
การออกแบบระบบบนชิพสําหรับตัวควบคมุหุนยนตหกแกนดวยเอฟพีจเีอตนทุนต่ํา

นาย อากัส บโีจ

วิทยานิพนธน้ีเปนสวนหนึ่งของการศกึษาตามหลักสูตรปรญิญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมไฟฟา ภาควิชาวิศวกรรมไฟฟา
คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลยั

ปการศกึษา 2551
ลิขสิทธิ์ของจฬุาลงกรณมหาวิทยาลัย

A SYSTEM ON CHIP DESIGN OF A 6-AXIS ROBOTIC ARM CONTROLLER

IMPLEMENTED ON A LOW-COST FPGA

Mr. Agus Bejo

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering Program in Electrical Engineering

Department of Electrical Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2008

Copyright of Chulalongkorn University

vi

Acknowledgments

Firstly, I would like to express my profound gratitude to my advisor, Asst. Prof. Dr. Wanchalerm

Pora, for his patient guidance, encouragement and excellent advice as well as giving me extraordi-

nary experiences throughout the work. He has given me abundant attention and offered invaluable

assistance during my study at Chulalongkorn University. I am very sure that this thesis would not

have been successful without his total supervision from the very early stage until the end of the work.

My sincere thanks to Assoc. Prof. Dr. Ekachai Leelarasmee as a former head of Embed-

ded System and IC Design (ESID) Laboratory who give me some encouragement to accomplish my

master study as well as to pursue my further study.

Special thanks in particular to Sakonpong Buranawit, Torkiat Taithongchai, Kampanard Suwan-

nawut and all of my friends in ESID Laboratory for their kindness and very good friendship. They

always help me much on keeping the spirit up, sharing the literature during the work, discussing

and joking in our spare time. The unforgotten thing is that they advise me much on scheduling my

working time so I can accomplish my work on time.

Another thanks is addressed to Stainless Steel Home Equipment Manufacturing Co, Ltd for

their generosity of letting me use their resources for conducting my experiments. I am indebted to

Chaiwat Srivongchareon, Samnoek, Manote, and other factory staffs who have introduced me to this

work, guided me and accompanied me during my work. I can not imagine how to accomplish this

work without their assistance and facilities support. It is a very valuable thing that help me much on

finishing the work properly.

I would also like to convey many thanks to the AUN/Seed-Net scholarship program under

JICA who has given me a great opportunity to pursue my advanced study abroad and provided entire

financial support during my study.

Finally, I wishes to express my love and gratitude to my beloved families; for their understand-

ing and endless love, through the duration of my study. Their moral support has brought me to an

earnest work and a desire to do the best for them.

Contents

Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgments . vi

List of Tables . x

List of Figures . xi

I INTRODUCTION . 1
1.1 Introduction . 1

1.2 Literature Review . 2

1.3 Objectives . 3

1.4 Scope of Thesis . 3

1.5 Methodology . 4

1.6 Contributions . 4

1.7 Publications . 5

II BASIC THEORY AND PROPOSED METHODS . 6
2.1 Robot Kinematics . 6

2.1.1 Homogeneous Transformation Matrix . 6

2.1.2 The Denavit-Hartenberg Representation . 7

2.1.3 Inverse Kinematics . 9

2.2 System Identification Method . 10

2.2.1 Least-Squares Method . 11

2.2.2 Recursive Least Square Method . 13

2.2.3 Order Selection . 13

2.2.4 Validation . 15

2.3 Control Design Method . 15

2.3.1 2-DOF PID Controller . 16

2.3.2 Pole Placement . 18

III IMPLEMENTATION, HARDWARE AND SOFTWARE DESIGN . 20
3.1 Closed-form Solution of Inverse Kinematics . 20

3.1.1 General inverse kinematics formulae when O7 and its orientation are given . . 21

viii

3.1.2 Specific inverse kinematic formulae when O7 is given and link-6 is perpen-

dicular to the object plane (Y0-Z0 plane) . 27

3.1.3 Moving end-point in O0 coordinate direction with keeping its orientation . . . 30

3.1.4 Moving end-point in O7 coordinate Direction with keeping its orientation . . . 32

3.2 Trajectory File Generator . 33

3.3 System Identification . 34

3.3.1 Delay Estimation . 35

3.3.2 Order Selection . 36

3.4 Controller Design . 37

3.5 Hardware Design . 39

3.5.1 Main Processor Board . 39

3.5.2 Analog Board . 45

3.5.3 Digital I/O Board . 49

3.5.4 Power Supply Board . 49

3.6 Software . 50

3.6.1 Main Menu . 50

3.6.2 Standalone Mode State . 51

3.6.3 Run State . 52

3.6.4 Pause State . 52

3.6.5 Stop State . 53

3.6.6 PC Mode State . 54

3.6.7 Switch Pump State . 54

3.6.8 Switch Valve State . 55

3.6.9 Switch Control State . 55

3.6.10 Playback State . 56

3.6.11 Update Controller State . 56

3.6.12 Get Single Reference State . 57

3.6.13 Save to Flash State . 58

3.6.14 Identification State . 58

3.6.15 Get Trajectory File State . 59

3.6.16 Interrupt Routine . 59

IV GUI USER APPLICATION SOFTWARE. 62
4.1 Controller System . 63

4.1.1 Controller . 63

4.1.2 Setup Controller . 64

4.1.3 Data Record . 65

4.2 Identification System . 66

4.2.1 Control . 66

4.2.2 Data Record . 67

ix

4.3 Teaching Mode . 68

4.4 Trajectory Generator . 69

4.5 Simulation . 70

V TEST AND EXPERIMENT RESULTS . 72
5.1 End-point Position Calibration . 72

5.2 Analog Board Tests . 74

5.3 Inverse Kinematics Simulation . 76

5.4 Playback Tests . 77

5.5 Servo Valves Model . 77

5.6 Controller Coefficient . 78

5.7 Controller Performance . 79

5.8 Hardware Synthesis . 82

5.9 Demonstration Video . 82

5.10 Hardware Assembly . 82

VI DISCUSSION AND CONCLUSIONS . 84
6.1 Discussion . 84

6.1.1 Hardware . 84

6.1.2 Controller . 85

6.2 Conclusions . 86

6.3 Suggestion for future work . 87

REFERENCES . 88

APPENDIX . 90

Biography . 101

x

List of Tables

Page

3.1 Denavit-Hartenberg Parameters . 21

3.2 Regression Parameters . 34

5.1 End-point measurement results in cm unit . 73

5.2 Estimate Model of Servo Valves . 78

5.3 Controller Coefficient . 78

5.4 Device utilization summary . 82

List of Figures

Page

1.1 Robot system architecture . 1

2.1 Denavit-Hartenberg frame assignment . 8

2.2 Forward and Inverse Kinematics Problems . 9

2.3 System identification setup . 10

2.4 Controller Structure (a) 1-DOF (b) 2-DOF . 15

2.5 Controller design principle . 16

3.1 Coordinate frames of the robotic arm . 20

3.2 Coordinate frame example for section 3.1.1 . 21

3.3 End-point position and orientation . 22

3.4 Xr-Z0 plane view . 22

3.5 Top view of X0-Y0 plane . 23

3.6 Side view of X1-Z0 plane . 24

3.7 Zoomed area of O3, O4, O5 and O′6 in X1 − Z0 plane . 26

3.8 Coordinate frame example for section 3.1.2 . 28

3.9 Zooming in the area O1, O3 and O4 with top view . 29

3.10 Zooming in the area O1, O2 and O3 with side view . 29

3.11 Zooming in the area O2, O3 and O4 with side view . 30

3.12 Coordinate frame example for section 3.1.3 strategy . 31

3.13 The structure of linear potentiometer at joint-3 . 34

3.14 The dataset measured at axis-6 . 35

3.15 The ARX model structure selection . 36

3.16 MicroBlaze core block diagram . 39

3.17 MicroBlaze core with advanced features . 40

3.18 Block diagram of UART peripheral . 41

3.19 Block diagram of GPIO peripheral . 41

3.20 Block diagram of Timer/Counter peripheral . 42

3.21 Block diagram of SPI peripheral . 43

3.22 Block diagram of SPI reader . 44

3.23 Block diagram of PWM generator . 44

3.24 PWM output signal . 45

3.25 Block diagram of Analog Board . 45

3.26 Block diagram of ADuM14xx . 46

3.27 A typical PWM signal . 46

3.28 The spectrum frequency of PWM . 47

xii

3.29 The circuit of filter and amplifier . 47

3.30 The circuit of analog to digital converter . 48

3.31 The active filter frequency response . 48

3.32 Block diagram of Digital I/O . 49

3.33 Power supply unit . 50

3.34 The state machine diagram of the software . 50

3.35 Flowchart diagram of software main menu . 51

3.36 Flowchart diagram of standalone mode . 52

3.37 Flowchart diagram of run state . 52

3.38 Flowchart diagram of pause state . 53

3.39 Flowchart diagram of stop state . 53

3.40 Flowchart diagram of PC mode state . 54

3.41 Flowchart diagram of switch pump state . 55

3.42 Flowchart diagram of switch valve state . 55

3.43 Flowchart diagram of switch control state . 56

3.44 Flowchart diagram of playback state . 56

3.45 Flowchart diagram of update controller state . 57

3.46 Flowchart diagram of get single reference state . 57

3.47 Flowchart diagram of save to flash . 58

3.48 Flowchart diagram of identification state . 58

3.49 Flowchart diagram of get trajectory file state . 59

3.50 Flowchart diagram of interrupt timer routine . 60

3.51 Flowchart diagram of timer interrupt routine . 60

4.1 The state machine diagram of main menu . 62

4.2 Main menu . 62

4.3 The state machine diagram of controller system menu . 63

4.4 Controller tab . 64

4.5 Setup controller tab . 65

4.6 Data record menu . 65

4.7 The state machine diagram of identification system menu . 66

4.8 Control in Identification System . 67

4.9 The state machine diagram of teaching mode menu . 67

4.10 Teaching mode menu . 68

4.11 The state machine of trajectory generator menu . 69

4.12 Trajectory generator . 70

4.13 The state machine diagram of simulation menu . 71

4.14 Inverse kinematics simulation with IDE Delphi . 71

5.1 End-point measurement method . 72

xiii

5.2 The circuit for matching the ADC and DAC level . 74

5.3 Generating sinusoidal waveform . 74

5.4 Generating sawtooth waveform . 75

5.5 ADC and DAC looping back test with sawtooth waveform 75

5.6 ADC and DAC looping back test with triangle waveform . 76

5.7 Inverse kinematics simulation with Matlab . 76

5.8 Playback test result . 77

5.9 PID controller performances . 79

5.10 The error curves . 80

5.11 The end-point position error curves . 81

5.12 The developed hardware of controller system based on FPGA 82

5.13 The developed hardware of controller system based on microcontroller 83

5.14 The assembled hardware . 83

CHAPTER I

INTRODUCTION

1.1 Introduction

The term robot was first introduced by the Czech Karel Capek in 1920 [1]. It means an artificial

humanoids - biped robots - which help human beings in physically difficult tasks [2]. Recently, the

term robot is used to denote animated autonomous machines. Robot can be classified into two main

classes, namely robot manipulators and mobile robots. This work will concern only on the robot ma-

nipulators which is defined as a computer-controlled industrial manipulator [1]. A robot manipulator

is composed of links connected by joints into an open kinematic chain. Joints can be either rotary

(revolute) or linear (prismatic). The number of joints determines the degrees-of-freedom (DOF). A

manipulator with 6 axes posses 6 DOF, generally three for positioning and three for orientation. The

joints may be actuated electrically, hydraulically or pneumatically.

Through this writing, the term of robotic arms will be used rather than robot manipulators.

Robotic arms, especially the 6-axis ones, have been widespreadly used in several industrial processes

[3] for many years. The robotic arm that will be emphasized in this work is a painting machine.

Figure 1.1: Robot system architecture

2

Nowadays there are many types of robotic arms that is functioned as painting machines [4–6].

Some of them have been employed for a long time. Perhaps, their service support cannot be extended.

Usually, just the electronic parts of the machines which have been in service ten years or more are

obsolete. On the other hands, most factory support the mechanic part of the machines themselves. It is

a dilemma to choose whether to continue using the old machine with high risk and high maintenance

cost due to lack of standard spare parts, or to invest in new machines which are costly. Moreover,

most old machines have restrictions [7–9] such as limited storage space, incompatibility with modern

technology media or communication channel.

This research was conducted to offer a solution towards some disadvantages above by designing

a System-on-Chip (SoC) embedded controller based on a low-cost FPGA. The system developed in

this research is shown in Figure 1.1. It is composed of a Microblaze module (32-bit RISC soft-

core processor), an internal memory module, a UART module, a 32-bit timer/counter module, a

digital I/O module, a SPI module, 6 custom SPI readers for interfacing ADC and 6 custom PWM

generators as DACs. By using FPGA, it will improve the computation power compared with that of

8051 microcontrollers. FPGA’s processing power is closed to that of DSP, however its price is much

cheaper than that of DSP. The other advantages of FPGA is that it has hardware-level reconfigurable,

so any module with I/O terminal can be designed, modified or adjusted very flexibly. Overall, with

integrating all mentioned module on chip this yields a high-performance system.

The controller controls angular movement of each axis, both direction and velocity, by sending

digital data to the DAC modules in the form of PWM signals which connected to the servo valve

via low-pass filters and amplifiers. The signals that are produced by the DAC modules represent

the outputs of the controller. Their polarity and magnitude respectively determines the direction and

velocity of movement. The position of each axis is measured from its potentiometer that is attached at

each joint. This represents the input of the controller. A PC, supported by GUI application software,

can be connected to the controller system via a USB/UART to make it more interactive and user-

friendly.

1.2 Literature Review

For a few decades, some researches regarding to the development of robotic arms controller have

been done, and are still being done. Inverse kinematics settlement and controller design are common

issues to face.

Closed-form method, that is solving the inverse kinematics analytically, gives preferable so-

lution [3]. Nonetheless, the closed-form method requires complex calculation and rely on the robot

structure. An improvement of closed-form method was proposed to reduce the computational cost

by avoiding a large amount of inverse matrix multiplication [10]. Another approach of closed-

form method was Product-of-Exponentials (POE) [11]. The other methods were numerical meth-

ods (nonclosed-form) such as geometrical solution [12] and iterative solution [13]. Nonclosed-form

methods involve numerical iteration until a desired end-point position and orientation is reached to

within a maximum allowable error. Nonclosed-form methods have some weaknesses as mentioned in

3

chapter 2.1.3.

Apart from the kinematics problem, robotic arm controllers also have been developed in vari-

ous ways, both of algorithm and its hardware. PI controller [14], PID controller [15–17] or adaptive

controller [18,19] have been implemented by using PC [18], Microcontroller [17,20] and FPGA [15].

It is a bargain to choose which algorithm is suitable to solve inverse kinematics and controller regard-

ing to the hardware requirement and the desired system performance. A new approach to improve the

end-effector of robotic arm motion has been proposed by incorporating a controller algorithm such as

PID [16] or MRAC [19] and an optimization algorithm such as Least Mean Square.

This work did entire mentioned issues both solving kinematics and designing controller from

software up to hardware to replicate or re-design a 6-axis robotic arm controller system as a study

case. In this case, a set of formulae to solve specific inverse kinematics problem was developed and

2-DOF PID controller was designed. A preliminary research to realize that system has been done by

author using microcontroller [17].

1.3 Objectives

The main objective of this research is to develop a system-on-chip of a 6-axis robotic arm controller.

To achieve said objective, one must fulfill the following aims:

1. Solving the inverse kinematics problem

2. Modeling the servo valves system of the robotic arm

3. Designing 2-DOF PID controller

4. Designing required hardwares

5. Implementing the controller on FPGA

6. Developing a GUI user application software

1.4 Scope of Thesis

The system designed by this research has specification as follows:

• It has an embedded PID controller

• It can communicate with PC via Serial UART/USB port

• All required modules/peripherals are integrated on chip

• It has GUI interface to control the robot through PC

• It has two mode, those are teaching mode and play back mode

• It can load or store the trajectory file from or to PC

4

1.5 Methodology

In this work, the inverse kinematics problem is solved analytically (closed-form method). After the

desired trajectory pattern that contains the sequence of the robot movement in Cartesian coordinate

had specified by an operator, corresponding file then is generated in Microsoft Excel format called

trajectory file. This file is generated by solving the inverse kinematics problem with some (angular to

digital value) conversions. This file is then loaded into memory of the controller system. At playback

mode, this file will became the set-points of the controller to drive each position of joint so that the

end-point of the robot moves to the position and orientation such the trajectory pattern had been

specified.

The robot is powered by a hydraulic pump which is controlled through digital I/O connections.

Its motion is driven by signals coming to the servo valves. To design proper controller, a good

knowledge regarding to this servo valves must be known. The robotic servo valves are identified by

using Recursive Least Square method. Some signals are given as input to the servo valves for driving

the robot while the output signals are measured from the potentiometer attached in every joint. Both

input and output signals are recorded and then processed by using mentioned method to obtain the

model. This model represents a transfer function that states the relation between position toward

input signal. Three types of input signals i.e. step, triangle and random signals are employed. The

effect of the position and the load toward the model was studied. If the model does not change too

much because of its load, a PID controller can be chosen as the controller. However, when the model

change so much, it will be better to design an adaptive controller. By using adaptive controller, it can

compensate the change of the plant model so that the controller performance kept well.

Having the servo valves model were obtained, proper 2-DOF PID controller then was designed

based on the knowledge of that model. This controller with its apparatus peripheral will be im-

plemented on FPGA. Before being implemented on FPGA, the controller will be applied by using

microcontroller. This way is useful for observing the performance of the controller. If the controller

performance is not good enough, it can be modified or can be improved easily without time consuming

step. Eventually, after the controller performance has achieved the desired one then the controller can

be implemented on FPGA. It can be said that an imitation of microcontroller system with fix features

will be built on FPGA to replace the microcontroller as the main processing for the controller.

For the reason of interactivity, a GUI user application software is developed on a PC. This one

can be used to re-adjust or to modify the controller system behavior such as updating the controller

parameter, importing or exporting the trajectory file, updating the movement speed and so on by an

operator easily.

1.6 Contributions

Through this research it is wished to yield a replicate of the old robotic arm controller which has some

superiority such as:

1. Its hardware is easy to operate.

5

2. Its software is easy to use.

3. It can be modified to suit software needs quickly.

4. It provides better features and better capabilities.

1.7 Publications

1. Agus Bejo and Wanchalerm Pora, Combination of Model Reference Adaptive Control and

Least Mean Square Algorithms for Robotic Arm Controllers, Asia International Symposium

on Mechatronics 2008 (AISM 2008), Aug. 27-31, 2008, Hokkaido University, Japan.

2. Agus Bejo and Wanchalerm Pora, An Improvement of The End-point Error for Multiple-axis

Robotic Arms Using The LMS Algorithm, 31st Electrical Engineering Conference (EECON-

31), Oct 29-30, 2008, Nakhon Nayok, Thailand.

3. Agus Bejo, Wanchalerm Pora and Hiroaki Kunieda, Development of a 6-Axis Robotic Arm Con-

troller Implemented on a Low-Cost Microcontroller, Electrical Engineering/Electronics, Com-

puter, Telecommunications and Information Technology Conference 2009 (ECTI-Con 2009),

May 6-9, 2009, Pattaya, Thailand.

CHAPTER II

BASIC THEORY AND PROPOSED METHODS

This chapter provides basic theory and some proposed methods which are used through this work.

2.1 Robot Kinematics

Robot arm kinematics deals with analytical study of the geometry of its motion with respect to a

fixed reference coordinate system, particularly the relations between the joint-variable space and the

position and orientation of the end-effector [1]. The robot arm used in this work has 6-DOF, which

are all revolute-type. Hence, we use robotic arm term through this writing to refer a 6-axis robot arm.

2.1.1 Homogeneous Transformation Matrix

The homogeneous transformation matrix T is a 4× 4 matrix which maps a position vector expressed

in homogeneous coordinate system to another coordinate system. A large part of robot kinematics

is concerned with the establishment of various coordinate systems to represent the positions and

orientation of rigid object, and with transformations among these coordinate systems. Homogeneous

transformations combine the operations of rotation and translation into a single matrix multiplication.

Suppose two coordinate systems are assigned to each link of a robot arm at link i-1 and link

i respectively. The link i-1 coordinate system is the reference coordinate system and the link i co-

ordinate system is the moving coordinate system when joint i is activated. Using the homogeneous

transformation matrix T, a point pi can be expressed in the link i coordinate system in terms of the

link i-1 coordinate system as

pi−1 =i−1 Tipi (2.1)

where
pi = position vector (xi, yi, zi, 1)T representing a point in the link i coordinate system
pi−1 = position vector (xi−1, yi−1, zi−1, 1)T representing the same point pi in term of

the link i-1 coordinate system
i−1Ti = homogeneous transformation matrix which specifies the location of the ith

coordinate frame with respect to the base coordinate system i-1th

A homogeneous transformation matrix can be considered to consist of four submatrices:

T =

[
R ~T
~P s

]
=
[

Rotation Translation

Perspective ScaleFactor

]
(2.2)

7

R is a 3 × 3 matrix that represents the relative rotation (orientation). Three basic rotation

matrices R are given in (2.3) to (2.5). Rx,α, Ry,α and Rz,α respectively represent the rotation through

an angel α about the x-axis, y-axis and z-axis.

Rx,α =

 1 0 0
0 cosα − sinα
0 sinα cosα

 (2.3)

Ry,α =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 (2.4)

Rz,α =

 cosα − sinα 0
sinα cosα 0

0 0 1

 (2.5)

~T is a 3 × 1 column vector that represents the relative translation (position). Three basic

translation vectors ~T are given in (2.6). ~Tx,a, ~Ty,b and ~Tz,c respectively represent the translation in a

distance through the x-axis, b distance through the y-axis and c distance through the z-axis.

~Tx,a =

 a
0
0

 , ~Ty,b =

 0
b
0

 , ~Tz,c =

 0
0
c

 (2.6)

A 1×3 row vector ~P and a scalar s are the perspective and scale factor parameter that generally

given by ~P=[0 0 0] and s=1, when the joint is a rotary type.

2.1.2 The Denavit-Hartenberg Representation

In 1955, Denavit and Hartenberg [21] proposed a systematic and generalized approach of utilizing

matrix algebra to describe and represent the spatial geometry of the links of a robot arm with respect

to a fixed reference frame . This method uses a homogeneous transformation matrix T to describe

the spatial relationship between two adjacent rigid mechanical links. The Denavit-Hartenberg (D-

H) representation results a homogeneous transformation matrix representing each link’s coordinate

system at the joint with respect to the previous link’s coordinate system.

SupposeAi is the homogeneous matrix that transforms the coordinate of a point from frame i to

frame i-1 i.eAi =i−1 Ti. In the D-H convention, each homogeneous transformationAi is represented

as a product of four basic transformations

Ai = Rotz,θi
Transz,di

Transx,aiRotx,αi (2.7)

Ai =

cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi cos θi sinαi ai sin θi

0 sinαi cosαi di
0 0 0 1

 (2.8)

8

where the four quantities θi, di, ai and αi are parameters of link i and joint i as depicted in Figure 2.1.

These parameters are obtained by step 7 in the D-H general procedure below. Since all joints of the

robot used in this thesis are revolute joint so the three of above four quantities are constant while the

fourth parameter θi is the joint variable.

Figure 2.1: Denavit-Hartenberg frame assignment

Through sequential transformations, the end-effector can be transformed and expressed in the

base coordinates system. The homogeneous matrix 0Ti which specifies the location of the ith coor-

dinate frame with respect to the base coordinate system is the chain product of successive coordinate

transformation matrices of Ai and is expressed as

0Ti = A1A2A3...Ai (2.9)

This is the general procedure to derive the link parameters based on the D-H convention:

step 1: Locate and label the joint axes z0, ..., zn−1.

step 2: Establish the base frame. Set the origin anywhere on the z0-axis.

The x0 and y0 axes are chosen conveniently to form a right-hand frame.

For i = 1, ..., n− 1 perform steps 3 to 5

step 3: Locate the origin oi where the common normal to zi and zi−1 intersects zi.

If zi intersects zi−1 locate oi at this intersection.

If zi and zi−1 are parallel, locate oi at joint i.

step 4: Establish xi along the common normal between zi−1 and zi through 0i or

in the direction normal to the zi−1 - zi plane if zi−1 and zi intersect.

step 5: Establish yi to complete a right-hand frame.

step 6: Establish the end-effector onxnynzn
step 7: Create a table of link parameters θi, αi, di and ai

θi = the angle between xi−1 and xi measured about zi−1.

αi = the angle between zi−1 and zi measured about xi.

di = the distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes.

ai = the distance along xi from oi to the intersection of the xi and zi−1 axes.

step 8: Form the homogeneous transformation matrix Ai by substituting the above parameters

into (2.8)

9

step 9: Form 0Tn = A1A2A3...An. This gives the position and orientation of the end-effector

expressed in base coordinates.

2.1.3 Inverse Kinematics

There are two fundamental problems in robot arm kinematics namely forward kinematics and inverse

kinematics. Fig 2.2 shows a simple block diagram of both forward and inverse kinematics problems.

Forward kinematics problem is defined as how to compute the end-point position and orientation

using known link parameters when joint variables are given . Conversely, inverse kinematics problem

is defined as how to compute the joint variables using known link parameters when the end-point

position and orientation is given.

Figure 2.2: Forward and Inverse Kinematics Problems

The general procedure described in section 2.1.2 yields the end-point position and orientation

when the link parameters are known and a set of joint variables is given. This procedure is called

forward kinematics solution. Generally, forward kinematics problem can be solved easier than inverse

kinematics one. Nonetheless, inverse kinematics is more common faced in real application such as

trajectory tracing.

S. Kucuk and Z. Bingul [3] mentioned that there are three types of method for solving the

inverse kinematics problem as follows:

1. Complete analytical solution (closed-form method). The solutions of all joint variables solved

analytically are derived from the basic equations. This method gives very accurate result but it

requires complex calculation.

2. Numerical solution (nonclosed-form method). The solutions of joint variables solved numeri-

cally are obtained by iterative computational procedures. This method gives worse result than

that of the analytical method but it can be applied generally. With bad initial values, correct

solutions can not be guaranteed. It may yield only one solution or no answer at all.

3. Semi-analytical solutions. This solution combines analytical and numerical method. Some of

the joint variables are determined analytically and some of them are computed numerically.

10

This thesis proposed a set of formulae to solve the inverse kinematics problem by using closed-

form method as shown in section 3.1.

2.2 System Identification Method

System identification is the method that estimate the mathematical model of a system from experi-

mental data [22]. Estimate model obtained by identification is then used for designing the controller

mathematically. The following are general procedures of system identification steps:

1. Select and define a model structure (containing unknown parameters).

2. Exciting the system by known signals (step, sinusoidal, pseudo-random signals).

3. Collect and record both inputs and outputs data over a certain interval time.

4. Estimate the parameters using some statistically based methods.

5. Validate the obtained model, repeat 1-4 if required.

Figure 2.3: System identification setup

The specific methods used at each step depend on the type of model desired (parametric or non-

parametric, continuous-time or discrete-time) and on the experimental conditions. The validation is

the verification step to decide whether the identified model is acceptable or not.

The equipment setup of system identification for discrete time models is illustrated in Figure

2.3. A sampled input sequence u(k) (where k is the discrete time) is applied to the physical system

by means of a digital-to-analog converter (DAC). The measured sampled output sequence y(k) is

obtained by means of an analog-to-digital converter (ADC). An estimate model with adjustable pa-

rameters θ̂ is calculated on the computer. The error e, that is the difference between output y(k) and

the predicted output ŷ(k), is used to update the estimate model parameters in order to minimize this

error. The simple formula of adaptation algorithm is expressed:

11

θ̂Tk+1 = θ̂Tk + µφT ek (2.10)

where θ̂T , µ, φT and e are the estimated parameter, adaptation gain, measured data and error

respectively. A non-recursive identification algorithms proceed a bulk of data input and output over

a certain interval time to obtain the estimated parameter. The bigger data being processed the better

estimated parameter is yielded. However, the increase of used data will be followed by the increase

of computation cost. Recursive method is an alternative technique to counter that problem. Recursive

method offers some advantages such as:

• Reducing the data processing since this algorithm only proceed a shape of data instead of the

whole data.

• Estimating the real current model.

• Reducing the memory and computation requirement.

• Making possible to be applied as a real-time identification (on-line identification).

2.2.1 Least-Squares Method

The Least-Squares method was first introduced by Karl Gauss [23] for determining the orbits of plan-

ets. This method then becomes a major tool and the most popular estimation technique in parameter

estimation because it is easy to comprehend and easy to be implemented. This algorithm is objected

to minimize the sum of the squares of error between the actual data and that predicted by the model.

Let the process that will be estimated be described by an nth order difference equation as in

(2.11) or be expressed as transfer functionG(q) as in (2.12). Assume that N samples of measurements

of uk, ..., uk−N and yk, ..., yk−N are obtained from experiment. Where yk and uk are the output and

input sample at time k respectively and a1, a2, ..., an, b1, b2, ..., bn is a set of constant parameters.

yk + a1yk−1 + ...+ anyk−n = b1uk−1 + b2uk−2 + ...+ bnuk−n (2.11)

G(q) =
B(q)
A(q)

(2.12)

where

A(q) = 1 + a1q
−1 + ...+ anq

−n

B(q) = b1q
−1 + ...+ bnq

−n

To estimate the parameters ai and bi we introduce the residual error as

yk + a1yk−1 + ...+ anyk−n = b1uk−1 + b2uk−2 + ...+ bnuk−n + εk (2.13)

or

12

A(q)yk = B(q)uk + εk (2.14)

This equation is called AutoRegresive with eXoganious (ARX) and will be used through this

writing. Filling the data samples into (2.13) results a set of linear equation that can be expressed as a

simple matrix form in (2.15)

Y = Φθ + ε (2.15)

where

Y =

yk
yk−1

...
yk−N

Φ =

−yk−1 ... −yk−n xk xk−1 ... xk−n
−yk−2 ... −yk−n−1 xk−1 xk−2 ... xk−n−1

...
−yk−N ... −yk−n−N xk−N xk−1 ... xk−n−N

θ =

a1

a2

...
bn

ε =

ε(k)
ε(k − 1)
...
ε(k −N)

The estimate of θ, denoted by θ̂, is obtained by solving (2.15). A necessary condition to solve

this set of equations is N ≥ n. When N = n, it has a unique solution given in (2.16).

θ̂ = Φ−1Y (2.16)

where Φ−1 is the inverse of the square matrix Φ. However, when N > n, generally it is not

possible to find a θ̂ vector which can fit the data samples exactly. It may be caused by too low order

of the model or a wrong model structure. One way to determine the parameters is to estimate them

based on least-square error.

Let the error ε(k) and the sum of the squares error VLS are stated by (2.17) and (2.18) respec-

tively.

ε(k) = y(k)− ŷ(k) = y(t)− Φθ̂ (2.17)

VLS =
1
N

k∑
j=k−N

ε(j)2 =
1
N
εT ε (2.18)

13

To carry out the minimization, we express

VLS(θ) =
1
N

(Y − Φθ)T (Y − Φθ) =
1
N

[
Y TY − θTΦTY − Y TΦθ − θTΦTΦθ

]
(2.19)

Taking the first derivative of VLS(θ) with respect to θ and equating the result to zero, we have

∂VLS(θ)
∂θ

|θ=θ̂ =
1
N

[
−2ΦTY + 2ΦTΦθ̂

]
= 0 (2.20)

Hence the solution is given by the equation

θ̂ =
[
ΦTΦ

]−1
ΦTY (2.21)

2.2.2 Recursive Least Square Method

In some cases, such as adaptive control, it may be necessary to estimate a model on-line while the

process is in operation. The model will be updated when the new observations are available. Hence

for computation efficiency, it is desirable to arrange the algorithms in such a way that the results

obtained previously can be used for on-line updating. This way of algorithm is called recursive. The

recursive version of Least-Squares method is called Recursive Least-Square methods. Because of

some advantages mentioned above, this thesis will concern on this method only.

In this methods, a square matrix Pk is introduced as in (2.22). Suppose that we have found an

estimate of parameters at time kth, that is θ̂k. Then we could update those estimated parameters using

a new data obtained at time k+1th (yk+1) by formulae (2.23), (2.24) and (2.25).

Pk =
[
ΦTΦ

]
(2.22)

εk+1 = yk+1 − ΦT θ̂k (2.23)

Pk+1 = Pk −
[
PkΦΦTPk
F + ΦTPkΦ

]
(2.24)

θ̂k+1 = θ̂k + Pk+1Φεk+1 (2.25)

F is forgetting factor which should be less than or equal to 1. When the process is slowly

time varying, the measurements obtained a long time ago contain less information than the recent

one. In order to let the estimator follow the change of the process, it is desirable to truncate the old

measurements in the estimation algorithm.

2.2.3 Order Selection

The purpose of order selection is to find the model order that is most accurate for its use in control.

There are some order selection methods that do not need complete parameter estimaton of model like

checking the rank of covariance matrices and plotting the singular value of the Hankel matrix [22].

14

However, these methods are not accurate for noisy data. In this thesis, models will be estimated with

increasing orders and then the best order will be chosen using an error criterion. This method is

so-called cross-validation.

A number of criteria exist for order selection. In identification literature [23], the prediction

error criterion is often used. Denote prediction error criterion using a validation data set as in (2.26)

and using the estimate data set as in (2.27).

V V
PE =

1
N

N∑
k=1

Ĥ−1(q)
[
yVk − Ĝ(q)uVk

]2
(2.26)

V E
PE =

1
N

N∑
k=1

Ĥ−1(q)
[
yk − Ĝ(q)uk

]2
(2.27)

where uVk , yVk and uk, yk are the input-output from the validation data set and the input-output

from the estimate data set respectively. Assume that the white noise ek is Gaussian and the model

order is correct, then Akaike (1974,1981) has derived an asymptotically unbiased estimate of V V
PE

using V E
PE :

FPE = V V
PE =

N + d

N − d
V E
PE (2.28)

where N is the number of estimation data samples and d is the number of model paramters.

This is the famous Akaike’s Final Prediction Error criterion (FPE). Here the factor N+d
N−d is used to

correct for the over-fit effect.

Remember that H(q)=1 for ARX model, therefore the term lost function VOE can be used

instead of FPE.

VOE =
1
N

N∑
k=1

ε̂OEk (2.29)

Note that output error ε̂OE(k) is not the same as residual error ε̂(k). The relation between them

is

yk =
B̂(q)
Â(q)

uk +
ε̂k

Â(q)
(2.30)

yk =
B̂(q)
Â(q)

uk + ε̂OEk (2.31)

ε̂k = Â(q)ε̂OEk (2.32)

In general, the lost function VOE decreases as the order n increases. The reduction of VOE will

be insignificant when the order of the model is high enough for simulation purposes. Based on this

principle, a procedure for order selection is so simple. The appropriate model order can be chosen as

the one for which VOE stops decreasing significantly.

15

2.2.4 Validation

The goal of model validation is to check if the identifed model is good enough for use in control. This

is done by carrying out a whiteness test on the sequence of residual errors. An acceptable identified

model should verify the condition

|RN(i)| ≤ 2.17√
N

; i = 1, 2, ...,max(nA, nB + d) (2.33)

RN(i) =
1
N

∑N
k=1 εkεk−i

1
N

∑N
k=1 ε

2
k

(2.34)

where N is the number of samples.

2.3 Control Design Method

Controllers can be classified into feedback and feed forward controllers. The feedback controllers

itself are divided into one degree of freedom and two degree of fredom controllers (abbreviated as 1-

DOF and 2-DOF respectively) [24]. The structure of both controllers (1-DOF and 2-DOF) in discrete

time are shown in Figure 2.4.

Figure 2.4: Controller Structure (a) 1-DOF (b) 2-DOF

1-DOF controller is simpler to design than 2-DOF controller because it has fewer parameters.

However, 2-DOF controller has more capabilities to shape the responses both reference and distur-

bance signals simultaneously and independently.

16

Figure 2.5 shows the general principle of controller design. In order to design and tune a

controller correctly, one needs:

1. Determination of the plant model.

2. Specification of the performance.

3. Computation of the controller parameters (the coefficients of the polynomials R(z), S(z) and

T (z).

4. Verification of the achieved robustness margins and sensitivity functions.

Figure 2.5: Controller design principle

Step no.1, that is system identification, has been detailed previously in chapter 2.2 . This

section will detail the other points.

2.3.1 2-DOF PID Controller

Proportional, integral and derivative (PID) controllers are widely used in industrial practice. Because

of its merit and its simplicity to design, this thesis will be focused on 2-DOF Discrete PID Controller.

Consider the 2-DOF discrete control structure presented in Figure 2.4 (b). The control law is

implemented by:

u(k) =
T (z)
R(z)

r(k)− S(z)
R(z)

y(k) (2.35)

It is easy to arrive at the following relation between r(k) and y(k):

y(k) =
T (z)
R(z)

B(z)/A(z)
(1 +B(z)S(z)/A(z)R(z))

r(k) =
B(z)T (z)

A(z)R(z) +B(z)S(z)
r(k) (2.36)

17

The error, that is the difference between the reference signal r(k) and the actual value y(k), is given

by:

e(k) = r(k)− y(k) =
(

1− B(z)T (z)
A(z)R(z) +B(z)S(z)

)
r(k) (2.37)

Simplifying, we arrive at

e(k) =
A(z)R(z) +B(z)S(z)−B(z)T (z)

A(z)R(z) +B(z)S(z)
r(k) (2.38)

The discrete time form of the error expression in (2.38) is given by:

E(z) =
A(z)R(z) +B(z)S(z)−B(z)T (z)

A(z)R(z) +B(z)S(z)
r(z) (2.39)

whereE(z) and r(z) are, respectively, the Z-transforms of e(k) and r(k). Using the final value

theorem from discrete time systems, we obtain:

lim
k→∞

ek = lim
z→1

z − 1
z

E(z) (2.40)

Substituting the expression for E(z) in (2.39) with step function input, the above equation

becomes

lim
k→∞

ek = lim
z→1

z − 1
z

A(z)R(z) +B(z)S(z)−B(z)T (z)
A(z)R(z) +B(z)S(z)

z

z − 1
(2.41)

where we have made use of the fact that R(z) is the transfer function of unit step. When the

controller has an integral action, R(1) = 0. Using this, the above equation reduces to:

e(∞) =
S(z)− T (z)

S(z)
|z=1 =

S(1)− T (1)
S(1)

(2.42)

The above condition can be satisfied if one of the following condition is met:

S = T (2.43)

S(1) = T or S = T (1) (2.44)

S(1) = T (1) (2.45)

If we use S = T to solve (2.42) it mean that we use 1-DOF controller. We also need to assume

that S(1) is nonzero otherwise it is a 1-DOF controller too.

18

2.3.2 Pole Placement

The pole placement method allows the design of a 2-DOF discrete controller both for stable and unsta-

ble systems without restriction on the degrees of the polynomials A(z) and B(z), without restriction

on the time delay and without restriction on the plant zeros (stable or unstable) because this method

does not simplify the system zeros. The only restriction concerns the possible common factors of

A(z) and B(z), which must be simplified before the computations are carried out.

Let the controlled plant is characterized by the transfer function:

H(z) =
z−dB(z)
A(z)

(2.46)

where

d : the integer number of sampling periods contained in the time delay

A(z) : 1 + a1z
−1 + ...+ anAz

−nA

B(z) : b1z−1 + ...+ bnBz
−nB

The closed loop transfer function is given by:

HCL(z) =
z−dT (z)B(z)

A(z)R(z) + z−dB(z)S(z)
=
z−dT (z)B(z)

P (z)
(2.47)

where

P (z) = 1 + p1z
−1 + ...+ pnP z

−nP

R(z) = 1 + r1z
−1 + ...+ rnP z

−nR

S(z) = s0 + s1z
−1 + ...+ snP z

−nS

Polynomial P (z) can be specified directly by defining the desired closed loop poles such as

P (z) = (1 + p′1z
−1)(1 +p′2z

−1)...(1 +p′nP z
−1) . Generally, P (z) is chosen in the form of a second-

order polynomial by discretization of a second-order continuous time system, specifying ω0, ζ and

assuring that the condition in (2.48) is satisfied.

0.25 ≤ ω0Ts ≤ 1.5; 0.7 ≤ ζ ≤ 1 (2.48)

Once P (z) is specified, the following equation (known as Bezout Identity equation) must be

solved to compute R(z) and S(z) in (2.47):

A(z)R(z) + z−dB(z)S(z) = P (z) (2.49)

Defining

nA = degA(z); nB = degB(z) (2.50)

This polynomial equation has a unique solution with minimal degree (when A(z) and B(z))

do not have common factors) for

19

nP = degP (z) ≤ nA + nB + d− 1 (2.51)

nR = degR(z) = nB + d− 1 (2.52)

nS = degS(z) = nA − 1 (2.53)

In order to solve equation (2.49) effectively, this is often represented in the matrix form

Mx = p (2.54)

where

x = [1, r1, ..., rnR , s0, ..., snS]T (2.55)

p = [1, p1, ..., pi, pnP , 0, ..., 0]T (2.56)

and the matrix M has the following form

M =

1 0 ... 0 0 ... 0
a1 1 b′1
a2 a1 ... 0 b′2 ... b′1
... 1 b′2
... a1
anA a2 b′nB

... ...
0 0
0 anA 0 ... b′nB

︸ ︷︷ ︸

nA+nB+d

(2.57)

where:

b′i = 0 for i = 0, 1, ..., d; b′i = bi−d for i ≥ d+ 1

The vector x, contains the coefficients of the polynomial S(z) and R(z), is obtained using

matrix inversion M by the formula

x = M−1p (2.58)

where M−1 is the matrix inverse of M . This inverse exists if the determinant of the matrix M

is not zero. One can prove that this is verified if and only if A(z) and B(z) are coprime polynomials

(no simplifications between zeros and poles). Finally, parameters of polynomial R(z) are obtained

by equation (2.43), (2.44) or (2.45).

CHAPTER III

IMPLEMENTATION, HARDWARE AND SOFTWARE DESIGN

This chapter explains the implementation and the hardware design of controller system. At first, a

set of formulae for solving the inverse kinematics problem and how to generate the trajectory files

are described. The 2-DOF PID controllers then are conveyed based on servo valves models obtained

from system identification. Finally, the required hardwares are constructed to realize the controller

system.

Figure 3.1: Coordinate frames of the robotic arm

3.1 Closed-form Solution of Inverse Kinematics

In order to develop formulae for solving the inverse kinematics problem described in section 2.1.3, a

set of joint parameter represents the mechanical structure of the robot must be known. The mechanical

structure of the robot used in this case study is shown in Figure 3.1. The coordinate Oi, i = 0, .., 7

was specified. Then the parameters li,αi, di, and θi can be extracted following the steps in section

2.1.2 as shown in Table 3.1.

21

Table 3.1: Denavit-Hartenberg Parameters
Axis li αi di θi

1 0 π
2 63.2 θ1

2 100 0 0 θ2

3 164 0 0 θ3

4 10.16 π
2 0 θ4

5 0 π
2 7.6 θ5

6 0 π
2 8.5 θ6

7 11 π
2 0 0.7π

3.1.1 General inverse kinematics formulae when O7 and its orientation are given

In this section, we develop a general inverse kinematics formulae when a desired end-point position

(O7) and its orientation are given. Figure 3.2 and Figure 3.3 show the coordinate frame example and

the zoomed area of end-point respectively.

Figure 3.2: Coordinate frame example for section 3.1.1

The end-point position is specified in original coordinate direction O0 (O7 = [x7 y7 z7]T)

whereas the orientation is specified by α and β as shown in Figure 3.3.

22

Figure 3.3: End-point position and orientation

Assume thatO7, α and β are given, where Oi=[xi yi zi]T is the position coordinate of joint-i in

X0-axis, Y0-axis and Z0-axis respectively. The corresponding homogeneous matrix transformation of

desired position and orientation (0T7) is stated by a rotation of α degrees about Z0 axis followed by

a rotation α degrees about Y7 axis, a rotation 180 degrees about X7 axis and translated by translation

O7=[x7 y7 z7]T .

0T7 = Rotz,α Roty,β Rotx,180 Transx,x7 Transy,y7 Transz,z7 (3.1)

0T7 =

cosα cosβ sinα − cosα sinβ x7

sinα cosβ − cosα − sinα sinβ y7

− sinβ 0 − cosβ z7
0 0 0 1

 (3.2)

From Figure 3.3 we can easily obtain O6:

O6 = O7 +

 −l7 cosβ cosα
−l7 cosβ sinα

l7 sinβ

 (3.3)

θ7a is a constant which is determined by the mechanical structure of the robotic arm. The

relation between θ7a and θ7 is given in (3.4).

θ7a = π/2 + θ7 (3.4)

Figure 3.4: Xr-Z0 plane view

23

There are many possible points of O5 so that the angle between link-6 and link-7 satisfies θ7a.

In order to get a unique position of O5, we constrains this so that it is in the Xr-Z0 plane and O5

always in the left side of O6. Figure 3.4 shows the Xr-Z0 plane view. An auxiliary variable γ is

denoted by:

γ = π − β − θ7a (3.5)

Then the position of O5 in the original base coordinate is:

O5 = O6 +

 −d6 cos γ cosα
−d6 cos γ sinα
−d6 sin γ

 (3.6)

Because link-5 and link-6 always be perpendicular, it satisfies the following rule:

(x4 − x5)(x6 − x5) + (y4 − y5)(y6 − y5) + (z4 − z5)(z6 − z5) = 0 (3.7)

Using known position of O6 and O5 in (3.3) and (3.6), we introduce constants c1 = x6 − x5,

c2 = y6 − y5 and c3 = z6 − z5. Then equation (3.7) becomes:

(x4 − x5)c1 + (y4 − y5)c2 + (z4 − z5)c3 = 0 (3.8)

c1x4 + c2y4 + c3z4 = c4 (3.9)

where c4 = c1x5 + c2y5 + c3z5.

Figure 3.5: Top view of X0-Y0 plane

Figure 3.5 shows the top view of X0-Y0 plane. From this figure we can compute θ1 using

formula in (3.10). We also have correlation between x4, y4 and x41 as shown in (3.11) and (3.12),

where xi1 (i = 2, 3, 4, 5) is the projection of corresponding position Oi in x1 direction.

θ1 = tan−1

(
y5

x5

)
(3.10)

24

x4 = x41cosθ1 (3.11)

y4 = x41sinθ1 (3.12)

Substituting (3.11) and (3.12) into (3.9) yields

c1x41cosθ1 + c2x41sinθ1 + c3z4 = c4 (3.13)

(c1cosθ1 + c2sinθ1)x41 = c4 − c3z4 (3.14)

x41 =
c4 − c3z4

c1cosθ1 + c2sinθ1
(3.15)

Figure 3.6: Side view of X1-Z0 plane

Figure 3.6 shows the side view of X1-Z0 plane. Because link-4 and link-5 is perpendicular in

this plane, it satisfies:

(x31 − x41)(x51 − x41) + (z31 − z41)(z51 − z41) = 0 (3.16)

(x41 − x51)2 + (z41 − z51)2 = d2
5 (3.17)

(x41 − x31)2 + (z41 − z31)2 = l24 (3.18)

Substituting (3.15) into (3.17) yields

(
c4 − c3z4

c1cosθ1 + c2sinθ1
− x51)2 + (z41 − z51)2 = d2

5 (3.19)

25

Because z4=z41+d1 then

(
c4 − c3(z41 + d1)
c1cosθ1 + c2sinθ1

− x51)2 + (z41 − z51)2 = d2
5 (3.20)

Simplifying this equation yields

pz2
41 + qz41 + r = 0 (3.21)

where

p =
[

c23
(c1cosθ1+c2sinθ1)2

]
+ 1

q = −2
[

c3
c1cosθ1+c2sinθ1

(c4−c3d1
c1cosθ1+c2sinθ1

− x51) + z51

]
r = (c4−c3d1

c1cosθ1+c2sinθ1
− x51)2 + z2

51 − d2
5

Using quadratic formula, we have 2 solutions for the problem in (3.21). However, we only

choose the bigger one because we constrain that the position of O4 always higher than the position of

O5. Therefore, the solution of z41 is given by:

z41 =
−q +

√
q2 − 4pr

2p
(3.22)

After z41 is known then we can obtain x41 using formula in (3.15). Now we can simplify

formula in (3.16)

(x31 − x41)c6 + (z31 − z41)c7 = 0 (3.23)

c6x31 + c7z31 = c6x41 + c7z41 (3.24)

z31 =
(c6x41 + c7z41)− c6x31

c7
(3.25)

where c6=x51 − x41 and c7=z51 − z41. Substituting (3.25) into (3.18) yields

sx2
31 + tx31 + u = 0 (3.26)

where

s = (c26/c
2
7) + 1

t = 2
[
c6
7 (z41 − c6x41+c7z41

c7
)− x41

]
u =

[
(z41 − c6x41+c7z41

c7
)2 + x2

41

]
− l25

Problems in (3.26) also has 2 solutions. Because the position of O3 always in the left of O4

then we chose the smaller one. The solution of x31 is given by:

x31 =
−t−

√
t2 − 4su

2s
(3.27)

26

Then z31 can be solved using formula in (3.25). From Figure 3.6 we can derive a formula to ob-

tain θ2, θ3 and θ4 as in (3.29), (3.30) and (3.31) respectively, where a=z31, b=x31 and d=‖O2 −O4‖2:

c =
√
a2 + b2 (3.28)

θ2 = tan−1 (
a

b
) + cos−1 (− l

2
3 − l22 − c2

2l2c
) (3.29)

θ3 = −π + cos−1 (−c
2 − l22 − l23

2l2l3
) (3.30)

θ4 = π − cos−1(−d
2 − l23 − l24

2l3l4
) (3.31)

Figure 3.7: Zoomed area of O3, O4, O5 and O′6 in X1 − Z0 plane

Figure 3.7 shows the zoomed area ofO3,O4,O5 andO′6 inX1−Z0 plane. O′6 is the projection

of O6 in X1 coordinate direction. From this figure, we derive the following formulae, where δ=θ4 +

θ3 + θ2:

x61′ = x51 + d6 cos δ (3.32)

z61′ = z51 + d6 sin δ (3.33)

x6′ = x61′ cos θ1 (3.34)

y6′ = x61′ sin θ1 (3.35)

z6′ = z61′ + d1 (3.36)

27

Denotes vectors ~v6 and ~v6′ are the relative position of O6 and O′6 toward O5 respectively.

~v6 = [(x6 − x5) (y6 − y5) (z6 − z5)] (3.37)

~v6′ = [(x6′ − x5) (y6′ − y5) (z6′ − z5)] (3.38)

By using dot product of two vector formula we obtain:

θ5a = cos−1

(
~v6 ~v6′

T

‖~v6‖ ‖ ~v6′‖

)
= cos−1

(
~v6 ~v6′

T

d2
6

)
(3.39)

Then we get θ5:

θ5 =
π

2
± θ5a (3.40)

We introduce ∆~v=~v6− ~v6′ . The sign in (3.40) is plus (+) when ∆~v(2) is negative, otherwise is

minus (−). Now, θ1...θ5 have been known and θ7 is a constant. Therefore we can obtain θ6 using the

following formula:

0T7 =0 T5
5T6

6T7 (3.41)

where 5T6=A6 and 6T7=A7 as defined in (2.8). Because the unknown parameter θ6 is stated in

A6, so the solution of problem (3.41) is:

A6 =0 T−1
5

0T7 A
−1
7 (3.42)

Finally, we get θ6 from known matrix A6

θ6 = cos−1A6(1,1) (3.43)

3.1.2 Specific inverse kinematic formulae when O7 is given and link-6 is perpendicular to the
object plane (Y0-Z0 plane)

This is a specific case for section 3.1.1. We develop another formulae of inverse kinematics when the

end-point position (O7) is given and the orientation is fixed determined so that the link-6 always be

perpendicular to the object plane (Y0-Z0 plane).

In fact, this case can be solved using general inverse kinematics formulae as in previous section.

However, the general inverse kinematics formulae requires much complex computation. Therefore,

we develop another simplified formulae to satisfy this case. Figure 3.8 shows the coordinate frame

example of section 3.1.2.

In this case, to make the end-point orientation constant, θ6 should be determined previously. If

the end-point position is given then the appropriate angle θ1 to θ6 can be obtained by the formulae in

(3.44) to (3.57). Assume that an end-point O7 = [x7 y7 z7]T is given and θ6 is defined previously,

where xi, yi and zi are the position coordinate of joint-i in X0-axis, Y0-axis and Z0-axis respectively.

28

Figure 3.8: Coordinate frame example for section 3.1.2

Note that θ7 is also a constant that defined by its mechanical structure. From Figure 3.8, O6, O5 and

O4 can be computed by equation in (3.44) to (3.46)

O6 = O7 +

 −l7 sin θ7
cos θ6 cos θ7
−l7 sin θ6 cos θ7

 (3.44)

O5 = O6 +

 −d6

0
0

 (3.45)

O4 = O5 +

 0
0
−d5

 (3.46)

Using known position of O4, then θ1 can be computed:

θ1 = tan−1

(
y4

x4

)
(3.47)

If the area around O1, O3 and O4 is zoomed in with top view as shown in Figure 3.9, the next

formula can be derived to compute θ5 and position O3.

θ5 =
π

2
+ θ1 (3.48)

29

Figure 3.9: Zooming in the area O1, O3 and O4 with top view

O3 = O4 +

 −l4 cos θ1
−l4 sin θ1

0

 (3.49)

An auxiliary position, called T1 and variables a, b, c and d are introduced. Figure 3.10 is the

zoomed area of O1, O2 and O3 in X1-Z0 plane. From this figure we can derive formulae to compute

θ2 and θ3 as in (3.54) and (3.55), where ‖·‖ denotes norm order 2.

Figure 3.10: Zooming in the area O1, O2 and O3 with side view

T1 = O3 +

 0
0
−d1

 (3.50)

a = ‖O3 − T1‖ = z3 − d1 (3.51)

b = ‖T1 −O1‖ =
√
x2

3 + y2
3 (3.52)

30

c = ‖O3 −O1‖ =
√
a2 + b2 (3.53)

θ2 = tan−1 (
a

b
) + cos−1 (− l

2
3 − l22 − c2

2l2c
) (3.54)

θ3 = −π + cos−1 (−c
2 − l22 − l23

2l2l3
) (3.55)

Figure 3.11 shows the zoomed area of O2, O3 and O4. θ4 can be obtained by the following

formula:

Figure 3.11: Zooming in the area O2, O3 and O4 with side view

d = ‖O2 −O4‖2 =
√

(x2 − x4)2 + (y2 − y4)2 + (z2 − z4)2 (3.56)

θ4 = π − cos−1(−d
2 − l23 − l24

2l3l4
) (3.57)

3.1.3 Moving end-point in O0 coordinate direction with keeping its orientation

In this section, we design a strategy for moving the end-point of the robotic arm. The end-point will

be moved left-right, up-down and in-out in Y0, Z0 and X0 direction respectively while the orientation

is kept constant. This strategy requires formulae which is almost the same with section 3.1.1. The

only difference is that to keep its orientation, we move O5, O6 and O7 parallelly with the same

relative movement from the previous position. Figure 3.12 shows the coordinate frame example for

this strategy.

Assume that present positions OiP = [xiP yiP ziP]T are known by using forward kinematics

formula OiP = ForwardKinematics(~θP), where i = 5, 6, 7 and ~θP are obtained from the mea-

surement of potentiometers. If desired relative movement, ∆~P=[∆Px ∆Py ∆Pz]T , in original base

(O0) coordinate direction is given then we can easily find the next position of O7N , O6N and O5N :

O7N = O7P + ∆~P (3.58)

O6N = O6P + ∆~P (3.59)

31

O5N = O5P + ∆~P (3.60)

Figure 3.12: Coordinate frame example for section 3.1.3 strategy

Using known position of O5, O6 and O7 then we can compute θ1...θ5 with formulae in (3.10)

to (3.40). In this case, there is a difference formula on how to compute θ6 compare to that one in

section 3.1.1 because here we do not specify the orientation by α and β. Therefore we just need

previous orientation as the next orientation.

Suppose that corresponding homogeneous matrix transformations of the present position 0T7

is denoted by 0T7P whereas the next position 0T7, 0T5, 5T6 and 6T7 are denoted by 0T7N , 0T5N ,

A6N and A7N respectively. The next homogeneous matrix transformation 0T7N is obtained from the

present homogeneous matrix transformation 0T7P using the following relation:

0T7N =0 T7P +

0 0 0 ∆~Px
0 0 0 ∆~Py
0 0 0 ∆~Pz
0 0 0 0

 (3.61)

To find θ6, we use the following formula:

0T7N =0 T5N A6N A7N (3.62)

32

A6N =0 T−1
5N

0T7N A−1
7N (3.63)

Then, we get θ6 from this known matrix A6N

θ6 = cos−1A6N(1,1) (3.64)

This is the general procedure for moving the end-point of robotic arm in coordinate O0 direc-

tion with keeping its orientation:

1. Obtain the present Polar position ~θP by measuring the potentiometer attached at every axis.

2. Using known ~θP and general homogeneous transformation matrix in (2.8), compute:
0T7P = A1PA2PA3P ...A7P .

3. Obtain the next position and its orientation 0T7N using formula in (3.61).

4. Compute θ1N ...θ5N using formulae in (3.10) to (3.40).

5. Solve θ6N using formula in (3.64).

6. Drive the robotic arm following the new Polar position ~θN .

3.1.4 Moving end-point in O7 coordinate Direction with keeping its orientation

In this section, we design a similar strategy for moving the end-point of the robotic arm as in section

3.1.3. The same formulae and the same procedure are also employed. However, the relative movement

will be specified inO7 coordinate direction (not inO0 coordinate direction). As addition, we constrain

the movement only in X7 or Y7 or Z7 exclusively.

The following procedure is a general step for moving the end-point of robotic arm in coordinate

O7 direction with keeping its orientation:

1. Obtain the present Polar position ~θP by measuring the potentiometer attached at every axis.

2. Using known ~θP and general homogeneous transformation matrix in (2.8), compute:
0T7P = A1PA2PA3P ...A7P .

3. Assume that we have link-8 so that the position and orientation of O8 is the same with O7

exactly. Now we can derive a movement in O7 coordinate direction using this pseudo link-

8. Moving ∆Px distance in X7 direction means specifies α8 = 0, d8 = 0, l8 = ∆Px, and

θ8 = 0. Corresponding homogeneous transformation matrix of axis-8 can be stated by A8 =

Ai(α = 0, d = 0, l = ∆Px, θ = 0). Likewise, ∆Py and ∆Pz distance movement in Y7 and

Z7 direction respectively can be stated by A8 = Ai(α = 0, d = 0, l = ∆Py, θ = π/2) and

A8 = Ai(α = 0, d = ∆Pz, l = 0, θ = 0).

4. Compute the pseudo-position O8=0T7P A8.

33

5. Obtain the next position and its orientation 0T7N using formula in (3.61), where ∆Px=x8-x7,

∆Py=y8-y7 and ∆Pz=z8-Xz .

6. Compute θ1N ...θ5N using formulae in (3.10) to (3.40).

7. Solve θ6N using formula in (3.64).

8. Drive the robotic arm following the new Polar position ~θN .

3.2 Trajectory File Generator

A trajectory pattern that contains a sequence of the robot movement in Cartesian coordinate is ob-

tained by solving the inverse kinematics problem with some angular-to-digital conversions. This

trajectory pattern is specified by an human operator in Cartesian coordinate. Corresponding file rep-

resents the sequence of the polar coordinate in digital value then is generated. This file is stored in

Microsoft Excel format and so-called trajectory file.

Using inverse kinematics formulae in (3.44) to (3.57), a Cartesian coordinate will be converted

into polar coordinate. Since the controller is a digital system, the polar coordinate value needs to be

converted into digital value before proceeded by the controller. The relation between the angle in

polar coordinate and the digital value is regressed by Linear Least Square method using data from

experiment. This is called angular to digital value conversion.

The following is the least squares regression line at joint-i:

ŷi = miθi + ci (3.65)

mi =

∑N
j=1(θi,j − θ̄i)(yi,j − ȳi)∑N

j=1(θi,j − θ̄i)2
(3.66)

ci = ȳi −miθ̄i (3.67)

where ŷi, θi, mi, ci, θ̄i and ȳi denote the estimate of the angle in digital value, the angle,

regression coefficient, a constant, the mean of θi and the mean of y at axis-i.

In this robotic arm, all of joints using rotary potentiometers to measure the angle in every joint

except joint-3 which uses linear potentiometer. Generally, the linear regression line in (3.65) is used

to state the relation between the angle in polar coordinate and the digital value. Particularly in joint-3,

this linear regression line is used to state the relation between the length of Lp and the digital value

as shown in Figure 3.13. The relation between the angle and the length of Lp is given in (3.68).

Lp(θ2, θ3) =
√

(l2cosθ2 + l31cos(−(θ3 + θ2))− l21)2 + ((l2sinθ2 − l31sin(−(θ3 + θ2)))2

(3.68)

where l21 = 18 cm and l31 = 20 cm.

34

Figure 3.13: The structure of linear potentiometer at joint-3

The experiment was set up to find mi and ci as explain in (3.66) and (3.67). After measuring

θi,j and yi,j , parameters mi and ci are obtained and shown in Table 3.2.

Table 3.2: Regression Parameters
Axis-i mi ci

1 33.7477 1950

2 50 -2400

3 -165.1325 17914

4 -12.5 2170

5 -11.4892 3080

6 -5.8889 2500

3.3 System Identification

The following section describes the system identification steps. The first step is usually the selection

of a model structure. There are various possibilities of structure state-space and polynomial forms

such as ARX, ARMAX, OE, BJ etc. The more complex the structure, the better estimate model

is yielded. In this work, a high-accuracy model is not required, therefore ARX structure is chosen

because of its simplicity. For a given choice of structure, the order of the model needs to be specified

before the corresponding parameters are estimated.

35

In order to estimate the servo valves of the robot, a set of data input and output from experiment

are required. As an illustration, the 6-th axis servo valve estimation is given to explain its step using

System Identification Toolbox provided by Matlab.

3.3.1 Delay Estimation

The amount of delay (d) as shown in (2.46) also infulence the selection of the model order. Therefore

we need to estimate the best delay before selecting the model order. There are various options avail-

able for determining the time delay from input to output. However, this work will focus only on one

of them, that is using delayest utility. This function evaluates an ARX structure as in (3.69), where

u, y, na, nb and d respectively are the input signal, the output signal, the order of input, the order of

output and the time delay.

yk + a1yk−1 + ...+ anayk−na = b1uk−d + ...+ bnbuk−nb−d+1 (3.69)

Figure 3.14: The dataset measured at axis-6

Assume that we have two set of data input and output (x1,y1 and x2,y2) which are obtained

from measurement at axis-6 as shown in Figure 3.14. Here is the Matlab syntax to estimate the delay

36

using delayest toolbox.

>> cdata = iddata(y1,x1); % data test

>> vdata = iddata(y2,x2); % data validation

>> delay = delayest(cdata);

delay = 1

This result shows that the best time delay (d) that should be selected is 1.

3.3.2 Order Selection

Once we have decided the model structure to use, the next task is to determine the order(s). In general,

the selected order should give as close as possible to the real model. However, it should be not higher

than necessary. This can be determined by analyzing the improvement in fit as a function of model

order. When doing this, it is advisable to use a separate, independent dataset for validation. Choosing

an independent validation dataset (vdata in this example) would improve the detection of over-fitting.

Figure 3.15: The ARX model structure selection

In addition to a progressive analysis of multiple model orders, explicit determination of opti-

mum orders can be performed for some model structures. Functions arxstruc and selstruc are used

for choosing the best order for ARX models. In this work, MATLAB 7.0 is employed to facilitate

system identification. We check the fit for all 100 combinations of up to 10 B(z)-parameters and up

to 10 A(z)-parameters as in (2.46), all with a delay value of 1:

37

>> V = arxstruc(cdata,vdata,struc(1:10,1:10,1));

The best fit for the validation data set is obtained by:

>> nn = selstruc(V,0);

nn = 10 10 1

For choosing the model order interactively, the following syntax can be used:

>> nns = selstruc(V);

Figure 3.15 shows the ARX model structure selection panel. From this figure we know that the

best fit model is performed when na=10, nb=10 and the time delay d=1 as shown by the red color

bar. If we use Akaike Criterion, we get the best order model when na=1, nb=6 and d=1 as shown by

the blue color bar. A simple 2nd order ARX yields only 3.5 x 10−3 unexpected output variance. This

structure has good enough approximate of the model and nowever can be well exploited to estimate

the controller as proven by the experiment result in section 5.7.

3.4 Controller Design

Due to result in previous section, 2-DOF PID controller will be designed based on the approximate

model of the robot. For the reason of simplicity, 2nd order of plant model and 2nd order of 2-DOF

PID controller with pole placement method are chosen. Assume that the approximate model, H(z),

obtained by identification is given in (3.70) and the controller structure is as shown in Figure 2.4 (b).

H(z) =
B(z)
A(z)

=
b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
(3.70)

A 2-nd order controller parameter is stated by:

S(z) = s0 + s1z
−1 + s2z

−2 (3.71)

R(z) = (1− z−1)(1 + rz−1) = 1 + (r − 1)z−1 − rz−2 (3.72)

A polynomial P (z) represents the desired pole locations is specified by:

P (z) = 1 + p1z
−1 + p2z

−2 + p3z
−3 + p4z

−4 (3.73)

In this design, polynomial R(z) is not in general form. By reconfiguring (2.54) we have

x = [s0, s1, s2, r]T (3.74)

38

M =

b1 0 0 1
b2 b1 0 a1 − 1
0 b2 b1 a2 − a1

0 0 b2 −a2

 (3.75)

K =

p1 + 1− a1

p2 + a1 − a2

p3 + a2

p4

 (3.76)

x = M−1K (3.77)

The following is an example of 2-DOF controller design for joint-1. The estimate model of

plant is given in (3.78) and the desired pole locations are multiple pole at 0.8 as shown in (3.79).

In order to guarantee that the controller system is stable, the poles must be chosen so that they are

located inside unity circle. The closer of the poles to the zero, the faster of settling time to be stable.

However the closer of the poles to the zero will affect to the vulnerability of its stability. Therefore,

locating pole at 0.8 is one of good choices regarding to those reasons.

H(z) =
B(z)
A(z)

=
−0.0026z−1 − 0.0116z−2

1− 1.4825z−1 + 0.4821z−2
(3.78)

P (z) = (1− 0.8z−1)4 = 1− 3.2z−1 + 3.84z−2 − 2.048z−3 + 0.4096z−4 (3.79)

Then the matrix M and vector K are stated by:

M =

−0.0026 0 0 1
−0.0116 −0.0026 0 −2.4825
0 −0.0116 −0.0026 1.9646
0 0 −0.0116 −0.4821

 (3.80)

K =

−0.7175
1.8754
−1.5659
0.4096

 (3.81)

The solution is:

x = M−1K = [−6.8755 11.5107 − 4.7479 − 0.7354]T (3.82)

The parameters of the controller are

S(z) = −6.8755 + 11.5107z−1 − 4.7479z−2

R(z) = 1− 1.7354z−1 + 0.7354z−2

Finally, T (z) can be computed using (2.44)

T = S(1) = −0.1127 (3.83)

39

3.5 Hardware Design

This section explains the hardware requirement. In general, the hardware is classified into four parts

i.e. main processor board, analog board, digital I/O board and power supply board.

3.5.1 Main Processor Board

The main processor board is the central processing unit of the controller system. This part is respon-

sible on receiving, processing and transmitting data from and to external devices. This part composed

of several internal peripherals such as 32-bit soft-core processor, UART, Digital I/O, Timer/Counter,

SPI, SPI reader and PWM generator. All of mentioned peripherals are embedded in a Xilinx FPGA

XC3S400.

Figure 3.16: MicroBlaze core block diagram

3.5.1.1 MicroBlaze 32-bit Soft-core Processor

Microblaze is a 32-bit soft-core processor developed by Xilinx. This is a reduced instruction set

computer (RISC) optimized for implementation in Xilinx Field Programmable Gate Arrays (FPGAs).

Figure 3.16 shows a functional block diagram of the MicroBlaze core.

The basic MicroBlaze architecture is consists of 32 general-purpose registers, an Arithmetic

Logic Unit (ALU), a shift unit, and two levels of interrupt. This basic design can then be configured

with more advanced features such as: memory management unit (MMU), barrel shifter, memory

management/memory protection unit, floating-point unit (FPU), caches, exception handling, debug

40

Figure 3.17: MicroBlaze core with advanced features

logic, and others. This flexibility allows the user to balance the required performance of the target

application against the logic area cost of the soft processor. Figure 3.17 shows a MicroBlaze system

configured with advanced features.

Three types of memory interfaces are supported: Local Memory Bus, Processor Local Bus

(PLB) / On-Chip Peripheral Bus (OPB) and Xilinx CacheLink (XCL). In this design, Microblaze

system is configured with 16 KB local/internal memory, active low reset, 50 MHz bus clock frequency

and several advanced feautures which are connected via PLB Bus as described in subsection 3.5.1.2

to 3.5.1.7.

3.5.1.2 UART

The UART peripheral is connected to the PLB Bus to provide the controller interface for asynchronous

serial data transfer as shown in Figure 3.18.

This peripheral performs parallel to serial conversion on character reveived through PLB and

serial to parallel conversion on characters received from external serial devices. The UART peripheral

is capable of transmitting and receiving 8,7,6 or 5 bit characters with 1 bit stop and 1 bit parity.

There are three sections inside the UART peripheral. First, the PLB interface module provides

the interface to the PLB and implements PLB protocol logic. Second, the register module consist

41

Figure 3.18: Block diagram of UART peripheral

of an 8-bit status register, an 8-bit control register and a pair of 8-bit Transmit/Receive registers.

All registers are accessed directly from the PLB using the PLB module. Third, the control module

consists of a RX module, a TX module, a parameterized baud rate generator (BRG) and a control

unit.

Figure 3.19: Block diagram of GPIO peripheral

3.5.1.3 Digital I/O

The digital I/O peripheral is a general purpose Input/Output (GPIO) to interface the PLB Bus with

external devices. It is a 32-bit bi-directional data transfer which can be configured either as input or

as output at a time.

An input port may be configured to take its external input either from bidirectional 3-state pin

or from the dedcated input only pins. As a ouput port, the data is driven out through a 3-state buffer as

42

well as to an input only pin. The port can be configured dynamically for input or output by enabling

or disabling the 3-state buffer.

The bock diagram of GPIO is shown in Figure 3.19. It is composed of 3 modules i.e PLB

interface, Interrupt Control and GPIO core. It can be configured as a single or a dual channel device.

The channel width and the direction are configurable and can be enabled individually.

3.5.1.4 Timer/Counter

Figure 3.20: Block diagram of Timer/Counter peripheral

This Timer/Counter peripheral is a 32-bit timer module that attaches to the PLB bus. It is orga-

nized as two identical timer modules as shown in Figure 3.20. Each timer module has an associated

load register that is used to hold either the initial value for the counter for event generation or a capture

value depending on the mode of the timer.

There are three modes that can be used with the two Timer/Counter modules:

• Generate Mode. The value in the load register is loaded into the counter. When enabled, the

counter beings to count up or down depending on the selection of the Timer Control Status

Register. This mode is useful for generating repetitive interrupts or external signals with a

specified interval.

• Capture Mode. The value of the counter is stored in the load register when the external capture

signal is asserted. This mode is useful for time tagging external events while simultaneously

generating an interrupt.

43

• Pulse Width Modulation (PWM) Mode. Two timer/counters are used as a pair to produce an

output signal (PWMo) with a spefified frequency and duty factor. Timer0 and timer1 are used

to set the period and the high interval time of the PWM respectively.

3.5.1.5 SPI

The SPI peripheral connects to the PLB bus and provides a serial interface to SPI devices. The SPI

protocol provides a simple method for a master and as selected slave to exchange data. SPI is a

full-duplex synchronous channel that supports four-wire interface (transmit, receive, clock and slave-

select) between a master and a selected slave. The block diagram of SPI peripheral is shown in Figure

3.21.

Figure 3.21: Block diagram of SPI peripheral

When configured as a master, the SPI can communicate with both off-chip and on-chip slaves.

However, when configured as a slave, it can communicate only with on-chip masters. The number of

slaves is limited to 32 by the size of the Slave Select Register. However, the number of slaves and

masters will impact the achievable performance.

3.5.1.6 SPI reader

The SPI reader peripheral is a custom logic 16-bit shift register which is compatible with SPI protocol.

However it is only able to perform read access and act as a slave module. As shown in Figure 1.1, there

are 6 channels of ADC accessed by SPI protocol. The ADCs are desired to be accessed concurrently.

It is redundant to use 6 SPI peripheral because it consumes more resources. Therefore a custom SPI

reader is developed to optimize and reduce the resources usage. A single command can be sent to all

44

Figure 3.22: Block diagram of SPI reader

of ADCs while 6 SPI readers are used to read the data from every channel concurrently. Figure 3.22

shows the block diagram of SPI reader module with their connections to ADCs.

Figure 3.23: Block diagram of PWM generator

3.5.1.7 PWM Generator

The PWM generator peripheral is a custom logic hardware which is dedicated specifically to generate

PWM signal. Figure 3.23 shows the block diagram of PWM generator.

The PWM generator composed of a 32-bit counter register and two 32-bit comparator registers.

The counter data and the comparators data are defined by sending data through PLB bus. The PLB

interface module then store that data into counter register and comparator registers. When rising

clock is happened, the counter register value will be incremented by 1 and at the same time this

45

counter value is compared with both comparator registers value. When the value of counter register is

greater than comparator register A value then PWM ouput signal is forced to be ’0’. When the value

of counter register is greater than comparator register B value then PWM output signal is forced to

’1’ and register counter value is reset to 0 (zero). The PWM signal generation can be illustrated as

shown in Figure 3.24.

Figure 3.24: PWM output signal

3.5.2 Analog Board

Analog board composed of three parts: digital isolator, filter-amplifier and analog to digital converter

(ADC). The block diagram of Analog board is shown in Figure 3.25.

Figure 3.25: Block diagram of Analog Board

3.5.2.1 Digital Isolator

The digital isolator is used to isolate the power supply between the main processor board and the ana-

log board. Those power supply must be separated in order to reduce and avoid the noise propagation

from or to external devices. ADuM14xx digital isolator is chosen because it has very high switching

speed (up to 90 Mbps), low pulse width distortion (less than 2 ns) and provides four independent

46

isolation channels in a variety of channel configurations and data rates. Figure 3.26 shows the block

diagram of ADuM14xx.

Figure 3.26: Block diagram of ADuM14xx

3.5.2.2 Filter and Amplifier

The filter and amplifier circuit are respectively used to convert the PWM signal into analog signal and

to amplify the analog signal. The filter is designed specifically to satisfy the PWM characteristics.

In a typical PWM signal, the base frequency is fixed but the pulse width is a variable. The produced

analog signal is directly proportional to the duty cycle (D) of the PWM signal. A typical PWM signal

is shown in Figure 3.27.

Figure 3.27: A typical PWM signal

A Fourier analysis shows that there is a strong peak at frequency fPWM and other strongs

harmonics at frequency nfPWM as shown in Figure 3.28, where n is an integer and fPWM is the base

frequency of PWM signal. These peaks are unwanted noise and should be eliminated. To eliminate

these noise a low-pass filter with frequency cut off (fc) lower than fPWM must be employed.

In this design, the PWM base frequency (fPWM) is fix determined by loading 4096 at regis-

ter comparator B in Figure 3.24. With 100 MHz source clock, it yields 40.96 us periode of PWM

(TPWM) or equal to 25 KHz frequency of PWM (fPWM). Therefore the low-pass filter must have

frequency cut off less than 25 KHz. The lower fc the better analog signal is yielded. However, one

must be considered that a sinusoidal waveform will be generated at frequency 200 Hz. Hence the fc
of the low-pass filter must be selected so that it is less than 25 KHz but greater than 200 Hz. In this

case, fc = 232.27 Hz is chosen. This low-pass filter is realized by using 2-nd order passive filter with

R1= 10 KOhm, R2=100 KOhm, C1=0.1 uF and C2= 4700 pF as shown in Figure 3.29 and equation

in (3.84).

47

Figure 3.28: The spectrum frequency of PWM

fc =
1

2π
√
R1R2C1C2

=
1

2π
√

10 ∗ 100 ∗ 0.1 ∗ 4700 ∗ 10−12
= 232.27 Hz (3.84)

Figure 3.29: The circuit of filter and amplifier

The analog signal produced by low-pass filter will be used to drive the servo valve of the

robotic arm. Since the PWM signal level are -2.5 V and +2.5 V, the output of analog signal needs

to be amplified so that it is powerful enough to drive the servo valve. In this design, analog signal

is amplified 4.6 times by choosing R3=36 KOhm and R4=10 KOhm as computed in equation (3.85),

where Vi and Vo are the input and the output signal respectively. Therefore the analog signal output

span becomes -11.5 V to +11.5 V.

Vo = (1 +
R3

R4
)Vi = (1 +

36
10

)Vi = 4.6Vi (3.85)

3.5.2.3 Analog to Digital Converter

The analog to digital converter is used to convert the analog signal obtained by measuring the po-

tentiometer voltage into digital value. The potentiometer is attached in every joint of robotic arm to

48

represent the angle. In other word, the ADC is used to convert the measured angle of joint into digital

value.

Figure 3.30: The circuit of analog to digital converter

A single channel ADC (MCP3201) is chosen in this design because its features satisfy the sys-

tem requirement. Moreover, it has very low price compare to other multi-channels ADCs. MCP3201

has 12-bit resolution, 100 KSPS maximum sampling rate, SPI protocol compatible and single supply

operation up to +5 V. The ADC circuit is shown in Figure 3.30.

Figure 3.31: The active filter frequency response

A 2-nd order active low-pass filter with unity gain is placed between measured potentiometer

voltage and the ADC. This filter is used to filter high frequency noise from external and functioned

as a buffer to isolate the input load. Because the measured signal is changed very slow, frequency cut

off fc=1592.4 Hz is a good value to be selected. This filter is realized by choosing R1=R2= 1 KOhm

49

and C1=C2=0.1 uF as computed in (3.86).

fc =
1

2π
√
R1R2C1C2

=
1

2π
√

1 ∗ 1 ∗ 0.1 ∗ 0.1 ∗ 10−12
= 1592.4 Hz (3.86)

The frequency response and the phase response of the designed filter are shown in Figure 3.31.

This data is obtained by giving some sinusoidal waveforms wit at point A and then measure the output

at point B

3.5.3 Digital I/O Board

The digital I/O part is used to interface the digital input-output signal between main processor and

external devices. Solid state relays LH150 and opto-couplers CNY173 are applied as output and

input interfaces respectively as shown in Figure 3.32. This interface solves the DC level mismatch

problem (main processor voltage is 0-3.3 V; whereas those of I/Os are either 0-12V or 0-24V) and

noisy environment problem.

Figure 3.32: Block diagram of Digital I/O

3.5.4 Power Supply Board

Several DC voltages are required to supply power for main processor board, analog board and digital

I/O board. In order to eliminate the noise interference among those board, the DC voltages should

be isolated from each others. In this design, a multi secondary side transformer was constructed to

produce eight constant voltage supplies with four isolately ground as shown in Fig. 3.33. Furthermore,

the current requirement for all supplies are less than 0.5 A, that linear regulation therefore seems to

be a good selection for this purpose. By isolating the power supply, it will reduce the noise and

interference from both external noisy factory environment and among internal parts.

50

Figure 3.33: Power supply unit

3.6 Software

This section concern with the software of the controller system. Physically, the hardware provides 3

buttons as input interface used to command the controller system software: 2 general buttons and 1

emergency button as shown in Figure 5.14.

Figure 3.34: The state machine diagram of the software

3.6.1 Main Menu

Figure 3.34 shows the state machine diagram of the software. The main software consist of two

main states: standalone mode and PC mode. At the main menu state, the state when the controller

system just ran, some peripheral initializations are done. Initializations are required to set how each

peripheral works. UART initializes the serial communication between controller system and PC such

51

as port, baudrate, stop bit and so on. SPI initializes the communication between controller system

and ADC. PWM initializes the duty cycle and the base frequency of PWMs. I/O initializes general

input and output pins. Controller initializes the PID controllers parameter in their initial value. LCD

initializes the LCD appearance. Interrupt initializes the interrupt service requests.

Having finished the initialization, the software come to a continuous-looping. The looping

will never end unless one of command buttons is pressed. Pressing SD button brings the state to

standalone mode. Likewise, pressing PC button brings the state to PC mode. Conversely, pressing

back button will back its state to the main menu.

Figure 3.35: Flowchart diagram of software main menu

3.6.2 Standalone Mode State

Figure 3.36 shows the flowchart diagram of standalone mode state. A second after standalone mode

is chosen then the system will check the existence of the trajectory file. If there is no trajectory file

available in the Flash ROM then it shows an empty message on LCD display then goes to main menu

state. Otherwise, it goes to a continuous looping until either start button or back button is pressed.

Pressing start button brings its state to start whereas pressing back button brings its state to the main

menu.

52

Figure 3.36: Flowchart diagram of standalone mode

3.6.3 Run State

In run state, the trajectory file will be loaded from the Flash ROM into main memory of the system.

Then the robot will be driven so that it moves following the pattern stored in the trajectory file.

Pressing stop button brings its state to stop whereas pressing pause button brings its state to pause.

Figure 3.37: Flowchart diagram of run state

3.6.4 Pause State

When pause button is pressed, controller system holds the present position and waits until the next

command is given. Pressing continue button lets the robot continuing its motion and brings its state

53

back to run state whereas pressing back button brings it to standalone mode state.

Figure 3.38: Flowchart diagram of pause state

3.6.5 Stop State

Stop state is similar with pause state. If stop button is pressed, controller system holds the present

position. While the present position is hold, however, its trajectory sequence is resetted to the initial

position of the trajectory file. Then it waits until the next command is given. If restart button is

pressed, it goes to run state again. If back button is pressed, it backs to standalone mode state.

Figure 3.39: Flowchart diagram of stop state

54

3.6.6 PC Mode State

Figure 3.40: Flowchart diagram of PC mode state

When PC Mode is chosen, controller system will activate the UART communication channel

by enabling UART interrupt. The controller system can communicate with PC, either receiving com-

mand from PC or transmitting data to PC, using UART protocol. During PC mode, all of robotic

operations are controlled through PC. When a certain command is received, its state goes to corre-

sponding state as shown in Figure 3.34. Every command is known by a unique identity number called

ID command. If there is no command received and back button is pressed then it brings the state back

to the main menu.

3.6.7 Switch Pump State

This state is done when a command with ID=22 is received. After the a byte command is received

then it waits to receive the next byte for determining the next instruction. If the next received byte

is ’1’ then controller system switch the pump ON. Conversely, the controller switch the pump OFF

55

when it receives ’0’ as the next received byte.

Figure 3.41: Flowchart diagram of switch pump state

3.6.8 Switch Valve State

This is a similar state with switch pump. The state comes to switch valve state when a command

with ID=33 is received. The next received byte determines the next instruction, either switch on the

oil valve or switch off the oil valve. The next received byte = ’1’ means switch the oil valve ON,

otherwise switch the oil valve OFF.

Figure 3.42: Flowchart diagram of switch valve state

3.6.9 Switch Control State

The same way as switch pump and switch valve is also used in switch control state. The state comes

to switch control when a command with ID=44 is received. The next received byte = ’1’ means the

controller status is ON, otherwise is OFF.

56

Figure 3.43: Flowchart diagram of switch control state

3.6.10 Playback State

If a command with ID=47 is received then it goes to playback state. Playback means the controller

system drives the robot moving with certain pattern automatically. The second received byte deter-

mines the playback status. If the second received byte is ’1’ then playback status is ON, otherwise is

OFF. When the playback status is ON, the controller system drives the robot following a sequence of

data represents its position from the trajectory file.

Figure 3.44: Flowchart diagram of playback state

3.6.11 Update Controller State

After a corresponding ID command of update controller is received, then series of data are received

following the ID command. These series of data represent the coefficient of controller parameters

R(z), S(z) and T (z) as shown in (3.71), (3.72) and (3.83). These data is begun by 2 bytes represents

57

the coefficient ofR0, followed by 2 bytes represents the coefficient ofR1 and so on up to T2 as shown

in flowchart diagram 3.45.

Figure 3.45: Flowchart diagram of update controller state

3.6.12 Get Single Reference State

Figure 3.46: Flowchart diagram of get single reference state

The get single reference state is begun by receiving a byte of corresponding ID command then

followed by 12 bytes data and ended by a byte of closing ID. These 12 bytes data divides into 6

parts which every part (2 bytes data) represents the reference value of angle/position in every axis of

robotic arm. A closing ID is required to guarantee that these sequence of data are received properly.

When the closing ID does not received correctly then the received data will never used to update the

reference value.

58

3.6.13 Save to Flash State

Figure 3.47: Flowchart diagram of save to flash

Save to flash means a present trajectory file used by the controller system will be stored in the

Flash ROM. Storing the trajectory file into Flash ROM enables the standalone mode menu because the

controller system can load this trajectory file anytime without connected to a PC. As shown in Figure

3.47, when a command ID of save to flash is received then it does a looping to copy the trajectory

data occupies the volatile memory at certain address to the Flash ROM of the controller system.

3.6.14 Identification State

Figure 3.48: Flowchart diagram of identification state

59

In identification state, two bytes of data are received firstly. The first byte is a corresponding

ID command of identification and the second command determines the identification status. If the

second byte is ’0’ then identification status is OFF, otherwise is ON. When the identification status

is ON, 5 bytes of data are received following the previous command. These data consist of 3 parts:

1 byte to define the desired signal waveform, 2 bytes represents the desired period of signal and last

2 bytes represents the desired amplitude of signal that is used as input signal in system identification

process.

3.6.15 Get Trajectory File State

Figure 3.49: Flowchart diagram of get trajectory file state

Get trajectory file state consists of multiple routines of get single reference and some additional

routines as shown in flowchart diagram 3.49. Firstly, a byte ID command is received then followed

by 2 bytes data represents the number of data rows that will be received later. Every row of received

data composed of 12 bytes data represents the reference value of angle/position and 1 byte of closing

ID as used in get single reference state.

3.6.16 Interrupt Routine

There are three available interrupts provided by the software: emergency interrupt, timer interrupt

and UART interrupt.

• Emergency interrupt handles the emergency condition by pressing the emergency button. When

the emergency button is pressed, the controller system forces to switch the servo valve and the

oil valve OFF, re-initializes their peripherals and back to the main menu state. Figure 3.50

shows the flowchart diagram of emergency interrupt.

60

Figure 3.50: Flowchart diagram of interrupt timer routine

• Timer interrupt generates a certain interval time (in this case 10 ms) that becomes the controller

sampling rate. Every single sampling rate, a timer interrupt routine will be performed. This

routine covers updating ADC value, getting current reference value, computing PID algorithm

and generating signal for system identification. When the controller status is ON, the system

generates control signal using PID algorithm and send it to DAC module for driving the robotic

arm. The same way is treated to the identification status. When the identification status is ON,

the system generates certain waveform based on its command and send the measured data to

PC. In order to avoid an interleaving it must be guaranteed that this routine will be accomplished

before the coming timer interrupt is occurred. Figure 3.51 shows the flowchart diagram of timer

interrupt routine.

Figure 3.51: Flowchart diagram of timer interrupt routine

• UART interrupt handles a command that is sent from PC. This interrupt will be enabled only

when PC mode is selected. There are 9 commands known by the controller system: switch

control, switch pump, switch valve, get single reference, get trajectory file, playback, update

61

controller, save to flash and identification. Each command has unique command code to dif-

ferentiate each other. For example command for getting single reference has command code =

11, switch pump has command code = 22 and so on. Each command has a specific routine that

will be executed immediately after the command is received.

CHAPTER IV

GUI USER APPLICATION SOFTWARE

This chapter concern with GUI user application software as an interface between the operator (hu-

man) and the controller system. This software is developed by using Delphi Integrated Development

Equipment program. Basically, it has five main menus: Controller System, Identification System, Tra-

jectory Generator, Teaching Mode and Simulation. The state machine diagram of the main menu and

its screenshot display are shown in Figure 4.1 and Figure 4.2 respectively.

Figure 4.1: The state machine diagram of main menu

Figure 4.2: Main menu

63

Clicking one of five available menus above brings the state to the corresponding menu state and

shows a new window panel. Then, closing the menu window panel will back its state to the main menu

state. Particularly for the windows panel Controller System, Teaching Mode and Trajectory Generator

respectively, they have a command to bring its state to Teaching Mode and Simulation state directly.

Subsection 4.1 to 4.5 describe the detail of each those menu. Complete flowchart diagrams for each

state in this state machine diagram are described in appendix.

4.1 Controller System

Controller system controls entire behavior of the controller system: how to operate the robot both

manually and automatically, how to setup the controller parameter and so on. This menu has 3 tab

panels: Controller, Setup Controller and Data Record. The state machine diagram of this menu is

shown in Figure 4.3 whereas their screenshot displays are shown in Figure 4.4, 4.5 and 4.6.

Figure 4.3: The state machine diagram of controller system menu

4.1.1 Controller

• Communication Setting sets the serial UART communication parameters such as port, baudrate

and open-close communication status.

• Power Control controls the hydraulic pump and oil valve. The oil valve can be turned on only

when the hydraulic pump has been turned on already. When the hydraulic pump is turned off,

the oil valve will be turned off as well automatically.

• PID Control controls the PID controller status. When PID controller status is ON, the robotic

arm moves automatically following the given position either single position or sequence of

positions as in trajectory file that has been sent to the controller system previously.

64

Figure 4.4: Controller tab

• Select Mode provides two operation modes: Teaching Mode and Playback Mode. Teaching

mode means the robot is operated under an human operator control. The trajectory yielded

during teaching mode can be stored as a trajectory file and later can be loaded and played back.

Playback mode means the robot operates automatically doing the trajectory file that has been

stored in the controller system previously.

• Reference are the references value of the PID controller system. When the playback status is

ON, these reference values will change following the trajectory file. Conversely, these one can

be set manually and can be sent to the controller system by pressing Send Reference button.

• Potentiometer Measurement is the measured values that represent the angle in every joint of

robotic arm.

• Movement Control control the relative movement of the robotic arm in Cartesian coordinate.

• Matrix Transformation represents the position and orientation of the end-point of robotic arm.

4.1.2 Setup Controller

• 2-DOF PID Controller Parameters adjusts the controller parameters. R, S and T are the poli-

nomials of controller with structure as shown in Figure 2.4 (b).

• 1-DOF PID Controller Parameters adjusts the controller parameters with structure as shown in

Figure 2.4 (a). Send PID Parameters button is used to send the controller parameter at joint as

in selected axis.

• Fuzzy Controller Membership adjusts the membership function of parameter input error, delta

error and output if fuzzy algorithm is chosen. Generate Membership button and Send Member-

65

Figure 4.5: Setup controller tab

ship button are used to generate the membership function and send that membership function

to the controller system respectively.

4.1.3 Data Record

Figure 4.6: Data record menu

Data record shows the recorded data during the robot operation. These data are stored in a

Microsoft Excel file format. Pressing Refresh button will clear the recorded data and save button will

save the recorded data into PC storage.

66

4.2 Identification System

Identification system is provided to support the data collection during experiment. The collected data

is composed of data input and data output of the servo valve in every joint of robotic arm. In advance,

these data are processed to yield the estimate model of the servo valve of robot. The state machine

diagram of the identification system menu is shown in Figure 4.7.

Figure 4.7: The state machine diagram of identification system menu

4.2.1 Control

This menu controls the data collection process: when the data is began to be collected, when the

data is stopped to be collected, what kind of input data is applied and so on. Figure 4.8 shows the

screenshot of control submenu.

• Command is a panel to control the identification status. Start button and Stop button are used

to begin and end the data collection process.

• Power Control controls the hydraulic pump and oil valve. The oil valve can be turned on

only when the hydraulic pump has been turned on. However the oil valve will be turned off

automatically when the hydraulic pump is turned off.

• Communication sets the serial UART communication parameters such as port, baudrate and

open-close communication status.

• Potentiometer shows the measured values represent the angle in every joint of robotic arm.

• Input Signal gives choices; what kind of input signal will be employed in the identification

system. There are three types of input signal: Square, Triangle and Pseudo Random Binary Se-

67

Figure 4.8: Control in Identification System

quence (PRBS). For Square and Triangle, its amplitude and period of the signal can be adjusted

manually.

4.2.2 Data Record

Data record shows the collected data during the system identification process. These data will be

stored in PC storage as a Microsoft Excel file format by pressing save button.

Figure 4.9: The state machine diagram of teaching mode menu

68

4.3 Teaching Mode

This menu provides a panel to control the robot in teaching mode. In this mode, the robot is fully

controlled by an human operator. The robot position can be specified either in Cartesian or Polar

coordinate. During teaching process, the positions of the robot can be stored as a trajectory file. This

trajectory file then can be loaded and executed in playback mode. The state machine diagram and the

sreenshot display of teaching mode menu are shown in Figure 4.9 and Figure 4.10 respectively.

Figure 4.10: Teaching mode menu

• Movement Control control the relative movement of the robotic arm in Cartesian coordinate.

The relative movement distance and the direction are respectively determined by the movement

resolution and the direction button.

• Communication Setup sets the serial UART communication parameters such as port, baudrate

and open-close communication status.

• Command is a panel to control the robot moving to the specified position. Button Go C and Go

P respectively forces the robot moves to a specified point in Cartesian and in Polar coordinate.

Pressing confirm button will save current position to the trajectory file.

• Power Control controls the hydraulic pump and oil valve. The oil valve can be turned on only

when the hydraulic pump has been turned on already. When the hydraulic pump is turned off,

the oil valve will be turned off as well automatically.

69

• PID Control controls the PID controller status. When PID controller status is ON, the robotic

arm moves automatically following the given position either single position or sequence of

positions as in trajectory file that has been sent to the controller system previously.

• Trajectory Control modifies current trajectory file during teaching mode such as loading tra-

jectory file, inserting and deleting a data.

4.4 Trajectory Generator

This panel provides an interface to do everything related to the trajectory file. Creating a new tra-

jectory file, loading trajectory file, editing trajectory file, sending trajectory file and saving trajectory

file are some available commands in this menu. Figure 4.11 shows the state machine diagram of

trajectory generator menu whereas Figure 4.12 shows its screenshot display.

Figure 4.11: The state machine of trajectory generator menu

• Set Initial Position specifies the initial position of the robotic arm end-point in Cartesian coor-

dinate.

• Add New Position adds a new position in trajectory file.

• Insert Row inserts a new data in selected row of trajectory file.

• Delete Row deletes a data in selected row of trajectory file.

• Load Trajectory opens the trajectory file that has been stored in the PC storage previously.

• Generate Trajectory converts the sequences of position in Cartesian coordinate into polar coor-

dinate (angle in every joint) and converts the polar coordinate into digital value.

70

Figure 4.12: Trajectory generator

• Refresh clears the current trajectory data.

• Simulate calls the simulation panel.

• Send Trajectory sends the trajectory file to the controller system. This trajectory file will be

stored at the RAM of controller system.

• Save to Flash ROM saves the trajectory file that is stored in RAM into Flash ROM of the

controller system. When a trajectory file has been sent to the RAM and its trajectory has

been run well then it can be stored into flash ROM to keep it reside in the controller system

permanently.

• Save stores current trajectory file to the PC storage as a Microsoft Excel file format.

4.5 Simulation

This menu acts as a tool to simulate the trajectory file before loaded in the real controller system. It

is highly recommended to do a simulation by this tool to guarantee that the trajectory file will drive

the robotic arm following the desired pattern properly. Figure 4.13 shows the state machine diagram

of simulation menu whereas Figure 4.14 shows its screenshot display.

71

Figure 4.13: The state machine diagram of simulation menu

• Command is a panel to control the simulation status. Run button and Stop button are used

to begin and stop the simulation respectively. Run button only available when the simulated

trajectory file has been loaded.

• Simulation Speed is used to tune the speed of robotic arm motion in simulation.

• Camera View varies the way of view in many styles. Three basic views: top view, front view and

side view are available. It also can be tuned manually by adjusting the value in each parameters

such as azimuth, elevation and distance.

Figure 4.14: Inverse kinematics simulation with IDE Delphi

CHAPTER V

TEST AND EXPERIMENT RESULTS

5.1 End-point Position Calibration

This experiment is purposed to calibrate the end-point position of the robotic arm by comparing a

targeted position and the real one obtained from measurement. Because a specific tool to measure the

real position is not available then the real position is measured by the method described below.

Figure 5.1: End-point measurement method

Suppose a base point O (0,0,0) and three auxiliary points with known coordinate are given:

point A (a,0,0), point B (0,b,0) and point C (0,0,c) as shown in Figure 5.1. Any point P with

coordinate (x,y,z) can be known by measuring the distance between point P and each point of O, A,

B and C namely do, da, db and dc. There are four equations that represent each of those distance as

in (5.1) to (5.4).

x2 + y2 + z2 = do2 (5.1)

(x− a)2 + y2 + z2 = da2 (5.2)

73

x2 + (y − b)2 + z2 = db2 (5.3)

x2 + y2 + (z − c)2 = dc2 (5.4)

By substituting equation (5.1) into equation (5.2), (5.3) and (5.4) it yields:

∆x =
da2 − do2 − a2

−2a
(5.5)

∆y =
db2 − do2 − b2

−2b
(5.6)

∆z =
dc2 − do2 − c2

−2c
(5.7)

Practically, we use O=[46 37 0]T , A=[268 37 0]T , B=[46 − 37 0]T , and C=[46 37 49]T in

this measurement. Therefore we have variables of a, b and c are 222, −74 and 49 respectively. Using

equation (5.5), (5.6) and (5.7) we obtain the measured end-point position P by formula in (5.8). Table

5.1 shows the complete measurement results for this experiment.

P = O +

 ∆x
∆y
∆z

 (5.8)

Table 5.1: End-point measurement results in cm unit
Target Point Measurement Measured Point Error

xd yd zd do da db dc xm ym zm x y z

180 0 170 220 220 185 193 182.11 0 169.14 -2.11 0 0.85
180 -60 170 238 218 206 213 182.39 -61.62 169.47 -2.39 1.62 0.52
180 60 170 218 238 183 190 182.72 61.62 167.71 -2.72 -1.62 2.28
190 0 170 226 226 192 188 192.43 0 169.52 -2.43 0 0.47
190 0 150 212 212 180 171 192.36 0 152.5 -2.36 0 -2.5
190 0 120 194 194 168 149 191.76 0 120.54 -1.76 0 -0.54
190 0 80 170 170 154 115 192.30 0 77.39 -2.30 0 2.60
160 0 170 208 207 171 202 162.54 -2.80 167.59 -2.54 2.80 2.40
140 0 170 197 197 157 214 141.26 0 165.77 -1.26 0 1.01
170 0 170 213 213 176 197 171.77 0 171.36 -1.77 0 -1.36

74

5.2 Analog Board Tests

These experiments test whether the analog board has worked properly or not. The experiment setup

is shown in Figure 5.2.

Figure 5.2: The circuit for matching the ADC and DAC level

The first test is done by generating sinusoidal and sawtooth waveform independently. Microb-

laze is programmed to produce digital values represent the sinusoidal and sawtooth waveform. Those

signals then converted into analog signal by DAC part which is composed of PWM generator, filter

and amplifier circuit. Analog signals at point A are observed by oscilloscope. The results are shown

in Figure 5.3 and 5.4.

Figure 5.3: Generating sinusoidal waveform

75

Figure 5.4: Generating sawtooth waveform

The second test is done by looping back the signal that has been generated by DAC part into

ADC part. Both of DAC and ADC values are recorded by a PC and displayed in the screen. Since the

DAC level (-12 V to +12V) is unequal to the ADC level (0V to +5 V), it needs an adjustment to make

it works at proper operation point for each. Figure 5.2 is a simple voltage divider circuit that can be

used for this purpose. By choosing R1= 6.8 KOhm and R2=5 KOhm it can adjust the DAC level (-12

V to +12V) to the lower level (-5 V to +5 V). The diode D1 is functioned to protect the negative level

so that it only has 0 V to +5 V level which is match with the ADC level. Figure 5.5 and 5.6 show the

test results. The red line is the DAC data whereas the blue line is the ADC data.

Figure 5.5: ADC and DAC looping back test with sawtooth waveform

76

Figure 5.6: ADC and DAC looping back test with triangle waveform

5.3 Inverse Kinematics Simulation

Figure 5.7 and Figure 4.14 show the simulation of inverse kinematics using Matlab and Delphi. Those

simulation demonstrate how the robotic arm move following a given trajectory pattern in Cartesian

coordinate.

Figure 5.7: Inverse kinematics simulation with Matlab

77

5.4 Playback Tests

In order to observe the controller performance, we also test the robotic operation at playback mode.

Firstly, a sequence of targeted positions in Cartesian coordinate is specified. In this experiment we

specify a sequence of points forming a square pattern. By using trajectory generator menu, the cor-

responding trajectory file is then generated. After being simulated by simulation tool, finally the

trajectory file is transferred to the controller system and the controller is operated based on the given

trajectory file. Figure 5.8 shows the experiment result. The red-line square represents the ideal trajec-

tory pattern whereas the blue-line square represents the real trajectory pattern.

Figure 5.8: Playback test result

5.5 Servo Valves Model

The servo valve in every axis is identified using Recursive Least Square (RLS) Algorithm. Square

signals is given as the inputs and the outputs are recorded as shown in Figure 3.14. The estimate

model has structure as shown in (3.70). Complete estimated models of the six servo valves are shown

in Table 5.2.

78

Table 5.2: Estimate Model of Servo Valves
Estimate Model

Axis A(z−1) B(z−1)

1 1− 1.4825z−1 + 0.4821z−2 −0.0026z−1 − 0.0116z−2

2 1− 1.6972z−1 + 0.6973z−2 −0.0008z−1 − 0.0036z−2

3 1− 1.715z−1 + 0.715z−2 −0.0011z−1 − 0.026z−2

4 1− 1.7023z−1 + 0.7023z−2 −0.0003z−1 − 0.0039z−2

5 1− 1.7339z−1 + 0.7339z−2 −0.0006z−1 − 0.0043z−2

6 1− 1.9267z−1 + 0.9268z−2 −0.0004z−1 − 0.0011z−2

5.6 Controller Coefficient

The PID controller structure is described in Figure 2.4 (b). By solving (3.77) and (3.83), the controller

coeficients of R(z−1), S(z−1) and T (z−1) are obtained as shown in Table 5.3.

Table 5.3: Controller Coefficient
Axis Controller Coefficient

R(z−1) 1− 1.7354z−1 + 0.7354z−2

1 S(z−1) −6.8755 + 11.5107z−1 − 4.7479z−2

T (z−1) −0.1127

R(z−1) 1− 1.201z−1 + 0.201z−2

2 S(z−1) 6.243− 14.678z−1 + 8.365z−2

T (z−1) −0.072

R(z−1) 1− 1.6984z−1 + 0.6984z−2

3 S(z−1) −12.1557 + 20.7115z−1 − 8.6927z−2

T (z−1) −0.1368

R(z−1) 1− 1.5041z−1 + 0.5041z−2

4 S(z−1) −21.4533 + 35.3147z−1 − 14.2424z−2

T (z−1) −0.381

R(z−1) 1− 1.478z−1 + 0.478z−2

5 S(z−1) −19.8371 + 33.1837z−1 − 13.6731z−2

T (z−1) −0.3265

R(z−1) 1− 1.501z−1 + 0.501z−2

6 S(z−1) −69.3273 + 127.8178z−1 − 58.978z−2

T (z−1) −0.1492

79

5.7 Controller Performance

The performance of PID controller at every axis is shown in Figure 5.9. Step input is employed to

observe the PID controller performance individually. Solid line curve is the response of PID controller

from simulation based on the estimate model obtained by identification whereas dotted line curve is

the measured response of PID controller from the experiment. Figure 5.10 shows the error curves,

that is the difference between measured values and reference values.

Figure 5.9: PID controller performances

80

Figure 5.10: The error curves

Figure 5.11 shows the end-point error curves when it moves in every axis. Experiments were

done by moving the end-point position for every axis individually. The positions are moved re-

spectively from (191,6,149) to (189,23,149), (154,0,206) to (124,0,233), (180,0,135) to (187,0,121),

(173,0,134) to (161,0,132), (191,1,148) to (187,-11,148) and (180,0,135) to (187,0,121).

81

Figure 5.11: The end-point position error curves

82

5.8 Hardware Synthesis

Table 5.4 shows the synthesis report of the device utilization.

Table 5.4: Device utilization summary
Item Number Percentage

Number of Slices 3149 out of 3584 87

Number of Slice Flip Flops 3670 out of 7168 51

Number of 4 input LUTs 4283 out of 7168 59

Number of bonded IOBs 35 out of 97 36

Number of BRAMs 8 out of 16 50

Number of MULT18X18s 3 out of 16 18

Number of GCLKs 8 out of 8 100

Number of DCMs 2 out of 4 50

5.9 Demonstration Video

In order to show the experiment results on controlling the robotic arm clearly, demonstration videos

were taken. These videos are also shared to public at http://www.youtube.com/user/arumdapta98.

5.10 Hardware Assembly

Figure 5.12 to 5.14 show the developed hardwares to realize the controller system.

Figure 5.12: The developed hardware of controller system based on FPGA

83

Figure 5.13: The developed hardware of controller system based on microcontroller

Figure 5.14: The assembled hardware

CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 Discussion

This section discuss some experiment results both hardware and software as depicted in chapter 5.

6.1.1 Hardware

In this work, a 6-axis robotic arm controller is developed. Each axis has its own 2-DOF PID con-

troller which control each servo valve at every axis independently. A 32-bit RISC soft-core processor

(microblaze) with some peripherals and custom peripherals are constructed to realize those controller

on a FPGA chip. The device utilization summary of hardware synthesis for controller implementation

on Xilinx FPGA XC3S400 is shown in Table 5.4. From this table it looks that the developed hardware

spends 87% of total resources provided by Xilinx FPGA XC3S400. The two biggest procentage of

resource usage is allocated for custom peripheral and microblaze circuit which spend 21% and 19%

respectively. The 47% procentage left is allocated for other peripherals such as timer/counter, SPI,

UART, I/O etc. Custom peripheral is a dedicated 6 PWM generators and 6 SPI readers. This periph-

eral is designed to handle a specific job that is generating PWM signal and reading SPI data input.

Using this costum peripheral we can save much more resources compare to when we use general 6

timer/counter and 6 SPI peripheral to handle the same job. This can reduce resources usage from 96%

to only 21%.

The main clock of the controller system is driven by an external 25 MHz source clock. The mi-

croblaze processor clock, bus clock and most of peripheral clock use this 25 MHz source clock. Only

PWM generator peripheral which uses 100 MHz source clock. This clock is obtained by multiplying

the 25 MHz source clock 4 times through Digital Clock Manager. PWM generator needs faster clock

because the faster clock is used the better analog output is produced.

Analog Board is an external device which needs more attention on hardware readiness test

compare to other external devices such as I/O board and power supply board. Basically, analog board

test consist of two tests: DAC test and ADC test. The DAC test can be done by generating any signals

such as square, sawtooth, triangle or sinusoidal waveform then observe the analog output through

oscilloscope. Whereas the ADC test is done by providing certain analog signal then read and display

it on PC. Figure 5.3, 5.4, 5.5 and 5.6 results show that the analog board has work properly. It can

produce analog signal through DAC and read analog signal through ADC satisfically.

A specific test is also done to check the performance of low pass filter circuit. Figure 3.31

shows that the frequency response and phase response of the designed filter has satisfied response as

desired one in section 3.5.2.3.

85

Finally an overall hardware test is conducted to ensure that all hardwares are ready to use. The

overall test and some partially tests above show that the designed hardwares are work well and ready

in use. Unfortunately, those hardware never have tried to control the robotic arm in real because

of the limited time on working schedule. However the 2-DOF PID controller design ever tried and

implemented on microcontroller at preliminary work. The result as shown in Figure 5.9 has proved

that the designed controller work properly even using microcontroller. Therefore we are sure that

those designed controller will work properly as well if it is implemented on the FPGA based.

6.1.2 Controller

An inverse kinematics simulation must be performed before loading and running the trajectory file

at the controller system. In this experiments, 3 kind of trajectory files are generated and simulated:

square pattern, triangle pattern, and zig-zag pattern. To generate this trajectory files, some points

must be defined previously in Cartesian coordinate by an operator. For example, points P1(160,-

50,180), P2(160,-50,130), P3(160,50,130) and P4(160,50,180) are determined as a via points to gen-

erate square trajectory pattern in cm unit length. Every 5 cm movement in any direction, the Cartesian

coordinate will be converted into Polar coordinate using closed-form inverse kinematics formula as

given in 3.44 to 3.57. An polar to digital conversion then is employed to convert the corresponding

Polar coordinate into digital value. Finally, the sequence of the digital value are stored in a Microsoft

Excel format namely trajectory file.

This simulation is required to guarantee that the trajectory file can drive the robotic arm move

following the desired pattern properly. By assuming that the controller performance is ideal, this

simulation provides a good enough testing tool represents the real motion of robotic arm. Chosen

trajectory file then can be loaded, ran and stored in the controller system safely. Figure 5.7 and 4.14

show an example of this simulation. It looks that desired trajectory file could drive the robotic arm

satisfically.

Having generated and simulated, the trajectory file is loaded into controller system. Now it is

the controller responsibility to drive the robot so that the angle in every axis following the sequence

values in the trajectory file. The performance of 2-DOF PID controller in each axis is shown in

Figure 5.9. Step input is employed to observe these performance individually and independently.

Solid line curve represents the response of the controller system from simulation which is simulated

by the model obtained from identification whereas dotted line curve represents the real response of

the controller system which is obtained from. From this figure it looks that the controller responses

both from simulation and from experiment resemble one another. It means that the estimate model of

the servo valves are closed enough to the real model.

Controller error, that is the difference between measured angle and the reference input in each

axis, is less than 6 (digital value) or less than 0.5o at steady state condition as shown in Figure 5.10.

End-point error is the difference between the targeted position and the measured position in Cartesian

coordinate. The measured end-point error is less than 3 cm as shown in Table 5.1. This error is

also proven by experiment result as shown in Figure 5.8. The error yielded by that experiment (the

86

difference between the real square pattern at playback mode and the ideal one) is less than 1.5 cm.

This error can be said small enough when this error can be tolerated and acceptable such that the

painting target do not need rework.

As shown in Figure 5.9, the axis-2 requires much more time to reach steady state. Most axes

require 10 up to 30 sampling time to be stable. Only axis-2 that requires more than 100 sampling

time or equal with more than 1 second to achieve the steady state. From the experiments, axis-2 can

not be forced to reach the reference too fast. If this is done, it yields oscillation and it never be stable.

This problem is happened because the center of mass of the whole machine, i.e weight of the robot

is on this axis, hence the velocity of this axis is not directly proportional to the DC component of the

servo valve. PID controller will think that the weight is the disturbance of the system i.e that have not

formulated in the model. Moreover when the angle of the axis changes, the center of mass moves and

the force that counter weight changes too. It mean that the model may change dependent on the angle

at a particular time. Therefore we have to choose slower rise-time for this axis.

6.2 Conclusions

This work is conducted to develop an embedded system of 6-axis robotic arm controller. This means

that both hardware and software are designed here. The controller system itself is integrated and

embedded in a single chip. This is usually called a system on chip. Xilinx FPGA XC3S400 is chosen

to implement that controller system because its features satisfy the requirement and its price is so

cheap.

The angle of robotic arm in every axis is measured from the potentiometer attached in every

joint. It then be converted from analog value to digital value by ADC part. This measured angle in

digital value will be compared with reference values. The difference between measured value and the

reference value, namely error, is proceeded by PID algorithm to produce control signal. This control

signal is then used to drive the servo valve of robotic arm such that the angle in every joint following

its reference value.

To design proper PID controller, the servo valves were identified. The estimate model of servo

valves and the PID controller are simulated using matlab tool. After it satisfied the desired speci-

fication, the controller is then implemented on microcontroller. Finally, the microcontroller will be

replaced by FPGA. Experiment results show that the designed controller has worked very well.

A set of formulas were developed to solve the inverse kinematics problem. With some con-

straints such as by keeping the end-point orientation constant, the inverse kinematics problem can be

solved with closed-form method. This method has been worked correctly as shown in the simulation

and the experiment results.

In this work, a GUI user application software is developed as well. This GUI application soft-

ware can be used to setup and control the robotic arm controller system interactively. Through this

GUI application software, an operator can command the robot easily. Some interactive menus are de-

signed as easy as possible to use. Moreover, with its user-friendliness it can increase the productivity

because the operator can modify and adjust anything regarding the robotic arm operation easily and

87

quickly.

6.3 Suggestion for future work

In this work, we have not considered about the disturbance effect against the servo valves model. As

mentioned in the discussion session, particularly in axis-2, its models may change depend on the end-

point position. When its model change too much, it makes the PID controller unstable and oscillate.

Therefore other identification methods which include the disturbance variable could be considered in

the future future work to get better estimate model and to get better controller performance. Adap-

tive controllers such as MRAC or repetitive-path optimization are other points that can be further

considered.

REFERENCES

[1] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. Canada: John Wiley & Sons. 1989.

[2] R. Kelly, V. Santibazez, and A. Loria. Control of Robot Manipulators in Joint Space. London:

Springer. 2005.

[3] S. Kucuk and Z. Bingul. The inverse kinematics solutions of industrial robot manipulators. in Pro-

ceedings of the IEEE International Conference on Mechatronics. (2004): 274-279.

[4] B. Naticchia, A. Girreti, and A. Carbonari. Set up of an automated multi-colour system for interior

wall painting. International Journal of Advanced Robotic Systems. 4. 4. (2007): 407-416.

[5] Y. S. Kim, M. yung, H. ung, Y. K. Cho, J. Lee, and U. Jung. Conceptual design and feasibility

analysis of a robotic system for automated exterior wall painting. International Journal

of Advanced Robotic Systems. 4. 4. (2007): 417-430.

[6] F. You and G. Shao. Painting brush control techniques in chinese painting robot. in IEEE Interna-

tional Workshop on Robots and Human Interactive Communication. (2005): 462-467.

[7] Toxico. Painting Robot Maintenance Manual. Toxico Ltd. 1987.

[8] Toxico. Standard Electric Connection Instruction of TOXICO Spray Painting Hydroulic Robot Sys-

tem. Toxico Ltd. 1987.

[9] Toxico. Software Robotic. Toxico Ltd. 1990.

[10] S. Y. J. Xie and W. Qiang. A method for solving the inverse kinematics problem of 6-dof space

manipulator. in International Symposium on Systems and Control in Aerospace and As-

tronautics ISSCAA. (2006): 382.

[11] G. Z. Grudic and P. D. Lawrence. Closed-form inverse kinematics solver for reconfigurable robots.

in IEEE International Conference on Robotics and Automation. (2001): 2395-2400.

[12] M. Zoppi. Effective backward kinematics for an industrial 6r robot. in IASME Design Engineering

Technical Conferences Computers and Information. (2002): 1-7.

[13] G. Z. Grudic and P. D. Lawrence. Iterative inverse kinematis with manipulator configuration. in

IEEE Transactions on Robotics and Automation. (1993): 476-483.

[14] Y. S. Kung, K. H. Tseng, C. S. Chen, H. Z. Sze, and A. P. Wang. Fpga-implementation of inverse

kinematics and servo controller for robot manipulator. in IEEE International Conference

on Robotics and Biomimetics. (2006): 1163-1168.

89

[15] D. G. Bihn and T. C. S. Hsia. Universal six-joint robot controller. in IEEE Control Systems Magazine.

vol. 8. (1988): 31-36.

[16] A. Bejo and W. Pora. An improvement of the end-point error for multiple-axis robotic arms using

the lms algorithm. in 31st Electrical Engineering Conference (EECON-31). (2008): 807-

810.

[17] A. Bejo, W. Pora, and H. Kunieda. Development of a 6-axis robotic arm controller implemented on a

low-cost microcontroller. in Electrical Engineering/Electronics, Computer, Telecommu-

nications and Information Technology Conference 2009 (ECTI-Con 2009).

[18] R. S. G. Honegger and M. Brega. Application of a nonlinear adaptive controller to a 6 dof paral-

lel manipulator. in IEEE International Conference on Robotics and Automation. vol. 2.

(2000): 1930-1935.

[19] A. Bejo and W. Pora. Combination of model reference adaptive control and least mean square al-

gorithms for robotic arm controllers. in Asia International Sysmposium on Mechatronics.

(2008): 235-238.

[20] J. Olawale, A. Oludele, A. Ayodele, and N. M. Alejendro. Development of a microcontroller based

robotic arm. in Proceedings of the 2007 Computer Science and IT Education Conference.

(2007): 549-557.

[21] K. S. Fu, R. C. Gonzalez, and C. Lee. Robotics: Control, Sensing, Vision, and Intelligence. Mcgraw-

Hill Book Company. 1987.

[22] L. Ljung. System Identification: Theory for the User, 2nd ed. Prentice-Hall. 1999.

[23] Y. Zhu. Multivariable System Identification for Process Control. Netherlands: Pergamon. 2001.

[24] K. M. Moudgalya. Digital Control. John Wiley and Sons, Ltd. 2007.

APPENDIX

Flowchart Diagram of GUI User Application Software

1. Communication Setting

91

2. Movement Control

92

3. Command in System Identification

93

4. Command in Teaching Mode

5. Data Record

94

6. Input Signal

7. Mode Selection

95

8. PID Control

9. Power Control

96

10. Setup Controller

97

11. Trajectory Control

98

12. Trajectory Generator

99

13. Simulation Speed

14. Command in Simulation

100

15. Camera View

101

Biography

Agus Bejo was born in Sleman, Indonesia, in 1980. He entered Gadjah Mada University, Indonesia
in 1998 and received his Bachelor’s degree majoring in Electrical Engineering in 2003. He joined LG
Electronics Company as a research and development staff in 2003. In the end of year 2005, he decided
to revert to Gadjah Mada University as a faculty staff. Since 2007, he has been granted a scholarship
from the AUN/SEED-Net to pursue his Master’s degree in Electrical Engineering Department at
Chulalongkorn University, Thailand. Now He is a member of Embedded System and Digital IC
Design Laboratory, Chulalongkorn University. His current research is related to the design a system
on chip of robotic arm controller.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Introduction
	1.2 Literature Review
	1.3 Objectives
	1.4 Scope of Thesis
	1.5 Methodology
	1.6 Contributions
	1.7 Publications

	CHAPTER II BASIC THEORY AND PROPOSED METHODS
	2.1 Robot Kinematics
	2.2 System Identification Method
	2.3 Control Design Method

	CHAPTER III IMPLEMENTATION, HARDWARE AND SOFTWARE DESIGN
	3.1 Closed-form Solution of Inverse Kinematics
	3.2 Trajectory File Generator
	3.3 System Identification
	3.4 Controller Design
	3.5 Hardware Design
	3.6 Software

	CHPTER IV GUI USER APPLICATION SOFTWARE
	4.1 Controller System
	4.2 Identification System
	4.3 Teaching Mode
	4.4 Trajectory Generator
	4.5 Simulation

	CHAPTER V TEST AND EXPERIMENT RESULTS
	5.1 End-point Position Calibration
	5.2 Analog Board Tests
	5.3 Inverse Kinematics Simulation
	5.4 Playback Tests
	5.5 Servo Valves Model
	5.6 Controller Coefficient
	5.7 Controller Performance
	5.8 Hardware Synthesis
	5.9 Demonstration Video
	5.10 Hardware Assembly

	CHAPTER VI DISCUSSION AND CONCLUSIONS
	6.1 Discussion
	6.2 Conclusions
	6.3 Suggestion for future work

	References
	Appendix
	Vita

