องค์ประกอบทางเคมีของใบลางสาดป่าและใบประยงค์ใบใหญ่และฤทธิ์ทางชีวภาพ

นางสาวนั้นทิยา จ้อยชะรัด

สถาบันวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาเภสัชเกมีและผลิตภัณฑ์ธรรมชาติ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2550 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CHEMICAL CONSTITUENTS OF *AGLAIA FORBESII* AND *AGLAIA OLIGOPHYLLA* LEAVES AND THEIR BIOLOGICAL ACTIVITIES

Miss Nantiya Joycharat

สถาบันวิทยบริการ

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Pharmaceutical Chemistry and Natural Products

Faculty of Pharmaceutical Sciences

Chulalongkorn University

Academic Year 2007

Copyright of Chulalongkorn University

Thesis Title	CHEMICAL CONSTITUENTS OF AGLAIA FORBESII AND AGLAIA
	OLIGOPHYLLA LEAVES AND THEIR BIOLOGICAL ACTIVITIES
Ву	Miss Nantiya Joycharat
Field of Study	Pharmaceutical Chemistry and Natural Products
Thesis Advisor	Associate Professor Ekarin Saifah, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

(Associate Professor Pornpen Pramyothin, Ph.D.)

...Member

THESIS COMMITTEE

Witchuda Thanakij charon p. M. Chairman

(Witchuda Thanakijcharoenpath, Ph.D.)

El: Anthe ... Thesis Advisor

(Associate Professor Ekarin Saifah, Ph.D.)

Rutt Suttin-Û

(Associate Professor Rutt Suttisri, Ph.D.)

Mojin KugrugsiMember

(Associate Professor Nijstri Ruangrungsi, Ph.D.)

Sonna Vajiodanja Member

(Assistant Professor Srunya Vajrodaya, Ph.D.)

นันทิยา ข้อยชะรัด : องค์ประกอบทางเคมีของใบลางสาคป่าและใบประยงค์ใบใหญ่และฤทธิ์ทางชีวภาพ (CHEMICAL CONSTITUENTS OF *AGLAIA FORBESII* AND *AGLAIA OLIGOPHYLLA* LEAVES AND THEIR BIOLOGICAL ACTIVITIES) อ. ที่ปรึกษา : รศ. คร. เอกรินทร์ สายฟ้า, 257 หน้า.

การศึกษาองค์ประกอบทางเคมีของใบลางสาดป่า (วงศ์ Meliaceae) สามารถแขกสารใหม่ในกลุ่ม cyclopenta[bc]benzopyran flavaglines 3 ชนิค คือ desacetylpyramidaglains A, C และ D และสารใหม่ในกลุ่มของ cycloartane triterpenoid 1 ชนิค คือ (23*R*,24*S*)-23,24,25-trihydroxycycloartan-3-one รวมทั้งพบสารที่เคยมีรายงานมาแล้วอีก 8 ชนิค ได้แก่ สารกลุ่ม bisamide 1 ชนิค คือ pyramidatine, สารกลุ่ม sesquiterpenoid 1 ชนิค คือ spathulenol, สารกลุ่ม pregnane steroids 2 ชนิค คือ 2β,3β-dihydroxy-5α-pregn-17(20)-(*Z*)-en-16-one และ 2β,3β-dihydroxy-5α-pregn-17(20)-(*E*)-en-16one, สารกลุ่ม stigmastane steroids 2 ชนิค คือ สารผสมของ β-sitosterol และ stigmasterol และ สารกลุ่ม triterpenoids ซึ่ง พบได้ทั่วไป 2 ชนิค คือ lupeol และ lupenone ส่วนการศึกษาองค์ประกอบทางเคมีของใบประยงค์ใบใหญ่ สามารถแยกสาร ได้ 11 ชนิค โดยเป็นสารกลุ่ม cyclopenta[b]benzofuran flavagline 1 ชนิค คือ rocaglaol, สารกลุ่ม dammarane triterpenoids 8 ชนิค คือ dipterocarpol, สารผสมของ ocotillone และ cabraleone, ocotillol-II, 20*S*,24*S*-dihydroxydammar-25-en-3-one, 20*S*,25-epoxy-24*R*-hydroxy-3-dammaranone และ สารผสมของ 20*S*,25-epoxy-24*R*-hydroxydammar-3α-ol และ 20*S*,25-epoxy-24*R*-hydroxydammar-3β-ol และสารกลุ่ม bisamides 2 ชนิค คือ สารผสมของ odorine และ 2'-epiodorine การพิสูขน์โครงสร้างทางเคมีของสารที่แขกได้นี้ อาศัยการวิเคราะห์สเปลครัมของ UV, IR, MS และ NMR ร่วมกับ การแปรีขบเทียบข้อมูลของสารที่ทราบโครงสร้างแล้ว โดยสารแค่ละชนิคที่สกัดได้จากพืชทั้งสองชนิคได้ถูกนำไปทดสอบ ฤทธิ์ค้านเชื้อวัณโรค (*Mycobacterium tuberculosis* H₃₇Ra), ฤทธิ์ค้านไวรัสเริม HSV-1, และ ฤทธิ์ความเป็นพิษค่อ เซลถ์มะเร็งปอด (NCI-H187)

สารสกัดจากลางสาดป่าทั้งหมดแสดงฤทธิ์ด้านเชื่อวัณโรคยกเว้น desacetylpyramidaglains A และ C โดยพบว่า desacetylpyramidaglain D และ pyramidatine แสดงฤทธิ์ได้ดีที่สุด และยังพบว่าสารสกัดบางชนิดจากพืชนี้แสดงฤทธิ์ด้าน ไวรัสเริม HSV-1 โดยสารดังกล่าวประกอบด้วย 23,24,25-trihydroxycycloartan-3-one, desacetylpyramidaglain D, และ 2β,3β-dihydroxy-5α-pregn-17(20)-(E)-en-16-one ในขณะที่พบว่า lupeol นั้นแสดงความเป็นพิษปานกลางต่อเซลล์มะเร็ง ปอด (NCI-H187) นอกจากนี้ยังพบว่าสารสกัดจากประยงค์ไบใหญ่ 4 ชนิด ได้แก่ สารผสมของ 20*S*,25-epoxy-24*R*hydroxydammar-3α-ol และ 20*S*,25-epoxy-24*R*-hydroxydammar-3β-ol และ สารผสมของ odorine และ 2'-epi-odorine แสดงฤทธิ์ด้านเชื่อวัณโรค

สาขาวิชา เภสัชเคมีและผลิตภัณฑ์ธรรมชาติ ปีการศึกษา 2550 ลายมือชื่อนิสิต <u>หางสาว นั้นที่ยา งังบุชะว</u>ัภ ลายมือชื่อกาจารย์ที่ปรึกษา. ## 4576958433 : MAJOR PHARMACEUTICAL CHEMISTRY AND NATURAL PRODUCTS

KEY WORD : AGLAIA FORBESII / AGLAIA OLIGOPHYLL / MELIACEAE / FLAVAGLINES / BISAMIDES / CYCLOPENTA[bc] BENZOPYRAN

NANTIYA JOYCHARAT : CHEMICAL CONSTITUENTS OF *AGLAIA FORBESII* AND *AGLAIA OLIGOPHYLLA* LEAVES AND THEIR BIOLOGICAL ACTIVITIES. THESIS ADVISOR : ASSOC. PROF. EKARIN SAIFAH, Ph.D., 257 pp.

Investigation of the chemical constituents of the leaves of *Aglaia forbesii* King. (Meliaceae) led to the isolation of three new cyclopenta[*bc*]benzopyran type flavaglines, desacetylpyramidaglains A, C and D, and a new cycloartane type triterpenoid, (23R,24S)-23,24,25-trihydroxycycloartan-3-one, together with the bisamide pyramidatine, the sesquiterpene spathulenol, two pregnane steroids, 2β ,3 β -dihydroxy-5 α -pregn-17(20)-(*Z*)-en-16-one and 2β ,3 β dihydroxy-5 α -pregn-17(20)-(*E*)-en-16-one, two stigmastane steroids, a mixture of β -sitosterol and stigmasterol and two common triterpenoids, lupeol and lupenone. Similar study on the leaves of *A. oligophylla* Miq. yielded eleven of its constituents including the cyclopenta[*b*]benzofuran flavagline, rocaglaol, eight dammarane type triterpenoids, including dipterocarpol, a mixture of ocotillone and cabraleone, ocotillol-II, 20*S*,24*S*-dihydroxydammar-25-en-3-one, 20*S*,25epoxy-24*R*-hydroxy-3-dammaranone, and a mixture of 20*S*,25-epoxy-24*R*-hydroxydammar-3 α -ol and 20*S*,25-epoxy-24*R*-hydroxydammar-3 β -ol, and a mixture of the bisamides odorine and 2[']-epi-odorine. The structures of these isolates were determined by extensive spectroscopic studies, including comparison of their UV, IR, MS and NMR properties with previously reported data. Each isolated compounds from the two plants was evaluated for anti-tuberculosis activity against *Mycobacterium tuberculosis* H₃₃Ra, anti-herpes simplex activity, and cytotoxic activity against NCI-H187 small cell lung cancer cell line.

All of the compounds from Aglaia forbesii except desacetylpyramidaglains A and C exhibited anti-TB activity, of which desacetylpyramidaglain D and pyramidatine showed the highest activity. Furthermore, some of the compounds isolated from this plant, including 23,24,25-trihydroxycycloartan-3-one, desacetylpyramidaglain D and 2β ,3βdihydroxy-5α-pregn-17(20)-(*E*)-en-16-one, also exhibited anti-HSV-1 activity, while lupeol showed moderately cytotoxic activity against NCI-H187 cancer cell line. In addition, four compounds from Aglaia oligophylla, a mixture of 20S,25-epoxy-24*R*-hydroxydammar-3α-ol and 20S,25-epoxy-24*R*-hydroxydammar-3β-ol, and a mixture of the bisamides odorine and 2'-epi-odorine exhibited anti-TB activity.

Field of Study: Pharmaceutical Chemistry and Natural Products Academic Year: 2007

Student's Signature Montaya Jaychard Advisor's Signature Et Signature

ACKNOWLEDGEMENTS

The success of this research would not be realized without the support and assistance of some persons and various institutions to whom I would like to express my deepest gratitude:

Associate Professor Dr. Ekarin Saifah, my thesis advisor, for his excellent advice and untiring supervision during the entire duration of the work.

Prof. Dr. Harald Greger of the Comparative and Ecological Phytochemistry Section, Institute of Botany, University of Vienna, for providing research opportunities and invaluable suggestions during my research in Vienna, Austria.

Prof. Dr. Otmar Hofer of the Institute of Organic Chemistry, University of Vienna, for his kind assistance in NMR measurement and discussion on structure elucidation.

Associate Professor Dr. Rapepol Bavovada of the Department of Pharmaceutical Botany for his useful discussion on structure elucidation.

All the members of my thesis committee for their constructive suggestions and critical review of this thesis.

The Thailand Research Fund (TRF) for financial support (grant no. PHD/0063/2546) through the 2003 Royal Golden Jubilee Ph.D. program.

Nuclear magnetic resonance and infrared spectrometer operators of the Scientific and Technological Research Equipment Center, Chulalongkorn University for providing the spectral data and helpful assistance in spectroscopic experiments.

BIOTEC laboratories, NSTD, Thailand for the evaluation of antituberculosis, antimalarial, antiviral and anticancer activities of the plant extracts and pure compounds.

The students and all staff members of the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University for their friendship, kind support and encouragement throughout the period of my study.

Finally, the most special thanks are due to the late Mr. Patiparn Treechorvitaya and my family for their love, encouragement and moral support.

CONTENTS

	Page
ABSTRACT (THAI)	iv
ABTRACT (ENGLISH)	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xvii
LIST OF SCHEMES	xix
LIST OF ABBREVIATIONS	XX
CHAPTER	
I INTRODUCTION	1
II HISTORICAL	7
1. Chemical constituents of Aglaia spp.	7
2. Biological Activity of the genus Aglaia	47
2. Biological Activity of the genus <i>Aglaia</i>	
1. Source of Plant Material	53
2. General Techniques	53
2.1 Analytical Thin-Layer Chromatography (TLC)	53
2.2 Preparative Thin Layer Chromatography (PTLC)	53
2.3 Column Chromatography	54
2.3.1 Liquid Column Chromatography	54
2.3.2 Gel filtration Chromatography	54
2.4 Spectroscopy	54
2.4.1 Ultraviolet (UV) Absorption Spectra	54
2.4.2 Infrared (IR) Absorption Spectra	55
2.4.3 Mass Spectra (MS)	55
2.4.4 Nuclear Magnetic Resonance (NMR) spectra	55
2.5 Physical properties	55
2.3.1 Melting Points	55
2.3.2 Optical Rotations	55

Page

2.6 Solvents	56
3. Extraction and Isolation	56
3.1 Extraction and Isolation of Compounds from the Leaves of Aglaia forbesii	56
3.1.1 Extraction	56
3.1.2 Isolation of Compounds from the Hexane Extract of A. forbesii Leaves	56
3.1.2.1 Isolation of Compounds HAF1 and HAF3	56
3.1.2.2 Isolation of Compound HAF2	56
3.1.2.3 Isolation of Compound HAF4	57
3.1.3 Isolation of Compounds from the CH ₂ Cl ₂ Extract of A. forbesii Leaves	57
3.1.3.1 Isolation of Compound CAF1	57
3.1.3.2 Isolation of Compounds CAF2 and CAF3	57
3.1.3.3 Isolation of Compound CAF4	58
3.1.3.4 Isolation of Compound CAF5	58
3.1.3.5 Isolation of Compound CAF6	58
3.1.3.6 Isolation of Compounds CAF6 and CAF7	58
3.2 Extraction and Isolation of Compounds from the Leaves of A. oligophylla	
3.2.1 Extraction	59
3.2.2 Isolation of Compounds from the Hexane Extract of A. oligophylla leaves	59
3.2.2.1 Isolation of Compounds HAO1 and HAO2	59
3.2.2.2 Isolation of Compound HAO3	60
3.2.2.3 Isolation of Compound HAO4	60
3.2.2.4 Isolation of Compound HAO5	60
3.2.2.5 Isolation of Compound HAO6	61
3.2.2.6 Isolation of Compound HAO7	61
3.2.3 Isolation of Compounds from the EtOAc Extract of A. oligophylla leaves	61
3.2.3.1 Isolation of Compound EAO1	61
4. Physical and Spectral Data of Isolated Compounds	75
4.1 Compound HAF1	75
4.2 Compound HAF2	75
4.3 Compound HAF3	75
4.4 Compound HAF4	75

Page

4.6 Compound CAF2. 7 4.7 Compound CAF3. 7 4.8 Compound CAF4. 7 4.9 Compound CAF5. 7 4.10 Compound CAF6. 7 4.11 Compound CAF7. 7 4.12 Compound HAO1. 7 4.13 Compound HAO2. 7 4.14 Compound HAO3. 7 4.15 Compound HAO4. 8 4.16 Compound HAO5. 8 4.17 Compound HAO6. 8 4.19 Compound HAO7. 8 4.19 Compound HAO7. 8 5. Evaluation of Biological Activities. 8 5.1 Determination of Antimycobacterial Activity. 8 5.3.2 Vero cell 8 5.3.4 Human Small Cell Lung Carcinoma (NCI-H187). 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 5.3.2 Vero cell 8 5.4 Determination of Compound HAF1. 8 1.1 Identification of Compound HAF2. 8 1.2 Identification of Compound HAF2. 8 1.3 Identification of Compound HAF2. 8 1.4 Identification of Compound HAF3. 9	4.5 Compound CAF1	76
4.7 Compound CAF3. 4.8 Compound CAF4. 4.9 Compound CAF5. 7 4.10 Compound CAF6. 7 4.10 Compound CAF7. 7 4.12 Compound CAF7. 7 4.13 Compound HAO1. 7 4.14 Compound HAO2. 7 4.15 Compound HAO2. 7 4.16 Compound HAO3. 8 4.17 Compound HAO5. 8 4.18 Compound HAO7. 8 4.19 Compound EAO1. 8 5. Evaluation of Biological Activities. 8 5.1 Determination of Antimycobacterial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187). 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 5.3.2 Vero cell 8 5.4 Determination of Compound HAF1. 8 1.1 Identification of Compound HAF3. 9 1.2 Identification of Compound HAF3. 9 1.3 Identification of Compound HAF3. 9 1.4 Identification of Compound HAF3. 9 1.5 Identification of Compound CAF1. 9 1.6	4.6 Compound CAF2	76
4.8 Compound CAF4	4.7 Compound CAF3	76
4.9 Compound CAF5	4.8 Compound CAF4	77
4.10 Compound CAF6	4.9 Compound CAF5	77
4.11 Compound CAF7. 7 4.12 Compound HAO1. 7 4.13 Compound HAO2. 7 4.14 Compound HAO3. 7 4.15 Compound HAO3. 7 4.16 Compound HAO4. 8 4.16 Compound HAO5. 8 4.17 Compound HAO5. 8 4.18 Compound HAO7. 8 4.19 Compound EAO1. 8 5. Evaluation of Biological Activities. 8 5.1 Determination of Antimycobacterial Activity 8 5.2 Determination of Antimycobacterial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187). 8 5.3.2 Vero cell 8 5.4 Determination of Compound BAF1. 8 1. Structure Determination of Compound BIsolated from Aglaia forbesii. 8 1. I Identification of Compound HAF1. 8 1.2 Identification of Compound HAF2. 8 1.3 Identification of Compound HAF3. 9 1.4 Identification of Compound HAF3. 9 1.4 Identification of Compound CAF1. 9 1.6 Identification of Compound CAF3. 1	4.10 Compound CAF6	78
4.12 Compound HAO1	4.11 Compound CAF7	78
4.13 Compound HAO2	4.12 Compound HAO1	79
4.14 Compound HAO3 7 4.15 Compound HAO4 8 4.16 Compound HAO5 8 4.16 Compound HAO5 8 4.17 Compound HAO6 8 4.18 Compound HAO7 8 4.19 Compound EAO1 8 5. Evaluation of Biological Activities 8 5.1 Determination of Antimycobacterial Activity 8 5.2 Determination of Antimycobacterial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187) 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 1.4 Identification of Compound HAF1 8 1.2 Identification of Compound HAF3 9 1.3 Identification of Compound HAF4 9 1.4 Identification of Compound HAF4 9 1.5 Identification of Compound CAF1 9 1.6 Identification of Compound CAF3 1	4.13 Compound HAO2	79
4.15 Compound HAO4 8 4.16 Compound HAO5 8 4.17 Compound HAO6 8 4.18 Compound HAO7 8 4.19 Compound EAO1 8 5. Evaluation of Biological Activities 8 5.1 Determination of Antimycobacterial Activity 8 5.2 Determination of Antimalarial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187) 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 5.4 Determination of Compound Isolated from Aglaia forbesii 8 1. Structure Determination of Compound HAF1 8 1.2 Identification of Compound HAF2 8 1.3 Identification of Compound HAF3 9 1.4 Identification of Compound HAF4 9 1.5 Identification of Compound CAF1 9 1.6 Identification of Compound CAF1 9 1.7 Identification of Compound CAF3 1	4.14 Compound HAO3	79
4.16 Compound HAO5	4.15 Compound HAO4	80
4.17 Compound HAO6. 8 4.18 Compound HAO7. 8 4.19 Compound EAO1. 8 5. Evaluation of Biological Activities. 8 5.1 Determination of Antimycobacterial Activity. 8 5.2 Determination of Antimalarial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187). 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 1V RESULTS AND DISCUSSION. 8 1. Structure Determination of Compounds Isolated from Aglaia forbesii. 8 1.1 Identification of Compound HAF1. 8 1.2 Identification of Compound HAF3. 9 1.3 Identification of Compound HAF3. 9 1.4 Identification of Compound CAF1. 9 1.5 Identification of Compound CAF1. 9 1.6 Identification of Compound CAF3. 1	4.16 Compound HAO5	80
4.18 Compound HAO7	4.17 Compound HAO6	80
4.19 Compound EAO1. 8 5. Evaluation of Biological Activities. 8 5.1 Determination of Antimycobacterial Activity. 8 5.2 Determination of Antimalarial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187). 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 1V RESULTS AND DISCUSSION 8 1. Structure Determination of Compounds Isolated from Aglaia forbesii 8 1.1 Identification of Compound HAF1. 8 1.2 Identification of Compound HAF2. 8 1.3 Identification of Compound HAF3. 9 1.4 Identification of Compound HAF4. 9 1.5 Identification of Compound CAF1. 9 1.6 Identification of Compound CAF2. 9 1.7 Identification of Compound CAF3. 1	4.18 Compound HAO7	81
5. Evaluation of Biological Activities. 8 5.1 Determination of Antimycobacterial Activity. 8 5.2 Determination of Antimalarial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187). 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 7.4 Determination of Compounds Isolated from Aglaia forbesii. 8 1. Structure Determination of Compound HAF1. 8 1.2 Identification of Compound HAF2. 8 1.3 Identification of Compound HAF3. 9 1.4 Identification of Compound HAF4. 9 1.5 Identification of Compound CAF1. 9 1.6 Identification of Compound CAF2. 9 1.7 Identification of Compound CAF3. 1	4.19 Compound EAO1	81
5.1 Determination of Antimycobacterial Activity 8 5.2 Determination of Antimalarial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187) 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 7.4 Determination of Anti-Herpes Simplex Activity 8 1.7 Identification of Compound HAF1 8 1.1 Identification of Compound HAF3 9 1.3 Identification of Compound HAF3 9 1.4 Identification of Compound HAF4 9 1.5 Identification of Compound CAF1 9 1.6 Identification of Compound CAF3 1	5. Evaluation of Biological Activities	82
5.2 Determination of Antimalarial Activity 8 5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187) 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 IV RESULTS AND DISCUSSION 8 1. Structure Determination of Compounds Isolated from Aglaia forbesii 8 1.1 Identification of Compound HAF1 8 1.2 Identification of Compound HAF3 9 1.4 Identification of Compound CAF1 9 1.5 Identification of Compound CAF1 9 1.6 Identification of Compound CAF3 1	5.1 Determination of Antimycobacterial Activity	82
5.3 Determination of Cytotoxic Activity 8 5.3.1 Human Small Cell Lung Carcinoma (NCI-H187) 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 IV RESULTS AND DISCUSSION 8 1. Structure Determination of Compounds Isolated from Aglaia forbesii 8 1.1 Identification of Compound HAF1 8 1.2 Identification of Compound HAF2 8 1.3 Identification of Compound HAF3 9 1.4 Identification of Compound HAF4 9 1.5 Identification of Compound CAF1 9 1.6 Identification of Compound CAF1 9 1.7 Identification of Compound CAF3 1	5.2 Determination of Antimalarial Activity	82
5.3.1 Human Small Cell Lung Carcinoma (NCI-H187) 8 5.3.2 Vero cell 8 5.4 Determination of Anti-Herpes Simplex Activity 8 IV RESULTS AND DISCUSSION 8 1. Structure Determination of Compounds Isolated from Aglaia forbesii 8 1.1 Identification of Compound HAF1 8 1.2 Identification of Compound HAF2 8 1.3 Identification of Compound HAF3 9 1.4 Identification of Compound HAF4 9 1.5 Identification of Compound CAF1 9 1.6 Identification of Compound CAF3 1	5.3 Determination of Cytotoxic Activity	83
5.3.2 Vero cell85.4 Determination of Anti-Herpes Simplex Activity8IV RESULTS AND DISCUSSION81. Structure Determination of Compounds Isolated from Aglaia forbesii81.1 Identification of Compound HAF181.2 Identification of Compound HAF281.3 Identification of Compound HAF391.4 Identification of Compound HAF491.5 Identification of Compound CAF191.6 Identification of Compound CAF31	5.3.1 Human Small Cell Lung Carcinoma (NCI-H187)	83
5.4 Determination of Anti-Herpes Simplex Activity8IV RESULTS AND DISCUSSION.81. Structure Determination of Compounds Isolated from Aglaia forbesii.81.1 Identification of Compound HAF1.81.2 Identification of Compound HAF2.81.3 Identification of Compound HAF3.91.4 Identification of Compound HAF4.91.5 Identification of Compound CAF1.91.6 Identification of Compound CAF3.1	5.3.2 Vero cell	84
IV RESULTS AND DISCUSSION. 8 1. Structure Determination of Compounds Isolated from Aglaia forbesii. 8 1.1 Identification of Compound HAF1. 8 1.2 Identification of Compound HAF2. 8 1.3 Identification of Compound HAF3. 9 1.4 Identification of Compound HAF4. 9 1.5 Identification of Compound CAF1. 9 1.6 Identification of Compound CAF2. 9 1.7 Identification of Compound CAF3. 1	5.4 Determination of Anti-Herpes Simplex Activity	84
1. Structure Determination of Compounds Isolated from Aglaia forbesii.81.1 Identification of Compound HAF1.81.2 Identification of Compound HAF2.81.3 Identification of Compound HAF3.91.4 Identification of Compound HAF4.91.5 Identification of Compound CAF1.91.6 Identification of Compound CAF3.91.7 Identification of Compound CAF3.1	IV RESULTS AND DISCUSSION	85
1.1 Identification of Compound HAF1.81.2 Identification of Compound HAF2.81.3 Identification of Compound HAF3.91.4 Identification of Compound HAF4.91.5 Identification of Compound CAF1.91.6 Identification of Compound CAF2.91.7 Identification of Compound CAF3.1	1. Structure Determination of Compounds Isolated from Aglaia forbesii	85
1.2 Identification of Compound HAF2.81.3 Identification of Compound HAF3.91.4 Identification of Compound HAF4.91.5 Identification of Compound CAF1.91.6 Identification of Compound CAF2.91.7 Identification of Compound CAF3.1	1.1 Identification of Compound HAF1	85
1.3 Identification of Compound HAF3.91.4 Identification of Compound HAF4.91.5 Identification of Compound CAF1.91.6 Identification of Compound CAF2.91.7 Identification of Compound CAF3.1	1.2 Identification of Compound HAF2	88
1.4 Identification of Compound HAF4.91.5 Identification of Compound CAF1.91.6 Identification of Compound CAF2.91.7 Identification of Compound CAF3.1	1.3 Identification of Compound HAF3	90
1.5 Identification of Compound CAF191.6 Identification of Compound CAF291.7 Identification of Compound CAF31	1.4 Identification of Compound HAF4	92
1.6 Identification of Compound CAF2.91.7 Identification of Compound CAF3.1	1.5 Identification of Compound CAF1	95
1.7 Identification of Compound CAF3 1	1.6 Identification of Compound CAF2	99
	1.7 Identification of Compound CAF3	102

Page

1.8 Identification of Compound CAF4	104
1.9 Identification of Compound CAF5	106
1.10 Identification of Compound CAF6	110
1.11 Identification of Compound CAF7	114
2. Structure Determination of Compounds Isolated from <i>Aglaia oligophylla</i>	117
2.1 Identification of Compound HAO1	117
2.2 Identification of Compound HAO2	120
2.3 Identification of Compound HAO3	124
2.4 Identification of Compound HAO4	127
2.5 Identification of Compound HAO5	130
2.6 Identification of Compound HAO6	133
2.7 Identification of Compound HAO7	136
2.8 Identification of Compound EAO1	139
3. Bioactivities of Compounds Isolated from Aglaia forbesii and Aglaia oligophylla	142
3.1 Bioactive Compounds from <i>Aglaia forbesii</i>	142
3.1.1 Cytotoxic Activity	142
3.1.2 Antituberculosis Activity	142
3.1.3 Anti HSV-1 Activity	143
3.2 Bioactive Compounds from <i>Aglaia oligophylla</i>	145
3.2.1 Cytotoxic activity	145
3.2.2 Antituberculosis activity	145
3.2.3 Anti HSV-1 activity	145
3.2.4 Antimalarial activity	145
V CONCLUSION	147
REFERENCES	149
APPENDIX	158
VITA	235

LIST OF FIGURES

Figure		Page
1	Aglaia forbesii King	5
2	Aglaia oligophylla Miq	6
3	Chemical constituents of plants in the genus Aglaia	29
4	Chemical structures of compounds isolated from Aglaia forbesii leaves	70
5	Chemical structures of compounds isolated from <i>Aglaia oligophylla</i> leaves	72
6	ESI-TOF Mass Spectrum of compound HAF1	159
7	IR Spectrum of compound HAF1 (KBr disc)	159
8	¹ H NMR (400 MHz) Spectrum of compound HAF1 (CDCl ₃)	160
9	¹³ C APT (100 MHz) Spectrum of compound HAF1 (CDCl ₃)	160
10	IR Spectrum of compound HAF2 (KBr disc)	161
11	¹ H NMR (300 MHz) Spectrum of compound HAF2 (CDCl ₃)	161
12	¹³ C NMR (75 MHz) and DEPT Spectra of compound HAF2 (CDCl ₃)	162
13	EI Mass Spectrum of compound HAF3	162
14	IR Spectrum of compound HAF3 (KBr disc)	163
15	¹³ H NMR (400 MHz) Spectrum of compound HAF3 (CDCl ₃)	163
16	¹³ C APT (100 MHz) Spectrum of compound HAF3 (CDCl ₃)	164
17	HMBC Spectrum of compound HAF3 (CDCl ₃)	164
18	IR Spectrum of compound HAF4 (KBr disc)	165
19	¹ H NMR (300 MHz) Spectrum of compound HAF4 (CDCl ₃)	165
20	¹³ C NMR (75 MHz) Spectrum of compound HAF4 (in CDCl ₃)	166
21	HRESI-TOF Mass spectrum of compound CAF1	166
22	IR Spectrum of compound CAF1 (KBr disc)	167
23	¹ H NMR (500 MHz) Spectrum of compound CAF1 (CDCl ₃)	167
24	¹³ C NMR (125 MHz) Spectrum of compound CAF1 (CDCl ₃)	168
25	¹ H– ¹ H COSY Spectrum of compound CAF1 (CDCl ₃)	168
26	HSQC Spectrum of compound CAF1 (CDCl ₃) [$\delta_{\rm H}$ 0.5-2.0 ppm, $\delta_{\rm C}$ 17-36 ppm]	169
27	HSQC Spectrum of compound CAF1 (CDCl ₃) [$\delta_{\rm H}$ 0.0-4.2 ppm, $\delta_{\rm C}$ 10-78 ppm]	169
28	HMBC Spectrum of compound CAF1 (CDCl ₃) [$\delta_{\rm H}$ 0.5-2.0 ppm, $\delta_{\rm C}$ 18-31 ppm]	170

Figure

igure		Page
29	HMBC Spectrum of compound CAF1 (CDCl ₃) [$\delta_{\rm H}$ 0.5-1.3 ppm, $\delta_{\rm C}$ 32-56 ppm]	170
30	HMBC Spectrum of compound CAF1 (CDCl ₃) [$\delta_{\rm H}$ 0.0-2.8 ppm, $\delta_{\rm C}$ 70-220 ppm]	171
31	HMBC Spectrum of compound CAF1 (CDCl ₃) [$\delta_{\rm H}$ 2.6-4.6 ppm, $\delta_{\rm C}$ 20-75 ppm]	171
32	HMBC Spectrum of compound CAF1 (CDCl ₃) [$\delta_{\rm H}$ 0.8-1.9 ppm, $\delta_{\rm C}$ 69-76 ppm]	172
33	NOESY Spectrum of compound CAF1 (CDCl ₃)	172
34	EI Mass spectrum of compound CAF2	173
35	UV Spectrum of compound CAF2	173
36	IR Spectrum of compound CAF2 (KBr disc)	174
37	¹ H NMR (500 MHz) Spectrum of compound CAF2 (CDCl ₃)	174
38	¹ H NMR (400 MHz) Spectrum of compound CAF2 (CDCl ₃)	175
39	¹³ C APT (100 MHz) Spectrum of compound CAF2 (CDCl ₃)	175
40	¹ H– ¹ H COSY Spectrum of compound CAF2 (CDCl ₃)	176
41	HMQC Spectrum of compound CAF2 (CDCl ₃)	176
42	HMBC Spectrum of compound CAF2 (CDCl ₃) [$\delta_{\rm H}$ 3.4-6.7 ppm, $\delta_{\rm C}$ 10-70 ppm]	177
43	HMBC Spectrum of compound CAF2 (CDCl ₃) [$\delta_{\rm H}$ 3.4-6.7 ppm, $\delta_{\rm C}$ 120-210 ppm]	177
44	HMBC Spectrum of compound CAF2 (CDCl ₃) [$\delta_{\rm H}$ 0.7-2.3 ppm, $\delta_{\rm C}$ 10-70 ppm]	178
45	HMBC Spectrum of compound CAF2 (CDCl ₃) [$\delta_{\rm H}$ 0.9-2.3 ppm, $\delta_{\rm C}$ 120-210 ppm].	178
46	ESI-TOF Mass spectrum of compound CAF3	179
47	UV Spectrum of compound CAF3	179
48	IR Spectrum of compound CAF3 (KBr disc)	180
49	¹ H NMR (400 MHz) Spectrum of compound CAF3 (CDCl ₃)	180
50	¹³ C APT (100 MHz) Spectrum of compound CAF3 (CDCl ₃)	181
51	ESI-TOF Mass spectrum of compound CAF4	181
52	UV Spectrum of compound CAF4	182
53	IR Spectrum of compound CAF4 (KBr disc)	182
54	¹ H NMR (400 MHz) Spectrum of compound CAF4 (DMSO- d_{δ})	183
55	¹³ C NMR (100 MHz) Spectrum of compound CAF4 (DMSO- d_6)	183
56	¹³ C NMR (100 MHz) Spectrum of compound CAF4 (DMSO- d_6) (expanded)	184
57	HRESI-TOF Mass spectrum of compound CAF5	184
58	UV Spectrum of compound CAF5	185

igure		Page
59	IR Spectrum of compound CAF5 (KBr disc)	185
60	¹ H NMR (500 MHz) Spectrum of compound CAF5 (CDCl ₃)	186
61	¹³ C NMR (125 MHz) Spectrum of compound CAF5 (CDCl ₃)	186
62	¹ H– ¹ H COSY Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 1.0-4.0 ppm]	187
63	¹ H– ¹ H COSY Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 0.0-7.0 ppm]	187
64	HMBC Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 2.6-4.2 ppm, $\delta_{\rm C}$ 125-175 ppm].	188
65	HMBC Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 1.0-5.0 ppm, $\delta_{\rm C}$ 20-65 ppm]	188
66	HMBC Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 5.5-8.0 ppm, $\delta_{\rm C}$ 20-65 ppm]	189
67	HMBC Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 3.8-5.4 ppm, $\delta_{\rm C}$ 78-110 ppm]	189
68	HMBC Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 3.9-5.4 ppm, $\delta_{\rm C}$ 128-138 ppm].	190
69	HMBC Spectrum of compound CAF5 (CDCl ₃) [$\delta_{\rm H}$ 3.8-4.5 ppm, $\delta_{\rm C}$ 128-138 ppm].	190
70	NOESY Spectrum of compound CAF5 (CDCl ₃)	191
71	HRESI-TOF Mass spectrum of compound CAF6	191
72	UV Spectrum of compound CAF6	192
73	IR Spectrum of compound CAF6 (KBr disc)	192
74	¹ H NMR (500 MHz) Spectrum of compound CAF6 (CDCl ₃)	193
75	¹³ C NMR (125 MHz) Spectrum of compound CAF6 (CDCl ₃)	193
76	¹ H– ¹ H COSY Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 1.6-6.6 ppm]	194
77	¹ H– ¹ H COSY Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 6.4-7.8 ppm]	194
78	HSQC Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 4.0-8.0 ppm, $\delta_{\rm C}$ 80-135 ppm]	195
79	HMBC Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 1.5-5.0 ppm, $\delta_{\rm C}$ 20-70 ppm]	195
80	HMBC Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 3.2-5.0 ppm, $\delta_{\rm C}$ 76-115 ppm]	196
81	HMBC Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 3.0-8.0 ppm, $\delta_{\rm C}$ 76-115 ppm]	196
82	HMBC Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 4.0-8.0 ppm, $\delta_{\rm C}$ 80-135 ppm]	197
83	HMBC Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 3.2-5.0 ppm, $\delta_{\rm C}$ 125-175 ppm].	197
84	HMBC Spectrum of compound CAF6 (CDCl ₃) [$\delta_{\rm H}$ 6.0-7.8 ppm, $\delta_{\rm C}$ 125-175 ppm].	198
85	NOESY Spectrum of compound CAF6 (CDCl ₃)	198
86	HRESI-TOF Mass spectrum of compound CAF7	199
87	UV Spectrum of compound CAF7	199

igure		Page
88	IR Spectrum of compound CAF7 (KBr disc)	200
89	¹ H NMR (500 MHz) Spectrum of compound CAF7 (CDCl ₃)	200
90	¹³ C NMR (125 MHz) Spectrum of compound CAF7 (CDCl ₃)	201
91	¹ H– ¹ H COSY Spectrum of compound CAF7 (CDCl ₃) [$\delta_{\rm H}$ 6.7-7.9 ppm]	201
92	HSQC Spectrum of compound CAF7 (CDCl ₃) [$\delta_{\rm H}$ 1.0-5.0 ppm, $\delta_{\rm C}$ 25-75 ppm]	202
93	HSQC Spectrum of compound CAF7 (CDCl ₃) [$\delta_{\rm H}$ 6.8-7.9 ppm, $\delta_{\rm C}$ 125-130 ppm]	202
94	HMBC Spectrum of compound CAF7 (CDCl ₃) [$\delta_{\rm H}$ 0.9-4.0 ppm, $\delta_{\rm C}$ 10-76 ppm]	203
95	HMBC Spectrum of compound CAF7 (CDCl ₃) [$\delta_{\rm H}$ 4.5-8.0 ppm, $\delta_{\rm C}$ 25-75 ppm]	203
96	HMBC Spectrum of compound CAF7 (CDCl ₃) [$\delta_{\rm H}$ 2.0-4.2 ppm, $\delta_{\rm C}$ 80-176 ppm]	204
97	HMBC Spectrum of compound CAF7 (CDCl ₃) [$\delta_{\rm H}$ 4.6-8.0 ppm, $\delta_{\rm C}$ 80-174 ppm]	204
98	NOESY Spectrum of compound CAF7 (CDCl ₃)	205
99	EI Mass spectrum of compound HAO1	205
100	IR Spectrum of compound HAO1 (KBr disc)	206
101	¹ H NMR (400 MHz) Spectrum of compound HAO1 (CDC1 ₃)	206
102	¹³ C APT (100 MHz) Spectrum of compound HAO1 (CDCl ₃)	207
103	HMBC Spectrum of compound HAO1 (CDCl ₃)	207
104	EI Mass spectrum of compound HAO2	208
105	IR Spectrum of compound HAO2 (KBr disc)	208
106	¹ H NMR (500 MHz) Spectrum of compound HAO2 (CDCl ₃)	209
107	¹³ C NMR (125 MHz) Spectrum of compound HAO2 (CDCl ₃)	209
108	13 C APT (100 MHz) Spectrum of compound HAO2 (CDCl ₃)	210
109	HSQC Spectrum of compound HAO2 (CDCl ₃) [$\delta_{\rm H}$ 0.80-1.9 ppm, $\delta_{\rm C}$ 15-29 ppm]	210
110	HSQC Spectrum of compound HAO2 (CDCl ₃)[$\delta_{\rm H}$ 0.80-3.5 ppm, $\delta_{\rm C}$ 70-90 ppm]	211
111	HMBC Spectrum of compound HAO2 (CDCl ₃) [$\delta_{\rm H}$ 0.8-2.5 ppm, $\delta_{\rm C}$ 80-220 ppm]	211
112	HMBC Spectrum of compound HAO2 (CDCl ₃) [$\delta_{\rm H}$ 3.3-3.7 ppm, $\delta_{\rm C}$ 14-42 ppm]	212
113	EI Mass spectrum of compound HAO3	212
114	IR Spectrum of compound HAO3 (KBr disc)	213
115	¹ H NMR (400 MHz) Spectrum of compound HAO3 (CDCl ₃)	213
116	¹³ C NMR (100 MHz) Spectrum of compound HAO3 (CDCl ₃)	214

Figure		Page
117	HMBC Spectrum of compound HAO3 (CDCl ₃)	214
118	NOESY Spectrum of compound HAO3 (CDCl ₃)	215
119	EI Mass spectrum of compound HAO4	215
120	IR Spectrum of compound HAO4 (KBr disc)	216
121	¹ H NMR (400 MHz) Spectrum of compound HAO4 (in CDCl ₃)	216
122	¹³ C NMR (100 MHz) Spectrum of compound HAO4 (in CDCl ₃)	217
123	HSQC Spectrum of compound HAO4 (CDCl ₃)	217
124	HMBC Spectrum of compound HAO4 (CDCl ₃) [$\delta_{\rm H}$ 0.9-1.7 ppm, $\delta_{\rm C}$ 68-77 ppm]	218
125	HMBC Spectrum of compound HAO4 (CDCl ₃) [$\delta_{\rm H}$ 4.6-5.6 ppm, $\delta_{\rm C}$ 60-95 ppm]	218
126	HMBC Spectrum of compound HAO4 (CDCl ₃) [$\delta_{\rm H}$ 0.9-2.6 ppm, $\delta_{\rm C}$ 110-220 ppm]	219
127	ESI-TOF Mass spectrum of compound HAO5	219
128	UV Spectrum of compound HAO5	220
129	IR Spectrum of compound HAO5 (KBr disc)	220
130	¹ H NMR (500 MHz) Spectrum of compound HAO5 (CDCl ₃)	221
131	¹³ C NMR (125 MHz) Spectrum of compound HAO5 (CDCl ₃)	221
132	HSQC Spectrum of compound HAO5 (CDCl ₃)	222
133	NOESY Spectrum of compound HAO5 (CDCl ₃)	222
134	ESI-TOF Mass spectrum of compound HAO6	223
135	UV Spectrum of compound HAO6	223
136	IR Spectrum of compound HAO6 (KBr disc)	224
137	¹ H NMR (500 MHz) Spectrum of compound HAO6 (CDCl ₃)	224
138	¹³ C NMR (125 MHz) Spectrum of compound HAO6 (CDCl ₃)	225
139	¹ H– ¹ H COSY Spectrum of compound HAO6 (CDCl ₃) [$\delta_{\rm H}$ 2.0-7.0 ppm]	225
140	HMBC Spectrum of compound HAO6 (CDCl ₃) [$\delta_{\rm H}$ 0.7-8.0 ppm, $\delta_{\rm C}$ 15-180 ppm]	226
141	HMBC Spectrum of compound HAO6 (CDCl ₃) [$\delta_{\rm H}$ 6.0-6.2 ppm, $\delta_{\rm C}$ 20-48 ppm]	226
142	EI Mass spectrum of compound HAO7	227
143	IR Spectrum of compound HAO7 (KBr disc)	227
144	¹ H NMR (400 MHz) Spectrum of compound HAO7 (CDCl ₃)	228
145	¹³ C APT (100 MHz) Spectrum of compound HAO7 (CDCl ₃)	228
146	¹³ C APT (100 MHz) Spectrum of compound HAO7 (CDCl ₃) (expanded)	229
147	HMBC Spectrum of compound HAO7 (CDCl ₃)	229

Figure		Page
148	EI Mass spectrum of compound EAO1	230
149	IR Spectrum of compound EAO1 (KBr disc)	230
150	¹ H NMR (500 MHz) Spectrum of compound EAO1 (CDCl ₃)	231
151	¹³ C NMR (125 MHz) Spectrum of compound EAO1 (CDCl ₃)	231
152	¹³ C NMR (125 MHz) Spectrum of compound EAO1 (CDCl ₃) (expanded)	232
153	HSQC Spectrum of compound EAO1 (CDCl ₃) [$\delta_{\rm H}$ 0.7-2.0 ppm, $\delta_{\rm C}$ 15-29 ppm]	232
154	HSQC Spectrum of compound EAO1 (CDCl ₃) [$\delta_{\rm H}$ 3.1-3.4 ppm, $\delta_{\rm C}$ 71-80 ppm]	233
155	HMBC Spectrum of compound EAO1 (CDCl ₃) [$\delta_{\rm H}$ 0.7-1.2 ppm, $\delta_{\rm C}$ 33-58 ppm]	233
156	HMBC Spectrum of compound EAO1 (CDCl ₃) [$\delta_{\rm H}$ 0.7-1.3 ppm, $\delta_{\rm C}$ 72-88 ppm]	234
157	HMBC Spectrum of compound EAO1 (CDCl ₃) [δ_{H} 3.1-3.6 ppm, δ_{C} 26-80 ppm]	234

LIST OF TABLES

Table		Page
1	Chemical constituents of plants in the genus Aglaia	8
2	Biological activities of Aglaia species	48
3	Comparison of the ¹³ C-NMR spectral data of lupenone and compound HAF1 (CDCl ₃ ,	87
	100 MHz)	
4	Comparison of the ¹³ C-NMR spectral data of lupeol and compound HAF2 (CDCl ₃ ,	89
	75 MHz)	
5	Comparison of the NMR spectral data of spathulenol and compound HAF3 (CDCl ₃ ,	91
	400 MHz)	
6	Comparison of the 13 C NMR spectral data of β -sitosterol and stigmasterol and	93
	compound HAF4 (a mixture of HAF4A and HAF4B) (CDCl ₃ , 75 MHz)	
7	NMR spectral data of CAF1 and partial comparison of the ¹³ C resonances with those	97
	of 21 <i>S</i> ,24 <i>R</i> -dihydroxycycloart-25-en-3-one (CDCl ₃ , 500 MHz)	
8	Comparison of the NMR spectral data of 2β , 3β -Dihydroxy- 5α -pregn- $17(20)$ -(E)-en-	100
	16-one and compound CAF2 (CDCl ₃ , 500 MHz)	
9	Comparison of the NMR spectral data of 2β , 3β -Dihydroxy- 5α -pregn- $17(20)$ -(Z)-en-	103
	16-one and compound CAF3 (CDCl ₃ , 500 MHz)	
10	Comparison of the NMR spectral data of pyramidatine and compound CAF4	105
	(DMSO- <i>d</i> ₆ , 400 MHz)	
11	NMR spectral data of CAF5 (CDCl ₃ , 500 MHz)	108
12	NMR spectral data of CAF6 (CDCl ₃ , 500 MHz)	112
13	NMR spectral data of CAF7 (CDCl ₃ , 500 MHz)	115
14	Comparison of the NMR spectral data of dipterocapol and compound HAO1 (CDCl ₃ ,	118
	400 MHz)	
15	Comparison of the ¹³ C NMR spectral data of ocotillone and cabraleone and	122
	compound HAO2 (CDCl ₃ , 100 MHz)	
16	Comparison of the NMR spectral data of ocotillol-II and compound HAO3 (CDCl ₃ ,	125
	400 MHz)	
17	Comparison of the NMR spectral data of 20(S),24(S)-dihydroxydammar-25-en-3-one	128
	and compound HAO4 (CDCl ₃ , 400 MHz)	

Table		Page
18	Comparison of the NMR spectral data of rocaglaol and compound HAO5 (CDCl ₃ ,	131
	500 MHz)	
19	Comparison of the NMR spectral data of odorine and compound HAO6 (CDCl ₃ , 500	134
	MHz)	
20	NMR spectral data of HAO7 and partial comparison of ¹³ C resonances with cabraleone	137
	(CDCl ₃ , 400 MHz)	
21	NMR spectral data of EAO1 (CDCl ₃ , 500 MHz)	140
22	Bioactivities of isolated compounds from Aglaia forbesii	144
23	Bioactivities of isolated compounds from Aglaia oligophylla	146

LIST OF SCHEMES

Scheme		Page
1	Separation of the hexane extract of the leaves of <i>Aglaia forbesii</i>	62
2	Separation of the CH ₂ Cl ₂ extract of the leaves of <i>Aglaia forbesii</i>	63
3	Separation of the hexane extract of the leaves of <i>Aglaia oligophylla</i>	66
4	Separation of the EtOAc extract of the leaves of Aglaia oligophylla	69

$\left[\boldsymbol{\alpha}\right]_{D}^{25}$	=	Specific rotation at 25 °C and sodium D line (589 nm)
δ	=	Chemical shift
APT	=	Attachted Proton Test Spectrum
ax	=	Axial
br	=	Broad (for NMR spectra)
¹³ C NMR	=	Carbon-13 Nuclear Magnetic Resonance
c	=	Concentration
°C	=	Degree Celsius
calcd	=	Calculated
CDCl ₃	= 🧹	Deuterated chloroform
CFU	=	Colony forming unit
CH_2Cl_2	= _	Dichloromethane
CHCl ₃	=	Chloroform
cm	=	Centimetre
cm ⁻¹	=	Reciprocal centimeter (unit of wave number)
1-D	=	One dimensional
2-D	=	One dimensional
d	-0	Doublet (for NMR spectra)
dd	= V	Doublet of doublets (for NMR spectra)
DEPT	=	Distortionless Enhancement by Polarization Transfer
DMSO- d_6	=	Deuterated dimethyl sulfoxide
EIMS	-	Electron Impact Mass Spectrometry
eq	= 6	Equatorial
ESI-TOFMS	=	Electrospray Ionized Time of Flight Mass Spectrometry
EtOAc	-2	Ethyl acetate
Fr.	=	Fraction
g	=	Gram
¹ H- ¹ H COSY	=	Homonuclear (Proton-Proton) Correlation Spectroscopy
¹ H-NMR	=	Proton Nuclear Magnetic Resonance
HMBC	=	¹ H-detected Heteronuclear Multiple Bond Coherence

HMQC	=	¹ H-detected Heteronuclear Multiple Quantum Coherence	
HRESIMS	=	High Resolution Electrospray Ionization Mass Spectrometry	
HSQC	=	Heteronuclear Single Quantum Correlation	
HSV-1	=	Herpes Simplex Virus type 1	
Hz	=	Hertz	
IC ₅₀	=	Median inhibitory concentration	
IR	=	Infrared Spectrum	
J	=	Coupling constant	
KBr	=	Potassium bromide	
kg	=	Kilogram	
L	=	Litre	
$\lambda_{_{max}}$	= 🤞	Wave length at maximal absorption	
3	=	Molar absorptivity	
m	=	Multiplet	
m/z	=	Mass to charge ratio	
MS	=	Mass Spectrometry	
mult.	=	Multiplicity	
M^+	=	Molecular ion	
MeOH	=	Methanol	
MHz	-63	Megahertz	
MIC	- 4	Minimum inhibitory concentration	
min	=	Minute	
mm	=	Millimetre	
mM	สีก	Millimolar	
Мр	= 6	Melting point	
nm	=	Nanometre	
NMR	-2	Nuclear Magnetic Resonance	
NOESY	=	Nuclear Overhauser Enhancement Spectroscopy	
ps d	=	Pseudo doublet	
ps t	=	Pseudo triplet	
PLC	=	Preparative Thin Layer Chromatography	
q	=	Quartet (for NMR spectra)	

V_{max}	=	Wave number at maximal absorption
S	=	Singlet (for NMR spectra)
t	=	Triplet (for NMR spectra)
TLC	=	Thin Layer Chromatography
UV	=	Ultraviolet
UV-VIS	=	Ultraviolet and Visible Spectrophotometry
μl	=	Microlitre

CHAPTER I

INTRODUCTION

Aglaia, the largest genus in the family Meliaceae, is separated from most other genera in the Meliaceae by its characteristic indumentum of stellate hairs or peltate scales. The hairs and scales collectively known as trichomes which are described as scales if they lie flat on the surface of the plant and as hairs if the arms project at various angles outwards from the plant surface. All species of Aglaia are woody, ranging from treelets a few metres high to large trees up to 40 m high. Latex is often present, sometimes flowing rapidly when the trunk is cut. Twigs are stout or slender, apical bud always with dense stellate hairs or peltate scales. Leaves are usually imparipinnate, but occasionally simple or trifoliolate. Leaflets are (1-)3-25, lanceolate, oblanceolate, ovate, obovate, elliptical or oblong, the margin is entire or slightly wavy, one or both surfaces may be rugulose or pitted, in some species almost without indumentum but usually the lower surface has few, numerous or dense hairs or scales like those on the twigs. Inflorescences are usually axillary, occasionally ramiflorous, often several on an apical shoot. Flowers are small (1-10 mm long) and subglobose, ellipsoid or obovoid. They are unisexual, the structure of female flowers is similar to the male but usually slightly larger. Corolla aestivation is imbricate or quincuncial, petals are 3-5, free or united at the base, usually yellow, sometimes pink or white, subrotund, elliptical or obovate, occasionally with stellate hairs or peltate scales on the outside. Stamens are united to form a tube 0.5-8 mm long; anthers are (3-)5-10(-21), usually in a single whorl; anthers in the female flowers are similar but sterile. Ovary is superior, depressed globose or ovoid with dense stellate hairs or peltate scales; style is absent; stigma is ovoid, entire at the apex or with 2,3 or rarely 4 small lobes; ovary and stigma in the male are either poorly developed or similar to the female but sterile. Fruit is subglobose, obovoid or ellipsoids, dehiscence (section Amoora) or indehiscence (section Aglaia), covered with stellate hairs or peltate scales (Pannell, 1992).

According to Pannell (1992) and Smitinand (2001), the genus *Aglaia* consists of over 100 species distributed in the tropical rain forests of Southeast Asia. In Thailand, twenty-eight species can be found as follows; *A. argentea* (Sang khriat klong), *A. aspera*, *A. chittagonga* (Pra song), *A. crassinervia*, *A. cuculata* (Samae daeng), *A. edulis* (Khang khao), *A. elaeagnoidea* (Kraduk - khiat), *A. elliptica*, *A. erythrosperma*, *A. eximia*, *A. exstipulata* (Sang khriat rai hu), *A. forbesii*, *A. grandis*, *A. korthalsii* (Lang sat kao), *A. lawii* (Sang katong), *A. leptantha*, *A. leucophylla*, *A. odorata* (Prayong),

A. odoratissima (Prayong pa), *A. oligophylla* (Pra youg bai yai), *A. pachyphylla*, *A. perviridis*, *A. silvestris* (Chan-chamot), *A. simplicifolia* (Khaduk ling), *A. spectabilis*, *A. tenuicaulis* (Sang khriat bai yai), *A. teymanniana* and *A. tomentosa* (Sang khriat langsat).

Several species of the genus Aglaia are traditionally used in folk medicine. In Indo-china, the roots and leaves of A. odorata are recommended as pectoral, heart stimulant, febrifuge, tonic, and as a remedy for convulsions; in Malay Peninsula, an infusion of the flowers is administered as a cooling drink for eruptive fevers; in Indonesia, a decoction of the leaves is ingested as a remedy for excessive menses during the menopause (Perry, 1980). In Nepal, the use of A. roxburghiana (syn. A. elaeagnoidea) to treat a wide range of physical ailments such as asthma, bronchitis, rheumatism, and inflammatory skin diseases has been reported (Kumar and Muller, 1999). Furthermore, the leaves and flowers of A. duperreana and A. odorata are used in the traditional medicine of several Southeast Asian countries for treatment of asthma and inflammatory skin diseases (Baumann et al., 2002). In China, a decoction of the bark of A. tsangii is rubbed on the affected areas (rubbed into the hair and scalp) to kill lice. In Indo-China, a decoction of A. baillonii is considered to be antifebrile. A decoction of the roots of A. pleuropteris is a remedy for jungle fever (malaria). In Thailand, the scented wood of A. silvestris (syn. A. pyramidata) is used medicinally as antifebrile and antitussive (Perry, 1980). In the Philippines, a decoction of the roots of A. *iloilo* is drunk as an emetic to relieve colic; the bark of A. elliptica is boiled and used to treat tumors, while the leaves are applied to wounds (Cui et al., 1997; Perry, 1980).

Previous phytochemical investigations of plants in the genus *Aglaia* have revealed the presence of a variety of compounds with interesting biological activities, including the flavonolcinnamate derivatives, named flavaglines (cyclopenta[*b*]benzofurans, cyclopenta[*bc*]benzopyrans, and benzo[*b*]oxepines) (Dumontet *et al.*, 1996; Bacher *et al.*, 1999; Proksch *et al.*, 2001), the cinnamic acid-derived bisamides (Brader *et al.*, 1998; Saifah *et al.*, 1988), triterpenoids (dammarane, cycloartane, tirucallane, glabretal, and baccharane types) (Weber *et al.*, 2000; Hwang *et al.*, 2004), steroids (pregnane, cholestane, stigmastane, and ergostane types) (Mohamad *et al.*, 1999; Rivero-Cruz *et al.*, 2004; Su *et al.*, 2006), limonoids (Fuzzati *et al.*, 2001). Among these previously known isolates, flavaglines have attracted considerable interest due to their unusual carbon skeleton, and these compounds are confined to the members of the genus *Aglaia*. Inaddition, some of flavaglines were shown to possess high insecticidal activity, antifungal activity as well as significant cytotoxicity in many different cancer cell lines (Cui *et al.*, 1997; Proksch *et al.*, 2001), while bisamides have been reported as cytotoxic (Duh et al., 1993) and antiviral (Joshi et al., 1987).

Aglaia forbesii King (Lang Sat Pa) is a large tree of up to 35 metre in height. The leaves (**Figure 1**) are imparipinnate, up to 100 cm long and 60 cm wide, elliptical in outline. The 9-15 leaflets are alternate or subopposite. They all are 8.5-30 cm long and 2-10 cm wide, elliptical or oblong, brown or greenish-brown on lower surface when dry. The inflorescence is up to 35 cm long and 25 cm wide. The peduncle is up to 6 cm in length. The flowers are up to 2 mm long, ovoid, and fragrant . Each flower has 5-6 petals which are obovate, white, yellow or orange-yellow. The fruit is up to 4 cm long and 3.8 cm wide, ellipsoid or subglobose. The grey or greenish-grey pericarp is up to 4 mm thick with white latex, soft, fibrous and flexible. The seed is 1.5-3 cm long, 2-2.2 cm wide, and about 1.5 cm thick, with yellow or pink aril up to 3 mm thick.

The isolation of flavaglines including the cyclopenta[b]benzofuran type rocaglaol and ethylrocaglaol, the cyclopenta[bc]benzopyran type aglaforbesins A-B, and the benzo[b]oxepine type forbaglins A-B from the CH_2Cl_2 extract of the bark of *Aglaia forbesii*. has been earlier described (Dumontet *et al.*, 1996). However, the chemical constituents and biological activity of the leaves of *Aglaia forbesii* have never been recorded. Preliminary evaluation of the biological activity against *forbesii* leaves revealed that the dichloromethane extract exhibited antimycobacterial activity against *Mycobacterium tuberculosis* with MIC values of 25 µg/ml. The extract was also moderately active (35-50%) against herpes simplex virus type 1 (HSV-1) at the non-cytotoxic concentration of 38.1 µg/ml.

Aglaia oligophylla Miq. (Prayong bai yai) is a tree up to 20 (-25) m, with small buttresses. The leaves (**Figure 2**) are imparipinnate, up to 40 cm long and 30 cm wide, obovate in outline. The 3-11 leaflets are opposite or subopposite. They are 4.5-22 cm long, 2-9 cm wide, obovate or elliptical, both surfaces are rather shiny when dry. The inflorescence is up to 10-20 cm long and 9-15 cm wide. The peduncle is up to 4 cm in length. The depressed-globose flower is up to 2 mm long, each of which has 5-6 yellow and obovate petals. The fruit is 1-3 cm in diameter, subglobose. Its pericarp is brown or yellow, either thin, hard and brittle or thick. The seeds are white or brown with sweet edible aril.

Previous phytochemical studies on this plant have revealed the presence of flavaglines including the cyclopenta[b]benzofuran type aglaroxins A-B, aglaroxin F, pannellin 1-O-acetate, C-1-oxo, C-2-piriferineaglaroxin A and cyclorocaglamide, and the cyclopenta[bc]benzopyran type homothapsakin A and C-8-demethoxy-C7, C8-methylenedioxyaglaforbesin in the CH_2Cl_2 extract of the twigs of *Aglaia oligophylla* Miq. (Dreyer *et al.*, 2001; Bringmann *et al.*, 2003). Preliminary

evaluation for bioactivity activity revealed that the hexane and EtOAc extracts of its leaves exhibited strong cytotoxic activity against NCI-H187 cancer cell line at the IC_{50} values of 3.86 and 4.22 µg/ml, respectively, as well as antimalarial activity against *Plasmodium falciparum* (KI stain) at the IC_{50} values of 2.5 and 5.1 µg/ml, respectively. In addition, the EtOAc extract also showed antimycobacterial activity against *Mycobacterium tuberculosis* with the MIC value of 100 µg/ml.

Therefore, these plants were selected for further investigation of their chemical constituents and biological activity. The purposes of this research are as follows:

 1.
 Isolation and purification of compounds from the leaves of Aglaia forbesii and A.

 oligophylla.
 Isolation and purification of compounds from the leaves of Aglaia forbesii and A.

2. Determination of chemical structures of the isolated compounds.

3. Evaluation of biological activities of the isolated compounds.

Figure 1 Aglaia forbesii King.

Figure 2 Aglaia oligophylla Miq.

CHAPTER II

HISTORICAL

1. Chemical constituents of Aglaia spp.

According to previous phytochemical studies, a number of compounds have been isolated from the genus *Aglaia*. They can be classified as flavaglines (cyclopenta[*b*]benzofurans, cyclopenta[*bc*]benzopyrans, and benzo[*b*]oxepines), bisamides (pyrrolidine and putrescine types), triterpenoids (dammarane, cycloartane, tirucallane, glabretal, and baccharane types), steroids (pregnane, cholestane, stigmastane, and ergostane types), limonoids, sesquiterpenes, lignans, and flavonoids. The distribution of these compounds in *Aglaia* spp. is summarized in **Table 1** and their chemical structures are shown in **Figure 3**.

Chemical type / Chemical compounds	Sources / Plant part	References
Flavaglines		
Cyclopenta[b]benzofuran-type		
C-1-O-Acetyl-N-butanoyl-didesmethylrocaglamide (1)	A. elliptica (fruits)	Nugroho et al., 1997b
C-1-O-Acetyldemethylrocaglamide (2)	A. duperreana (roots, flowers)	Chaidir et al., 1999; Hiort et al., 1999
C-1-O-Acetyldidemethylrocaglamide (3)	A. duperreana (flowers)	Chaidir <i>et al.</i> , 1999
C-1-O-Acetyl-3'-hydroxydemethylrocaglamide (4)	A. duperreana (roots, flowers)	Chaidir et al., 1999; Hiort et al., 1999
C-1-O-Acetyl-3'-hydroxymethylrocaglate (5)	A. duperreana (roots, flowers)	Chaidir et al., 1999; Hiort et al., 1999
C-1-O-Acetyl-3'-hydroxyrocaglamide (6)	A. duperreana (roots, twigs, flowers)	Nugroho et al., 1997a; Chaidir et al., 1999;
	A. odorata (twigs)	Hiort et al., 1999; Nugroho et al., 1999
C-1-O-Acetylmethylrocaglate (7)	A. duperreana (roots, flowers)	Chaidir et al., 1999; Hiort et al., 1999;
	A. rubiginosa (twigs)	Rivero-Cruz et al., 2004
C-1-O-Acetylrocaglamide (8)	A. duperreana (roots)	Hiort <i>et al.</i> , 1999
C-1-O-Acetylrocaglaol (9)	A. rubiginosa (twigs)	River-Cruz et al., 2004
N-Butanoyl-didesmethylrocaglamide (10)	A. duperreana (flowers)	Nugroho et al., 1997a; Nugroho et al., 1997b;
N N I	A. elliptica (fruits)	Baumann et al., 2002
4	A. odorata (flowers)	

Chemical type / Chemical compounds	Sources / Plant part	References
Desmethylrocaglamide (11)	A. duperreana (flowers, roots, twigs)	Nugroho et al., 1997a; Chaidir et al., 1999;
	A. odorata (leaves, flowers, root bark)	Hiort et al., 1999; Ishibashi et al., 1993;
		Engelmeier et al., 2000; Baumann et al., 2002
Didesmethylrocaglamide (12)	A. argentea (leaves)	Dumontet et al., 1996; Nugroho et al., 1997a;
	A. duperreana (flowers, roots)	Hiort et al., 1999; Nugroho et al., 1997b
	A. elliptica (fruits)	Baumann et al., 2002
	A. odorata (flowers)	
C-8b-O-Ethyl-3'-hydroxymethylrocaglamide (13)	A. duperreana (flowers)	Chaidir <i>et al.</i> , 1999
C-8b-O-Ethyl-3'-hydroxyrocaglamide (14)	A. duperreana (flowers)	Chaidir <i>et al.</i> , 1999
Ethylrocaglaol (15)	A. forbesii (bark)	Dumontet et al., 1996
C-1-O-Formyloxy-3 ['] -hydroxymethylrocaglate (16)	A. dasyclada (leaves)	Chaidir et al., 2001; Schneider et al., 2000
	A. spectabilis (bark)	
C-1-O-Formyloxymethylrocaglate (17)	A. dasyclada (leaves)	Chaidir et al., 2001; Schneider et al., 2000
	A. spectabilis (bark)	
C-3'-Hydroxydemethylrocaglamide (18)	A. duperreana (roots)	Hiort et al., 1999; Nugroho et al., 1999
9	A. odorata (twigs)	

Chemical type / Chemical compounds	Sources / Plant part	References
C-3'-Hydroxydemethylrocaglate (19)	A. duperreana (roots)	Hiort et al., 1999; Nugroho et al.,1999;
	A. odorata (flowers)	Schneider et al., 2000
	A. spectabilis (bark)	
C-3'-Hydroxydidesmethylrocaglamide (20)	A. odorata (twigs)	Nugroho et al., 1999
C-3'-Hydroxyrocaglamide (21)	A. duperreana (roots, twigs, flowers)	Nugroho et al., 1997a; Chaidir et al., 1999;
	A. odorata (twigs)	Hiort et al., 1999; Nugroho et al., 1999
C-3'-Methoxyrocaglamide (22)	A. duperreana (twigs)	Nugroho et al., 1997a; Nugroho et al., 1999
	A. odorata (twigs)	
C-8b-O-Methyl-methylrocaglate (23)	A. duperreana (roots)	Hiort <i>et al.</i> , 1999
C-3'-Methylrocaglaol (24)	A. odorata (twigs & leaves)	Nugroho et al.,1999
C-8b-O-Methylrocaglaol (25)	A. duperreana (roots)	Hiort <i>et al.</i> , 1999
Methylrocaglate (aglafolin) (26)	A. dasyclada (leaves)	Chaidir et al., 2001; Chairdir et al., 1999;
í de la companya de la	A. duperreana (flowers, roots)	Hiort et al., 1999; Fuzzati et al., 1996; Cui et
	A. elaeagnoidea (bark)	al., 1997; Lee et al., 1998; Wu et al., 1997;
AW	A. elliptica (stem & fruits)	าลย
9	A. elliptifolia (stem)	

Chemical type / Chemical compounds	Sources / Plant part	References
Methylrocaglate (aglafolin) (26)	A. odorata (leaves) A. ponapensis (leaves & twigs)	Ishibashi et al., 1993; Salim et al., 2007
C-1-Oxime-C-3'-methoxymethylrocaglate (27)	A. odorata (twigs)	Nugroho et al.,1999
Rocaglamide (28)	 A. duperreana (roots, twigs) A. elliptifolia (stems) A. odorata (leaves, twigs, flowers, root bark) 	Nugroho <i>et al.</i> , 1997a; Hiort <i>et al.</i> , 1999; Wu <i>et al.</i> , 1997; Ishibashi <i>et al.</i> , 1993; Janprasert <i>et al.</i> , 1993; Engelmeier <i>et al.</i> , 2000; Baumann <i>et al.</i> , 2002
Rocaglaol (Ferrugin) (29)	 A. crassinervia (leaves) A. dasyclada (leaves) A. ferruginea (syn. A. tomentosa) (bark) A. forbesii (bark) A. odorata (leaves, root bark) A. spectabilis (bark) 	Su <i>et al.</i> , 2006; Chaidir <i>et al.</i> , 2001; Dean <i>et al.</i> , 1993; Mulhollane and Naidoo, 1998; Mohamad <i>et al.</i> , 1999; Dumontet <i>et al.</i> , 1996; Ishibashi <i>et al.</i> , 1993; Ohse <i>et al.</i> , 1996; Engelmeier <i>et al.</i> , 2000
Rocagloic acid (30)	A. dasyclada (leaves) A. rubiginosa (twigs)	Chaidir et al., 2001; Rivero-Cruz et al., 2004

Chemical type / Chemical compounds	Sources / Plant part	References
Episilvestrol (31)	A. silvestris (twigs)	Hwang et al., 2004
Silvestrol (32)	A. silvestris (twigs)	Hwang <i>et al.</i> , 2004
C-3'-Rhamnosyl-rocaglamide (33)	A. harmsiana (leaves)	Nugroho et al., 1997b
N-tetrahydrofuran-didesmethylrocaglamide (34,35)	A. elliptica (fruits)	Nugroho et al., 1997b
C-3'-Hydroxymarikarin (36)	A. gracilis (roots & stem bark)	Greger et al., 2001
C-3'-Hydroxypyrimidone (37)	A. duperreana (flowers) A. testicularis (leaves)	Chaidir et al., 1999; Wang et al., 2004
Marikarin (38)	A. gracilis (roots & stem bark)	Greger et al., 2001
Pyrimidone (39)	<i>A. duperreana</i> (roots, twigs, flowers)<i>A. odorata</i> (leaves)<i>A. testicularis</i> (leaves)	Nugroho <i>et al.</i> , 1997a; Chaidir <i>et al.</i> , 1999; Hiort <i>et al.</i> , 1999; Ohse <i>et al.</i> , 1996; Wang <i>et al.</i> , 2004
Aglaiastatin (Aglaroxin D) (40)	<i>A. duperreana</i> (roots, twigs) <i>A. odorata</i> (leaves)	Nugroho <i>et al.</i> , 1997a; Hiort <i>et al.</i> , 1999; Ohse <i>et al.</i> , 1996
C-1-O-Acetyl-4'-demethoxy-3'-4'- methylenedioxymethylrocaglate (41)	A. dasyclada (leaves) A. spectabilis (bark)	Lin et al., 2001; Schneider et al., 2000

Chemical type / Chemical compounds	Sources / Plant part	References
C-4'-Demethoxy-3',4'-methylenedioxyrocaglaol (42)	A. dasyclada (leaves)	Chaidir et al., 2001; Cui et al., 1997; Lee et
	A. elliptica (stem & fruits)	al., 1998; Schneider et al., 2000
	A. spectabilis (bark)	
C-4'-Demethoxy-3',4'-methylenedioxymethylrocaglate	A. dasyclada (leaves)	Chaidir et al., 2001; Cui et al., 1997; Lee et
(43)	A. elliptica (stem & fruits)	al., 1998; Schneider et al., 2000
	A. spectabilis (bark)	
C-1-O-Formyl-4'-demethoxy-3',4'-	A. elliptica (stem & fruits)	Chaidir et al., 2001; Cui et al., 1997; Lee et
methylenedioxymethylrocaglate (44)	A. dasyclada (leaves)	al., 1998
C-1-Oxo-4'-demethoxy-3',4'-methylenedioxyrocaglaol	A. dasyclada (leaves)	Chaidir et al., 2001; Cui et al., 1997; Lee et
(45)	A. elliptica (stem & fruits)	al., 1998; Schneider et al., 2000
	A. spectabilis (bark)	
Aglaroxin A (46)	A. edulis (root bark, roots)	Engelmeier et al., 2000; Bacher et al., 1999;
ត្តវ	A. oligophylla (twigs)	Dreyer et al., 2001
Aglaroxin B (47)	A. oligophylla (twigs) & A. roxburghiana (syn. A.	Dreyer et al., 2001
จพำส	elaeagnoidea) (stem bark)	8
Aglaroxin F (48)	A. oligophylla (twigs)	Bringmann et al., 2003

Chemical type / Chemical compounds	Sources / Plant part	References
C-3'-Methoxypannellin (49)	A. elaeagnoidea (bark)	Brader et al., 1998
Pannellin (50)	A. edulis (root bark, roots)	Bacher et al., 1999; Engelmeier et al., 2000;
	A. elaeagnoidea (bark)	Brader et al., 1998
Pannellin-1-O-acetate (51)	A. elaeagnoidea (bark)	Brader et al., 1998; Dreyer et al., 2001
	A. oligophylla (twigs)	
Cyclorocaglamide (52)	A. oligophylla (twigs)	Bringmann et al., 2003
C-1-Oxo,C-2-piriferineaglaroxin A (53)	A. oligophylla (twigs)	Dreyer et al., 2001
Cyclopenta[bc]benzopyran-type		
Aglaxiflorin D (54)	A. testicularis (syn. A. edulis) (leaves)	Wang <i>et al.</i> , 2004
C-19,C-3'-Dihydroxyaglain C (55)	A. odorata (twigs & leaves)	Nugroho et al., 1999
C-3 '-Hydroxyaglain C (56,57)	A. odorata (twigs & leaves)	Nugroho et al., 1999
C-19-Hydroxy,C-3'-methoxyaglain C (58)	A. odorata (twigs & leaves)	Nugroho et al., 1999
C-10-O-Acetylaglain B (59)	A. ponapensis (leaves & twigs)	Salim <i>et al.</i> , 2007
Aglain A (60)	A. argentea (leaves) & A. forbesii (bark)	Dumontet et al., 1996
Aglain B (61)	A. argentea (leaves)	Dumontet et al., 1996
Aglain C (62)	A. argentea (leaves)	Dumontet et al., 1996
Chemical type / Chemical compounds	Sources / Plant part	References
------------------------------------	---	--
Desacetylaglain A (63)	A. gracilis (roots)	Greger et al., 2001
4-Epi-aglain A (64)	A. ponapensis (leaves & twigs)	Salim <i>et al.</i> , 2007
Aglain-O-glycoside (65)	A. dasyclada (leaves)	Chaidir et al., 2001
Grandiamide (66)	A. grandis (leaves)	Inada <i>et al.</i> , 1997a
Ponapensin (67)	A. ponapensis (leaves & twigs)	Salim <i>et al.</i> , 2007
Pyramidaglain A (68)	A. andamanica (leaves)	Puripattanavong et al., 2000
Pyramidaglain B (69)	A. andamanica (leaves)	Puripattanavong et al., 2000
Homothapsakin A (70)	A. edulis (roots)	Bacher <i>et al.</i> , 1999; Dreyer <i>et al.</i> , 2001
	A. oligophylla (twigs)	
Isothapsakin B (71)	A. edulis (roots)	Bacher <i>et al.</i> , 1999
Thapsakin A acetate (72)	A. edulis (roots, root bark)	Bacher et al., 1999; Engelmeier et al., 2000
Thapsakin B (73)	A. edulis (roots)	Bacher <i>et al.</i> , 1999
Thapsakon A (74)	A. edulis (roots)	Bacher <i>et al.</i> , 1999
Thapsakon B (75)	A. edulis (roots)	Bacher <i>et al.</i> , 1999
Aglaforbesin-O-glycoside (76)	A. dasyclada (leaves)	Chaidir <i>et al.</i> , 2001
Aglaforbesins A (77)	A. argentea (leaves) & A. forbesii (bark)	Dumontet et al., 1996

Chemical type / Chemical compounds	Sources / Plant part	References
Aglaforbesins B (78)	A. argentea (leaves) & A. forbesii (bark)	Dumontet et al., 1996
C-8-Demethoxy-C7,C8-methylenedioxy-aglaforbesin (79)	A. oligophylla (twigs)	Bringmann et al., 2003
Benzo[b]oxepine-type		
Homothapoxepine A (80)	A. edulis (roots, bark)	Bacher et al., 1999; Engelmeier et al., 2000
Thapoxepine A (81)	A. edulis (roots, bark)	Bacher et al., 1999; Engelmeier et al., 2000
Thapoxepine B (82)	A. edulis (roots, bark)	Bacher et al., 1999; Engelmeier et al., 2000
Edulisones A (83)	A. edulis (bark)	Kim et al., 2005
Edulisones B (84)	A. edulis (bark)	Kim et al., 2005
Forbaglins A (85)	A. forbesii (bark)	Dumontet et al., 1996
Forbaglins B (86)	A. forbesii (bark)	Dumontet et al., 1996
Forbaglin-O-glycoside (87)	A. dasyclada (leaves)	Chaidir et al., 2001
Bisamides	อาบับวิทยบริการ	
Pyrrolidine-type		
Dehydroodorine (88)	A. formosana (leaves)	Duh et al., 1993; Brader et al., 1998
1	A. tomentosa (leaves)	

Chemical type / Chemical compounds	Sources / Plant part	References
2'-Epiodorine (2'-Epiroxburghilin) (89)	A. roxburghiana (leaves)	Purushothaman and Sarada, 1979
Odorine (Roxburghilin) (90)	A. argentea (bark)	Dumontet et al., 1996; Brader et al., 1998;
	A. elaeagnoidea (leaves)	Greger et al., 2001; Inada et al., 1995;
	A. gracilis (leaves)	Shiengthong and Ungphakorn, 1979; Inada et
	A. harmsiana (leaves)	al., 2001; Purushothaman and Sarada, 1979
	A. odorata (leaves)	
	A. roxburghiana (leaves)	
Odorinol (91)	A. elaeagnoidea (leaves)	Brader et al., 1998; Shiengthong and
	A. odorata (leaves)	Ungphakorn, 1979; Inada et al., 2001;
	A. testicularis (syn. A. edulis) (leaves)	Hayashi et al., 1982; Wang et al., 2004
Piriferine (92)	A. elaeagnoidea (leaves)	Brader et al., 1998; Greger et al., 2001;
	A. gracilis (leaves)	Wang et al., 2004
	A. testicularis (syn. A. edulis) (leaves)	
Piriferinol (93)	A. elaeagnoidea (leaves)	Brader et al., 1998
Agleptin (94)	A. edulis (leaves)	Brader et al., 1998
Isoagleptin (95)	A. leptantha (stem bark & leaves)	Greger et al., 2000

Chemical type / Chemical compounds	Sources / Plant part	References
Leptanthin (96)	A. leptantha (stem bark & leaves)	Greger et al., 2000
Putrescine-type		
Agladuline (97)	A. edulis (leaves)	Saifah et al., 1999; Greger et al., 2000
	A. leptantha (stem bark & leaves)	
Aglairubine (98)	A. australiensis (leaves), A. meridionalis (leaves)	Seger et al., 2002
	& A. spectabilis (leaves)	
Dasyclamide (99)	A. dasyclada (leaves)	Lin et al., 2001
Edulimide (100)	A. edulis (leaves)	Brader et al., 1998
Grandiamides B (101)	A. leptantha (stem bark & leaves)	Greger et al., 2000
Grandiamides C (102)	A. leptantha (stem bark & leaves)	Greger et al., 2000
Pyramidatine (103)	A. grandis (leaves) & A. silvestris (A. pyramidata)	Brader et al., 1998; Greger et al., 2001
	A. gracilis (leaves)	
Secopiriferine (104)	A. gracilis (leaves)	Greger et al., 2001
Secondorine (105)	A. gracilis (leaves)	Greger et al., 2001
Aglaidithioduline (106)	A. edulis (leaves)	Saifah <i>et al.</i> , 1999
Aglaithioduline (107)	A. leptantha (stem bark & leaves)	Greger et al., 2000

Chemical type / Chemical compounds	Sources / Plant part	References
Aglaithioduline (107)	A. edulis (leaves)	Saifah <i>et al.</i> , 1999
Triterpenoids		
Dammarane-type		
Aglinins A (108)	A. lawii (leaves)	Mohamad <i>et al.</i> , 1999
Aglinins B (109)	A. lawii (leaves)	Mohamad et al., 1999
Dammarenolic acid (110)	A. rubiginosa (twigs)	Rivero-Cruz et al., 2004
Eichlerianic acid (111)	A. elliptica (stems)	Cui et al., 1997; Roux et al., 1998; Mohamad
	A. foveolata (bark)	<i>et al.</i> , 1999
	A. lawii (bark)	
Shoreic acid (112)	A. elliptica (stems)	Cui et al., 1997; Roux et al., 1998; Greger et
	A. foveolata (bark)	al., 2001; Rivero-Cruz et al., 2004
	A. gracilis (leaves)	
	A. rubiginosa (twigs)	ă l
Foveolin A (113)	A. foveolata (bark)	Roux et al., 1998; Mohamad et al., 1999
<u> </u>	A. lawii (leaves)	าลย
Foveolin B (114)	A. foveolata (bark)	Roux <i>et al.</i> , 1998

Chemical type / Chemical compounds	Sources / Plant part	References
(20 <i>S</i> ,23 <i>E</i>)-20,25-Dihydroxy-3,4-secodammara-4(28),23-	A. rubiginosa (twigs)	Rivero-Cruz et al., 2004
dienoic acid (115)		
(20 <i>S</i> ,23 <i>E</i>)-20,25-Dihydroxy-3,4-secodammara-4(28),23-	A. rubiginosa (twigs)	Rivero-Cruz et al., 2004
dienoic acid methyl ester (116)		
Aglinins C (117)	A. lawii (leaves)	Mohamad et al., 1999
Aglinins D (118)	A. lawii (leaves)	Mohamad et al., 1999
Cabraleadiol (119)	A. crassinervia (bark)	Su <i>et al.</i> , 2006
Cabraleadiol-3-acetate (120)	A. tomentosa (bark)	Mohamad et al., 1999
3-Epiocotillol (121)	A. crassinervia (bark)	Su et al., 2006; Roux et al., 1998
	A. foveolata (bark)	
Ocotillol II (122)	A. elliptica (stems)	Cui et al., 1997
Ocotillone (123)	A. rubiginosa (twigs)	Rivero-Cruz et al., 2004
616	A.silvestris (fruits & twigs)	Hwang <i>et al.</i> , 2004
20 <i>S</i> ,24 <i>S</i> -Epoxy-25-hydroxydammaran-3-one (Cabraleone)	A. elaeagnoidea (bark)	Fuzzati et al., 1996; Mohamad et al., 1999;
(124)	A. lawii (leaves) & A. tomentosa (bark)	Rivero-Cruz et al., 2004
	A. rubiginosa (twigs)	

Chemical type / Chemical compounds	Sources / Plant part	References
20 <i>S</i> ,24 <i>S</i> -Epoxy-25-hydroxymethyldammaran-3-one (125)	A. elaeagnoidea (bark)	Fuzzati et al., 1996
Cabralealactone (126)	A. lawii (leaves) & A. tomentosa (bark)	Mohamad et al., 1999
Cabralealactone-3-acetate (127)	A. tomentosa (bark)	Mohamad et al., 1999
Cabraleahydroxylactone (128)	A. crassinervia (bark)	Su <i>et al.</i> , 2006
3-Epicabraleahydroxylactone (129)	A. crassinervia (bark)	Su <i>et al.</i> , 2006
Cycloartane-type		
Argenteanol (130)	A. argentea (leaves)	Omobuwajo <i>et al.</i> , 1996
Argenteanone B (131)	A. argentea (leaves)	Omobuwajo et al., 1996
Argenteanone C (132)	A. argentea (leaves)	Mohamad et al., 1997
Argenteanol B (133)	A. argentea (leaves)	Mohamad et al., 1997
Argenteanol C (134)	A. argentea (leaves)	Mohamad et al., 1997
Argenteanol D (135)	A. argentea (leaves)	Mohamad et al., 1997
Argenteanol E (136)	A. argentea (leaves)	Mohamad et al., 1997
24-Hydroperoxycycloart-25-en-3β-ol (137)	A. grandis (leaves)	Inada <i>et al.</i> , 1997a
28,29-Bis-norcycloarten-3β,6α-diol (138)	A. elaeagnoidea (leaves)	Brader et al., 1998

Chemical type / Chemical compounds	Sources / Plant part	References
28,29-Bis-norcycloarten-3 β ,4 α ,6 α -triol (139)	A. elaeagnoidea (leaves)	Brader et al., 1998
3β-Hydroxy-28,29-bis-norcycloarten-6-one (140)	A. elaeagnoidea (leaves)	Brader et al., 1998
Cycloartane-3 β ,29-diol-24-one (141)	A. grandis (leaves)	Inada <i>et al.</i> , 1997a
(24 <i>R</i>)-Cycloartane-24,25-diol-3-one (142)	A. harmsiana (leaves)	Inada et al., 1995
(24 <i>R</i>)-Cycloartane-3β,24,25-triol (143)	A. harmsiana (leaves)	Inada et al., 1997b
(24 <i>R</i>)-Cycloartane-3α,24,25-triol (144)	A. harmsiana (leaves)	Inada <i>et al.</i> , 1997b
(24 <i>R</i>)-Cycloartane-3β,24,25,28-tetrol (145)	A. harmsiana (leaves)	Inada <i>et al.</i> , 1997b
Cycloartenol (146)	A. harmsiana (leaves)	Inada <i>et al.</i> , 1997b
Cycloart-23 <i>E</i> -ene-3β,25-diol (147)	A. andamanica (leaves)	Puripattanavong et al., 2000
25-Hydroperoxycycloart-23-en-3β-ol (148)	A. grandis (leaves)	Inada <i>et al.</i> , 1997a
24S,25-Epoxycycloartanol (149)	A. lawii (bark)	Mohamad et al., 1999
3β-Hydroxy-24-methylene-28,29-bis-norcycloarten-6-one	A. elaeagnoidea (leaves)	Brader et al., 1998
(150)	งงกรณ์แหววิทยาล	1
24-Methylene-28,29-bis-norcycloarten-3 β ,4 α ,6 α -triol	A. elaeagnoidea (leaves)	Brader et al., 1998
(151)		

Chemical type / Chemical compounds	Sources / Plant part	References
Roxburghiadiol A (152)	<i>A. elaeagnoidea</i> (syn. <i>A. roxburghiana</i>) (leaves, fruits & stem)	Brader et al., 1998; Janaki et al., 1999
Roxburghiadiol B (153)	A. elaeagnoidea (leaves) A. roxburghiana var. beddomei (syn. A. elaeagnoidea) (fruits & stem)	Brader et al., 1998; Janaki et al., 1999
Argenteanone A (154)	A. argentea (leaves)	Omobuwajo et al., 1996
Argenteanone D (155)	A. argentea (leaves)	Mohamad et al., 1997
Argenteanone E (156)	A. argentea (leaves)	Mohamad et al., 1997
Tirucallane-type Leucophyllone (157)	A. leucophylla (stem bark)	Benosman <i>et al.</i> , 1995
24-Epi-piscidinol A (158)	A. andamanica (leaves)	Puripattanavong et al., 2000
Piscidinol A (159)	A. leucophylla (stem bark)	Benosman et al., 1995
Glabretal-type	σ Δ Φ	
Aglaiaglabretol A (160)	A. crassinervia (bark)	Su et al., 2006
Aglaiaglabretol B (161)	A. crassinervia (bark)	Su et al., 2006

Chemical type / Chemical compounds	Sources / Plant part	References
Aglaiaglabretol C (162)	A. crassinervia (bark)	Su et al., 2006
7-Deacetylglabretal-3-acetate (163)	A. ferruginaea (syn. A. tomentosa) (wood)	Mulhollane and Monkne, 1993
7-Deacetylglabretal-3-tiglate (164)	A. ferruginaea (syn. A. tomentosa) (wood)	Mulhollane and Monkne, 1993
Baccharane-type		
17,24-Epoxy-25-hydroxybaccharan-3-one (165)	A. silvestris (fruits & twigs)	Hwang <i>et al.</i> , 2004
3-Monomethyl ester leucophyllic acid (166)	A. silvestris (fruits & twigs)	Hwang <i>et al.</i> , 2004
Steroids	ALCONTRACTOR DE LA CONTRACTOR DE LA CONT	
Pregnane-type	ALDEUN JUNUNS	
Aglatonins A (167)	A. tomentosa (bark)	Mohamad et al., 1999
2β , 3β -Dihydroxy- 5α -prenane-16-one (168)	A. grandis (leaves)	Inada <i>et al.</i> , 1997a
Aglatonins B (169)	A. tomentosa (bark)	Mohamad et al., 1999
2β,3β-Dihydroxy-5α-pren-17(20)-(Z)-en-16-one (170)	A. grandis (leaves)	Inada et al., 1997a
$2\beta, 3\beta$ -Dihydroxy- 5α -pren- $17(20)$ -(<i>E</i>)-en- 16 -one (171)	A. crassinervia (bark)	Su <i>et al.</i> , 2006; Inada <i>et al.</i> , 1997a
จพำล	A. grandis (leaves)	8
(E)-Volkendousin (172)	A. crassinervia (bark)	Su <i>et al.</i> , 2006

Chemical type / Chemical compounds	Sources / Plant part	References
(Z)-Volkendousin (173)	A. crassinervia (bark)	Su <i>et al.</i> , 2006
Cholestane-type		
(3 <i>S</i> ,4 <i>R</i> ,24 <i>R</i>)-Cholest-7,24-diene-3,4,22-triol (174)	A. rubiginosa (leaves)	Rivero-Cruz et al., 2004
Ergostane-type		
(3β,4β,22 <i>R</i>)-Ergosta-5,24(24')-dien-3,4,22-triol (175)	A. rubiginosa (leaves)	Rivero-Cruz et al., 2004
Stigmastane-type	3.4 <u>40</u> 77704	
β-Sitosterol (176)	A. andamanica (leaves)	Puripattanavong et al., 2000; Rivero-Cruz et
	A. rubiginosa (leaves)	<i>al.</i> , 2004
Stigmasterol (177)	A. crassinervia (bark)	Su et al., 2006
Sesquiterpenoids		
9,10-Dihydroxy-4,7-megastigmadien-3-one (178)	A. gracilis (leaves)	Greger et al., 2001
4β ,10 α -Dihydroxyaromadendrane (179)	A. grandis (leaves)	Inada et al., 2000
(-)-Ledol (180)	A. foveolata (leaves)	Roux <i>et al.</i> , 1998
Spathulenol (181)	A. foveolata (leaves)	Roux <i>et al.</i> , 1998
	A. lawii (bark)	ία El
(+)-T-Cadinol (182)	A. foveolata (leaves)	Roux <i>et al.</i> , 1998

Chemical type / Chemical compounds	Sources / Plant part	References
1β ,4 β -Dihydroxy-6 α ,15-epoxyeudesmane (183)	A. silvestris (fruits & twigs)	Hwang <i>et al.</i> , 2004
$1\beta, 6\beta$ -Dihydroxy-4 (15)-eudesmene (184)	A. silvestris (fruits & twigs)	Hwang <i>et al.</i> , 2004
Lignans		
Aglacins E (185)	A. cordata (stem bark)	Wang <i>et al.</i> , 2002
Aglacins F (186)	A. cordata (stem bark)	Wang <i>et al.</i> , 2002
Aglacins G (187)	A. cordata (stem bark)	Wang <i>et al.</i> , 2002
Aglacins H (188)	A. cordata (stem bark)	Wang <i>et al.</i> , 2002
<i>trans</i> -2,3-Bis (3,4,5-trimethoxybenzyl)-1,4-butanediol diacetate (189)	A. elaeagnoidea (bark)	Fuzzati <i>et al.</i> , 1996
<i>trans</i> -3,4-Bis (3,4,5-trimethoxybenzyl)-tetrahydrofuran (190)	A. elaeagnoidea (bark)	Fuzzati <i>et al.</i> , 1996
Secoisolariciresinol dimethyl ether (191)	A. testicularis (syn. A. edulis) (leaves)	Wang <i>et al.</i> , 2004
Epigrandisin (192)	A. leptantha (stem bark & leaves)	Greger et al., 2000
Grandisin (193)	A. leptantha (stem bark & leaves)	Greger et al., 2000

Chemical type / Chemical compounds	Sources / Plant part	References
Lariciresinol-3-acetate (194)	A. elaeagnoidea (leaves)	Brader et al., 1998
Methylarctigenin (195)	A. tomentosa (leaves)	Brader et al., 1998
Syringaresinol (196)	A. odorata (leaves)	Nugroho et al., 1999
Yangambin (197)	A. andamanica (leaves)	Puripattanavong et al., 2000; Brader et al.,
	A. grandis (leaves)	1998; Greger et al., 2000
	A. leptantha (stem bark & leaves)	
Flavonoids	(Assessed a contract of	
3,3'-Dihydroxy-5,7,4'-trimethoxyflavone (198)	A. odorata (twigs & leaves)	Nugroho et al., 1999
3-Hydroxy-5,7,4 ['] -trimethoxyflavone (199)	A. gracilis (leaves)	Greger et al., 2001
3'-Hydroxy-5,7,4'-trimethoxyflavone (200)	A. odorata (twigs & leaves)	Nugroho et al., 1999
3,5,7,3',4'- pentamethoxyflavone (201)	A. odorata (twigs & leaves)	Nugroho et al., 1999
5-Hydroxy-3,7,4'-trimethoxyflavone (202)	A.andamanica (leaves)	Puripattanavong et al., 2000; Rivero-Cruz et
	A. rubiginosa (twigs)	<i>al.</i> , 2004
Pachypodol (203)	A.andamanica (leaves)	Puripattanavong et al., 2000; Rivero-Cruz et
1 I I I I I I I I I I I I I I I I I I I	A. rubiginosa (twigs)	<i>al.</i> , 2004

Chemical type / Chemical compounds	Sources / Plant part	References
Rutusin (204)	A. andamanica (leaves)	Puripattanavong et al., 2000; Rivero-Cruz et
	A. rubiginosa (twigs)	<i>al.</i> , 2004
Eryodicitiol (205)	A. andamanica (leaves)	Puripattanavong et al., 2000; Rivero-Cruz et
	A. rubiginosa (twigs)	<i>al.</i> , 2004
Naringenin (206)	A. rubiginosa (twigs)	Rivero-Cruz et al., 2004
Limonoids	3. ATTECTION A	
6,11-Diacetoxygedunin (207)	A. elaeagnoidea (bark)	Fuzzati et al., 1996
24-Epi-melianodiol (208)	A. andamanica (leaves)	Puripattanavong et al., 2000
Melianodiol (209)	A. andamanica (leaves)	Puripattanavong et al., 2000
Aromatic butyrolactones	i li	
Aglalactone (210)	A. elaeagnoidea (leaves)	Engelmeier et al., 2000
5,6-Desmetylenedioxy-5-methoxy-aglalactone (211)	A. ponapensin (twigs)	Salim <i>et al.</i> , 2007

จุฬาลงกรณ์มหาวิทยาลัย

	R_1	R ₂	R ₃	R ₄		R ₁	R ₂	R ₃	R_4
1.	OAc	CONH(CH ₂) ₄ OH	Н	OH	<mark>16.</mark>	ОСНО	COOCH ₃	OH	OH
2.	OAc	CONHCH ₃	Н	OH	17.	ОСНО	$CON(CH_3)_2$	Н	OH
3.	OAc	CONH ₂	н	ОН	18.	OH	CONHCH ₃	OH	OH
4.	OAc	CONHCH ₃	ОН	ОН	19.	OH	COOCH ₃	OH	OH
5.	OAc	COOCH ₃	ОН	ОН	20.	OH	CONH ₂	OH	OH
6.	OAc	CON(CH ₃) ₂	ОН	OH	21.	OH	$CON(CH_3)_2$	OH	OH
7.	OAc	COOCH ₃	Н	OH	22.	OH	$CON(CH_3)_2$	OCH ₃	OH
8.	OAc	$CON(CH_3)_2$	Н	ОН	23.	ОН	COOCH ₃	Н	OCH ₃
9.	OAc	Н	Н	ОН	24.	ОН	Н	OCH ₃	OH
10.	OH	CONH(CH ₂) ₄ OH	Н	ОН	25.	OH	н	Н	OCH ₃
11.	Н	CONHCH ₃	Н	OH	26.	OH	COOCH ₃	Н	OH
12.	OH	CONH ₂	Н	ОН	27.	=NOH	COOCH ₃	OCH ₃	OH
13.	OH	CONHCH ₃	ОН	OEt	28.	H	$CON(CH_3)_2$	Н	OH
14.	OH	CON(CH ₃) ₂	ОН	OEt	29.	Н	н	Н	OH
15.	OH	H	Н	OEt	30.	Н	СООН	н	OH

จุฬาลงกรณมหาวทยาละ

Figure 3. Chemical constituents of plants in the genus Aglaia

31. 5'''S

32. 5'''R

33.

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

ОН ОСН3

'n

- R₁ R₂
- 41. OAc COOCH₃
- **42.** OH COOCH₃
- **43.** OH H
- 44. OCHO COOCH₃
- **45.** =O H

	\mathbf{R}_1	R ₂	R ₃	R_4
46.	OH	$CON(CH_3)_2$	Н	Н
47.	OH	$CON(CH_3)_2$	OCH ₃	Н
48.	OH	$CON(CH_3)_2$	OCH ₃	OH
49.	OAc	COOCH ₃	Н	Н
50.	OH	COOCH ₃	Н	Н
51.	OH	$CON(CH_3)_2$	OCH ₃	Н

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

 $R_1 = R_2$

59. H OAc $[H-3\beta, H-4\alpha, 1]$	3 <i>S</i>]
---	--------------

- **60.** OAc H $[H-3\beta, H-4\alpha, 13S]$
- **61.** Η OH [H-3β, H-4α, 13*S*]
- **62.** Η ΟΗ [H-3α, H-4β, 13*S*]
- **63.** OH H [H-3β, H-4α, 13*S*]
- **64.** OAc Η [H-3β, H-4β, 13*S*]

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

	R_1	R ₂	
68.	H	OA	$c (H-3\beta, H-4\alpha)$
69.	OAc	Н	(H-3α, H-4α)

.

	R ₁	R ₂	R ₃
70.	Н	OH	C_2H_s [H-3 α , H-4 β , 13 S]
71.	ОН	н	CH ₃ [H-3 β , H-4 α , 13 S]
72.	H	OAc	CH ₃ [H-3α, H-4β, 13S]
73.	Н	ОН	CH ₃ [H-3β, H-4α, 13 <i>RS</i>]
74.	=	=0	CH ₃ [H-3α, H-4β, 13S]
75.	-	=0	CH ₃ [H-3 β , H-4 α , 13 <i>S</i>]

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

 $R_1 = R_2$

- **60.** OAc H [H-3 β , H-4 α , 13*S*]
- **61.** Η OH [H-3β, H-4α, 13*S*]
- **62.** Η ΟΗ [H-3α, H-4β, 13*S*]
- **63.** OH H [H-3β, H-4α, 13*S*]
- **64.** OAc Η [H-3β, H-4β, 13*S*]

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

79

- **80.** $R = C_2 H_5 [H-3\alpha, H-4\beta, 13S]$ $R = CH_3 [H-3\alpha, H-4\beta, 13RS]$
- 81.
- $R = CH_3 [H-3\beta, H-4\alpha, 13RS]$ 82.

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

87

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

113. 24*S*

114. 24*R*

R CH

115. $R = CO_2H$

116. $R = CO_2 CH_3$

	R		R	
117.	3α-OH (24 <i>RS</i>)	121.	3а-ОН	(24 <i>R</i>)
118.	=O (24 <i>RS</i>)	122.	3β-ОН	(24 <i>R</i>)
119.	3α-OH (24 <i>S</i>)	123.	=0	(24 <i>R</i>)
120.	3α -OAc (24S)	124.	=O	(24 <i>S</i>)

125

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

162. 21*RS*

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

177

онн

179

H

ŌН

181

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

Figure 3. Chemical constituents of plants in the genus Aglaia (continued)

2. Biological Activities of plants in the genus Aglaia

From various phytochemical reports on plants of the genus Aglaia, with only a few exceptions all naturally occurring flavaglines of the cyclopenta[b] benzofuran type exhibited strong insecticidal activity, the most active of which are comparable in their activity to the well-known natural insecticide azadirachtin from Azadirachta indica. The insecticidal activity of the cyclopenta[b]benzofuran flavaglines seems to be largely linked to the integrity of the furan ring system, since two biogenetically closely related compounds of the benzo[bc]pyrans and benzo[b] oxepines which the oxygen heterocycle of the dihydrobenzofuran nucleus in the cyclopenta[b]benzofuran flavaglines is replaced by a bridged pyran and an oxepine ring, respectively, were shown to be inactive. However, the substitution pattern, especially the nature of substitutes at C-1, C-2, C-3' and C-8b was also shown to be important for the insecticidal activity. Acylation of the OH group at C-1 (e.g. with formic or acetic acid) always caused a reduction of insecticidal activity. The nature of the amide substituents present at C-2, on the other hand, had little or no influence on the insecticidal activity. Additional oxygen substituents in ring A or B (compared to the substitution pattern of the parent compound rocaglamide) were also shown to have only marginal influences on the insecticidal activity of the respective products. However, a dramatic effect was observed for analogues with replacement of the OH-group at C-8b by a CH₃O or C₂H₃O- substituent, resulting in a total loss of insecticidal activity (Proksch et al., 2001). In addition to insecticidal activity, cytotoxic and antifungal activity of the cyclopenta [b] benzofuran flavaglines were also recorded. Furthermore, several studies have shown that the other classes of compounds isolated from the genus Aglaia, especially the bisamides, were also exhibited interesting biological activities. Summary of the biological activities of isolated compounds from Aglaia plants is shown in Table 2.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 2. Biological Activities of Aglaia species

Plant	Compound	Biological Activity	References
A. argentea	didesmethylrocaglamide (12), argenteanol (130),	Cytotoxicity	Dumontet et al., 1996; Omobuwajo et
	argenteanol B (133), argenteanol C (153), argenteanol		al., 1996; Mohamad et al., 1997
	D (134), argenteanol E (135), argenteanone A (154),		
	argenteanone B (131), argenteanone C (132),		
	argenteanone D (155), argenteanone E (156)		
	odorine (90)	Cancer chemopreventive activity	Inada <i>et al.</i> , 2001
A. crassinervia	aglaiaglabretol B (161), aglaiaglabretol B (162),	Cytotoxicity	Su et al., 2006
	rocaglaol (29)	11111	
A. duperreana	C-1-O-acetyldemethylrocaglamide (2), C-1-O-	Insecticidal activity	Nugroho et al., 1997; Chaidir et al.,
	acetyldidemethylrocaglamide (3), C-1-O-acetyl-3'-		1999; Hiort et al., 1999
	hydroxydemethylrocaglamide (4), C-1-O-acetyl-3'-	0	
	hydroxymethylrocaglate (5), C-1-O-acetyl-3'-	<u> </u>	
	hydroxyrocaglamide (6), C-1-O-acetylmethylrocaglate	ายบรการ	
	(18), C-1-O-acetylrocaglamide (8),		
	desmethylrocaglamide (11), didesmethylrocaglamide	มทางทยาลย	
	(12), C-8b-O-ethyl-3 ['] -hydroxymethylrocaglamide (13)		

Table 2. Biological Activities of Aglaia species

Plant	Compound	Biological Activity	References
A. duperreana	C-8b-O-ethyl-3'-hydroxyrocaglamide (14)	Insecticidal activity	Nugroho et al., 1997; Chaidir et al.,
	C-3'-hydroxydemethylrocaglamide (18), C-3'-		1999; Hiort et al., 1999
	hydroxydemethylrocaglate (19), C-3'-		
	hydroxyrocaglamide (21), C-3'-methoxyrocaglamide		
	(22), C-8b-O-methyl-methylrocaglate (20), C-8b-		
	methylrocaglate (25), methylrocaglate (26),		
	rocaglamide (28)		
	N, N-didesmethyl-N-4-hydroxybutylrocaglamide (10),	Inhibitor of NF-KB activation	Baumann et al., 2002
	didesmethylrocaglamide (12)	()	
A. edulis	aglaroxin A (46), pannellin (50)	Antifungal activity	Engelmeier et al., 2000
		Insecticidal activity	Bacher et al., 1999
	aglaidithioduline (106), aglaithioduline (107)	Antiviral activity	Saifah <i>et al.</i> , 1999
A. elaeagnoidea	aglaroxin B (47), C-3'-methoxypannellin (49),	Insecticidal activity	Brader et al., 1998 ; Dreyer et al.,
	pannellin (50), pannellin-1-O-acetate (51)		2001
	methylrocaglate (26)	Antifungal activity	Fuzzati et al., 1996
	Roxburghiadiol A (151), Roxburghiadiol B (152)	Antiinflammatory activity	Janaki <i>et al.</i> , 1999
Table 2. Biological Activities of Aglaia species

Plant	Compound	Biological Activity	References
A. elliptica	C-4'-demethoxy-3',4'-methylenedioxyrocaglaol (42),	Cytotoxic activity	Cui et al., 1997; Lee et al., 1998
	C-4'-demethoxy-3',4'-methylenedioxymethylrocaglate		
	(43), C-1-O-formyl-4'-demethoxy-3',4'-		
	methylenedioxymethylrocaglate (44), methylrocaglate		
	(26), C-1-oxo-4'-demethoxy-3',4'-		
	methylenedioxyrocaglaol (45)		
	N-tetrahydrofuran- didesmethylrocaglamide (34,35)	Insecticidal activity	Nugroho et al., 1997b
A. elliptifolia	methylrocaglate (26), rocaglamide (28)	Cytotoxic activity	Wu et al., 1997
		Antiplatelet aggregation	Wu et al., 1997
A. gracilis	C-3'-hydroxymarikarin (36), marikarin (38)	Insecticidal activity	Greger et al., 2001
A. harmsiana	C-3'-rhamnosyl-rocaglamide (33)	Insecticidal activity	Nugroho et al., 1997b
A. leptantha	isoagleptin (95)	Antifungal activity	Greger et al., 2000
A. odorata	C-1-O-acetyl-3'-hydroxyrocaglamide (6), C-3'-	Insecticidal activity	Nugroho et al., 1999
	hydroxydemethylrocaglamide (18), C-3'-	บหาวิทยาวย	
	hydroxydemethylrocaglate (19), C-3'-	หมางทอาตอ	
	hydroxydidesmethylrocaglamide (20)		

Table 2. Biological Activities of Aglaia species

Plant	Compound	Biological Activity	References
A. odorata C-3'-hydroxyrocaglamide (21), C-3'-methylrocaglaol I		Insecticidal activity	Nugroho et al., 1999
	(24), C-3'-methylrocaglate (22), C-1-oxime-C-3'-		
	methoxymethylrocaglate (27)		
	desmethyrocaglamide (11), methylrocaglate (26),	Insecticidal activity/Antifungal	Ishibashi et al., 1993; Janprasert et
	rocaglamide (28), rocaglaol (29)	activity	al., 1993; Engelmeier et al., 2000
	N,N-didesmethyl-N-4-hydroxybutylrocaglamide (10),	Inhibitor of NF-KB- activation	Baumann et al., 2002
	didesmethylrocaglamide (12)		
	aglaiastatin (38), pyrimidone (34), rocaglaol (29)	Protein synthesis inhibitor	Ohse et al., 1996
	odorine (90), odorinol (91)	Cancer chemopreventive activity	Inada et al., 2001
	odorinol (91)	Anti-leukemic activity	Hayashi et al., 1982
A. ponapensis	methylrocaglate (26), ponapensin (75)	Inhibitor of NF-KB- activation	Salim <i>et al.</i> , 2007
A. rubiginosa	C-1-O-acetylmethylrocaglate (7), C-1-O-	Cytotoxic activity	Rivero-Cruz et al., 2004
	acetylrocaglaol (9), rocagloic acid (30)	ายบรการ	
A. silvestris	episilvestrol (31), silvestrol (32)	Cytotoxic activity	Hwang <i>et al.</i> , 2004
A. spectabilis	C-1-O-acetyl-4'-demethoxy-3'-4'-	Insecticidal activity	Schneider et al., 2000
	methylenedioxymethylrocaglate (41)		

Table 2. Biological Activities of Aglaia species

Plant	Compound	Biological Activity	References
A. spectabilis	C-4'-demethoxy-3',4'-methylenedioxyrocaglaol (42),	Insecticidal activity	Schneider et al., 2000
	C-4'-demethoxy-3',4'-methylenedioxymethylrocaglate		
	(43), C-1-O-formyloxy-3'-hydroxymethylrocaglate		
	(16), C-1-O-formyloxymethylrocaglate (18), C-3'-		
	hydroxydemethylrocaglate (19), C-1-oxo-4'-		
	demethoxy-3',4'-methylenedioxyrocaglaol (45),	100 A	
	rocaglaol (29)		
A. tomentosa	rocaglaol (29)	Cytotoxic activity	Mohamad et al., 1999

CHAPTER III

EXPERIMENTAL

1. Sources of Plant Materials

The leaves of *Aglaia forbesii* King. and *Aglaia oligophylla* Miq. were collected from Khao Luang National Park, Nakhon Sri Thammarat Thailand in March, 2004 and compared with authentic specimens of the Herbarium of the Institute of Botany, University of Vienna, Austria (identified by Dr. Caroline Pannell, University of Oxford, England). Voucher specimens of both plants have been deposited at the herbarium of the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.

2. General Techniques

•		
Technique	: 🥖	One dimension, ascending
Adsorbent	:	Silica gel 60 F_{254} (E. Merck) pre-coated plate
Layer thickness	:	0.2 mm
Distance		5.0 cm
Temperature	· · · · ·	Laboratory temperature (30-35 °C)
Detection	4	1) Ultraviolet light (254 and 365 nm)
		2) Spraying with anisaldehyde-sulfuric acid solution or 10% sulfuric
		acid and heating at 100-110 °C for 5 min.

2.1 Analytical Thin-Layer Chromatography (TLC)

2.2 Preparative Thin Layer Chromatography (PLC)

Technique	:	One dimension, ascending	
Adsorbent	i :9 5	Silica gel 60 F_{254} (E. Merck) pre-coated plate	
Layer thickness	:	1 mm	
Distance	:	15 cm	
Temperature	:	Laboratory temperature (30-35 °C)	
Detection	:	UV light (254 and 365 nm)	

2.3 Column Chromatography

2.3.1 Liquid Column Chromatography

Column	:	Flat bottom glass column (various diameter)
Adsorbent	:	Silica gel (Merck 60, No. 7734) particle size 0.063-0.200 mm or
		Silica gel (Merck 60, No. 9385) particle size 0.040-0.063 mm
Solvent	:	Various solvent systems depending on materials
Packing method	:	Dry and wet packing
Sample loading	:	1) Dry packing: The sample was dissolved in a small amount of
		suitable organic solvent, mixed with small quantity of adsorbent,
		triturated, dried and then placed gently on top of the column.
		2) Wet packing: The sample was dissolved in a small amount of
		eluent and then applied gently on top of the column.
Detection	:	Fractions were examined by TLC technique in the same manner as
		described in section 2.1. Fractions with similar chromatographic
		pattern were combined.
2.3.2 Ge	el Filtratio	n Chromatography
Column size	:	Glass column, 2.2 cm in diameter
Gel Filter	:	Sephadex LH-20 (Pharmacia Biotech AB)
Solvent	:	CH ₂ Cl ₂ -MeOH (1:1)
Packing method	:	Gel filter was suspended in the eluent and left standing to swell for
		24 hours prior to use, then poured into the column and allowed to
		set tightly.
Sample loading	:	The sample was dissolved in a small amount of the eluent and then
		applied gently on top of the column.
Detection	l: Il	Fractions were examined by TLC technique in the same manner as
		described in section 2.3.1

2.4 Spectroscopy

2.4.1 Ultraviolet (UV) Absorption Spectra

UV absorption spectra were obtained on a Shimadzu UV-160A spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University)

2.4.2 Infrared (IR) Absorption Spectra

IR absorption spectra (KBr disc and film) were recorded on a Perkin Elmer FT-IR 1760X spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

2.4.3 Mass Spectra (MS)

Electrospray Ionization Time of Flight (ESI-TOF) mass spectra were obtained on a Micromass LCT mass spectrometer (National Center for Genetic Engineering and Biotechnology, BIOTEC, Thailand). Electron impact and high-resolution electron impact mass spectra (EIMS and HREIMS) were obtained with a Finnigan MAT 900S apparatus (University of Vienna, Wein, Austria).

2.4.4 Nuclear Magnetic Resonance (NMR) spectra

¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were obtained on a Bruker DPX-300 FT-NMR spectrometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were obtained on a Bruker DRX-400 spectrometer (University of Vienna, Wein, Austria).

¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were obtained on a JEOL JMN-A 500 spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

The solvents for NMR spectra were deuterated chloroform (CDCl₃) and deuterated dimethylsulfoxide (DMSO-d₆). The chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

2.5 Physical Properties

2.5.1 Melting Points

Melting points were obtained on a Fisher-John melting point apparatus (Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.5.2 Optical Rotations

Optical rotations were measured on a Perkin-Elmer 241 Polarimeter (University of Vienna, Wein, Austria).

2.6 Solvents

Organic solvents used in the extraction were commercial grade. For column chromatography, solvents were redistilled prior to use.

3. Extraction and Isolation

3.1 Extraction and Isolation of Compounds from the Leaves of Aglaia forbesii

3.1.1 Extraction

The dried, powdered leaves (3.5 kg.) of *A. forbesii* were exhaustively extracted with MeOH (3 x 6 L) and filtered. After removing the solvent in *vacuo*, the residue was mixed with Kieselguhr, packed in a column and eluted with n-hexane, CH_2Cl_2 , EtOAc and MeOH, successively. Each filtrate was pooled and evaporated to dryness under reduced pressure at temperature not exceeding 40 °C to yield the hexane extract (190 g, 5.42% based on dried weight of leaves), CH_2Cl_2 extract (20 g, 0.57% yield), EtOAc extract (15 g, 0.42% yield) and MeOH extract (17 g, 0.48% yield).

3.1.2 Isolation of Compounds from the Hexane Extract of A. forbesii Leaves

The hexane extract (15.0 g) was subjected to column chromatography using silica gel (No. 7734, 400 g) as adsorbent and eluted with 8% EtOAc in hexane to give 100 fractions of approximately 40 ml each and then washed down with MeOH. The fractions were then combined on the basis of their TLC profiles, to give seven fractions: fraction A1 (1.69 g), A2 (1.19 g), A3 (1.33 g), A4 (0.62 g), A5 (2.09 g), A6 (1.86 g) and A7 (5.56 g).

3.1.2.1 Isolation of Compound HAF1

Fraction A2 (1.19 g), which displayed one main orange-brown spot on TLC plate (solvent system: 8% acetone in hexane), was further purified by gel filtration chromatography using a Sephadex LH20 column (100 g, 2.2 x 85 cm) with CH_2Cl_2 -MeOH (1:1) as the eluent to yield 10 mg of compound HAF1 as colorless needles.

3.1.2.2 Isolation of Compounds HAF2 and HAF3

Fraction A3 (1.33 g), when developed with 8% acetone in hexane, displayed one major orange-brown spot and another dark violet spot on TLC plate upon detection with 10% sulfuric acid in EtOH. Crystallization of fraction A3 with MeOH yielded 5.6 mg of compound HAF2 as colorless needles while the filtrate, after drying (approximately 1.27 g), was further separated on Sephadex LH20 column (100 g, 2.2 x 85 cm) with CH_2Cl_2 -MeOH (1:1) as the eluent to yield another 9.4 mg of compound HAF2 and 5 mg of compound HAF3 as pale yellow oil.

3.1.2.3 Isolation of Compound HAF4

When developed with 8% acetone in hexane, fraction A4 (0.62 g) displayed one main violet-red spot on TLC plate under detection with 10% sulfuric acid in EtOH. Crystallization of fraction A4 with MeOH yielded 31 mg of compound HAF4 as colorless needles.

3.1.3 Isolation of Compounds from the CH₂Cl₂ Extract of A. forbesii Leaves

The CH_2Cl_2 extract (20.0 g) was fractionated by column chromatography using silica gel (No. 7734, 600 g) as adsorbent and eluted with CH_2Cl_2 -EtOAc (1:1) to give 88 fractions of approximately 40 ml each and then washed down with MeOH. The fractions with similar chromatographic pattern were then combined to give six fractions: fraction B1 (4.70 g), B2 (2.0 g), B3 (2.0 g), B4 (4.36 g), B5 (1.88 g) and B6 (2.93 g).

3.1.3.1 Isolation of Compound CAF1

Fraction B2 (2 g) was further chromatographed on a silica gel 60 (No. 9385, 60 g) column, eluting with 2% MeOH in CH_2Cl_2 , to give sixty fractions of approximately 20 ml each and then washed down with MeOH. The fractions were then combined according to their TLC profile to give five fractions: fraction B21 (64 mg), B22 (58 mg), B23 (457 mg), B24 (226 mg) and B25 (629 mg).

Fraction B23 (457 mg) was purified on Sephadex LH20 column (100 g, 2.2 x 85 cm), eluting with CH_2Cl_2 -MeOH (1:1). Twenty-seven fractions, approximately 20 ml each, were collected and then combined according to their TLC behavior into three fractions: fraction B231 (132 mg), B232 (68 mg) and B233 (48 mg). Fraction B232 (68 mg) was further purified on silica gel 60 (No. 9385, 30g) column with 4% MeOH in CH_2Cl_2 as the eluent to give thirty fractions of approximately 10 ml each, then wash down with MeOH. The combined fractions 13-14 from this column yielded 5 mg of the compound CAF1 as white amorphous solid.

3.1.3.2 Isolation of Compounds CAF2 and CAF3

Fraction B233 (48 mg) displayed two spots close together under UV light and appeared as yellow spots on TLC plate (solvent system: hexane-acetone = 72:28) upon detection with 10% sulfuric acid. This fraction was further purified by preparative TLC developed with hexaneacetone (72:28) to give compounds CAF2 (3 mg) and CAF3 (3 mg).

3.1.3.3 Isolation of Compound CAF4

Fraction B3 (2 g) was further chromatographed on a silica gel 60 (No. 9385, 60 g) column, eluting with 40% acetone in hexane to give forty-seven fractions of

approximately 20 ml each and then washed down with MeOH. The fractions with similar TLC profiles were then combined to give four fractions: fraction B31 (694 mg), B32 (112 mg), B33 (468 mg) and B34 (525 mg).

Fraction B32 (112 mg), which displayed one Dragendorff - positive spot on TLC plate, precipitated after partial evaporation of the solvent. The precipitate (52 mg) was further purified by recrystallization in MeOH to yield 12 mg of compound CAF4 as colorless needles.

3.1.3.4 Isolation of Compound CAF5

Fraction B33 (468 mg), was applied to a silica gel 60 (No. 9385, 60 g) column eluted with 6% MeOH in CH_2Cl_2 to yield twenty-two fractions of approximately 10 ml each, then washed down with MeOH. The fractions were then combined on the basis of their TLC profiles to give three fractions: fraction B331 (130.0 mg), B332 (36.8 mg) and B333 (142.5 mg).

Fraction B331 (130 mg), which displayed a Dragendorff - positive spot on TLC plate (R_f 0.5, Hexane-CH₂Cl₂-EtOAc-MeOH = 10:54:26:10), was further purified by PLC developed with hexane-acetone-methanol (60:34:6) to afford 10 mg of CAF5 as white amorphous powder.

3.1.3.5 Isolation of Compound CAF6

Fraction B333 (142.5 mg) appeared a Dragendorff - positive spot on TLC plate ($R_f 0.38$, Hexane-CH₂Cl₂-EtOAc-MeOH = 10:54:26:10). This fraction was further purified on Sephadex LH20 column (100 g, 2.2 x 85 cm), eluting with CH₂Cl₂-MeOH (1:1), followed by PLC developed with hexane-acetone-methanol (60:34:6) to give 4.8 mg of CAF6 as white amorphous powder.

3.1.3.6 Isolation of Compounds CAF6 and CAF7

Fractions B34 (525 mg) was fractionated on a silica gel 60 (No. 9385, 60 g) column (solvent system: CH_2Cl_2 -EtOAc-MeOH = 80:15:5) to yield fifteen fractions of approximately 20 ml each and then washed down with MeOH. The fractions were then combined according to their TLC profiles to give four fractions: fraction B341 (72 mg), B342 (275 mg), B343 (163 mg) and B344 (49 mg).

Fraction B343 (163 mg), which displayed two Dragendorff - positive spots on TLC plate (R_f 0.42 and 0.38, Hexane-CH₂Cl₂-EtOAc-MeOH = 10:54:26:10), was further separated by silica gel chromatography, eluting with CH₂Cl₂-EtOAc-MeOH (80:15:5) to afford fifteen fractions of approximately 15 ml each, then washed down with MeOH. The fractions were combined according to their TLC behavior to afford four main fractions: fraction B343A (5 mg), B343B (20 mg), B343C (17 mg) and B343D (55 mg). Fraction B343C (17 mg) displaying a Dragendorff - positive spot on TLC plate (R_f 0.38, Hexane-CH₂Cl₂-EtOAc-MeOH = 10:54:26:10) was further purified by PLC (solvent system: CH₂Cl₂-EtOAc-MeOH = 80:15:5) to yield another 5.2 mg of compound CAF6 while fraction B343B (20 mg), which displayed a Dragendorff - positive spot on TLC plate (R_f 0.42, Hexane-CH₂Cl₂-EtOAc-MeOH = 10:54:26:10), was further purified in the same manner to yield 6 mg of compound CAF7 as white amorphous powder.

3.2 Extraction and Isolation of Compounds from the Leaves of A. oligophylla

3.2.1 Extraction

The dried leaves (1.7 kg) of *A. oligophylla* were ground, macerated with MeOH (3 x 6 L) and filtered. After removing the solvent in *vacuo*, the residue was mixed with Kieselguhr, packed into a column and eluted with n-hexane, EtOAc and MeOH, successively. Each filtrate was pooled and evaporated to dryness under reduced pressure at temperature not exceeding 40 °C to yield the hexane extract (76.86 g, 4.52% based on dried weight of leaves), EtOAc extract (53.14 g, 3.12% yield) and MeOH extract (46.41 g, 2.73% yield).

3.2.2 Isolation of Compounds from the Hexane Extract of A. oligophylla leaves

The hexane extract (16.0 g) was separated by column chromatography using silica gel 60 (No. 7734, 500 g) as adsorbent and eluted with 8% acetone in hexane. A total of one-hundred and seventy fractions (30 ml each) were collected and combined according to their TLC behavior into eight fractions: fraction C1 (2.36 g), C2 (1.88 g), C3 (1.62 g), C4 (3.59 g), C5 (3.14 g), C6 (385 mg), C7 (149 mg) and C8 (2.26 g).

3.2.2.1 Isolation of Compounds HAO1 and HAO2

Fraction C2 (1.88 g) was subjected to repeated gel filtration chromatography, using two successive Sephadex LH 20 columns (100 g, 2.2 x 85 cm) eluted with CH_2Cl_2 -MeOH (1:1). The fractions, approximately 10 ml each, were combined according to their TLC profiles to give three main fractions: fraction C21 (22.3 mg), C22 (43.4 mg), and C23 (79.8 mg). Fraction C22 (43.4 mg) was recrystallized in MeOH to yield 17.8 mg of HAO1 as colorless needles. Furthermore, fraction C23 (79.8 mg) was applied to silica gel 60 (No. 9385, 60 g) column, eluting with 6% EtOAc in hexane to give forty-five fractions of approximately 20 ml each, then washed down with MeOH. The fractions were combined according to their TLC patterns into five fractions: C231 (93.6 mg), C232 (52.4 mg), C233 (126 mg), C234 (76.9 mg) and C235 (223.6 mg).

Fraction C232 (52.4 mg) gave another 12.6 mg of compound HAO1 by recrystallization in MeOH, while fraction C234 (76.9 mg), which displayed one main yellow spot on

TLC plate (Hexane-EtOAc = 4:1), was further purified by recrystallization in MeOH to yield 24.7 mg of compound HAO2 as colorless needles.

3.2.2.2 Isolation of Compound HAO3

Fraction C3 (1.62 g) was fractionated on silica gel 60 (No. 9385, 60 g) column eluted with hexane-acetone (76:24) to give forty-five fractions of approximately 20 ml each, then washed down with MeOH. The fractions with similar chromatographic pattern were combined to afford four fractions: C31 (55.6 mg), C32 (565 mg), C33 (38 mg) and C34 (529 mg).

Fraction C32 (565 mg) dissolved in acetone, precipitated after partial evaporation of the solvent. The precipitate was chromatographed on a silica gel column using 16% acetone in hexane as the eluent. A total of forty fractions (fraction size: 20 ml) were collected and combined to give five main fractions: fraction C321 (187.3 mg), C322 (12.2 mg), C323 (26.2 mg), C324 (38.4 mg) and C325 (264.7 mg).

Fraction C322, after recrystallized in MeOH, gave 12.2 mg of a mixture of β-sitosterol and stigmasterol. Fraction C324 (38.4 mg) was further purified by Sephadex LH20 column (100g, 2.2 x 85 cm) eluted with CH_2Cl_2 :MeOH (1:1) to yield 13 mg of compound HAO3 as colorless needles.

3.2.2.3 Isolation of Compound HAO4

Fraction C33 (38 mg) was recrystallized in MeOH to give 5.8 mg of compound HAO4 as colorless needles.

3.2.2.4 Isolation of Compound HAO5

Chromatographic separation of fraction C6 (385.2 mg) using silica gel 60 (No. 9385, 60 g) column eluted with hexane-acetone (72:26) yield forty-two fractions (fraction size: 20 ml). The fractions were then combined according to their TLC profile into four fractions: fraction C61 (43.3 mg), C62 (64.0 mg), C63 (116.0 mg) and C64 (98.5 mg). Fraction C61 (43.3 mg) showed a major dark green spot on TLC plate after being detected with anisaldehyde-sulfuric acid solution. This fraction was further purified by Sephadex LH20 column (100 g, 2.2 x 85 cm) eluted with CH₂Cl₂-MeOH (1:1) to afford 8 mg of compound HAO5 as white amorphous solid.

3.2.2.5 Isolation of Compound HAO6

When developed with CH_2Cl_2 -EtOAc-Hexane (40:40:20), fraction C63 (116 mg) displayed two spots of similar R_f values under UV light and appeared as yellow spots on TLC plate upon detection with anisaldehyde-sulfuric acid solution. This fraction was subjected to silica gel chromatography, eluting with CH_2Cl_2 -EtOAc-Hexane (60:20:20). The eluates (40 fractions)

were collected 15 ml per fraction and then combined on the basis of their TLC behavior to give three main fractions: fraction C631 (8.3 mg), C632 (77.6 mg) and C633 (24.6 mg). Fraction C632 (77.6 mg) was chromatographed on a silica gel 60 (No. 9385, 50 g) column eluted with CH_2Cl_2 -EtOAc-Hexane (40:40:20) to yield 5 mg of HAO6A ($R_f 0.36$, CH_2Cl_2 -EtOAc-Hexane = 40:40:20) and 6.2 mg of HAO6B ($R_f 0.30$, CH_2Cl_2 -EtOAc-Hexane = 40:40:20).

3.2.2.6 Isolation of Compound HAO7

Fraction C7 (149 mg) gave a precipitate after partial evaporation of the solvent. This precipitate was further subjected to column chromatography using a column of Sephadex LH 20 (100 g, 2.2×85 cm) eluted with CH₂Cl₂-MeOH (1:1), followed by recrystallization in MeOH to give 13.3 mg of compound HAO7 as colorless needles.

3.2.3 Isolation of Compound from the EtOAc Extract of A. oligophylla leaves

The EtOAc extract (20 g) was fractionated by column chromatography using silica gel (No. 7734, 600 g) as adsorbent and eluted with 4% EtOAc in CH_2Cl_2 to give two hundred fractions of approximately 40 ml each and then washed down with MeOH. These fractions were then combined according to their TLC patterns to afford six fractions: fraction D1 (3.70 g), D2 (4.12 g), D3 (2.0 g), D4 (2.36 g), D5 (2.07 g) and D6 (3.97 g).

3.2.3.1 Isolation of Compound EAO1

Fraction D3 (2.0 g) gave a precipitate after partial evaporation of the solvent. This fraction was further subjected to column chromatography using silica gel 60 (No. 9385, 150 g) eluted with CH_2Cl_2 -EtOAc- MeOH (60:35:5), followed by Sephadex LH 20 (100 g, 2.2 x 85 cm) eluted with CH_2Cl_2 :MeOH (1:1) to yield, after recrystallization in acetone, 6.8 mg of compound EAO1 as colorless needles.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Hexane extract of Aglaia forbesii leaves (15 g)

Scheme 1 Separation of the hexane extract of the leaves of Aglaia forbesii

CH₂Cl₂ extract of Aglaia forbesii leaves (20 g)

Scheme 2 Separation of the CH_2Cl_2 extract of the leaves of Aglaia forbesii

Scheme 2 Separation of the CH₂Cl₂ extract of the leaves of Aglaia forbesii (continued)

Fr. B34 (525 mg)

Scheme 2 Separation of the CH₂Cl₂ extract of the leaves of Aglaia forbesii (continued)

Hexane extract of Aglaia oligophylla leaves (16 g)

Scheme 3 Separation of the Hexane extract of the leaves of Aglaia oligophylla

Scheme 3 Separation of the Hexane extract of the leaves of Aglaia oligophylla (continued)

Fr. C6 (385.2 mg)

Scheme 3 Separation of the Hexane extract of the leaves of Aglaia oligophylla (continued)

EtOAc of Aglaia oligophylla leaves (20 g)

Scheme 4 Separation of the EtOAc extract of the leaves of Aglaia oligophylla

HAF1 R = = 0

HAF2 $R = \beta$ -OH

14

HAF3

HAF4A

HAF4B

Figure 4. Chemical structures of compounds isolated from Aglaia forbesii leaves

CAF4

	R ₁	R ₂
CAF5	ОН	Η (3Ηα,4Ηβ)
CAF6	Н	OH ($3H\alpha$, $4H\beta$)
CAF7	OH	Η (3Ηβ,4Ηα)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 4. Chemical structures of compounds isolated from Aglaia forbesii leaves (continued)

HAO1

HAO2A

HAO2B

Figure 5. Chemical structures of compounds isolated from Aglaia oligophylla leaves

HAO5

HAO6A

Figure 5. Chemical structures of compounds isolated from Aglaia oligophylla leaves (continued)

Figure 5. Chemical structures of compounds isolated from Aglaia oligophylla leaves (continued)

4. Physical and Spectral Data of Isolated Compounds

4.1 Compound HAF1

Compound HAF1 was obtained as colorless needles (10 mg, 0.0029 % yield).

ESITOFMS	: <i>m/z</i> 424; [M+H] ⁺ ; Figure 6
Mp	: 165-167 °C
$\left[\boldsymbol{\alpha}\right]_{D}^{25}$	$:+60.6^{\circ} (c \ 0.5, \text{CHCl}_3)$
IR	: V_{max} cm ⁻¹ , KBr disc; Figure 7
	2941, 2870, 2857, 1705, 1644, 1455, 1381
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 8, Table 3
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 9, Table 3
4.2 C	ompound HAF2
(Compound HAF2 was obtained as colorless needles (15 mg, 0.0016 % yield).
Mp	: 213-215 °C
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 10
	3436, 2934, 2863, 1644, 1454, 1378, 1040, 881, 758, 476
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 11, Table 4
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ ; Figure 12, Table 4
4.3 C	ompound HAF3
(Compound HAF3 was obtained as pale yellow oil (5 mg, 0.00014 % yield).
EIMS	: <i>m/z</i> (% relative intensity); Figure 13
	220 [M] ⁺ (40.4), 205 (100), 202 (30), 187 (37), 162 (49.5), 147 (45.2)
Mp	: 147-149 °C
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 14
	3383, 2930, 2871, 1704, 1654, 1458, 1376, 917
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 15, Table 5
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 16, Table 5
4.4 C	ompound HAF4

Compound HAF4 was obtained as colorless needles (31 mg, 0.00089 % yield).

: V_{max} cm⁻¹, KBr disc; Figure 18

IR

75

	3437, 2940, 2868, 1639, 1465, 1102, 1050, 477
¹ H NMR	: δ ppm, 300 MHz, in CDCl ₃ ; Figure 19
¹³ C NMR	: δ ppm, 75 MHz, in CDCl ₃ ; Figure 20, Table 6
4.5 Co	mpound CAF1
Co	mpound CAF1 was obtained as white amorphous solid (5 mg, 0.000086 % yield).
EIMS	: <i>m/z</i> (% relative intensity); Figure 21
	474 [M] ⁺ (12), 384 (7), 340 (11), 313 (8), 147 (13), 121(14), 91 (23), 59 (100)
HRESITOFMS	: $m/z = 497.3539 [M+Na]^+, [M]^+ = 474$; Figure 21
Mp	: 77-79 °C
$\left[\boldsymbol{\alpha} \right]_{D}^{25}$	$:+17^{\circ}(c 0.3, \text{CHCl}_3)$
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 22
	3419, 2928, 2870, 1706, 1462, 1456, 1378
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 23, Table 7
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 24, Table 7
4.6 Cor	npound CA <mark>F</mark> 2
Co	ompound CAF2 was obtained as white amorphous solid (3 mg, 0.000086 % yield).
EIMS	: <i>m/z</i> (% relative intensity); Figure 34
	332 [M] ⁺ (100), 317 (77.9), 299 (29.6), 121 (87.1)
Mp	: 208-211 °C
$\left[\boldsymbol{\alpha} \right]_{D}^{25}$:-108.9 ° (c 0.1, CHCl ₃)
UV	: λ_{max} nm (log E), in MeOH; Figure 35
	241 (3.35), 215 (3.14), 206 (3.23)
IR	: V_{max} cm ⁻¹ , KBr disc; Figure 36
	3396, 2928, 1712, 1646, 1598, 1577, 1453, 1417, 1378, 1047
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 38, Table 8
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 39, Table 8
4.7 C	ompound CAF3
(Compound CAF3 was obtained as white amorphous solid (3 mg, 0.000086 % yield).

ESITOFMS : m/z 332; $[M+H]^+$; Figure 46

Мр	: 110-113 °C
$\left[\boldsymbol{\alpha}\right]_{D}^{25}$: -85.0 ° (<i>c</i> 0.12, CHCl ₃)
UV	: λ_{max} nm (log ϵ), in MeOH; Figure 47
	206.2 (3.50)
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 48
	3390, 2926, 2 <mark>853, 1716, 1737, 1645, 1598, 1558</mark> , 1453, 1415, 1379, 1047
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 49, Table 9
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 50, Table 9
4.8 C	ompound CAF4
(Compound CAF4 was obtained as colorless needles (12 mg, 0.00034 % yield).
ESITOFMS	: m/z 322; $[M+H]^+$; Figure 51
Mp	: 173-174 °C
UV	: λ_{\max} nm (log E), in MeOH; Figure 52
	206.2 (4.54), 243.2 (4.54), 272 (4.46)
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 53
	3427, 3316, <mark>1634, 1620, 1533, 1327, 1219,</mark> 986, 975, 715, 689
¹ H NMR	: δ ppm, 400 MHz, in DMSO-d ₆ ; Figure 54, Table 10
¹³ C NMR	: δ ppm, 100 MHz, in DMSO-d ₆ ; Figures 55-56, Table 10
4.9 C	ompound CAF5
(Compound CAF5 was obtained as white amorphous powder (10 mg, 0.0029 % yield).
EIMS	m/z (% relative intensity)
	502 (3), 416 (11), 330 (26), 322 (44), 313 (60), 281 (15), 181 (21), 135 (44), 105 (74),
	55 (100)
HRESITOFM	S : $m/z = 675.2690 [M+Na]^+, [M]^+ = 652$; Figure 57
Mp	: 129-131 °C
$\left[\alpha \right]_{D}^{25}$: +75 ° (<i>c</i> 0.5, CHCl ₃)
UV	: λ_{max} nm, in MeOH; Figure 58
	208.6 (4.3)
IR	: V_{max} cm ⁻¹ , KBr disc; Figure 59

	3479, 3299, 2927, 2855, 1633, 1620, 1588, 1519, 1455, 1305, 1254, 1214, 1200, 1149,
	1087, 832, 756, 669
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ ; Figure 60, Table 11
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ ; Figure 61, Table 11
4.10 Co	ompound CAF6
(Compound CAF6 was obtained as white amorphous powder (10 mg, 0.0029 % yield).
EIMS	: <i>m/z</i> (% relative intensity)
	416 (7), 330 (15), 322 (42), 313 (100), 181 (35), 135 (35), 131 (54), 105 (93), 55 (40)
HRESITOFMS	: m/z = 675.2678 [M+Na] ⁺ , [M] ⁺ = 652; Figure 71
Mp	: 120-122 °C
$\left[\alpha \right]_{D}^{25}$	$(c 0.5, CHCl_3)$ (c 0.5, CHCl ₃)
UV	: λ_{\max} nm, in MeOH; Figure 72
	207.6 (4.19)
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 73
	3478, 3287, 2931, 1633, 1620, 1589, 1539, 1515, 1455, 1303, 1252, 1215, 1201, 1182,
	1151, 1101, 1085, 1051, 830, 817, 753, 700, 667
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ ; Figure 74, Table 12
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ ; Figure 75, Table 12
4.11 Co	ompound CAF7
(Compound CAF7 was obtained as white amorphous powder (6 mg, 0.00017 % yield).
EIMS	: m/z (% relative intensity)
	416 (22), 254 (11), 218 (18), 162 (52), 134 (25), 105 (100), 77 (95), 55 (44)
HRESITOFMS	: $m/z = 675.2684 [M+Na]^+, [M]^+ = 652$; Figure 86
Mp	: 144-146 °C
$\left[\alpha \right]_{D}^{25}$: -36 ° ($c 0.5$, CHCl ₃)
UV	: λ_{\max} nm, in MeOH; Figure 87
	210 (4.33)
IR	: V_{max} cm ⁻¹ , KBr disc; Figure 88
	3480, 3315, 2937, 1640, 1619, 1589, 1538, 1517, 1455, 1304, 1252, 1215, 1201, 1146,

1098, 832, 753, 700, 666

¹H NMR : δ ppm, 500 MHz, in CDCl₃; Figure 89, Table 13

¹³C NMR : δ ppm, 125 MHz, in CDCl₃; Figure 90, Table 13

4.12 Compound HAO1

Compound HAO1 was obtained as colorless needles (30.4 mg, 0.018 % yield).

EIMS	: <i>m/z</i> (% relative intensity); Figure 99
	442[M] ⁺ (2.3), 424 (100), 355 (25.4), 313(14), 205 (48.7), 109 (84.2)
Mp	: 134-136 °C
$\left[\alpha \right]_{D}^{25}$	$(c 1.2, CHCl_3)$
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 100
	3480, 2950, 2869, 1704, 1455, 1376, 755
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 101, Table 14
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 102, Table 14
4.13 C	ompound HAO2
(Compound HAO2 was obtained as colorless needles (24.7 mg, 0.015 % yield).
EIMS	: <i>m/z</i> (% relative intensity); Figure 104
	458 [M] ⁺ (0.4), 443 (3.3), 440 (3.8), 399 (26.9), 143 (100)
IR	: V_{max} cm ⁻¹ , KBr disc; Figure 105
	3474, 1705, 2963, 2870,1459, 1382, 1376
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ ; Figure 106, Table 15

¹³C NMR : δ ppm, 125 MHz, in CDCl₃; Figure 107, Table 15

4.14 Compound HAO3

Compound HAO3 was obtained as colorless needles (13 mg, 0.00076 % yield).

EIMS	: <i>m/z</i> (% relative intensity); Figure 113
	445 [M-Me] ⁺ (2.5), 427 (2.6), 401 (10.3), 383 (7.7), 143 (100)
Mp	: 198-200 °C
$\left[\alpha \right]_{D}^{25}$: + 39 ° (c 0.35, CHCl ₃)
IR	: \mathcal{V}_{max} cm ⁻¹ , KBr disc; Figure 114
	3399, 2965, 2947, 1465, 1453, 1386, 1376, 1165, 1079, 1045, 984

¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 115, Table 16
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 116, Table 16
4.15 (Compound HAO4
	Compound HAO4 was obtained as colorless needles (5.8 mg, 0.00034 % yield).
EIMS	: <i>m/z</i> (% relative intensity); Figure 119
	440 [M-H ₂ O] ⁺ (3.5), 313 (2.3), 143 (12.6), 125 (100), 107 (10.7), 81 14.3)
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 120
	3388, 2924, 2953, 2853, 1705, 1455, 1376, 757
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 121, Table 17
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figure 122, Table 17
4.16	Compound HAO5
	Compound HAO5 was obtained as white amorphous solid (8 mg, 0.0047 % yield).
ESITOFMS	$: m/z = 455 [M+Na]^+;$ Figure 127
Mp	: 75-77 °C
$\left[\alpha \right]_{D}^{25}$: - 125 ° (c 0.48, CHCl ₃)
UV	: λ_{max} nm, in MeOH; Figure 128
	207.4 (4.8)
IR	: V _{max} cm ⁻¹ , KBr disc; Figure 129
	3500, 2927, 2853, 1610, 1514, 1498, 1454, 1441, 1250, 1217, 1201, 1183, 1147, 1128,
	1116, 1062, 1034, 996, 819, 756, 699
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ ; Figure 130, Table 18
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ ; Figure 131, Table 18
4.17 (Compound HAO6
	Compound HAO6 was obtained as colorless needles (11.2 mg, 0.00071 % yield).
ESITOFMS	$: m/z = 323 [M+Na]^+;$ Figure 134
UV	: λ_{max} nm, in MeOH; Figure 135
	283.2 (3.92), 241.2 (4.06), 206.8 (3.54)
IR	: V_{max} cm ⁻¹ , KBr disc; Figure136
	3291, 2961, 2924, 2853, 1648, 1727, 1734, 1599, 1535, 1453, 1416, 1260, 1094, 1026

¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ ; Figure 137, Table 19		
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ ; Figure 138, Table 19		
4.1	8 Compound HAO7		
	Compound HAO7 was obtained as colorless needles (13.3 mg, 0.00078 % yield).		
EIMS	: <i>m/z</i> (% relative intensity); Figure 142		
	458 [M] ⁺ (3.1), 443 (4.1), 440 (6.8), 425 (2.3), 399 (17.9), 359 (6.2), 315 (3.2), 245		
	(9.2), 205 (18.1), 143 (100)		
IR	: V_{max} cm ⁻¹ , KBr disc; Figure 143		
	3407, 2964, 2870, 1699, 1461, 1383, 1074, 755		
Mp	: 233-236 °C		
¹ H NMR	: δ ppm, 400 MHz, in CDCl ₃ ; Figure 144, Table 20		
¹³ C NMR	: δ ppm, 100 MHz, in CDCl ₃ ; Figures 145-146, Table 20		
4.19	Ocompound EAO1		
	Compound EAO1 was obtained as colorless needles (6.8 mg, 0.0004 % yield).		
EIMS	: m/z (% relative intensity); Figure 148		
	460 [M] ⁺ (0.3), 458 (0.8), 440 (1.5), 425 (2.3), 315 (3.2), 143 (100), 125 (13.4)		
IR	: V_{max} cm ⁻¹ , KBr disc; Figure 149		
	3399, 2942, 2871, 1465, 1452, 1385, 1376, 1076, 1031, 932		
¹ H NMR	: δ ppm, 500 MHz, in CDCl ₃ ; Figure 150, Table 21		
¹³ C NMR	: δ ppm, 125 MHz, in CDCl ₃ ; Figures 151-152, Table 21		

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

5. Evaluation of Biological Activities

5.1 Determination of Antimycobacterial Activity

Antimycobacterial activity was assessed against Mycobacterium tuberculosis H₂,Ra using the Microplate Alamar Blue Assay (MABA) (Collins and Franzblau, 1997). The mycobacteria were grown in 100 ml of 7H9GC broth containing 0.005 % Tween 80. Culture was incubated in 500 ml plastic flask on a rotary shaker at 200 rpm and 37 °C until they reached an optical density of 0.4-0.5 at 550 nm. Bacteria were washed and suspended in 20 ml of phosphate-buffered saline and passed through a filter. The filtrates were aliquoted and stored at -80°C. The susceptibility testing was performed in 96-well microplates. Samples were initially diluted with either dimethyl sulfoxide or distilled deionized water, then diluted by Middlebrook 7H9 media containing 0.2 % v/v glycerol and 1.0 g/L 7H9GC broth, and subsequent two-fold dilutions were performed in 0.1 ml of 7H9CG broth in microplates. Frozen inocula were diluted 100 times in 7H9GC broth and adding of 0.1 ml to the well resulted in final bacterial titers of about 5 x 10⁴ CFU/ml. The wells containing sample only were used to determine whether the test samples themselves can reduce the dye. Additional control wells were consisted of bacteria only (B) and medium only (M). Plates were incubated at 37 °C. Starting at day 6 of the incubation, 20 µl of Alamar Blue solution and 12.5 µl of 20 % Tween 80 were added to one B well and one M well, and the plates were reincubated at 37 °C. The B wells were observed for a color change from blue to pink, at which time reagents were added to all remaining wells. Plates were then incubated at 37 °C, and results were recorded at 24 h after the addition of reagents. Visual MIC values were defined as the lowest concentration of sample that prevented a color change. Rifampicin, isoniazid and kanamycin sulfate, which are standard drugs in the treatment of tuberculosis, were used as the reference compounds.

5.2 Determination of Antimalarial Activity

The parasite *Plasmodium falciparum* (K1, multi-drug resistant strain) was cultivated *in vitro* using the method of Trager and Jensen (Trager and Jensen, 1976) in RPMI 1640 medium containing 20 mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid), 32 mM NaHCO₃ and 10 % heatinactivated human serum with 3 % erythrocytes and incubated at 37 °C in an incubator with 3 % CO_2 . The cultures were diluted with fresh medium and erythrocytes every day according to cell growth. Quantitative assessment of antimalarial activity *in vitro* was determined by microculture radioisotope techniques based upon the method of Desjardins *et al.* (1979). Briefly, a mixture of 200 µl of 1.5 % erythrocytes with 1 % parasitemia at the early ring stage was pre-exposed to 25 µl of the medium containing a test sample dissolved in 1% DMSO (0.1 % final concentration) for 24 h, employing the incubation condition described above. Subsequently, 25 µl of [³H]-hypoxanthine (Amersham, USA) in culture medium (0.5 µCi) were added to each well and the plates were incubated for an additional 24 h. Levels of incorporated labeled hypoxanthine indicating parasite growth were determined using the TopCount microplate scintillation counter (Packard, USA). The IC₅₀ value represents the concentration which indicates 50 % reduction of parasite growth. The standard sample for positive control was dihydroartemisinine (DHA).

5.3 Determination of Cytotoxic Activity

5.3.1 Human Small Cell Lung Carcinoma (NCI-H187)

Cytotoxicity to NCI-H187 cells (human small cell lung carcinoma, ATCCCRL-5804) was determined by MTT assay (Plumb, Milroy and Kaye, 1989). Briefly, cells were diluted to 10^5 cells/ml. Test compounds were diluted in distilled water and added to microplates in a total volume of 200 μ l. Plates were incubated at 37 °C, 5% CO₂ for 5 days. Then, 50 μ l of 2 mg/ml MTT solution (3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromine; thiazolyl blue) was added to each well of the plate. The plates were wrapped with aluminium foil and incubated for 4 h. After the incubation period, the microplates were spun at 200 rpm for 5 min. MTT was then removed from the wells and the formazan crystals were dissolved in 200 μ l of DMSO and 25 μ l of Sorensen's glycine buffer. Absorbance was read in microplate reader at the wavelength of 510 nm. The reference substance was ellipticine and doxorubicin. The activity was expressed as 50 % inhibitory concentration (IC₅₀). The criteria of cytotoxic potency of the compound testing in this system are as follows:

IC ₅₀ (μg/ml)	Activity
> 20	Inactive
> 10 - 20	Weakly active
5-10	Moderately active
< 5	Strongly active

5.3.2 Vero cell

Compounds were tested for their toxicity against Vero cells (African green monkey kidney fibroblast), using colorimetric microplate assay (Skehan *et al.*, 1990). Briefly, cells at a logarithmic growth phase were harvested and diluted to 10^5 cells/ml with fresh medium and gently mixed. Extracts or test compounds were diluted in distilled water and put into microplates in a total volume of 200 µl. Plates were incubated at 37 °C, 5 % CO₂ for 72 h. After the incubation period, cells were fixed by 50 % trichloroacetic acid. The plates were incubated at 4 °C for 30 min, washed with tap water and air-dried at room temperature. The plates were then stained with 0.05 % sulforhodamine B (SRB), dissolved in 1 % acetic acid for 30 min. After the staining period, SRB was removed with 1 % acetic acid. Plates were air-dried before the bound dye was solubilized with 10 mM Tris-base for 5 min on shaker. Absorbance was read in microplate reader at the wavelength of 510 nm. If % cell viability \geq 50%, IC₅₀ was reported as \geq 50 µg/ml and if % cell viability < 50%, IC₅₀ was reported from two-fold serial dilution. Ellipticine and DMSO were used as positive and negative control, respectively.

5.4 Determination of Anti-Herpes Simplex Activity

Anti-herpes simplex virus type 1 (HSV-1) activity of pure compounds was tested against HSV-1 strain ATCC VR 260, using colorimetric microplate assay (Skehan et al., 1990). The growth of host cells (Vero cell line ATCC CCL-81) infected with the virus and treated with the extract was compared with control cells, which were infected with virus only. Acyclovir and DMSO were used as positive and negative control, respectively. The extracts were tested at non-cytotoxic concentrations (inhibition of cell growth < 50 %). The potency of activity criteria are as follows:

Extracts that inhibited virus more than 50 % were further tested to determine the IC_{50} values.

CHAPTER IV

RESULTS AND DISCUSSION

Chromatographic separation of the n-hexane fraction of the methanolic leaf extract of *Aglaia* forbesii King. yielded 5 compounds (HAF1, HAF2, HAF3 and HAF4; a mixture of HAF4A and HAF4B, whereas the CH_2Cl_2 fraction afforded 7 compounds (CAF1, CAF5, CAF6, CAF7, CAF2, CAF3 and CAF4).

The methalolic leaf extract of *Aglaia oligophylla* Miq. was mixed with Kieselguhr, packed in a column and eluted with n-hexane, EtOAc and MeOH, successively. Nine compounds (HAO1, HAO2; a mixture of HAO2A and HAO2B, HAO3, HAO4, HAO5, HAO6; a mixture of HAO6A and HAO6B, and HAO7) were isolated from the n-hexane fractions while the EtOAc fraction was chromatographed to yield compound EAO1 (a mixture of EAO1A and EAO1B).

The structure determination of these isolated compounds was based on spectroscopic methods (UV, IR, MS, 1D and 2D NMR), and comparison with those reported in the literature.

1. Structure Determination of Compounds Isolated from Aglaia forbesii

1.1 Identification of Compound HAF1

Compound HAF1 was isolated as colorless needle crystals. The molecular formula $C_{30}H_{49}O$ for this compound was deduced from its mass spectrum ([M]⁺ at m/z 424) (Figure 6) in combination with the ¹H and ¹³C APT spectrum (Figures 8 and 9) and its IR spectrum (Figure 7) which indicated the presence of carbonyl function (1705 cm⁻¹) and a terminal methylene group (1644 cm⁻¹).

Preliminary comparison of the ¹H and ¹³C NMR spectral data (**Figures 8** and **9**) of this compound with those of HAF2 revealed that their NMR spectra were closely similar, including the presence of seven tertiary methyl groups and one isopropenyl group. However, instead of secondary alcohol as in HAF2, a keto carbonyl could be detected at δ_c 218 in this compound. Two singlet signals at δ_H 4.66/4.54 (each *br s*, H₂-29) in the ¹H NMR spectra indicated that an exomethylene group was still present in this molecule. All these data suggested that the compound has a lupane skeleton system identical to that of HAF1.

The assignment of ketone carbonyl at the C-3 position was deduced from the signal at $\delta_{\rm C}$ 218
in the ¹³C spectrum together with the deshielded methylene protons in the region $\delta_{\rm H}$ 2.34-2.54 in the ¹H NMR spectrum, typical for H₂-2 vicinal to ketone group in a keto-triterpenoid (Tanaka, Tabuse and Matsunaga, 1988).

According to the above spectral evidence and by comparison of its ¹³C NMR spectral data (**Table 3**) with the reported data (Carpenter, Sotheeswaran, and Sultanbawa, 1980), compound HAF1 was identifield as lupenone.

Lupenone, one of the most common triterpene, has previously been reported to exhibit strong viral plaque inhibitory effect against HSV-1 and HSV-2 (Madureira *et al.*, 2003).

lupenone

Position	HAF1	Lupenone*	Position	HAF1	Lupenone*
	¹³ C (mult.)	¹³ C		¹³ C (mult.)	¹³ C
1	39.6 (<i>t</i>)	39.6	16	35.5 (<i>t</i>)	35.6
2	34.1 (<i>t</i>)	34.1	17	42.9 (s)	42.9
3	218.0 (s)	217.9	18	48.2 (<i>d</i>)	48.3
4	47.3 (s)	47.3	19	47.9 (<i>d</i>)	47.9
5	54.3 (<i>d</i>)	55.0	20	150.7 (s)	150.7
6	19.6 (<i>t</i>)	19.6	21	29.8 (<i>t</i>)	29.9
7	33.7 (<i>t</i>)	33.6	22	39.9 (<i>t</i>)	40.0
8	40.7 (s)	40.9	23	26.6 (q)	26.6
9	49.7 (<i>d</i>)	49.8	24	20.9 (q)	21.0
10	36.8 (s)	36.9	25	15.8 (q)	15.8
11	21.4 (<i>t</i>)	21.5	26	15.9 (q)	15.9
12	25.2 (<i>t</i>)	25.2	27	14.4 (q)	14.4
13	38.1 (<i>d</i>)	38.2	28	17.9 (q)	18.0
14	42.8 (s)	42.9	29	109.3 (<i>t</i>)	109.2
15	27.4 (<i>t</i>)	27.4	30	19.3 (q)	19.3

Table 3. Comparison of the ¹³C-NMR spectral data of lupenone and compound HAF1 (CDCl₃, 100 MHz)

* Carpenter, Sotheeswaran and Sultanbawa, 1980 (in CDCl_3 , 100 Mz)

1.2 Identification of Compound HAF2

Compound HAF2 was obtained as colorless needle crystals. The compound gave violet color to Liebermann-Burchard test, indicating the presence of triterpenoid. The IR (**Figure 10**) spectrum showed the presence of hydroxyl group in this molecule (3436 cm⁻¹).

The ¹H NMR (**Figure 11**) spectrum exhibited signals corresponded to the lupane-type triterpenoid (Tanaka, Tabuse and Matsunaga, 1988) which including six tertiary methyl groups ($\delta_{\rm H}$ 0.98, 0.77, 0.84, 1.04, 0.96 and 0.80; Me-23-Me-28, respectively), one vinylic methyl ($\delta_{\rm H}$ 1.68, Me-30), one terminal methylene ($\delta_{\rm H}$ 4.66/4.54, each *br s*, H₂-29), a C-3\alpha carbinolic methine proton ($\delta_{\rm H}$ 3.17, *dd*, *J* = 10.8, 5.4 Hz, H-3) and the remaining signals due to methylene and methine protons in the high field region ($\delta_{\rm H}$ 0.90-1.70).

The ¹³C NMR spectrum (**Figure 12**) together with the DEPT experiment resolved the 30 carbon signals as seven methyl, eleven methylene, six methine and six quaternary carbons, thus also supporting the triterpenoid structure. The presence of isopropenyl group was deduced from the signals of two olefinic carbons and the vinylic methyl carbon resonated at $\delta_{\rm C}$ 150.9 (C-20), 109.3 (C-29) and 19.3 (C-30), respectively, in the ¹³C spectrum and the corresponding signals in ¹H NMR spectrum including the resonances at $\delta_{\rm H}$ 4.66/4.54 (each *br s*, H₂-29), and 1.69 (*s*, Me-30).

The assignment of the relative configuration at C-3 was based on the large coupling constant ($\delta_{\rm H}$ 3.17, *dd*, *J* = 10.8, 5.4 Hz, H-3) of the axial carbinolic methine proton, indicating the β -equatorial orientation of 3-OH group.

HAF2 was finally identified to be lupeol, a pentacyclic triterpene of the lupane-type, by TLC comparison with authentic sample and comparison of the ¹H and ¹³C NMR spectral data (**Table 4**) with those already reported (Reynolds, McLean and Poplawski, 1986).

Lupeol have recently been investigated for its various pharmacological and medicinal properties including anti-inflammatory activity (Geetha and Varalakshmi, 2001), cytotoxicity against human hepatocellular carcinoma (Hep-G2), human epidermoid carcinoma (A-431) and human leukemia HL-60 cells (Aratanechemuge *et al.*, 2004; Moriarity *et al.*, 1998), anti-angiogenic activity on *in vitro* tube formation of human umbilical vein endothelial cells (HUVEC) (You *et al.*, 2003), and antimicrobial activity (Ajaiyeoba *et al.*, 2003).

Table 3. Comparison of the NMR spectral data of lupeol and compound HAF2 (CDCl₃, 75 MHz)

Position	Compound HAF2	Lupeol*	Position	Compound HAF2	Lupeol*
	¹³ C (mult.)	¹³ C		¹³ C (mult.)	¹³ C
1	38.7 (<i>t</i>)	38.6	16	35.5 (<i>t</i>)	35.5
2	27.4 (<i>t</i>)	27.3	17	42.9 (s)	42.9
3	79.9 (<i>d</i>)	78.9	18	48.3 (<i>d</i>)	48.2
4	38.8 (s)	38.8	19	47.9 (<i>d</i>)	47.9
5	55.3 (<i>d</i>)	55.2	20	150.9 (s)	150.8
6	18.3 (<i>t</i>)	18.2	21	29.8 (t)	29.8
7	34.2 <i>(t)</i>	34.2	22	40.0 (<i>t</i>)	39.9
8	40.8 (s)	40.7	23	27.9 (q)	27.9
9	40.4 (<i>d</i>)	50.3	24	15.3 (q)	15.3
10	37.1 (s)	37.1	25	16.1 (q)	16.1
11	20.9 (<i>t</i>)	20.9	26	15.9 (q)	15.9
12	25.1 (<i>t</i>)	25.0	27	14.4 (q)	14.4
13	38.0 (<i>d</i>)	38.0	28	17.9 (q)	18.0
14	42.8 (s)	42.7	29	109.3 (<i>t</i>)	109.2
15	27.4 (<i>t</i>)	27.4	30	19.3 (q)	19.3

* Reynolds, McLean and Poplawski, 1986 (in CDCl₃, 100 Mz)

1.3 Identification of Compound HAF3

Compound HAF3 was obtained as pale yellow oil. The EI mass spectrum (**Figure 13**) displayed $[M]^+$ ion peak at m/z 220 corresponding to the molecular formula $C_{15}H_{24}O$. The EIMS also gave mass fragment peak at m/z 202 ($[M-H_2O]$)⁺, suggesting the presence of hydroxyl group in this molecule. This was also confirmed by IR absorption band (**Figure 14**) at 3383 cm⁻¹.

The APT experiment (**Figure 16**) revealed 15 carbons including three tertiary methyl groups, five methylenes, four methines and three quaternary carbons, one of which was the oxygenated methine carbon (δ_c 80.9, C-4). Two quaternary carbons which resonated at δ_c 153.4 (C-10) and 106.2 (C-14) were those of an exomethylene function.

The ¹H NMR spectra (**Figure 15**) also exhibited the signals of three tertiary methyl groups $(\delta_{\rm H} 1.04, 1.05 \text{ and } 1.28, 3\text{ H each, }s)$, an exomethylene function $(\delta_{\rm H} 4.69/4.67, \text{ each } br s, \text{H}_2\text{-}14)$ and two most upfield signals of typical methine protons $(\delta_{\rm H} 0.5, dd, J = 9.5, 11.3 \text{ Hz}, \text{H-6} \text{ and } \delta_{\rm H} 0.5, ddd, J = 9.5, 11.3, 6.2 \text{ Hz}, \text{H-7})$ of the aromadendrane framework (Vizzotto *et al.*, 2003).

This compound was further proved to be an aromadendrane sesquiterpenoid by the analysis of 2D NMR (¹H-¹H COSY, HMQC and HMBC) spectra. The assignment of the hydroxyl group at C-4 was achieved by the downfield shift of this position and was further confirmed by the prominent cross peaks from Me-15 ($\delta_{\rm H}$ 1.28, *s*) to C-3 ($\delta_{\rm C}$ 41.7), C-4 ($\delta_{\rm C}$ 80.9) and C-5 ($\delta_{\rm C}$ 54.3) in the HMBC spectrum (**Figure 17**). Furthermore, HMBC correlations (**Figure 17**) from H₂-14 ($\delta_{\rm H}$ 4.67/4.69, each *br s*) to C-1 ($\delta_{\rm C}$ 53.4) and C-9 ($\delta_{\rm C}$ 38.8), clearly indicated that an exomethylene function was placed in the position 10.

Based on analysis of the above spectral data (**Table 5**) and confirmed by comparison of previously published data (Brochini and Roque, 2000), HAF3 was identified as spathulenol.

The aromadendrane sesquiterpene spathulenol has already been isolated from *A. foveolata* and *A. lawii* (Roux *et al.*, 1998). In addition, it was also reported to be the constituent of *Callicarpa japonica* (Verbenaceae), *Esenbeckia conspecta* (Rutaceae), *Nepeta macrosiphon* Boiss. (Lamiaceae) and the softcoral *Sinularia kavarattiensis* (Fraga, 2003).

Table 5. Comparison of the NMR spectral data of spathulenol and compound HAF3 (CDCl₃, 400 MHz)

Position	HAF3		Spathulenol*	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H	¹³ C
1	2. 20 (<i>m</i>)	53.4 (<i>d</i>)		53.4
2	1.92/1.64 (each <i>m</i>)	26.7 (<i>t</i>)		26.7
3	1.91/1.58 (each m)	41.7 (<i>t</i>)		41.7
4		80.9 (s)		81.0
5	1.30 (<i>m</i>)	54.3 (<i>d</i>)		54.3
6	0.50 (<i>dd</i> , 9.5, 11.3)	29.9 (d)	0.4-0.6	29.9
7	0.70 (<i>ddd</i> , 9.5, 11.3, 6.2)	27.5 (<i>d</i>)	0.4-0.6	27.5
8	1.98/1.01 (each <i>m</i>)	24.8 (<i>t</i>)		24.8
9	2.42/2.04 (each <i>m</i>)	38.8 (<i>t</i>)	2.42 (m)	38.8
10		153.4 (s)		153.4
11	2	20.2 (s)	-	20.2
12	1.04 (s)	28.6 (q)	1.04 (s)	28.6
13	1.05 (s)	16.3 (q)	1.05 (s)	16.3
14	4.67/4.69 (each <i>br s</i>)	106.2 (<i>t</i>)	4.66/4.69 (each <i>br s</i>)	106.2
15	1.28 (s)	26.1 (q)	1.29 (s)	26.1

* Brochini and Roque, 2000 (in CDCl₃, 400 Mz)

1.4 Identification of Compound HAF4

Compound HAF4 was obtained as colorless needle crystals. TLC comparison of this compound with an authentic sample (Solvent system: Hexane-Acetone = 84:16), suggested HAF4 could be a mixture of β -sitosterol (HAF4A) and stigmasterol (HAF4B). This was further confirmed by the following evidences.

The ¹H NMR spectrum (Figure 19) exhibited the olefinic proton signal at $\delta_{\rm H}$ 5.33, typical for position 6 of both β -sitosterol and stigmasterol, while two double doublet signals at $\delta_{\rm H}$ 5.01 and 5.12 were assigned to H-22 and H-23 of stigmasterol, respectively. A desheilded signal at $\delta_{\rm H}$ 3.54 in the ¹H NMR spectrum corresponded to the carbinolic methine proton of position 3. This was also confirmed by IR absorption (Figure 18) band at 3357 cm⁻¹ (hydroxyl group).

The ¹³C NMR spectrum (Figure 20) showed four olefinic carbons, two of which resonated at δ_c 138.3 and 129.3 were due to the signals for C-22 and C-23 of stigmasterol, respectively. The ratio of the mixture was deduced from the intregration value between H-6 and H-22 or H-23 to be 1:1.

Further comparison of the ¹³C NMR spectral data of HAF4 with the data reported in the literature (Jahodar, Grygarova and Budesinsky, 1988; Rubinstein *et al.*, 1976), confirmed that this compound was a mixture of β -sitosterol and stigmasterol.

 β -sitosterol, the most common plant sterol, has previously demonstrated to have interesting therapeutic properties such as antihyperglycemic (Invorra *et al.*, 1988), anti-inflammatory, and antipyretic activities (Gupta *et al.*, 1980).

B-sitosterol

stigmasterol

position	HAF4A (mult.)	β-Sitosterol*	HAF4B (mult.)	Stigmasterol*
1	37.2 (<i>t</i>)	37.2	37.2 (<i>t</i>)	37.2
2	31.7 (<i>t</i>)	31.7	31.7 <i>(t)</i>	31.7
3	71.7 (<i>d</i>)	71.7	71.7 (<i>d</i>)	71.8
4	42.3 (<i>t</i>)	42.3	42.2 (<i>t</i>)	42.4
5	140.8 (s)	140.8	140.8 (s)	140.8
6	121.7 (<i>d</i>)	121.7	121.7 (<i>d</i>)	121.7
7	31.9 <i>(t</i>)	31.9	31.9 (<i>t</i>)	32.0
8	31.9 (<i>d</i>)	31.9	31.9 (<i>d</i>)	32.0
9	50.1 (<i>d</i>)	50.1	50.1 (<i>d</i>)	50.2
10	36.5 (s)	36.5	36.5 (s)	36.6
11	21.1 (<i>t</i>)	21.1	21.1 (<i>t</i>)	21.1
12	39.8 (<i>t</i>)	39.8	39.7 (<i>t</i>)	39.7
13	42.3 (s)	42.3	42.3 (<i>s</i>)	42.4
14	56.8 (<i>d</i>)	56.8	56.9 (<i>d</i>)	56.9
15	24.3 <i>(t)</i>	24.3	24.4 (<i>t</i>)	24.4
16	28.2 <i>(t)</i>	28.2	28.9 (<i>t</i>)	29.0
17	56.0 (<i>d</i>)	56.0	56.1 (<i>d</i>)	56.1
18	12.0 (q)	11.9	12.2 (q)	12.1
19	19.4 (q)	19.4	19.4 (q)	19.4
20	36.1 (<i>d</i>)	36.1	40.5 (<i>d</i>)	40.5
21	18.8 (q)	18.8	21.2 (q)	21.1
22	33.9 (<i>t</i>)	33.9	138.3 (<i>d</i>)	138.0
23	26.1 (<i>t</i>)	26.1	129.3 (<i>d</i>)	129.3
24	45.8 (<i>d</i>)	45.8	51.2 (<i>d</i>)	51.3
25	29.1 (<i>d</i>)	29.1	32.0 (<i>d</i>)	32.0

Table 6. Comparison of the ¹³C NMR spectral data of β-sitosterol and stigmasterol and compound HAF4 (a mixture of HAF4A and HAF4B) (CDCl₃, 75 MHz)

position	HAF4A (mult.)	β-Sitosterol*	HAF4B (mult.)	Stigmasterol*
26	19.8 (q)	19.8	21.3 (q)	21.3
27	19.0 (q)	19.0	18.9 (q)	19.0
28	23.1 (<i>t</i>)	23.1	25.4 (<i>t</i>)	25.4
29	12.0 (q)	11.9	12.2 (q)	12.3

Table 6. Comparison of the ¹³C NMR spectral data of β -sitosterol and stigmasterol and compound HAF4 (a mixture of HAF4A and HAF4B) (CDCl₃, 75 MHz) (continued)

* Rubinstein et al., 1976 (in CDCl₃, 100 Mz)

1.5 Structure Elucidation of Compound CAF1

Compound CAF1 was obtained as white amorphous solid. Its IR spectrum (**Figure 22**) indicated the presence of hydroxy group (3419 cm⁻¹) and ketone carbonyl (1706 cm⁻¹). EI mass apectrum (**Figure 21**) of this compound showed a molecular mass of m/z = 474 corresponding to the molecular formula $C_{30}H_{50}O_4$.

The ¹H and ¹³C NMR spectra (Figures 23 and 24) were typical for triterpenes of the cycloartane series. The high field pair of doublets at $\delta_{\rm H}$ 0.76 (H-19a) and 0.55 (H-19b) with a geminal coupling constant of 4.3 Hz was characteristic for this class of triterpenes (Inada et al., 1995). The typical 3-keto carbonyl resonated in the ¹³C NMR at δ_c 216.6 and the pair H-2ax and H-2eq at δ_H 2.71 and 2.30 in the ¹H NMR. Two deshielded signals at $\delta_{\rm H}$ 4.13 and 3.18 indicated two secondary alcohol functions. This was supported by the corresponding doublets in the 13 C NMR at $\delta_{\rm C}$ 75.0 and 69.7. Additionally, a singlet at δ_{c} 74.3 indicated a tertiary alcohol. The molecular formula $C_{30}H_{50}O_{4}$ (m/z 474) is in agreement with one keto and three alcohol functions. The ¹³C resonances (see Table 7) of the basic tetracyclic system of cycloartanes were almost identical with literature data, e.g. 21S,24R-dihydroxycycloart-25-en-3-one isolated from A. rubiginosa (Weber et al., 2000). The structure and shift assignments of the remaining 23,24,25-triol side chain atoms were straightforward using 2D methods (¹H-¹H COSY, HSOC, HMBC, NOESY) (Figures 25-33). Inspection of the ¹H-¹H COSY spectrum showed that a methyl-group doublet ($\delta_{\rm H}$ 0.94) associated with C-21 formed part of a CH₃-CH-CH₂ fragment which allowed identification of positions C-21, C-20 and C-22, respectively. Furthermore, H2-22 coupled to the oxygenated methine proton ($\delta_{\rm H}$ 4.13, dd, J = 9.4, 4.8 Hz, H-23), which show additional coupling to neighbouring oxygenated methine proton ($\delta_{\rm H}$ 3.18, br s, J < 0.5 Hz, H-24) in the COSY spectrum. Analysis of the HMQC spectrum indicated that these two deshielded methines should be placed at C-23 and C-24, respectively. This was also supported by the HMBC spectrum, which showed correlations between H₂-22/C-23, C24, H-23/C-22, C-24, and Me-21/C-17, C-20, C-22. Finally, two geminal methyl groups could be placed on an oxygenated quaternary carbon (C-25) via their HMBC correlations to this carbon and to another carbon of position 24. This complete the side chain of compound CAF1.

Contrary to cycloartanes, this triol side chain is rather common in the related tirucallanes. An X-ray analysis of piscidinol A and 24-epi-piscidinol A proved 23R,24S configuration for the former and 23R,24R for the latter (McChesney *et al.*, 1997). 24-Epi-piscidinol A was found also in A. andamanica (Puripattanavong *et al.*, 2000), however, the ¹³C chemical shifts of the side chain did not agree with our data. The most striking difference in the ¹H NMR was the coupling constant ${}^{3}J_{(H-23,H-24)}$ which was 8.1 Hz, compared to almost zero in CAF1. The resonance for H-24 of CAF1 appeared as a slightly broad singlet ($\delta_{\rm H}$ 3.18, J < 0.5 Hz) and as a consequence H-23 was a double doublet ($\delta_{\rm H}$ 4.13, J =9.4, 4.8 Hz). A broad singlet for H-24 was also observed for piscidinol A and B (McChesney *et al.*, 1997; Govindachari *et al.*, 1995) and the ¹³C resonances of the side chain agreed also quite well. This implied that the configurations of the side chain in CAF1 are 23*R*,24*S* or 24*S*,24*R*. These two possibilities would show the same NMR pattern and, additionally, one should have in mind that the configurations at carbon atoms 13, 14, 17, and 20 are reversed in the tirucallanes and the same may be true for positions 23 and 24. The known absolute configuration 20*R*, common for all cycloartanes, could be used for the correlation of the side chain configurations. Characteristic NOEs prove that 23*R*,24*S* is indeed correct. It is interesting that the absolute configurations of the two alcohol functions were identical in tirucallanes and cycloartanes, whereas all other comparable configurations were opposite in the two series.

The complete structure corresponds to the usual representation in literature. The partial structure shows a different conformation (rotation about the C20-C22 bond) and is based on the X-ray structure of piscidinol A. Note that a change in conformation by rotation about a single bond inverts the up and down positions within the chain attached to this bond, the absolute configurations remain of course unchanged. Only this more natural presentation is compatible with the NOEs and all observed couplings. Large coupling constants were observed for transoid arrangements like ${}^{3}J_{(H-22a,H-20)} = 9.6$ Hz and ${}^{3}J_{(H-22b,H-23)}$ = 9.4 Hz and small values for cisoid relationships like ${}^{3}J_{(H-22a,H-23)} = 4.8$ Hz, ${}^{3}J_{(H-22a,H-20)} \sim 4.0$ Hz, and ${}^{3}J_{(\text{H-23,H-24})} < 0.5$ Hz (transoid means one H up and the other one down, cisoid means both protons on the same side, either both up or both down). The resonances of Me-26 and Me-27 can also be discriminated by means of different NOE effects. Both terminal methyl groups show NOE contacts to both protons H-23 and H-24, however, in the case of H-23 the NOE to H_3 -26 is clearly stronger, in the case of H-24 the NOE to H₃-27. This results in ageometry with all three OH groups pointing upwards in the correct stereochemical view of CAF1, an arrangement which is stabilized by hydrogen bonding. Optimized hydrogen bonds are also the reason that the vicinal torsional angle between H-23 and H-24 is widened up to 80 or 90° (therefore ${}^{3}J_{(H-23,H-24)} < 0.5$ Hz). This results in a smaller torsional angle of about 30 or 40° between 23-OH and 24-OH, allowing a better formation of a hydrogen bond. Due to the many substituents

and extensive hydrogen bridging of the three OH functions the chain is relatively rigid and a detailed conformational analysis was possible. The derived structure of CAF1 was (23R, 24S)-23,24,25-trihydroxycycloartan-3-one. This compound have not been described yet in the literature.

(23R,24S)-23,24,25-trihydroxycycloartan-3-one

Table 7. NMR spectral data of CAF1 and partial comparison of the ¹³C resonances with those of 21*S*,24*R*dihydroxycycloart-25-en-3-one (CDCl₃, 500 MHz)

position	9	21 <i>S</i> ,24 <i>R</i> - Dihydroxycycloart- 25-en-3-one*		
	¹ H (mult., J in Hz) *	¹³ C (mult.)	НМВС	°C
1	1.80/1.48 (each m)	33.4 (<i>t</i>)	C-3, C-10, C-19	33.4
2	2.71/2.30 (each m)	37.5 (t)	C-3	37.4
3	สการเร	216.6 (s)	เขารถาร	216.5
4	61 6 T L L	50.2 (s)		50.2
5	1.63 (m)	48.4 (d)	C-3, C-10, C-19, C-28	48.4
6	1.50/1.02 (each m)	21.5 (t)	1X T T Y E	21.4
7	1.98/1.10 (each m)	25.8 (t)	C-9, C-18	25.8
8		47.8 (d)		47.8
9		21.0 (s)		21.0
10		26.0 (s)		26.0

position		CAF1		21 <i>S</i> ,24 <i>R</i> - Dihydroxycycloart- 25-en-3-one*
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	¹³ C
11	1.30 (<i>m</i>)	26.7 (<i>t</i>)	C-9, C-12	26.6
12	1.60 (<i>m</i>)	32.9 (<i>t</i>)	C-11, C-18	32.1
13	1.50 (<i>m</i>)	54.4 (s)	C-14	45.1
14		48.8 (s)		48.8
15	1.24 (<i>m</i>)	35.5 (<i>t</i>)	C-30	35.4
16	1.90/1.26 (each m)	28.4 (<i>t</i>)	C-17	27.5
17	1.56 (<i>m</i>)	53.1 (<i>d</i>)	C-16	46.4
18	0.98 (s)	18.2 (q)	C-8, C-13, C-14, C-15	18.3
19	0.76/0.55 (each d, 4.3)	29.5 (<i>t</i>)	C-1, C-5, C-9, C-10, C-11	29.5
20	1.44 (<i>m</i>)	33.6 (<i>d</i>)	and a second second	-
21	0.91 (<i>d</i> , 6.0)	18.8 (q)	C-17, C-20, C-22	-
22	1.12 (<i>dd</i> , 9.6, 4.8) 1.83 (<i>dd</i> , 9.4, 4.0)	40.7 (<i>t</i>)	C-23, C-24	-
23	4.13 (<i>dd</i> , 9.4, 4.8)	69.7 (<i>d</i>)	C-20, C-22, C-24, C-25	-
24	3.18 (br s)	75.0 (<i>d</i>)	C-22, C-23, C-26, C-27	-
25	dool 1	74.3 (s)		
26	1.29 (s)	26.2 (q)	C-23, C-24, C-25, C-27	J -
27	1.31 (s)	27.5 (q)	C-23, C-24, C-25, C-26	0
28	1.07 (s)	22.2 (q)	C-3, C-4, C-5, C-29	22.2
29	1.02 (s)	20.8 (q)	C-3, C-4, C-5, C-28	20.7
30	0.91 (s)	19.3 (q)	C-8, C-12, C-14, C-17	19.4

 Table 7. NMR spectral data of CAF1 and partial comparison of the ¹³C resonances with those of 21*S*,24*R*dihydroxycycloart-25-en-3-one (CDCl₃, 500 MHz) (continued)

* Weber *et al.*, 2000 (in CDCl₃, 100 MHz)

1.6 Identification of Compound CAF2

Compound CAF2 was obtained as white amorphous solid. EI mass spectroscopy (Figure 34) showed molecular ion peak at m/z 332, suggesting the molecular formula of $C_{21}H_{32}O_3$. IR spectrum (Figure 36) exhibited both hydroxyl and α , β -unsaturated ketone absorption maxima at 3396 cm⁻¹ and 1712 cm⁻¹, respectively.

The ¹H NMR spectrum (**Figures 37** and **38**) showed the presence of two tertiary methyls ($\delta_{\rm H}$ 1.01, *s*, Me-18 and 1.05, *s*, Me-19) and one deshielded vinylic methyl ($\delta_{\rm H}$ 1.84, *d*, *J* = 7.5 Hz, Me-21). In addition, there was one olefinic proton quartet ($\delta_{\rm H}$ 6.48, *q*, *J* = 7.5 Hz), suggesting that this olefinic proton was coupled with the vinylic methyl.

The ¹³C APT spectrum (**Figure 39**) of this compound showed three methyl groups (δ_c 17.6, 14.4 and 13.1), two olefinic carbons (δ_c 147.9 and 129.9), two oxygenated methine carbons (δ_c 72.3 and 70.0) and one ketonic carbony (δ_c 206.5).

All these NMR spectral data, together with the detailed analysis of 2D-NMR (¹H-¹H COSY, HMQC and HMBC) (**Figures 40-45**) allowed the assignment for this compound to be a pregnane steroid. The signals at $\delta_{\rm H}$ 3.66 (*ddd*, J = 11.3, 4.0, 2.8 Hz, H-3) and 4.03 (*dt*, J = 4.0, 2.8 Hz, H-2), were assigned to a pair of adjacent axial and equatorial carbinolic methine protons, and each of which was further coupled with a methylene group.

The ketone group was located at C-16 as assigned by the HMBC correlations (Figure 43) from the C-16 carbonyl carbon to both H₂-15 ($\delta_{\rm H}$ 2.19/1.98, *m*) and H-20 (6.48, *q*, *J*=7.5 Hz). Furthermore, placement of double bond at C-17 was established by the prominent cross peaks from Me-21 (1.84, *d*, *J* = 7.5 Hz) to C-13 ($\delta_{\rm C}$ 17.6) and C-16 ($\delta_{\rm C}$ 206.5), in the HMBC spectrum (Figures 44 and 45).

Finally, from a detailed comparison of the NMR spectral data (**Table 8**) of CAF2 with those already reported (Inada *et al.*, 1997a), the structure of this compound was established as 2β , 3β -dihydroxy- 5α -pregn-17(20)-(*E*)-en-16-one.

2β,3β-dihydroxy-5α-pregn-17(20)-(E)-en-16-one

Table 8. Comparison of the NMR spectral data of 2β,3β-dihydroxy-5α-pregn-17(20)-(*E*)-en-16-one and compound CAF2 (CDCl₃, 500 MHz)

Position	CAF2		2β,3β-Dihydroxy-5α-pregn-	-17(20)-(<i>E</i>)-
	10000		en-16-one*	
	¹ H (mult., <mark>J</mark> in Hz)	¹³ C (mult.)	¹ H	¹³ C
1	2.10/1.14 (each <i>m</i>)	42.7 (<i>t</i>)		42.8
2	4.03 (<i>dt</i> , 4.0, 2.8)	70.0 (<i>d</i>)	4.04 (<i>dt</i> , 4.0, 2.8)	70.1
3	3.66 (<i>ddd</i> , 11.3, 4.0, 2.8)	72.3 (d)	3.66 (<i>ddd</i> , 11.3, 4.0, 2.8)	72.3
4	1.69/1.38 (each <i>m</i>)	32.4 (<i>t</i>)		32.4
5	1.17 (<i>tt</i> , 11.4, 2.6)	45.2 (<i>d</i>)	1.17 (<i>tt</i> , 11.7, 2.8)	45.3
6	1.35 (<i>m</i>)	28.0 (<i>t</i>)		28.1
7	1.62 (<i>m</i>)	31.8 <i>(t)</i>	6	31.9
8	1.50 (<i>m</i>)	33.5 (<i>d</i>)	A	33.6
9	0.80 (<i>m</i>)	54.9 (<i>d</i>)	12112	55.0
10		35.4 (s)		35.5
11	1.71 (<i>m</i>)	21.0 (<i>t</i>)	าาทยาล	21.1
12	2.30 (<i>m</i>)	36.3 (<i>t</i>)		36.4
13		43.4 (s)		43.5
14	1.42 (<i>m</i>)	49.9 (<i>d</i>)		50.0

Position	CAF2		2β,3β-Dihydroxy-5α-pregn-17(20)-(<i>E</i>)-	
			en-16-one*	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	Η	¹³ C
15	2.19/1.98	37.9 (<i>t</i>)	1.98 (<i>dd</i> , 16.9, 14.1, H-15a)	37.9
	(each m)		2.19 (<i>dd</i> , 16.9, 6.9, H-15b)	
16		206.5 (s)		206.4
17		147.9 (s)		148.0
18	1.01 (s)	17.6 (q)	1.01 (s)	17.7
19	1.05 (s)	14.4 (q)	1.06 (s)	14.5
20	6.48 (q, 7.5)	129.0 (d)	6.49 (q, 7.7)	129.0
21	1.84 (<i>d</i> , 7.5)	13.1 (q)	1.84 (<i>d</i> , 7.7)	13.1

Table 8. Comparison of the NMR spectral data of 2β , 3β -dihydroxy- 5α -pregn-17(20)-(*E*)-en-16-one and compound CAF2 (CDCl₃, 500 MHz) (continued)

* Inada *et al.*, 1997a (in CDCl₃, 400 MHz)

1.7 Identification of Compound CAF3

Compound CAF3 was obtained as white amorphous solid. Its molecular formula was determined by ESI-TOF MS (**Figure 46**) as $C_{21}H_{32}O_3$, from its $[M+H]^+$ ion peak at m/z 333 and the IR absorption bands (**Figure 48**) at 3390 and 1716 cm⁻¹ were suggestive of the presence of hydroxyl and carbonyl groups in this structure.

The ¹H and ¹³C NMR spectra (**Figures 49** and **50**) were closely identical to those of CAF2 with the presence of two tertiary methyl groups, one vinylic methyl, two oxygenated methines and one ketone function. In the ¹H NMR spectrum, however, the chemical shift of the olefinic proton ($\delta_{\rm H}$ 5.67, q, 7.3 Hz) of this compound significantly differed from that of CAF2.

The data above suggested that the two compounds are the Z/E isomers of the side chain moiety. The Z configuration of this compound was established based on the appearance of the olefinic proton signal at higher field ($\delta_{\rm H}$ 5.67, q, 7.3, H-20) compared with CAF2 due to the orientation away from the ketonic carbonyl ($\delta_{\rm c}$ 194.5).

Finally, from a detailed comparison of the NMR spectral data (**Table 9**) of CAF3 with previously reported data (Inada *et al.*, 1997a), confirmed the structure of this compound as 2β , 3β -dihydroxy- 5α -pregn-17(20)-(Z)-en-16-one.

The occurrence of similar pregnane steroids to the ones isolated in this study is quite rare in the plant kingdom, and such compounds have only been isolated from three species in the Meliaceae family [*Melia volkensii* (Roger, Zeng and McLaughlin, 1998), *Aglaia grandis* (Inada *et al*, 1997) and *Aglaia ponapensis* (Angela *et al.*, 2007)]

2β,3β-dihydroxy-5α-pregn-17(20)-(Z)-en-16-one

Position	CAF3		2β,3β-Dihydroxy-5α-pregn-17(20	
			(Z)-en-16-one*	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H	¹³ C
1		42.1 (<i>t</i>)		42.9
2	4.02 (<i>dt</i> , 3.8, 2.6)	70.0 (<i>d</i>)	4.04 (<i>dt</i> , 4.0, 2.8)	70.1
3	3.62 (<i>ddd</i> , 11.8, 3.8, 2.5)	72.3 (<i>d</i>)	3.65 (<i>ddd</i> , 11.5, 4.0, 2.7)	72.3
4		32.4 (<i>t</i>)		32.5
5	1.17 (<i>tt</i> , 11.5 , 2.6)	45.3 (<i>d</i>)	1.17 (<i>tt</i> , 11.9 , 2.9)	45.4
6		28.0 (<i>t</i>)		28.1
7		31.8 (<i>t</i>)		31.9
8		33.8 (<i>d</i>)		34.0
9		55.2 (<i>d</i>)		55.2
10		35.4 (s)		35.6
11	(12)	20.7 (<i>t</i>)		21.0
12		35.7 (<i>t</i>)		35.8
13	Sec.	42.8 (s)	20	43.4
14		49.4 (<i>d</i>)	En T	49.5
15	2.00/2.16	39.4 (<i>t</i>)	2.00 (<i>dd</i> , 17.3, 13.9, H-15a)	39.5
	(each m)		2.18 (<i>dd</i> , 17.3, 7.1, H-15b)	
16	สกาย	194.5 (s)	เรการ	208.7
17	NUIION	147.5 (s)		148.4
18	0.88 (s)	19.6 (q)	0.91 (s)	19.7
19	1.03 (s)	14.4 (q)	1.05 (s)	14.5
20	5.67 (q, 7.3)	129.9 (<i>d</i>)	5.69 (q, 7.3)	130.0
21	2.05 (<i>d</i> , 7.3)	13.2 (q)	2.07 (<i>d</i> , 7.3)	14.1

Table 9. Comparison of the NMR spectral data of 2β,3β-dihydroxy-5α-pregn-17(20)-(*Z*)-en-16-one and compound CAF3 (CDCl₃, 500 MHz)

* Inada et al, 1997a (in CDCl₃, 400 MHz)

1.8 Identification of Compound CAF4

Compound CAF4 was obtained as colorless needle crystals. Its molecular formula was determined by ESI-TOFMS (**Figure 51**) as $C_{20}H_{22}N_2O_2$, from its $[M+H]^+$ ion peak at m/z 323. The prominent and broad maxima at 272 nm in the UV spectrum (**Figure 52**) as well as the typical IR absorption bands (**Figure 53**) at 3316-3427 cm⁻¹ (NH), 1620-1634 cm⁻¹ (>N-C=O) and 1533 cm⁻¹ (C=C), showed that this compound belongs to the group of bisamides characteristic for *Aglaia* species (Greger *et al.*, 2001). In addition, the proton signals at $\delta_H 8.13$ and 8.48 in the ¹H NMR spectrum (**Figure 54**) as well as the signals resonated at δ_C 164.9 and 166.2 in ¹³C NMR spectrum (**Figures 55** and **56**) further confirmed the presence of two amide functions.

Previous phytochemical investigation of a number of Aglaia species (Brader *et al.*, 1998; Greger *et al.*, 2000; Seger *et al.*, 2002) revealed that the cinnamic acid derived bisamides consist of two acid moieties linked with the diamine part (Brader *et al.*, 1998). The occurrence of a pair of doublets at $\delta_{\rm H}$ 7.42 (H-3'') and 6.63 (H-2'') and ten aromatic protons in the region $\delta_{\rm H}$ 7.35-7.84 together with two carbonyl carbons at $\delta_{\rm C}$ 164.9 and 166.2 suggested the two acid moieties in this molecule would be a cinnamic and a benzoic acid. The large coupling constant of 15.8 Hz between the pair of doublets at $\delta_{\rm H}$ 7.42 and 6.63 suggested the *trans* double bond.

The analysis of the ¹H and ¹³C APT spectral data indicated the signals of diamine part as including four methylene protons in the region $\delta_{\rm H}$ 1.43-1.64 and four other deshielded methylene protons as two double doublets at $\delta_{\rm H}$ 3.21 (*dd*, *J*=12.5, 6.6 Hz, H₂-2') and 3.28 (*dd*, *J*=12.5, 6.6 Hz, H₂-5')

Further comparison of the ¹H and ¹³C spectral data (**Table 10**) to previous work (Saifah *et al.*, 1993), identified compound CAF4 as pyramidatine.

A putrescine-type amide, pyramidatine, was previously isolated from a number of *Aglaia* species (see **Table 1**). Evaluation of the cytotoxic potential of this compound against eleven human cancer cell lines has been performed by Saifah *et al* (1993).

pyramidatine

Position	CAF4	Salar .	Pyramidatine*	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H	¹³ C
1		166.2 (s)		166.2
2		135.1 (s)		134.7
3,7	7.84 (<i>dd</i> , 8.3, 1.6)	127.3 (<i>d</i>)	7.84 (<i>dd</i> , 8.3, 1.6)	127.2
4,6	7.44 (<i>dd</i> , 8.3, 8.3)	128.4 (<i>d</i>)	7.44 (<i>dd</i> , 8.3, 8.3)	128.3
5	7.35-7.60 (<i>m</i>)	131.1 (<i>d</i>)	7.48 (m)	131.0
1'-NH	8.13 (br t)		8.13 (<i>dd</i> , 6.6, 6.6)	
2'	3.23 (<i>dd</i> , 12.5, 6.6)	38.5 (<i>t</i>)	3.21 (<i>dd</i> , 12.5, 6.6)	38.5
3'	1.43-1.64 (<i>m</i>)	26.8 (<i>t</i>)	1.43-1.58 (m)	26.8
4′	1.50-1.60(m)	26.8 (<i>t</i>)	1.50-1.64 (<i>m</i>)	26.8
5'	3.25 (<i>dd</i> , 12. <mark>5,</mark> 6.6)	38.5 (<i>t</i>)	3.28 (<i>dd</i> , 12.5, 6.6)	38.5
6'-NH	8.48 (br t)	6 ((1))))	8.48 (<i>dd</i> , 6.6, 6.6)	
1 ''	5. S. S.	164.9 (s)		164.9
2''	6.63 (<i>d</i> , 15.8)	122.3 (<i>d</i>)	6.63 (<i>d</i> , 15.8)	122.3
3''	7.42 (<i>d</i> , 15.8)	138.5 (<i>d</i>)	7.42 (<i>d</i> , 15.8)	138.5
4''		134.9 (s)		134.9
5'',9''	7.35-7.60	127.6 (<i>d</i>)	7.54 (<i>dd</i> , 8.0, 1.6)	127.5
6′′,8′′	7.35-7.60	129.1 (<i>d</i>)	7.39 (<i>dd</i> , 8.0, 8.0)	128.9
7''	7.35-7.60	129.5 (<i>d</i>)	7.35 (<i>m</i>)	129.4

Table 10. Comparison of the NMR spectral data of pyramidatine and compound CAF4 (DMSO- d_{δ} , 400MHz)

* Saifah *et al.*, 1993 (in DMSO- d_{δ} , 300 MHz)

1.9 Structure Elucidation of Compound CAF5

Compound CAF5 was obtained as white amorphous powder. The HRESI-TOFMS (**Figure** 57) showed $[M+Na]^+$ peaks at m/z = 675.2678 matching a molecular formula of $C_{38}H_{40}N_2O_8$ and the IR (**Figure 59**) absorptions indicated the presence of hydroxyl at 3479 cm⁻¹ and amide functions at 1620 and 1633 cm⁻¹.

The ¹³C NMR spectrum (**Figure 61**) showed 38 carbons including signals for three methine carbons (δ_c 61.6, 61.7 and 78.7 ppm), four methylene carbons (δ_c 26.0, 26.5, 39.0 and 39.4 ppm), ten methine carbons of two mono-substituted aromatic rings, four methine carbons of a para-substituted aromatic ring, two mthine carbons of a fourfold substituted aromatic ring and the remaining resonances of twelve quaternary carbons, two of which resonated at δ_c 167.6 and 173.3 ppm were amide carbons.

The ¹H-NMR (**Figure 60**) spectrum indicated the presence of characteristic benzene ring signals, including ten aromatic proton signals of two mono-substituted rings at $\delta_{\rm H}$ 6.98-7.15 (5H) and 7.45-7.78 (5H), four aromatic proton signals at $\delta_{\rm H}$ 6.89 (2H, *ps d*) and 7.74 (2H, *ps d*) for a parasubstituted ring and meta-coupled proton signals at $\delta_{\rm H}$ 5.77 (*d*, *J* = 2.3) and 6.04 (*d*, *J* = 2.3) and resonances for three methoxy groups at $\delta_{\rm H}$ 3.08 (*s*, 6-OMe), 3.71 (*s*, 8-OMe) and 3.77 (*s*, 4'-OMe). Furthermore, three methine proton signals at $\delta_{\rm H}$ 3.91 (*d*, *J* = 8.6 Hz, H-3), 4.12 (*d*, *J* = 8.6 Hz, H-4) and 4.90 (*d*, *J* = 4.8 Hz, H-10) were typical of a cyclopenta[*bc*]benzopyran skeleton (Proksch *et al.*, 2001).

The remaining amide proton signals at $\delta_{\rm H}$ 6.79 (*br t*, *J* = 5.5, NH-12) and 6.31 (*br t*, *J* = 5.5, NH-17) and four methylene proton signals at $\delta_{\rm H}$ 2.90/2.98 (each *m*, H₂-13), 1.14 (2H, *m*, H₂-14), 1.20 (2H, *m*, H₂-15) and 3.23 (2H, *m*, H₂-16) showed correlations in the COSY spectrum (**Figures 62** and **63**), suggesting the presence of 1,4-butanebisamide chain. In the HMBC spectrum (**Figure 64**), a cross peak was observed between signals at $\delta_{\rm H}$ 7.78 (2H, *ps d*, H-20, 24) and $\delta_{\rm C}$ 167.6 (C-18), indicated that one of the mono-substituted benzeng rings is connected to this 1,4-butanebisamide chain. Further HMBC (**Figures 65-69**) correlations from H-3 ($\delta_{\rm H}$ 3.91, *d*, 8.6 Hz) to C-2 ($\delta_{\rm C}$ 86.8), C-4 ($\delta_{\rm C}$ 61.6), C-11 ($\delta_{\rm C}$ 173.3), C-1'' ($\delta_{\rm C}$ 136.7) and from H-4 ($\delta_{\rm H}$ 4.12, *d*, 8.6 Hz) to C-3 ($\delta_{\rm C}$ 61.7), C-5 ($\delta_{\rm C}$ 83.2), C-5a ($\delta_{\rm C}$ 106.0), C-11 ($\delta_{\rm C}$ 173.3), C-1'' ($\delta_{\rm C}$ 136.7), established the connectivity of the benzoyl-1,4-butanebisamide moiety and the second monosubstituted benzeng ring to C-4 ($\delta_{\rm C}$ 61.6) and C-3 ($\delta_{\rm C}$ 61.7), respectively.

All these data corresponded to cyclopenta[bc]benzopyran flavagline with a benzoyl-1,4butaneamine moiety linked to the flavagline skeleton by an amide function. The benzoyl-1,4butanebisamide structure was known from the pyramidaglains A and B and the bisamide pyramidatine.

The ¹H and ¹³C NMR (**Table 11**) data of CAF5 were partially almost identical with those of pyramidaglain A (Puripattanavong *et al.*, 2000). The only difference was the lack of the acetylation of the 10-OH function in CAF5. The relative configurations in the hydroxylated methano bridge and the two substituents at positions 3 and 4 could be derived from the characteristic NOESY (**Figure 70**) correlations from H-3 to H-4, NH-12, H-2'/6' and H-2''/6'', from H-4 to H-3, 10-OH, NH-12 and H-2''/6'', from H-10 to H-2'/6' and from 10-OH to H-4. The most important NOESY correlations was between 10-OH and H-4 because it proved directly the relative configurations at C-3, C-4 and C-10. Since the resonances for 10-OH and H-10 were accidentally very close at room temperature ($\delta_{\rm H}$ 4.88 and 4.90), the NOESY spectrum (**Figure 70**) was recorded also at lower temperatures. At 278 K the broad doublet of 10-OH shifted to 5.25 ppm and the cross peak between 10-OH and H-4 allowed a clear decision. The structure of CAF5 corresponded to the acetylated derivative of pyramidaglain A (Puripattanavong *et al.*, 2000) and was therefore designated as desacetylpyramidaglain A.

desacetylpyramidaglain A

จุฬาลงกรณ์มหาวิทยาลัย

position	n CAF5				
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	NOESY	
2		86.8 (s)	12.		
3	3.91 (<i>d</i> , 8.6)	61.7 (<i>d</i>)	C-2, C-4, C-11, C-1''	H-4, NH-12, H-2'/6', H-2''/6''	
4	4.12 (<i>d</i> , 8.6)	61.6 (<i>d</i>)	C-3, C-5, C-5a, C-11, C-1''	H-3, 10-OH, H-2 ^{''} /6 ^{''}	
5		83.2 (s)			
5a		106.0 (s)			
6		158.8 (s)			
7	5.77 (<i>d</i> , 2.3)	92.8 (d)	C-5a, C-8		
8		161.0 (s)			
9	6.04 (<i>d</i> , 2.3)	93.7 (<i>d</i>)	C-5a, C-7, C-8		
9a		152.8 (s)	177.4		
10	4.90 (<i>d</i> , 4.8)	78.7 (<i>d</i>)	C-2, C-3, C-4, C-5a	H-4, H-2"/6"	
11	0	173.3 (s)			
NH-12	6.79 (br t, 5.5)		C-11		
13	2.98, 2.90 (each m)	39.0 (<i>t</i>)	C-15, C-16		
14	1.14 (<i>m</i>)	26.0 (<i>t</i>)	C-13, C-15, C-16		
15	1.20 (<i>m</i>)	26.5 (<i>t</i>)	C-16		
16	3.23 (m)	39.4 (<i>t</i>)	C-13, C-14		
NH-17	6.31 (br t, 5.5)		C-18		
18	การ	167.6 (s)	งงาวิจาย	121	
19		134.5 (s)		1612	
20,24	7.78 (ps d)	126.9 (<i>d</i>)	C-18, C-20/24, C-22	NH-17	
21,23	7.45 (ps t)	128.6 (<i>d</i>)	C-19, C-20/24, C-22		
22	7.51 (<i>ps t</i>)	131.4 (<i>d</i>)	C-20/24, C-21/23		

 Table 11. NMR spectral data of CAF5 (CDCl₃, 500 MHz)

position	CAF5			
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	NOESY
1'		130.3 (s)		
2′,6′	7.74 (ps d)	127.7 (<i>d</i>)	C-2, C-1', C-4'	
3',5'	6.89 (ps d)	113.7 (<i>d</i>)	C-1', C-2', C-4', C-6'	4'-OMe
4 ′		159.6 (s)		
1 ''		136.7 (s)		
2′′,6′′	6.98 (m)	128.5 (d)	C-3, C-1",C-4"	NH-12
3′′,5′′	7.15 (<i>m</i>)	127.7 (<i>d</i>)	C-1", C-2"/6"	
4 ''	7.15 (<i>m</i>)	127.1 (<i>d</i>)	C-1'', C-2''/6''	
5-OH	5.42 (s)	Sacal	C-5, C-5a, C-10	
10-OH	4.88 (br d, 4.8)		C-2	H-4
6-OMe	3.08 (s)	55.7 (q)	C-6	
8-OMe	3.71 (s)	55.4 (q)	C-8	
4'-OMe	3.77 (<i>s</i>)	55.3 (q)	C-4'	H-3'/5'

Table 11. NMR spectral data of CAF5 (CDCl₃, 500 MHz) (continued)

1.10 Structure Elucidation of Compound CAF6

Compound CAF6 was obtained as white amorphous powder. The HRESI-TOF (Figure 71) mass spectrum exhibited $[M+Na]^+$ ion peak at m/z 675.2678, suggesting the molecular formula $C_{38}H_{40}N_2O_8$. The UV spectrum showed absorption maxima at 208 (Figure 72). The IR spectrum (Figure 73) exhibited absorption bands for hydroxy and two amide functionalities at 3479, 1620 and 1633 cm¹, respectively.

The ¹H-NMR (**Figure 74**) spectrum indicated the presence of characteristic benzene ring signals, including ten aromatic proton signals of two mono-substituted rings at 6.98-7.10 (5H) and 7.42-7.77 (5H), four aromatic proton signals at $\delta_{\rm H}$ 6.86 (2H, *ps d*) and 7.64 (2H, *ps d*) for a para- substituted ring and meta-coupled proton signals at $\delta_{\rm H}$ 6.10 (*d*, *J* = 2.3) and 6.12 (*d*, *J* = 2.3), resonances for three methoxy groups at $\delta_{\rm H}$ 3.86 (*s*, 6-OMe), 3.77 (*s*, 8-OMe) and 3.79 (*s*, 4'-OMe), three methine proton signals at $\delta_{\rm H}$ 4.67 (*d*, *J* = 6.0 Hz, H-3), 3.44 (*d*, *J* = 6.0 Hz, H-4) and 4.28 (*d*, *J* = 9.5 Hz, H-10), two amide proton signals at $\delta_{\rm H}$ 6.49 (*br t*, *J* = 5.5, NH-12) and 6.52 (*br t*, *J* = 5.5, NH-17) and four methylene proton signals at $\delta_{\rm H}$ 3.31/3.48 (each *m*, H₂-13) and 1.60-3.50 (H₂-14- H₂-16).

The ¹³C NMR spectrum (**Figure 75**) showed 38 carbons including signals for three methine carbons at δ_c 55.9 (C-3), 65.6 (C-4) and 82.6 (C-10), four methylene carbons at δ_c 39.3 (C-13), 26.3 (C-14), 26.9 (C-15) and 39.7 (C-16), two amide carbons at δ_c 173.8 (C-11) and 1167.7 (C-18), ten methine carbons of two mono-substituted aromatic rings, four methine carbons of a para-substituted aromatic ring, two mthine carbons of a fourfold substituted aromatic ring and the remaining resonances of ten quaternary carbons (see **Table 12**).

The ¹H and ¹³C NMR (**Figures 74-75** and **Table 12**) data of compounds CAF5 and CAF6 were comparable, suggesting that compound CAF6 also possesses the same carbon skeleton of cyclopenta[*bc*]benzopyran bearing benzoyl-1,4-butanebisamide moiety in the side chain bisamide.

The analysis of 2D-NMR (¹H-¹H COSY, HMQC and HMBC) (**Figures 76-84**) was further confirmed this compound to be a stereoisomer of CAF5. In the HMBC spectrum, the same correlations were also observed for both compounds (see **Table 12**), indicating in CAF6 the same connectivity of the diamide moiety and unsubstituted phenyl ring, as determined for CAF5. This compound was characterised by H-3 β , H-4 α , and 10-OH pointing towards positions 3 and 4. In the NOESY (**Figure 85**) spectrum, crosspeaks from H-3 to H-4, 10-OH, H-2'/6' and H-2''/6''; from H-4 to H-3, NH-12 and H-2''/6''; from

H-10 to 10-OH and 2'/6'; and from 10-OH to H-3 and 5-OH were typical of the cyclopenta[b]benzofuran system. The stereochemistry followed immediately from the most informative NOESY correlation between H-3 and 10-OH. The compound was designated as desacetylpyramidaglain D.

According to previous studies on other cyclopenta[*bc*]benzopyran-type flavaglines, the configuration at positions 3 and 4 could be also determined from the analysis of ${}^{3}J$ coupling constants of these positions. The ${}^{3}J_{(H-3, H-4)}$ of 5-6 Hz is compatible with the H-3 β , H-4 α configuration, while the vicinal coupling constant of 9-10 Hz is compatible with the H-3 α , H-4 β configuration (Proksch *et al.*, 2001; Kim *et al.*, 2006). In accordance with previous finding, the vicinal coupling constant values between H-3 and H-4 were 6.0 and 8.6 Hz, indicating H-3 β , H-4 α and H-3 α , H-4 β in compounds CAF6 and CAF5, respectively.

desacetylpyramidaglain D

position	CAF6			
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	NOESY
2		89.9 (s)		
3	4.67 (<i>d</i> , 6.0)	55.9 (d)	C-2, C-4, C-11,	Н-4, 10-ОН,
			C-1", C-2"/6"	H-2 [′] /6′, H-2 ^{′′} /6′′
4	3.44 (<i>d</i> , 6.0)	65.6 (<i>d</i>)	C-3, C-5, C-5a, C-11,	H-3, NH-12, H-2"/6"
			C-1"	
5		79.6 (s)		
5a		110.5 (s)		
6		156.3 (s)		
7	6.12 (<i>d</i> , 2.3)	92.5 (<i>d</i>)	C-5a, C-9	
8		160.9 (s)		
9	6.10 (<i>d</i> , 2.3)	93.9 (<i>d</i>)	C-5a, C-7	
9a		153.8 (s)	2000	
10	4.28 (<i>d</i> , 9.5)	82.6 (<i>d</i>)	C-5a, C-2, C-3, C-4	10-OH, H-2″/6″
11		173.8 (s)		
NH-12	6.49* (br t, 5.5)		C-13	
13	3.31/3.48 (each m)	39.3 (<i>t</i>)		
14	1.60-1.70 (<i>m</i>)	26.3 (<i>t</i>)		
15	1.60-1.70 (m)	26.9 (<i>t</i>)		
16	3.44-3.50 (<i>m</i>)	39.7 (<i>t</i>)	แปรกา	5
NH-17	6.52* (br t, 5.5)		C-16	0
18	00000	167.7 (s)		
19		134.4 (s)	NIJNE	J IN D
20,24	7.77 (ps d)	126.9 (<i>d</i>)	C-20/24, C-22	NH-17
21,23	7.42 (ps t)	128.6 (<i>d</i>)	C-19, C-21/23	
22	7.49 (ps t)	131.5 (<i>d</i>)	C-20/24	

 Table 12. NMR spectral data of CAF6 (CDCl₃, 500 MHz)

position	CAF6			
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	NOESY
1'		129.8 (s)	1/2	
2',6'	7.64 (ps d)	128.6 (<i>d</i>)	C-2'/6'	
3',5'	6.86 (ps d)	113.1 (<i>d</i>)	C-1', C-2'/6', C-4'	4'-OMe
4'		159.0 (s)		
1''		137.5 (s)		
2′′,6′′	6.89 (<i>m</i>)	129.2 (<i>d</i>)	C-1", C-2"/6", C-4"	NH-12
3′′,5′′	7.10 (<i>m</i>)	128.0 (<i>d</i>)	C-1", C-2"/6"	4'-OMe
4''	7.10 (<i>m</i>)	127.0 (<i>d</i>)	C-1", C-2"/6"	
5-OH	5.7 <mark>9</mark> (s)	is and a l		
10-OH	5.96 (d, 9.5)	1004602010		н-3, 5-ОН
6-OMe	3.86 (s)	56.2 (q)	C-6	
8-OMe	3.77 (s)	55.5 (q)	C-8	
4'-OMe	3.79 (s)	55.2 (q)	C-4'	H-3 ['] /5 [']

Table 12. NMR spectral data of CAF6 (CDCl₃, 500 MHz) (continued)

*Assignments are interchangeable in the same column.

1.11 Structure Elucidation of Compound CAF7

Compound CAF7 was obtained as white amorphous powder. The molecular formula of $C_{38}H_{40}N_2O_8$ was established by $[M+Na]^+$ peaks at m/z = 675.2684 in the HRESI-TOFMS (**Figure 86**). The IR (**Figure 87**) absorption bands at 3479 cm⁻¹, 1620 and 1633 cm⁻¹ indicated the presence of hydroxyl and two amide functions in this molecule, respectively.

Based on the comparison of the ¹H and ¹³C NMR (**Figures 88-89** and **Table 13**) data of CAF7 with those of CAF5 together with the analysis of 2D-NMR (¹H-¹H COSY, HMQC and HMBC) (**Figures 90-97**) data indicated that CAF7 was also possessed the benzoyl-1,4-butaneamine moiety linked to the flavagline skeleton by an amide function. NOESY (**Figure 98**) correlations from H-3 to H-4, NH-12, H-2'/6' and H-2''/6''; and from H-4 to H-3, H-10 and H-2''/6'', and the ³J (H-3, H-4) coupling constant (8.9 Hz) revealed that CAF7 was also have the same relative configuration at positions 3 and 4 as determined for compound CAF5. However, the lack of any NOE interactions between H-4 and H-10 in CAF7 suggested this compound is the C-10 epimer of CAF5. The most important cross peak for the position of the methano bridge 10-OH relative to the substituents at C-3 and C-4 was the strong cross peak between H-4 and H-10. The chemical shift of the OH group was at remarkable high field which was probably due to the ring current effect of the close aromatic ring 5a-9a. A model showed that the proton of the 10-OH group was situated above this ring. The compound was named desacetylpyramidaglain C.

desacetylpyramidaglain C

position	n CAF7			
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	NOESY
2		85.6 (s)		
3	3.22 (<i>d</i> , 8.9)	59.0 (<i>d</i>)	C-2, C-4, C-10, C-11,	H-4, NH-12, H-2 ['] /6 ['] ,
			C-1"	H-2″/6″
4	4.00 (<i>d</i> , 8.9)	57.1 (<i>d</i>)	C-3, C-5,C-10, C5a,	Н-3, 10-Н, Н-2″/6″
			C-11, C-1"	
5		81.8 (s)		
5a		104.2 (s)		
6		160.3 (s)		
7	5.86 (<i>d</i> , 2.3)	93.0 (<i>d</i>)	C-5a, C-6, C-9	
8		160.8 (s)		
9	6.25 (<i>d</i> , 2.3)	93.9 (<i>d</i>)	C-5a, C-7, C-8	
9a		152.9 (s)	22.0	
10	4.90 (<i>d</i> , 4.4)	73.5 (<i>d</i>)	C-5, C-5a, C-1'	H-4, H-2″/6″
11		170.0 (s)		
NH-12	5.52 (br t, 5.5)		C-11,C-13	
13	2.62/2.92 (each m)	39.0 <i>(t)</i>	C-14	
14	0.98 (m)	26.2 (<i>t</i>)	C-13, C-15	
15	1.15 (<i>m</i>)	26.3 (<i>t</i>)	C-14, C-16	
16	3.28 (<i>m</i>)	39.4 (<i>t</i>)	C-13,C-14, C-15	5
NH-17	6.46 (br t, 5.5)		C-16, C-18	0.7
18	່າລູງຄະ	167.5 (s)	หว่างเย	าลย
19	161 / 11	134.5 (s)		
20,24	7.81 (ps d)	126.9 (<i>d</i>)	C-19, C-22	NH-17
21,23	7.46 (ps t)	128.6 (<i>d</i>)	C-19, C-20/24, C-22	
22	7.52 (ps t)	131.4 (<i>d</i>)	C-21/23	

 Table 13. NMR spectral data of CAF7 (CDCl₃, 500 MHz)

position	CAF7			
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	NOESY
1'		129.2 (<i>d</i>)		
2' ,6'	7.61 (<i>ps d</i>)	128.0 (<i>d</i>)	C-2, C-3'/5', C-4'	
3',5'	6.89 (ps d)	113.6 (<i>d</i>)	2′ /6′, C-4′	4'-OMe
4'		159.3 (s)		
1''		136.8 (s)		
2′′,6′′	6.92 (<i>m</i>)	128.6 (<i>d</i>)	C-3''/5'', C-4''	NH-12
3'',5''	7.1 <mark>5 (</mark> m)	127.7 (<i>d</i>)	C-1", C-2"/6"	
4''	7.15 (<i>m</i>)	127.0 (<i>d</i>)		
5-OH	5.43 (s)	Sacal	C-10	
10-OH	2.32 (br d, 4.4)			H-4
6-OMe	3.11 (s)	55.5 (q)	C-6	
8-OMe	3.78 (s)*	55.4 (q)	C-8	
4'-OMe	3.77 (s)*	55.4 (q)	H-3'/5', C-4'	H-3'/5'

Table 13. NMR spectral data of CAF7 (CDCl₃, 500 MHz) (continued)

*Assignments are interchangeable in the same column.

2. Structure Determination of Compounds Isolated from Aglaia oligophylla

2.1 Identification of Compound HAO1

Compound HAO1 was obtained as colorless needle crystals. EI mass spectrum (**Figure 99**) indicated the $[M]^+$ of this compound as m/z 442 which corresponded to the molecular formula $C_{30}H_{50}O_2$ and indicated an index of hydrogen deficiency of 6. The presence of ketonic carbonyl group and hydroxyl function were inferred from the IR absorbtion bands at 1704 and 3480 cm⁻¹, respectively (**Figure 100**).

The ¹H spectrum (**Figure 101**) exhibited eight tertiary singlet methyl groups at $\delta_{\rm H}$ 0.94 (Me-18), 1.00 (Me-19), 1.15 (Me-21), 1.69 (Me-26), 1.62 (Me-27), 1.08 (Me-28), 1.03 (Me-29) and 0.88 (Me-30), an olefinic proton at $\delta_{\rm H}$ 5.12 (t, J = 7.1 Hz, H-24), and the deshielded methylene protons at $\delta_{\rm H}$ 2.42 (ddd, J = 13.6, 9.6, 7.6 Hz, H-2ax) and 2.51 (ddd, J = 13.6, 7.8, 4.5 Hz, H-2eq) typical for position 2 in 3-oxo triterpenoid.

The ¹³C APT experiment (Figure 102) displayed 30 carbon signals, corresponding to eight tertiary C-Me groups, ten methylenes, four methines, five quaternary carbons, two sp² carbons at δ_c 124.6 (C-24) and 131.6 (C-25), and one carbonyl function at δ_c 218.8 (C-3).

These data suggested that this compound would be 3-oxodammarane-type triterpene. This hypothesis was supported by the following evidences. HMBC correlations (**Figure 103**) from both signals at Me-28 ($\delta_{\rm H}$ 1.08) and Me-29 ($\delta_{\rm H}$ 1.03) to $\delta_{\rm C}$ 218.8 (C-3) indicated that ketonic carbonyl group was placed in position 3. Placement of hydroxyl group at C-20 ($\delta_{\rm C}$ 75.3), judging from the downfield shift of this position, was further confirmed by the HMBC (**Figure 103**) correlation between the signal of Me-21 ($\delta_{\rm H}$ 1.15, *s*) and this deshielded quaternary carbon of position 20. An olefinic proton resonated at $\delta_{\rm H}$ 5.12 (*t*, *J* = 7.1 Hz) showed HMBC (**Figure 103**) cross peaks to sp² quaternary carbon at $\delta_{\rm C}$ 131.6 (C-25) and both Me-26 ($\delta_{\rm C}$ 25.7) and Me-27 ($\delta_{\rm C}$ 17.7), clearly indicating the location of this olefinic proton as position 24.

HAO1 was identified as dipterocarpol based on the above spectral evidence and by comparison of the ¹³C NMR (**Table 14**) with reported data (Tori *et al.*, 1988).

Dipterocarpol was previously reported to be a constituent of various *Dipterocarpus* species (Cascon and Brown, 1972). Although there are also a number of dammarane triterpenes in the genus *Aglaia* (see **Table 1**), to our knowledge, this is the first report on the occurrence of dipterocarpol in the genus *Aglaia*.

Table 14. Comparison of the NMF	spectral data of dipterocapol and	d compound HAO1 (CDCl., 400 MHz)
---------------------------------	-----------------------------------	----------------------------------

Position	Compound HAC	01	Dipterocarpol*	
	¹ H (mult., J in Hz)	¹³ C (mult.)	°С	
1	1.92 (m)	39.8 (t)	39.8	
2	2.42 (ddd, 13.6, 9.6, 7.6)	34.0 (t)	34.0	
	2.51 (ddd,13.6, 7.8, 4.5)			
3	A State (Care (Marine)	218.8 (s)	217.6	
4	10-20-201 × 21 × 21 × 21 × 21 × 21 × 21 × 21 ×	47.4 (s)	47.3	
5	1.39 (m)	55.3 (d)	55.3	
6	1.55/1.48 (each m)	19.6 (t)	19.6	
7	1.60/1.30 (each m)	34.5 (t)	34.5	
8		40.2 (s)	40.2	
9	1.42 (m)	50.0 (d)	49.9	
10		36.8 (s)	36.7	
11	1.40 (m)	22.0 (t)	22.0	
12	1.88 (m)	27.5 (t)	27.5	
13	1.73 (m)	42.3 (d)	42.3	
14		50.2 (s)	50.2	
15	1.59/1.09 (each m)	31.5 (t)	31.1	
16	1.76/1.51 (each m)	24.7 (t)	24.7	

Position	Compound HAO1 Dipteroo		Dipterocarpol*
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹³ C
17	1.60 (<i>m</i>)	49.8 (d)	49.7
18	0.94 (s)	16.0 (q)	15.9
19	1.00 (s)	15.2 (q)	15.2
20		75.3 (s)	75.1
21	1.15 (s)	25.4 (q)	25.4
22	1.49 (m)	40.4 (<i>t</i>)	40.5
23	2.50 (m)	22.5 (<i>t</i>)	22.5
24	5.12 (<i>t</i> , 7.1)	124.6 (<i>d</i>)	124.7
25	3.40000	131.6 (s)	131.3
26	1.69 (s)	25.7 (q)	25.7
27	1.62 (s)	17.7 (q)	17.6
28	1.08 (s)	26.7 (q)	26.6
29	1.03 (s)	21.0 (q)	21.0
30	0.88 (s)	16.3 (q)	16.2

 Table 14. Comparison of the NMR spectral data of dipterocapol and compound HAO1 (CDCl₃, 400 MHz) (continued)

* Tori *et al.*, 1988 (in CDCl₃, 400 MHz)

2.2 Identification of Compound HAO2

Compound HAO2 was obtained as colorless needle crystals. The EI mass spectrum (**Figure 104**) displayed $[M]^+$ peak at m/z 458, corresponding to the molecular formula $C_{30}H_{50}O_3$. The IR spectrum (**Figure 105**) showed the strong carbonyl absorption at 1705 cm⁻¹, suggesting this structure belongs to the group of keto-triterpenoids.

Both ¹H and ¹³C NMR spectra (**Figures 106** and **107**) showed double signals, indicating this compound as in a mixture state. Analysis of signal integration for the ¹H NMR spectrum of HAO2 indicated 4:1 ratio of the two components of this mixture.

Based on the ¹³C APT and HSQC spectra (**Figures 108** and **109**), it was concluded that each triterpenoid possessed eight tertiary methyl groups, ten methylenes, five methines, six quaternary carbons and one carbonyl group. Two of six quaternary carbons (for the major component: δ_c 86.3, C-20 and 71.4, C-25; for the minor component: δ_c 86.5, C-20 and 70.2, C-25) and one of five methines (for the major component: δ_c 83.3, C-24; for the minor component: δ_c 86.4, C-24) were carrying oxygen function, judging from the downfield shift of these carbon signals.

The ¹³C NMR spectrum (**Table 15**) of the major component, however, differed significantly from the minor one only in the chemical shifts of the side chain moiety, suggesting that they are C-24epimers (epimers are indicated by the suffices **A** and **B**). The signals at δ_c 86.3 (C-20) and 83.3 (C-24) of the major component (HAO2A) and δ_c 86.5 (C-20) and 86.4 (C-24) of the minor component (HAO2B) were observed to be typical of C-20 and C-24 in the 20,24-epoxy-25-dammaranes reported earlier (Aalbersberge and singe, 1991). The mass spectrum also exhibited the fragment ion characteristic of 20,24-epoxy function at m/z 143 (C₈H₁₅O₂).

The ¹H NMR spectrum (**Figure 106**) from the major component (HAO2A) of this mixture exhibited the signals of eight tertiary methyl groups ($\delta_{\rm H}$ 0.88, 0.93, 0.99, 1.03, 1.07, 1.12, 1.13 and 1.21; Me-18, Me-30, Me-19, Me-29, Me-28, Me-27, Me-21 and Me-26, respectively) and of oxymethine proton at $\delta_{\rm H}$ 3.73 (t, J = 7.3 Hz), typical for the H-24R in 20,24-epoxy chain at C-17 as described by Roux *et al* (1998). HSQC (**Figure 110**) correlation between the signal at $\delta_{\rm H}$ 3.73 (t, J = 7.3 Hz, H-24) and the signal at $\delta_{\rm c}$ 83.3 (C-24) was also supported the location of this oxymethine proton at position 24.

The HMBC (**Figures 111** and **112**) correlations from Me-21 ($\delta_{\rm H}$ 1.13) to C-17 ($\delta_{\rm C}$ 49.5) and C-20 ($\delta_{\rm C}$ 86.3) and from H-24 (3.73, *t*, *J* = 7.3 Hz) to C-20 ($\delta_{\rm C}$ 86.3), C-25 ($\delta_{\rm C}$ 71.4), C-26 ($\delta_{\rm C}$ 24.2) and

C-27 ($\delta_{\rm C}$ 27.4), further confirmed the presence of 20,24-epoxy function in the side chain. The assignment of ketonic carbonyl at C-3 was supported by the HMBC (**Figure 111**) correlations from H₂-2 ($\delta_{\rm H}$ 2.44/2.48, *m*), H₃-28 ($\delta_{\rm H}$ 1.03, *s*) and H₃-29 ($\delta_{\rm H}$ 1.07, *s*) to this ketonic carbonyl ($\delta_{\rm C}$ 218.5, C-3)

The ¹H NMR spectrum (**Figure 106**) from the minor component (HAO2B) also exhibited the signals of eight tertiary methyl groups ($\delta_{\rm H}$ 0.88, 0.94, 1.01, 1.03, 1.07, 1.15, 1.11 and 1.19; Me-30, Me-18, Me-19, Me-29, Me-28, Me-26, Me-21 and Me-27, respectively), however, instead of signal typical for H-24*R* isomer ($\delta_{\rm H}$ 3.73, *t*, *J* = 7.3 Hz) in HAO2A, showed an oxymethine proton at $\delta_{\rm H}$ 3.64 (*dd*, *J* = 7.6 Hz, H-24), typical for the H-24*S* isomer in HAO2B (Roux *et al.*, 1998).

The compound was finally identified by comparison of the ¹³C NMR (**Table 15**) spectral data with the reported values (Aalbersberg and Singh, 1991) as a mixture of ocotillone (HAO2A) and cabraleone (HAO2B).

The co-occurrence of ocotillone and cabraleone in the same plant has previously been reported from several species of Meliaceae such as *Cabralea eichleriana* (Rao *et al.*, 1975), *Dysoxylum richii* (Aalbersberg and Singh, 1991) and *Amoora yunnanensis* (Luo *et al.*, 2000). Ocotillone was responsible for cytotoxic activity of an ethanolic extract of *Dysoxylum cauliflorum* Hiern against KB cells, previously reported by Benosman *et al* (1995).

position	ition HAO2A (mult.) Ocotillone (mult.) ³		HAO2B (mult.)	Cabraleone (mult.)*
1	39.9 (<i>t</i>)	39.9 (<i>t</i>)	39.9 (<i>t</i>)	39.9 (<i>t</i>)
2	34.1(<i>t</i>)	34.1 <i>(t)</i>	34.0 (<i>t</i>)	34.1 <i>(t)</i>
3	218.1 (s)	218.1 (s)	218.1 (s)	218.0 (s)
4	47. <mark>4</mark> (s)	47.4 (<i>s</i>)	47.4 (s)	47.4 (s)
5	55.3 (d)	55.4 (<i>d</i>)	55.3 (d)	55.4 (<i>d</i>)
6	19.6 (<i>t</i>)	19.7 (<i>t</i>)	19.6 (<i>t</i>)	19.7 (<i>t</i>)
7	34.6 (<i>t</i>)	34.8 (<i>t</i>)	34.6 (<i>t</i>)	34.6 (<i>t</i>)
8	40.3 (s)	40.3 (s)	40.3 (s)	40.3 (s)
9	50.1 (<i>d</i>)	49.8 (d)	50.1 (<i>d</i>)	49.6 (<i>d</i>)
10	36.8 (s)	36.9 (s)	36.8 (s)	36.9 (s)
11	22.0(t)	22.3 (<i>t</i>)	22.3 (<i>t</i>)	22.1 (<i>t</i>)
12	25.6 (<i>t</i>)	25.8 (<i>t</i>)	25.8 (<i>t</i>)	25.8 (<i>t</i>)
13	43.1 (<i>d</i>)	42.9 (<i>d</i>)	43.0 (<i>d</i>)	43.4 (<i>d</i>)
14	50.0 (s)	50.0 (s)	50.0 (s)	50.0 (s)
15	31.4 (<i>t</i>)	31.4 (<i>t</i>)	31.4 (<i>t</i>)	31.5 <i>(t</i>)
16	27.4 (<i>t</i>)	27.0 (<i>t</i>)	27.1 (<i>t</i>)	27.8 (<i>t</i>)
17	49.5 (<i>d</i>)	50.2 (<i>d</i>)	49.8 (<i>d</i>)	49.8 (<i>d</i>)
18	16.0 (q)	16.1 (q)	16.1 (q)	16.1 (q)
19	15.1 (q)	15.2 (q)	15.1 (q)	15.2 (q)
20	86.3 (s)	86.5 (s)	86.5 (s)	86.5 (s)
22	35.7 (<i>t</i>)	34.6 (<i>t</i>)	34.8 (<i>t</i>)	34.9 (<i>t</i>)
23	26.1 (<i>t</i>)	26.4 (<i>t</i>)	26.3 (<i>t</i>)	27.1 (<i>t</i>)
24	83.3 (<i>d</i>)	83.4 (<i>d</i>)	86.4 (<i>d</i>)	86.4 (<i>d</i>)
25	71.4 (s)	71.4 (s)	70.2 (s)	70.3 (s)
26	24.3 (q)	24.3 (q)	27.2 (q)	26.4 (q)

 Table 15. Comparison of the ¹³C NMR spectral data of ocotillone and cabraleone and compound HAO2 (CDCl₃, 100 MHz)

position	HAO2A (mult.)	Ocotillone (mult.)	HAO2B (mult.)	Cabraleone (mult.)
27	27.4 (q)	27.1 (q)	27.1 (q)	27.2 (q)
28	26.7 (q)	26.8 (q)	27.8 (q)	27.8 (q)
29	21.0 (q)	21.0 (q)	21.0 (q)	21.0 (q)
30	16.3 (q)	16.3 (q)	16.3 (q)	16.3 (q)

 Table 15. Comparison of the ¹³C NMR spectral data of ocotillone and cabraleone and compound HAO2 (CDCl₃, 100 MHz) (continued)

*Aalbersberg and Singh, 1991 (in CDCl₃, 75 MHz)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

2.3 Identification of Compound HAO3

Compound HAO3 was obtained as colorless needle crystals. The molecular formula, $C_{30}H_{52}O_3$, was determined for this compound, even though its EI mass spectrum (**Figure 113**) lack the $[M]^+$ peak and showed peak due to $[M-Me]^+$ at 445. The IR spectruym (**Figure 114**) showed the absorption of hydroxyl group at 3399 cm⁻¹.

Comparison of the ¹³C (Figure 116) spectral data of HAO3 with those of HAO2 and the appearance of the characteristic base peak at m/z 143 in the mass spectrum suggested that the two compounds are based on the same carbon skeleton. However, the carbonyl was missing in this compound and an additional signal at δ_c 78.9 of oxymethine carbon was observed.

The ¹H NMR (**Figure 115**) spectrum showed the presence of eight tertiary methyl groups $(\delta_{\rm H} 0.95, 0.83, 1.11, 1.12, 1.20, 0.97, 0.76 \text{ and } 0.86)$. Two oxymethine protons could be located at positions 3 ($\delta_{\rm C}$ 78.9, $\delta_{\rm H}$ 3.19, dd, J = 11.4, 5.0 Hz) and 24 ($\delta_{\rm C}$ 83.3, $\delta_{\rm H}$ 3.72, t, J = 7.3 Hz), judging from the downfield shifts of the signals of these positions. In the HMBC (**Figure 117**) spectrum, prominent cross peaks from H₂-1 (1.68/0.94, *m*) and both Me-28 and Me-29 to $\delta_{\rm C}$ 78.9 (C-3) and from H₂-22 (1.62/1.17, *m*), H₂-23 (1.86/1.78, *m*) and both Me-26 and Me-27 to $\delta_{\rm C}$ 83.3 (C-24) further confirmed these assignments.

The assignment of the relative configuration of C-24 was based on a NOESY (**Figure 118**) correlation between Me-21 and H-24, suggesting that isopropanol group at C-24 is *trans* to the methyl group at C-20.

Further comparison of the ¹H and ¹³C (**Table 16**) spectral data of this compound with those already reported (Tanaka, Masuda, and Matsunaga, 1993) confirmed the structure of HAO3 as ocotillol-II.

Ocotillol-II has previously been isolated from the stem of *Aglaia elliptica* and was shown to be devoid of cytotoxic activity against human cancer cell lines (Cui *et al.*, 1997). It was also found as a constituent of *Fouquieria splendens* (Warnhoff and Halls, 1965), *Phyllanthus flexuosus* (Tanaka, Masuda, and Matsunaga, 1993) and *Camellia japonica* (Akihisa *et al.*, 2004).

Table 16. Comparison of the NMR spectral data of ocotillol-II and compound HAO3 (CDCl₃, 400 MHz)

Position	Compound HAO3		Ocotillol I	[*
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H	¹³ C
1	1.68/0.94 (each m)	39.05 (<i>t</i>)		39.01
2	1.76/1.58 (each m)	27.42 (<i>t</i>)		27.43
3	3.19 (<i>dd</i> , 11.4, 5.0)	78.94 (s)	3.20 (<i>dd</i> , 11.5, 4.5)	78.95
4		38.96 (s)		38.96
5	0.72 (<i>m</i>)	55.86 (d)		55.85
6	1.54/1.42 (each <i>m</i>)	18.27 (<i>t</i>)		18.30
7	1.52/1.28 (each <i>m</i>)	35.28 (d)		35.29
8	07	40.36 (s)		40.38
9	1.31(<i>m</i>)	50.79 (d)	เริ่การ	50.80
10	NPLIN	37.15 (s)		37.18
11	1.50 (<i>m</i>)	21.55 <i>(t)</i>		21.59
12	1.44 (<i>m</i>)	25.70 (<i>t</i>)	TIVET	25.74
13	1.58 (<i>m</i>)	42.95 (<i>d</i>)		42.97
14		50.04 (s)		50.08
15	1.48/1.09 (each <i>m</i>)	31.44 <i>(t)</i>		31.48

Position	Compound HA	03	Ocotillol II*		
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H	¹³ C	
16	0.96 (m)	27.36 (<i>t</i>)		27.43	
17	1.78 (<i>m</i>)	49.54 (<i>d</i>)		49.54	
18	0.95 (s)	15.43 (q)	0.95 (s)	15.47	
19	0.83 (s)	16.20 (q)	0.84 (s)	16.25	
20		86.40 (s)		86.44	
21	1.11(<i>s</i>)	23.52 (q)	1.12 (s)	23.55	
22	1.62/1.17 (each m)	35.69 (<i>t</i>)		35.67	
23	1.86/1.78 (each <i>m</i>)	26.12 (<i>t</i>)		26.13	
24	3.72 (<i>t</i> , 7.3)	83.30 (<i>d</i>)	3.73 (<i>t</i> , 7.3)	83.31	
25		71.42 (s)		71.43	
26	1.11(s)	24.26 (q)	1.13 (s)	24.26	
27	1.20 (s)	27.46 (q)	1.21 (s)	27.43	
28	0.97 (s)	27.99 (q)	0.97 (s)	28.08	
29	0.76 (s)	15.33 (q)	0.77 (s)	15.34	
30	0.86 (s)	16.45 (q)	0.87 (s)	16.47	

 Table 16. Comparison of the NMR spectral data of ocotillol-II and compound HAO3 (CDCl₃, 400 MHz) (continued)

* Tanaka, Masuda and Matsunaga, 1993 (in CDCl₃, 300 MHz)

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

2.4 Identification of Compound HAO4

Compound HAO4 was obtained as colorless needle crystals. In the mass spectrum (**Figure 119**) the highest detectable peak is at m/z 440, evidently resulting from the loss of 18 units (H₂O) from m/z 458, the presumed molecular ion (C₃₀H₅₀O₃). The IR spectrum (**Figure 120**) displayed absorption bands for hydroxyl (3388 cm⁻¹) and carbonyl functionalities (1705 cm⁻¹).

The ¹H-NMR spectrum (**Figure 121**) showed signals for six tertiary methyl groups ($\delta_{\rm H}$ 0.88, 0.93, 0.99, 1.03, 1.08, and 1.15) and one allyic methyl ($\delta_{\rm H}$ 1.75). Evidence for the existence of an exomethylene function was provided by the presence of two broad singlets at $\delta_{\rm H}$ 4.95/4.84 (H₂-26). In addition, signals representing the methylene protons at C-2 and an oxymethine proton at C-24 were located at $\delta_{\rm H}$ 2.50/2.43 (each *m*, H₂-2) and 4.04 (*m*, H-24), respectively. HSQC spectrum (**Figure 123**) showed that the former methylene protons were correlated with a carbon peak at $\delta_{\rm C}$ 34.1(C-2), while the latter exhibited cross peak with the carbon signal at $\delta_{\rm C}$ 76.4 (C-24).

The ¹³C-MNR (Figure 122) data of HAO4 also exhibited signals due to seven tertiary methyl groups (δ_c 16.0, 15.2, 25.5, 17.7, 26.6, 20.9 and 16.3) two olefinic carbons (δ_c 147.6 and 110.9), an oxygenated methine carbon (δ_c 76.4), an oxygenated quaternary carbon (δ_c 75.5), and one ketonic carbonyl (δ_c 218.1).

The ¹H and ¹³C NMR (**Figures 121** and **122**) spectral data showed to be very similar to those of HAO1 and the observed differences in HAO4 of an isopropenyl moiety (δ_c 147.6, C-25; 110.9, C-26; and 17.7, C-27) in the side chain instead of a terminal isopropylidene moiety in HAO1.

All the signals of HAO4 and their connectivity were established by HMBC, HMQC and ¹H-¹H COSY experiments. The assignment of two hydroxyls at positions 20 (δ_c 75.1) and 24 (δ_c 76.4) was deduced from the downfield shift of these carbon atoms. The HMBC (**Figure 124**) correlations between Me-21 (δ_H 1.15) and C-20 and between Me-27 (δ_H 1.66) and C-24 further confirmed these assignment. Placement of an exomethylene function at C-25 was established by the correlations between δ_H 4.95/4.84 (H₂-26) and C-24 (δ_c 76.4) and between δ_H 1.75(Me-27) and δ_c 147.6 (C-25) and δ_c 110.9 (C-26) in the HMBC spectrum (**Figures 125** and **126**).

Based on these spectral data and comparison with earlier report (Mazinovskaya *et al.*, 1992), compound HAO4 was identified as 20(*S*),24(*S*)-dihydroxydammar-25-en-3-one, previously isolated from *Aglaia rubiginosa* (Weber *et al.*, 2000).

20(S),24(S)-dihydroxydammar-25-en-3-one

 Table 17. Comparison of the NMR spectral data of 20(S),24(S)-dihydroxydammar-25-en-3-one and compound HAO4 (CDCl₃, 400 MHz)

Position	Compound HAO4		20(S),24(S)-Dihydroxydar en-3-one*	mmar-25-
	¹ H (mult., <i>J</i> in Hz)*	¹³ C (mult.)	¹ H	¹³ C
1	1.84/1.38 (each <i>m</i>)	39.8 (<i>t</i>)		40.2
2	2.50 (<i>ddd</i> , 15.7, 9.6, 6.6)	34.1 <i>(t)</i>		34.3
	2.43 (<i>ddd</i> , 15.7, 7.8, 4.3)	2021 ANAS		
3		218.1 (s)		218.6
4	S.A.	47.4 (s)		47.6
5	1.31 (<i>m</i>)	55.3 (d)		55.7
6	1.48/1.42 (each <i>m</i>)	19.6 (<i>t</i>)		19.9
7	1.38/1.26 (each <i>m</i>)	34.5 <i>(t)</i>	A	34.8
8		40.2 (s)	5115	40.6
9	1.82 (<i>m</i>)	49.9 (<i>d</i>)	6	50.5
10	ห้าลงกระ	36.8 (s)	าาทยาล	37.1
11	1.45/1.24 (each <i>m</i>)	21.9 (<i>t</i>)		22.3
12	1.78 (<i>m</i>)	27.4 (<i>t</i>)		27.7
13	1.59 (<i>m</i>)	42.4 (<i>d</i>)		42.8
14		50.2 (s)		50.4

Position	Compound HAO4		20(S),24(S)-Dihydroxydamma	
			en-3-one*	
	¹ H (mult., <i>J</i> in Hz)*	¹³ C (mult.)	¹ H	¹³ C
15	1.42/1.30 (each <i>m</i>)	31.2 <i>(t)</i>		31.4
16	1.4 (<i>m</i>)	24.8 (<i>t</i>)		25.0
17	1.68 (<i>m</i>)	50.0 (<i>d</i>)		50.5
18	0.93 (s)	16.0 (q)	0.94 (s)	16.1
19	0.99 (s)	15.2 (q)	1.00 (s)	15.3
20		75.1 (s)		75.1
21	1.1 <mark>5 (</mark> s)	25.5 (q)	1.15 (s)	25.0
22	1.56(m)	36.5 (<i>t</i>)		37.0
23	1.22 (<i>m</i>)	29.2 (<i>t</i>)		29.4
24	4.04 (<i>m</i>)	76.4 (<i>d</i>)	3.96 (t, 5.2)	76.4
25	AL.	147.6 (s)		147.8
26	4.95/4.84 (each <i>br s</i>)	110.9 (<i>t</i>)	4.96,4.84 (each <i>br s</i>)	110.9
27	1.75 (s)	17.7 (q)	1.74 (s)	17.6
28	1.08 (s)	26.6 (q)	1.08 (s)	26.9
29	1.03 (s)	20.9 (q)	1.04 (s)	21.1
30	0.88 (s)	16.3 (q)	0.89 (s)	16.5

 Table 17. Comparison of the NMR spectral data of 20(S),24(S)-dihydroxydammar-25-en-3-one and compound HAO4 (CDCl₃, 400 MHz) (continued)

* Mazinovskaya et al., 1992 (CDCl₃, 300 MHz)

จุฬาลงกรณ่มหาวิทยาลัย

2.5 Identification of Compound HAO5

Compound HAO5 was obtained as white amorphous solid. Its molecular formula, $C_{26}H_{26}O_6$ was determined from the $[M+H]^+$ peak at m/z 434 (Figure 127). The IR (Figure 129) absorptions suggested the presence of hydroxyl (3500 cm⁻¹) and aromatic (3061, 1610, 1454 cm⁻¹) in the molecule.

The ¹H NMR spectrum (**Figure 130**) of this compound exhibited signals for three aromatic rings, including two *meta*-coupled aromatic protons at $\delta_{\rm H}$ 6.31 (*d*, *J* = 1.9 Hz, H-5) and 6.17 (*d*, *J* = 1.9 Hz, H-7), a characteristic AA'BB' system ($\delta_{\rm H}$ 7.02-7.20, *m*, 2H, H-2'/6' and 6.68, *d*, *J* = 8.9 Hz, 2H, H-3'/5') of a *p*-disubstituted benzene ring and a monosubstituted benzene ring ($\delta_{\rm H}$ 7.05-7.20, *m*, 3H, H-3''/5'' and H-4'', and 7.01, *dd*, *J* = 6.7, 1.3 Hz, 2H, H-2''/6''). The ¹H NMR spectrum further exhibited signals for methylene protons as a pair of geminally coupled multiplets at $\delta_{\rm H}$ 2.75 (*ddd*, *J* =13.9, 13.9, 6.4 Hz, H-2\alpha) and 2.20 (*ddd*, *J* = 13.7, 6.5, 1.2 Hz, H-2\beta), both of with showed vicinal couplings with the signals of methines at $\delta_{\rm H}$ 4.81 (*d*, *J* = 5.5 Hz, H-1) and 4.01 (*dd*, *J* = 14.2, 6.5 Hz, H-3). Thus, the methylene signals at $\delta_{\rm H}$ 2.20 and 2.75 should be connected between the methines.

Consistent with this ¹H NMR spectral data analysis, the ¹³C NMR (Figure 131) and HSQC (Figure 132) spectra of HAO5 also displayed the signals for tetrasubstituted, a disubstituted and a monosubstituted benzene ring, one oxymethine carbon (δ_c 79.1, C-1), and two carbons at δ_c 36.4 (C-2) and 53.2 (C-3) of methylene and methine, respectively, and two characteristic deshielded quaternary carbons at δ_c 103.5 and 94.8 of C-3a and C-8b of the cyclopenta[*b*]benzofuran skeleton (Rivero-Cruz *et al.*, 2004).

The relative configuration of HAO5 was established primarily by analysis of the splitting patterns and the coupling constants (see **Table 18**) between H-1, H-2 α , H-2 β , and H-3 ($J_{1,2}$ ca. 5-7 Hz and $J_{2,3}$ ca. 13-14 Hz) indicated a 1 α , 3 β configuration, as well as a cis-B/C ring junction (Proksch et al., 2001). These relative configurations were confirmed by 2D NOESY (**Figure 133**) experiments, wherein correlations were observed between H-2'/6' and both H-1 α and H-2 α but not between H-2'/6' and H-3 β .

On the basis of the above evidence and comparison with those already reported (Su *et al.*, 2006), the structure of compound HAO5 was characterized as rocaglaol.

The cyclopenta[b]benzofuran flavagline, rocaglaol, which also exists in other species of *Aglaia* (see **Table 1**), show interesting pharmacological properties including cytotoxic (Su *et al.*, 2006) and insecticidal activity (Schneider *et al.*, 2000).

rocaglaol

Fable 18. Comparison of t	the NMR spectral da	ta of rocaglaol and	compound HAO5	(CDCl ₃ , 500 MHz)
---------------------------	---------------------	---------------------	---------------	-------------------------------

Position	Compound HAO5		Rocaglaol*	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H	¹³ C
1	4.81 (<i>d</i> , 5.5)	79.1 (<i>d</i>)	4.81 (<i>d</i> , 6.0)	79.1
2α	2.75 (<i>ddd</i> , 13.9, 13.9, 6.4)	36.4 (<i>t</i>)	2.75 (<i>ddd</i> , 13.8, 13.8, 6.4)	36.4
2β	2.20 (<i>ddd</i> , 13.7, 6.5, 1.2)		2.20 (<i>dd</i> , 13.6, 6.6)	
3	4.01 (<i>dd</i> , 14.2 , 6.5)	53.2 (<i>d</i>)	4.01 (<i>dd</i> , 14.1, 6.6)	53.2
3a	0	103.5 (s)		103.5
4a		161.0 (s)	10 A	161.0
5	6.31 (<i>d</i> , 1.9)	89.4 (<i>d</i>)	6.29 (<i>d</i> , 1.9)	89.4
6		163.9 (s)		163.9
7	6.17 (<i>d</i> , 1.9)	92.4 (<i>d</i>)	6.14 (<i>d</i> , 1.9)	92.5
8	สถาเมา	157.0 (s)	เรการ	157.0
8a		107.7 (s)		107.8
8b	กลงกรร	94.8 (s)	กวิทยาล	94.8
1'	161 / 1 9	126.8 (s)	1910 10	126.8
2', 6'	7.02-7.20 (<i>m</i>)	128.1 (<i>d</i>)	7.05-7.13 (<i>m</i>)	128.1
3', 5'	6.68 (<i>d</i> , 8.9)	112.7 (<i>d</i>)	6.68 (<i>d</i> , 8.9)	112.7
4'		158.6 (<i>d</i>)		158.6

Position	Compound HAO5		Rocaglaol*	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H	¹³ C
1″		138.7 (s)		138.7
2'', 6''	7.01 (<i>dd</i> , 6.7, 1.3)	127.7 (<i>d</i>)	6.98-7.00 (<i>m</i>)	127.7
3'', 5''	7.05-7.20 (<i>m</i>)	128.9 (<i>d</i>)	7.05-7.13 (<i>m</i>)	128.9
4″′	7.05-7.20 (<i>m</i>)	126.2 (<i>d</i>)	7.05-7.13 (<i>m</i>)	126.3
OMe-6	3.84 (<i>s</i>)	55.6 (q)	3.84 (<i>s</i>)	55.7
OMe-8	3.90 (s)	55.7 (q)	3.90 (s)	55.8
OMe-4'	3.71 (<i>s</i>)	55.1 (q)	3.71 (<i>s</i>)	55.1

 Table 18. Comparison of the NMR spectral data of rocaglaol and compound HAO5 (CDCl₃, 500 MHz) (continued)

* Su *et al.*, 2006 (in CDCl₃, 300 MHz)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

2.6 Identification of Compound HAO6

Compound HAO6 was obtained as colorless needle crystals. It has the molecular formula of $C_{18}H_{24}N_2O_2$ as determined by $[M+Na]^+$ peak at m/z = 323 in the ESI-TOF mass spectrum (Figure 134). The UV (Figure 135) spectrum was compatible with that expected for cinnamide derivative $[\lambda_{max}$ (MeOH) 283 nm]. Absorption bands in the infrared (Figure 136) spectrum, characteristic of the amide group, was present at 3291, 1648 and 1535 cm⁻¹. These data suggested that this compound belong to the group of bisamides characteristic for *Aglaia* species. This was further confirmed by the following evidences.

The ¹H spectrum (**Figure 137**) displayed the characteristic lowfield signals at $\delta_{\rm H} 6.8 \ (d, J = 15.5 \text{ Hz}, \text{H-2''})$, 7.6 (d, J = 15.5 Hz, H-3'') and 7.20-7.50 (5H, *m*, aromatic proton) of the cinnamyl moiety. The large coupling constant of 15.5 Hz indicated *trans*-double bond at position 2''. Furthermore, methylene proton at $\delta_{\rm H} 1.40 \ (m, \text{H-3})$, methine proton at $\delta_{\rm H} 1.98 \ (m, \text{H-2})$ and two methyl groups at $\delta_{\rm H} 1.03 \ (d, J = 6.5 \text{ Hz}, \text{Me-2})$ and 0.85 (t, J = 6.5 Hz, Me-3) showed correlations in the COSY spectrum (**Figure 139**), indicating another acid part of this bisamide as isobutyric acid. The remaining methylenes in the region $\delta_{\rm H} 2.02$ -3.68 and one amide proton at $\delta_{\rm H} 5.91 \ (d, J = 9.0 \text{ Hz})$ suggested that the bifuntional amine part would be a cyclic 2-aminopyrrolidine.

The ¹³C spectrum (Figure 138 and Table 19) also exhibited signals which were consistent with the ¹H spectrum, including two amide carbonyl carbons, two olefinic carbons, two methyl groups, four methylenes, six aromatic carbons and two methine carbons. Among two methines one of which appeared at the low field (δ_c 62.50) was assigned for C-2'. This was further confirmed by the HMBC (Figures 140 and 141) correlation of δ_H 6.1 (H-2') to δ_c 175.3 (C-1) of amide carbonyl carbon.

On standing in the CDCl₃, HAO6 underwent partial epimerization at C-2^{\prime}. This was apparent in the ¹³C NMR (**Table 19**) spectrum which exhibited two sets of some of the resonances. The ratio of epimer was about 1:1. The partial racemization at C-2^{\prime} may easily occur *via* a ring opening mechanism of the 2- amino-substituted pyrrolidine ring (acetal-like N-C-N arrangement) as described previously by Brader *et al.* (1998).

Based on these spectral data and comparison with earlier reported data (Shiengthong *et al.*, 1979), HAO6 was identified as a mixture of odorine (HAO6A) and its 2[']-epimer (HAO6B).

The pyrrolidine derivative, odorine, appears to be widely distributed within Aglaia and has

already been reported from *A. argentea* Blume and *A. forbesii* King (Dumontet *et al.*, 1996) as well as from *A. elliptica* Blume (syn. *A. harmsiana* Perkins) (Inada *et al.*, 1995). Furthermore, odorine and its 2'-epimer were found to inhibit the growth of the vinblastine-resistant KB cells by enhancing the anticancer activity of vinblastine (Saifah *et al.*, 1993).

Position	НАОба		HAO6B	Odorine	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹³ C (mult.)	¹ H*	¹³ C**
1	Č.	175.3 (s)	175.4 (s)		175.9
2	1.98 (m)	43.3 (<i>d</i>)	43.3 (<i>d</i>)	71	43.3
3	1.40 (<i>m</i>)	27.1 (<i>t</i>)	27.1 (<i>t</i>)	1.49 (<i>m</i>)	27.1
2'	6.13 (<i>t</i> , 7.5)	62.5 (<i>d</i>)	62.6 (<i>d</i>)	6.12 (<i>m</i>)	62.8
3'	2.22 (m)	34.7 (<i>t</i>)	34.5 <i>(t)</i>	2.00 (<i>m</i>)	34.6
4 ′	2.02 (m)	21.8 (<i>t</i>)	21.7 (<i>t</i>)	2.00 (<i>m</i>)	21.8
5'	3.44/3.68 (each <i>m</i>)	46.0 (<i>t</i>)	46.0 (<i>t</i>)	3.62 (<i>m</i>)	46.1
1''	104 411	165.8 (s)	165.7 (s)		166.2
2''	6.90 (<i>d</i> , 15.5)	142.9 (<i>d</i>)	143.0 (<i>d</i>)	6.94 (<i>d</i> , 16.0)	143.0
3''	7.63 (<i>d</i> , 15.5)	117.9 (<i>d</i>)	117.9 (<i>d</i>)	7.64 (<i>d</i> , 16.0)	118.2

Fable 19. Comparison of the NMF	spectral data of odorine and	compound HAO6 ($(CDCl_3, 500 \text{ MHz})$
--	------------------------------	-----------------	-----------------------------

Position	HAO6A		HAO6B (2 ['] -epimer)	Odorine	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹³ C (mult.)	¹ H*	¹³ C**
4″′		134.9 (s)	134.9 (s)		135.4
5′′,9′′	7.52 (<i>dd</i> , 8.0, 1.5)	128.8 (<i>d</i>)	128.8 (d)	7.40 (<i>m</i>)	128.8
6′′,8′′	7.25-7.32 (<i>m</i>)	129.2 (<i>d</i>)	129.2 (<i>d</i>)	7.40 (<i>m</i>)	129.8
7''	7.25-7.32 (<i>m</i>)	129.8 (<i>d</i>)	129.8 (<i>d</i>)	7.40 (<i>m</i>)	128.2
Me-2	1.03 (<i>d</i> , 6.5)	17.3 (q)	17.4 (q)	1.12 (<i>d</i> , 7.0)	17.4
Me-3	0.85 (<i>t</i> , 6.5)	11.9 (q)	11.8 (q)	0.76 (<i>t</i> , 7.0)	11.8
NH-5	5.91 (<i>d</i> , 9.0)	1000		6.60 (<i>d</i> , 8.0)	

 Table 19. Comparison of the NMR spectral data of odorine and compound HAO6 (CDCl₃, 500 MHz) (continued)

* Purushothaman and Sarada, 1979

** Shiengthong et al., 1979

2.7 Identification of Compound HAO7

Compound HAO7 was obtained as colorless needle crystals. It has the molecular formula $C_{30}H_{50}O_3$ which was deduced from the peak $[M]^+$ at m/z 458 in the EIMS (Figure 142). IR (Figure 143) spectrum showed the presence of hydroxyl (3407 cm⁻¹) and carbonyl (1699 cm⁻¹) functionalities.

The ¹³C APT spectrum (**Figures 145** and **146**) showed 30 carbons consisting of eight methyls, ten methylenes, five methines, six quaternary carbon atoms and one carbonyl carbon. The presence of carbons bearing an oxygen function can be observed in ¹³C APT spectrum by the signals at δ_c 75.47 (C-20), 78.78 (C-24) and 73.14 (C-25). The ¹H-NMR spectrum (**Figure 144**) showed eight tertiary methyls at δ_H 0.98 (Me-18), 0.93 (Me-19), 1.15 (Me-21), 1.16 (Me-26), 1.21 (Me-27), 1.07 (Me-28), 1.03 (Me-29) and 0.87 (Me-30), the deshielded methine proton resonated at δ_H 3.38 (*dd*, *J* = 10.4, 1.5 Hz, H-24) and the α -methylene protons adjacent to 3-ketone group in ring A of the tetracyclic system appeared at δ_H 2.50 (H-2ax) and 2.44 (H-2eq). These data were typical of the dammarane group of triterpenes (Cascon and Brown, 1972; Asakawa, *et al.*, 1977; Hasan *et al.*, 1984).

The ¹H and ¹³C NMR chemical shifts of ring A and B of cabraleone, previously isolated from *Aglaia elaeagnoidea* (Fuzzati *et al.*, 1996), *A. tomentosa* (Mohamad *et al.*, 1999) and *A. rubiginosa* (Rivero-Cruz *et al.*, 2004), could be matched closely to HMQC data for HAO7, and the resulting signal assignments (**Table 20**) were consistent with the HMBC and ¹H-¹H COSY spectra. The similarity of the chemical shifts established that HAO7 has the same carbon skeleton and stereochemistry as cabraleon in the basis tetracyclic system. The assignment of the remaining 20,25-epoxy functionality came from the following evidence.

In the mass spectrum, HAO7 exhibited important fragments at m/z 143 (C₈H₁₅O₂) and 125 (C₈H₁₅O₂- H₂O), indicating the existence of one hydroxyl group in the cyclized side chain of epoxy triterpenoid. Cross peak correlations were depicted in HMBC spectrum (**Figure 147**) between Me-21 ($\delta_{\rm H}$ 1.15) and C-20 and between both Me-26 ($\delta_{\rm H}$ 1.16) and Me-27 ($\delta_{\rm H}$ 1.21) and C-25, indicated the location of two oxygenated quaternary carbons appearing at δ 75.47 and 73.14 as C-20 and C-25, respectively.

The observed HBMC (Figure 147) correlations from $\delta_{\rm H}$ 1.15 (Me-21) to 49.94 (C-17), 75.47 (C-20) and 36.80 (C-22) and from $\delta_{\rm H}$ 3.38 (H-24) to 25.64 (C-23) and 73.14 (C-25) clearly indicated the presence of an 20,25-epoxy functionality. Furthermore, inspection of the HMBC spectrum (Figure 147) showed that the signal of oxygenated methine proton at $\delta_{\rm H}$ 3.38 (H-24) was coupled to δ 73.14 (C-25) of oxygenated quaternary carbon, suggesting the location of a hydroxyl group at C-24. The final consideration was to assign stereochemistry of hydroxyl group at C-24. The coupling constant for H-24 ($\delta_{\rm H}$ 3.38) was 10.4 Hz indicated an axial-axial interaction with the axial partner of H₂-23. This would make H-24 axial (β) and the OH at this position therefore equatorial (α).

Based on these data, HAO7 was identified as 20*S*,25-epoxy-24*R*-hydroxy-3-dammaranone which had already been found from *Cistus libanotis* (Rutaceae) (De Pascual Teresa *et al.*, 1982) and *Erythrophleum fordii* (Fabaceae) (Nan, Fang, and Shishan, 2004).

20S,25-epoxy-24R-hydroxy-3-dammaranone

Table 20. NMR spectral data of HAO7 and partial comparison of ¹³C resonances with cabraleone (CDCl₃,

400 MHz)

position		Cabraleone*		
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	НМВС	¹³ C (mult.)
1	1.92/1.43 (each <i>m</i>)	39.84 (<i>t</i>)	C-2,C-3,C-5,C-10,C-19	39.96 (<i>t</i>)
2	2.50 (<i>ddd</i> , 15.7, 9.6, 7.5)	34.07 (<i>t</i>)	C-1,C-3	34.12 (<i>t</i>)
	2.44 (<i>ddd</i> , 15.7, 7.8, 4.5)	5	A	
3	กลงกร	218.08 (s)	หาวทยาล	217.96 (s)
4		47.40 (s)		47.42 (s)
5	1.37 (<i>m</i>)	55.30 (<i>d</i>)		55.41 (<i>d</i>)
6	1.56/1.47 (each m)	19.62 (<i>t</i>)		19.70 (<i>t</i>)

position	ion HAO7			
	¹ H (mult., <i>J</i> in Hz)		НМВС	¹³ C (mult.)
7	1.57/1.32 (each <i>m</i>)	34.50 (<i>t</i>)		34.60 (<i>d</i>)
8		40.25 (s)		40.35 (s)
9	1.80 (<i>m</i>)	50.04 (<i>d</i>)		50.23 (d)
10		36.93 (s)		36.91 (s)
11	1.51/1.36 (each m)	21.99 (<i>t</i>)	C-9	22.10 (<i>t</i>)
12	1.83/1.3 (each m)	27.42 (<i>t</i>)		25.84 (<i>t</i>)
13	1.63 (<i>m</i>)	42.58 (d)		43.35 (<i>d</i>)
14		50.25 (s)		50.04 (s)
15	1.46/1.12 (each <i>m</i>)	31.11 (<i>t</i>)		31.46 (<i>t</i>)
16	1.79/1.4 (each <i>m</i>)	24.87 (<i>t</i>)		27.80 (<i>t</i>)
17	1.44 (<i>m</i>)	49.94 (<i>d</i>)	C-21	49.84 (<i>d</i>)
18	0.98 (s)	15.17 (q)	C-7, C-9	16.08 (q)
19	0.93 (s)	15.97 (q)	C-1,C-2,C-5,C-7,C-8,C-9,C-10	15.23 (q)
20		75.47 (s)	10-21-	-
21	1.15 (s)	25.29 (q)	C-17,C-20,C-22	-
22	1.74/1.60 (each <i>m</i>)	36.80 (<i>t</i>)	C-23	-
23	1.63/1.42 (each m)	25.64 (<i>t</i>)	11	-
24	3.38 (<i>dd</i> , 10.4, 1.5)	78.78(<i>d</i>)	C-23, C-22, C-25	-
25	<u> </u>	73.14 (s)		-
26	1.16 (s)	23.32 (q)	C-24,C-25,C-27	-
27	1.21 (s)	26.59 (q)	C-24,C-25,C-26	-
28	1.07 (s)	26.68 (q)	C-3,C-4,C-5,C-29	27.15 (q)
29	1.03 (s)	20.98 (q)	C-3,C-4,C-5,C-28	21.02 (q)
30	0.87 (s)	16.32 (q)	C-8,C-13,C-14,C-15	16.34 (q)

 Table 20. NMR spectral data of HAO7 and partial comparison of ¹³C resonances with cabraleone (CDCl₃, 400 MHz) (continued)

* Waterman and Ampofo, 1985 (in CDCl₃, 90.56 MHz)

2.8 Identification of Compound EAO1

Compound EAO1 was obtained as colorless needle crystals. The molecular formula $C_{30}H_{52}O_3$ for this compound was deduced from its mass spectrum ([M]⁺ at m/z 460) (Figure 148) in combination with the IR (Figure 149) absorption band at 3399 cm⁻¹. The appearance of the fragment peak at m/z 143 strongly suggested that EAO1 would be the dammarane type triterpene with the cyclized side chain of the epoxy type (Cascon and Brown, 1972).

Both ¹H and ¹³C NMR spectra (**Figures 150-152**) of EAO1 showed two sets of the resonances, suggesting that this compound, although homogeneous by TLC, was in fact a 1:1 mixture of epimers, EAO1A and EAO1B at C-3, judging from the presence of two oxymethine protons at $\delta_{\rm H}$ 3.37 (*t*, J = 3 Hz) and 3.17 (*dd*, J = 11.5, 5 Hz) in the ¹H-NMR spectra and the signals resonated at $\delta_{\rm C}$ 76.27 and 78.94 of oxymethine carbons in the ¹³C NMR spectra.

The C-3 epimeric mixture, EAO1A and EAO1B, gave ¹H and ¹³C NMR spectra which were similar to those of HAO7, but instead of a keto carbonyl, it showed an extra secondary alcohol suggesting its nature as the 3-hydroxy derivative of HAO7. This was confirmed by the following evidences.

The ¹H-NMR spectrum of each component of the mixture, EAO1A and EAO1B (**Figure 150**) showed almost identical signals, including eight tertiary methyls and an oxymethine protons resonated at $\delta_{\rm H}$ 3.38 (*dd*, *J* = 10.5, 1.3 Hz, H-24), while a difference was found in the the splitting patterns and the coupling constants of oxymethine protons at C-3. In EAO1A an oxymethine proton formed triplet with small coupling constant of 3.0 Hz, while in EAO1B the corresponding proton formed double doublet with large coupling constant (11.5 Hz), indicating 3 α -OH group in the former and 3 β -OH group in the latter (Hasan et al., 1984; Waterman and Ampofo, 1985).

All signals of a C-3 epimeric mixture and their connectivity were established by HSQC, HMBC experiments (**Figures 153-157**). The observed HMBC (**Figures 155-157**) correlations from $\delta_{\rm H}$ 1.03 (Me-21) to 49.54 (C-17), 75.57 (C-20) and 36.89 (C-22) and from $\delta_{\rm H}$ 3.38 (*dd*, 10.5, 1.3, H-24) to 25.60 (C-23) and 73.15 (C-25) suggested an 20,25-epoxy functionality in this molecule. The relative stereochemistry at C-24 was determined from the large coupling constant (10.5 Hz) between H-23ax and H-24 which indicated the β orientation of H-24 (3.38, *dd*, *J* = 10.5, 1.3 Hz).

 hydroxydammarane 3β -ol (EAO1B).

Previous study has revealed the co-occurrence of 20S,25-epoxy-24R-hydroxydammarane 3α ol and its 3-oxodammarane derivative (20S,25-epoxy-24R-hydroxy-3-dammaranone) in *Cistus libanotis* (Rutaceae) (De Pascual Teresa *et al.*, 1982). However, no information on the biological activities of these compounds is currently available.

20*S*,25-epoxy-24*R*-hydroxydammarane 3α-ol

20*S*,25-epoxy-24*R*-hydroxydammarane 3β-ol

position	EAO1A		EAO1B	
	¹ H (mult., <i>J</i> in Hz) ¹³ C (mult.)		¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)
1		33.63 (<i>t</i>)		39.03 (<i>t</i>)
2		25.34 (<i>t</i>)		27.36 (<i>t</i>)
3	3.37 (<i>t</i> , 3.0)	76.28 (<i>d</i>)	3.17 (<i>dd</i> , 11.5, 5.0)	78.95 (<i>d</i>)
4	6161 I U I	37.62 (s)		39.01 (s)
5		49.51 (<i>d</i>)	D	55.85 (<i>d</i>)
6	กลงกร	18.22 <i>(t)</i>	1779781	18.24 (<i>t</i>)
7		35.11 (<i>t</i>)		35.18 (<i>t</i>)
8		40.50 (s)		40.33 (s)
9		50.37 (<i>d</i>)		50.41 (<i>d</i>)

Table 21. NMR spectral data of EAO1 (CDCl₃, 500 MHz)

position	EAO14	A	EAO1	EAO1B		
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult.)		
10		37.24 (s)		37.12 (s)		
11		21.36 (<i>t</i>)		21.50 (<i>t</i>)		
12		27.42 (<i>t</i>)		27.42 (<i>t</i>)		
13		42.54 (<i>d</i>)		42.50 (<i>d</i>)		
14		50.30 (s)		50.30 (s)		
15		31.12 (<i>t</i>)		31.14 (<i>t</i>)		
16		24.89 (<i>t</i>)		24.87 (<i>t</i>)		
17		49.88 (<i>d</i>)		49.88 (<i>d</i>)		
18	0.93 (s)	15.47 (q)	0.93 (s)	15.45 (q)		
19	0.83 (s)	16.01 (q)	0.83 (s)	16.19 (q)		
20		75.58 (s)		75.77 (s)		
21	1.13 (s)	25.16 (q)	1.13 (s)	23.28 (q)		
22	A	36.90 (<i>t</i>)		36.96 (<i>t</i>)		
23		25.60 (<i>t</i>)		25.61 (<i>t</i>)		
24	3.38 (<i>dd</i> , 10.5, 1.3)	78.81 (<i>d</i>)	3.38 (dd, 10.5, 1.3)	78.81 (<i>d</i>)		
25		73.15 (s)	m	73.00 (s)		
26	1.15 (s)	23.28 (q)	1.15 (s)	25.16 (q)		
27	1.21 (s)	26.59 (q)	1.21 (s)	26.59 (q)		
28	0.91 (s)	28.21 (q)	0.95 (s)	27.97 (q)		
29	0.83 (s)	22.10 (q)	0.83 (s)	15.34 (q)		
30	0.86(s)	16.53(q)	0.87(s)	16.43(q)		

Table 21. NMR spectral data (CDCl₃, 500 MHz) of (continued)

3. Bioactivities of Compounds Isolated from Aglaia forbesii and Aglaia oligophylla

In the search for biologically active constituents of *Aglaia forbesii* and *A. oligophylla*, the hexane, dichloromethane, EtOAc and MeOH extracts of the leaves of *Aglaia forbesii*, as well as the hexane, EtOAc and MeOH extracts of the leaves *A. oligophylla*, were subjected to *in vitro* screenings for their cytotoxic activity against NCI-H187 (human small cell lung cancer), antimalarial activity against *Plasmodium falciparum*, antituberculosis activity against *Mycobacterium tuberculosis* H₃₇Ra and antiherpes simplex virus type 1 activity.

3.1 Bioactive Compounds from Aglaia forbesii

The hexane and dichloromethane extracts of the leaves of *Aglaia forbesii* were found to exhibit antiviral activity against herpes simplex virus type 1. The hexane extract was moderately active (>35-50 % viral inhibition) at the non-cytotoxic concentration of 27.8 μ g/ml and the dichloromethane extract was active with IC₅₀ value of 1.9 μ g/ml at 38.1 μ g/ml. In addition, the dichloromethane extract exhibited antituberculosis activity against *Mycobacterium tuberculosis* H₃₇Ra with MIC value of 25 μ g/ml.

Four compounds (lupeol, lupenone, spathulenol and a mixture of β -sitosterol and stigmasterol) were isolated from the hexane extracts of *Aglaia forbesii* leaves, whereas the dichloromethane extract afforded seven compounds, including three cyclopenta[*bc*]benzopyran flavaglines (desacetylpyramidaglains A, C and D), the cycloartane triterpenoid 23,24,25-trihydroxycycloartan-3-one, two pregnane steroids (2 β ,3 β -dihydroxy-5 α -pregn-17(20)-(*Z*)-en-16-one and 2 β ,3 β -dihydroxy-5 α -pregn-17(20)-(*E*)-en-16-one) and one bisamide (pyramidatine).

All of these isolated compounds, except spathulenol and β -sitosterol/stigmasterol mixture, were evaluated for their biological activities and the results are summarized in **Table 22**.

3.1.1 Cytotoxic Activity

Lupeol, previously reported as cytotoxic against human hepatocellular carcinoma (Hep-G2) and human epidermoid carcinoma (A-431) (Ajaiyeoba *et al.*, 2003), was shown to be cytotoxic to small cell lung cancer cell line (NCI-H187) with IC₅₀ of 6.84 μ g/ml.

3.1.2 Antituberculosis Activity

As can be seen from Table 22, all compounds tested, except desacetylpyramidaglains A

and C, exhibited antituberculosis activity against *Mycobacterium tuberculosis* $H_{37}Ra$. Among these bioactive compounds, desacetylpyramidaglain D and pyramidatine showed strongest activity with MIC value of 25 µg/ml. Up to now, this is the first report on the antibacterial activity of the cyclopenta[*bc*]benzopyran flavaglines.

3.1.3 Anti HSV-1 Activity

The cycloartane triterpenoid, 23,24,25-trihydroxycycloartan-3-one, was shown to be moderately active against Herpes simplex virus type 1 at the non-cytotoxic concentration of 50 μ g/ml. Other compounds subjected to this test were inactive, with the exception of 2 β ,3 β -dihydroxy-5 α -pregn-17(20)-(*E*)-en-16-one and desacetylpyramidaglain D, which were weakly active at the non-cytotoxic concentration of 50 μ g/ml.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	Anti HSV-1	Anti TB	Cytotoxicity	Cytotoxicity IC ₅₀ (µg/ml)	
Compound	IC ₅₀	MIC	NCI-H187	Vero cell	
	(µg/ml)	(µg/ml)			
Lupeol	inactive	100	6.84	43.0	
Lupenone	inactive	50	inactive	> 50	
pyramidatine	ND	25	ND	ND	
2β,3β-dihydroxy-5α-pregn-	inactive	200	inactive	> 50	
17(20)-(Z)-en-16-one					
2β,3β-dihydroxy-5α-pregn-	weakly active	100	inactive	> 50	
17(20)-(<i>E</i>)-en-16-one					
(23 <i>R</i> ,24 <i>S</i>)-23,24,25-	moderately	50 inactive		> 50	
trihydroxycycloartan-3-one	active	as a			
Desacetylpyramidaglain A	inactive	inactive	inactive	> 50	
Desacetylpyramidaglain C	inactive	inactive	inactive	> 50	
Desacetylpyramidaglain D	weakly active	25	inactive	> 50	
Rifampicin	-	0.047	<u> </u>	-	
Kanamycin sulfate	-	1.25	- T	-	
Isoniazid	-	0.05	-	-	
Ellipticine	-	-	0.595	0.455	
Doxorubicin	V A	- 0	0.027	-	
Acyclovir	2.09	19151	115	-	

Table 22. Bioactivities of isolated compounds from Aglaia forbesii

ND = not determined

ฬาลงกรณ์มหาวิทยาลัย

3.2 Bioactive Compounds from Aglaia oligophylla

Preliminary bioactivity evalution revealed that the hexane and EtOAc extracts of the leaves of *Aglaia oligophylla* exhibited strong cytotoxic activity against NCI-H187 cancer cell line at the IC_{50} values of 3.86 and 4.22 µg/ml, respectively, as well as antimalarial activity against *Plasmodium falciparum*, KI stain, at the IC_{50} values of 2.5 and 5.1 µg/ml, respectively. Furthermore, these two also displayed anti-HSV1 activity, of which the hexane extract was weakly active at 2 µg/ml and the EtOAc extract was moderately active at 23.5 ug/ml. The latter extract also showed antimycobacterial activity against *Mycobacterium tuberculosis* with the MIC value of 100 µg/ml.

Chemical investigation of the hexane extract of the leaves led to the isolation of six dammarane-type triterpenoids (dipterocarpol, a mixture of ocotillone and cabraleone, ocotillol-II, 20S,24S-dihydroxydammar-25-en-3-one, and 20S,25-epoxy-24*R*-hydroxy-3-dammaranone), a cyclopenta[*b*]benzofuran flavagline (rocaglaol) and a mixture of bisamide (odorine and 2'-epiodorine), while the EtOAc extract afforded a mixture of 20S,25-epoxy-24*R*-hydroxydammar-3 α -ol and its C-3 epimer.

The results of the bioactivity evaluation of all of these isolated compounds except rocaglaol are presented in **Table 23**.

3.2.1 Cytotoxic activity

As shown in Table 23, none of these compounds were cytotoxic. The cytotoxic activity of the crude extract of *Aglaia oligophylla* might therefore be attributed to rocaglaol, previously reported as cytotoxic (Ishibashi *et al.*, 1993; Dumontet *et al.*, 1996; Mulholland and Nadoo, 1998).

3.2.2 Antituberculosis activity

The dammarane type triterpenoid (a mixture of 20S,25-epoxy-24R -hydroxydammmaran-3 α -ol and its C-3 epimer) and a mixture of bisamide odorine and 2'-epiodorine, were able to inhibit the growth of *Mycobacterium tuberculosis* with MIC values of 50 and 200 µg/ml, respectively.

3.2.3 Anti HSV-1 activity

In this study, no anti HSV-1 activity was detected for any of these tested compounds.

3.2.4 Antimalarial acivity

All the compounds tested appeared to be devoid of antimalarial acivity against *Plasmodium* falciparum, KI stain. Since the cyclopenta[b]benzofuran flavagline, rocaglaol, was previously found to

exhibit significant insecticidal (Ishibashi *et al.*, 1993) and cytotoxic (Rivero-Cruz *et al.*, 2004) activity, it might be responsible for the antimalarial acivity of the crude extract.

	Anti HSV-1	Anti TB	Antimalarial	Cytotoxicity	IC ₅₀ (µg/ml)
Compound	IC ₅₀	MIC	EC ₅₀	NCI-H187	Vero cell
	(µg/ml)	(µg/ml)	(µg/ml)		
Dipterocarpol	inactive	inactive	inactive	inactive	> 50
Ocotillone/cabraleone	inactive	inactive	inactive	inactive	> 50
Ocotillol II	inactive	inactive	inactive	inactive	> 50
20(<i>S</i>),24(<i>S</i>)-	inactive	inactive	inactive	inactive	> 50
dihydroxydammar-25-en-					
3-one		()mb k			
Odorine and its 2'-epimer	inactive	200	ND	inactive	> 50
20 <i>S</i> ,25-epoxy-24 <i>R</i> -	inactive	inactive	inactive	inactive	> 50
hydroxy-3-dammmaranone	all start	12/11/11/20			
20 <i>S</i> ,25-epoxy-24 <i>R</i> -	inactive	50	ND	inactive	> 50
hydroxydammmaran-3α –					
ol and its C-3 epimer					
Rifampicin	-	0.047	- 🥹	-	-
Kanamycin sulfate	v - 0	1.25	-	-	-
Isoniazid	91917	0.05	เร _ิ กา	5	-
Ellipticine		<u> 10</u> 0	1 011	0.595	0.455
Doxorubicin	050		200	0.027	01
Acyclovir	2.09	PPP 1	1410	1916	2
Dihydroartemisin	-	-	0.0043	-	-

Table 23. Bioactivities of isolated compounds from Aglaia oligophylla

ND = not determined

CHAPTER V

CONCLUSION

Chromatographic separation of the n-hexane fraction of the methanolic leaf extract of *Aglaia forbesii* led to the isolation of the sesquiterpene spathulenol, the ubiquitous triterpenoids lupeol and lupenone, and a mixture of β -sitosterol and stigmasterol. The CH₂Cl₂ fraction yielded three new cyclopenta[*bc*]benzopyran flavaglines, named desacetylpyramidaglains A, C, and D, and a new triterpene, 23,24,25-trihydroxycycloartan-3-one, together with two rare pregnane steroids, 2 β ,3 β -dihydroxy-5 α -pregn-17(*Z*)-en-16-one and 2 β ,3 β -dihydroxy-5 α -pregn-17(*E*)-en-16-one, and the bisamide pyramidatine.

Similar study on another meliaceous plant, *Aglaia oligophylla* Miq, afforded eleven of its constituents including eight dammarane-type triterpenoids (dipterocarpol, a mixture of ocotillone and cabraleone, ocotillol-II, 20S,24S-dihydroxydammar-25-en-3-one, 20S,25-epoxy-24*R*-hydroxy-3-dammaranone, and a mixture of 20S,25-epoxy-24*R*-hydroxydammar-3 α -ol and its C-3 epimer (20S,25-epoxy-24*R*-hydroxydammar-3 α -ol and its C-3 epimer (20S,25-epoxy-24*R*-hyd

All of the compounds from *Aglaia forbesii*, except desacetylpyramidaglains A and C, exhibited anti-TB activity, of which desacetylpyramidaglain D and pyramidatine showed the highest activity with MIC value of 25 μ g/ml. 23,24,25-Trihydroxycycloartan -3-one, desacetylpyramidaglain D and 2 β ,3 β -dihydroxy-5 α -pregn-17(20)-(*E*)-en-16-one were shown to be moderately to weakly active against HSV-1 at the non-cytotoxic concentration of 50 μ g/ml. Lupeol was moderately cytotoxic against NCI-H187 cancer cell line at the IC₅₀ value of 6.84 μ g/ml. However, all of the compounds isolated from *Aglaia oligophylla* were shown to be devoid of any bioactivity except 20*S*,25-epoxy-24*R*-hydroxydammar-3-ol and the mixture of odorine and 2'-epi-odorine which exhibited anti-TB activity with the MIC values of 50 and 200 μ g/ml, respectively.

Based on present knowledge, the very characteristic bisamides and flavaglines occur only in *Aglaia* species. Hence, these natural products may be useful as chemotaxonomic markers for the genus *Aglaia*. In accordance with previous studies (Brader *et al.*, 1998; Wang, *et al.*, 2004), we obtained both

flavaglines and bisamide derivatives in addition to other compounds from the leaves of these two species of *Aglaia*. The results obtained in this study reinforce the view that a significant taxonomic contribution can also be expected from phytochemical characters.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

- Aalbersberg, W., and Singn, Y. 1991. Dammarane triterpenoids from *Dysoxylum richii*. <u>Phytochemistry</u> 30: 921-926.
- Ajaiyeoba, E. O., Onocha, P. A., Nwozo, S. O., and Sama, W. 2003. Antimicrobial and cytotoxicity evaluation of *Buchholzia coriacia* stem bark. <u>Fitoterapia</u> 74: 706-709.
- Akihisa, T., Tokuda, H., Ukiya, M., Suzuki, T., Enjo, F., Koike, K., Nikaido, T., and Nishino, H.
 2004. 3-Epicabraleahydroxylactone and other triterpenoids from Camellia oil and their inhibitory effect on Epstein-barr virus activation. <u>Chem. Pharm. Bull</u>. 52: 153-156.
- Aratanechemuge, Y., Hibasami, H., Sanpin, K., Katsuzaki, H. Imai, K., and Komiya, T. 2004.
 Induction of apoptosis by lupeol isolated from mokumen (*Gossampinus malabarica* L. Merr) in human promyelotic leukemia HL-60 cells. <u>Oncol. Rep</u>. 11: 289-292.
- Asakawa, J., Kasai, R., Yamasaki, K., and Tanaka, O. 1977. ¹³C NMR study of ginseng sapogenins and their related dammarane type triterpenes. <u>Tetrahedron</u> 33: 1935-1939.
- Bacher, M., Hofer, O., Brader, G., Vajrodaya, S., and Greger, H. 1999. Trapsakins: Possible biogenetic intermediates towards insecticidal cyclopenta[b] benzofurans from Aglaia edulis. <u>Phytochemistry</u> 52: 253-263.
- Baumann, B., Bohnenstengel, F., Siegmund, D., Wajant, H., Weber, C., Herr, I., Debatin, K. M., Proksch, P., and Wirth, T. 2002. Rocaglamide derivatives are potent inhibitors of NF-KB activation in T-cells. J. Biol. Chem. 277: 44791-44800.
- Benosman, A., Richomme, P., Sevenet, T., Perromat, G., Hadi, A. A. H., and Bruneton, J. 1995. Tirucallane triterpenes from the stem bark of *Aglaia leucophylla*. <u>Phytochemistry</u> 40: 1485-1487.
- Brader, G., Vajrodaya, S., Greger, H., Bacher, M., Kalchhauser, H., and Hofer, O. 1998. Bisamides, lignans, triterpenes, and insecticidal cyclopenta[b]benzofurans from Aglaia species. <u>J.</u> <u>Nat. Prod.</u> 61: 1482-1490.
- Bringmann, G., Muhlbacher, J., Messer, K., Dreyer, M., Ebel, R., Nugroho, B. W., Wray, V., and Proksch, P. 2003. Cyclorocaglamide, the first bridged, cyclopentatetrahydrobenzofuran and a related "Open chain" rocaglamide derivative from *Aglaia oligophylla*. <u>J.</u> <u>Nat. Prod.</u> 66: 80-85.

- Brochini, C. B. and Roque, N. F. 2000. Two new cneorubin related diterpenes from the leaves of *Guarea guidonia* (Meliaceae). J. Braz. Chem. Soc. 11: 361-364.
- Campos, A. M., Oliveira, F. S., Machado, M. I. L., Braz-Filho, R., and Matos, F. J. A. 1991. Triterpenes from *Cedrela odorata*. <u>Phytochemistry</u> 30: 1225-1229.
- Carpenter, R. C., Sotheeawaran, S., and Sultanbawa, M. U. S. 1980. ¹³C NMR studies of some lupane and taraxerane triterpenes. <u>Org. Mag. Res</u>. 14: 462-465.
- Cascon, S. C., and Brown, K. S. 1972. Biogenetically significant triterpenes in a species of Meliaceae : Cabralea polytricha A. Juss. <u>Tetrahedron</u> 28: 315-323.
- Chaidir, Hiort, J., Nugroho, B. W., Bohnenstengel, F. I., Wray, V., Witte, L., Hung, P. D., Kiet, L.C., Sumaryono, W., and Proksch, P. 1999. New insecticidal rocaglamide derivatives from flowers of *Aglaia duperreana*. <u>Phytochemistry</u> 52: 837-842.
- Chaidir, Lin, W.H., Ebel, R., Edrada, R., Wray, V., Nimtz, M., Sumaryono, W., and Proksch, P. 2001. Rocaglamides, glycosides and putrescine bisamides from *Aglaia dasyclada*. <u>J.</u> <u>Nat. Prod.</u> 64: 1216-1220.
- Cui, B., Chai, H., Santisuk, T., Reutrakul, V., Farnsworth, N. R., Cordell, G. A., Pezzuto, J.M., and Kinghorn, A.D. 1997. Novel cytotoxic 1*H*-cyclopenta[*b*]benzofuran lignans from *Aglaia elliptica*. <u>Tetrahedron</u> 53: 17625-17632.
- Collin, L. A., and Eranzblau, S. G. 1997. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against *Mycobacterium tuberculosis* and *Mycobacterium avium*. <u>Antimicrob. Agents Chemother</u>. 41: 1004-1009.
- Dean, F. M., Monkhe, T. V., Mulholland, D. A., and Taylor, A. H. 1993. An isoflavonoid from Aglaia ferruginea, an Australian member of the Meliaceae. <u>Phytochemistry</u> 34: 1537-1539.
- De Pascual Teresa, J., Urones, J. G., Basabe, P., Sanchez, M., and Granell, F. 1982. Terpenoids and flavonoids from *Cistus libanotis* L. <u>Ann. Quim.</u> 78: 324-327.
- Desjardins, R. E., Canfield, C. J., Haynes, J. D., and Chulay, J. D. 1979. Quantitative assessment of antimalarial activity *in vitro* by a semiautomated microdilution technique. <u>Antimicrob. Agents Chemother</u>. 16: 710-718.

- Dreyer, M., Nugroho, B. W., Bohnenstengel, F. I., Ebel, R., Wray, V., Bringmann, G., Muhlbacher, J., Herold, M., Hung, P. D., Kiet, L. C., and Proksch, P. 2001. New insecticidal rocaglamide derivatives and related compounds from *Aglaia oligophylla*. <u>J.</u> <u>Nat. Prod.</u> 64: 415-420.
- Duh, C. Y., Wang, S. K., R. S., Wu, Y. C., Wang, W. Y., Cheng, M. C., and Chang, T. T. 1993. Dehydroodorin, a cytotoxic diamide from the leaves of *Aglaia formosana*. <u>Phytochemistry</u> 34: 857-858.
- Dumontet, V., Thoison, O., Omobuwajo, R., Martin, M. T., Perromat,G., Chiaroni, A., Riche, C., Pais, M., and Sevenet, T. 1996. New nitrogenous and aromatic derivatives from Aglaia argentea and A. forbesii. <u>Tetrahedron</u> 52: 6931-6942.
- Engelmeier, D., Hadacek, F., Pacher, F., Vajrodaya, S., and Greger, H. 2000. Cyclopenta[b]benzofurans from Aglaia species with pronounced antifungal activity against rice blast fungus (*Pyricularia grisea*). J. Agric. Food Chem. 48: 1400-1404.
- Fraga B. M. 2003. Natural sesquiterpenoids. Nat. Prod. Rep. 20: 392-413.
- Fuzzati, N., Dyatmiko, W., Rahman, A., Achmad, F., and Hostettmann, K. 1996. Triterpenoids, lignans and a benzofuran derivatives from the bark of *Aglaia elaeagnoidea*. <u>Phytochemistry</u> 42: 1395-1398.
- Gauthier, C., Legault, J., Lebrun, M., Dufour, P., and Pichette, A. 2006. Glycosidation of lupine-type triterpenoids as potent in vitro cytotoxic agents. <u>Bioorg. Med. Chem</u>. 14: 6713-6725.
- Geetha, T., and Varalakshmi, P. 2001. Anti-inflammatory activity of lupeol and lupeol linoleate in rats. J. Ethnopharmacol. 76: 77-80.
- Greger, H., Pacher, T., Brem, B., Bacher, M., and Hofer, O. 2001. Insecticidal flavaglines and other compounds from Fijian Aglaia species. <u>Phytochemistry</u> 57: 57-64.
- Greger, H., Pacher, T., Vajrodaya, S., Bacher, B., and Hofer, O. 2000. Infraspecific variation of sulfur-containing bisamides from *Aglaia leptantha*. J. Nat. Prod. 63: 616-620.
- Govindachari, T. R., Kumari, G. N. K., and Suresh, G. 1995. Triterpenoids from *Walsura piscidia*. Phytochemistry 39: 167-170.
- Gupta, M. B., Nath, R., Srivastava, N., Shanker, K., Kishor, K., and Bhargava, K. P. 1980. Antiinflammatory and antipyretic activities of β-sitosterol. <u>Planta Med.</u> 39: 157-163.
- Hasan, C. M., Islam, A., Ahmed, M., Ahmed, M-D., and Waterman, P. G. 1984. Capsugenin, a dammarane triterpene from *Corchorus capsularis*. <u>Phytochemistry</u> 23: 2583-2587.

- Hayashi, N., Lee, K. H., Hall, I. H., Mcphail, A. T., and Huang H. C. 1982. Structure and stereochemistry of (-)-odorinol, an antileukemic diamide from Aglaia odorata. <u>Phytochemistry</u> 21: 2371-2373.
- Hiort, J., Chaidir, Bohnenstengel, F. I., Nugroho, B. W., Schneider, C., Witte, L., Hung, P. D., Kiet,
 L. C., and Proksch. 1999. New Insecticidal rocaglamide derivatives from the roots of *Aglaia duperreana*. J. Nat. Prod. 62: 1632-1635.
- Hwang, B. Y., Su, B. N., Chai, H. C., Leonardus, Q. M., Kardono, L. B. S., Afriastini, J. J., Riswan, S., Santarsiero, B. D., Mesecar, A. D., Wild, R., Fairchild, C. R., Vite, G. D., Rose, W. C., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M., Swanson, S. M., and Kinghorn, A. D. 2004. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from *Aglaia silvestris*. J. Org. Chem. 69: 3350-3358.
- Inada, A., Murayta, H., Inatomi, Y., Nakanishi, T. 1995. Cycloartane triterpenoids from the leaves of *Aglaia harmsiana*. J. Nat. Prod. 58: 1143-1146.
- Inada, A., Murayta, H., Inatomi, Y., Nakanishi, T., and Darnaedi, D. 1997a. Pregnanes and triterpenoid hydroperoxides from the leaves of *Aglaia grandis*. <u>Phytochemistry</u> 45: 1225-1228.
- Inada, A., Nishino, H., Kuchide, M., Takayasu, J., Mukainaka, T., Nobukuni, Y., Okuda, M., and Tokuda, H. 2001. Cancer chemopreventive activity of odorine and odorinol from *Aglaia odorata*. <u>Biol. Pharm. Bull</u>. 24: 1282-1285.
- Inada, A., Ohtsuki, S., Sorano, T., Murata, H., Inatomi, Y., Darnaedi, D., and Nakanishi, T. 1997b. Cycloartane triterpenenoids from *Aglaia harmsiana*. <u>Phytochemistry</u> 46: 379- 381.
- Inada, A., Shono, K., Murata, H., Inatomi, Y., Darnaedi, D., and Nakanishi, T. 2000. Three putrescine bisamides from the leaves of *Aglaia grandis*. <u>Phytochemistry</u> 53: 1091- 1095.
- Ishibashi, F., Satasook, C., Isman, M. B., and Towers, G. H. N. 1993. Insecticidal 1*H*-cyclopentatetrahydro[*b*]benzofurans from *Aglaia odorata*. <u>Phytochemistry</u> 32: 307-310.
- Ivorra, M. D., D'Ocon, M. P., Paya, M., and Villar, A. 1988. Antihyperglycemic and insulinreleasing effects of β-sitosterol 3-β-D-glucoside and its aglycone, β-sitosterol. <u>Arch Int</u> <u>Pharmacodyn</u>. 296: 224-231.
- Janaki, S., Vijayasekaran, V., Viswanathan, S., and Balakrishna, K. 1999. Anti- inflammatory activity of Aglaia roxburghiana var. beddomei extract and triterpenes roxburghiadiol A and B. J. Ethnopharmacol. 67: 54-51.

- Janprasert, J., Satasook, C., Sukumalanand, P., Champagne, D. E., Isman, M. B., Wiriyachitra, P., and Towers, G. H. N. 1993. Rocaglamide, a natural benzofuran insecticide from *Aglaia odorata*. <u>Phytochemistry</u> 32: 67-69.
- Joshi, M.N., Chowdhury, B.L., Vishnoi, S.P., Shoeb, A., and Kapil, R.S. 1987. Antiviral activity of (+)-odorinol. <u>Planta Med.</u> 53: 245-255.
- Karam, M. A., and Shier, T. 1990. A simplified plaque reduction assay for antiviral agents from plants. <u>J. Nat. Prod.</u> 53: 340-344.
- Kim, S., Su, B. N., Riswan, S., Kardono, L. B. S., Afriastini, J. J., Gallucci, J. C., Chai, H., Fransworth, N. R., Cordell, G. A., Swanson, S. M., and Kinghorn, A. D. 2005. Edulisidones A and B, two epimeric benzo[b]oxepine derivatives from the bark of *Aglaia* edulis. <u>Tetrahedron Lett</u>. 46: 9021-9024.
- Kim, S., Salim, A. A., Swanson, S. M., and Kinghorn, A. D. 2006. Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy. <u>Anticancer</u> <u>Agents Med. Chem.</u> 6: 319- 345.
- Kumar KC, S., and Müller, K. 1999. Medicinal plants from Nepal; II. Evaluation as inhibitors of lipid peroxidation in biological membranes. <u>J. Etnopharmacol</u>. 64: 135-139.
- Lee, S. K., Cui, B., Mehta, R. R., Kinghorn, A. D., and Pezzuto, J. M. 1998. Cytostatic mechanism and antitumor potential of novel 1*H*-cyclopenta[*b*]benzofuran lignans isolated from *Aglaia elliptica*. <u>Chem. Biol. Int.</u> 115: 215-228.
- Lin, C. W. H., Ebel, R., Edrada, R., Wray, V., and Nimtz, M. 2001. Rocaglamides, glucosides, and putrescine bisamides from *Aglaia dasyclada*. J. Nat. Prod. 64: 1216-1220.
- Luo, X., Wu, S., Ma, Y., and Wu, D. 2000. Dammarane triterpenoids from *Amoora yunnanensis*. <u>Heterocycles</u> 53: 2795-2802.
- Madureira, A. M., Ascenso, J. R., Valdeira, L., Duarte, A., Frade, J. P., Freitas, G., and Ferreira, M. J.
 U. 2003. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from *Euphorbia segetalis*. <u>Nat. Prod. Res</u>. 17: 375-380.
- Malinovskaya, G. V., Novikov, V. L., Denisenko, V. A., and Uvarova, N. I. 1980. New triterpene from leaves of *Betula mandschurica*. <u>Chem. Nat. Compd.</u> (Engl. Transl.) 16: 257-261.
- McChesney, J. D., Dou, J., Sindelar, R. D., Goins, D. K., Walker, L. A., and Rogers, R. D. 1997. Tirucallane-type triterpenoids: nmr and X-ray diffration analyses of 24-epi-piscidinol A and piscidinol A. <u>J. Chem. Cryst</u>. 27: 283-290.

- Mohamad, K., Martin, M. T., Leroy, E., Tempete, C., Sevenet, T., Awang, K., and Pais, M. 1997.
 Argenteanones C-E and argenteanols B-E, cytotoxic cycloartanes from *Aglaia argentea*.
 J. Nat. Prod. 60: 81-85.
- Mohamad, K., Sevenet, T., Dumontet, V., Pais, M., Tri, M. V., Hadi, H., Awang, K., and Martin, M.
 T. 1999. Dammarane triterpenes and pregnane steroids from *Aglaia lawii* and *A. tomentosa*. <u>Phytochemistry</u> 51: 1031-1037.
- Moriarity, D. M., Huang, J., Yancey, C. A., Zhang, P., Setzer, W. N., Lawton, R. O., Bates, R. B., and Caldera, S. 1998. Lupeol is the cytotoxic principal in the leaf extract of Dendropanax cf. querceti. <u>Planta Med.</u> 64: 370-372.
- Mulhollane, D. A., and Monkne, T. V. 1993. Two glabretal-type triterpenoids from the heartwood of *Aglaia ferruginaea*. <u>Phytochemistry</u> 34: 579-580.
- Mulhollane, D. A., and Naidoo, N. 1998. A revision of the structure of ferrugin from Aglaia ferruginea. Phytochemistry 47: 1163.
- Nan, L., Fang, Y., and Shishan, Y. 2004. Triterpenoids from *Erythrophleum fordii*. <u>Acta Bot Sin</u>. 40: 371-374.
- Nugroho, B. W., Edrada, R. A., Wray, V., Witte, L., and Proksch, P. 1997a. Insecticidal rocaglamide derivatives from *Aglaia duppereana*. <u>Phytochemistry</u> 44: 1455-1461.
- Nugroho, B. W., Gussregen, B., Wray, V., Witte, L., Bringmann, G., and Proksch, P. 1997b. Insecticidal rocaglamide derivatives from Aglaia elliptica and A. harmsiana. <u>Phytochemistry</u> 45: 1579-1585.
- Nugroho, B. W., Edrada, R. A., Wray, V., Witte, L., Bringmann, G., Gehling, M., and Proksch, P. 1999. An insecticidal rocaglamide derivatives and related compounds from *Aglaia* odorata (Meliaceae). <u>Phytochemistry</u> 51: 367-376.
- Omobuwajo, O. R., Martin, M. T., Perromat, G., Sevenet, T., Awang, K., and Pais, M. 1996. Cytotoxic cycloartanes from *Aglaia argentea*. <u>Phytochemistry</u> 41: 1325-1328.
- Ohse, T., Ohba, S., Yamamoto, T., Koyano, T., and Umezawa, K. 1996. Cyclopentabenzofuran lignan protein synthesis inhibitors from *Aglaia odorata*. J. Nat. Prod. 59: 650-652.
- Pannell, C.M. 1992. Taxonomic monograph of the genus Aglaia Lour. (Meliaceae), HMSO, London.
- Perry, L.M. 1980. Medicinal Plants of East and Southeast Asia : Attributed Properties and Used. Cambridge: MIT Press.

- Plumb, J. A., Milroy, R. and Kaye, S. B. 1989. Effects of the pH dependence of 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. <u>Cancer Res</u>. 49: 4435-4440.
- Proksch, P., Edrada, R. A., Ebel, R., Bohnenstengel, F. I., and Nugroho, B.W. 2001. Chemistry and biological activity of rocaglamide derivatives and related compounds in *Aglaia* species (Meliaceae). <u>Curr. Org. Chem.</u> 5: 923-938.
- Puripattanavong, J., Weber, S., Brecht, V., and Frahm, A. W. 2000. Phytochemical investigation of *Aglaia andamanica*. <u>Planta Med</u>. 66: 740-745.
- Purushothaman, K. K., and Sarada, A. 1979. The structure of roxburghilin, a bisamide of 2aminopyrrolidine from the leaves of Aglaia roxburghiana (Meliaceae). J. Chem. Soc., <u>Perkin Trans.</u> 1. 5: 3171-3174.
- Reynolds, W. F., McLene, S., Poplawski, J., Enriguez, R. G., Escobar, L. I., Leon, I. 1986. Total assignment of ¹³C and ¹H spectra of three isomeric triterpenol derivatives by 2D NMR: An investigation of the potential utility of 1h chemical shifts in structural assignments of complex natural products. <u>Tetrahedron</u> 42: 3419-3428.
- Rao, M. M., Meshulam, H., Zelnik, R., and Lavie, D. 1975. Cabralea eichleriana DC. (Meliaceae)-I. Structure and stereochemistry of wood extractives. <u>Tetrahedron</u> 31: 333-339.
- Rivero-Cruz, J. F., Chai, H. B., Kardono, L. B. S., Setyowati, F. M., Afriatini, J. J., Riswan, S., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M., Swanson, S. M., and Kinghorn, A. D. 2004. Cytotoxic constituents of the twigs and leaves of *Aglaia rubiginosa*. <u>J. Nat. Prod</u>. 67: 343-347.
- Roger, L. L., Zeng, L., and McLaughlin, J. L. 1998. New bioactive steroids from *Melia volkenzii*. J. Org. Chem. 63: 3781-3785.
- Roux, D., Martin, M. T., Sevennet, T., Hadi, H. A., and Pais, M. 1998. Foveolin A and B, dammarane triterpenes from *Aglaia foveolata*. <u>Phytochemistry</u> 49: 1745-1748.
- Rubinstein, I., Goad, L. J., Chague, A. D. H., Mulhein, L. J. 1976. The 220 MHz nmr spectra of phytosterols. Phytochemistry 15: 195-200.
- Saifah, E., Jongbunprasert, V., and Kelley, C. J. 1988. Piriferine, a new pyrrolidine alkaloid from *Aglaia pirifera* leaves. J. Nat. Prod. 51: 80-82.

- Saifah, E., Puripattanavong, J., Likhiwitayawuid, K., Cordell, G. A., Chai, H., and Pezzuto, J. M. 1993. Bisamides from *Aglaia* species: structure analysis and potential to reverse drug resistance with cultured cells. <u>J. Nat. Prod</u>. 56: 473-477.
- Saifah, E., Suttisri, R., Shamsub, S., Pengsuparp, T., and Lipipun, V. 1999. Bisamides from Aglaia edulis. <u>Phytochemistry</u> 52: 1085-1088.
- Salim, A. A., Pawlus, A. D., Chai, H. B., Franworth, N. R., Kinghorn, A. D., and Carcache-Blanco, E.
 J. 2007. Ponapensin, a cyclopenta[bc]benzopyran with potent NF-KB inhibitory activity from *Aglaia ponapensis*. <u>Bioorg. Med. Chem. Lett</u>. 17: 109-112.
- Schneider, C., Bohnenstengel, F. I., Nugroho, B. W., Wray, V., Witte, V., Hung, P. D., Kiet, L. C., and Proksch, P. 2000. Insecticidal rocaglamide derivatives from *Aglaia spectabilis* (Meliaceae). <u>Phytochemistry</u> 54: 731-736.
- Seger, C., Pacher, T., Greger, H., Saifah, E., and Hofer, O. 2002. Aglairubine: structure revision of a chemotaxonomiccally interesting bisamide in *Aglaia* (Meliaceae). <u>Chem. Mont.</u> 133: 97-100.
- Shiengthong, D., Ungphakorn, A., Lewis, D. E., and Messy-Westropp, R. A. 1979. Constituents of Thai medicinal plants-IV; New nitrogenous compounds-odorine and odorinol. <u>Tetrahedron Lett</u>. 24: 2247-2250.
- Skehan, R. S., Scudiero, D., Monks, A., Mcmahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. 1990. New colorimetric cytotoxic assay for anticancer drug screening. J. Natl. Cancer Int. 82: 1107-1112.
- Smitinand, T. 2001. Thai plant names (botanical names-vernacular names) revised edition. Bangkok: The Forest Herbarium, Royal Forest Department. pp. 18-19.
- Su, B. N., Chai, H., Mi, Q., Riswan, S., Kardono, L. B. S., Afriastini, J. J., Santarsiero, B. D., Mesecar, A. D., Fransworth, N. R., Cordell, G. A., Swanson, S. M., and Kinghorn, A. D. 2006. Activity-guided isolation of cytotoxic constituents from the bark of *Aglaia crassinervia* collected in Indonesia. <u>Bioorg. Med. Chem</u>. 14: 960-972.
- Tanaka, R., Masuda, K., and Matsunaga, S. 1993. Lup-20(29)en-3β-15α-diol and ocotillol-II from the stem bark of *Phyllanthus flexuosus*. <u>Phytochemistry</u> 32: 472-474.
- Tanaka, R., Tabuse, M., and Matsunaga, S. 1988. Triterpenes from the stem bark of *Phyllanthus flexuosus*. <u>Phytochemistry</u> 27: 3563-3567.

- Tori, M., Matsuda, R., Sono, M., and Asakawa, Y. 1988. ¹³C NMR assignment of dammarane triterpenes and dendropanoxide: Application of 2D long-rang e ¹³C-¹H correlation spectra. <u>Magn. Reson. Chem</u>. 26: 581-590.
- Trager, W. and Jensen, J. B. 1976. Human malaria parasites in continuous culture. <u>Science</u> 193: 673-675.
- Wang, B. G., Ebel, R., Wang, C. Y., Wray, V., and Proksch, P. 2002. New methoxylated aryltetrahydronaphthalene lignans and a norlignan from *Aglaia cordata*. <u>Tetrahedron Lett</u>. 43: 5783-5787.
- Wang, B. G., Peng, H., Huang, H. L., Li, X. M., Eck, G., Gong, X., and Proksch, P. 2004. Rocaglamide, aglain, and other related derivatives from *Aglaia testicularis* (Meliaceae). <u>Biochem. System. Ecol.</u> 32: 1223-1226.
- Wanhoff, E. W., and Halls, C. M. M. 1965. Desert plant constituents: II. Ocotillol: an intermediate in the oxidation of hydroxyl isooctenyl side chains. <u>Can. J. Chem</u>. 43: 3311-3321.
- Watermann, P. G., and Ampofo, S. 1985. Dammarane triterpenes from the stem bark of *Commiphora drazielii*. <u>Phytochemistry</u> 24: 2925-2928.
- Weber, S., Puripattanavong, J., Brecht, V., and Frahm, A.W. 2000. Phytochemical investigation of Aglaia rubiginosa. J. Nat. Prod. 63: 636-642.
- Wu, T. S., Liou, M. J., Kuoh, C. S., Teng, C. M., Nagao, T., and Lee, K. H. 1997. Cytotoxic and antiplatelet aggregation principles from *Aglaia elliptifolia*. J. Nat. Prod. 60: 606-608.
- You, Y-J., Nam, N-H., Kim, Y., Bae, K-H., and Ahn, B-Z. 2003. Antiangiogenic activity of lupeol from *Bombax ceiba*. <u>Phytother. Res</u>. 17: 341-344.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย
สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDICES

Figure 6. ESI-TOF Mass Spectrum of compound HAF1

Figure 7. IR Spectrum of compound HAF1 (KBr disc)

Figure 8. ¹H NMR (400 MHz) Spectrum of compound HAF1 (CDCl₃)

Figure 9. ¹³C APT (100 MHz) Spectrum of compound HAF1 (CDCl₃)

Figure 10. IR Spectrum of compound HAF2 (KBr disc)

Figure 11. ¹H NMR (300 MHz) Spectrum of compound HAF2 (CDCl₃)

Figure 12. ¹³C NMR (75 MHz) and DEPT Spectra of compound HAF2 (CDCl₃)

Figure 13. EI Spectrum of compound HAF3

Figure 14. IR spectrum of compound HAF3 (KBr disc)

Figure. 15. ¹³H NMR (400 MHz) Spectrum of compound HAF3 (CDCl₃)

Figure 16. ¹³C APT (100 MHz) Spectrum of compound HAF3 (CDCl₃)

Figure 17. HMBC spectrum of compound HAF3 (CDCl₃)

Figure 18. IR Spectrum of compound HAF4 (KBr disc)

Figure 19. ¹H NMR (300 MHz) Spectrum of compound HAF4 (CDCl₃)

Figure 20. ¹³C NMR (75 MHz) spectrum of compound HAF4 (CDCl₃)

Figure 21. HRESI-TOF Mass spectrum of compound CAF1

Figure 22. IR Spectrum of compound CAF1 (KBr disc)

Figure 23. ¹H NMR (500 MHz) Spectrum of compound CAF1 (CDCl₃)

Figure 24. ¹³C NMR (125 MHz) Spectrum of compound CAF1 (CDCl₃)

Figure 25. ¹H-¹H COSY Spectrum of compound CAF1 (CDCl₃)

Figure 26. HSQC Spectrum of compound CAF1 (CDCl₃) [$\delta_{\rm H}$ 0.5-2.0 ppm, $\delta_{\rm c}$ 17-36 ppm]

Figure 27. HSQC Spectrum of compound CAF1 (CDCl₃) [$\delta_{\rm H}$ 0.0-4.2 ppm, $\delta_{\rm C}$ 10-78 ppm]

Figure 28. HMBC Spectrum of compound CAF1 (CDCl₃) [$\delta_{\rm H}$ 0.5-2.0 ppm, $\delta_{\rm C}$ 18-31 ppm]

Figure 29. HMBC Spectrum of compound CAF1 (CDCl₃) [δ_{H} 0.5-1.3 ppm, δ_{C} 32-56 ppm]

1

Figure 30. HMBC Spectrum of compound CAF1 (CDCl₃) [$\delta_{\rm H}$ 0.0-2.8 ppm, $\delta_{\rm C}$ 70-220 ppm]

Figure 31. HMBC Spectrum of compound CAF1 (CDCl₃) [$\delta_{\rm H}$ 2.6-4.6 ppm, $\delta_{\rm C}$ 20-75 ppm]

Figure 32. HMBC Spectrum of compound CAF1 (CDCl₃) [δ_{H} 0.8-1.9 ppm, δ_{C} 69-76 ppm]

Figure 33. NOESY Spectrum of compound CAF1 (CDCl₃)

Figure 34. EI Mass spectrum of compound CAF2

Figure 35. UV Spectrum of compound CAF2

Figure 36. IR Spectrum of compound CAF2 (KBr disc)

Figure 37. ¹H NMR (500 MHz) Spectrum of compound CAF2 (CDCl₃)

Figure 38. ¹H NMR (400 MHz) Spectrum of compound CAF2 (CDCl₃)

Figure 39. ¹³C APT (100 MHz) Spectrum of compound CAF2 (CDCl₃)

Figure 40. ¹H–¹H COSY Spectrum of compound CAF2 (CDCl₃)

Figure 41. HMQC Spectrum of compound CAF2 (CDCl₃)

Figure 42. HMBC Spectrum of compound CAF2 (CDCl₃) [$\delta_{\rm H}$ 3.4-6.7 ppm, $\delta_{\rm C}$ 10-70 ppm]

Figure 43. HMBC Spectrum of compound CAF2 (CDCl₃) [$\delta_{\rm H}$ 3.4-6.7 ppm, $\delta_{\rm C}$ 120-210 ppm]

Figure 44. HMBC Spectrum of compound CAF2 (CDCl₃) [$\delta_{\rm H}$ 0.7-2.3 ppm, $\delta_{\rm C}$ 10-70 ppm]

Figure 45. HMBC Spectrum of compound CAF2 (CDCl₃) [$\delta_{\rm H}$ 0.9-2.3 ppm, $\delta_{\rm C}$ 120-210 ppm]

Figure 46. ESI-TOF Mass spectrum of compound CAF3

Figure 47. UV Spectrum of compound CAF3

Figure 48. IR Spectrum of compound CAF3 (KBr disc)

Figure 49. ¹H NMR (400 MHz) Spectrum of compound CAF3 ($CDCl_3$)

Figure 50. ¹³C APT (100 MHz) Spectrum of compound CAF3 (CDCl₃)

Figure 51. ESI-TOF Mass spectrum of compound CAF4

Figure 52. UV Spectrum of compound CAF4

Figure 53. IR Spectrum of compound CAF4 (KBr disc)

Figure 54. ¹H NMR (400 MHz) Spectrum of compound CAF4 (DMSO- d_6)

Figure 55. ¹³C APT (100 MHz) Spectrum of compound CAF4 (DMSO- d_{o})

Figure 56. ¹³C APT (100 MHz) Spectrum of compound CAF4 (DMSO- d_o) (expanded)

Figure 57. HRESI-TOF Mass spectrum of compound CAF5

Figure 58. UV Spectrum of compound CAF5

Figure 59. IR Spectrum of compound CAF5 (KBr disc)

Figure 60. ¹H NMR (500 MHz) Spectrum of compound CAF5 (CDCl₃)

Figure 61. ¹³C NMR (125 MHz) Spectrum of compound CAF5 (CDCl₃)

Figure 62. ${}^{1}H^{-1}H$ COSY Spectrum of compound CAF5 (CDCl₃) [δ_{H} 1.0-4.0 ppm]

Figure 63. $^{1}H^{-1}H$ COSY Spectrum of compound CAF5 (CDCl₃) [δ_{H} 0.0-7.0 ppm]

Figure 64. HMBC Spectrum of compound CAF5 (CDCl₃) [$\delta_{\rm H}$ 2.6-4.2 ppm, $\delta_{\rm C}$ 125-175 ppm]

Figure 65. HMBC Spectrum of compound CAF5 (CDCl₃) [$\delta_{\rm H}$ 1.0-5.0 ppm, $\delta_{\rm C}$ 20-65 ppm]

Figure 66. HMBC Spectrum of compound CAF5 (CDCl₃) [$\delta_{\rm H}$ 5.5-8.0 ppm, $\delta_{\rm C}$ 20-65 ppm]

Figure 67. HMBC Spectrum of compound CAF5 (CDCl₃) [$\delta_{\rm H}$ 3.8-5.4 ppm, $\delta_{\rm C}$ 78-110 ppm]

Figure 68. HMBC Spectrum of compound CAF5 (CDCl₃) [$\delta_{\rm H}$ 3.9-5.4 ppm, $\delta_{\rm C}$ 128-138 ppm]

Figure 69. HMBC Spectrum of compound CAF5 (CDCl₃) [$\delta_{\rm H}$ 3.8-4.5 ppm, $\delta_{\rm C}$ 128-138 ppm]

Figure 70. NOESY Spectrum of compound CAF5 (CDCl₃)

Figure 71. HRESI-TOF Mass spectrum of compound CAF6

Figure 72. UV Spectrum of compound CAF6

Figure 73. IR Spectrum of compound CAF6 (KBr disc)

Figure 74. ¹H NMR (500 MHz) Spectrum of compound CAF6 (CDCl₃)

Figure 75. ¹³C NMR (125 MHz) Spectrum of compound CAF6 (CDCl₃)

Figure 76. ¹H–¹H COSY Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 1.6-6.6 ppm]

Figure 77. ${}^{1}H^{-1}H$ COSY Spectrum of compound CAF6 (CDCl₃) [δ_{H} 6.4-7.8 ppm]

Figure 78. HSQC Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 4.0-8.0 ppm, $\delta_{\rm C}$ 80-135 ppm]

Figure 79. HMBC Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 1.5-5.0 ppm, $\delta_{\rm C}$ 20-70 ppm]

Figure 80. HMBC Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 3.2-5.0 ppm, $\delta_{\rm C}$ 76-115 ppm]

Figure 81. HMBC Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 3.0-8.0 ppm, $\delta_{\rm C}$ 76-115 ppm]

196

Figure 82. HMBC Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 4.0-8.0 ppm, $\delta_{\rm C}$ 80-135 ppm]

Figure 83. HMBC Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 3.2-5.0 ppm, $\delta_{\rm C}$ 125-175 ppm]

Figure 84. HMBC Spectrum of compound CAF6 (CDCl₃) [$\delta_{\rm H}$ 6.0-7.8 ppm, $\delta_{\rm C}$ 125-175 ppm]

Figure 85. NOESY Spectrum of compound CAF6 (CDCl₃)

Figure 86. HRESI-TOF Mass spectrum of compound CAF7

Figure 87. UV Spectrum of compound CAF7

Figure 88. IR Spectrum of compound CAF7 (KBr disc)

Figure 89. ¹H NMR (500 MHz) Spectrum of compound CAF7 (CDCl₃)

Figure 90. ¹³C NMR (125 MHz) Spectrum of compound CAF7 (CDCl₃)

Figure 91. ${}^{1}H - {}^{1}H$ COSY Spectrum of compound CAF7 (CDCl₃) [δ_{H} 6.7-7.9 ppm]

Figure 92. HSQC Spectrum of compound CAF7 (CDCl₃) [$\delta_{\rm H}$ 1.0-5.0 ppm, $\delta_{\rm C}$ 25-75 ppm]

Figure 93. HSQC Spectrum of compound CAF7 (CDCl₃) [$\delta_{\rm H}$ 6.8-7.9 ppm, $\delta_{\rm C}$ 125-130 ppm]

Figure 94. HMBC Spectrum of compound CAF7 (CDC1₃) [$\delta_{\rm H}$ 0.9-4.0 ppm, $\delta_{\rm C}$ 10-76 ppm]

Figure 95. HMBC Spectrum of compound CAF7 (CDCl₃) [$\delta_{\rm H}$ 4.5-8.0 ppm, $\delta_{\rm C}$ 25-75 ppm]

Figure 96. HMBC Spectrum of compound CAF7 (CDCl₃) [$\delta_{\rm H}$ 2.0-4.2 ppm, $\delta_{\rm C}$ 80-176 ppm]

Figure 97. HMBC Spectrum of compound CAF7 (CDCl₃) [$\delta_{\rm H}$ 4.6-8.0 ppm, $\delta_{\rm C}$ 80-174 ppm]

Figure 98. NOESY Spectrum of compound CAF7 (CDCl₃)

Figure 99. EI Mass spectrum of compound HAO1

•

Figure 100. IR Spectrum of compound HAO1 (KBr disc)

Figure 101. ¹H NMR (400 MHz) Spectrum of compound HAO1 (CDCl₃)

•

Figure 102. ¹³C APT (100 MHz) Spectrum of compound HAO1 (CDCl₃)

Figure 103. HMBC Spectrum of compound HAO1 (CDCl₃)

•

207

Figure 104. EI Mass spectrum of compound HAO2

Figure 105. IR Spectrum of compound HAO2 (KBr disc)

Figure 106. ¹H NMR (500 MHz) Spectrum of compound HAO2 (CDCl₃)

Figure 107.¹³C NMR (125 MHz) Spectrum of compound HAO2 (CDCl₃)

Figure 108. ¹³C APT (100 MHz) Spectrum of compound HAO2 (CDCl₃)

Figure 109. HSQC Spectrum of compound HAO2 (CDCl₃) [$\delta_{\rm H}$ 0.80-1.9 ppm, $\delta_{\rm C}$ 15-29 ppm]

Figure 110. HSQC Spectrum of compound HAO2 (CDCl₃)[$\delta_{\rm H}$ 0.80-3.5 ppm, $\delta_{\rm C}$ 70-90 ppm]

Figure 111. HMBC Spectrum of compound HAO2 (CDCl₃) [$\delta_{\rm H}$ 0.86-2.5 ppm, $\delta_{\rm C}$ 80-220 ppm]

Figure 112. HMBC Spectrum of compound HAO2 (CDCl₃) [$\delta_{\rm H}$ 3.3-3.7 ppm, $\delta_{\rm C}$ 14-42 ppm]

Figure 113. EI Mass spectrum of compound HAO3

Figure 114. IR Spectrum of compound HAO3 (KBr disc)

Figure 115. ¹H NMR (400 MHz) Spectrum of compound HAO3 (CDCl₃)

Figure 116. ¹³C NMR (100 MHz) Spectrum of compound HAO3 (CDCl₃)

Figure 117. HMBC Spectrum of compound HAO3 (CDCl₃)

Figure 118. NOESY Spectrum of compound HAO3 (CDCl₃)

Figure 119. EI Mass spectrum of compound HAO4

Figure 120. IR Spectrum of compound HAO4 (KBr disc)

Figure 121. ¹H NMR (400 MHz) Spectrum of compound HAO4 (CDCl₃)

Figure 122. ¹³C NMR (100 MHz) Spectrum of compound HAO4 (CDCl₃)

Figure 123. HSQC Spectrum of compound HAO4 (CDCl₃)

Figure 124. HMBC Spectrum of compound HAO4 (CDCl₃) [$\delta_{\rm H}$ 0.9-1.7 ppm, $\delta_{\rm C}$ 68-77 ppm]

Figure 125. HMBC Spectrum of compound HAO4 (CDCl₃) [$\delta_{\rm H}$ 4.6-5.6 ppm, $\delta_{\rm C}$ 60-95 ppm]

Figure 126. HMBC Spectrum of compound HAO4 (CDCl₃) [$\delta_{\rm H}$ 0.9-2.6 ppm, $\delta_{\rm C}$ 110-220 ppm]

Figure 127. ESI-TOF Mass spectrum of compound HAO5

Figure 128. UV Spectrum of compound HAO5

Figure 129. IR Spectrum of compound HAO5 (KBr disc)

Figure 130. ¹H NMR (500 MHz) Spectrum of compound HAO5 (CDCl₃)

Figure 131. ¹³C NMR (125 MHz) Spectrum of compound HAO5 (CDCl₃)

Figure 132. HSQC Spectrum of compound HAO5 (CDCl₃)

Figure 133. NOESY Spectrum of compound HAO5 (CDCl₃)

Figure 134. ESI-TOF Mass spectrum of compound HAO6

Figure 135. UV Spectrum of compound HAO6

Figure 136. IR Spectrum of compound HAO6 (KBr disc)

Figure 137. ¹H NMR (500 MHz) Spectrum of compound HAO6 CDCl₃)

Figure 138. ¹³C NMR (125 MHz) Spectrum of compound HAO6 (CDCl₃)

Figure 139. $^{1}H^{-1}H$ COSY Spectrum of compound HAO6 (CDCl₃) [δ_{H} 2.0-7.0 ppm]

Figure 140. HMBC Spectrum of compound HAO6 (CDCl₃) [$\delta_{\rm H}$ 0.7-8.0 ppm, $\delta_{\rm C}$ 15-180 ppm]

Figure 141. HMBC Spectrum of compound HAO6 (CDCl₃) [$\delta_{\rm H}$ 6.0-6.2 ppm, $\delta_{\rm C}$ 20-48 ppm]

Figure 142. EI Mass spectrum of compound HAO7

Figure 143. IR Spectrum of compound HAO7 (KBr disc)

Figure 144. ¹H NMR (400 MHz) Spectrum of compound HAO7 (CDCl₃)

Figure 145. ¹³C APT (100 MHz) Spectrum of compound HAO7 (CDCl₃)

Figure 146. ¹³C APT (100 MHz) Spectrum of compound HAO7 (CDCl₃) (expanded)

Figure 147. HMBC Spectrum of compound HAO7 (CDCl₃)

Figure 148. EI Mass spectrum of compound EAO1

Figure 149. IR Spectrum of compound EAO1 (KBr disc)

Figure 150. ¹H NMR (500 MHz) Spectrum of compound EAO1 (CDCl₃)

Figure 151. ¹³C NMR (125 MHz) Spectrum of compound EAO1 (CDCl₃)

Figure 152. ¹³C NMR (125 MHz) Spectrum of compound EAO1 (CDCl₃) (expanded)

Figure 153. HSQC Spectrum of compound EAO1 (CDCl₃) [δ_{H} 0.7-2.0 ppm, δ_{C} 15-29 ppm]

.

Figure 154. HSQC Spectrum of compound EAO1 (CDCl₃) [$\delta_{\rm H}$ 3.2-3.4 ppm, $\delta_{\rm C}$ 71-80 ppm]

Figure 155. HMBC Spectrum of compound EAO1 (CDCl₃) [$\delta_{\rm H}$ 0.7-1.2 ppm, $\delta_{\rm C}$ 33-58 ppm]

Figure 157. HMBC Spectrum of compound EAO1 (CDCl₃) [$\delta_{\rm H}$ 3.1-3.6 ppm, $\delta_{\rm C}$ 26-80 ppm]

VITA

Miss Nantiya Joycharat was born on August 25, 1979 in Bangkok, Thailand. She received her Bachelor's Degree of Science (Public Health) (1st class honor) from Mahidol University in 2000. She was granted a Royal Golden Jubilee Ph.D. Scholarship from the Thailand Research Fund (TRF) in 2003.

Publication

Joycharat, N., Greger, H., Hofer, O., Saifah, E. 2007. Flavaglines and triterpenoids from the leaves of *Aglaia forbesii*. Phytochemistry, available online 20 August 2007.

Poster presentation

Nantiya Joycharat, Harald Greger, Otmar Hofer, and Ekarin Saifah. 2007. Chemical Constituents of *Aglaia forbesii* Leaves. RGJ-Ph.D. Congress VIII, April 20-22, 2007, Chonburi, Thailand.

