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CHAPTER I

INTRODUCTION

1.1 Background and Signification of the Research Problems
Pattern recognition is still a very active field of research. It can be applied to

almost every branch of the engineering sciences, such as physics, chemistry and computer
science. The aim of pattern recognition can be defined as the categorization of input data
into identifiable classes via the extraction of significant features or attributes of the data
from a background of irrelevant detail. The input and output of pattern recognition system
are pattern (or feature) and pattern class, respectively. The pattern is the description of
any member of a category representing a pattern class. For convenience, patterns are
usually represented by a vector. It is often useful to think of a pattern vector as a point
in an n-dimensional Euclidean space. Determination and then the discrimination of these
pattern vectors form the two major problems in pattern recognition system design. If we
can extract feature vector, then we do have a priori knowledge about the pattern to be
recognized. Under these circumstances pattern recognizing machines are best designed
using a training or learning procedure. Arbitrary decision functions are initially assumed,
and through a sequence of iterative training steps these decision functions are made to
approach optimum or satisfactory forms. The pattern class is given by user. The features
of a pattern class are the characterizing attributes common to all patterns belonging
to that class. Such features are often referred to as intraset features. The features
which represent the differences between pattern classes may be referred to as the interset
features.

After the image can be stored in digital format and the computer is powerful
enough for processing these data, many pattern recognition systems for image analysis
were arisen such as the automatic recognition of handwritten, the automatic recognition
of images of human faces, the automatic target recognition for Synthetic Aperture Radar
(SAR) images, etc. The number of real world applications (e.g. surveillance, secure
access, human computer interface) and the availability of cheap and powerful hardware
also lead to the development of commercial pattern recognition systems.

1.2 Literature Review
In pattern recognition, subspace analysis is the successful feature extraction method

in many applications such as face recognition [1–20], Automatic Target Recognition
(ATR) [21–23], speech recognition [24, 25], character recognition [26, 27], musical in-
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strument sound recognition [28], etc. In this dissertation, only image pattern applications
are discussed, especially for face recognition and ATR.

Generally, the original data space are high-dimensional that consume large amount
of memory and time for computation. Furthermore, the non useful information, which
contain in this space, will be the cause of the misclassification. In subspace analysis,
the high-dimensional space is compacted into a considerably low dimensional subspace,
and then we design classifiers in this subspace. Therefore, the low-dimensional subspace
must be good enough to represent the original space. On the one hand, by reducing
the dimensionality of data space, it alleviates the risk of bad estimation but improves
the generalization capability [29]. However, it may cause the loss of discriminative
information. Balancing these two sides is significant.

The subspace analysis techniques can be categorized into two main categories:
unsupervised and supervised techniques. The supervised technique is a technique for
creating a function from training data. The training data consist of pairs of input objects,
and desired outputs. The task of the supervised technique is to predict the value of the
function for any valid input object after having seen a number of training examples.
Supervised technique can generate models of two types. Most commonly, it generates
a global model that maps input objects to desired outputs. In some cases, the map
is implemented as a set of local models. The unsupervised technique differs from the
supervised technique by the fact that they do not use a priori output for each input object.
Indeed, the supervised technique is usually part of the pattern recognition problem where
we dispose class label for each object. This additional information allows choosing the
subspace which suitable for classification problem. In the following we will review both
subspace analysis techniques: unsupervised and supervised.

There are many works that unsupervised techniques are applied [1–3, 6, 8, 14, 15,
30]. Among these works, Principal Component Analysis (PCA) is the most commonly
used technique. PCA is constructed around the criteria of preserving the data distri-
bution. One of the widely known works on PCA is due to Turk and Pentland [3],
called Eigenface. Eigenface is a successful technique in face recognition. The image
is projected in a space in which the correlation among the components is zero. This
space transformation is also known as Karhunen-Loeve transform. Every image in the
database can be represented as a vector of weights which are obtained by projecting the
image into Eigenface components by a simple inner product operation. When a new test
image whose identification is required is given, the new image is also represented by its
vector of weights. The identification of the test image is done by locating the image in
the database whose weights are the closest, in Euclidean distance, to the weights of the
test image.

In supervised techniques, Linear Discriminant Analysis (LDA) or Fisher Discrim-
inant Analysis (FDA) is cited in a great number of successful works in recognition
systems [16–18, 31–34]. In LDA’s criterion, the image is projected in the subspace,
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in which the variability among the image vectors of the same class (with in class) is
minimized and the variability among the face-vectors of different classes (between class)
is maximized. However, LDA has two drawbacks when directly applied to the original
input space [18]. First of all, some non useful information such as image background
may be regarded by LDA as the discriminant information. This causes misclassification
when the face of the same subject is presented on different background. Secondly, when
the available number of training samples is relatively small compared to the feature
dimension, the within-class scatter matrix be singular and the LDA cannot be applied.

The combination of unsupervised and supervised techniques can overcome some
of the above problems. In Fisherface [16] and the discriminant analysis of principal
components framework [17, 18] demonstrate a significant improvement, they consist of
LDA over the data projected onto the principal subspace since both techniques are com-
plementary. Indeed, as described previously, PCA is a unsupervised technique that has
no class information. Therefore, PCA does not provide any discriminative information.
However, PCA can be used to discard non discriminative information which allows the
improvement of the normal LDA. While LDA provides the discriminative information
via the criterion which considers the relationships of both within and between-class scat-
ter matrices. On the one hand, the dimension of the feature space is reduced by PCA.
Therefore, the estimation of scatter matrices in LDA can be improved. Especially, when
there are prominent variation in lighting condition and expression [16–18].

Another combination of unsupervised and supervised techniques framework is called
Class-Specific Subspace (CSS), Individual Eigenface Subspace [35,36] or Face-Specific
Subspace [37]. In traditional PCA [3], the samples are analyzed on the features extracted
in a low-dimensional space learned from all training samples from all classes, called a
universal Eigenface subspace. This subspace is optimal for representing training sam-
ples from all classes in the minimum mean squared error sense, it may not adequately
capture or describe the detailed information that discriminates the samples in each class
from another. While each subspace of CSS learned from only the training samples in
same class. In this way, the CSS representation can provide a minimum reconstruction
error. The reconstruction error is used to classify the input data via the Distance From
CSS (DFCSS). Less DFCSS means more probability that the input data belongs to the
corresponding class. There are many advantages of using CSS. First of all, the trans-
formation matrices are trained from samples in their class, thus it is more suitable for
representation the sample in their own class than a transformation matrix which is trained
by samples in all classes. Secondly, the DFCSS is the distance between original image
and its reconstruction image from CSS, therefore it requires only the memory for storing
the transformation matrices as the number of classes. There is no more need to keep the
feature vectors of all training samples when the neatest neighbor classifier are applied.
Thirdly, the number of classes is usually less than the number of training samples, so
the number of distance calculation of CSS-based method is also less than the number
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of distance calculation in conventional methods. However, there are many drawbacks
in this approach. First of all, since the number of training samples is limit thus the
available number of training samples for separated estimating each individual subspace
may be too small. To solve this problem, the authors [37] suggest a simple technique
to derive multiple samples from a single example image. The technique is based on the
following two intuitive propositions: proper geometric transforms (translation, rotation in
image plane, scale changes, etc.) and proper gray-level transforms (simulative directional
lighting, man-made noise, etc.). Secondly, this approach requires more computation time
than the original PCA to calculate all of these CSSs.

However, all of above methods, the 2D image matrix must be previously trans-
formed into vector. Therefore, the dimension of the feature space is very large. This
leads to many problems in real application. First of all, working in the large dimensional
feature space means that the dimension of the scatter matrix will be very large thus
requires an enormous amount of training samples to obtain a good estimator. This is
known as the curse of dimensionality [38]. Secondly, the spatial structure information
could be lost in transformation process. Finally, if the available number of training sam-
ples is relatively very small compared to the feature dimension, the covariance matrix
which estimated by these features will be singular, called singularity problem or Small
Sample Size (SSS) problem [31].

Recently, Yang et al. [39] proposed an original technique called Two-Dimensional
Principal Component Analysis (2DPCA), in which the image covariance matrix is com-
puted directly on image matrices so the spatial structure information can be preserved.
This yields a covariance matrix whose dimension just equals to the width of the face
image. This is far smaller than the size of covariance matrix in PCA. Therefore, the
image covariance matrix can be better estimated and will usually be full rank. That
means the curse of dimensionality and the SSS problem can be avoided. Evidently, the
experimental results in [39–42] have shown the improvement of 2DPCA over PCA on
several face databases. As previously described, the directions that maximize the scatter
of the data from all training samples might not be as adequate to discriminate between
classes. In recognition task, a projection is required to emphasize the discrimination
between classes.

A supervised subspace analysis technique in 2D subspace called Two-Dimensional
Linear Discriminant Analysis (2DLDA) was proposed in [43]. This approach overcomes
the SSS problem in classical LDA by working with images in matrix representation,
like in 2DPCA. In particular, bilateral projection scheme was applied here same as in
B2DPCA [40,41]. In this way, two eigenvalue problems were solved per iteration. One
corresponds to the column direction and another one corresponds to the row direction of
image, respectively. However, 2DLDA still gathers some non useful information such
as image background as the discriminant information, like the classical LDA.

All of above techniques attempt to build only one strong classifier to manipulate



5

data space. However, when data are highly dimensional and the training sample size
is small compared to the data dimensionality, it may be difficult to construct a good
single classification rule. Usually, a classifier constructed on small training sets is biased
and has a large variance as the classifier parameters (coefficients) are poorly estimated.
Consequently, such a classifier may be weak, having a poor performance. Moreover,
often it will be unstable: small changes in the training set cause large changes in
the classifier. In general, bad performance of a classifier can be caused by different
factors: incorrect assumptions about the model when constructing a classifier; too low a
complexity of the classification rule to solve the problem; incorrect settings for classifier
parameters; instability of the classifier, etc. Consequently, in the literature the term weak
classifier can refer to different things: badly performing classifiers, unstable classifiers,
classifiers of a low complexity, or classifiers depending upon certain assumed models that
are not always true. But the performance of the weak classifier should satisfy slightly
better than random guessing. However, in all cases when intending to improve a weak
classifier, one actually aims to improve its performance. Therefore, describing a weak
classifier as one that has a poor performance seems to be the most general definition.

To improve a weak classifier, one approach is to construct many weak classifiers
instead of a single one, and to combine them into a powerful decision rule. Recently,
a number of combining techniques has been developed. The most popular are bagging
[44], boosting [45] and the Random Subspace Method (RSM) [46]. In bagging, one
samples the training set, generating random independent bootstrap replicates, constructs
the classifier on each of these, and aggregates them by a simple majority vote in the
final decision rule. In boosting, classifiers are constructed on weighted versions of the
training set, which is dependent on previous classification results. Initially, all objects
have equal weights, and the first classifier is constructed on this data set. Then, weights
are changed according to the performance of the classifier. Erroneously classified objects
get larger weights, and the next classifier is boosted on the reweighted training set. In
this way, a sequence of training sets and classifiers is obtained, these classifiers are then
combined by simple majority voting or by weighted majority voting in the final decision.
In the random subspace method, classifiers are constructed in random subspaces of the
data feature space. These classifiers are usually combined by simple majority voting
in the final decision rule. The ensemble methods were applied to face and automatic
recognitions in [47–49].

The RSM is useful for weak linear classifiers obtained on small and critical training
sample sizes. It improves the performance of linear classifiers which often suffer from the
curse of dimensionality and having decreasing learning curves [50]. In the 2D subspace
methods such as 2DPCA or 2DLDA, the performance will be decreasing when the
dimension of feature increases. Therefore, the RSM is appropriate for the 2D subspace
methods because the RSM constructs multiple classifiers in random feature subspaces,
that means the dimension of feature is reduced. While Bagging and Boosting build the
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multiple classifiers from training samples, the dimension of feature remain as ever.
In this dissertation, four frameworks are applied to improve the recognition perfor-

mance of 2D subspace analysis. The first and the second frameworks are the combination
of unsupervised and supervised techniques frameworks. The generalized version of 2D-
PCA is presented in the third framework. And The random subspace method is applied
to 2D subspace analysis in the fourth framework.

The first framework is based on discriminant analysis of principal components
framework or Fisherface. Because of 2DPCA and PCA is more suitable for face repre-
sentation than face recognition. Therefore, LDA is necessary for better performance in
recognition task. Unfortunately, the linear transformation of 2DPCA reduces only the size
of rows. The number of rows still equal to the height of original image. Thus, the SSS
problem will be appeared when LDA is performed after 2DPCA directly. To overcome
this problem, we proposed a simplified version of the bilateral 2DLDA by using only
unilateral projection scheme, based on the 2DPCA concept. According to the previous
discussion on 2DLDA, our proposed 2DLDA method is different from [43] on the fact
that our method aims to find the optimal discriminated transformation for projecting the
principal component vectors, which obtained from 2DPCA step, In this way, the pro-
jection direction of our 2DLDA is also corresponded to the direction which is projected
in 2DPCA step, that is the row direction of images. Applying our proposed 2DLDA to
2DPCA can solve not only the SSS problem and the curse of dimensionality dilemma
but also allows us to work directly on the image matrix in all projections. Hence, spatial
structure information is employed and the size of all scatter matrices cannot be greater
than the width of face image. Furthermore, computing with this dimension, the face
image do not need to be resized, since all information still be preserved.

The second framework is based on Class-Specific Subspace (CSS). By applying
CSS over 2DPCA, the class information is introduced to unsupervised method. Only
one subspace is considered in the conventional 2DPCA. All training samples are used
to construct this subspace. Unlike 2DPCA, many subspaces are constructed in CSS
framework. Each subspace of CSS learned from only the training samples in own class.
In this way, the CSS representation can provide a minimum reconstruction error. Which
it can be used to classify the input data. However, because of the number of the training
samples is limited in many real-world applications, thus the training samples which
provides for each CSS will be very rare. It means the CSS in 1D subspace analysis will
suffer from the SSS problem. Fortunately, in 2DPCA, the non-singular image covariance
matrix can be estimated via only a few of training samples. Indeed, the exact number of
training samples, in 2DPCA, is not just equal to the number of images but it equals to
the number of images multiply by the number of rows of each image [51]. Therefore,
the singularity or SSS problem is avertible even though in the CSS framework.

The third framework is base on the generalize form of image covariance matrix,
called image cross-covariance matrix. Compare to the covariance matrix of PCA, the
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image covariance matrix discard some of the information. This disregard information may
possibly be useful for discrimination. The image cross-covariance matrices are formulated
by two variables, the original image and its shifted version. By our shifting algorithm,
many image cross-covariance matrices are formulated to cover all of the information in
which discarded by the image covariance matrix.

The fourth framework applies the random subspace method [46] to 2DPCA. Nor-
mally, the feature of 2DPCA is a matrix. In the row direction, the number of the columns
of these matrix is affected by the number of selected eigenvalues of the image covari-
ance matrix while the number of selected eigenvalues is not influenced in the column
direction. Thus, the number of the rows is still equal to the height of original image
and the random subspace method can be apply in the column direction. The random
subspaces are constructed by randomly selecting a number of rows of the original feature
matrix. The multiple classifiers are constructed in these random subspaces of the data
feature space. These classifiers are usually combined by simple majority voting in the
final decision rule. Moreover, we applied this framework to the Diagonal Principal Com-
ponent Analysis (DiaPCA) [52], a 2DPCA with diagonal face, and used for selecting the
subspaces which constructed by the third framework.

This dissertation has a main objective to improve the recognition performance in
two-dimensional subspace based technique, via including class information to conven-
tional unsupervised techniques, taking the benefit of the Random Subspace Method and
generalizing the 2DPCA. The results in the dissertation would be beneficial for face
recognition and other image understanding systems, especially in the automatic target
recognition.

1.3 Objectives
Propose the novel two-dimensional subspace analysis techniques with application

to image pattern recognition. The two-dimensional subspace analysis directly performs
with the images in original matrix form. In this way, it can overcome the Singularity
or Small Sample Size (SSS) problem in traditional subspace analysis, and preserved the
spatial structure information of images. The frameworks of Two-Dimensional Linear
Discriminant Analysis of Principal Component Vectors, Class-Specific Subspace of
Two-Dimensional Principal Component Analysis, Image Cross-Covariance Analysis and
Two-Dimensional Random Subspace Analysis are proposed to increase the recognition
performance.

The subspace analysis techniques aim to reduce noise and extract the discriminative
information for classification. Therefore, the two case studies, face and automatic target
recognitions are used to evaluate the performance of the proposed techniques. The face
images inherently affected by pose, expression and illumination, while the Synthetic
aperture radar (SAR) images are inherently affected by multiplicative speckle noise,
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which is due to the coherent nature of the scattering phenomenon. These applications
are totally affected by difference noises.

1.4 Scope
1. Study the performance and the limitation of the classical subspace analysis used in
the pattern recognition.

2. Develop the novel two-dimensional subspace analysis techniques that can apply to
the pattern recognition systems on standard databases.

(a) Face image recognition
i. Only the 2D image of full frontal view faces will be presented to the
face recognition system.

ii. The face areas are detected manually.
iii. The frontal view face recognition system should be extended to a expres-
sion invariant face recognition system.

(b) The non-face image recognition such as Automatic Target Recognition (ATR).

3. Study the performance of the proposed techniques and provide a comparative study
of proposed techniques with other traditional techniques proposed by many authors
in the past.

1.5 Expected Prospects
1. Acquire a basic knowledge of subspace analysis for applying to pattern recognitions.

2. Obtain the new subspace analysis techniques.

3. Obtain new pattern recognition systems.

4. Publish the international journal or conference papers.

5. Know the advantages and disadvantages of using the proposed subspace analysis
techniques in pattern recognitions.

6. Understand the necessity of the subspace analysis techniques for pattern recogni-
tions.
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1.6 Research Procedure
1. Study previous research papers relevant to the research works of the dissertation.

2. Develop the novel subspace analysis techniques.

3. Develop the high accuracy pattern recognition techniques.

4. Develop simulation programs.

5. Test the proposed algorithms by using standard face databases such as AR, ORL
and Yale.

6. Perform the proposed algorithm on a non-face database, MSTAR, in the application
of Automatic Target Recognition.

7. Collect and analyze computational results obtained from simulation programs.

8. Summarize the major findings as we found in step 7 and conclude the performance
of the proposed framework in all concerned aspects.

9. Publish the international journal or conference papers.

10. Check whether the conclusions meet all the objectives of the research work of the
dissertation.

11. Write the dissertation.



CHAPTER II

BASIC BACKGROUND AND RELATED TOPICS

In this chapter, the fundamental knowledge of the two-dimensional subspace analy-
sis algorithm is described. First of all, the traditional 1D subspace, i.e. all points in this
subspace are represented in vector form, analysis techniques and its variants. Including
the serious problems of the subspace analysis and the ensemble method for subspace anal-
ysis, called Random Subspace Method (RSM), are reviewed. And then, the 2D subspace,
i.e. all points in this subspace are represented in matrix form, analysis is introduced vi-
a Two-Dimensional Principal Component Analysis (2DPCA) framework. Finally, the
comparisons of PCA and 2DPCA are discussed, including the distance measurement, are
described.

2.1 One-Dimensional Subspace Analysis and Its Variants
In this section, we reviewed the traditional 1D subspace analysis techniques, i.e.

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA). And then the
frameworks of 1D subspace analysis, the linear discriminant of principal components and
Class-Specific Subspace-based PCA are discussed. after that the one of ensemble method,
the serious problems of the subspace analysis are criticized. Finally, the ensemble
methods for subspace analysis are presented.

2.1.1 Principal Component Analysis (PCA)
Principal components analysis (PCA) is the one of unsupervised subspace method,

which used to reduce multidimensional data sets to lower dimensions for analysis.
Let A is the m by n matrix of pixel’s intensity of the image and the image vector,

γ, is the vector of A which was previously transformed by column-stack vectorization.
Thus, the dimension of γ is mn× 1. The average of γ can be found as

ψ =
1

M

M∑
i=1

γi (2.1)

where M is the number of training images. The zero-mean normalization is applied to
all image vectors by

φi = γi − ψ, i = 1, 2, 3, ..., M, (2.2)
where φi is the ith zero-mean normalized of γi. The covariance matrix, C, of these
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image vectors can be calculated as

C = ΦΦT , (2.3)

where Φ =
[

φ1 φ2 . . . φM

]
.

The PCA is defined as an orthogonal linear transformation that transforms the data
to a new coordinate system such that the greatest variance by any projection of the
data comes to lie on the principal component directions, as shown in Fig. 2.1. This
transformation is therefore equivalent to finding the eigenvalue decomposition of the
matrix C.

Figure 2.1: Projection of the data points (x,y) onto the principal component directions
(v1,v2)

According to the dimension of φ, the dimension of C will be mn × mn which
is normally quite large for calculating the eigenvalue decomposition. However, since
the number training samples is normally smaller than the dimension of φ therefore the
non-zero eigenvalues of this covariance matrix can be found in another way via a new
matrix,

L = ΦTΦ. (2.4)
The dimension of L is only M × M , thus the eigenvalue decomposition of L can be
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done easier than C. The eigenvalue decomposition of L,

L = VΛVT , (2.5)

where Λ is the diagonal matrix which contains the eigenvalues of L and V contains a set
of eigenvectors of L. Finally, the eigenvectors of C which correspond to the non-zero
eigenvalues of C can be determined by

U = ΦV, (2.6)

where U is the matrix that contains a set of eigenvectors of C.
The eigenvector associated with the largest eigenvalue has the same direction as the

first principal component, the eigenvector associated with the second largest eigenvalue
determines the direction of the second principal component, and so on. Since the
lower-order principal components often contain the most important aspects of the data,
the dimension of projected space can be reduced by retaining those characteristics of the
data set that contribute most to its variance, by keeping lower-order principal components
and ignoring higher-order ones.

2.1.2 Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis is a supervised subspace method in the sense that it

represents data to that are useful for classification [31]. From Eq. (2.2), each normalized
image vector φi belongs to one of K classes {ω1, ω2, ω3, . . . , ωK}. The between-class
scatter matrix Sb and the within-class scatter matrix Sw are defined as

Sb =
K∑

k=1

nk

K
(φ̄k − φ̄)(φ̄k − φ̄)T (2.7)

Sw =
K∑

k=1

nk

K

∑

φi∈ωk

(φi − φ̄k)(φi − φ̄k)
T , (2.8)

where nk and φ̄k are the number of samples and the expected value of class ωk respec-
tively. And φ̄ denotes the global mean of the entire samples. LDA finds a projection
matrix, U, that maximizes the Fisher’s criterion, the ratio of the determinant of the
between-class scatter matrix to the determinant of the within-class scatter matrix as

Uopt = arg max
U

∣∣UTSbU
∣∣

|UTSwU| , (2.9)

where Uopt is the optimal solution of the projection matrix which is a set of generalized
eigenvectors of S−1

w Sb. This criterion attempts to minimize the variability among the
image vectors of the same class (with-in class) while the variability among the image
vectors of different classes (between class) is maximized, as shown in Fig. 2.2 Usually,
the singularity of the within-class scatter matrix commonly encountered when the number
of the training samples is too small.
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Figure 2.2 Illustration of within-class and between-class

2.1.3 Linear Discriminant Analysis of Principal Components
In linear discriminant analysis of principal components framework [17, 18] and

Fisherface [16], The combination of unsupervised and supervised techniques had been
used for face recognition.

The unsupervised technique, like PCA, has no class information. Thus, the pure
PCA algorithm does not provide any discriminative information. While LDA does not
perform very well when LDA directly applied to the original input space. Because of
the first reason, some non useful information such as image background are regarded
by LDA as the discriminant information. This causes misclassification when the face
of the same subject is presented on different background. And the second reason, the
within-class scatter matrix be singular when the available number of training samples is
relatively small compared to the feature dimension, singularity problem. Therefore the
LDA cannot be applied.

All above problems can be solved by firstly projecting the original images into
PCA subspace, approximate the original data with lower dimensional feature vectors, in
which the non discriminative information can be discarded. And then LDA are performed
in this subspace for discrimination these features. The illustration of this framework is
shown in Fig. 2.3

Figure 2.3: Illustration of the Linear Discriminant Analysis of principal components
framework
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2.1.4 Class-Specific Subspace-Based PCA
In [37], the Class-Specific Subspace (CSS) was proposed and applied to PCA,

named Face-Specific Subspace (FSS). The difference from traditional method is the
covariance matrix of the kth class is evaluated from training samples of the kth class,
individually. The kth CSS was represented as a 4-tuple: the projection matrix, the mean
of the kth class, the eigenvalues of covariance matrix and the dimension of the kth FSS.
For identification, the input sample is projected to all CSSs and then reconstruct by
that CSS. If reconstruction error which obtained from the kth CSS is minimum then the
input sample is belong to the kth class, so called Distance From CSS (DFCSS). In this
dissertation, the CSS is adapted to 2DPCA framework.

2.1.5 Problems in Subspace Analysis
Three serious problems, i.e. the curse of dimensionality, the Small Sample Size

(SSS) problem and the over-fitting problem, are reviewed here.

2.1.5.1 The Curse of Dimensionality
The curse of dimensionality is a term coined by Richard Bellman [38] to de-

scribe the problem caused by the rapid increase in volume associated with adding extra
dimensions to a space.

It is a significant obstacle in high dimension data analysis, which refers to the fact
that a local neighborhood in higher dimensions is no longer local, or to put it another
way, the sparsity increases exponentially given a fixed amount of data points.

For illustration, 64 data points are simulated from a uniform (0, 1) distribution. In
one dimensional space, all the data points are clustered together, as shown in Fig. 2.4(a)
However, in two dimensional space, the data become much more sparse, as shown
in Fig. 2.4(b). And this is even obvious in three dimensional space, as shown in
Fig. 2.4(c). Thus to achieve the same accuracy, much larger data sets are needed even
when dimension is moderate and such large data sets are not available in practical
situation.

The curse of dimensionality is a significant obstacle in machine learning problems
that involve learning a state-of-nature from a finite number of data samples in a high-
dimensional feature space.

2.1.5.2 The Small Sample Size (SSS) Problem
When the dimension of the feature space is larger than the number of training

examples per class, not all parameters can be estimated accurately. Consequently, pattern
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Figure 2.4 An illustration of the curse of dimensionality.



16

recognition techniques cannot perform well when they are used to analyze this space.
This problem is called a Small Sample Size (SSS) problem [31].

For classification which is based on similarity measures that involve the inverse of
the sample group covariance matrices, such as LDA. Unfortunately, these matrices are
singular in SSS problems, therefore sometimes the SSS problem is called a singularity
problem.

2.1.5.3 Over-fitting Problem
Usually a learning algorithm is trained using some set of training examples, i.e.

exemplary situations for which the desired output is known. The learner is assumed to
reach a state where it will also be able to predict the correct output for other examples,
thus generalizing to situations not presented during training (based on its inductive bias).
However, in cases where learning was performed too long or where training examples
are rare, the learner may adjust to very specific random features of the training data,
that have no causal relation to the target function. In this process of over-fitting, the
performance on the training examples still increases while the performance on unseen
data becomes worse.

Normally, in real-world application such as face recognition, the available number
of training samples is very small. Thus when applied to image recognition, classical
PCA is apt to be over-fitted to the training set due to the SSS problem, especially when
the nearest neighbor classifier is applied.

2.1.6 Ensemble Methods for Subspace Analysis
In our focus application, the available number of training samples is inadequate.

And the ensemble methods, like bagging or boosting, build the multiple classifiers from
training samples. Therefore, in this dissertation, only Random Subspace Method (RSM)
is applied to subspace analysis framework because the RSM constructs multiple classifiers
in random feature subspaces, that means the dimension of feature is reduced. From this
reason, the lower dimensional subspaces that were constructed by RSM could be far
away from the problems in previous section.

2.1.6.1 Random Subspace Method (RSM)
The Random Subspace Method (RSM) can be used to create multiple independent

tree-classifiers that can be combined to improve accuracy [46]. And then apply the pro-
cedure to k-nearest-neighbor classifiers and show that it can achieve similar results [53].
In the RSM, one also modifies the training data like other ensemble methods. How-
ever, this modification is performed in the feature space. It randomly selects different
feature dimensions and constructs multiple smaller subsets. When the feature dimension
is smaller than the original one, the classifier, which is trained by this features in each
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subset, will be weak classifier. However, the weak classifier will be more accurate
when the combination rule is applied to a group of this weak classifiers in the end for
prediction on the testing set. The RSM may benefit from using random subspaces for
both constructing and aggregating the classifiers. When the number of training objects
is relatively small compared with the data dimensionality, by constructing classifiers in
random subspaces one may solve the SSS problem. The subspace dimensionality is
smaller than in the original feature space, while the number of training objects remains
the same. Therefore, the relative training sample size increases. When data have many
redundant features, one may obtain better classifiers in random subspaces than in the
original feature space. The combined decision of such classifiers may be superior to a
single classifier constructed on the original training set in the complete feature space.
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2.2 Two-Dimensional Subspace Analysis and Its Variants
Traditionally, the image feature is storing in vector form, that leads to many

problems in real world application, as describe in Chapter I.
The first 2D subspace based approach was introduced in [39], called Two-Dimensio-

nal Principal Component Analysis (2DPCA). The scatter matrix is computed directly on
image matrices so the spatial structure information can be preserved. This yields a scatter
matrix whose dimension equals to the width of the face image. This is far smaller than
the size of covariance matrix in traditional one. Therefore, the scatter matrix can be
better estimated and full rank in 2D subspace based method.

2.2.1 Image Covariance Matrix and Two-Dimensional Principal Component Analysis
(2DPCA)
Normally in 1D subspace analysis, the 2D image matrices are first transformed to

1D image vectors by vectorization. The vectorization of a matrix is the column vector
obtain by stacking the columns of the matrix on top of one another. The covariance
or scatter matrix are formulated from the these image vectors. The covariance matrix
will be well estimated if and only if the number of available training samples is not
far smaller than the dimension of this matrix. In fact, it is too hard to collect this the
number of samples. Then, normally in 1D subspace analysis, the estimated covariance
matrix is not well estimated and not full rank.

Let each image is represented by a m by n matrix A of its pixels’ intensity. We
consider linear projection of the form

y = Ax, (2.10)

where x is an n dimensional projection axis and y is the projected feature of this image
on x, called principal component vector.

In original algorithm of 2DPCA [39], like PCA, 2DPCA search for the optimal
projection by maximize the total scatter of projected data. Instead of using the criterion
as in PCA, the total scatter of the projected samples can be characterized by the trace
of the covariance matrix of the projected feature vectors. From this point of view, the
following criterion was adopt as

J(x) = tr(Sx), (2.11)

where
Sx = E[(y− Ey)(y− Ey)T ]. (2.12)
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The total power equals to the sum of the diagonal elements or trace of the covariance
matrix, the trace of S can be rewritten as

tr(Sx) = tr{E[(y − Ey)(y − Ey)T ]}
= tr{E[(A− EA)xxT (A− EA)T ]}
= tr{E[xT (A− EA)T (A− EA)x]}
= tr{xT E[(A− EA)T (A− EA)]x}
= tr{xTGx}. (2.13)

Giving that
G = E[(A− EA)T (A− EA)]. (2.14)

This matrix G is called image covariance matrix. Therefore, the alternative criterion can
be expressed by

J(x) = tr(xTGx), (2.15)
where the image inner-scatter matrix Gx is computed in a straightforward manner by

G =
1

M

M∑

k=1

(Ak − Ā)T (Ak − Ā), (2.16)

where Ā denotes the average image,

Ā =
1

M

M∑

k=1

Ak. (2.17)

It can be shown that the vector x maximizing Eq. (2.13) correspond to the largest eigen-
value of G [42]. This can be done, for example, by using the Eigenvalue decomposition
or Singular Value Decomposition (SVD) algorithm. However, one projection axis is
usually not enough to accurately represent the data, thus several eigenvectors of G are
needed. The number of eigenvectors d can be chosen according to a predefined threshold
θ.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be eigenvalues of G sorted in non-increasing order. We
select d first eigenvectors such that their corresponding eigenvalues satisfy

θ ≤

d∑
i=1

λi

n∑
i=1

λi

. (2.18)

For feature extraction, Let x1, . . . ,xd be d selected largest eigenvectors of G. Each
image A is projected onto these d dimensional subspace according to Eq. (2.10). The
projected image Y = [y1, . . . ,yd] is then an m by d matrix given by:

Y = AX, (2.19)
where X = [x1, . . . ,xd] is a n by d projection matrix.
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2.2.2 Column-Based 2DPCA
The original 2DPCA can be called the row-based 2DPCA. The alternative way of

2DPCA can be using the column instead of row, column-based 2DPCA [41].
Let Ak = [(A

(1)
k )T (A

(2)
k )T . . . (A

(m)
k )T ]T and A = [(Ā(1))T (Ā(2))T . . . (Ā(m))T ]T ,

where A
(i)
k and Ā(i) denote the ith row vectors of Ak and Ā, respectively. Then Eq.

( 2.16) can be rewritten as

G =
1

M

M∑

k=1

m∑
i=1

(A
(i)
k − Ā(i))T (A

(i)
k − Ā(i)). (2.20)

This reveals that the image covariance matrix can be obtained from the outer
product of row vectors of images, assuming the training images have zero mean, i.e.
Ā = 0−. For that reason, we claim that original 2DPCA is working in the row direction
of images.

Illuminated by Eq. (2.20), a natural extension is to use the outer product be-
tween column vectors of images to construct the image covariance matrix. Let Ak =

[(A
(1)
k )(A

(2)
k ) . . . (A

(n)
k )] and Ā = [(Ā(1))(Ā(2)) . . . (Ā(n))], where A

(j)
k and Ā(j) denote

the jth column vectors of and Ak and Ā, respectively. Then the column-based definition
for image covariance matrix H can be defined as

H =
1

M

M∑

k=1

n∑
j=1

(A
(j)
k − Ā(j))(A

(j)
k − Ā(j))T . (2.21)

Eq. (2.21) can be derived at a similar way as in 2DPCA. Let Z ∈ Rm ×Rq be a matrix
with orthonormal columns. Projecting the random matrix A onto Z yields a q by n

matrix Ỹ = Z
T
A. Similar as in Eq. (2.13), the following criterion is adopted to find the

optimal projection matrix Z:

tr(SZ) = tr{E[(Ỹ − EỸ)(Ỹ − EỸ)T ]}
= tr{E[(ZTA− E[ZTA])(ZTA− E[ZTA])T ]}
= tr{ZT E[(A− EA)(A− EA)T ]Z}
= tr{ZTHZ}. (2.22)

From Eq. (2.22), the column-based definition of image covariance matrix H is:

H = E[(A− EA)(A− EA)T ]

=
1

M

M∑

k=1

(Ak − Ā)(Ak − Ā)T

=
1

M

M∑

k=1

n∑
j=1

(A
(j)
k − Ā(j))(A

(j)
k − Ā(j))T . (2.23)
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Similarly, the optimal projection matrix can be obtained by computing the eigenvectors
of Eq. (2.23) corresponding to the q largest eigenvalues. The value of q can also be
controlled by setting a threshold as in Eq. (2.18). Because the eigenvectors of Eq. (2.23)
only reflect the information between columns of images, than the column-based 2DPCA
is working in the column direction of images.

2.2.3 Bilateral-Projection-Based 2DPCA (B2DPCA)
There are three major difference techniques in the framework of the bilateral pro-

jection scheme.
Firstly, the non-iterative bilateral projection scheme was applied to 2DPCA via left

and right multiplying projection matrices [41,54,55] as follows

B = LTAR, (2.24)

where B is a feature matrix which extracted from image A and L is a left multiplying
projection matrix. Similar to the right multiplying projection matrix R in Section 2.2.1,
matrix L is a m by l projection matrix that obtained by choosing the eigenvectors of
image covariance matrix H corresponding to the l largest eigenvalues. The matrix H,
which corresponds to the column direction of images, can be evaluated by

H =
1

M

M∑

k=1

(Ak − Ā)(Ak − Ā)T . (2.25)

Therefore, the dimension of feature matrix is decreasing from m×r to l×r. In this way,
the computation time also be reducing. Moreover, the recognition accuracy of B2DPCA
is better than 2DPCA.

Secondly, the bilateral projection scheme of 2DPCA with the iterative algorithm
was proposed in [40, 56]. Let L ∈ Rm × Rl and R ∈ Rn × Rr be the left and right
multiplying projection matrix respectively. For an m× n image Ak and l × r projected
image Bk , the bilateral projection is formulated as follows:

Bk = LTAkR (2.26)

where Bk is the extracted feature matrix for image Ak.
The optimal projection matrices, L and R in Eq. (2.26) can be computed by solving

the following minimization criterion that the reconstructed image, LBkR
T , gives the best

approximation of Ak:

J(L,R) = min
M∑

k=1

∥∥Ak − LBkR
T
∥∥2

F
, (2.27)

where M is the number of data samples and ‖ • ‖F is the Frobenius norm of a matrix.
The detailed iterative scheme designed to compute the optimal projection matrices,

L and R, is listed in Table 2.1. The obtained solutions are locally optimal because
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Table 2.1 The Bilateral Projection Scheme of 2DPCA with Iterative Algorithm.

S1: Initialize L, L = L0 and i = 0

S2: While not convergent
S3: Compute G = 1

M

M∑
k=1

(Ak − Ā)TLi−1L
T
i−1(Ak − Ā)

S4: Compute the r eigenvectors {eR
j }r

j=1 of G
corresponding to the largest r eigenvalues

S5: Ri = [eR
1 , . . . , eR

r ]

S6: Compute H = 1
M

M∑
k=1

(Ak − Ā)RiR
T
i (Ak − Ā)T

S7: Compute the l eigenvectors {eL
j }l

j=1 of H
corresponding to the largest l eigenvalues

S8: Li = [eL
1 , . . . , eL

l ]

S9: i = i + 1

S10: End While
S11: L = Li−1

S12: R = Ri−1

S13: Feature extraction: Bk = LTAkR

the solutions are dependent on the initialized L0. In [40], the initialized L0 sets to the
m×m identity matrix Im, while this value is set to

[
Ir

0

]
in [56], where Ir is the l× l

identity matrix.
Finally, The criterion in Eq. (2.27) is biquadratic and has no closed-form solution.

Therefore, an iterative procedure to obtain the local optimal solution was proposed
in [57]. For R ∈ Rm × Rr, the criterion in Eq. (2.27) can be rewritten as

J(R) = min
M∑

k=1

∥∥Ak −AL
k RRT

∥∥2

F
, (2.28)

where AL
k = LLTAk. The solution of Eq. (2.28) is the eigenvectors of the eigenvalue

decomposition of image covariance matrix:

G =
1

M

M∑

k=1

(AL
k − ĀL)T (AL

k − ĀL). (2.29)

Similarly, for L ∈ Rn × Rl, the criterion in Eq. (2.27) is changed to

J(L) = min
M∑

k=1

∥∥Ak − LLTAR
k

∥∥2

F
, (2.30)
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Table 2.2 Coupled Subspaces Analysis Algorithm.

S1: Initialize L, L = Im

S2: For i = 1, 2, . . . , Tmax

S3: Compute AL
k = Li−1L

T
i−1Ak

S4: Compute G = 1
M

M∑
k=1

(AL
k − ĀL)T (AL

k − ĀL)

S5: Compute the r eigenvectors {eR
j }r

j=1 of G
corresponding to the largest r eigenvalues

S6: Ri = [eR
1 , . . . , eR

r ]

S7: Compute AR
k = AkRiR

T
i

S8: Compute H = 1
M

M∑
k=1

(AL
k − ĀL)(AL

k − ĀL)T

S9: Compute the l eigenvectors {eL
j }l

j=1 of H
corresponding to the largest l eigenvalues

S10: Li = [eL
1 , . . . , eL

l ]

S11: If t > 2 and ‖Li − Li−1‖F < mε and ‖Ri −Ri−1‖F < nε

S12: Then Go to S3

S13: Else Go to S15

S14: End For
S15: L = Li

S16: R = Ri

S17: Feature extraction: Bk = LTAkR

where AR
k = AkRRT . Again, the solution of Eq. (2.30) is the eigenvectors of the

eigenvalue decomposition of image covariance matrix:

H =
1

M

M∑

k=1

(AL
k − ĀL)(AL

k − ĀL)T . (2.31)

By iteratively optimizing the objective function with respect to L andR, respec-
tively, we can obtain a local optimum of the solution. The whole procedure, namely
Coupled Subspace Analysis (CSA) [57], is shown in Fig. 2.5.

2.2.4 Diagonal-Based 2DPCA (DiaPCA)
The motivation for developing the DiaPCA method originates from an essential

observation on the recently proposed 2DPCA [39]. That is, 2DPCA can be seen as the
row-based PCA, which has been pointed out in [58,59]. Therefore, the projective vectors
of 2DPCA only reflect variations between rows of images, while the omitted variations
between columns of images are usually also useful for recognition, which implies some
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Figure 2.5: The flowchart of Coupled Subspaces Analysis: (a) The original image. (b)
All the rows of the images are treated as the objects. (c) The low-dimensional repre-
sentation after the projection with the right multiplying projection. (d) The reconstructed
images with the right multiplying projection. (e) All the columns of the images are
treated as the objects. (f) The low dimensional representation after the projection with
left and right multiplying projection.
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structure information (e.g. regions of a face like eyes, nose, etc.) cannot be uncovered
by it. In that case, 2DPCA can hardly obtain improved accuracy.

In [52], a novel method called diagonal principal component analysis (DiaPCA)
is proposed. In contrast to 2DPCA, DiaPCA seeks the optimal projective vectors from
diagonal face images and therefore the correlations between variations of rows and those
of columns of images can be kept. Therefore, this problem can solve by transforming
the original face images into corresponding diagonal face images, as shown in Fig. 2.6
and Fig. 2.7. Because the rows (columns) in the transformed diagonal face images
simultaneously integrate the information of rows and columns in original images, it
can reflect both information between rows and those between columns. Through the
entanglement of row and column information, it is expected that DiaPCA may find some
useful block or structure information for recognition in original images. The sample
diagonal face images on Yale database are displayed in Fig. 2.8.

Experimental results on a subset of FERET database [52] show that DiaPCA is
more accurate than both PCA and 2DPCA. Furthermore, it is shown that the accuracy
can be further improved by combining DiaPCA and 2DPCA together.
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Figure 2.6: Illustration of the ways for deriving the diagonal face images: If the number
of columns is more than the number of rows

Figure 2.7: Illustration of the ways for deriving the diagonal face images: If the number
of columns is less than the number of rows

Figure 2.8 The sample diagonal face images on Yale database.
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2.3 PCA Versus 2DPCA
In this section, the relationship of PCA and 2DPCA and the distance measurements

are reviewed.

2.3.1 The Relationship between PCA and 2DPCA
The sketch for the reason that why 2DPCA is better than PCA should lie on the

answer of the following question:

What is happen when the inputs of PCA are the rows of each image
instead of entire images?

Let {Γ1,Γ2,Γ3, . . . ,Γn} be the set of rows of an image A then the average of this
training set will be Ψ = 1

n

∑n
i=1 Γi. The i-th row differ from the average by the vector

Φi = Γi −Ψ. Therefore, the covariance matrix C of PCA is given by

C =
1

n

n∑
i=1

ΦiΦ
T
i =

1

n
ΥΥT , (2.32)

where the matrix Υ = [Φ1 Φ2 . . . Φn]. Following Eigenface’s algorithm [3], the optimal
projection vectors can be determined as the eigenvectors of matrix ΥTΥ. If zero mean,
Ψ = 0, the image covariance matrix G in Eq. (2.14) can be rewritten as

G = E[(Υ− EΥ)T (Υ− EΥ)]

= E[ΥTΥ]− EΥT EΥ

= E[ΥTΥ]− β, (2.33)

where β = EΥT EΥ.
From this point, 2DPCA can be explained in a novel perspective as a collection of

biased PCAs. Indeed, the number of training samples of conventional PCA is only M

while the number of training samples of 2DPCA is M ×m. Since the dimension of G is
n×n with n < M ×m, thus 2DPCA can provide the full rank image covariance matrix.
This is the reason of the improvement of 2DPCA over the original PCA [58,59].

2.3.2 Evaluation of Over-fitting Problem in PCA and 2DPCA
From Section 2.1.5.3, the over-fitting problem is the one serious problem in tradi-

tional PCA. Therefore, it is interesting to investigate the over-fitting problem in 2DPCA.
The normalized Mean-Square Error (MSE) can be used to evaluate the over-fitting

problem [54]. One statistical characteristic of PCA is that the MSE between random
vector and its subspace projection is minimal. Thus the difference of MSE on the training
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set and the validation set can be used to investigate the over-fitting problem. The MSE
on the training set MSEtrain and validation set MSEval are defined as

MSEtrain =

Ntrain∑
i=1

∥∥∥Atrain
i − Ãtrain

i

∥∥∥
2

Ntrain∑
i=1

∥∥Atrain
i − Ātrain

i

∥∥2
(2.34)

and

MSEval =

Nval∑
i=1

∥∥∥Aval
i − Ãval

i

∥∥∥
2

Nval∑
i=1

∥∥Aval
i − Āval

i

∥∥2

, (2.35)

respectively. Where Atrain
i is the ith training samples and Ãtrain

i is the reconstructed
version of Atrain

i . Ātrain
i is the mean of all training samples. Aval

i is the ith validation
samples and Ãval

i is the reconstructed version of Aval
i . Āval

i is the mean of all validation
samples. Ntrain and Nval are the number of samples in training and validation set,
respectively.

The experiments on ORL face database was used to verify this perspective. The
first 5 images per individual for training and calculating MSEtrain and MSEval .

The experimental result for PCA was shown in Fig. 2.9. When the value of the
dimension of feature is small, the difference between MSEtrain and MSEval is small.
But the difference is becoming great rapidly with the increase of the feature dimension.
Thus classical PCA is over-fitted to the training set. Then MSE was used again to
evaluate 2DPCA’s capability in solving the over-fitting problem, as shown in Fig. 2.10.
The difference of MSEtrain and MSEval is very small. Since the dimension of image
covariance matric is far smaller than the covariance matrix in PCA. Therefore, 2DPCA
is not suffer from the over-fitting problem.
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Figure 2.9: The PCA’s MSE on the training set and the testing set as the function of
feature dimension.
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Figure 2.10: The 2DPCA’s MSE on the training set and the testing set as the function
of feature dimension.
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2.3.3 The Distance Measurements
Normally, a nearest neighbor classifier is used for classification. The distance

measurement is necessary for this classifier. In 1D subspace analysis, such as PCA, the
feature is produced in vector form. While in the feature in 2D subspace analysis, such
as 2DPCA, is presented in matrix form. For this reason the novel distance measurements
were proposed to measure the distance between feature matrices.

2.3.3.1 1D Feature Distance Measurements
In Euclidean space Rn, the distance between two features is usually given by

the Euclidean distance (L2-norm distance). Other distances, based on other norms,
are sometimes used instead. For vector x = [ x1 x2 · · · xn ]T and vector y =

[ y1 y2 · · · yn ]T , the various distances [60] are defined as:

• L1-norm distance
dL1(x,y) =

n∑

k=1

|xk − yk| (2.36)

• L2-norm distance
dL2(x,y) =

(
n∑

k=1

|xk − yk|2
)1/2

(2.37)

• Lp-norm distance

dLp(x,y) =

(
n∑

k=1

|xk − yk|p
)1/p

(2.38)

• L∞-norm distance

dL∞(x,y) = lim
p→∞

(
n∑

k=1

|xk − yk|p
)1/p

= max (|x1 − y1| , |x2 − y2| , . . . , |xn − yn|) (2.39)

• Cosine distance
dcos(x,y) = 1− cos(x,y) = 1− 〈x,y〉

‖x‖ ‖y‖ (2.40)

2.3.3.2 2D Feature Distance Measurements
In the 2D subspace Rm ×Rn, The distance between two arbitrary feature matrices

can be calculated by many methods such as Yang’s distance [39], an assembled matrix
distance [61], volume measure [62] and bilateral-projection-based distance [41] . In this
dissertation, only Yang’s distance was used as the distance measurement for 2D subspace
analysis in all experiments.
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• Yang’s distance: The original distance between two arbitrary feature matrices,
defined as Bi = [bi1 , bi2 , . . . , biq ] and Bj = [bj1 , bj2 , . . . , bjq ] is defined by

d(Bi,Bj) =

q∑

k=1

‖bik − bjk
‖, (2.41)

where ‖bik−bjk
‖ denotes the Euclidean distance between the two principal compo-

nent vectors bik and bjk
. Suppose that the feature matrices of M training samples

are Bl, l = 1, 2, 3, ..., M , and that each of these samples is assigned a class ωk.
Given a feature matrix of test sample Btest, if

d(Btest,Bl) = min
j

d(Btest,Bj) (2.42)

then the test sample Btest is belong to class ωk.

• Assembled Matrix Distance: An assembled matrix distance (AMD) metric was
proposed to calculate the distance between two feature matrices. Given two feature
matrices Bi and Bj , the assembled matrix distance was defined as follows:

dAMD(Bi,Bj) =




d∑
v=1

(
m∑

u=1

(biuv − bjuv)
2

)p/2



1/p

, (p > 0), (2.43)

where biuv is the uth row and the vth column element of matrix Bi and bjuv is the
uth row and the vth column element of matrix Bj .

• Volume Measure: The volume of an m×n matrix of rank p was introduced in [63]
as

V ol(A) =

√√√√
∑

(i,j)∈N

2

detAij, (2.44)

where Aij denotes the submatrix of A with rows i and columns j, N is the index
set of p× p nonsingular submatrix of A, and if p = 0, then define V ol(A) = 0. It
is not easy to compute this volume directly by Eq. (2.44). Fortunately, from the
Cauchy–Binet formula, we can get a very simple calculating formula for V ol(A)

when A is a matrix of full column rank:

V ol(A) =
√

detATA. (2.45)

Then we can deduce the calculating formula to measure the similarities of two
samples by Eq. (2.45). Given the feature matrices Bi and Bj after the transfor-
mation by 2DPCA, the distance measurement based on the matrix volume can be
depicted as

dV M(Bi,Bj) =
√

det((Bi −Bj)T (Bi −Bj)). (2.46)
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However, there is a very important point, i.e. to compute the matrix volume
by Eq. (2.46), we must make sure that the matrix Bi − Bj is of full column
rank. In fact, We can make it satisfy this condition conveniently by the following
algorithm [62]. Which can be done by deleting the columns of Bi − Bj , as
algorithm in Table 2.3.

Table 2.3 Deleting The Columns Algorithm for Volume Measure

S1: Initiate k = 2.
S2: If the kth column is the last column of the matrix Bi −Bj , then stop;

otherwise decide the submatrix consisting of the first k columns of
the matrix Bi −Bj is of full column rank.

S3: If it is of full column rank, then k = k + 1, goto S2.
Otherwise goto S4.

S4: Delete the kth column from the matrix Bi −Bj , goto S2.

• Bilateral-Projection-Based Distance: For bilateral-projection-based scheme, the al-
ternative distance measurement should be used. Since the feature matrices are
extracted from both row and column directions of images, thus the distance will be
sum of distances of each elements b(m,n) in feature matrix B. The distance between
two bilateral-projection-based scheme feature matrices, Bi and Bj , is defined by

d(Bi,Bj) =

√√√√
q∑

m=1

d∑
n=1

(b(m,n)i
− b(m,n)j

)2. (2.47)



CHAPTER III

THE PROPOSED FRAMEWORKS

In this chapter, the four frameworks were proposed for improving the performance
of 2DPCA. We first proposed the two frameworks for image recognition that is de-
signed to combine the unsupervised and supervised subspace analysis techniques. In
Section 3.1, the first framework was called Two-Dimensional Linear Discriminant Anal-
ysis of Principal Component Vectors. This technique takes the advantage of the Fisher’s
criterion for ameliorating the discriminant power of classification. The second frame-
work, Class-Specific Subspace-Based Two-Dimensional Principal Component Analysis,
was introduced in Section 3.2. The class-specific technique is applied here to fulfill the
information of class labels. We later proposed the generalized version of 2DPCA, called
Image Cross-Covariance Analysis (ICCA), in Section 3.3. Finally, the novel ensemble
method for 2DPCA, named Two-Dimensional Random Subspace Analysis (2DRSA), to
increase the performance and robustness via the Random Subspace Method (RSM) was
presented in Section 3.4.

3.1 Two-Dimensional Linear Discriminant Analysis of Principal Com-
ponent Vectors
In face recognition, a great number of successful face recognition systems have

been developed and reported in the literature [2, 3, 16–18]. Among these works, the
linear subspace techniques, such as Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) are the most popular ones. The PCA’s criterion chooses
the subspace in the function of data distribution while LDA chooses the subspace which
yields maximal inter-class distance, and at the same time, keeping the intra-class distance
small. In general, LDA extracts features which are better suitable for classification task.
Both techniques intend to project the vector representing face image onto lower dimen-
sional subspace, in which each 2D face image matrix must be previously transformed
into vector and then a collection of the transformed face vectors are concatenated into
a matrix. This is the cause of three serious problems in particular approaches. First of
all, the covariance matrix, which collects the feature vectors with high dimension, will
leads to the curse of dimensionality, i.e. large memory required and high computation
cost. Secondly, the spatial structure information could be lost when the column-stacking
vectorization and image resization are applied. Finally, normally in face recognition task,
the available number of training samples is small compared to the feature dimension.
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Therefore the covariance matrix estimated by these features will be singular and then
cannot be inverted. This is called singularity problem or Small Sample Size (SSS) prob-
lem [31]. Especially, as a supervised technique, LDA has a tendency to over-fitting in
SSS problems. And in the same situation, PCA faces with the over-fitting problem too,
as discussed in Section 2.1.5.3.

Various solutions have been proposed for solving the SSS problem [16–18,32–34]
within LDA framework. Among these LDA extensions, Fisherface [16] and the discrim-
inant analysis of principal components framework [17, 18] demonstrates a significant
improvement when applying Linear Discriminant Analysis (LDA) over principal com-
ponents from the PCA-based subspace. Since both PCA and LDA can overcome the
drawbacks of each other. PCA is constructed around the criteria of preserving the data
distribution. Hence, it is suited for face representation and reconstruction from the pro-
jected face feature. However, in the classification tasks, PCA only normalize the input
data according to their variance. This is not efficient since the between classes rela-
tionship is neglected. In general, the discriminatory power depends on both within and
between classes relationship. LDA considers these relationships via the analysis of within
and between-class scatter matrices. Taking this information into account, LDA allows
further improvement. Especially, when there are prominent variation in lighting condition
and expression. However, LDA has two drawbacks when directly applied to the original
input space [18]. First of all, some non-face information such as image background are
regarded by LDA as the discriminant information. This causes misclassification when
the face of the same subject is presented on different background. Secondly, when SSS
problem has occurred, the within-class scatter matrix is singular and LDA projection
cannot be computed. Projecting the high dimensional input space into low dimensional
subspace via PCA can solve these LDA problems. Nevertheless, all of above techniques,
the spatial structure information still be not employed.

In Two-Dimensional Principal Component Analysis (2DPCA), the image covariance
matrix is computed directly on image matrices so the spatial structure information can
be employed. This yields a covariance matrix whose dimension just equals to the width
of the face image. This is far smaller than the size of covariance matrix in PCA.
Therefore, the image covariance matrix can be better estimated and full rank. Evidently,
the experimental results in [39] have shown the improvement of 2DPCA over PCA on
several face databases.

Subsequently, Two-Dimensional Linear Discriminant Analysis (2DLDA) was pro-
posed in [43]. For overcoming the SSS problem in classical LDA by working with
images in matrix representation, like in 2DPCA. In particular, bilateral projection scheme
was applied there via left and right multiplying projection matrices. In this way, the
eigenvalue problem was solved two times per iteration. One corresponds to the column
direction and another one corresponds to the row direction of image, respectively

Because of 2DPCA is more suitable for face representation than face recognition,
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like PCA. For better performance in recognition task, LDA is still necessary. Unfor-
tunately, the linear transformation of 2DPCA reduces the input image to a vector with
the same dimension as the number of rows or the height of the input image. Thus,
the SSS problem may still occurred when LDA is performed after 2DPCA directly. To
overcome this problem, we proposed a simplified version of the bilateral 2DLDA by
using only unilateral projection scheme, based on the 2DPCA concept. Applying our
proposed 2DLDA to 2DPCA not only can solve the SSS problem and the curse of
dimensionality dilemma but also allows us to work directly on the image matrix in all
projections. Hence, spatial structure information is maintained and the size of all scatter
matrices cannot be greater than the width of face image. Furthermore, computing with
this dimension, the face image do not need to be resized, since all information still be
preserved.

In this section, we firstly show how to put the idea of 2DPCA under the LDA’s
criterion, namely 2DLDA. According to the previous discussion on 2DLDA, our pro-
posed 2DLDA method is different from [43] on the fact that our method aims to find
the optimal discriminated transformation for projecting the principal component vectors,
which obtained from 2DPCA step, Our 2DLDA proposed subspace nested inside the
subspace proposed by 2DPCA. Moreover, our 2DLDA formulation has a closed form
solution, thus can be solved with non-iterative procedure. After that we apply it to
the LDA of principal components [17, 18] and Fisherface [16] frameworks, i.e. Two-
Dimensional Linear Discriminant Analysis of Principal Component Vectors and 2D
Fisherface, respectively. The accuracy of this proposed framework is demonstrated on
real world image databases. The experimental results can promise the performance of
our proposed framework.

We would like to note that this framework was the detailed and expanded version
of our published materials, which is based on [58,59].

3.1.1 Two-Dimensional Linear Discriminant Analysis (2DLDA)
Let z be a q dimensional vector. A matrix A is projected onto this vector via the

similar transformation as Eq. (2.10):

v=Az. (3.1)

This projection yields an m dimensional feature vector.
In 2DLDA, we search for the projection axis z that maximizing the Fisher’s dis-

criminant criterion [16,31]:
J(z) =

tr (Sb)

tr (Sw)
, (3.2)

where Sw is the within-class scatter matrix and Sb is the between-class scatter matrix.
In particular, the within-class scatter matrix describes how data are scattered around the
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means of their respective class, and is given by

Sw =
K∑

i=1

Pr(ωi)E
[
(Hz)(Hz)T |ω = ωi

]
, (3.3)

where K is the number of classes, Pr(ωi) is the prior probability of each class, and
H = A− EA. The between-class scatter matrix describes how different classes. Which
represented by their expected value, are scattered around the mixture means by

Sb =
K∑

i=1

Pr(ωi)E
[
(Fz)(Fz)T

]
, (3.4)

where F = E[A|ω = ωi]− E[A].
With the linearity properties of both the trace function and the expectation, J(z)

may be rewritten as

J(z) =
tr(

∑K
i=1 Pr(ωi)E

[
(Fz)(Fz)T

]
)

tr(
∑K

i=1 Pr(ωi)E [(Hz)(Hz)T |ω = ωi])

=

∑K
i=1 Pr(ωi)E

[
tr((Fz)(Fz)T )

]
∑K

i=1 Pr(ωi) E (tr [(Hz)(Hz)T |ω = ωi])

=

∑K
i=1 Pr(ωi)E

[
tr((Fz)T (Fz))]∑K

i=1 Pr(ωi) E (tr [(Hz)T (Hz)|ω = ωi])

=
tr

(
zT

(∑K
i=1 Pr(ωi)E

[FTF]) z
)

tr
(
zT

(∑K
i=1 Pr(ωi)E

[HTH|ω = ωi

]) z
)

=
tr(zT S̃bz)
tr(zT S̃wz) . (3.5)

Furthermore, S̃b and S̃w can be evaluated as follows:

S̃b =
K∑

i=1

ni

K
(Āi − Ā)T (Āi − Ā) (3.6)

S̃w =
K∑

i=1

ni

K

∑
Ak∈ωi

(Ak − Āi)
T (Ak − Āi), (3.7)

where ni and Āi are the number of elements and the expected value of class ωi respec-
tively. Ā denotes the overall mean.

Then the optimal projection vector can be found by solving the following general-
ized eigenvalue problem:

S̃bz = λS̃wz. (3.8)
Again the SVD algorithm can be applied to solve this eigenvalue problem on the matrix
S̃−1

w S̃b. Note that, in this size of scatter matrices involved in eigenvalue decomposition
process is also become n by n. Thus, with the limited the training set, this decomposition
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is more reliably than the eigenvalue decomposition based on the classical covariance
matrix.

The number of projection vectors is then selected by the same procedure as in
Eq. (2.18). Let Z = [z1, . . . , zq] be the projection matrix composed of q largest eigenvec-
tors for 2DLDA. Given a m by n matrix A, its projection onto the principal subspace
spanned by zi is then given by

V = AZ. (3.9)
The result of this projection V is another matrix of size m by q. Like 2DPCA, this
procedure takes a matrix as input and outputs another matrix. These 2 techniques can
be further combined, their combination is explained in the next section.

3.1.2 2DPCA+2DLDA
In this section, we apply our proposed 2DLDA within the well-known frameworks

for face recognition, the LDA of PCA-based feature. The discriminant analysis of
principal components framework [17] is applied in this section. Our framework consists
of 2DPCA step and 2DLDA step, namely 2DPCA+2DLDA. From Section 2.2.1, we
obtain a linear transformation matrix X on which each input face image A is projected.
At the 2DPCA step, a feature matrix Y is obtained. The matrix Y is then used as the
input for the 2DLDA step. Thus, the evaluation of within and between-class scatter
matrices in this step will be slightly changed. From Eqs. (3.6) and (3.7), the image
matrix A is substituted for the 2DPCA feature matrix Y as follows

S̃Y

b =
K∑

i=1

ni

K
(Ȳi − Ȳ)T (Ȳi − Ȳ) (3.10)

S̃Y

w =
K∑

i=1

ni

K

∑
Yk∈ωi

(Yk − Ȳi)
T (Yk − Ȳi) (3.11)

where Yk is the feature matrix of the k-th image matrix Ak, Ȳi be the average of Yk

which belong to class ωi and Ȳ denotes a overall mean of Y,

Ȳ =
1

M

M∑

k=1

Yk. (3.12)

The 2DLDA optimal projection matrix Z can be obtained by solving the eigenvalue
problem in Eq. (3.8). Finally, the composite linear transformation matrix, L=XZ, is used
to map the face image space into the classification space by,

D = AL. (3.13)
The matrix D is 2DPCA+2DLDA feature matrix of image A with dimension m by q.
However, the number of 2DLDA feature vectors q cannot exceed the number of principal
component vectors d. In general case (q < d), the dimension of D is less than Y in
Section 2.2.1. Thus, 2DPCA+2DLDA can reduce the classification time compared to
2DPCA.
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3.1.3 2D Fisherface
Fisherface [16] is applied in this section. By projecting the face image matrix A

onto U, which is given by
U = XW, (3.14)

where X is 2DPCA projection in Section 2.2.1 and W is the optimal discrimination
projection which can be obtained via optimizing an alternative criterion in [16],

J(W) =
tr

(
WTXT S̃bXW

)

tr
(
WTXT S̃wXW

) . (3.15)

It should be note that the difference between this criterion and criterion in Eq. (3.5) is
absence or presence of the projection of S̃b and S̃w by 2DPCA projection X.
The new feature extraction can be obtained by the new projection matrix U with dimen-
sion n by q, q ≤ p, as follow

B = AU, (3.16)
where B is feature matrix of image A with dimension m by q, which less than the
dimension of Y in Section 2.2.1, in case q < d. Thus, the classification time of 2D
Fisherface can be decreasing.

3.1.4 2DPCA+2DLDA Versus 2D Fisherface
In this section, we will show that the 2DLDA of principal component vectors

framework is same as 2D Fisherface expect computation time which were consumed. In
2DLDA of 2DPCA, the 2DPCA feature matrices Y are used for calculating the within
and between-class scatter matrices while image matrices A are used in 2D Fisherface.
The between-class scatter matrix in Eq. (3.10) can be rewritten as

S̃Y
b =

K∑
i=1

ni

K
XT (Āi − Ā)T (Āi − Ā)X

= XT

K∑
i=1

ni

K
(Āi − Ā)T (Āi − Ā)X (3.17)

= XT S̃bX

and the within-class scatter matrix in Eq. (3.11) can be rewritten in the same way as

S̃Y
w = XT S̃wX. (3.18)

From Eqs. (3.17), (3.18) and the criterion in Eq. (3.15)

J(W) =
tr

(
WT S̃Y

b W
)

tr
(
WT S̃Y

wW
) (3.19)
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Thus, Eqs. (3.13) and (3.16) are same the linear transformation, D=B and L=U. Com-
puting these scatter matrices by using feature matrix Y is easier than image matrix A,
hence 2DPCA+2DLDA consume the training time less than 2D Fisherface. However,
they consumed the equivalent classification time.
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3.2 Class-Specific Subspace-Based Two-Dimensional Principal Compo-
nent Analysis
2DPCA is a unsupervised technique that is no information of class labels are

considered. Therefore, the directions that maximize the scatter of the data from all
training samples might not be as adequate to discriminate between classes. In recognition
task, a projection that emphasize the discrimination between classes is more important.
The extension of Eigenface, PCA-based, was proposed by using alternative way to
represent by projecting to Class-Specific Subspace (CSS) [37]. In conventional PCA
method, the images are analyzed on the features extracted in a low-dimensional space
learned from all training samples from all classes. While each subspaces of CSS learned
from training samples from one class. In this way, the CSS representation can provide
a minimum reconstruction error. The reconstruction error is used to classify the input
data via the Distance From CSS (DFCSS). Less DFCSS means more probability that the
input data belongs to the corresponding class.

We would like to note that this framework was the detailed and expanded version
of our published materials, which is based on [64].

Let Gk be the image covariance matrix of the kth CSS. Then Gk can be evaluated
by

Gk =
1

M

∑
Ac∈ωk

(Ac − Āk)
T (Ac − Āk), (3.20)

where Āk is the average image of class ωk. The kth projection matrix Xk is a n by dk

projection matrix which composed by the eigenvectors of Gk corresponding to the dk

largest eigenvalues. The kth CSS of 2DPCA was represented as a 3-tuple:

<2DPCA
k = {Xk, Āk, dk} (3.21)

Let S be a input sample and Uk be a feature matrix which projected to the kth

CSS, by
Uk = WkXk, (3.22)

where Wk = S− Āk. Then the reconstruct image Wr
k can be evaluates by

Wr
k = UkX

T
k . (3.23)

Therefore, the DFCSS is defined by reconstruction error as follows

εk(W
r
k,S) =

nrow∑
m=1

ncol∑
n=1

∣∣∣wr
(m,n)k

− s(m,n)

∣∣∣. (3.24)

If εt = min
1≤k≤K

(εk) then the input sample S is belong to class ωt.
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Figure 3.1 CSS-based 2DPCA diagram.

For illustration, we assume that there are 4 classes, as shown in Fig. 3.1. The
input image must be normalized with the averaging images of all 4 classes. And then
project to 2DPCA subspaces of each class. After that the image is reconstructed by the
projection matrices (X) in each class. The DFCSS is used now to measure the similarity
between the reconstructed image and the normalized original image on each CSS. From
Fig. 3.1, the DFCSS of the first class is minimum, thus we decide this input image is
belong to the first class.
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3.3 Image Cross-Covariance Analysis
In PCA, the covariance matrix provides a measure of the strength of the correlation

of all pixel pairs. Because of the limit of the number of training samples, thus this
covariance cannot be well estimated. While the performance of 2DPCA is better than
PCA, although all of the correlation information of pixel pairs are not employed for
estimating the image covariance matrix. Nevertheless, the disregard information may
possibly include the useful information. In this dissertation, we proposed a framework
for investigating the information which was neglected by original 2DPCA technique. To
achieve this point, the image cross-covariance matrix is defined by two variables, the
first variable is the original image and the second one is the shifted version of the former.
By our shifting algorithm, many image cross-covariance matrices are formulated to cover
all of the information. The Singular Value Decomposition (SVD) is applied to the image
cross-covariance matrix for obtaining the optimal projection matrices. And we will show
that these matrices can be considered as the orthogonally rotated projection matrices of
traditional 2DPCA. According to the previous discussion, our proposed method, so called
Image Cross-Covariance Analysis (ICCA), is different from the original 2DPCA on the
fact that the transformations of our method are generalized transformation of the original
2DPCA.

We would like to note that this framework was the detailed and expanded version
of our published materials, which is based on [65].

3.3.1 The Image Covariance Matrix Revisited
In 2D subspace analysis, the scatter matrix is straightforwardly estimated from the

2D image matrices. From Section 2.2.1, the image covariance matrix, G, had given that

G = E[(A− EA)T (A− EA)]. (3.25)

This is much smaller than the size of real covariance matrix needed in PCA, therefore it
can be computed more accurately on small training set. Given a database of M training
image matrices Ak, k = 1, . . . , M with same dimension m by n. The image inner-scatter
matrix G is computed in a straightforward manner by

G =
1

M

M∑

k=1

(Ak − Ā)T (Ak − Ā), (3.26)

where Ā denotes the average image,

Ā =
1

M

M∑

k=1

Ak. (3.27)
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3.3.1.1 Relation to Covariance Matrix
First of all, the relationship between 2DPCA’s image covariance matrix G, in

Eq. (2.14), and PCA’s covariance matrix C can be considered as

G (i, j) =
m∑

k=1

C (m (i− 1) + k, m (j − 1) + k) (3.28)

where G(i, j) and C(i, j) are the ith row, jth column element of matrix G and matrix C,
respectively. And m is the height of the image.

For illustration, let the dimension of all training images are 3 by 3. Thus, the
covariance matrix of these images will be a 9 by 9 matrix and the dimension of image
covariance matrix is only 3 by 3, as shown in Fig. 3.2.

Figure 3.2 The relationship of covariance and image covariance matrix.

From Eq. (3.28), each elements of G is the sum of all the same label elements in
C, for example:

G(1,1) = C(1,1) + C(2,2) + C(3,3),

G(1,2) = C(1,4) + C(2,5) + C(3,6), (3.29)
G(1,3) = C(1,7) + C(2,8) + C(3,9).

It should be note that the total power of image covariance matrix equals and
traditional covariance matrix C are identical,

tr(G) = tr(C). (3.30)
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3.3.2 From Image Covariance Matrix to Image Cross-Covariance Matrix
From this point of view in Eq. (3.28), we can see that image covariance matrix is

collecting the classification information only 1
m
of all information collected in traditional

covariance matrix. Here there is a new raising question:

Are the other m−1
m

elements of the covariance matrix retaining unnecessary
information?

The answer of this question can be acquired by the experimental results in Section 4.5.
However, since the performance of 2DPCA is still better than PCA, although only the
limited information of the covariance matrix of PCA is used. Normally in face recognition
task, the available number of training samples is relatively very small compared to the
feature dimension, therefore the covariance matrix cannot be well estimated leading to
the Small Sample Size (SSS) problem. For investigating how the retaining information in
2D subspace is rich for classification, the new G is derived from the PCA’s covariance
matrix as

GL(i, j)=
m∑

k=1

C (f (m (i− 1) + k) ,m (j − 1) + k), (3.31)

f(x) =

{
x + L− 1, 1 ≤ x ≤ mn−L+1

x−mn + L− 1, mn−L+2 ≤ x ≤ mn
(3.32)

where 1 ≤ L ≤ mn.
We found that the GL can also be determined by applying the shifting to each

images instead of averaging certain elements of covariance matrix. Therefore, the GL

can alternatively be interpreted as the image cross-covariance matrix or

GL = E[(BL − E[BL])T (A− E[A])] (3.33)

where BL is the Lth shifted version of image A that can be created via algorithm in
Table 3.1. The samples of shifted images BL are presented in Fig. 3.3.

In 2DPCA, the columns of the projection matrix, X, are obtained by selection the
eigenvectors which corresponding to the d largest eigenvalues of image covariance matrix,
in Eq. (2.14). While in ICCA, the eigenvalues of image cross-covariance matrix, GL,
are complex number with non-zero imaginary part. The Singular Value Decomposition
(SVD) is applied to this matrix instead of Eigenvalue decomposition. Thus, the ICCA
projection matrix contains a set of orthogonal basis vectors which corresponding to the
d largest singular values of image cross-covariance matrix.

For understanding the relationship between the ICCA projection matrix and the
2DPCA projection matrix, we will investigate in the simplest case, i.e. there are only
one training image. Therefore, the image covariance matrix and image cross-covariance
matrix are simplified to ATA and BT

LA, respectively.
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Table 3.1 The Image Shifting Algorithm for ICCA

S1: Input m× n original image A

and the number of shifting L (2 ≤ L ≤ mn).
S2: Initialize the row index, irow = [2, . . . , n, 1],

and output image B = m× n zero matrix.
S3: For i = 1, 2, . . . , L− 1

S4: Sort the first row of A by the row index, irow.
S5: Set the last row of B = the first row of A.
S6: For j = 1, 2, . . . , m− 1

S7: Set the jth row of B = the (j + 1)th row of A.
S8: End For
S9: Set A = B

S10: End For

The image A and BL can be decomposed by using Singular Value Decomposition
(SVD) as

A = UADAVT
A, (3.34)

BL = UBL
DBL

VT
BL

. (3.35)
Where VA and VBL

contain a set of the eigenvectors of ATA and BT
LBL, respectively.

And UA and UBL
contain a set of the eigenvectors of AAT and BLB

T
L, respective-

ly. And DA and DBL
contain the singular values of A and BL, respectively. If all

eigenvectors of ATA are selected then the VA is the 2DPCA projection matrix, i.e.
X = VA.

Let Y = AVA and Z = BLVBL
are the projected matrices of A and B, respec-

tively. Thus,
BT

LA = VBL
ZTYVT

A. (3.36)
Denoting the SVD of ZTY by

ZTY = PDQT , (3.37)
and substituting into Eq. (3.36) gives

BT
LA = VBL

PDQTVT
A (3.38)

= RDST ,

where RDST is the singular value decomposition of BT
LA because of the unique proper-

ties of the SVD operation. It should be note that BT
LA and ZTY have the same singular

values. Therefore,
R = VBL

P, (3.39)
S = VAQ = XQ (3.40)
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can be thought of as orthogonally rotated of projection matrices VA and VBL
, respec-

tively.
As a result in Eq. (3.40), the ICCA projection matrix is the orthogonally rotated of

original 2DPCA projection matrix.

Figure 3.3 The samples of shifted images on the ORL database.

3.3.3 Image Cross-Covariance Analysis (ICCA)
All training images are firstly transformed by the shifting algorithm in Table 3.1.

And then using to estimate the image cross-covariance matrix in Eq. (3.33). The number
of shifting L in Eq. (3.33) can be choosing between 1 to m× n, where m and n are the
number of the rows and columns of the image matrix, respectively.
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The ICCA transformation matrix S in Eq. (3.40) can be obtained by performing
the SVD on the image cross-covariance matrix GL. Like in 2DPCA, the transformation
matrix is consist of only the basis vectors which are corresponding to the first d singular
values.

Therefore, there are two parameters here for adjusting the performance of ICCA,
i.e. the number of shifting L and the number of basis vectors d.
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3.4 Random Subspace Method-Based Two-Dimensional Subspace Anal-
ysis
The main disadvantage of 2DPCA is that it needs many more coefficients for

image representation than PCA. Many works try to solve this problem. In [39], PCA
is used after 2DPCA for further dimensional reduction, but it is still unclear how the
dimension of 2DPCA could be reduced directly. Many methods to overcome this problem
were proposed by applied the bilateral-projection scheme to 2DPCA. In [41, 54], the
right and left multiplying projection matrices are calculated independently while the
iterative algorithm is applied to obtain the optimal solution of these projection matrices
in [40, 56]. And the non-iterative algorithm for optimization was proposed in [66].
In [57], they proposed the iterative procedure which the right projection is calculated by
the reconstructed images of the left projection and the left projection is calculated by the
reconstructed images of the right projection. Nevertheless, all of above methods obtains
only the local optimal solution.

Another method for dealing with high-dimensional space was proposed in [46],
called Random Subspace Method (RSM). This method is the one of ensemble classifi-
cation methods, like Bagging [44] and Boosting [45]. However, Bagging and Boosting
are not reduce the high-dimensionality. Bagging randomly select a number of samples
from the original training set to learn an individual classifier while Boosting specifically
weight each training sample. The RSM can effectively exploit the high-dimensionality
of the data. It constructs an ensemble of classifiers on independently selected feature
subsets, and combines them using a heuristic such as majority voting, sum rule, etc.

There are many reasons the Random Subspace Method is suitable for face recog-
nition task. Firstly, this method can take advantage of high dimensionality and far away
from the curse of dimensionality [46]. Secondly, the random subspace method is useful
for critical training sample sizes [50]. Normally in face recognition, the dimension of
the feature is extremely large compared to the available number of training samples.
Thus applying RSM can avoid both of the curse of dimensionality and the SSS problem.
Thirdly, The nearest neighbor classifier, a popular choice in the 2D face-recognition
domain [39–41,54,56,66], can be very sensitive to the sparsity in the high-dimensional
space. Their accuracy is often far from optimal because of the lack of enough samples
in the high-dimensional space. The RSM brings significant performance improvements
compared to a single classifier [50,53]. Finally, since there is no hill climbing in RSM,
there is no danger of being trapped in local optima [46].

The RSM was applied to PCA for face recognition in [47]. They apply the random
selection directly to the feature vector of PCA for constructing the multiple subspaces.
Nevertheless, the information which contained in each element of PCA feature vector
is not equivalent. Normally, the element which corresponds to the larger eigenvalue,
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contains more useful information. Therefore, applying RSM to PCA feature vector is
seldom appropriate. Different from PCA, the 2DPCA feature is a matrix form. Thus,
RSM is more suitable for 2DPCA, because the column direction does not depend on the
eigenvalue.

In this dissertation, a framework of Two-Dimensional Random Subspace Analysis
(2DRSA) is proposed to extend the original 2DPCA. The RSM is applied to feature space
of 2DPCA for generating the vast number of feature subspaces, which be constructed by
an autonomous, pseudorandom procedure to select a small number of dimensions from
a original feature space. For a m by n feature matrix, there are 2m such selections
that can be made, and with each selection a feature subspace can be constructed. And
then individual classifiers are created only based on those attributes in the chosen feature
subspace. The outputs from different individual classifiers are combined by the uniform
majority voting to give the final prediction.

We would like to note that this framework was the detailed and expanded version
of our published materials, which is based on [67,68].

3.4.1 Two-Dimensional Random Subspace Analysis (2DRSA)
The Two-Dimensional Random Subspace Analysis consists of two parts, 2DPCA

and RSM. After data samples was projected to 2D feature space via 2DPCA, the RSM
are applied here by taking advantage of high dimensionality in these space to obtain
the lower dimensional multiple subspaces. A classifier is then constructed on each of
those subspaces, and a combination rule is applied in the end for prediction on the test
sample. The 2DRSA algorithm is listed in Table 3.2, the image matrix, A, is projected
to feature space by 2DPCA projection in Eq. (2.19). In this feature space, it contains the
data samples in matrix form, the m× d feature matrix, Y in Eq. (2.19). The dimensions
of feature matrix Y depend on the height of image (m) and the number of selected
eigenvectors of the image covariance matrix G (d). Therefore, only the information
which embedded in each element on the row direction was sorted by the eigenvalue but
not on the column direction. For this reason, we apply the random selection only on the
the column direction or it means we randomly pick up some rows of feature matrix Y

to construct the new feature matrix Z. The dimension of Z is r × d, normally r should
be less than m. The results in [46] have shown that for a variety of data sets adopting
half of the feature components usually yields good performance.

3.4.2 Two-Dimensional Diagonal Random Subspace Analysis (2D2RSA)
The Two-Dimensional Diagonal Random Subspace Analysis consists of two parts,

DiaPCA and RSM. Firstly, all image are transformed into the diagonal face images. After
that the transformed image samples was projected to 2D feature space via DiaPCA, the
RSM are applied here by taking advantage of high dimensionality in these space to obtain
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Table 3.2 Two-Dimensional Random Subspace Analysis Algorithm

S1: Project image, A, by Eq. (2.19).
S2: For i = 1 to the number of classifiers
S3: Randomly select a r dimensional random subspace, Zr

i ,
from Y (r < m).

S4: Construct the nearest neighbor classifier, Cr
i .

S5: End For
S6: Combine the output of each classifiers by using majority voting.

Table 3.3 Two-Dimensional Diagonal Random Subspace Analysis Algorithm.

S1: Transforming images into diagonal images.
S2: Project image, A, by Eq. (2.19).
S3: For i = 1 to the number of classifiers
S4: Randomly select a r dimensional random subspace,

Zr
i , from Y (r < m).

S5: Construct the nearest neighbor classifier, Cr
i .

S6: End For
S7: Combine the output of each classifiers by using

majority voting.

the lower dimensional multiple subspaces. A classifier is then constructed on each of
those subspaces, and a combination rule is applied in the end for prediction on the test
sample. Similar to 2DRSA, the 2D2RSA algorithm is listed in Table 3.3.

3.4.3 Random Subspace Method-based Image Cross-Covariance Analysis
As discussed in Section 3.3.2, not all elements of the covariance matrix is used in

2DPCA. Although, the image cross-covariance matrix can be switching these elements
to formulate many versions of image cross-covariance matrix, the m−1

m
elements of

the covariance matrix are still not advertent in the same time. For integrating this
information, the Random Subspace Method (RSM) can be using here via randomly
select the number of shifting L to construct a set of multiple subspaces. That means
each subspace is formulated from difference versions of image cross-covariance matrix.
And then individual classifiers are created only based on those attributes in the chosen
feature subspace. The outputs from different individual classifiers are combined by the
uniform majority voting to give the final prediction. Moreover, the RSM can be used
again for constructing the subspaces which are corresponding to the difference number
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of basis vectors d. Consequently, the number of all random subspaces of ICCA reaches
to d × L. That means applying the RSM to ICCA can be constructed more subspaces
than 2DRSA. As a result, the RSM-based ICCA can alternatively be apprehended as the
generalized 2DRSA.



CHAPTER IV

THE EXPERIMENTAL RESULTS

4.1 Image Databases
In this dissertation, four databases were used to evaluate the performance of the

proposed frameworks. Three from all databases are the human face image database, i.e.
Yale, ORL and AR. The another database contains the Synthetic Aperture Radar (SAR)
images of military vehicles.

4.1.1 Yale Database
The Yale database [69] contains 165 images of 15 subjects. There are 11 images

per subject, one for each of the following facial expressions or configurations: center-
light, with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy,
surprised, and wink. All sample images of one person from the Yale database are shown
in Fig. 4.1. Each image was manually cropped and resized to 100× 80 pixels.

Figure 4.1 The sample images of one subject in the Yale database.

4.1.2 ORL Database
The ORL database [70] contains images from 40 individuals, each providing 10

different images. For some subjects, the images were taken at different times. The facial
expressions open or closed eyes, smiling or non smiling and facial details (glasses or no
glasses) also vary. The images were taken with a tolerance for some tilting and rotation
of the face of up to 20 degrees. Moreover, there is also some variation in the scale of
up to about 10 percent. All images are gray scale and normalized to a resolution of
112× 92 pixels. The 5 sample images of one person from the ORL database are shown
in Fig. 4.2.
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Figure 4.2 Five sample images of one subject in the ORL face database.

4.1.3 AR Database
The AR face database [71] was created by Aleix Martinez and Robert Benavente

in the Computer Vision Center (CVC) at the U.A.B. It contains over 1,000 color images
corresponding to 134 people’s faces (75 men and 59 women). Images feature frontal
view faces with different facial expressions, illumination conditions, and occlusions (sun
glasses and scarf). The pictures were taken at the CVC under strictly controlled con-
ditions. No restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. were
imposed to participants. Each person participated in two sessions, separated by two
weeks (14 days) time. The same pictures were taken in both sessions. All images were
manually cropped and resized to 100 × 80 pixels, and then convert to 256 level gray
scale images. Only 14 images without occlusions (sun glasses and scarf) are used for
each subject, the total number of a whole used image is 1,294. The sample cropped
images of one person from the AR database are shown in Fig. 4.3.

Figure 4.3 The sample images of one subject in the AR database.

4.1.4 MSTAR Database
The MSTAR public release data set [72] contains high resolution Synthetic Aperture

Radar (SAR) data collected by the DARPA/Wright laboratory Moving and Stationary
Target Acquisition and Recognition (MSTAR) program. The data set contains SAR
images with size 128×128 of three difference types of military vehicles–BMP2 armored
personal carriers (APCs), BTR70 APCs and T72 tanks. The SAR image of a vehicle is
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dependent on the pose of the target vehicle relative. For improving performance, it is
desirable to ensure that the images for a given vehicle have the same pose. Thus, the
preprocessor that can identify the aspect angle is required. The sample images from the
MSTAR database are shown in Fig. 4.4. All images were centrally cropped to 80 × 80

pixels.

Figure 4.4: Sample SAR images of MSTAR database: the upper row is BMP2 APCs,
the middle row is BTR70 APCs, and the lower row is T72 tank.

In all experiments in this dissertation, the training and testing sets of MSTAR
database were referenced by Table 4.1 and Table 4.2. The aspect angle of the object
was shown in Fig. 4.5 (a). And the depression angle means the look angle pointed at the
target by the antenna beam at the side of the aircraft, as shown in Fig. 4.5 (b). Based on
the different depression angles SAR images acquired at different times, the testing set
can be used as a representative sample set of the SAR images of the targets for testing
the recognition performance.
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Figure 4.5 Aspect and Depression Angles.

Table 4.1 MSTAR images comprising training set

Class Vehicle No. Serial No. Depression #Images
1 9563 233

BMP-2 2 9566 17◦ 231
3 c21 233

BTR70 1 c71 17◦ 233
1 132 232

T-72 2 812 17◦ 231
3 s7 228

Total - - 17◦ 1,621

Table 4.2 MSTAR images comprising testing set

Class Vehicle No. Serial No. Depression #Images
1 9563 195

BMP-2 2 9566 15◦ 196
3 c21 196

BTR70 1 c71 15◦ 196
1 132 196

T-72 2 812 15◦ 195
3 s7 191

Total - - 15◦ 1,365



56

4.2 Preprocessing
In some databases, we notice that the background, some possible transformations

of the object (scaling, rotation and translation) and sensor-dependent variations (for
example, automatic gain control calibration and bad lens points) could undermine the
recognition performance. This impact can be minimized by cropping and normalization.
The preprocessing of this dissertation is following to the diagram in Fig. 4.6.

Figure 4.6 Preprocessing diagram

4.2.1 Converting Color to Grayscale
In some databases, they provide the data in color image which beyond the scope of

this dissertation. Converting any color to its most approximate level of gray is required.
First of all, we must obtain the values of its red, green and blue (RGB) primaries. And
then it is sufficient to add about 30% of the red value plus about 59% of that of the
green plus about 11% of that of the blue, no matter whatever scale is employed (0.0 to
1.0, 0 to 255, 0% to 100%, etc.). The resultant level is the desired gray value. These
percentages are chosen due to the different relative sensitivity of the normal human eye
to each of the primary colors (higher to the green, lower to the blue).

In this dissertation, the red (R), green (G) and blue (B) primaries are converted to
the grayscale by

Gray = 0.2989×R + 0.5870×G + 0.1140×B, (4.1)

where Gray is the intensity of each pixel in grayscale. Only AR database was converted
to grayscale. The other databases are originally presented in grayscale.

4.2.2 Cropping and Resizing
In this dissertation, the cropping procedure was manually implemented by human.

By attempting to align images such that the faces are the same size, in the same position
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and at the same orientation. Specifically, the image is scaled and translated to make the
eye coordinates coincident with pre-specified locations in the output. After cropping, all
of the images were resized to same dimensions by linear interpolation. The cropping
for a sample image on Yale database was shown in Fig. 4.7. The cropping was only
applied to Yale, AR and MSTAR databases. For ORL database, the images were already
cropped by originator.

Figure 4.7 Cropping image

4.2.3 Normalization
The normalization is to compensate for intensity variations. By

A′ =
A

‖vec(A)‖ , (4.2)

where A is the original image matrix, A′ is the normalized image matrix and ‖vec(A)‖
represents to the norm of the vectorization of the image matrix.
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4.3 Experiments and Analysis on Two-Dimensional Linear Discrimi-
nant Analysis of Principal Component Vectors
In this section, we experimentally evaluate our proposed technique by using 3

methods: 2DLDA, 2DPCA+2DLDA, and 2DPCA. 2DPCA is used as baseline method
for comparison on face databases (Yale, ORL, and AR) and non-face database (MSTAR).

On Yale, AR, and MSTAR databases, the dimension of the image covariance matrix
G, the within-class scatter matrix Sw and the between-class scatter matrix Sb are equal
to 80× 80. For ORL, the dimension of these matrices is equal to 92× 92. Thus, solving
the eigenvalue problems with these sizes is uncomplicated.

4.3.1 Effect of Number of Features
The first experiment is the performance comparison via varying the number of

feature vectors.
On Yale database, the five image samples (centerlight, glasses, happy, leftlight,

and noglasses) are used to train, and the six remaining images (normal, rightlight, sad,
sleepy, surprised and wink) for test. For ORL and AR database, the first five images are
used to train per subject, and the remaining images for test. For MSTAR database, the
training and testing samples are shown in Table 4.1 and Table 4.2, respectively.

Firstly, we vary both of the number of principal component vectors (d) and the
number of 2DLDA feature vectors (q). Since the input data of 2DLDA is the 2DPCA
feature matrices, thus the number of 2DLDA feature vectors cannot exceed the number
of principal component vectors that was used in the previous 2DPCA feature extraction
(q ≤ d). It should be note that the performance of 2DPCA+2DLDA actually depends
on both principal component vector and 2DLDA feature vector, as shown in Figs. 4.8,
Fig. 4.10, Fig. 4.12, and Fig. 4.14. And the performance maps of these results are
presented in Fig. 4.9, Fig. 4.11, Fig. 4.13, and Fig. 4.15. As this results on all
databases, the numbers of 2DLDA feature vectors, which achieve the high recognition
accuracies, are approximately ten percent of all 2DLDA feature vectors.

Secondly, for comparison reason, we plot the top recognition of Figs. 4.8, Fig. 4.10,
Fig. 4.12, and Fig. 4.14, in the direction of the number of 2DLDA feature vectors
axis, in Figs. 4.16, Figs. 4.17, Figs. 4.18, and 4.19, respectively. The results of pure
2DLDA are in agreement with pure LDA. That is the pure 2DLDA method includes
the information which not useful for classification as its discriminant information, while
the 2DPCA+2DLDA method can achieve higher recognition rate than other methods.
Table 4.3 shows the comparisons of all three methods on the highest recognition accuracy,
the number of principal component vectors (d), the number of 2DLDA feature vectors
(q), and the dimension of feature matrices.
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The almost recognition accuracies of our proposed 2DLDA and 2DPCA+2DLDA
are superior to 2DPCA in all experiments. Moreover, since the number of feature vectors
in case of 2DPCA+2DLDA must be less or equal to the number of principal component
vectors of 2DPCA in the first step, so the computational time consumed for classification
can be reduced.

Table 4.3: The Highest Recognition Accuracy Comparisons of 2DPCA, 2DLDA and
2DPCA+2DLDA on Yale, ORL, AR, and MSTAR Databases

Database Method Accuracy (%) d q Dimension
2DPCA 95.56 11 - 100× 11

Yale 2DLDA 97.78 - 14 100× 14

2DLDA+2DPCA 98.89 18 17 100× 17

2DPCA 92.50 5 - 112× 5

ORL 2DLDA 94.00 - 6 112× 6

2DLDA+2DPCA 94.50 33 6 112× 6

2DPCA 60.74 2 - 100× 2

AR 2DLDA 60.90 - 4 100× 4

2DLDA+2DPCA 65.06 6 5 100× 5

2DPCA 99.49 11 - 80× 11

MSTAR 2DLDA 99.56 - 78 80× 78

2DLDA+2DPCA 99.63 37 35 80× 35
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Figure 4.8 Recognition accuracy of 2DPCA+2DLDA on Yale database.
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Figure 4.9 Performance map of 2DPCA+2DLDA on Yale database.
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Figure 4.10 Recognition accuracy of 2DPCA+2DLDA on ORL database.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100  

Number of 2DLDA feature vectors

 

N
um

be
r 

of
 p

rin
ci

pa
l c

om
po

ne
nt

 v
ec

to
rs

78

80

82

84

86

88

90

92

94

Figure 4.11 Performance map of 2DPCA+2DLDA on ORL database.
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Figure 4.12 Recognition accuracy of 2DPCA+2DLDA on AR database.
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Figure 4.13 Performance map of 2DPCA+2DLDA on AR database.
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Figure 4.14 Recognition accuracy of 2DPCA+2DLDA on MSTAR database.
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Figure 4.15 Performance map of 2DPCA+2DLDA on MSTAR database.
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Figure 4.16: Recognition accuracy of 2DPCA, 2DLDA and 2DPCA+2DLDA on the
Yale database.

0 10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

Number of feature vectors

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

 

 

2DPCA
2DLDA
2DPCA+2DLDA

Figure 4.17: Recognition accuracy of 2DPCA, 2DLDA and 2DPCA+2DLDA on the
ORL database.
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Figure 4.18: Recognition accuracy of 2DPCA, 2DLDA and 2DPCA+2DLDA on the AR
database.
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Figure 4.19: Recognition accuracy of 2DPCA, 2DLDA and 2DPCA+2DLDA on the
MSTAR database.
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4.3.2 Effect of Number of Training Samples
In this experiment, the effect the of the number of training samples is considered

by fixing the optimal number of feature vectors from Table 4.3, we use the different
training numbers for each subject on Yale and ORL databases.

The number of training images were varied from 2 to 10 for Yale database and 2 to
9 for and ORL database and the remaining images are used to test. The experiment was
repeated 100 times which the training and testing sets were randomly selected in each
time. The averaging recognition accuracies of 2DPCA, 2DLDA, and 2DPCA+2DLDA
on Yale and ORL databases were plotted against the number of training images for each
subject as shown in Figs. 4.20 and 4.21, respectively.

Since the number of principal component vectors and number of 2DLDA feature
vectors were set to the values that obtain the best accuracy when five images are used
to train. Consequently, the performance of 2DPCA+2DLDA at the point of five training
samples gives the best results on both databases, as shown in Figs. 4.20 and 4.21.
However, the performance of 2DLDA and 2DPDA+2DLDA achieve the higher than
2DPCA when the number of the training samples is increasing while the most of results
of both 2DLDA and 2DPDA+2DLDA obtain better the performance than 2DPCA on
ORL database.
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Figure 4.20: Performance of 2DPCA, 2DLDA and 2DPCA+2DLDA on the Yale
database with different training numbers for each subject.
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Figure 4.21: Performance of 2DPCA, 2DLDA and 2DPCA+2DLDA on the ORL
database with different training numbers for each subject.
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4.4 Experiments and Analysis on Class-Specific Subspace-Based Two-
Dimensional Principal Component Analysis
In this section, we experimentally evaluate our proposed framework, CSS-Based

2DPCA, by using 2DPCA as the baseline method for comparison.
In all experiments, the training set is divided to K sets, where K is the number of

classes in each database. There are 15, 40, 134 and 3 classes on Yale, ORL, AR and
MSTAR database, respectively.

The first experiment is the performance comparison via varying the number of
feature vectors.

On Yale database, the five image samples (centerlight, glasses, happy, leftlight,
and noglasses) are used to train, and the six remaining images (normal, rightlight, sad,
sleepy, surprised and wink) for test. For ORL and AR database, the first five images are
used to train per subject, and the remaining images for test. For MSTAR database, the
training and testing samples are shown in Table 4.1 and Table 4.2, respectively.

We vary the number of principal component vectors (d) from 1 to the number of
pixels in the width direction. The compared results with 2DPCA are shown in Fig. 4.22,
Fig. 4.23, Fig. 4.24, and Fig. 4.25. And the highest recognition accuracy comparisons of
2DPCA and CSS-based 2DPCA on Yale, ORL, AR, and MSTAR databases are presented
in Table. 4.4.

From these results, the performance of CSS-based 2DPCA give the best results
when a few of the number of principal component vectors are used on all face databases.
Especially, it obtains the best recognition accuracy on Yale database. However, the
performance of this method is lower than 2DPCA on the big database, such as MSTAR
database.

Table 4.4: The Highest Recognition Accuracy Comparisons of 2DPCA and CSS-based
2DPCA on Yale, ORL, AR, and MSTAR databases

Database Method Accuracy (%) d Dimension
Yale 2DPCA 95.56 11 100× 11

2DPCA+CSS 97.78 9 100× 9

ORL 2DPCA 92.50 5 112× 5

2DPCA+CSS 86.00 4 112× 4

AR 2DPCA 60.74 2 100× 2

2DPCA+CSS 51.28 1 100× 1

MSTAR 2DPCA 99.49 11 80× 11

2DPCA+CSS 78.53 5 80× 5
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Figure 4.22: Recognition accuracy of CSS-based 2DPCA and 2DPCA on the Yale
database.
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Figure 4.23: Recognition accuracy of CSS-based 2DPCA and 2DPCA on the ORL
database.
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Figure 4.24: Recognition accuracy of CSS-based 2DPCA and 2DPCA on the AR
database.
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Figure 4.25: Recognition accuracy of CSS-based 2DPCA and 2DPCA on the MSTAR
database.
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4.5 Experiments and Analysis on Image Cross-Covariance Analysis
In this section, we experimentally evaluate our proposed framework, Image Cross-

Covariance Analysis (ICCA), for the effect of the number of image shifting and principal
component vectors.

In these experiments, the performance comparison via varying the number of image
shifting and the number of the principal component vectors.

On Yale database, the five image samples (centerlight, glasses, happy, leftlight,
and noglasses) are used to train, and the six remaining images (normal, rightlight, sad,
sleepy, surprised and wink) for test. For ORL and AR database, the first five images are
used to train per subject, and the remaining images for test. For MSTAR database, the
training and testing samples are shown in Table 4.1 and Table 4.2, respectively.

Firstly, we vary both of the number of image shifting (L) and the number of
principal component vectors (d). If L = 1 then it is original 2DPCA. Actually, the
maximum number of image shifting can be reached to the number of a whole pixels in
the image (width×height), i.e. 8000 on Yale, 10304 on ORL, 8000 on AR, and 6400
on MSTAR. However, only a few number of shifting image can achieve the highest
recognition accuracy. Therefore, the number of image shifting was varied only from 1
to 80. While the number of principal component vectors were varied from 1 to 80, 92,
64, and 30 on Yale, ORL, AR, and MSTAR databases, respectively. The results on
Yale, ORL, AR, and MSTAR databases are shown in Fig. 4.26, Fig. 4.28, Fig. 4.30,
and Fig. 4.32, respectively. And the performance maps of these results are presented in
Fig. 4.26, Fig. 4.28, Fig. 4.30, and Fig. 4.32.

Secondly, we fixed the number of principal component vectors (d) to the value that
obtains the highest recognition accuracies on each database in the former experiments
while we vary the number of image shifting (L) from 1 to 1000 on Yale, ORL, AR,
and MSTAR. The results are shown in Fig. 4.34, Fig. 4.36 , Fig. 4.38, and Fig. 4.40.
From these results, we found that they are the periodic curve which the number of image
shifting in a period equals to the height of the image. The one period of these results
are shown in Fig. 4.35, Fig. 4.37 , Fig. 4.39, and Fig. 4.41.

The samples of shifted image which obtain the best recognition accuracy on the
Yale, ORL and AR databases are illustrated with the its original images in Fig. 4.42,
4.43 and 4.44, respectively. The best of recognition accuracy of these methods are
presented in Table 4.9.

Our proposed method achieves the higher recognition accuracy than 2DPCA, while
the complexity of testing process is almost same as 2DPCA. Because only one test
sample is shifted. However, the complexity of training process of ICCA depends on the
number and resolution of training images, thus it usually be higher than 2DPCA.
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Figure 4.26 Recognition accuracy of ICCA on the Yale database.
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Figure 4.27 Performance map of ICCA on the Yale database.
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Figure 4.28 Recognition accuracy of ICCA on the ORL database.
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Figure 4.29 Performance map of ICCA on the ORL database.
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Figure 4.30 Recognition accuracy of ICCA on the AR database.
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Figure 4.31 Performance map of ICCA on the AR database.
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Figure 4.32 Recognition accuracy of ICCA on the MSTAR database.
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Figure 4.33 Performance map of ICCA on the MSTAR database.
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Figure 4.34: Recognition accuracy of varying the number of image shifting of ICCA on
the Yale database.
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Figure 4.35: A period of varying the number of image shifting of ICCA on the Yale
database.
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Figure 4.36: Recognition accuracy of varying the number of image shifting of ICCA on
the ORL database.
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Figure 4.37: A period of varying the number of image shifting of ICCA on the ORL
database.
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Figure 4.38: Recognition accuracy of varying the number of image shifting of ICCA on
the AR database.
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Figure 4.39: A period of varying the number of image shifting of ICCA on the AR
database.
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Figure 4.40: Recognition accuracy of varying the number of image shifting of ICCA on
the MSTAR database.
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Figure 4.41: A period of varying the number of image shifting of ICCA on the MSTAR
database.
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(a) Original (b) L=11 (c) L=12 (d) L=3911 (e) L=3912 (f) L=7911 (g) L=7912

Figure 4.42: The samples of the shifted images which obtain the best recognition
accuracy on the Yale database.

(a) Original (b) L=12 (c) L=56 (d) L=5052 (e) L=5096 (f) L=10204 (g) L=10248

Figure 4.43: The samples of the shifted images which obtain the best recognition
accuracy on the ORL database.

(a) Original (b) L=9 (c) L=109 (d) L=3809 (e) L=3909 (f) L=7809 (g) L=7909

Figure 4.44: The samples of the shifted images which obtain the best recognition
accuracy on the AR database.

(a) Original (b) L=23 (c) L=103 (d) L=3063 (e) L=3143 (f) L=6263 (g) L=6343

Figure 4.45: The samples of the shifted images which obtain the best recognition
accuracy on the MSTAR database.
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4.6 Experiments and Analysis on Two-Dimensional Random Subspace
Analysis
In this section, we experimentally evaluate our proposed framework, 2DRSA and

its extension, 2D2RSA and RSM-based ICCA. by using 2DPCA as the baseline method
for comparison.

4.6.1 Effect of Feature Dimension of Random Subspace and Number of Classifiers
The first experiment was setup for investigating the effect of the feature dimension

of random subspace and the number of classifiers.
On Yale database, the five image samples (centerlight, glasses, happy, leftlight,

and noglasses) are used to train, and the six remaining images (normal, rightlight, sad,
sleepy, surprised and wink) for test. For ORL and AR database, the first five images are
used to train per subject, and the remaining images for test. For MSTAR database, the
training and testing samples are shown in Table 4.1 and Table 4.2, respectively.

We vary the number of random selected rows of feature matrix (r) from 1 to the
height of image (100 on Yale and AR, 112 on ORL and 80 on MSTAR). The number
of classifiers varies from 1 to 99 step by 2. We fix the number of principal component
vectors (d) to the value that obtains the highest recognition accuracy in 2DPCA, excepting
MSTAR. The number of classifiers on MSTAR was changed only from 1 to 25, stepping
by 2. If r equals to the number of pixels in the height direction of image, it is original
2DPCA. The results of these experiments on the Yale, ORL, AR, and MSTAR databases
are presented in Fig. 4.46, Fig. 4.48, Fig. 4.50 and Fig. 4.52, respectively.

For investigating the optimal region, the priori performance map of these results
on each database were plotted by selecting the points which obtain the high performance
and shown in Fig. 4.54, Fig. 4.55, Fig. 4.56 and Fig. 4.57. The average of recognition
accuracies across the number of random selected rows of feature matrix on the Yale,
ORL, AR and MSTAR databases are presented in Fig. 4.58, Fig. 4.60, Fig. 4.62 and
Fig. 4.64, respectively. From these figures, we found that only a little number of selected
rows of feature matrix can be improved the performance. The average of recognition
accuracies across the number of classifiers on the Yale, ORL, AR and MSTAR databases
are presented in Fig. 4.59, Fig. 4.61, Fig. 4.63 and Fig. 4.65, respectively. From these
figures, we found that the recognition accuracy will be improved when the number of
classifiers are increased. And then the highest recognition accuracies of each databases
is presented in Table 4.6. The average of recognition accuracies across the number of
classifier and the number of random selected rows of feature matrix on the Yale, ORL,
AR and MSTAR databases are presented in Fig. 4.66 and Fig. 4.67, respectively.

The second experiment was setup for investigation the salability of 2DRSA. A
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thousand experiments were operated by randomly selecting the number of random selected
rows of feature matrix and classifiers in small ranges. From the results in Fig. 4.54,
Fig. 4.55, Fig. 4.56 and Fig. 4.57, we decided to vary the number of random selected
rows of feature matrix (r) from 10 to 15 and the number of classifiers from 29 to 99
step by 2 on all databases. The maximum, minimum, mean and the standard derivation
are presented in Table 4.5. And the boxplot of there results were depicted in Fig. 4.68.

Our proposed method achieves the higher recognition accuracy than 2DPCA in
Table 4.6. However, the complexity of 2DRSA is higher than 2DPCA because many
classifiers are used to obtain the high performance.
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Figure 4.46 Recognition accuracy of 2DRSA on the Yale database.
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Figure 4.47 Performance map of 2DRSA on the Yale database.
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Figure 4.48 Recognition accuracy of 2DRSA on the ORL database.
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Figure 4.49 Performance map of 2DRSA on the ORL database.
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Figure 4.50 Recognition accuracy of 2DRSA on the AR database.
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Figure 4.51 Performance map of 2DRSA on the AR database.
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Figure 4.52 Recognition accuracy of 2DRSA on the MSTAR database.
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Figure 4.53 Performance map of 2DRSA on the MSTAR database.
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Figure 4.54 The priori performance map of 2DRSA on Yale database.
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Figure 4.55 The priori performance map of 2DRSA on ORL database.
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Figure 4.56 The priori performance map of 2DRSA on AR database.
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Figure 4.57 The priori performance map of 2DRSA on MSTAR database.
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Figure 4.58: Averaging results of 2DRSA by varying the feature dimensions on Yale
database.
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Figure 4.59: Averaging results of 2DRSA by varying the number of classifiers on Yale
database.
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Figure 4.60: Averaging results of 2DRSA by varying the feature dimensions on ORL
database.
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Figure 4.61: Averaging results of 2DRSA by varying the number of classifiers on ORL
database.
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Figure 4.62: Averaging results of 2DRSA by varying the feature dimensions on AR
database.
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Figure 4.63: Averaging results of 2DRSA by varying the number of classifiers on AR
database.
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Figure 4.64: Averaging results of 2DRSA by varying the feature dimensions on MSTAR
database.
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Figure 4.65: Averaging results of 2DRSA by varying the number of classifiers on
MSTAR database.
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Figure 4.66 Boxplot of 2DRSA in term of the number of classifiers.
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Figure 4.67 Boxplot of 2DRSA in term of the feature dimensions.
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Figure 4.68: Boxplot of 2DRSA in term of the number of classifiers and the feature
dimensions in prospected ranges.
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Table 4.5: The Data Statistics of Results comparisons of 2DRSA Method on Yale, ORL,
AR, and MSTAR Databases

Database Data statistics #Classifiers Dimension
Max 98.8889 31 12× 20

Yale Mean 97.0244 - -
Min 95.5556 31 10× 20

Std 0.5427 - -
Max 95 31 14× 5

ORL Mean 92.7345 - -
Min 90 29 15× 5

Std 0.787 - -
Max 65.2244 29 14× 2

AR Mean 62.745 - -
Min 59.1346 45 13× 2

Std 0.9326 - -
Max 100 45 12× 11

MSTAR Mean 99.8228 - -
Min 99.4872 77 11× 11

Std 0.1055 - -

Table 4.6: The Highest Recognition Accuracy Comparisons of 2DPCA and 2DRSA
Method on Yale, ORL, AR, and MSTAR Databases

Database Method Accuracy d L Dimension
Yale 2DPCA 95.56 % 11 1 100× 11

2DRSA 98.89 % 20 11 12× 20

ORL 2DPCA 92.50 % 5 1 112× 5

2DRSA 95.00 % 5 12 14× 5

AR 2DPCA 60.74 % 2 1 100× 2

2DRSA 65.22 % 2 9 14× 2

MSTAR 2DPCA 99.49 % 11 1 80× 11

2DRSA 100.00 % 11 23 12× 11
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4.6.2 The experiment results of Two-Dimensional Diagonal Random Subspace Anal-
ysis
The first experiment, we compare the performance of 2DPCA and DiaPCA when

the number of principal component vectors is varying on Yale database. The result is
plotted in Fig. 4.69, DiaPCA can achieve the highest recognition accuracy by using
the number of principal component vectors lower than 2DPCA. The second experiment,
we fixed the number of principal component vectors as the value that obtain the best
performance in the previous experiment. And the dimension of random subspace is
varying from 1 to the height of the image (100). If this value equals to 1, it means
normal DiaPCA. For the number of classifiers, we used only the odd number form 1
to 99. The results of 2D2RSA on Yale database are presented in Fig. 4.70. The best
of recognition accuracy of these methods are compared in Table 4.7, where d is the
number of principal component vectors, r is the dimension of random subspace and C is
the number of classifiers. Our proposed method achieves the higher recognition accuracy
than 2DPCA and DiaPCA. However, the complexity of our proposed methods depends
on the number of classifiers and the dimension of random subspace, thus it usually be
higher than 2DPCA.

Table 4.7: The Highest Recognition Accuracy Comparisons of 2DPCA and 2D2RSA on
Yale databases

Database Method Accuracy d r C
2DPCA 95.56 % 11 100 1

Yale DiaPCA 95.56 % 10 100 1
2D2RSA 97.78 % 10 4 9
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Figure 4.69 Recognition accuracy of DiaPCA and 2DPCA on Yale database.
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Figure 4.70 Recognition accuracy of 2D2RSA on Yale database.
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4.6.3 The experiment results of RSM-based ICCA
In this experiment, the performance of RSM-based ICCA was investigated. For

comparison with 2DRSA, we vary values in the same intervals as used in the experiments
on 2DRSA, as following: The number of classifiers was randomly selected from the odd
numbers between 29 to 99. The dimension of the random subspaces was randomly
selected between 10 and 15. And the five value of the number of the image shifting (L)
was randomly selected from the first period in the previous experiments.

A thousand of experiments, the parameters were randomly selected in above inter-
vals in each experiments, were performed on Yale, ORL, AR, and MSTAR databases.
The maximum, mean, minimum, and standard derivation of the results are presented in
Table 4.8 and Fig. 4.71. And the highest recognition accuracy of RSM-based ICCA are
compared with 2DPCA and ICCA in Table 4.9.
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Figure 4.71 Boxplot of RSM-based ICCA on Yale, ORL, AR, and MSTAR databases.
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Table 4.8: The Data Statistics of Results of RSM-based ICCA Method Comparisons on
Yale, ORL, AR, and MSTAR Databases

Database Data statistics #Classifiers Dimension #L
Max 97.7778 29 11× 20 5

Yale Mean 96.6833 - - 5
Min 95.5556 39 11× 20 5
Std 0.144 - - 5
Max 96 29 11× 5 5

ORL Mean 94.5865 - - 5
Min 93 29 12× 5 5
Std 0.5348 - - 5
Max 66.0256 41 10× 2 5

AR Mean 64.1951 - - 5
Min 62.0192 69 15× 2 5
Std 0.6302 - - 5
Max 99.9267 59 13× 11 5

MSTAR Mean 99.8557 - - 5
Min 99.7802 33 12× 11 5
Std 0.0514 - - 5

Table 4.9: The Highest Recognition Accuracy Comparisons of 2DPCA and ICCA
Method on Yale, ORL, AR, and MSTAR Databases

Database Method Accuracy d L Dimension
2DPCA 95.56 % 11 1 100× 11

Yale ICCA 97.78 % 25 11 100× 25

ICCA+RSM 97.78 % 20 - 11× 20

2DPCA 92.50 % 5 1 112× 5

ORL ICCA 95.00 % 7 12 112× 7

ICCA+RSM 96.00 % 5 - 11× 5

2DPCA 60.74 % 2 1 100× 2

AR ICCA 62.50 % 2 9 100× 2

ICCA+RSM 66.03 % 2 - 10× 2

2DPCA 99.49 % 11 1 80× 11

MSTAR ICCA 99.93 % 11 23 80× 11

ICCA+RSM 99.93 % 11 - 13× 11
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4.7 Summary
In this section, all our proposed methods are compared with the original 2DPCA

here. The proposed methods are listed as following,

• Two-Dimensional Linear Discriminant Analysis (2DLDA):
The non-iterative unilateral projection based 2DLDA.

• Two-Dimensional Linear Discriminant Analysis of Principal Component Vectors
(2DPCA+2DLDA) or 2D Fisherface:
The 2DPCA is performed as the feature extraction of 2DLDA.

• Class-Specific Subspace-Based Two-Dimensional Principal Component Analysis
(2DPCA+CSS):
The 2DPCA which each subspace is trained by only the samples in own class.

• Image Cross-Covariance Analysis (ICCA):
The generalized 2DPCA with the generalized image covariance matrix, namely
image cross-covariance matrix.

• Two-Dimensional Random Subspace Analysis (2DRSA):
The 2DPCA with ensemble method, Random Subspace Method (RSM).

• Random Subspace Method-Based Image Cross-Covariance Analysis (ICCA+RSM):
The ICCA with ensemble method, Random Subspace Method (RSM).

The highest recognition accuracy of above methods on three face databases (Yale,
ORL, and AR) and a SAR image database (MSTAR) are presented in Table 4.10 and
Fig. 4.72.

From these results, we found that the 2DLDA, 2DPCA+2DLDA, and ICCA can
perform a improvement from 2DPCA in all databases with a little bit complexity. While
the 2DRSA and RSM-based ICCA achieve the highest recognition accuracy on all
databases but they take the highest complexity in the same time. For Class-Specific
Subspace-Based 2DPCA, it achieves a good performance only in a small database, i.e.
Yale. Unfortunately, the performance of 2DPCA+CSS will drop when it is applied to
the big database.
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Table 4.10: The Summary Comparison of The Highest Recognition Accuracy Results on
Yale, ORL, AR, and MSTAR Databases

Database Method Accuracy (%) Dimension
2DPCA 95.5556 100× 11

2DLDA 97.7778 100× 14

2DPCA+2DLDA 98.8889 100× 17

Yale 2DPCA+CSS 97.7778 100× 9

2DRSA 98.8889 12× 20

ICCA 97.7778 100× 25

ICCA+RSM 97.7778 11× 20

2DPCA 92.5000 112× 5

2DLDA 94.0000 112× 6

2DPCA+2DLDA 94.5000 112× 6

ORL 2DPCA+CSS 86.0000 112× 4

2DRSA 95.0000 14× 5

ICCA 95.0000 112× 7

ICCA+RSM 96.0000 11× 5

2DPCA 60.7372 100× 2

2DLDA 60.8974 100× 4

2DPCA+2DLDA 65.0641 100× 5

AR 2DPCA+CSS 51.2821 100× 1

2DRSA 65.2244 14× 2

ICCA 62.5000 100× 2

ICCA+RSM 66.0256 10× 2

2DPCA 99.4872 80× 11

2DLDA 99.5604 80× 78

2DPCA+2DLDA 99.6337 80× 35

MSTAR 2DPCA+CSS 78.5348 80× 25

2DRSA 100.0000 12× 11

ICCA 99.9267 80× 11

ICCA+RSM 99.9267 13× 11
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CHAPTER V

THE CONCLUSIONS

This chapter summarizes the works presented in this dissertation including conclu-
sions and future directions.

5.1 Conclusions of The Dissertation
In this dissertation, the improved frameworks of two-dimensional subspace anal-

ysis are proposed and applied to face and automatic target recognition (ATR). Firstly,
this dissertation proposed the two-dimensional linear discriminant analysis of principal
component vectors framework to improve the discriminant power of system. Since 2D-
PCA is more suitable for face representation than face recognition, like PCA. For better
performance in recognition task, linear discriminant still be necessary.

Secondly, Class-Specific Subspace (CSS) is applied to 2DPCA for providing the
information of class labels. By applying CSS over 2DPCA, the class information is
introduced to unsupervised method. Each subspace of CSS learned from only the training
samples in own class. In this way, the CSS representation can provide a minimum
reconstruction error. Which it can be used to classify the input data.

Thirdly, the random subspace method is applied to 2DPCA. Normally, the feature
of 2DPCA is a matrix. In the row direction, the number of the columns of these matrix
is affected by the number of selected eigenvalues of the image covariance matrix while
the number of selected eigenvalues is not influenced in the column direction. Thus, the
number of the rows is still equal to the height of original image and the random subspace
method can be apply in the column direction. The random subspaces are constructed
by randomly selecting a number of rows of the original feature matrix. The multiple
classifiers are constructed in these random subspaces of the data feature space. These
classifiers are usually combined by simple majority voting in the final decision rule.

Finally, this dissertation proposed the generalize form of image covariance matrix,
called image cross-covariance matrix. And then combine with RSM for improving the
accuracy and the robustness of system. Compare to the covariance matrix of PCA, the
image covariance matrix discard some of the information. This disregard information may
possibly be useful for discrimination. The image cross-covariance matrices are formulated
by two variables, the original image and its shifted version. By our shifting algorithm,
many image cross-covariance matrices are formulated to cover all of the information in
which discarded by the image covariance matrix. And then the random subspace method
is applied to this framework for taking the benefit of a huge number of these subspaces.
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From the experimental results, we found that the main advantage of our proposed
frameworks that is almost of them improve the recognition accuracy of face and automatic
target recognitions. Moreover, they can be generally applied to other image recognition
tasks. However, there are some disadvantages in our proposed frameworks. Since
the several parameters cannot automatically specify to the optimal values. And the
complexity of our proposed frameworks increase from the original 2DPCA, especially
when RSM is applied.

5.2 Future Directions
• Several parameters (such as the number of feature vectors of 2DPCA and 2DLDA,
the dimension of random subspace, the number of image shifting and the num-
ber of classifiers) are still manually specified. The optimal values are found by
experiments for the best recognition accuracy. Nevertheless, automatic parameter
specification is necessary for the practical applications in the future research.

• The two-dimensional subspace analysis is more appropriate for 2D data such as
grayscale image than traditional one-dimensional subspace analysis. However, some
databases furnish the color information which is neglected in this dissertation or
some databases provide the image sequence (video). These information should be
improving the performance of the recognition system. To combine all information
in multi-dimensional data, It can be done by using Multi-Linear Dimensional Sub-
space Analysis which the dimension of the data is unlimit. The Tensor analysis
and High Order Singular Value Decomposition (HOSVD) are the keywords of this
framework.

• The distance measurement between two feature matrices is the one of the interesting
point for improving the recognition accuracy. Moreover, the knowledge of matrix
distance measurement probably be using to improve the distance measurement of
feature tensors.

• The kernel method is the one technique which is opposite to the subspace analysis,
because the dimension of the data are increased in kernel method while the subspace
analysis produce the subspace with lower dimension data. Apply kernel method to
two or multi-linear dimensional subspace analysis should be leading ultimately to
improvements in pattern recognition.
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Appendix A
List of Abbreviations

2DFDA Two-Dimensional Fisher Discriminant Analysis
2DLDA Two-Dimensional Linear Discriminant Analysis
2DPCA Two-Dimensional Principal Component Analysis
2DPCA+2DLDA 2DLDA of Principal Component Vectors
2DPCA+CSS Class-Specific Subspace-Based 2DPCA
2DRSA Two-Dimensional Random Subspace Analysis
2D2RSA Two-Dimensional Diagonal Random Subspace Analysis
ATR Automatic Target Recognition
B2DPCA Bilateral-Projection-Based 2DPCA
CSA Coupled Subspace Analysis
CSS Class-Specific Subspace
DFCSS Distance From Class-Specific Subspace
DFFSS Distance From Face-Specific Subspace
DiaPCA Diagonal Principal Component Analysis
FDA Fisher Discriminant Analysis
FSS Face-Specific Subspace
HOSVD High Order Singular Value Decomposition
ICCA Image Cross-Covariance Analysis
ICCA+RSM Random Subspace Method-Based ICCA
LDA Linear Discriminant Analysis
NN The nearest neighbor classifier
PCA Principal Component Analysis
RSM Random Subspace Method
SAR Synthetic Aperture Radar
SSS Small Sample Size Problem
SVD Singular Value Decomposition
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