuation in
gamma ray log. This shows the characteristic of laminated rock that there are severa
format of rocks gradually formed into shale layer. Therefore, if this kind of gamma
ray pattern is found, high walk rate could be implied. However, in the drilling
operation, such information might no ‘)Zf{ ily provided. So, geological prognosis
could be used for this matter that |f t

likelihood of high walk rate oceurrence.

us shale pattern is found, there is a
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Table 4.13: Details dataset (Model number 3 — Training sets)

Dataset Rotational Actua Predicted
no. Inclination | WOB Speed Torque | walkrate | walk rate
(deg) (Klbs) (RPM) (Klbs*ft) | (deg/30m) | (deg/30m)
28 422 10.57 221 7492 0.35 0.13
58 25.33 12.21 221 8936 0.71 0.34
66 46.43 12.67 223 11757 0.88 0.44
74 48.15 11.72 222, 11660 1.23 0.47
2450 |-
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Figure 4.32: Gamia ray log (Dataset no. 28 of Model humber 3 - Training sets)
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Figure 4.33: Gammaray log (Dataset no. 58 of Model number 3 - Training sets)
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Figure 4.35: Gamma ray log (Dataset no. 74 of Model number 3 — Training sets)

The comparisons between predicted and actual walk rate of validating sets of
model number 3 are alternatively plotted by dataset number. Thisis to give a closer
view on the quantity difference between predicted and actual ‘walk rate dataset by
dataset. From the validating sets of model number 3 (figure 4.36), the dataset
exhibiting an error between the predicted and actual walk rate of more than 50% are
selected for study. The dataset is checked against the gamma ray log on the specified
depth interval and well. The 50% difference between predicted and actual walk rate
could be divided into two cases, namely, either the actual is lower or higher than the
predicted value. From analyzing the gamma ray well log, there is no gamma ray
pattern to explain the former case. However, for the latter case that the actual is higher
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than predicted value, there are some patterns from the gamma ray log found which is
in connection with the theory regarding laminated rock that usually represents the
shale formation. Figure 4.37 to 4.38 show the gamma ray log representing the interval
of each dataset in table 4.14. If Gamma ray is higher than 80 API, the formation is
considered as shale. It can be seen from the gamma ray of the two dataset that they are
al in the shale domain. And they all exhibit a high fluctuation in gamma ray log.
However, the dataset number 13 extends minimally into the sand formation after the
depth of 2620 meters but the majority, of }he interval is still in shale domain. This can
be summarized as same as the case of thé"'_aéaeet of the training sets that if this kind
of gamma ray pattern is found, high walk rait'eeoﬁb be implied. And the information
could be viewed througﬁ;the geolo‘i’cal prognosi'g Moreover, the summary of
formation effect from thefra
r eated by the formation anisotropy characteristics at
ing e mboel with tesi ng dataset or any new actual

lhg d validating sets cases should also give a

precaution of implied

some drilling interval w
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Figure 4.36: Comparing Predicted vs. Actual walk rate by order (Model number 3 —
Validating sets)



Table 4.14: Details dataset (Model number 3 — Validating sets)

Dataset Rotational Actual Predicted
no. Inclination | WOB Speed Torque | wakrate | walk rate
(deg) (Klbs) (RPM) (Klbs*ft) | (deg/30m) | (deg/30m)
11 41.68 9.97 223 13862 0.52 0.29
13 41.19 11.79 217 8966 0.53 0.27
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Figure 4.37: Gammaray log (Dataset no. il of Model qumber 3 —Validating sets)
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4.3.2.1.3 M odd testing results and discussion

Model number 3 and 5 are tested with the testing dataset. The result from the
model (predicted walk rate) is compared with the actual walk rate. The comparison is
carried out by the cross plot between predicted and actual walk rate for the testing
dataset. Figure 4.39 represents model number 3 while figure 4.40 represents model
number 5. Moreover, the comparison result in another perspective is shown in table
4.15. The information in the table represents the percentage of error between the
predicted and actual walk rate. Error differences are grouped into 5 ranges which are
0-10%, 10-20%, 20-30%, 30-40% and >40%: The fraction shows the percentage of
dataset that bel ongs to eachrerror range

Regarding model"number 3, the cross plot in figure 4.39 shows the difference
between predicted and" actuals walk rete. The “y=x" line refers to the correct
prediction. However, thiS correct predicti"on IS not regularly occurred. Therefore, r
(Correlation coefficient) ds galeutated to see how well the predicted walk rate is
correlated with the actual @ne; In this case of the comparison between predicted and
actual walk rate of training sets, of model number 3, r is equal to 0.71. Another
perspective of comparison could also be seen from table 4.15, for model number 3,
there are 11% (fraction = 0.11) of training sets that produce the difference between
predicted and actual walk rate in the range of 0-10%. Mareover, there are 11%, 26%,
16%, and 36% (fraction = 0.11, 0.26, 0.16 and 0.36) of training sets that produce the
difference between predicted and actual walk rate in the range of 10-20%, 20-30%,
30-40%, and >40% respectively.

Regarding model number 5, the cross plot in figure 4.40 shows the difference
between, aptual™ and | predicted «swalks rates The™ y=x"oline, refers to the correct
prediction. However, this correct prediction is not regularly occurred. Therefore, r
(Correlation coefficient) is calculated to see how well the predicted walk rate is
correlated with the actual one. In this case of the comparison between actual and
predicted walk rate of training sets of model number 5, r is equa to 0.70. Another
perspective of comparison could also be seen from table 4.15, for model number 3,
there are 14% (fraction = 0.14) of training sets that produce the difference between
predicted and actual walk rate in the range of 0-10%. Moreover, there are 5%, 16%,
23%, and 42% (fraction = 0.05, 0.16, 0.23 and 0.42) of training sets that produce the
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difference between predicted and actual walk rate in the range of 10-20%, 20-30%,
30-40%, and >40% respectively.
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Figure 4.40: Cross plot of Predicted vs. Actual walk rate (Model number 5 — Testing
sets)



Table 4.15: Error fraction (Testing sets)
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Testing Sets
Number of
neurons Fraction of dataset in each error range
Hidden | Hidden
Model# | layer1 | layer2 | 0-10% | 10-20% | 20-30% | 30-40% | >40%
3 9 0 0.11 0.11 0.26 0.16 0.36
5 9 0 0.14 0.05 0.16 0.23 0.42

Model number 3 and 5 are comparedto locate which one is better in terms of
prediction performance. r values prescribed airthebottom right of each figure between
4.39 and 4.40 are used“for the prediction performance comparison. Figure 4.39
representing testing sets of umodel number 3 give a value of r as 0.71. Figure 4.40
representing testing sets gismodel number 5 give avalue of r as 0.70. Comparing the
cross plot representing testing sets between model number 3 and 5 using r values, it is
found out that model snumber; 3 vields Siig_htly better result than another one. As a
result, model number 8 is salected 0 represent the absolute bit walk quantity
prediction (Case 2.1).

Figure 4.41 shows the comparison between predicted and actual walk rate of
testing sets of model number 3.1t is alternati'\)eLy plotted by dataset number. Thisisto
give a closer view an.the quantity difference between predicted and actual walk rate
dataset by dataset. It 1S shown in the figure that there IS no existence of the case where
the actual is significanily higher than the predicted valte. However, from the gamma
ray pattern found in the case of training and-validating.sets, it.could be implied that if
the continuous shalefarmationiis found throughaut.the specified drilling interval from
the geological prognosis, high wak rate could e implied andaprecaution that the
model eould likely.yield a lower prediction value than the actual, case has to be taken

place.
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tlre dat%ﬁ(‘ it could be noticed that the actual walk
rate exhibits a clustering pattern tha; there;,%\re certain number of dataset yielding the

same amount of the actual k. ‘ragg M orema; b

shown in either cross plot or erro_—fTactlon‘:@‘gure 4.39, 4.40 and table 4.15), it could

-

be seen that both mo¢1els do not exhibit a h| gh accuracy jn the prediction. This could
be because there are:ﬁertam effects from the Tmﬁf for examples, the drilling

according to the error from the testing

interval that experlenceJhl gh formation anisotropies could result in a higher walk rate
than usual while drillrr_;g in the interval where low ani;.otropi&s are experienced will
give an opposite result. Even though the formation anisotropies could give an effect to
the walk rate, but it is based on the asSumption that it should generaly gives a
moderate effectto,the walk, rate that itycoul d make thewalk ratetq be higher or lower
than usual in'certarn‘range. With these given two reasonsabove, there'ls an attempt to
establish another case study to try predicting bit walk rate in range rather than the
absolute amount. The case study is described and analyzed in the following topic.
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4.3.2.2 Case 2.2 — Bit walk quantity in range

This case is the extension of the previous case that it tries to model the bit
walk rate given an output in range instead of the absolute walk amount. The rationale
behind is to build a model that is best suitable with the information currently
available. It has been known that the formation anisotropies contribute quite
significantly in affecting the bit walk rate and they are the unknown parameters. The
model of this case focus on predicting bit walk rate in range. This could more or less
suppress the uncertainty created by the unknown parameters. The walk rate is grouped
into three ranges namely group A covers'atange of 0.1 to 0.3 deg/30m, group B
covers a range of 0.3 to 0.7 deg/30m, and group C covers a range of 0.7 to 1.3
deg/30m. The dataset belenging to-each group of thewalk rate are divided to nearly
equally as 38, 40 and.34 respectivaly from the total of 112 dataset. The model is
configured with an input layer consisted”of four neurens representing inclination,
weight on bit, rotational/Speed and torque.' The output layer is consisted of 3 neurons
representing group A, B.or € of walk rate range. The number of hidden layers and
neurons are varied to search for the configurations resulting in low error. The
schematic diagram of the ANN model of this case is shown in figure 4.42.

A4

Input layer Hidden layer Output layer

4 inputs 3 outputs
- Inclination Bit walk rate
- Weight on bit - groupA
- Rotational speed - groupB
- Torque - groupC

Figure 4.42: Schematic diagram of ANN model — Case 2.2



4.3.2.2.1 Data preprocessing

Table 4.16 demonstrates the examples of dataset that are grouped into three bit
walk range. In order to apply these walk range groups with the ANN model, three
neuron nodes at the output layer are required to represent al three cases of group A, B
or C. The reformatting of the output is shown in table 4.17. For example, awalk rate
as 0.17 deg/30m which is under group A is transformed into the ANN output where
nodel has a value of 1, node2 as 0 and node3 as 0. Each node of the neurons could
give aresult ranging from O to 1. The detal!s on how to translate the output from the
model prediction back to the bit walk range areto be discussed in the results and

discussion section.

Table 4.16 Model output in'group

Mode! Inpuis' Model Output
Rotational
Dataset# | Inclinationd WOB speed® | Torgue Walk rate Group
(deg) | (KIbs) | ~ (pm)s | (Klbs*ft) | (deg/30m)
1 4828 A 1M7Y| 214 ) 412062 0.17 A
2 2701 | 1174 222+, 12839 0.18 A
3 5397 | 826 180 1.11989 0.19 A
4 4590 | 12681 179 | 12794 0.35 B
5 2111 | 13344217 | 20075 0.36 B
5 55.22.4.( 11.72 179 10782 0.55 B
6 31.32.7 | 1310 223 0873 0.70 C
8 4071 7| 12.72 185 11884 0.71 C
9 22.38 | 14.48 220 9965 0.82 C

*Note: Group A = 0.1#0:3 deg/30m; Group;B = 0:3-017 deg/380m;-Graup C = 0.7-1.3,deg/30m

Table4:.17; Qutput:node representation

Quiput layers
Group | Nodel | Node2 | Node3
A 1 0 0
B 0 1 0
C 0 0 1

*Note: Group A = 0.1-0.3 deg/30m; Group B = 0.3-0.7 deg/30m; Group C = 0.7-1.3 deg/30m
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In order to ensure the efficiency in generalization of the model, dataset that are
partitioned into training, validating and testing sets should present a similar
distribution and cover possible ranges of information as much as possible. The same
partitioned dataset with the case 2.1 are also applied to this case. Therefore, the
histogram of each partitioned dataset can be referred to the figure 4.11 to 4.22 as

shown in the case 2.1.
4.3.2.2.2 Modd training

In this case, ANN model configuraifons namely number of hidden layers,
number of neurons in each layer, learning raie-and momentum are varied on a trial
and error basis to locate the'best configuration making the model converge as well as
yielding the lowest MSE. 15:madel runs are tried with different configurations. The
results are summarizeddn the'table 4.18 as shown bel ow.

Table.18: Model configuration — Case 2.2

Na. of inedrons

Model | Hidden |Hidden | Learning

# layerl |layer2 | rate Momentum | MSE
1 3 0l .2.020 0.2| 0.1481
2 4 0o 025 09| 0.1469
3 4 0 |/ “4T820 0.2| 0.1546
4 6 0 0.25 09| 0.1450
5 7 0 0.25 09| 0.1440
6 8 0 0.25 09| 0.139
7 9 0 0.25 09| 01434
8 10 0 0,25 0.9| 0.1269
9 15 0 0.25 Q9| 0.1575
10 20 0 0.25 09| 0.1629
11 25 Q 0.25 0.9+, 0.1463
12 30 0 0.25 0.9) 0.1628
13 20 10 0.25 09| 01704
14 20 15 0.25 09| 01721
15 20 20 0.25 09| 0.1568

The trial starts with a single hidden layer and a minimum number of neurons
and increase the neurons and hidden layer in the latter models. The first model is

configured with the proposed number of neurons as 3 and hidden layer as 1 according
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to the proposed formula by Jadid and Fairbairn (1996). The proposed formula
calculates the number of neurons to be as 3 from the equation 4.2 as same as in the
case 2.1. (NHN = Ny /[R+ (N + Nour)]) Nigy (NO. of training sets) is equal to

76, N,\» isequal to 4, N, isequal to 3, R could be any number from 5 to 10. The
calculated NHN (No. of hidden neurons) is 4.5. The author suggested that this is an

upper bound. So, we set the initial no. of hidden neurons to be lower than 4.5 whichis
3. Learning rate determines the acceleration of the weight updating. Momentum is
used in weight updating to help. the search escape local minima and reduce the
likelihood of search instability. Therefore, Léarning rate and momentum of the first
model is minimaly set as 0.2. The model 1srun for about 12 epochs where the
converge pattern is shown:At.the 6" epoch, MSE of the validating sets reach the
optimum point and start to.increase after this point. Wheareas the MSE of training
sets are still continuously redueing as could be due to the overfitting behavior of the
ANN model. Thisis depicted in'the figure 4.43.
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Figure 4.43: Learning curve of model number 1 (Case 2.2)

Model number 2 is increased the number of neurons to 4. Learning rate is set
to 0.25 and momentum as 0.9. These learning rate and momentum setting follows the

suggestion proposed by Swingler (1996) that setting such values are recommended for
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every model configuration unless a good solution could not be obtained. This
proposal is also tested by keeping the number of neurons and layers contstant and
vary the learning rate and momentum. Model number 2 having hidden layer as 1,
number of hidden neurons as 4, learning rate as 0.25 and momentum as 0.9, gives the
result of MSE as 0.1469. For model number 3, number of neurons is set to 4 as same
as model number 2,while learning rate is set to 0.2 and also the same for the
momentum. The MSE results in the value of 0.1546. Model number 2 and 3 are
compared, given the same number of neurons but different in learning rate and
momentum. This is to test the model performance of model number 3 when learning
rate and momentum is changed from 0.25 and-0:9 respectively. It turns out that MSE
of model 3 is higher than that oi-model number 2. This could be generally conclude
that learning rate as 0.25 and momentum as 0.9 vield a good result of MSE.
Consequently, these configuraiions are aso applied to other followed models.
Number of neuron is increased 0 6:in model number 4 with learning rate as 0.25 and
momentum as 0.9. This resulis in a better model performacne giving lower MSE as
0.1450. Model number's is configured with 7 number of neurons and one hidden
layer. Learning rate is also sat as 0.25 and_rr'lo-‘r.nentum as 0.9. It results in the MSE as
0.1440. Additiona number of hidden neﬁfbns have been put into the model for
lowering the MSE. This is conducted in model ﬁumber 6 to model number 15 with the
same learning rate and momentum as 0.25 ahd 0.9 repegctively. Model number 13 to
15 are configured with 2 hidden layers. However, the result does not show a better
result of M SE than the model with one hidden layer.

From the entire jtestings, twa; outstanding medels giving lowest MSE are
captured for examples. " They are'model number 6 and 8. Model number 6 gives MSE
as 0.1396 with_a configuration of 1 hidden layef*and 8 number of hidden neurons.
Model number 8 givesMSE as 0.1269with a configuration of 1 hidden layer and 10
number of hidden neurons. Learning rate and momentum for these two models are
also set as 0.25 and 0.9 respectively. Model number 6, as shown in figure 4.44, from
the beginning of the training cycles, MSE of training set start to decline in parallel
with that of the validating set. Until the optimum point is reached at 2" epoch, where
validating set start to produce higher MSE but training set still produce a lower M SE.
This is according to the overfitting behavior that the network is extensively exposed
to the training set making the network lack of the ability to generalize. This is tested
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by the validating set that the MSE is increased after the optimum point. Model
number 8 also exhibits aminimal MSE which is 0.1269. This is lower than the model
number 6's. Its learning curve is shown in figure 4.45. The learning curve is similar to
that of model number 6 but it is different only that the model number 8 converges at
the 5™ epoch where the MSE of training and validating sets start to set apart. Model
number 6 and 8 are compared by testing the model with the entire dataset to see how
good the model can predict the walk rate resulting in one of the predefined walk

range. Thisis discussed in the next topic.
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Figure 4.45: Liearning curveof model number 8 (Case 2.2)

4.3.2.2.3 Modd testingresults and 'd:iéqussion

Below in table 4.19 is an example of results from the mode! prediction. The
model gives the output of node 1, 2 and 3 in a range from O to 1. The model ideally
gives the answer asd+for the output node that represents the answer while returning 0
for other output nodes.In practice, the model does not give the absolute answer as 0
nor 1 but rather a number between 0 and 1 depending on the strength and condition of
the inputs. In general, the threshald can be set up to transformthe model output into a
binary number, namely 0 or 1. For examples, for amodel that exhibit a strong answer,
threshald as 0.8 can e set up that higher than such is transformedito 1 else to 0.
However, according to the observation of the outputs from the model prediction of
this study, not every dataset exhibits a strong output. This can be seen from dataset
number 3 and 4 in the table 4.19 that the node representing highest output gives an
answer between 0.45 and 0.65. Therefore, transforming the model output to a binary
number via a threshold regime as mentioned earlier is not applicable to the data of this
study. As a result, the answer of the model is based on the maximum regime that the

node out of the three exhibiting the highest value than the others is selected as the
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answer of the model prediction. Table 4.20 shows how the model outputs in table 4.19
are transformed into a binary number to show which walk range the model predict for
each dataset. For examples, the dataset number 1 in the table 4.18 shows that the
model predicts the walk range as 0.3-0.7 deg/30m. In other words, from the input of
dataset number 1, inclination as 39.83 deg, WOB as 11.53 Klbs, Rotational speed as
177.46 rpm and Torque as 12000.32 Klbs*ft yield a result of walk range as 0.3-0.7
deg/30m.

Table 4.19: Result from ANN im0del prediction (Case 2.2)

Model Inputs Model Outputs
Rotational

Dataset# | Inclination | \WOB speed Torgue Node 1 Node 2 Node 3
w (0.1-0.3 (0.3-0.7 | (0.7-13

(deg) (Kibs) (rpm) | (Klbs*ft) | deg/30m) | deg/30m) | deg/30m)
1 39.83 | 14.53 1781 12000 | 0.07900 | 0.83732 0.18072
2 26.57 11162 214 ;13966 | 013872 | 002023| 094844
3 1824 | 12.91 2201 9444| 0.20973| 0.64235| 0.13884
4 20.09 | 11.88 1794 19843 | 0.45062 | 0.35603 | 0.18924

i

Table 4.20: Result from ANN model préd_ict_ion (after transforming to binary)

Model Inputs Model Outputs
Rotational

Dataset# | Inclination”| WOB Speed Torque Node 1 Node 2 Node 3
(0.2-0.3 (0.3-0.7 | (0.7-13

(deg) (Klbs) (rpm) (Klbs*ft) | deg/30m) | deg/30m) | deg/30m)
1 39.83 | 11:53 178 12000 0 1 0
2 26.57 |"11.62 214 13966 0 0 1
3 18.24 | 12.91 220 9444 0 1 0
4 20.09 | .11.88 179 0843 1 0 0

This predicted output can be compared with the actual walk range. Not every

dataset is correctly predicted by the neural network. The example of both correct and
incorrect walk rate prediction is shown in table 4.21. Dataset number 1 shows the
correct prediction as the result from the model gives aresult of 0.3-0.7 deg/30m walk
range, the actual result is also in this range. Dataset number 2 is the example of

mismatch between the model prediction and the actual value, the model output predict
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that these parameters result in walk range of 0.3-0.7 deg/30m, in fact the actual output

of the input parametersisin walk range of 0.1-0.3 deg/30m. Therefore, a performance

evauation of the model has to be built. In this case, hit fraction is used for this matter.

Hit fraction represents the proportion of correct prediction over total number of

dataset. Giving an example from table 4.22 below, model number 8 gives a hit
fraction of testing set as 0.72. This means that the model is able to 72% correctly

predict the range of walk rate resulting in any of the walk ranges of 0.1-0.3, 0.3-0.7 or

0.7-1.3 deg/30m. From the comparison,of the two models, model number 8 yields a

better result than another one when testing the.model with the testing sets. Figure 4.46

and 4.47 aso show the comparison between predicted and actual walk range in details
dataset by dataset which are the extensi on of the result in table 4.22.

Table 4.21: Example of ithe gomparison bétween the predicted and actual walk range

Model 1 nputs Model Outputs Vs. Actual
Rotational- [+ 4
Dataset# | Inclination | WOB |~ Speed | Torque Node 1 Node 2 Node 3
TR (0.1-03 | (0307 | (0.7-13

(deg) (Klbs) (rpm) (Klbssft) | deg/30m) | deg/30m) | deg/30m)
1 39.83 | 1153 178 |+ +/.42000 0 L 0
Actud il 0 1 0
2 4031 | “AL33 2141 9620 0 L 0
Actud 1 0 0

Table 4.22: Hit fraction=Case 2.2

Mode # |~ 'Hit fraction of testing dataset
6 0.67
8 0.72
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From the model prediction result, it is seen that some incorrect prediction is
still occurred even though it is to the less extent than the case 2.1. The explanation
could be drawn as same as the case 2.1 that it could be according to the formation
effect creating higher or lower walk range than usual. In addition, there is an attempt
to verify currently available data if each model parameter complies with the theory
described in the past studies. This is conducted by inventing some test dataset and
input them into the ANN model to see how much the prediction is varied according to
the change of each parameter. The madel,number 8 which gives a better performance
as shown in table 4.22 is used for this matter. As aresult, a relationship between each
parameter and walk rate (in range) can be generally summarized in table 4.23. The
result confirms that following paramé"ters, inclination, weight on bit (WOB) and
rotational speed exhibit an“inverse relationship, while torque demonstrates a direct
relationship with walk raie. These summaries are in line with the past papers.

Table 4.23: Ghange inwal k“apqordi ng to each parameter

Rotational Walk Input Output
Inclination | WOB | Speed Torque | range Observation Observation

(deg) (Klbs) | (RPM)  (Kkibs i) | (deg/30m)
4220 | 1057 | 22048 | 749150 | 08-0.7

Walk
42.20 | 1450 =..220.48 | _7491.50 0.1-0.3 .. WOB increase | decrease

1824 | 1291 210.52 | 9444.04 0.3-0.7

Walk
18.24 | 1291 15050 | 9444.04 0.7-1.3 ["RPM decrease | increase

27.09 | 11.86 228.31 | 13793.10 0.7-1.3

I nclination Walk
50.50 | 11.86 228:31 | 13793.10 0.3-0.7 | lincrease decrease
4225 | 13.22 217.16 | 8441.72 0.1-0.3

Torque Walk

4225 1 13.22 217.16 |13650.00 0:3-0.7/|l increase increase
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Moreover, the model number 8 could be further utilized to generate a genera
guideline on how much bit walk is varied according to the changes of the drilling
parameters, namely weight on bit and rotational speed, as they are frequently adjusted
during the drilling operation. The guideline is designed to cover three ranges of
inclination which is normally kept unchanged during the design phase or minimally
changed during the drilling operation. The entire range of inclination, namely 18-56
deg, isdivided into low range covering 18-35 deg, medium range covering 35-45 deg,
and high range covering 45-56 deg. In each inclination range, drilling parameters are
set and input into the model to generate thebit walk range. Weight on bit covers the
range of 9-16 Klbs, while rotationa speed covers the range of 140-230 RPM. These
are according to the range taken fromJthe actual field data indicating the optimum
ranges used in the drilling operatlon Torque which.is another input of the model is
constantly set as 11000/Kibs*ft to re&esent a moderate formation hardness. This
value is a median from thé range of ‘actual torque taken from field data. The bit walk
ranges generated by t(bémodel are |IIu$trated In the figure 4.48 to 4.50 as walk

prediction plots. £ L. -"_,
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Figure 4.48: Bit walk range under low inclination range (18-35 deg)
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The drilling parameters regime could be summarized to give a guideline on a
proper scenario of varying the parameters namely weight on bit and rotational speed.
As aresult, the bit walk range is resulted in an expected and acceptable range. From
figure 4.48, at low inclination range (18-35 deg), it can be summarized that WOB
from 9 to 9.5 Klbs and rotational speed from 140 to 170 RPM make the bit walk to be
in the range of 0.7 to 1.3 deg/30m at any inclination degree from 18 to 35 deg. WOB
as 10 to 12.5 Klbs and rotational speed as 140 to 230 RPM yield bit walk either in the
range of 0.3-0.7 or 0.7-1.3 deg/30m cansidering the range of inclination from 18 to 35
deg. If the exact inclination angle is input.inio the model, the model will yield the
exact bit walk range. WOB as 13 to 16 Klbs and rotational speed as 140 to 230 RPM
yield bit walk in the range of 0.3 t0 0.7 deg/30m,; eventhough the inclination angle is
changed from 18 to 35 degy'it does not affect the bit walk range given these ranges of
WOB and rotational spegd. WOB &s 15 1o 16 Klbs and rotational speed as 160 to 230
RPM give bit walk in the'range of either 0.1-0.3 or 0.3-0.7 deg/30m considering the
range of inclination from 48-35 deg. \WOBas 15 to 16 Klbs and rotational speed as
210 to 230 RPM could yield bitwalk rangé_from 0.1 t0 0.3 deg/30m.

There are two poinis to be noted. Fl rstly, the described WOB and rotational
speed might not be exactly matched with the waI k prediction plots since the range of
bit walk as displayed generally is ot in a”r'“ectangular shape. Therefore, the ranges
descirbed here are considered-as-an-approximaiion-the-exact details could be viewed
directly from the plots:-Secondly, an uncertainty could be implied to the answer from
the model that the predicted might be different from the actual walk range in some
cases especiallyithe case wherethereds,aformation anistropies effect as seen in the
case 2.1 and 2.2 discussed earlier.
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From the figure"4. O,¢ at h19h ;ncllnatlon range (45-56 deg), it can be
summarized that WOB f; m 10" 11 5 Klbs ‘and rotational speed from 140 to 210
RPM could make the bit w. k |rrthe rangé’gf 03 to 0.7 deg/30m at any inclination
angle ranging from 45 to 56 degﬂNOB asﬂ.—ﬂo 14 Klbs and rotational speed as 140
to 180 RPM as well a5 WOB 259 to 12 Kibs and rotati orPl speed as 180 to 230 RPM

inclination angle from“45 to 56 deg. WOB as 14 to 1GKIbs and rotational speed as
140 to 230 RPM yleld blt walk in the range of 0.1 to 03 deg/30m at any inclination
angle from 45/t0 56 dey! There/are twd taulti ons noted asSame as the low inclination

case above.

In conclusion,from the generated walk prediction plats; it can be applied to
the drilling operation as follows. The inclination is normally predefined at the drilling
design phase. Therefore, the range of the inclination is initially determined that one of
the three plots is chosen. The formation hardness is generally considered as a
moderate hardness. The drilling parameters, namely weight on bit and rotational
speed as the most frequently adjustable parameters, can be varied and their effect to
the bit walk range can be viewed through the change of the bit walk range shown in
the walk prediction plots.



CHAPTER V
CONCLUSIONSAND RECOMMENDATIONS

5.1 Conclusions

This thesis utilized an artificial neural network to create a model to predict the
bit walk rate for the drilling operation in the Gulf of Thailand, particularly in the 6-
1/8” drilling section. The model is trained with the actua field data obtained from
several drilled wells. To develop the nedral .network model, four main steps are
conducted as follows. Firstly, identify inputs and outputs of the neural network model
through the reviewing and Sumimarizing of the past studies to determine the factors
and their effects to the'bit walk: Secondly, screen and filter the data before training
the network to ensure the qualified distribution of the data as well as the quality of the
model training and prediciion. Thirdly, develop the model training with several
configurations to locate'the best model configuration. And lastly evaluate the
performance of the modelsby testing with the actual field data.

The conclusions drawn from the stuas; and model applications are summarized

as follows.

1. The selected-parameiers-affeciing bit-walk-tendency cover the domains of
wellbore geometry represented by inclination, drilling parameters represented by the
two important operating parameters which are weight on bit and rotational speed, and

formation hardnéss represented by torque.

2. The total dataset of 140 mostly represent bit walk, left. 20 of which
represents bit walk, right. This is concluded that given-the |selected bit and BHA
configuration, bit walk exhibits a left tendency. The right direction is minimal and
implied by the effect from the formation anisotropies which are dip angle for
interbedded formation and laminated characteristic for shale formation.

3. The model is used for predicting bit walk quantity in an absolute amount as
well as in range. Predicting the bit walk in range yields more precise result than the

absolute amount case. The error occurred in the absolute amount case could be due to
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the formation anisotropies. The percentage of correct prediction for the bit walk range
case is 72% when tested with testing dataset.

4. The model is also used for checking the alignment with the previous
studies. The result shows that the neural network model gives the same result in terms

of relationship (either direct or inverse) between each parameter and walk rate.

5. Drilling parameters adjustment can be previewed by the walk prediction
plots generated by the model covering three ranges of inclination. The plots display
the variation of drilling parameters, namely” weight on bit and rotationa speed,
affecting the change of bit walk range given moderaie formation hardness.

As seen from the medel-development and testing, the models exhibit some
errors. The main factor could be from the formation anisotropies corresponding to dip
angle for interbedded formetion and.laminated characteristic for shale formation. The
conclusion drawn frombotirabsolute walk rate and walk range prediction cases shows
that laminated charactegistic demonstrated in the continuous shale formation could
account for a high walk rate. This could-bé'found from the geological prognosis.
However, this is considered as qualitativé" i‘nf?rmation that cannot be directly input

into the model.
5.2 Recommendations

The recommendations for future work are summerized as follows.

1. The“formation anisotropies are-seen to beydisregarded from the model
development due to the insufficiency of the information as well as the difficulties in
obtaining the, anisotropy information.in a quantitative manner. When the formation
anisotropies could’be quantitatively identified and incorporatedas parameters of the
model in conjunction with synchronized directional data, the model should be able to
extend its capability to predict more precise bit walk rate as well as bit walk direction.

2. This study scopes down to focus on a certain bit, BHA configuration and
formation type. Therefore, the model could be further extended to cover several types
of bits, BHA configurations and formation types so that the model can be utilized
with more general and various types of applications.
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3. It is also worth to be aware that the number of training dataset required for
training the neural network model is according to the number of network inputs and
outputs. Once model parameters are increased, additional inputs are added to the

model. Consequently, the number of training dataset has to be increased to ensure the
sufficiency of training samples.

AU INENTNEINS
PRIANTUAMINYAE
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APPENDIX A

Details of 140 dataset from the drilling operation in the Gulf of Thailand

92

Dataset Rotationa Wak
no. Inclination | WOB Speed Torque | Walk rate | direction
(deg) (Klbs) | (RPM) | (KlIbs*ft) | (deg/30m)

1 15.33 3.67 214 6036 0.52 | Right
2 1824 | 1291 220 9444 0.36 | Left
3 18.72| 12.03 222 9792 0.36 | Right
4 19.04 | 11.28 214 6450 0.18 | Left
5 19.34 | 13.90 223 9803 0.71 | Left
6 19.92 | .14.79 218 9632 0.18 | Left
7 20.00 |*"11.88 ¥ 179 9843 0.18 | Left
8 20.33 1459 208 | . 10078 0.35 | Left
9 20.64" 4403 . 209 9866 0.35 | Left
10 21.14" 4831 ' 217 | .10075 0.36 | Left
11 21.24 [ 14487 -~ =210 6298 0.88 | Left
12 21.48| J1257 1130 | 18522 0.69 | Left
13 21.76) 1241 1104 |\ 13724 0.89 | Left
14 21.98 | 12138 /. 1220 9634 0.18 | Right
15 21.98 | 14.14 }. 222 9740 0.35 | Left
16 2233 | /12901 154, 14241 1.08 | Left
17 2238 | 14.48 220 9964 0.82 | Left
18 2265 | - 11.34 220f *..9570 0.35 | Left
19 2278 | 1403 221 9592 | 0.47 | Right
20 23.04| 12.83 222| 10822 0.53 | Left
21 23.07| 1345 146 | 13862 1.17 | Left
22 2313 | 13.10 222 9437 0.35 | Left
23 23,35 | 12,76 142 8824 0.71 | Right
24 23.44 | 1229 222 9453 0.35 | Right
25 23.60 | 13.03 163 | 13586 0.82 | Left
26 23.61 e, 15:38 222+ 10766 0.53;| Left
27 23.79 | 114.10 223 9310 0.35| Left
28 2391 | 11.04 174| 13786 1.05 | Left
29 2419 | 1354 126 8500 0.70 | Right
30 2419 | 13.66 222 9179 0.18 | Left
31 2429 | 12.00 160 | 13586 1.15 | Left
32 2454 | 1545 221| 10711 0.71 | Left
33 2459 | 11.90 221 8994 0.18 | Left
34 2498 | 12.10 221 9307 0.17 | Left
35 25.09 | 1210 180 | 13333 1.30 | Left
36 2518 | 1121 198 | 13464 0.82 | Left
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Dataset Rotational Walk
no. Inclination | WOB Speed Torque | Walk rate | direction
(deg) (Klbs) | (RPM) | (Klbs*ft) | (deg/30m)

37 2520 | 13.07 119 8034 0.36 | Right
38 25.33| 12.24 222 | 10610 0.70 | Left
39 2533 | 1221 221 8936 0.71 | Left
40 2548 | 11.00 206 | 13621 1.28 | Left
41 25.92| 11.90 208 | 14345 1.22 | Left
42 26.21 | 14.17 223| 10719 0.35 | Left
43 26.30 | 10.93 138 7966 0.88 | Right
44 2657 | 1162 214 = 13966 0.71 | Left
45 26.87 | 12.88 2191 12613 0.53 | Right
46 27.00 L1218 & 22310448 0.53 | Left
47 2701 et 172 222 | 12839 0.18 | Left
48 27.07 4" 1255 221 | 12976 0.19 | Left
49 27.09 |+"11/86 | 228 | . 13793 0.88 | Left
50 2740 | #1153 L 222 12891 0.70 | Left
51 27.360 4384 221 |\ 12234 1.59 | Right
52 2749 |/ 1498 \215| 10525 0.17 | Right
53 27.97| 1497 222 | 10369 0.70 | Left
54 28.15 |/ 18386 | 221" 12280 0.88 | Right
55 28.46 | 43.971 222 10280 0.18 | Right
56 2003 | 13971 222 10525 0.36 | Left
57 2934 | 1272 215 | 12522 1.06 | Right
58 3013| 1156 220| 12408 0.17 | Right
59 3035] 1339 2231 10136 | 0.35 | Left
60 30.66 | 1245 223 | 10097 0.35 | Left
61 30.88| 11.97 223 | 10155 0.18 | Left
62 31.324{ ~13.10 228 9873 0.70 | Left
63 3177 | © 13125 223 9403 0.18 | Right
64 3181 1310 223 9796 0.17 | Right
65 36.42 | 14.47 140 | #12107 0:86 | Left
66 37.45 | | 13.67 142 | © 111771 0.88 | Left
67 3753 | 11.37 105 | 14296 0.71 | Left
68 37.71| 1084 209 | 11008 0.35 | Left
69 37.76 | 1212 217 | 10589 0.53 | Left
70 38.02| 11.37 217 | 10332 0.35 | Left
71 38.33| 12.76 212 | 10183 0.18 | Left
72 3850 | 11.41 213| 10021 0.35 | Left
73 38.68 | 10.00 214 9852 0.35 | Left
74 38.77| 12.66 164 | 12163 0.71 | Left
75 3894| 971 215 9698 0.18 | Left
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Dataset Rotational Walk
no. Inclination | WOB Speed Torque | Walk rate | direction
(deg) (Klbs) | (RPM) | (KIbs*ft) | (deg/30m)

76 30.03| 10.14 214 9679 0.35 | Left
77 30.12| 854 214 9555 0.35 | Left
78 30.34| 10.64 214 9721 0.36 | Left
79 3043 | 1138 162 | 14483 0.36 | Left
80 30.78| 1134 214 9698 0.35 | Left
81 30.83| 1153 177 | 12000 0.35 | Left
82 4031| 11.33 213 9620 0.18 | Left
83 4058 | 10.55 pan 9362 0.35 | Left
84 40.71| 1272 1857 11884 0.71 | Left
85 4084 12531 & 216 9401 0.35 | Left
86 41.19 {179 217 8966 0.53 | Left
87 41.50 | 12:67 217 8964 0.18 | Left
88 41.63 | 13160 | 192 | 11690 0.70 | Left
89 41,68 | 4 907 L 223\ 13862 0.52 | Left
90 41.81 4340 217 8807 0.17 | Left
o1 4203 |/ 12.84 | 218 8570 0.18 | Left
92 4216/ A284 “218| 8412 0.17 | Left
93 42.16 |/ 1090 195 13897 0.36 | Left
94 4220| 10571 220 7492 0.35 | Left
95 42.25| 1322 217\ 8442 0.18 | Left
96 4225| 11,19 218 |. 7886 0.18 | Left
97 4238 14.16 190 11781 1.06 | Left
98 43001364 18811973 | 1.06 | Left
99 4330 | 11.29 222| 14321 0.35 | Left
100 43.74| 1143 220| 13929 0.35 | Left
101 45204 ~.8.31 180 | 13145 0.18 | Left
102 4529 | " 12152 223|\ 111585 0.53 | Left
103 4537 “ 981 178 | “13169 0.53 | Left
104 4546 | 10.60 179 | 12811 017 | Left
105 4573 | 1121 179 | © 112789 0.53 | Left
106 4590 | 12.68 179 | 12794 0.35 | Left
107 4599 | 1341 209| 12118 0.52 | Left
108 4608 | 14.34 179 | 12587 0.36 | Left
109 4643 | 12.67 223| 11757 0.88 | Left
110 4652 | 1291 214| 12119 0.18 | Left
111 4652 | 13.19 179 | 12532 0.35 | Left
112 46.87 | 11.81 214| 12016 0.18 | Left
113 46.96 | 13.97 179 | 12638 0.17 | Left
114 47.14| 1177 214| 12062 0.35 | Left
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Dataset Rotationd Walk
no. Inclination | WOB Speed Torque | Walk rate | direction
(deg) (Klbs) | (RPM) | (Klbs*ft) | (deg/30m)

115 47.22| 12.19 178 | 12451 0.18 | Left
116 4749 | 1243 214| 12183 0.18 | Left
117 47.75| 12.67 179 | 12448 0.53 | Left
118 4784 | 12.60 214 | 12147 0.17 | Left
119 4793 | 1365 214| 12086 0.18 | Left
120 4815| 1172 222| 11660 1.23 | Left
121 4828 | 1171 214 | 12062 0.17 | Left
122 4863 | 1345 2144 12027 0.36 | Left
123 4881| 9.82 213111969 0.35 | Left
124 4907|9541 g 214111725 0.18 | Left
125 53.70. {1232 181 |"10532 0.18 | Left
126 53.94 " 741 179 | 12324 0.23 | Left
127 53.97 L 826 | 180 . 11939 0.19 | Left
128 5441 | #1207 . 481 11911 0.15 | Left
129 54.234° 4085 _ 219 9876 0.18 | Left
130 54.28 |/ 14.96 | 220 9998 0.17 | Left
131 54.45| 253 ‘212 10263 0.18 | Left
132 5451 |4 12.82 | 180" | 12308 0.18 | Left
133 5458| 4109l 212 0888 0.18 | Left
134 54.67 | 1222 2201 9891 0.18 | Left
135 54.86 | 1262 | 180 |- 11836 0.10 | Left
136 5507 12.72 | 220 9816 0.18 | Left
137 55221172 17910782 || 0.55 | Left
138 5523 | 1242 180 | 11434 0.15 | Left
139 5524 | 12.28 220 9097 0.18 | Right
140 55.68¢ ~12.39 220 9436 0.18 | Right




APPENDIX B

Results from testing model number 3 with entire dataset (Case 2.1)

Rotational Walk rate Walk rate

pas E";‘)I: Inclination | WOB | Speed | Torque | (Actud) | (Predicted)
(deg) | (Klbs) | (RPM) | (Klbs*ft) | (deg/30m) | (deg/30m)

1|  Train 1824 | 1291 220 9444 0.36 0.40
2|  Tran 19.34 | 13.90 223 9803 0.71 0.47
3| Tran 20.00 | 11.88 179 9843 0.18 0.12
4| Tran 2111 | 1331 217 | 10075 0.36 0.45
5| Tran 2198 | 14.14 222 9740 0.35 0.47
6| Tran 2233 | 12.90 154 14041 1.08 1.04
7|  Tran 2238 | 14.48 290 9964 0.82 0.52
8| Tran 22,65, 11.34 220 9570 0.35 0.36
9| Train 2304 1283 | & 222 10822 0.53 0.43
10| Tran 2307 1375 146 | 13862 1.17 1.10
11| Tran 2248 4810 222 9437 0.35 0.39
12| Tran 23607 4303] | 163| 13586 0.82 1.13
13| Tran 28794 40| ©7 223 9310 0.35 0.44
14| Tran 2429 /12004 - . "160| . 13586 1.15 0.93
15| Tran 2459f 41060 f 221 8994 0.18 0.34
16 | Tran 2500 |/ 12.10 \ 180 | 13333 1.29 1.18
17 |  Tran 2518 4121 198 | 13464 0.82 0.90
18|  Train 25.38 | [12:24 222 | 10610 0.70 0.41
19|  Train 2583 | 12.21 Al 8936 0.71 0.34
20| Tran 259211 1190 -208,] 14345 1.22 0.97
21| Tran 2621 | 14.17 223 10719 0.35 0.49
22 | Train 26.57 | 11.62 - 214'|. 13966 0.71 0.86
23|  Train 27.00 | 14.18 223 10448, 0.53 0.48
24| Tran| w2 2707 1255 221 | 12976 0.19 0.63
25 Train | &./27.09| 11.86 228 13793/ 0.88 0.59
26| Train 27.10 | 1153 222 | 12891 0.70 0.66
27 | Train 2797 | 1497 222 | 10369 0.70 0.54
28 |  Tran 3066 | 12.45 223 | 10097 0.35 0.40
29 | Tram 30.88y 111197 2231 110155 0.18 0.40
30| Tran 31.32| 13.10 223 0873 0.70 0.39
31| Trah 36.42 | 14.47 140 | 12107 0.86 0.94
32| Train 37.45 | 13.67 142 | #011771 0.88 0.80
33, “Tran 37,71 [10:84 200 | | 11008 035 0.49
34| " Train 38102 | V1137 217" ¥ 10332 035 0.46
35| Train 3850 | 11.41 213 | 10021 0.35 0.41
36| Train 3894 | 971 215 9698 0.18 0.15
37| Train 39.34 | 10.64 214 9721 0.36 0.31
38| Train 30.43 | 11.38 162 | 14483 0.36 0.48
39| Train 30.83 | 1153 177 | 12000 0.35 0.57
40| Train 4031 | 1133 213 9620 0.18 0.34
41| Train 4071 | 1272 185 | 11884 0.71 0.78
42|  Train 4084 | 12.53 216 9401 0.35 0.33
43| Tran 4163 | 13.60 192 | 11690 0.70 0.96
44|  Train 4203 | 12.84 218 8570 0.18 0.23
45|  Train 4216 | 12.84 218 8412 0.17 0.21
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Rotational Walk rate Walk rate

Ditgset Bﬁ: Inclination | WOB Speed Torque (Actud) (Predicted)
(deg) (Klbs) | (RPM) | (Klbs*ft) | (deg/30m) | (deg/30m)

46 Train 4216 | 10.90 195 13897 0.36 0.38
47 Train 4220 | 1057 220 7492 0.35 0.13
48 Train 4225 | 11.19 218 7886 0.18 0.16
49 Train 4225 | 13.22 217 8442 0.18 0.20
50 Train 4238 | 14.16 190 11781 1.06 0.93
51 Train 4374 | 11.43 220 13929 0.35 0.26
52 Train 4414 | 13.30 194 11851 1.30 0.84
53 Train 4537 | 9.81 178 13169 0.53 0.36
54 Train 45.46 | 10.60 179 12811 0.17 0.42
55 Train 4590 | 12.68 179 12794 0.35 0.43
56 Train 46.43 | 12.67 222 11757 0.88 0.44
57 Train 4652 | 1291 214 12119 0.18 0.52
58 Train 4690 umedad? | & 170 12638 0.17 0.34
59 Train AZ 241177 214 12062 0.35 0.48
60 Train 47.494" 1248 214 12183 0.18 0.48
61 Train #7844 280 |\ \214 12147 0.17 0.46
62 Train 4703 M 865| ) 214 12086 0.18 0.29
63 Train 4806 | F1U07RA, 478 #5222 11660 1.23 0.47
64 Train 480 S |, oM 12062 0.17 0.40
65 Train 4868 |/ 13.45 L 214 12027 0.36 0.32
66 Train 48814 982 . 213 11969 0.35 0.25
67 Train 4907 | § 9.54 214 11725 0.18 0.24
68 Train 53470 || 12.32 181 10532 0.18 0.24
69 Train 54110 1247 i) 11911 0.15 0.18
70| Train 54.45 | 4253 212| 10263 0.18 0.28
71 Train 5451 | 12.82 180, 12308 0.18 0.08
72 Train 54,58 | 11.09 v 9888 0.18 0.17
73 Train 5467 | 12.22 220 9891 0.18 0.24
74 Train ~ 5486 | 12.62 180 | 11836 0.10 0.07
75 Train|  -5507 | 12.72 220 9816 0.18 0.15
76 Train 5523 | 12.42 180 11434 0.15 0.17
77 | Validate 20,33 | 1459 208 10078 0.35 0.52
78 | Vadidate 21431 1257 130 13522 0.69 1.12
79 | Vadidete 2419 13.66 222 9179 0.18 0.40
80 | Validate 2454°| 1545 221 10711 0.71 0.63
81 | Validate 2498 | 12.10 221 9307 0.17 0.36
82°| Vidlidate 37476 (1212 217 10589 053 0.49
83| Validate 38,68 | 1000 214 9852 0.35 0.22
84 |'Validate 39.03 | 10.14 214 9679 0.35 0.23
85 | Validate 3978 | 11.34 214 9698 0.35 0.36
86 | Validate 4058 | 10.55 214 9362 0.35 0.24
87 | Vadidate 4119 | 1179 217 8966 0.53 0.27
88 | Vadlidate 4168 | 997 223 13862 0.52 0.29
89 | Vadlidate 43.00 | 13.64 188 11973 1.06 0.92
90 | Validate 4573 | 1121 179 12789 0.53 0.44
91 | Validate 4599 | 1341 209 12118 0.52 057
92 | Vadlidate 46.87 | 11.81 214 12016 0.18 0.51
93 | Vadlidate 47.22 | 12.19 178 12451 0.18 0.43
94 | Vadlidate 5423 | 10.95 219 9876 0.18 0.18
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Rotational Walk rate Walk rate

Ditgset Bﬁ: Inclination | WOB Speed Torque (Actud) (Predicted)
(deg) (Klbs) (RPM) (Klbs*ft) | (deg/30m) (deg/30m)

95 Test 19.92 | 14.79 218 9632 0.18 0.54
96 Test 20.64 | 14.03 209 9866 0.35 0.48
97 Test 2176 | 12.41 124 13724 0.89 112
98 Test 2361 | 15.38 222 10766 0.53 0.64
99 Test 2391 | 11.04 174 13786 1.05 0.95
100 Test 27.01| 1171 222 12839 0.18 0.64
101 Test 30.35| 13.39 223 10136 0.35 0.41
102 Test 3833 | 12.76 212 10183 0.18 0.45
103 Test 38.77 | 12.66 164 12163 0.71 0.51
104 Test 4150 | 12.67 247 8964 0.18 0.27
105 Test 41.81 | 1340 247 8807 0.17 0.25
106 Test 43.30 | 11.29 222 14321 0.35 0.19
107 Test 15 w202 | o 223 11585 0.53 0.50
108 Test 46,089 14,34 179 12587 0.36 0.43
109 Test 46.52¢" 18.19 179 12532 0.35 0.43
110 Test 97154 P94 L \179 12418 0.53 0.38
111 Test 54.28 i 14.96 d o220 9998 0.17 0.27
112 Test 5528 | 1R AT 10782 0.55 0.33
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APPENDIX.C

Results from testing model humber 8 with entire dataset (Case 2.2)

Dataset Data o Ratational Model Qutputs (Actual walk Model outputs (Predicted walk
no. type Inclination WOB Speed Torquie range) range)
(deg) (Klbs) (RPM) (Klbs*ft) | Nodel Node 2 Node 3 Node 1 Node 2 Node 3
1 Train 18.24 12.91 220/ | © 9444 0 1 0 0.210 0.642 0.139
2 Train 19.34 13.90 223 9303 0 1 0 0.189 0.648 0.154
3 Train 20.09 11.88 179 9843 1 0 0 0.451 0.359 0.183
4|  Train 2111 1331 287:| 4710075 0u 4 4 O 1 0| 018 | 0612 0.192
5 Train 21.98 14.14 202 | ,v297404 0 1 0 0.282 0.563 0.149
6| Train 22.33 12.90 154 F—asariess, 8 0 1| -0008| 0118 0.868
7| Tran 2238 14.48 2201 9964 © o0 0 1| 03%| o048 0.183
8 Train 22.65 11.34 2201/ 0570 i 0 1 0 0.409 0.414 0.175
9 Train 23.04 12.83 222 | 10822 0 1 0 0.347 0.489 0.150
10 Train 23.07 1345 |~ 146 | 13862 | 0 ' 0 1 0.154 0.163 0.960
11 Train 2313 13.10 222 9437 0 1 0 0.364 0.489 0.139
12 Train 23.60 13.03 163 | 13586 0 0 1| -0.033 0.123 0.883
13 Train 23.79 14.10 223 9310 0 1 0 0.370 0.533 0.093
14 Train 24.29 12,00 160 1| © 13586 0 0 1| -0025 0.246 0.760
15 Train 24.59 11.90 221 8994 1 0 0 0.668 0.161 0.165
16 Train 25.09 12.10 180 | 13333 0 0 1 0.123 0.131 0.720
17 Train 25.18 11121 198711 | 13464 0 0 1| -0014 0.470 0.661
18 Train 25.33 1221 221 8936 0 1 0 0.704 0.140 0.150
19 Train 25.33 12.24 222 | 10610 0 1 0 0414 0.491 0.084
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Rotational

Model Outputs (Actual walk

Model outputs (Predicted walk

D::I]tgset Ea: Inclination WOB Speed Torque range) range)

' P (deg) (Klbs) (RPM) (Klbs*ft) | “Nodel Node 2 Node 3 Node 1 Node 2 Node 3

20 Train 25.92 11.90 208 14345 0 0 1 0.266 0.209 0.518
21 Train 26.21 14.17 223 10719 0 1 0 0.405 0.516 0.080
22 Train 26.57 11.62 214 13966 0 1 0 0.150 0.340 0.508
23 Train 27.00 14.18 228 10448 0 1 0 0.396 0.603 0.004
24 Train 27.07 12.55 221 12976 |4 1 0 0 0.528 0.241 0.222
25 Train 27.09 11.86 228 13793} 0 0 1 0.252 0.463 0.290
26 Train 27.10 1153 222 || 412891} 0 1 0 0.084 0.545 0.371
27 Train 27.97 14.97 202 10369'{+ 0 1 0 0.191 0.687 0.113
28 Train 30.66 12.45 2P |* *10097¢ 0 1 0 0.505 0.626 0.133
29 Train 30.88 11.97 23 | Ja0ss e 1 0 0 0.612 0.542 0.151
30 Train 31.32 13.10 223 :54:-0873(#42M 0 1 0 0.245 0.803 -0.062
31 Train 36.42 14.47 1404 12107 | 0] = b 0 0 1 -0.069 0.084 0.939
32 Train 37.45 13.67 1427~ 1 [ 0 1| 0181| -0045 0.821
33 Train 37.71 10.84 | - 209 11008 Q0 il 0 0.085 0.859 0.041
34 Train 38.02 11.37 217 10332 0 ' 0 0.291 0.709 -0.021
35 Train 38.50 11.41 213 10021 0 1 0 0.359 0.618 0.002
36 Train 38.94 9.71 215 9698 1 0 0 0.444 0.463 0.079
37 Train 39.34 10:84 214 9724 0 1 0 0.350 0.589 0.049
38 Train 39.43 11.38 162 14483 0 1 0 0.116 0.970 0.000
39 Train 39.83 1153 177 12000 0 1 0 0.116 0.658 0.215
40 Train 40.31 1133 213 9620 1 0 0 0.457 0.520 0.005
41 Train 40.71 12.72 185 11884 0 1 0 0.093 0.435 0.443
42 Train 40.84 12.53 216 9401 0 1 0 0.555 0.424 -0.006
43 Train 41.63 13.60 192 11690 0 1 0 0.128 0.357 0.481
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Dataset Data o Rotational Model Outputs (Actual walk Model outputs (Predicted walk
no. type Inclination WOB Speed Torque range) range)
(deg) (Klbs) (RPM) (Klbs*ft) | Nodet Node 2 Node 3 Node 1 Node 2 Node 3
44 Train 42.03 12.84 218 8570 1 0 0 0.692 0.302 -0.020
45 Train 42.16 12.84 218 8412 1 0 0 0.712 0.284 -0.024
46 Train 42.16 10.90 1954 # 13397} 0 1 0 0.149 1.042 0.156
47 Train 42.20 1057 220 7492 0 1 0 0.454 0.439 0.097
48 Train 42.25 13.22 217 8442} & 1 0 0 0.698 0.285 -0.011
49 Train 42.25 11.19 218 7886 |t 1 0 0 0.629 0.326 0.026
50 Train 42.38 14.16 190 J 17811\ 0 0 1 0.200 0.354 0.417
51 Train 43.74 11.43 280 [ 13999 14 0 1 0| -0.066 1.000 0.088
52 Train 44.14 13.30 foqll + ¥igoi =" 0 0 1 0.265 0.257 0.452
53 Train 45.37 9.81 178 | «dsieo | 0 1 0 0.382 0.628 -0.095
54 Train 45.46 10.60 179 pI<42811 [editi1 0 0 0.353 0.587 0.029
55 Train 45.90 12.68 179 | 12794 | . .0 1 0 0.418 0.364 0.243
56 Train 46.43 12.67 R S HT B 0 1| 0653| 0114 0.201
57 Train 46.52 1291 | S22 L 12119 1 -0 0 0.592 0.163 0.220
58 Train 46.96 13.97 179 | 12638 1 0 0 0.486 0.364 0.168
59 Train 47.14 11.77 214 | 12062 0 1 0 0.481 0.253 0.252
60 Train 47.49 12.43 214 | 12183 1 0 0 0.651 0.114 0.215
61 Train 47.84 12:60 2144 A2147 1 0 0 0.688 0.084 0.208
62 Train 47.93 13.65 214 | | 12086 1 0 0 0.546 0.189 0.244
63 Train 48.15 11.72 222 11660 0 0 1 0.563 0.213 0.205
64 Train 48.28 1171 214} 12062 1 0 0 0.544 0.207 0.240
65 Train 48.63 13.45 2144 |y 12027 0 1 0 0.638 0.107 0.236
66 Train 48.81 9.82 213 | 11969 0 1 0 0.501 0.665 0.143
67 Train 49.07 9.54 214 | 11725 1 0 0 0.541 0.604 0.140

1)1
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Dataset Data o Rotational Mode! Outputs (Actual walk Model outputs (Predicted walk
no. type Inclination WOB Speed Torque range) range)
(deg) (Klbs) (RPM) (Klbs*Tt) | Noded Node 2 Node 3 Node 1 Node 2 Node 3
68 Train 53.70 12.32 181 10532 1 0 0 0.965 0.034 -0.008
69 Train 54.11 12.17 181 | 74911 1 0 0 1137 | -0.037 -0.045
70 Train 54.45 12.53 712 10263 1 0 0 0.853| -0.034 0.165
71 Train 54.51 12.82 480 i /123081 1 0 0 1.206 | -0.018 -0.094
72 Train 54.58 11.09 ) 4 9868 ' 4\ 1 0 0 0.704 0.341 -0.045
73 Train 54.67 12.22 220 9891 | L 0 0 0.863 0.065 0.055
74 Train 54.86 12.62 180 14836 1\ 1 0 0 1175 | -0.107 -0.001
75 Train 55.07 12.72 220 9816 | 4 1 0 0 0.856 | -0.023 0.146
76 Train 55.23 12.42 B0 F v =N 0 0 1.148 -0.108 -0.002
77 | Validate 20.33 14.59 208l 20078 |1 0 1 0 0.200 0.457 0.330
78 | Validate 21.43 12.57 130 13522 ) 1 0| -0.054 0.258 0.777
79 | Vadidate 24.19 13.66 222 9579 | al 0 0 0.417 0.460 0.118
80 | Validate 24,54 15.45 221 | 10711 0 3 0| 0309| 0431 0.257
81 | Vadlidate 24.98 12.10 | S22l 9307 -- 0~ 0 0.599 0.255 0.140
82 | Validate 37.76 12.12 217 10589 0 1 0 0.261 0.699 0.009
83 | Validate 38.68 10.00 214 9852 0 Ji 0 0.390 0.529 0.068
84 | Validate 39.03 10.14 214 9679 0 1 0 0.388 0.528 0.071
85 | Validate 39.78 1134 214 9698 0 1 0 0.435 0.543 0.004
86 | Validate 40.58 10.55 214 9362 0 1 0 0.386 0.542 0.061
87 | Validate 41.19 11.79 217 8966 0 1 0 0.631 0.366 -0.021
88 | Validate 41.68 9.97 223 13862 0 1 0} -0037 1.206 0.180
89 | Validate 43.00 13.64 188 | 111973 0 0 1 0.185 0.333 0.457
90 | Validate 45.73 11.21 179 | 12789 0 1 0 0.457 0.549 0.032
91 | Vadlidate 45.99 13.41 209 12118 0 1 0 0.455 0.257 0.264

i)
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Dataset Data o Rotational Model Outputs (Actual walk Model outputs (Predicted walk
no. type Inclination | WOB Speed Torque range) range)
(deg) (Klbs) (RPM) (Klbstft) | Nodel Node 2 Node 3 Node 1 Node 2 Node 3
92 | Validate 46.87 11.81 214112016 | 1 0 0 0.481 0.249 0.252
93 | Validate 47.22 12.19 178" 12451 1 0 0 0.610 0.237 0.184
94 | Validate 54.23 10.95 219 9876 | | { 0 0 0.705 0.337 -0.041
95 Test 19.92 14.79 218 9632 || 1 0 0 0.285 0.520 0.188
9 Test 20.64 14.03 209 9866 : 4 0 1 0 0.175 0.556 0.258
97 Test 21.76 12.41 24 P8od— 0 0 1| -0.057 0.277 0.763
98 Test 23.61 15.38 222 |f Aowssl| A 40 1 0 0.316 0.362 0.316
99 Test 23.91 11.04 174 fizrsel A 0 0 1| -0016 0.507 0.649
100 Test 25.48 11.00 206 136270 |- =0 0 1| -0.017 0.508 0.656
101 Test 27.01 11.71 522 i 12880 (-1 0 0 0.176 0.484 0.338
102 Test 30.35 13.39 223" 4116136 22478 1 0 0.241 0.806 -0.055
103 Test 38.33 12.76 212 | 10183 T1 0 0 0.274 0.616 0.080
104 Test 3877| 1266 164 12163|¢ 0| 1, o| o0078| 0516 0.380
105 Test 41.50 12,67 | =217 8964 1 DI 0 0.636 0.353 -0.016
106 Test 41.81 1340 | " 217 8807 1 0 0 0.627 0.327 0.018
107 Test 43.30 11.29 222 | 14321 0 1 0| -0013 1.129 0.035
108 Test 45.29 12.52 223| 11585 0 1 0 0.591 0.178 0.196
109 Test 46.52 13.19 179 » A2532 0 1 0 0.275 0.433 0.306
110 Test 47.75 12,67 1794 | 12448 0 1 0 0.188 0.591 0.249
111 Test 54.28 11.96 220 9998 1 0 0 0.863 0.100 0.021
112 Test 55.22 11.72 179 |~ 10782 0 1 0 0.895 | -0.053 0.048 S
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APPENDIX D
MATLARB source code
clear;
%--- Section 1 - definition ---%

% No. of neuron

hiddenl
hidden2

10;
20;

% Learning rate and momen
Ir 0.1;
0.1;

% Dataset (train, va
% input directly
% (examples)
input = [26.57 11.62 , - RS 83 11.53 177.46 12000.32 ;
24.98 12.1 220.52 N :

output = [0 0 1 ; O TSN\

testing = [47.84 1 € 48.81 9.82 213.42 11969.09 ;
54_.11 12.17 180.8 f i\ \

% or via excel read
% (example)
input = xlIsread("input

net = newfF(inpu

% Weight initialiZati
net = init(net); -

% Training functlon
net.trainFcn = “traihln;

ﬂuEI’J‘VIEJ‘VﬁWEJ’]ﬂ‘i

% Conflgurat
net.t

e :W%ﬁﬁw URIANYIAY

net.trdinParam. epochs = 100000;
net.trainParam.show = 50;

% Dataset partitioning

net.divideFcn = “divideblock”;
[trainP,valP,testV,trainind,vallnd,testind] = divideblock(input,
0.75, 0.25, 0);

[trainT,valT,testT] = divideind(output,trainind,vallnd,testind);
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%--- Section 3 - Training, Validating and testing process ---%
net = train(net, input,output);
y = sim(net, testing);

% Result outputs

2
sim(net, input);
X" ;

y
X
X

trainP = trainP";
valP = valP";
testV = testV-®;
trainT = trainT";
valT = valT";
testT testT";
input input”;
output = output”;
testing = testing”;

AU INENTNEINS
MR TUNN NGNS Y
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