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CHAPTER I

Introduction

Frustrated two−dimensional spin models have been the subjects of interest

in condensed matter physics. They play an important role in the study of phase

transitions in a wide range of physical systems. Some interested models in the last

two decades are the fully frustrated XY (FFXY ) model [1−15] and the frustrated

antiferromagnetic XY (FAXY ) model [5, 14, 20−23]. These models describe an

array of Josephson junctions under an external magnetic field [2, 16] and discotic

liquid crystals [17]. Another version of frustrated models is the frustrated anti-

ferromagnetic six−state clock model which describes the orientational ordering of

CF3Br monolayers physisorbed on graphite [18, 19].

The frustrated models have a continuous U(1) symmetry as a non−frustrated

XY model [25] and an additional discrete reflection Z2 symmetry or a chiral sym-

metry as the Ising model. These symmetries can be broken at critical temperatures

through the Kosterlitz−Thouless (KT ) transition and an Ising−like transition, re-

spectively. The existence of this additional Z2 symmetry due to the chirality of

the system induces degenerate states of the system and complex structures at low

temperatures.

There are two important questions for the nature of the frustrated system.

First, the KT transition and the Ising−like transition occur at the same critical

temperature or at two separate critical temperatures. Second, the Ising−like sym-

metry breaking transition belongs to the Ising universality class or a non−Ising

universality class. Since, a lot of results from both theoretical and simulation

studies in these models [2−15, 18−23, 26−28] have had no consensuses. Some re-
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sults show that two symmetry breaking transitions occurred at a single transition

temperature [3−5, 13, 21] depending on some parameters [4, 7]. Moreover, the

Ising−like transition was found that it may not belong to the Ising universality

class [5−9, 11−15, 19, 22, 26, 27].

On the other hand, two separate transition temperatures were found [6,

9−11, 14, 15, 18, 19, 22, 27, 28], the KT transition occurs slightly lower than the

Ising−like transition, TKT < TI . Furthermore, the Ising behavior was also found

[2], the asymptotic behavior of the specific heat followed the logarithmic behavior

rather than a power law decay which was found in those models. This behavior

appears when a system size is greater than a critical system size [18] corresponding

with the Olsson’s argument [10].

In this thesis, we investigate phase transitions of the frustrated antiferro-

magnetic XY (FAXY ) model on a triangular lattice. By using the Monte Carlo

simulation method associated with the Metropolis algorithm, we study the be-

havior of the frustrated system at the critical temperatures and near the critical

temperatures. This thesis is organized as follows. Chapter 2, we provide back-

ground knowledge and related theory about the spin system. In Chapter 3, we

will give the simulation details of this work. Our results are shown in Chapter 4.

Also, the inconsistency in the behavior of the frustrated system will be discussed

in this Chapter. Finally, our results will be concluded in Chapter 5.



CHAPTER II

Theoretical Aspects

2.1 Phase transitions

In physical systems, phase transitions can be predicted by the thermodynamic

potential such as the free energy. It occurs when there is a singularity in the

free energy or one of its derivatives. If the first derivatives of the free energy, for

example, the order parameter, are discontinuous at the critical temperature Tc,

the transition is termed first order. The most common example corresponding to

this transition is a liquid−solid transition which has a discontinuous change in the

density which is the order parameter of the system.

For second order phase transitions, if the first derivatives are continuous but

second derivatives are discontinuous or infinite, the transition will be described as

a higher order, second order or critical. This type of the transition corresponds to

a divergence of the susceptibility, an infinite correlation length, and a power law

decay of correlation functions. In the magnetic system with a zero external field,

it refers to the magnetization which varies continuously from zero in a disordered

state (paramagnet) to a finite value in an ordered state (ferromagnet or antiferro-

magnet) through the critical temperature. At this temperature, the specific heat

and the magnetic susceptibility also approach infinity. The order parameter which

plays an important role of a phase transition must separate the order phase from

the disorder phase, so it will be defined consistently. The order parameter is de-

fined differently in different kinds of physical systems. In a magnetic system it

indicates the spontaneous magnetization [29].
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To illustrate the idea of phase transitions, we use a simple ferromagnet in

presence of the magnetic field. In figure 2.1(a) shows the phase diagram of this

system, there is a line of the first−order transition along H = 0 which ends at a

critical point at T = Tc. The broken lines 1 (T < Tc), 2 (T = Tc) and 3 (T > Tc)

represent the field dependence of the free energy and its field derivatives, the

magnetization and the susceptibility, at constant temperatures. The lines 4 (H >

0), 5 (H = 0) and 6 (H < 0) represent the temperature dependence of those

parameters at the constant field. The free energy of the system is shown in figure

2.1(b), it is symmetric about H = 0. For T < Tc, there is a signal of discontinuity

of its derivative, the magnetization M , respected to the field at H = 0. Clearly,

in figure 2.1(c), the magnetization becomes discontinuous at H = 0 for T < Tc,

but for T > Tc, it varies continuously. At T = Tc, the magnetization has a

continuous change; however, it has an infinite slope associated with the divergence

of the susceptibility at H = 0. Next, the isothermal susceptibility χT , which is

the first derivative of the magnetization respected to the field, is shown in figure

2.1(d). For T 6= Tc, the finite susceptibility varies continuously, but for T = Tc,

the susceptibility diverges at H = 0. It corresponds to the second−order phase

transition at H = 0.

Note that, it only has first− and second−order phase transitions when the

system passes along path 5 which has the zero field. The figure 2.1(e) and 2.1(f)

show variations of the magnetization and the susceptibility with the temperature

at the constant field referring to path 4, 5 and 6. The temperature dependence

of the magnetization is shown in figure 2.1(e). For H 6= 0, the magnetization

increases smoothly with decreasing the temperature and approaches to its satura-

tion value at T = 0, in which all spins align in the direction of the field. If H > 0,

the magnetization is positive and vice versa. For H = 0 and T > Tc, the spins

align in both directions equally, up and down, so it has the zero magnetization in

this region. At the critical temperature, the correlation length becomes infinity,

so an infinitely small field can induce the spins to align in the only one direction.

The magnetization increases from zero at T = Tc to a finite value below Tc and
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Figure 2.1: A simple phase diagram of a ferromagnet (a), the field dependence of

the free energy and its derivatives (b), (c) and (d), and the temperature depen-

dence of its derivatives (e) and (f).
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approaches to its saturation value at T = 0. The final state of the magnetiza-

tion depends on an infinitely small field at T = Tc. The positive magnetization

corresponds to a positive field and vice versa.

Finally, the temperature dependence of the susceptibility is shown in figure

2.1(f). For H 6= 0, the susceptibility varies continuously at all temperatures and

it has a peak at T = Tc. For H = 0, the peak of the susceptibility at T = Tc

becomes infinity due to the infinite slope of the magnetization at T = Tc as shown

in figure 2.1(e).

According to a study of phase transitions, the most studied subject is how

the system behaves near the critical temperature or at the critical temperature.

Interestingly, when the temperature is near the critical temperature the thermody-

namic functions can be usually described as some power law which can be written

as

F (t) ∼ tλ, (2.1)

when F (t) is a thermodynamic function, λ is a critical exponent and t = (T −
Tc)/Tc is a reduced temperature which plays a central role of the temperature.

The ∼ sign in Eq. (2.1) only represents the asymptotic behavior of the function

F (t) as t → 0 [29]. This behavior will be described later in the next section.

2.2 The FAXY model

We investigate phase transitions of the frustrated antiferromagnetic XY (FAXY )

model on a triangular lattice. This model is expected to have the same behavior as

the FFXY model on the square lattice [24]. It has a continuous U(1) symmetry

and an additional discrete Z2 symmetry corresponding to the spins and the stag-

gered chirality, respectively. The FAXY model is shown in figure 2.2, each spin

lies on a lattice site with six−nearest neighbor spins and it can rotate continuously

on the plane. The magnitude of the spins is a constant which usually equals to

one. The arrow heads represent the spin directions and the color cycles refer to
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Figure 2.2: The FAXY model on a triangular lattice of L = 6 × 6 lattice sites.

The arrows represent spins and the colors represent spins in sublattices A, B and

C.
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the spins in sublattice sites. We divide the lattice into three sublattices because

this system requires that the net magnetization is canceled both above and below

the critical temperature. However, the nature of the order of the system in both

regions is different. Above the critical temperature the spins lie in all directions

randomly, so the system is said to be a disordered state. While, at below the

critical temperature the spins can lie in some directions, then the system is said

to be an ordered state. For this reason, we also use the magnetization of one of

these sublattices to define order parameters which indicate the order of the system.

Note that, the spin configuration in the figure only appears in a ground state due

to the spins in the same sublattice align in the same direction. The Hamiltonian

of the system in a zero field can be written as

H = −J
∑

〈i,j〉

~Si · ~Sj , (2.2)

when J is the exchange energy. It is negative for antiferromagnet and positive for

ferromagnet. We shall use 〈i, j〉 to denote a sum over nearest neighbor spins. The

spin ~Si is a classical spin variable and it has a continuous rotation on that plane.

Eq. (2.2) can be written as

H = −J
∑

〈i,j〉

cos(θi − θj), (2.3)

when |~Si| equals to one. Here θi is an angle of spin i respected to an arbitrary

direction lying on that plane. The Hamiltonian of the system in Eq. (2.3) only

depends on the angle between the spins, so the Hamiltonian of the system is

invariant under the rotation.

2.2.1 Frustration

Normally, spins lie themselves in a direction which provides the minimum energy.

For example, the two−dimensional Ising model on the square lattice, spins lie in

the same direction for a ferromagnet and lie in the antiparallel direction against

nearest neighbor spins for an antiferromagnet. However, there are some models
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Figure 2.3: A low temperature state of non−frustrated spin models (a), (b) and

(c), and the frustrated spin model (d).

that have degenerate states corresponding to shapes of lattices and the exchange

energy of the system. One of these models is the FAXY model which has degen-

erate states at low temperatures. It means that some spins have more than one

possibility of choosing their positions. The states which have the same minimum

energy are identical for the spins, so these models are called frustrated models and

this characteristic is called ‘frustration.’

To illustrate the frustration, we use the FAXY model compared to non−
frustrated models as shown in figure 2.3. In figure 2.3(a) and 2.3(b) show the

ferromagnetic and antiferromagnetic models on the square lattice, respectively.

While in figure 2.3(c) and 2.3(d) show the ferromagnetic and antiferromagnetic

models on the triangular lattice. Clearly, in the figure 2.3(a), 2.3(b) and 2.3(c) are

the non−frustrated models whereas in the figure 2.3(d) is a frustrated model. For

the non−frustrated models, when the dark color spins align in the directions as

shown in the picture, the light color spins have the only one direction corresponding

to the minimum energy of the state. But for the frustrated model or in the figure

2.3(d), if directions of the dark color spins align in the directions, the light color



10

spin can lie in two directions which have the same minimum energy. This behavior

directly affects the spin configurations and it also creates complex structures at

low temperature states.

2.3 Thermodynamic parameters

For a system is in an equilibrium state, the essential information is kept in a

partition function. The general form of the partition function for a classical system

is written as [29, 30]

Z =
∑

µ

e−Eµ/kBT , (2.4)

when Eµ is the energy of state µ, T is the temperature and kB is the Boltzmann

constant. The sum in Eq. (2.4) is over all possible states of the system and it

depends on the size of the system and the number of degrees of freedom for each

particle. The probability of the system occupying any particular state is also

determined by the partition function. Therefore the probability that the system

is in state µ is given by

Pµ =
1

Z
e−Eµ/kBT . (2.5)

The average of a given thermodynamic parameter A can be written as the sum

over all microstates in phase space and weighted according to Eq. (2.5) as

〈A〉 =
1

Z

∑

µ

Aµe−Eµ/kBT =
∑

µ

PµAµ. (2.6)

The first thermodynamic parameter is the energy of the system which can be

written as

〈e〉 =
1

N
〈E〉, (2.7)

where N is the total spin in the system and 〈...〉 sign denotes an average over all

states. Note that, the energy of the system in Eq. (2.7), actually, is the energy per

spin. The order parameter of the system is the sublattice magnetization which is

given by

〈mA〉 =
3

N
〈MA〉, (2.8)
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Figure 2.4: The shaded triangles refer to triangles i, the up− and down− triangles

i are denoted by △i and ▽i.

when MA is the net magnetization in A sublattice defined by

MA =

∣

∣

∣

∣

∣

∑

i∈A

~Si

∣

∣

∣

∣

∣

, (2.9)

where the sum runs only over the sites in the A sublattice, also 〈mB〉 and 〈mC〉
are defined analogously. Although the magnetization is a vector quantity we are

only interested in the magnitude of the magnetization to indicate the spontaneous

symmetry breaking. The 〈mA〉 plays a role of the order parameter for the U(1)

symmetry breaking transition. For the FAXY model, the system has an addi-

tional Z2 symmetry, so it is necessary to define the order parameter to indicate

the Z2 spontaneous symmetry breaking. The order parameter can be defined by

using the chirality of each elementary triangle which is written as

h△i,▽i
=

2

3
√

3
[sin(θm − θl) + sin(θn − θm) + sin(θl − θn)] , (2.10)

where △i and ▽i denote up− and down−triangles i as shown in figure 2.4, and

h△i
is the chirality of up−triangle i. If we look at the up−triangle i, the indexes

l, m and n in Eq. (2.10) refer to spins l, m and n for the chirality of up−triangle

i. The chirality of down−triangle i can be defined in the same manner. The θl is

the angle of spin l respected to an arbitrary direction and it is different between

up− and down−triangles. The order parameter for the Z2 symmetry breaking

transition is the staggered chirality, 〈h〉. The staggered chirality defined by the
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chirality can be written as

〈h〉 =
1

2N

〈

∑

i

(h△i
− h▽i

)
〉

. (2.11)

The staggered chirality in Eq. (2.11) can be either positive (+1) or negative (−1)

at the ground state and it also has the zero chirality at high temperature states.

The other interesting parameters related to the fluctuation of the energy

and the magnetization are the specific heat and the isothermal susceptibility. The

specific heat defined from the energy fluctuation relation is given by

cV =
N

kBT 2
(〈e2〉 − 〈e〉2). (2.12)

The magnetic susceptibility from the magnetization fluctuation relation is also

defined in the same manner as

χ =
N

kBT
(〈m2

A〉 − 〈mA〉2). (2.13)

To determine the critical temperatures, we use the Binder cumulants or the re-

duced fourth order cumulants [31, 32] defined by

Bm = 1 − 〈m4
A〉

3〈m2
A〉2

, (2.14)

Bh = 1 − 〈h4〉
3〈h2〉2 . (2.15)

Bm is the Binder cumulant that can be used to identify U(1) symmetry breaking

transition for the magnetization and Bh is the Binder cumulant that can be used

to identify Z2 symmetry breaking transition for the chirality. These quantities are

obtained by considering the probability distributions of the order parameters in

higher orders of cumulants (see Appendix B). The Binder cumulants depend on

the system sizes and temperatures both above and below the critical temperatures.

But at critical points, the Binder cumulants are independent of the system sizes,

and then the critical temperatures will be determined by the crossing points of

them.
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Although, those thermodynamic parameters defined earlier have been used

to describe the macroscopic properties, we are also interested in the microscopic

properties. To obtain any microscopic properties, the correlation functions will be

considered. We find the spin−spin correlation function and the chirality−chirality

correlation function of up−triangles in the vertical direction to determine the

universality class of the system. The spin−spin correlation function is defined by

Cm(r) =
3

N

〈

∑

i∈A

cos(θi − θi+r)
〉

, (2.16)

when i + r denotes a position of a site displaced by the distance r in the vertical

direction from site i. For FAXY model, the distance r is limited to the maximum

distance, rmax = L/4, in the vertical direction. The chirality−chirality correlation

function is defined by

Ch(r) =
3

N

〈

∑

i∈A

h△i
h△i+r

〉

, (2.17)

when △i denotes up−triangle i (see figure 2.4). Moreover, to indicate a critical

state we use the correlation lengths which can be defined by using the correlation

functions. The correlation lengths are given by

ξm =
[

∑

r

r2Cm(r)/
∑

r

Cm(r)
]1/2

, (2.18)

ξh =
[

∑

r

r2Ch(r)/
∑

r

Ch(r)
]1/2

, (2.19)

for the magnetization and the chirality, respectively [18].

2.4 Critical phenomena

The term critical phenomena refers to the thermodynamic properties of systems

near the critical temperature of a second−order phase transition. The behavior

of these thermodynamic parameters depends on some details of a given system

such as the dimension or the degree of freedom of the order parameter which

corresponds to the symmetry of the system. For the FAXY model, the degrees
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of freedom of the spin and the staggered chirality correspond to the U(1) and

Z2 symmetries. The critical behavior of thermodynamic parameters is described

below [30].

2.4.1 The U(1) symmetry breaking transition

An unusual phase transition in two dimensions is the KT phase transition. The

magnetic susceptibility is found to be a finite value at a disordered state at high

temperatures and an infinite value at a quasi−long range ordered state at low

temperatures. The magnetic correlation length diverges faster than a power law

of the critical behavior as T → T+

KT and becomes infinity at a quasi−long range

order state at T ≤ TKT . Although the correlation of the spin becomes zero when

r → ∞ both above and below the critical temperature, the asymptotic forms of

the correlation function are different. At high temperatures, the magnetic cor-

relation function decays exponentially. While at low temperatures, the magnetic

correlation function decays as a power law

Cm(r) ∼ e−r/ξm

rd−2+ηKT
; T > TKT , (2.20)

Cm(r) ∼ 1

rd−2+η
′

KT

; T ≤ TKT , (2.21)

where d is the dimension of the system, ηKT is a critical exponent, η
′

KT is the

same critical exponent except it depends on temperatures and ξm is the correlation

length which determines the size of the largest ordered clusters in the system. The

universal value of the critical exponent η
′

KT = ηKT = 1

4
at T = TKT for the XY

model. The power law decay of the magnetic correlation function indicates that

the system is already set in the critical state. The magnetic correlation length

decays exponentially at T > TKT and becomes infinity at T ≤ TKT

ξm ∼ exp(a0t
−1/2) ; T > TKT , (2.22)

ξm −→ ∞ ; T ≤ TKT , (2.23)
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when t = (T −TKT )/TKT and a0 is a constant. The specific heat and the magnetic

susceptibility were also found to be an exponential decay at high temperature

states and become infinity at T ≤ TKT as a function of the correlation length

cVm ∼ ξ−d
m ; T > TKT , (2.24)

χm ∼ ξ2−ηKT
m ; T > TKT . (2.25)

The sublattice magnetization, actually, is zero at all temperatures in this model

[25] but for a finite system size the sublattice magnetization depends on the system

size at low temperatures as

mA ∼ L−x ; T ≤ TKT , (2.26)

where x is an exponent and it also depends on temperatures. This value equals to

1/8 at the critical temperature. At high temperatures, the sublattice magnetiza-

tion is still zero.

2.4.2 The Z2 symmetry breaking transition

The chirality−chirality correlation function decays exponentially to zero with the

distance between the up−triangles near the critical temperature both above and

below the critical temperature and it becomes a power law at the critical temper-

ature as

Ch(r) ∼
e−r/ξh

rd−2+ηI
− h2 ; T 6= TI , (2.27)

Ch(r) ∼
1

rd−2+ηI
; T = TI , (2.28)

where ηI is a critical exponent, ξh is the correlation length and h2 is a constant

relating to the staggered chirality and it is zero at T ≥ TI . In the thermodynamic

limit, the correlation length near the critical temperature is followed by

ξh ∼ |t|−ν ; T 6= TI , (2.29)

ξh → ∞ ; T = TI , (2.30)
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where t = (T − TI)/TI and ν is a critical exponent. At the critical point, the

correlation length becomes infinity so the correlation function decays as a power

law. The other thermodynamic parameters, the susceptibility and the specific

heat are given by

χh ∼ |t|−γ ; T 6= TI , (2.31)

cVh
∼ |t|−α ; T 6= TI , (2.32)

when γ and α are critical exponents. Also, the magnetic susceptibility and the spe-

cific heat diverge at the critical temperatures. Note that for the two−dimensional

Ising model the specific heat diverges logarithmically, so the exponent α = 0. The

staggered chirality or the order parameter of the Z2 symmetry breaking transition

has asymptotic behavior near the critical point as

h ∼ (−t)β ; T < TI , (2.33)

when β is a critical exponent. Eq. (2.33) is only true where the temperature of the

system is less than the critical temperature. Since the staggered chirality becomes

zero at high temperatures, T ≥ TI [29].

The two−dimensional behavior of all parameters of the U(1) and the Z2

symmetries at T < TC , T = TC and T > TC is listed in Table 2.1.

2.4.3 Universality classes

In a critical region, systems only depend on a few fundamental parameters. For

models with a short−range interaction these are the dimensionality of space, d,

and the symmetry of the order parameter. Then any systems that have the same

dimension and the symmetry of the order parameter, they must have the same

critical exponents and belong to the same universality class. Usually, universality

classes are labeled by the simplest model of the systems belonging to them. The

critical exponents which are used to indicate the universality class of the system

can be directly obtained by simulations. There are some universality classes and
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critical exponents listed in Table 2.2 [29]. In the Table H refers to the field

dependence of the magnetization along the critical isotherm (T = TC), H ∼
|M |δsgn(M), where the sgn(x) is the signum function.

Table 2.1: The behavior of the order parameters for the U(1) and the Z2 symme-

tries.

Parameter
U(1) symmetry Z2 symmetry

T > TKT T ≤ TKT T > TI T = TI T < TI

Cm, h(r) ∼ e−r/ξm

rηKT

1

r
η
′

KT

e−r/ξh

rηI

1

rηI

e−r/ξh

rηI
− h2

ξm, h ∼ exp(a0t
−1/2) ∞ |t|−ν ∞ |t|−ν

cVm, h
∼ ξ−2

m ∞ |t|−α ∞ |t|−α

χm, h ∼ ξ2−ηKT
m ∞ |t|−γ ∞ |t|−γ

mA, h ∼ 0 L−x 0 (−t)β

Table 2.2: Universality classes.

cV m χ H ξ C(r)

Univerality class α β γ δ ν η

2−d Ising 0(log) 1/8 7/4 15 1 1/4

3−d Ising 0.10 0.33 1.24 4.8 0.63 0.04

3−d XY 0.01 0.34 1.30 4.8 0.66 0.04

3−d Heisenberg −0.12 0.36 1.39 4.8 0.71 0.04

mean field 0(dis.) 1/2 1 3 1/2 0

3−d Potts, q = 3, 1/3 1/9 13/9 14 5/6 4/15

q = 4 2/3 1/12 7/6 15 2/3 1/4



CHAPTER III

Simulation methods

In this work, we initially set the system at a high temperature state or at

the ground state and then we decrease (increase) the temperature suddenly to

a lower (higher) temperature state. After that, the system will be reached to a

new equilibrium state. The evolution of the system will be followed a stochastic

process rather than Newton’s laws. When the system is in an equilibrium state it

does not depend on time and then the thermodynamic parameters will fluctuate

around some averaged value. To simulate the stochastic process it is necessary

to use random numbers created from a computer. Random numbers which are

created from a computer are not perfectly random and they are usually called

the ‘pseudo−random’ numbers. The difference of the random number generators

can also affect the equilibrium state, but it seems as a statistical error and it can

be reduced by averaging the thermodynamic parameters over independent runs of

the successive simulations and by increasing the system size. This procedure that

uses the random numbers to create a stochastic process is called the Monte Carlo

method. We use the random number generator (ran4) [33] to generate uniform

random numbers in the interval (0, 1). It is important that a random number

generator must have good behavior corresponding to an appropriate system. For

example, any sequential numbers should be uncorrelated, have a large period and

a uniform distribution.

In this model, the periodic boundary conditions must be imposed to treat

the ‘edges’ or boundaries of the lattice. This condition, the first spin can see the

last spin in the same column as a neighbor spin and vice versa. The condition
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is true for the spins in the same row. This procedure can eliminate the effect of

the boundaries. But for a finite system the finite size effect still holds the char-

acteristics of the system especially when the correlation length becomes infinity

at a critical point. For our model, the maximum distance of the correlation func-

tions is limited to L/4 in the vertical direction, so the resultant properties of the

system will differ from the infinite system. Note that for the antiferromagnetic

models, the order parameter is usually the sublattice magnetization, if we choose

the system size incorrectly the sublattice mismatch of the spins will be occurred

[31].

3.1 The Metropolis algorithm

We refer to Eq. (2.6) again. Unfortunately, because the configurations of the

system are so huge and then we can not generate every all possible states in the

system. For example, the Ising model on a lattice of N sites the sum is over

2N configurations. This is a number which increases very quickly with N and a

direct evaluation is feasible only N . 40. However, it is possible to choose the

independent states in the region where they mostly contribute to average. This is

called the importance sampling and then the average of A over n successive states

converges to the thermodynamic average defined in Eq. (2.6)

〈A〉n = 〈A〉 + O(n−1/2). (3.1)

In the limit n → ∞ each state is weighted by its Boltzmann factor, e−E/kBT . For

the previous reason, this is how we generate the desired states. For the stochastic

models, the time−dependent behavior is described by a master equation

∂Pn(t)

∂t
= −

∑

n 6=m

[Pn(t)Wn→m − Pm(t)Wm→n], (3.2)

where Pn(t) is the probability of the system being in state n at time t and Wn→m

is the transition rate for n → m. In equilibrium ∂Pn(t)/∂t = 0 then the two terms
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on the right−hand side of Eq. (3.2) must be equal. This is known as the detailed

balance

Pn(t)Wn→m = Pm(t)Wm→n. (3.3)

Usually, the probability in Eq. (3.3) is not exactly known because of the partition

function. To avoid this difficulty, the Markov chain of states is used. This idea, a

state fth is directly created by a previous state ith, the relative probability is the

ratio of the individual probabilities and does not depend on the partition function.

As a result, only the energy difference between the two states is needed, e.g.

△E = Ef − Ei, (3.4)

when Ei and Ef are the energy of an initial state i and a final state f of the system,

respectively. Any transition rate which satisfies detailed balance is acceptable.

The first choice of the transition rate used in statistical physics is the Metropolis

form

Wi→f = e−△E/kBT ; △E > 0, (3.5)

Wi→f = 1 ; △E < 0. (3.6)

The Metropolis algorithm can be described by a simple recipe [29, 31].

1. Set up initial conditions, e.g., a number of lattice sites, initial states of spins

and temperatures, etc.

2. Select a spin randomly. Generate a final state randomly and calculate

Wi→f = e−△E/kBT .

3. Generate a random number r in the interval (0, 1).

4. Flip the spin if Wi→f > r, otherwise reject the flip.

5. Calculate and store variables An for each step.

6. Go to (2).

7. Finally, average variables 〈A〉n.

Any processes can be shown as the flow chart in figure 3.1.
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Figure 3.1: A flow chart of our simulation in the FAXY model.



CHAPTER IV

Results and Discussions

We use the Monte Carlo simulations with the frustrated antiferromagnetic

XY (FAXY ) model on the triangular lattice. In our simulations, ‘time’ is mea-

sured as the Monte Carlo step per spin (MCS). It is not necessary that any spins in

a lattice must be chosen in 1 MCS because spins in a lattice are chosen randomly.

The parameters which we vary in our simulations are the system sizes and the

temperatures. We use linear system sizes (L), 12 × 12, 24 × 24, 48 × 48, 72 × 72,

96 × 96 and 120 × 120. The system is set in a high temperature state (or in the

ground state), after that the temperature will be decreased (or increased). At

early time, the evolution of the energy of the system depends on time. However,

at later time, the time independent of the energy of the system will occur at the

equilibrium time (τeq), so we can say that the system will be in an equilibrium

state after the equilibrium time. The equilibrium time depends on the system

sizes and the temperatures. Because the correlation time becomes infinity at the

critical temperatures, then the equilibrium time also becomes infinity at the same

temperatures. This is true only for the infinite system size. For finite system sizes

the correlation time and the equilibrium time never go to infinity. However the

equilibrium time at the critical temperatures is still longest. We therefore use the

equilibrium time at a temperature close to the critical temperatures to represent

the equilibrium time of all temperatures for the same system size.

The equilibrium time can be obtained by plotting the energy of the system

versus time as shown in figure 4.1. The energy of the system decreases with

increasing time and fluctuates around some value at the equilibrium time. After
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the equilibrium time, we assume that the system is already set in an equilibrium

state. Also, the equilibrium time can be determined by the order parameters in

the same manner. But, the equilibrium time of the order parameters is usually

slightly higher than the equilibrium time of the energy of the system.

When the simulations go through each 1 MCS any important variables will

be stored. However, where the system is near critical points any subsequent states

separated by 1 MCS are highly correlated, then we measure any variables every

2, 5 and 10 MCSs to save unnecessary computations.

Figure 4.1: The time evolution of the energy of 12×12 lattice sites at the temper-

ature, T = 0.510, the equilibrium time of the system is approximately 600 MCSs

which is marked by the dash line.
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4.1 The spin and the staggered chirality config-

urations

We observe the spin and the staggered chirality configurations of 240×240 lattice

sites at equilibrium states and at different temperatures, T = 1.0000, 0.5130 (TI),

0.5098 (TKT ), 0.2500 and 0.0001.

Figure 4.2 shows the spin configurations in the same sublattice, where the

colors represent the angles of the spins respected to an arbitrary direction. In

figure 4.2(a) or at T = 1.0000, the spins align randomly in all directions so the net

magnetization is zero at this temperature. We cannot see a group of the spins or a

domain of the spins which align in the same direction, it means that the correlation

length at this temperature is infinitely small. In figure 4.2(b) or at T = 0.5130,

we can see that the domains of the spins occur with some directions; however,

the net magnetization is still zero. The correlation length at this temperature is

greater than zero. In figure 4.2(c) or at T = TKT = 0.5098, the domain sizes

are bigger and they increase with decreasing the temperature through the TKT

as a scaling form. The net magnetization increases from zero to a finite value

through this temperature. In figure 4.2(d) or at T = 0.2500, we can see that

the spins align in some directions corresponding to the broken symmetry of the

system. The net magnetization is obviously non−zero and the domain sizes still

increase corresponding to increasing the correlation length. In figure 4.2(e) or at

T = 0.0001, the spins almost align in the same direction. The net magnetization

and a single domain size approach their maximum values.

Similarly, the staggered chirality configurations are shown in figure 4.3, the

colors represent the values of the staggered chirality. At high temperatures, T ≥
TI , as shown in figure 4.3(a) and 4.3(b) in which the system undergoes a short

range order, the results are the same with the magnetization. At low temperatures,

for Z2 symmetry the system undergoes a long range order but for U(1) symmetry

the system, actually, undergoes a quasi−long range order so we can see that the
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(a) T = 1.0000 (b) T = 0.5130

(c) T = TKT = 0.5098 (d) T = 0.2500

(e) T = 0.0001

Figure 4.2: The spin configurations of L = 240 × 240 at different temperatures,

the colors represent the angles of the spins respected to an arbitrary direction.
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(a) T = 1.0000 (b) T = TI = 0.5130

(c) T = 0.5098 (d) T = 0.2500

(e) T = 0.0001

Figure 4.3: The staggered chirality configurations of L = 240 × 240 at different

temperatures, the colors represent the values of the staggered chirality.
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domain sizes of the staggered chirality are bigger than those of the spins at the

same temperature. The staggered chirality almost aligns in the same direction at

T = 0.2500 or in figure 4.3(d) and it completely becomes the same direction at

T = 0.0001 as shown in figure 4.3(e).

4.2 Critical temperatures

In our model, the system has the continuous U(1) symmetry and the additional

Z2 symmetry that can be broken through the critical temperatures TKT and TI ,

respectively. To determine the critical temperatures, we use the Binder cumulants

defined in Eq. (2.14) and Eq. (2.15). The Binder cumulants are stored every 5

MCSs. The simulation time is up to 500,000 MCSs and we average the Binder

cumulants over 10 independent runs. The Binder cumulants will be plotted against

temperature at different system sizes. The critical temperatures can be determined

by the crossing points of them.

4.2.1 The Kosterlitz−Thouless transition temperature

The first critical temperature TKT can be determined by Bm which is shown in

figure 4.4, at small system sizes the crossing points of them depend on the system

sizes. But at the larger system sizes, the crossing point is independent of the

system sizes, so this point indicates the critical point of the system. The dash

line placed along y axis crosses x axis at the critical temperature and then we

estimate TKT = 0.509(8), where the last significant figure is an approximation.

This temperature is slightly higher than those results [14, 22].

4.2.2 The Ising−like transition temperature

The critical temperature TI can be determined by Bh which is shown in figure 4.5,

we estimate that TI = 0.513(0). Similar to those found in the previous section, the
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Figure 4.4: The Binder cumulant for the magnetization is plotted against the

temperature at different system sizes. The dash line marks the critical temperature

TKT = 0.509(8).
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Figure 4.5: The Binder cumulant for the staggered chirality is plotted against the

temperature at different system sizes. The dash line marks the critical temperature

TI = 0.513(0).
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crossing point is independent of the system sizes for larger system sizes. The TI

in our model is in good agreement with those results in Ref. (5, 22), and slightly

higher than those results in Ref. (14).

From the results, we found that the broken symmetries clearly occur at the

two separate critical temperatures, TKT < TI . However these temperatures lie

close to each other about 0.6% compared to the lower temperature. The close

temperatures were also found in these models [14, 22]. In an experiment, the

exchange energy (J) is in order of ∼ 10−3eV, for example, the exchange energy of

silicon in presence of a magnetic field is −0.721meV and in absence of a magnetic

field is −5.232meV [36]. Then if J equals −1meV, TKT and TI are approximately

5.914K and 5.951K, respectively.

4.3 The energy of the system

In this section, the energy of the system which is written in Eq. (2.7) will be

discussed. The energy of the system is stored every 10 MCSs. The simulation

time is up to 1,000,000 MCSs. Then at one point of any temperatures the energy

of the system is averaged over 100,000 independent microstates. In figure 4.6,

the energy is plotted against the temperature at different system sizes. At high

temperatures, the energy of the system decreases with decreasing the temperature.

At the critical temperatures, the energy of the system decreases faster than other

temperatures due to the broken symmetries of the system. At low temperatures,

the energy of the system approaches −3 in limit T → 0. Then the energy of the

system becomes the minimum energy which equals to −3|J | corresponding to the

1200 structure in the ground state.



31

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

 

 

En
er

gy
 o

f t
he

 s
ys

te
m

 (e
)

Temperature (T)

 L = 12 x 12
 L = 24 x 24
 L = 48 x 48
 L = 72 x 72
 L = 96 x 96
 L = 120 x 120

Figure 4.6: The energy of the system is plotted against the temperature at different

system sizes.
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4.4 Order parameters

From previous chapter we introduce the order parameters which imply the spon-

taneous symmetry breaking. The order parameters in our model, the sublattice

magnetization and the staggered chirality will be discussed in this section. The or-

der parameters are stored every 10 MCSs. The simulation time is up to 1,000,000

MCSs. After that, the order parameters will be averaged.

4.4.1 The sublattice magnetization

In figure 4.7, the sublattice magnetization, the order parameter for the U(1) sym-

metry breaking transition, is plotted against the temperature at different system

sizes. The system size dependence of the sublattice magnetization is divided into

two regions. At high temperatures, there is a strong finite size effect so the net

magnetization is non−zero. However, this effect decreases with increasing the sys-

tem size then the magnetization becomes zero as L → ∞. Also, the sublattice

magnetization approaches zero when the temperature goes to infinity. In this re-

gion, spins lie in all directions randomly then the system is said to be a disordered

state. At low temperatures, the system size dependence of the sublattice magne-

tization is caused by the thermal fluctuation. When the temperature decreases to

zero the sublattice magnetization approaches 1, then the system is said to be an

ordered state.

Actually, for T ≤ TKT , the thermal fluctuation induces the system to be a

quasi−long range order state, the sublattice magnetization has asymptotic behav-

ior as mA ∼ L−x when x is an exponent and depends on temperatures. In figure

4.8, the sublattice magnetization is plotted against the system size at different

temperatures. Clearly the sublattice magnetization follows the asymptotic form

at T ≤ TKT . The exponent x is determined by a slope of log−log scale plot which

is marked by the dash line. The theory predicts that the exponent x = 1/8 at the

critical temperature [24, 25, 34]. In our simulation, we estimate that x ≃ 0.16 at
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Figure 4.7: The sublattice magnetization is plotted against the temperature at

different system sizes.
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T = TKT which is slightly higher than that value but in good agreement with a

result reported in Ref. (18).

4.4.2 The staggered chirality

Next result is the staggered chirality which is the order parameter for the Z2

symmetry breaking transition. In figure 4.9, the staggered chirality is plotted

against the temperature at different system sizes. At high temperatures, the finite

size effect still holds the value of the order parameter and this effect decreases with

increasing the system size. However, this effect is less than that of the sublattice

magnetization for small system sizes. But for larger system sizes, the influence of

the effect is small both the sublattice magnetization and the staggered chirality.

We can see that the staggered chirality goes to zero as L → ∞. It indicates that

the system is in a disordered state. At the critical temperature, the staggered

chirality increases continuously from zero to a finite value. At low temperatures,

the finite size effect is small so the staggered chirality of different system sizes is

merged into a single line. If the system size is larger, the staggered chirality will

not depend on the system size. Moreover, the finite staggered chirality increases

with decreasing the temperature and approaches 1 when the temperature goes

to zero. It indicates that the system is in an ordered state below the critical

temperature and in the ground state at T ≈ 0. As the results, the ground state of

the system can be found by considering the order parameters as well as the energy

of the system.

One more interesting point, the critical behavior of the staggered chirality

near the critical temperature follows Eq. (2.33) as h ∼ (−t)β. This equation

is true only below the critical temperature or as t → 0−. In figure 4.10, the

staggered chirality is plotted against the reduced temperature at different system

sizes. For small system sizes, the power law of the staggered chirality does not

occur evidently due to the finite size effect. But, for larger system sizes, the

staggered chirality becomes the asymptotic behavior as t → 0−. In the figure, the
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dash line indicates the critical exponent β and we estimate that β = 0.125. Our

value is in good agreement with the exact value, β = 1/8. This value is known as

the Onsager solution of the two−dimensional Ising model on the square lattice.

4.5 The specific heat

In critical phenomena, the fluctuations have been one of interesting properties

of the system. These can indicate the critical state of the system. The first

parameter, the specific heat, related to the fluctuation relation of the energy will

be discussed in this section. The specific heat can be written as Eq. (2.12). For the

second order phase transition, the specific heat has a finite value both above and

below critical temperatures, but diverges at critical temperatures corresponding

to the slope of the energy of the system at critical temperatures. In the figure

4.11, the specific heat is plotted against the temperature at different system sizes.

Each point, the specific heat is stored every 10MCSs and the simulation time

is up to 1,000,000 MCSs. We can see that, at high temperatures, the specific

heat decreases with increasing the temperature and approaches to zero when the

temperature goes to infinity.

Also, near the critical temperatures, the specific heat depends on the system

size due to the finite size effect. Moreover, the peak’s value of each system size

increases and the position of the peak moves toward the critical temperatures as

L → ∞. It seems that the specific heat will diverge if the size of the system goes

to infinity. It indicates that the system changes from a disordered phase to an

ordered phase through the second order phase transition.

At low temperatures, the specific heat decreases with decreasing the temper-

ature and approaches to a finite value when the temperature goes to zero. We can

see that at this temperature range the finite size effect influences to the specific

heat less than that at high temperatures.

According to the theoretical prediction in the two−dimensional Ising model,



39

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

16

18

20

22

24

 

 

Sp
ec

ifi
c 

he
at

 (c
V
)

Temperature (T)

 L = 12 x 12
 L = 24 x 24
 L = 48 x 48
 L = 72 x 72
 L = 96 x 96
 L = 120 x 120

Figure 4.11: The specific heat is plotted against the temperature at different

system sizes.
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the Onsager solution [30], the specific heat diverges logarithmically near the critical

temperatures as cV ∼ log|t|, so the critical exponent α in Eq. (2.32) must be zero.

Another suggestion, for a finite system size, the peak of the specific heat depends

on the system size as cV∗
∼ Lα/ν [31] near the critical temperatures. Here, cV∗

is

the peak of the specific heat, so the specific heat diverges as L → ∞. Similarly,

for the Ising universality class, the critical exponent α equals zero and then the

specific heat shows a logarithmic divergence as cV∗
∼ log(L).

Now, we want to know that the specific heat follows the logarithmic diver-

gence or the power law then we plot the specific heat versus the reduced temper-

ature as shown in figure 4.12 and figure 4.13. In figure 4.12, the specific heat is

plotted against the reduced temperature in the log−log scale. The specific heat

splits into two curves for the system located at high temperature states as shown

in figure 4.12(a) and at low temperature states as shown in figure 4.12(b). The

upward curve corresponding to the system being in low temperature states and the

downward curve corresponding to the system being in high temperature states.

But when the temperature of the system decreases (increases) to the critical tem-

peratures, the specific heat merges into a single line as shown in figure 4.12(c).

This line shows the power law of the specific heat and it indicates the critical

exponent α, then we estimate that α = 0.45. For t → 0+ and t → 0−, it is hard

to obtain the asymptotic behavior of the specific heat due to the strong finite size

effect is near the critical temperatures. Next we look at figure 4.13, the specific

heat is plotted against the reduced temperature in the semi−log scale. Clearly,

the specific heat does not follow the logarithmic behavior both in high tempera-

ture states and in low temperature states as shown in figure 4.13(a), 4.13(b) and

4.13(c). This result supports the power law of the specific heat.

Another form of the specific heat can be written as a function of the system

size. In order to know how the specific heat depends on the system size, we plot

cV∗
of the specific heat against the system size. In figure 4.14(a), cV∗

is plotted in

the log−log scale to observe the power law behavior of the specific heat. For small

system sizes, L ≤ 48, cV∗
depends on the system size as a power law indicated by
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Figure 4.12: The specific heat is plotted against the reduced temperature at dif-

ferent system sizes. The dash line has a slope = −0.45.
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Figure 4.13: The specific heat is plotted against the reduced temperature at dif-

ferent system sizes.
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Figure 4.14: The peak of the specific heat at different system sizes is plotted

against the system size, (a) the dash line indicates α/ν = 0.52 and (b) the dash

line indicates α/ν = 0.
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the dash line. We estimate the slope = 0.52 which is equivalent to α/ν. The result

shows clearly that for small system sizes, cV∗
follows the power law as cV∗

∼ Lα/ν

rather than the logarithmic behavior which yields α = 0. The non−logarithmic

behavior was also found in Ref. (5, 6, 22, 27). For larger system sizes, L > 48, we

can not observe any power law of cV∗
, we think that the peak of the specific heat is

very sharp so it is highly sensitive to the temperature. As the reason, if we estimate

cV∗
using a wide range of the temperatures, we can not obtain the value accuracy

and it seems to be independent of the temperature which is shown in figure 4.11.

Moreover, a calculation of a precise value of cV∗
will be prevented by the strong

finite size effect and the highly fluctuation around the critical temperatures.

In figure 4.14(b), cV∗
is plotted against the system size in the semi−log scale.

We can see that for the small systems, L ≤ 48, cV∗
does not follow the logarithmic

behavior but for the higher system sizes, it seems cV∗
tends toward the logarith-

mic behavior. This behavior was also found in Ref. (18) which illustrates that

the behavior of the specific heat changes from non−logarithmic behavior to log-

arithmic behavior at a certain critical system size. This behavior automatically

yields α = 0. However, we can not identify that the specific heat has only the

non−logarithmic behavior or it changes from the non−logarithmic to the logarith-

mic behavior at a critical system size due to the crude estimation of the specific

heat near the critical temperatures for L > 48.
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4.6 The magnetic susceptibility

Another interesting point is the magnetic susceptibility, which is related to the

fluctuation relation of the sublattice magnetization. The magnetic susceptibility

is stored every 10 MCSs. The simulation time is up to 1,000,000 MCSs. After

that, the susceptibility will be averaged. In figure 4.15, the susceptibility is plot-

ted against the temperature at different system sizes. At high temperatures, the

susceptibility decreases with increasing the temperature and approaches to zero

as T → ∞. In this region, the susceptibility is independent of the system size.

Near the critical temperatures, the susceptibility increases rapidly when the tem-

perature goes to critical temperatures. At low temperatures, its value evidently

depends on the system size. This is unlike in the case of high temperatures be-

cause the sublattice magnetization depends on the system size below the critical

temperature. This behavior corresponds to the non−finite susceptibility below the

critical temperatures for the infinite system size and it indicates that this transi-

tion belongs to the KT transition. However, the susceptibility has a finite value

at T = 0.

Next, in figure 4.16, the susceptibility at high temperature states is plotted

against the reduced temperature at different system sizes. The dash line and the

solid line show the power law of the susceptibility near the critical temperatures

and at the higher temperatures, respectively. At t ≤ 0.2, we estimate that the

critical exponent γ = 1.05 marked by the dash line. This value is slightly higher

than that value in Ref. (9) but lower than those values in Ref. (6, 13) for the

FFXY model. At higher temperatures, t > 0.2, we estimate that γ = 1.23 marked

by the solid line.
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Figure 4.15: The magnetic susceptibility is plotted against the temperature at

different system sizes.
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4.7 Correlation functions

In order to obtain the details of the behavior of the system, the correlation be-

tween spins and the correlation between chirality will be described. We use the

correlation function Cm defined in Eq. (2.16) to determine the correlation between

the spins and Ch defined in Eq. (2.17) to determine the correlation between the

chirality. In our simulations, both correlation functions are stored every 5 MCSs

and the simulation time is up to 1,000,000 MCSs. After that the correlation func-

tions will be averaged. From the Eq. (2.21) and Eq. (2.28), the correlations decay

exponentially with the distance at high temperatures and become a power law at

critical temperatures. To determine the critical exponent η, the system is set in

critical states so we expect that the correlation functions will decay as a power

law.

4.7.1 The spin−spin correlation function

First, the spin−spin correlation function Cm is plotted against distance r at the

critical temperature TKT . Note that the maximum distance of each system size

does not equal to the system size because we use the periodic boundary conditions

and we use spins in the same sublattice to find the correlation function in the

vertical direction. Then the maximum distance rmax = 30 corresponding to L =

120 while the minimum of rmax is 6 corresponding to L = 24. In figure 4.17, for a

short distance, the correlation between the spins is quite high and decreases with

increasing the distance and goes to zero as rmax → ∞. Also the correlation of the

spins decreases with increasing the system size at the same temperature.

At the critical temperature, we assume that the correlation function decays

as a power law so we plot the correlation function against the distance in the

log−log scale as shown in figure 4.18. For small sizes, the power law does not

occur evidently but the correlation function tends to this behavior when the system

size is larger. The dash line shows the power law of the correlation function at
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Figure 4.17: The correlation function Cm is plotted against the distance at the

critical temperature TKT .
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Figure 4.18: The correlation function Cm is plotted against the distance at the

critical temperature TKT . The dash line has a slope = −0.30.
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L = 120, and we estimate that the critical exponent ηKT = 0.30. This value is

higher than the actual value ηKT = 0.25 [25] of the KT transition. However the

difference of this value was also found in those Ref. (5, 7) for both FAXY and

FFXY models. Moreover, actually, ηKT depends on the temperature below the

critical temperature. It varies widely if one goes from the critical state to lower

temperature states, which is shown in Ref. (19). As the reason, it may be possible

that ηKT that we estimate is affected by the temperature.

Another interesting point, ηKT of different system sizes is plotted against

the inverted system size (1/L) to show how ηKT depends on and what is the ηKT

in limit L → ∞ or 1/L → 0. In figure 4.19, the dash line marks the actual value

ηKT = 0.25 of the KT transition at TKT . The result shows that ηKT (L = 24)

is slightly less than that value, but for L > 24, ηKT is slightly higher than the

actual value. For the system sizes, L > 24, ηKT increases slightly with L, it means

that the finite size effect is not too strong, so ηKT (L → ∞) may not differ from

ηKT (L = 120).

4.7.2 The chirality−chirality correlation function

Next the correlation between the chirality will be discussed. In figure 4.20, the

chirality correlation function Ch is plotted against the distance at the critical

temperature TI . Similarly, Ch decreases with increasing the distance and also

decreases when the system size increases at the same temperature. We can see that

for the same system size, Ch is less than Cm it means the correlation between the

chirality is weaker than the correlation between the spins. At the same distance,

Ch decreases faster than Cm when the system size increases due to the finite size

effect has influence to Ch more than Cm.

From Eq. (2.28), Ch also has the logarithmic behavior at the critical tem-

perature TI . So in figure 4.21, Ch is plotted against the distance in the log−log

scale. The dash line marks the power law of Ch at the system size L = 120.

The approximation yields ηI = 0.19 which is lower than that of the Ising value
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Figure 4.20: The correlation function Ch is plotted against the distance at the

critical temperature TI .
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Figure 4.21: The correlation function Ch is plotted against the distance at the

critical temperature TI . The dash line has a slope = −0.19.
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Figure 4.22: The system size dependence of ηI is plotted against the inverted

system size 1/L. The dash line marks the actual value of ηI = 0.25.
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ηI = 0.25.

In figure 4.22, ηI at different system sizes is plotted against 1/L. The dash

line marks ηI = 0.25. We can see that ηI increases with increasing L. In limit

1/L → 0, ηI tends to that value. However, because of the strong finite size effect,

ηI increases slowly with L.

4.8 Correlation lengths

To determine the behavior of the system in more details, the correlation lengths ξ

will be considered. In simulations, ξ are stored every 2 MCSs and the simulation

time is up to 400,000 MCSs. After that the correlation lengths will be averaged.

The correlation lengths are only observed in high temperature states.

4.8.1 The correlation length of spins

In figure 4.23, the correlation length of spins ξm is plotted against the reduced

temperature at different system sizes. We can see that ξm increases with decreasing

the reduced temperature and it has a maximum value at TKT or at t = 0. At the

temperature ξm increases with increasing the system size and it diverges when

the system size goes to infinity. For small system sizes, L . 24, the correlation

length increases slowly with decreasing the reduced temperature, while at the

larger system sizes, the correlation length increases more faster than that of those

sizes. The increasing of the correlation length occurs evidently near the critical

temperature or at t → 0.

In order to know the behavior of the correlation length, we plot ξm against

the reduced temperature in the log−log scale. Since ξm from Eq. (2.22) diverges

faster than a power law so we expect that for larger system sizes the upward

curve of ξm will occur. In figure 4.24, for L ≤ 72 a signal of the upward curve

does not occur at all temperatures. But, for L > 72 we can observe the behavior
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Figure 4.23: The correlation length ξm is plotted against the reduced temperature

at different system sizes.
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Figure 4.24: The correlation length ξm is plotted against the reduced temperature

at different system sizes, the solid line denotes an exponential decay as ξm =

2.50exp(0.19t−1/2).
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near the critical temperature, t ≤ 0.03, marked by the solid line. This line is an

exponential decay which can be written as ξm = 2.50exp(0.19t−1/2). This result is

in good agreement with that value in Ref. (18).

4.8.2 The correlation length of chirality

In figure 4.25, the correlation length ξh is plotted against the temperature at differ-

ent system sizes. Clearly, the correlation length increases when the temperature of

the system approaches to the critical temperature. For small system sizes, L . 24,

the correlation length increases slowly with decreasing the reduced temperature,

while at the larger system sizes, the correlation length increases more faster than

that of those sizes. The increasing of the correlation length occurs evidently near

the critical temperature or at t → 0. But at higher temperatures, t & 0.08, the

correlation length is slightly different except the correlation length of size L = 12.

This increasing value of the correlation length near the critical temperature con-

firms that the correlation length diverges at the critical temperature for the infinite

system size.

In order to know the behavior of the correlation length, we plot the correla-

tion length against the reduced temperature at the different temperatures in the

log−log scale as shown in figure 4.26. For the small system sizes, L ≤ 48, the cor-

relation length is observed in a wide range (T = 0.514−0.800). But for the larger

system sizes, we observe the correlation length in a small range (T = 0.514−0.600)

to save unnecessary time. We can see that the power law of the correlation length

was found at high temperatures for small system sizes, for example, t & 0.2 for

L = 12. But near the critical temperature, the finite size effect prevents this be-

havior. At larger system sizes, the power law was found at lower temperatures.

The dash line shows the logarithmic behavior of the correlation length of size

L = 120. We estimate that the critical exponent ν = 0.74. This value differs

from the value of the Ising universality class, ν = 1. However, the inconsistency

was also found in those Ref. (5−7, 9, 12−15, 19, 22, 26, 27) which show that the
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Figure 4.25: The correlation length ξh is plotted against the reduced temperature

at different system sizes.
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at different system sizes. The dash line has a slope = −0.74.
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critical exponent ν ≈ 0.83 rather than 1.

Next, the critical exponent ν of each system size is plotted against the in-

verted system size as shown in figure 4.27. The result shows that the critical

exponent increases rapidly when the system size increases. It shows the strong

finite size effect to the correlation length. However, we can see that the correlation

length tends to the value, ν = 0.83, which is marked by the dash line, rather than

the Ising value. This result shows that the Ising−like transition may not belong

to the Ising universality class.

The all results of the behavior of the parameters and the values of the critical

exponents of this work compared to those results in Ref. (5, 14, 20, 22) are listed

in Table 4.1 for the U(1) symmetry and in Table 4.2 for the Z2 symmetry.
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Figure 4.27: The system size dependence of ν is plotted against the inverted

system size 1/L. The dash line marks the value ν = 0.83.
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Table 4.1: The results of the parameters of the U(1) symmetry on the triangular

lattice.

Parameter Exponent This work [5] [14] [22]

TKT − 0.509(8) 0.513(2) 0.508(1) 0.501(2)

Cm(r) ∼ η
′

KT 0.30 − − −
1

r
η
′

KT

at T = TKT

ξm ∼ − 2.50∗ − − −
exp(a0t

−1/2) exp(0.19t−1/2)

mA ∼ L−x x 0.16 − − −

Table 4.2: The results of the parameters of the Z2 symmetry on the triangular

lattice.

Parameter Exponent This work [5] [14] [20] [22]

TI − 0.513(0) 0.513(2) 0.512(1) − 0.513(1)

Ch(r) ∼ 1

rηI
ηI at T = TI 0.19 − 0.250 − 0.25

ξh ∼ |t|−ν ν 0.74 0.83 0.84 − 0.83

cVh
∼ |t|−α α 0.45 − − − 0.33

χh ∼ |t|−γ γ 1.05 − − 1.73 1.45

h ∼ (−t)β β 0.125 0.12 0.106 0.123 0.11



CHAPTER V

Conclusions

In this thesis, we have investigated phase transitions of the frustrated an-

tiferromagnetic XY model on the triangular lattice via the simulation methods.

Here, each chapter will be summarized and concluded as follows.

In the first chapter, we introduce the model of this study and related mod-

els which describe an array of Josephson junctions under an external magnetic

field, discotic liquid crystals and the orientation ordering of CF3Br monolayers

physisorbed on graphite and then some inconsistencies of its behavior will be con-

cerned.

In the second chapter, we illustrate a simple idea of the phase transition

after that we provide more details about the model and the related theory of the

thermodynamic parameters and other parameters.

In the third chapter, we describe the algorithm and the simulation techniques

of this work.

In the fourth chapter, we show all simulation results of this study. Firstly,

concerning to an equilibrium state of the system, we generate an equilibrium time

by plotting the energy versus time in MCS steps. After the time, we assume the

system is in the equilibrium state. Next section, the spin and the staggered chi-

rality configurations at equilibrium states and at different system sizes are shown

to illustrate the temperature dependence of the spins and the staggered chirality.

Next result, we show clearly that the system has two separate transition tempera-

tures, TKT < TI . These temperatures lie close to each other about 0.6% compared
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with the lower temperature. The energy of the system smoothly decreases with

decreasing the temperature and it has a signal of the second order phase transition

around T ≈ 0.5 due to its slope tends to infinity at this temperature. At lower

temperatures, the energy approaches its minimum value at the ground state when

the temperature goes to zero.

The system size dependence of the magnetization was found both at high

temperatures and at low temperatures. It varies continuously from high temper-

ature disordered states with the zero magnetization to lower temperature ordered

states with a finite magnetization through the critical temperature. We also found

that the magnetization has a power law mA ∼ L−x at T ≤ TKT with the exponent

x = 0.16 at T = TKT . It differs from the value x = 1/8 of the KT transition and

we think that the temperature may affect the result. As the same result except

at low temperatures, at which the staggered chirality has a power law, h ∼ (−t)β

with β = 0.125. This value is in good agreement with the exact value β = 1/8 of

the Ising transition.

The results show that the specific heat has a finite value both at high and

low temperatures but tends to infinity at the critical temperatures. Two interpre-

tations of scaling forms are used, first we assume the specific heat has a power law

cV ∼ |t|−α and we estimate that α = 0.45 which confirms the non−logarithmic

behavior of the specific heat. For the another interpretation, we found that the

peak cV∗
of the specific heat changes from the power law behavior cV∗

∼ Lα/ν with

α/ν = 0.52 at L ≤ 48 to the logarithmic behavior cV∗
∼ log(L) with α/ν = 0 at

L > 48. The inconsistency of two interpretations was found at L > 48 and we

think that for L > 48, our simulations can not separate the peaks of the specific

heat out so we have not confirmed the logarithmic behavior at those sizes.

Next result, the magnetic susceptibility was found a finite value at high

temperatures and it becomes infinity at the critical temperatures and at low tem-

peratures as L → ∞. Above TI , the magnetic susceptibility decays as a power

law as χ ∼ |t|−γ with γ = 1.05 near TI and γ = 1.23 at higher temperatures. The

correlation functions decrease with increasing the distance. The power law of the
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correlation functions was found at the critical temperatures with ηKT = 0.30 and

ηI = 0.19 which differ from the expected value ηKT = ηI = 0.25 because of the

size dependence of the exponents.

Finally, the correlation lengths increase with decreasing the reduced temper-

ature from high temperatures to the critical temperatures. The correlation lengths

tend to infinity at the critical temperatures with increasing the system size. We

found the exponential decay of the correlation length ξm near TKT for L ≥ 96.

The power law of the correlation length ξh was also found with ν = 0.74 and it

tends to ν = 0.83 rather than the Ising value, ν = 1. It seems that the Ising−like

transition may not belong to the Ising universality class.
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Appendix A

Finite Size Scaling

For the infinite system is near the critical temperature, a thermodynamic

parameter can be usually written as Eq. (2.1), for example, the magnetic suscep-

tibility is written as

χ ∼ t−γ ∼ ξγ/ν , (A.1)

where ξ ∼ t−ν is the correlation length. The correlation length and the magnetic

susceptibility diverge at the critical temperature. But for a finite system size

(L), this condition is only true at some temperatures in which the system size is

greater than the correlation length, L ≫ ξ. At the critical temperature, L ≪ ξ,

the correlation length never reaches to infinity and it will be cut off at some value

depending on L, so χ can be written as χ ∼ Lγ/ν . Eq. (A.1) may be written as a

function of L/ξ as

χ = Lγ/νχ0(L/ξ). (A.2)

The behavior of χ0(L/ξ) must be followed

χ0(L/ξ) = constant ; L ≪ ξ, (A.3)

χ0(L/ξ) ∼ (L/ξ)−γ/ν ; L ≫ ξ. (A.4)

Because of L/ξ ∝ Ltν one can choose L1/νt, then Eq. (A.2) is written as

χ = Lγ/νχ0(L
1/νt). (A.5)

The other parameters can be written in the same manner as

m = L−β/νm0(L
1/νt), (A.6)

cV = Lα/νc0(L
1/νt), (A.7)

where m and cV are the magnetization and the specific heat, respectively.
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Appendix B

Cumulants

The generating function Z(j) of a probability distribution P (ϕ) can be writ-

ten as

Z(j) = Z(0)
∞

∑

n=0

jn

n!
〈ϕn〉. (B.1)

Z(j) can be written as a function of some parameter W (j) which is analogous to

a free energy, Z(j) = Z(0)exp[W (j)] or W (j) = ln[Z(j)/Z(0)]. The cumulants of

order n, 〈ϕn〉c, can be defined by [32]

W (j) =
∞

∑

n=1

jn

n!
〈ϕn〉c,

〈ϕn〉c =
∂nW (j)

∂jn

∣

∣

∣

∣

j=0

. (B.2)

Let

x(j) =
Z(j)

Z(0)
=

∞
∑

n=0

jn

n!
〈ϕn〉 = exp[W (j)].

One can find that

∂x(j)

∂j
= x(j)

∂W (j)

∂j
,

∂2x(j)

∂j2
= x(j)

∂2W (j)

∂j2
+ x(j)

(

∂W (j)

∂j

)2

,

∂3x(j)

∂j3
= x(j)

∂3W (j)

∂j3
+ 3x(j)

∂2W (j)

∂j2

∂W (i)

∂j
+ x(j)

(

∂W (j)

∂j

)3

,

∂4x(j)

∂j4
= x(j)

∂4W (j)

∂j4
+ 4x(j)

∂3W (j)

∂j3

∂W (i)

∂j
+ 3x(j)

(

∂2W (j)

∂j2

)2

+6x(j)
∂2W (j)

∂j2

(

∂W (j)

∂j

)2

+ x(j)

(

∂W (j)

∂j

)4

. (B.3)

From Eq. (B.2) and Eq. (B.3) the cumulant of each order can be written as

〈ϕ〉c = 〈ϕ〉,

〈ϕ2〉c = 〈ϕ2〉 − 〈ϕ〉2c = 〈(ϕ − 〈ϕ〉)2〉,
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〈ϕ3〉c = 〈ϕ3〉 − 3〈ϕ2〉c〈ϕ〉c − 〈ϕ〉3c = 〈(ϕ − 〈ϕ〉)3〉,

〈ϕ4〉c = 〈ϕ4〉 − 4〈ϕ3〉c〈ϕ〉c − 3〈ϕ2〉2c − 6〈ϕ〉2c〈ϕ2〉c − 〈ϕ〉4c
= 〈(ϕ − 〈ϕ〉)4〉 − 3〈(ϕ − 〈ϕ〉)2〉2. (B.4)

The fourth−order cumulant 〈ϕ4〉c is more often written as

U4 = 1 − 〈(ϕ − 〈ϕ〉)4〉
3〈(ϕ − 〈ϕ〉)2〉2 . (B.5)

This equation is also called ‘the Binder cumulant.’

Consider the magnetization m, the probability distribution function of the

magnetization p(m) is written as [35]

p(m) =
1

2
Cexp

[

−(m + m0)
2

2σ2

]

+
1

2
Cexp

[

−(m − m0)
2

2σ2

]

, (B.6)

where C = (2πσ2)−1/2 is a normalization factor and σ ∝ L−2. The p(m) has

a single peak at m0 = 0 at high temperatures and two peaks at ±|m0| at low

temperatures. As the p(m) is symmetric, then 〈mn〉 = 0 for odd n. So for a finite

system size the Bider cumulant of the magnetization can be written as

U4(L) = 1 − 〈m4〉
3〈m2〉2 . (B.7)

For n = 2 and 4, 〈m2〉 and 〈m4〉 can be calculated by

〈m2〉 =

∫ ∞

−∞

m2p(m)dm = σ2 + m2

0,

〈m4〉 =

∫ ∞

−∞

m4p(m)dm = 3σ4 + 6σ2m2

0 + m4

0. (B.8)

Then the Binder cumulant is given by

U4(L) = 1 − 3σ4 + 6σ2m2
0 + m4

0

3(σ2 + m2
0)

2
. (B.9)

At high temperatures (m0 = 0), we can see that U4 = 0. At low temperatures and

L → ∞ (σ → 0), U4 → 2/3. At the critical temperature (Lt1/ν = 0), by using Eq.

(A.6) and Eq. (B.7) we can find that the Binder cumulant is independent of L as

U4 = 1 − 〈m4
0(0)〉

3〈m2
0(0)〉2 ≡ U∗, (B.10)

where U∗ is a fixed point [31].
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