การลดทอนรายละเอียดเมชแบบยุบโดยใช้การตั้งค่าคะแนนด้วยการเบี่ยงเบนเชิงมุม และความปรกติของหน้า

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2553
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

COLLAPSE-BASED MESH SIMPLIFICATION USING ANGULAR DEVIATION AND REGULARITY BIAS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Computer Engineering Department of Computer Engineering

Faculty of Engineering
Chulalongkorn University
Academic Year 2010
Copyright of Chulalongkorn University

COLLAPSE-BASED MESH SIMPLIFICATION USING ANGULAR DEVIATION AND REGULARITY BIAS

By

Mr. Varakorn Ungvichian

Field of Study
Thesis Advisor
Assistant Professor Pizzanu Kanongchaiyos, Ph.D.

Accepted by the Facolty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requitements for the Doctoral Degree

THESIS COMMITTEE

(Associate Professor Somchai Prasitjutrakul, Ph.D.)

(Chakrit Watcharopas, Ph.D.)

(Assistant Professor Natasha Dejdumrong, Ph.D.)

(Associate Professor Pavadee Sompagdee)

วรากร อึ้งวิเชียร : การลดทอนรายละเอียดเมชแบบยุบโดยใช้การตั้งค่าคะแนนด้วยการ เบี่ยงเบนเชิงมุมและความปรกติของหน้า. (COLLAPSE-BASED MESH SIMPLIFICATION USING ANGULAR DEVIATION AND REGULARITY BIAS) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ. ดร. พิษณุ คนองชัขยศ, 199 หน้า.

หัวข้อวิจัยคอมพิวเตอร์กราฟึกส์ที่าควทิอ การลดทอนเมช หรือการลดจำนวนหน้า ของโมเดลสามมิติที่ซับซ้อน พื่อผพิมสมรรถภาพในการเรนเดอร์โดยที่ขังคงคุณภาพของ
 สองของ Garland uละ Heekbery เนื่องจากวิธีกรมหล่านี้สามารถใช้ได้กีกับโครงสร้างข้อมูล ที่เก็บระดับความละเอียด ได้มีผลง่าแวจจะที่แสต่งการปรับปรุงวิธีการของ Garland และ Heckbert โดยใช้คะแนทท่มูปานซากควมมโด้ด ลข่างไร์คีคี การใช้ความโค้งสำคัญ (principal curvature) ทั้งสองคำ รวมทั้งทิรูขวรรรสรามารถลคความคลุมเครือที่เกิดจากการใช้คะแนนค่า

 ส่วนบนสุด เพื่อลดตลาที่ใช้ในการทำงาน ได้สังเกตว่า วิกีการใหม่ทำให้ได้ค่าเฉลี่ยของระยะ Hausdorff ซึ่งใช้ไนิการวัดค่าต่างของเมช ที่น้อยกว่า QEM ในช่วง 12% ถึง 70% ระหว่าง
 จำนวนหน้าที่ท้อยก่ว่าอักอราทึมที่สนอยังคคงมีระยะววลาที่ใช้ $\delta(n \log n)$ แต่ วิธีการ

ภากวิชา......วิศวกรรมคอมพิวเตอร์..... สาขาวิชา......วิศวกรรมคอมพิวตอร์...... ลายมือชื่อ อ.ที่ปรึกยาวิทยานิพนธ์หลัก....⿰\%… 472 ปีการศึกษา 2553

\# \# 5071821021 : MAJOR COMPUTER ENGINEERING
KEYWORDS : THREE DIMENSIONAL COMPUTER GRAPHICS / MESH SIMPLIFICATION / CURVATURE / EDGE CONTRACTION

VARAKORN UNGVICHIAN : COLLAPSE-BASED MESH SIMPLIFICATION USING ANGULAR DEVIATION AND REGULARITY BIAS. ADVISOR : ASST. PROF. PIZZANU KANONGCHAIYOS, PHID. 199 pp.

A major research topic in computer graphics is mesh simplification, reducing the face count of complex 3 D models to improve rendering performance while retaining visual qualing. Gurrent research prefers edge contraction based methods, such as Garland and freckbert's Quadric Error Metric, as such methods lend themselves well to level-of-detail structures. Various research has suggested improvements to QEM based on cupvature-based scoring; however, using the two principal curvatures and their directions can help reduce the inherent ambiguity of using a single score. The proposed extension to Garland and Heckbert's method calculates the principal curvatures and their directions for each vertex, to calculate the absolute normal curvature fie be direction of contraction. Also, the regularity and the angular and dihedral deviations of the resulting faces are used to apply penalties. A heap updating schene that only updates the top portion of the heap to save time is also described/Theproposed method has been observed to reduce the average Hausdorff distance a.measure of mesh difference, in a range between $12 \%-70 \%$ from 5% to 50% face count, although QEM still produces lower distances at lever face count. Although the proposed algorithm retains an $O(n \log n)$ time ofmplexity, the partial heap update scheme has improved the overall process bya factor of 5.4 compared to using full heap updates.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Department : Computer Engineering..... Field of Study : Computer Engineering Academic Year: 2010

ACKNOWLEDGEMENTS

First of all, I thank my thesis advisor, Assistant Professor Pizzanu Kanongchaiyos, Ph.D., for his useful advice and research suggestions, as well as the thesis committee for this project for their useful feedback: Associate Professor Somchai Prasitjutrakul, Ph.D., Assistant Professor Pizzanu Kanongchaiyos, Ph.D., Chakrit Watcharopas, Ph.D., Assistant Professor Natasha Dejdumrong, Ph.D., and Associate Professor Pavadee Sompagdee.

I also thank the International Association of Computer Science \& Information Technology, for accepting my research paper for presentation at the $2^{\text {nd }}$ International Conference on Computer Modeling and Simulation, in Sanya, China, between January 22-24, 2010.

Lastly, I also have to thank my family for their love and support through all my years of education.

 ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CONTENTS

Page

Abstract (Thai) iv
Abstract (English) v
Acknowledgements vi
Contents vii
List of Tables.

\qquad x
List of Figures

\qquad
CHAPTER
I INTRODUCTION 1
1.1 Problem Statement and Motivation 1
1.2 Contributions 5
1.3 Dissertation structure 5
6 OII BACKGROUNDDANDRELATED/WORK.............6
2.1 Basics of polygonal meshes 6
 8
2.3 Related work 14
2.3.1 QEM and QEM-based approaches 14
2.3.1.1 Quadric weighing 17
2.3.1.2 Score penalizing 19
2.3.1.3 Expanded matrices 20
Page
2.3.2 Non-QEM-based approaches 21
2.3.2.1 Appearance-preserving 22
2.3.2.2 Memory-saving approaches. 24
2.3.2.3 Subdivided meshes 25
2.3.2.4 Global properties..... 25
2.3.2.5 Optimal placement........... 26
2.3.3 Heap updating process.. 26
2.4 Our observations. 27
2.5 Summary 28
III THE SIMPLIFICATION ALGORITHM 31
3.1 Overview 31
3.1.1 Notation 32
3.1.2 Scope 33
3.2 Converting to Abstract Cellular Complex 33
 34
3.3.1 QEM Score. 35
 39
3.4 Edge contraction. 44
3.5 Heap updates 46
3.5.1 Partial updating scheme. 46
3.5.2 Affected vertices. 48
3.5.3 Score re-calculation. 50
Page
3.6 Time and Complexity Analysis 54
3.7 Summary 57
IV EXPERIMENT AND RESULTS 59
4.1 Overview of the Experiment. 59
4.2 Method. 59
4.3 Experimental Results 62
4.4 Discussion. 69
4.4.1 Hausdorff and visual results 69
4.4.2 Comparing empirical running time to complexity analysis 77
4.4.3 Analysis of running times with full and partial heap updates. 80
4.4.4 Analysis of running timesusing different update parameters. 80
4.5 Summary 81
V CONCLUSIONS 84
5.1 Summary 84
 87
REFERENCES. 88
APPENDIX: EXPERIMENTAL RESULTS.................................... 96A. 1 Hausdorff distance and luminance difference results.96
A. 2 Running times with and without partial updates, and with different updating parameters 178
A. 3 Pictures of results. 187
BIOGRAPHY 199

LIST OF TABLES

Table Page
4-1 Maxima, minima, arithmetic means and standard deviations for $t / n \log n$ at each LOD 78
A-1 Hausdorff distances and running times of models simplified with QEM and our algorithm. 96
A-2 Penalty weights for all models 147
A-3 RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom). 150
A-4 Hausdorff distances on 50% reduced meshes. 169
A-5 Hausdorff results from addition-based penalizing. 171
A-6 Comparing running time with and without partial updates: (top row)
with partial updates, (middle row) without partial updates, (bottom row) ratio. $/$ 178
A-7 Running times after changing update parameters. 181
ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure Page
2-1 David model 9
2-2 Brake assembly rotors in distance. 10
2-3 Mesh simplification mechanisms (left to right): Sampling, adaptive subdivision, decimation, vertex merging........... 11
2-4 Examples of quadric isosurfaces. 16
2-5 Ambiguity on sharp corners with QEM. 16
2-6 Binormal vectors for Jong's torsion detection method (2006) 18
2-7 Determining bending degree in Li and Zhu's method (2008) 18
2-8 Back cost in Tang et al.'s method (2010) 19
2-9 Visual importance calculation from Kim et al. (2008). 20
2-10 Normal field deviation over edge from Hussain (2009). 20
2-11 Feature sensitive isosurfaces in Wei and Lou's method (2010) 21
2-12 Determining offset surfaces for Cohen's method (1996). 22
2-13 Parameterizêd normal Map for Gohen et tale s method (1998) 23
2-14 Rendering angles for Lindstrom and Turk's method (2000) 23
2-15 apetermining the optimafertex placement in the Memotyless method (1998) 24
2-16 Pruning the hierarchy in Balmelli’s method (2002) 25
2-17 Selecting vertex from subdivided Bézier patch in Choi’s method (a), results from dragon model using QEM (b) and Choi's method (c) (2008) 26
Page
3-1 Algorithm for edge-contraction simplification. 31
3-2 Explanation for $v_{x}, e_{x}, f_{x},\left\langle v_{x}, v_{y}\right\rangle,\left\langle v_{x}, v_{y}, v_{z}\right\rangle$, and $F\left(v_{x}\right)$ 32
3-3 Explanation for angular weighting method 36
3-4 Edge contraction in the area around a vertex with a valence of
3. 36
3-5 Contracting triangular hole... 37
3-6 Contracting around triangtlar opening in model. 37
3-7 The change in dihedral angle between two faces after contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{y}. 41
3-8 Boundary handling during initialization. 43
3-9 Point-face relationships before and after edge contraction. 45
3-10 Illustrating how vertices are affected by a contraction. 48
3-11 Boundary handling during score re-calculation. 52
3-12 The heap updating process. 54
4-1 Graphçompaning average Hausdorff distances between QSlim and our method. 63
4-2 Graph comparing best and worst Hausdorff results with average for all results (normalized using 1\% QEM distance). 64
4-3 Hausdorff distances for best results: Horse (left) and Head \#313 (right) 65
4-4 Hausdorff distances for worst results: Turbine (left) and Female \#20 (right) 66
Page
4-5 Hausdorff distances for average results: Teddy Bear \#177 (left) and Princeton Armadillo \#282 (right) 66
4-6 Runtimes for Princeton data plotted against face count with $n \log n$ trendlines 67
4-7 $\quad n \log n$ trendlines for Princeton data on graph. 68
4-8 Runtimes for all data plotted against face count with $n \log n$ trendlines 68
4-9 Comparison of female model (a) reduced with both QEM (b-g) and our methods (h-m) 70
4-10 Comparison of turbine blade model (a), reduced with both QEM (b- g) and our methods (h-nt). 72
4-11 Comparison of teddy bear model (a), reduced with both QEM (b-g) and our methods (h-m). 73
4-12 Comparison of Princeton armadillo model (a), reduced with both QEM (b-g) and bur methods (h-m).....M. $\cdot . \cap \cdots \cdots$ 73
4-13 Comparison of horse model (a), reduced with both QEM (b-g) and Qup nethods (h-१)....\%. $9198 \cap$...................................... 744-14 Comparison of head model (a), reduced with both QEM (b-g) andour methods (h-m)75
A-1 Hausdorff distances for Female (left) and Male (right) models 173
A-2 Hausdorff distances for Cup (left) and Chair (right) models 174
A-3 Hausdorff distances for Squid (left) and Squid 2 (right) models 174
Page
A-4 Hausdorff distances for Table (left) and Table 2 (right) models. 174
A-5 Hausdorff distances for Teddy (left) and Teddy 2 (right) models. 175
A-6 Hausdorff distances for Hand (left) and Hand 2 (right) models. 175
A-7 Hausdorff distances for Pliers (left) and Pliers 2 (right) models. 175
A-8 Hausdorff distances for Dolphin (left) and Fish (right) models. 176
A-9 Hausdorff distances for Bird (left) and Bird 2 (right) models 176
A-10 Hausdorff distances for Angel (left) and Armadillo (right) models 176
A-11 Hausdorff distances for Bunny (left) and Canyon (right) models. 177
A-12 Hausdorff distances for Dinosaur (left) and Dragon (right) models. 177
A-13 Hausdorff distances for Horse (left) and Turbine (right) models 177
A-14 1\% and 10\% simplified models: (a) Female 1 and (b) Female 2 187
A-15 1\% and 10% simplified models: (a) Cup, (b) Chair, (c) Squid. 188
A-16 1\% and 10\% simplified models: (a) Squid 2, (b) Table 1, (c) Table $2 .$. 189
A-17 1\% and 10\% simplified models: (a) Teddy, (b) Teddy 2 190
A-18 1% and 10% simplified models:(a) Hand,(b) Hand 2%. 191
A-19 1\% and 10% simplified models: (a) Pliers, (b) Pliers 2, (c) Dolphin. 192
A-20 1% and 10% simplified models: (a) Fish, (b) Bird, (c) Bird 2... 193
A-21 1\% and 10\% simplified models: (a) Head, (b) Angel 194
A-22 1\% and 10\% simplified models: (a) Big Armadillo, (b) Bunny. 195
A-23 1\% and 10% simplified models: (a) Canyon, (b) Dinosaur, (c) Dragon. 196
A-24 1\% and 10\% simplified models: (a) Horse, (b) Turbine. 197

Page

A-25 Canyon model, simplified with (left) and without (right) boundary preservation ... 198

A-26 Bottom of bunny model: Full (left), simplified with boundary preservation (middle), without (right).. 198

CHAPTER I

INTRODUCTION

In this chapter, we will explain the problem statement and motivation behind our research into mesh simplification. We will then describe the contributions we have made in this dissertation, and then provide an outline of the structure of the remainder of the dissertation.

1.1 Problem Statement and Motivation

One of the many fields of computer research is computer graphics, which can be used to generate imagery in two to three dimensions, allowing for many applications, such as for simulation, gaming, or animation. Because three-dimensional graphics are more suitable for fepresenting real-world situations, especially for simulations, three-dimensionat graphics have become more popular. As the number of applications for computer graphics has increased, along with computer graphics hardware capability in general, so has the quality of three-dimensional polygonal models.

ศูนย์วิทยทรัพยากร

Current models genefally have on the order of hundreds of thousands, and sometimes even millions of faces. For example, Stanford University has produced a model of Michelangelo's David statue containing about one billion faces, with models of other statues by Michelangelo also available at a detail on the level of hundreds of millions of faces (Levoy et al., 2000). Such a high number of faces makes current 3D models not only more detailed and realistic, but also more complex than
can be efficiently rendered on typical graphics hardware, which has an inherent limit on the speed of rendering.

In many applications, such fine detail is unnecessary and impractical, especially when real-time display is desired, for example, in online role playing games, where a high number of characters may appear on screen at a given time, and real-time response to user input is of higher importance than high-quality rendering. Therefore, it is usually necessary to reduce the number of faces in the model to a much smaller number, while retaining as much visual (and/or geometric) resemblance to the original model as possible, This process is known as mesh simplification or mesh reduction, and many methods have been proposed in the literature, using several different schemes. However, one of the most well-known and widely used algorithms is Garland and Heckbert's Quadric Error Metric method (Garland and Heckbert, 1997), or QEM, which scores contractions based mainly on the sums of the squares of the distances of the resulting vertex from the origimal mest's faces.

As Garland and Heckbert's original metric is based solely on geometric error, many subsequent papers have pfoposed enhancements to the original algorithm to improve its performance. For example, some papers (Kimet al., 2008) have described methods to efficiently extend the original metric tomeshes with vertex color, while others have incorporated other factors, such as curvature-based factors (Xu et al., 2008; Li and Zhu, 2008), torsion (Jong et al., 2006), normal variance (Choi, 2008), and higher-dimension feature sensitivity metrics (Wei and Lou, 2010) to allow the algorithm to recognize visually important features, and thus improve the resulting simplified model. Assuming that there is an upper bound to the number of faces
adjacent to each vertex, edge-contraction based simplification algorithms can generally be shown to have an overall time complexity of $O(n \log n)$ (Garland and Heckbert, 1997). The current state of the art, however, has suggested a possible ambiguity in the measure of curvature and curvedness.

The formal definition of curvature on a surface involves two directions and their respective normal curvatures, which are the maximum $\left(k_{\max }\right)$ and minimum $\left(k_{\min }\right)$ curvatures of the local area around a given point (Batagelo and $\mathrm{Wu}, 2007$). The Gauss curvature K is the product of the maximum and minimum, while curvedness is measured with a Pythagorean sum of the two curvatures $\left(\sqrt{k_{\min }^{2}+k_{\max }^{2}} / \sqrt{2}\right)$. Although both of these measures are easy to calculate, each one results in the possibility of surfaces of different nature receiving the same measure, which is to be expected of measures that provide a single value to determine the curvedness of the surface. Our expectation is that the quality of the simplified mesh can be improved by taking both principal curvatures and directions into consideration. The principal curvatures indicate the minimum and maximum normal curvature around a given point on the surface, and we beliève thatthese values cap helpindicate the direction in which it is more suitable to move a vertex, as we expect that moving vertices in directions of little to no curvatufe (either 89% a flat surface or along a straight feature edge) would affect the overall structure less than moving them in high curvature directions.

The angular orientation of faces affects their rendered appearance, for example, the reflection of light. Therefore, many contraction-based techniques check the normal vectors of the resulting faces to prevent faces from folding over by
penalizing such contractions (such as QEM), while other methods use the angular deviation as part of the score calculation. Hussein et al. (2001) and Choi (2008) use the angular deviation from the current facial orientation as part of their respective approaches, while other existing algorithms, such as Kobbelt (1998), focus on the overall dihedral angle between pairs of faces after contraction, instead of the change in the angle. However, Jia et al. (2006) point out a shortcoming with the latter method: A feature edge between faces with already large dihedral angles would produce a high contraction score, eyen in cases where contracting the edge would not significantly alter the model's appearance (for example, an edge between two facets of a cube). We also believe that considering overall dihedral angular deviation between faces, that is, the relative orientation between a given pair of faces, can be used to better improve overall orientation, by preventing features from flipping between concavity and convexity.

Another less-researched topic about contraction-based algorithms is the process of updating the heap. Most algorithms are assumed to perform updates on the full heap after each contraction, whereas some papers have performed research into improving the efficiency of heap updates. Cohen et al. (1997) flag scores for later updates, while Wurand Kobbelt (2004) dopaway with the heap byeusing a randomchoice method that picks edges at random and contracts the best-scoring one, and Chen et al. (2004) propose a method that saves memory space for the heap by setting a limit on its size, filling the heap to the size limit, and then alternating edge contractions with edge scoring, with a claim of linear time complexity due to the constant heap size limit. The methods have been shown to not significantly affect the accuracy of the simplification. However, we feel that there should be some degree of
assurance that a good-scoring edge is being contracted at each step, and that progress is being made in the simplification process.

1.2 Contributions

The algorithm that we propose in this research uses a vertex-merging approach based on QEM, utilizing the curvature direction to avoid ambiguity of curvature measures, and angular and dihedral deviation to control facial orientation. It has boundary preservation, and uses Kovalevsky's topological data representation as its input in order to reduce the time to pre-calculate necessary topological relationships. The algorithm is of a dynamic approach to mesh reduction, allowing for an exact level-of-detail to be defined offline, without considering the rendering viewpoint at runtime. It also uses a "lazy" method of heap updating to reduce runtime, at little to no cost of accuracy.

Our algorithm produces lower Hausdorff-distances than QEM during the early stages of the simplification on average (up to 5% level of simplification). However, at drastic levels, it produces significantly worse distances on average.

ศนยวทยทรพยากร

1.3 Dissertation structure

 (Related Work) will describe the details of prior research that relates to the work presented here. Chapter III (The Proposed Algorithm) will describe the workings of the algorithm. Chapter IV (Experiment and Results) will describe the experiments and results, and discuss our results. Lastly, Chapter V (Conclusion) will suggest possible further improvements.
CHAPTER II

BACKGROUND AND RELATED WORK

This chapter provides background information and details on previous work related to this current research. We will explain the basics of polygonal meshes and data structures used to represent them, before discussing previously published research work about edge-contraction based mesh simplification methods and heap updating methods. We conclude the chapter by explaining the aims of our research in context of the previous work.

2.1 Basics of polygonal meshes

There are many methods to represent three-dimensional models, such as boundary representation andsolid modeling; however, the most common method is to use a polygonal mesh, a structure comprised of a collection of vertices $\left\{v_{0}, v_{1}, v_{2} \ldots\right\}$, edges $\left\{e_{0}, e_{1}, e_{2} \ldots\right\}$ and faces $\left\{f_{0}, f_{1}, f_{2} \ldots\right\}$, representing the surface of the model. Although the faces can be of any shape, triangles are usually used, as the surface of a triangle can beshown to be planar, and thus consistently-defined; in fact,

many rendering\systems will decompose non-triangular faces into triangles before dimenุหาลงกรณ์มหาวิทยาลัย

Another issue about the storage of three-dimensional models is the data structure used to represent the models. Many data structures have been developed for this purpose, each of which has its own advantages and disadvantages (Smith, 2006). Among the most notable examples of such data structures are:

Vertex-vertex meshes: Object is represented as a list of vertices adjacent to other vertices. Simple, but all edges and faces are implicit.

Face-vertex meshes: Object is represented as a list of faces and vertices. Most generally used (e.g., the Object File Format or OFF), but edges are still implicit.

Winged-edge meshes (Baumgart, 1975): Object is represented explicitly as a list of faces, edges and vertices, along with topological relationships. Flexible for geometric operations, but only allows for manifold meshes (meshes where every edge is adjacent to exactly two faces), due to specifying the nearest clockwise and counterclockwise edge at each endpoint for each edge (which only makes sense on fully manifold meshes).

Most mesh simplification algorithms do not specify a representation for the input data, and generally assume that the data imput into the algorithm will contain the necessary relationships, or that they can be derived at trivial cost. A few examples of papers that take the representation of the input data into consideration are:

ค $9: 1$ Lindstrom s Out Of core method (Lindstrom, 2000): In addition to general face-vertex meshes, this paper claims the ability to work on a "triangle soup", in which each individual triangle is represented directly as a triplet of vertex coordinates (at the cost of extra disk space and much redundancy), as its use of a clustering mechanism along with vertex merging means that the algorithm does not require connectivity information.

Vieira’s Fast Stellar Simplification method (Vieira et al., 2003): This paper adapts the "Corner Table" data structure by Rossignac (2001) to represent triangular meshes, essentially a compact version of a half-edge representation, and features an algorithm designed to use this structure. As with the winged-edge structure, the "Corner Table" data structure assumes fully manifold models.

A paper by Kovalevsky (2001) proposes a "cell-list" representation that we have named the Abstract Cellular Complex format, which allows for the explicit storage of all topological relationships (for example, all faces adjacent to a given edge) between mesh elements of various dimensions without requiring a search, thus allowing for all necessary relationships to be pre-calculated and stored. This representation also allows for nonmanifold structures to be represented (unlike the winged-edge structure). We have already created an algorithm for reconstructing a possible 3D model from a wireframe into this representation (Varakorn Ungvichian and Pizzanu Kanongchaiyos, 2006), and it is relatively trivial to create when the vertices and faces are already known. Pre-calculating the relationships as part of the structure can assist the mesh simplification/ process, as necessary relationships no longer have to be determined.

The discrete nature of polygonal meshes means that to store more detail, more faces are required. Due to the inherent limits of graphics hardware, the high face count of a highly-detailed model may result in inefficient rendering. In order to improve rendering performance, many algorithms have been developed to reduce
the face count of complex models. The problem of mesh simplification can be formally defined as follows:

For a given polygonal model P, determine a model P^{\prime} with x faces that has the most resemblance to P.

An example of results from mesh simplification is shown in Figure 2-1, from Cignoni (2003). The model of the David statue (left) has been simplified from 8 million faces to 1.7 million (center) and 10,000 faces (right), while still retaining visual resemblance to the original. The rightmost model is suitable for most casual applications, can be much more quickly rendered, and is also easier to store and transmit over a network.

Figure 2-1: David model

Another reason to use mesh simplification is to reduce the detail of objects that are further away from the viewer, as the details will no longer be as
visible; therefore, such objects will not require as many faces to represent properly. As an example, Figure 2-2, from Cohen (1996), shows an example of an array of brake assembly rotors. The furthest rotors take up less screen space than those in the foreground, and thus require fewer faces.

Figure 2-2: Brake assembly rotors in distance

The main research problems concerning mesh simplification are: How to best quantize the resémblance of the simplified model to the original, how to minimize the amount of artifacts and visual errors resulting from the simplification process, and how to maintain a reasonable rupning time. It should be noted that Agarwal and Suri (1994) have shown that the problem of finding an optimal simplified approximation for a general model is NP-Hard, that is, likely to be solved only through impractical brute force algorithms; and in any case, there may be several ways to define "optimal", such as most visually similar or least surface difference. Therefore, proposed methods use various heuristics to determine an approximation of an optimal simplification. Detailed reviews of various mesh simplification methods
can be found in surveys by Cignoni (1997) and Luebke (2001), the latter of which classifies the methods by mechanism, treatment of topology and whether they use static, dynamic, or view-dependent simplification.

According to Luebke (2001), there are four major mechanisms for mesh simplification under which such algorithms can be classified, as illustrated in Figure 2-3: Sampling, which involves sampling the geometry either with points on the surface (Boubekeur and Alexa, 2009), or voxels in a grid (Rossignac and Borrel, 1993); adaptive subdivision, which involves determining a base mesh from the original model and recursively subdividing it back into the original (Eck et al., 1995); decimation, which involves removing vertices and their surrounding faces, before retriangulating the resulting holes (Schroeder et al., 1992); and vertex merging, which involves merging vertices together and remoying degenerate faces (Garland and Heckbert, 1997).

Figure 2-3: Mesh simplification mechanisms (left to right): Sampling, adaptive subdivision, decimation, vertex merging

The most commonly-used and researched mechanism is vertex merging, more specifically, edge contraction, in which the two vertices of an edge are
reduced to one, thus causing the edge's adjacent faces to become degenerate, with edge selection based on scoring. The vertex merging mechanism can be extended to contracting triangular faces (Hamann, 1994; Gieng et al., 1997; Zhigeng, Jiaoying and Kun, 2001), or structures with more complexity (Chen et al., 2007), however, it has been noted that such extensions reduce the quality of the simplified model. Examples of methods that use this mechanism include the energy function-based progressive meshes (Hoppe, 1996) and the volume and boundary area-based fast and memory efficient polygonal simplification, aka the Memoryless method (Lindstrom and Turk, 1998). However, one of the most well-known and widely used contraction-based mesh simplification algorithms is Garland and Heckbert's Quadric Error Metric method (Garland and Heckbert, 1997), which scores contractions based mainly on the sums of the squares of the distances of the resulting vertex from the original mesh's faces. Contraction-based methods are well-suited for level-of-detail based structures, such as Hoppe's progressive meshes, as one can simply store the edge contraction steps as part of the structure, and then use the steps to re-create the mesh at any desired level of detail.

Another one of Luebkes classifications for mesh simplification algorithms as \sim thein treatment and golerance 1 to ctopology. Fopology-preserving algorithms, such as decimation, can preserve manifold connectivity by avoiding contractions that affect the local topology such as holes, and thus can help improve visual fidelity. However, such algorithms also have a limit on the level of simplification that can be performed. In order to produce drastic reductions in face count, the majority of simplification algorithms are topology-modifying and topology insensitive, as the algorithms are allowed to modify the local topology, usually
without taking the initial local connectivity into account. Topology-tolerant algorithms can properly handle a mesh that has non-manifold portions. Although three-dimensional models, especially those scanned from real objects, should ideally be manifold at all points, models may have some topological imperfections, such as more than two faces meeting at a single edge. Therefore, topology-tolerant algorithms can be used on any model without first requiring the topology of the model to be verified.

An example of topology preservation is to preserve the boundaries around the edges of a structure, or holes. Such preservation can be promoted, or enforced, using various methods, for example: calculating planes of constraint and using them to calculate an extra quadric-based score (Garland and Heckbert, 1997), penalizing edge contractions that affect boundaries (Fahn et al., 2002), and constraining boundaries to remain within a defined area (Zelinka and Garland, 2002). Although penalizing contractions on boundaries lowers the chances of a contraction significantly affecting them, providing direct constraints on such contractions provides an absolute guarantee of preservation. The cost of performing boundary preservation inchudes the determination and storage of boundary edges and vertices, and the calculation of penalties fon edge contractions sinyolving boundaries.

Luebke's other categorization method is the type of mesh simplification: static, dynamic, and view-dependent. For most general objects, the current preference for mesh simplification is a dynamic approach, such that a model at any given level of detail can be produced. Of the other types, static mesh simplification allows for only a fixed set of simplified models that may not suit all
possible uses of the model, while view-dependent approaches are designed for large objects such as terrains, and requires making simplification decisions at runtime in the renderer, rather than performing the mesh simplification process offline.

2.3 Related work

In our review of related works, we will categorize the works into two categories: QEM-based and non-QEM-based. QEM-based works will be categorized into three subcategories: works based on quadric weighting, score penalizing and expanding the quadric matrices. Non-QEM will be categorized into five subcategories: appearance-preserving approaches, memory-saving approaches, subdivided meshes, global properties and optimal placement. We will also discuss papers that consider the heap updating process

2.3.1 QEM and QEM-based approaches

Although many types of mechanisms exist to reduce the number of faces in a model while retaining as much visual or geometric resemblance to the original as possible, we shall wonly focus on minethods that ase edge contraction to achieve the desired simplification. Cignoni (1997) and Luebke (2001) have produced more comprehensive reviews of the state of the artin mesh simplification.

Edge contraction is well-suited for mesh simplification for structures based on level of detail, as one can store the sequence of contractions as part of the structure, from which one can then easily recreate a model at a relatively exact desired level. This property makes level-of-detail-based structures more attractive than previous static structures, as it allows the rendering program to devote more faces to
more important objects, such as those in the foreground, while allocating an exact number of faces. The concept of a hierarchical structure for geometric models was originally proposed by Clark (1976), in which he proposes "varying environmental detail" as a possible use.

An early example of an edge contraction-based algorithm and a level of detail-based structure was Hoppe's Progressive Meshes (Hoppe, 1996), which proposes both a data structure that stores the progression of vertex mappings and edge contractions, and a mesh simplification method to create models using this structure. Their simplification method was based on greedy reduction of an energy function. However, it has been noted that the simplification process is slow and intricate to code. Another more recent example of a data structure for level-of-detail rendering is "masking strips" (Ripolles, 2009), a structure based on triangle strips that uses edgecontraction based mesh simplification as part of the algorithm for creating the structure.

Garlanđ and Heckbert (1997) devised a method for mesh simplification that is still widelyqusedin various forms, known as the Quadric Error Metric method (or QEM). Their method calculates a symmetric 4×4 matrix for each vertex, based on the plaßes (normalyectors) of its adjacent faces, For each plane p :

$$
K_{p}=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \tag{2-1}\\
a b & b^{2} & b c & b d \\
a c & b c & c^{2} & c d \\
a d & b d & c d & d^{2}
\end{array}\right]
$$

where the plane equation of p is $a x+b y+c z+d=0$ and $|a, b, c|=1$.

The K_{p} matrix can be used to calculate the square of the distance from a given point v to $p: v^{\mathrm{T}} K_{p} v$. The plane p (and thus K_{p}) of a given triangular face can be determined easily using the coordinates of its vertices, and for each vertex, the resulting matrix is a sum (which can be either regular or weighted to reduce the effects of tessellation) of the matrices obtained from the adjacent faces. For each edge, the matrices at each endpoint are summed together and used to determine the vertex position with the least (or lesser) error and calculate the total score, before inserting each score into a heap, and repeatedly contracting edges with the least total score (updating scores as needed) until reaching the desired level of simplification. Figure 2-4 shows examples of the isosurfaces resulting from the quadric matrices of each vertex.

Figure 2-5: Ambiguity on sharp corners with QEM

This method has been noted to produce a good tradeoff between results of simplification and execution time compared to previous methods, and has been made widely available as QSlim. The main drawback of the regular QEM algorithm, however, is that the error is strictly geometric distance-based, and does not take other factors into account, such as sharp corners being interpreted the same as a near-flat surface (Figure 2-5). Garland and Heckbert have already proposed other additions to the method to improve mesh quality, such as allowing for contracting close vertices not directly connected by any edge, detecting and penalizing contractions that produce folded-over and/or narrow faces, and adding a quadric penalty to boundary vertices based on constraining planes, to hetp preserve boundary areas. Due to the ease of implementation and its availability, other papers have experimented with improving the QEM method, suggesting varidus forms of penalty, either by weighting vertices' matrices to favor the retention of certain vertices, applying penalties to the edge scoring, or expanding the matrices to include other properfies in the calculation.

2.3.1.1 Quadric weighing

User-Guiđed Simplification (Kho and Garland, 2003) allows the user to weight the quadric matrices on features deemed visually important. Although it more or less ensures that the user will receive satisfactory results for simplifying a given model, it is not as useful or quick as fully-automatic simplification when multiple models need to be simplified.

Jong et al. (2006) calculate the torsion of each vertex's adjacent edges using approximations of the Frenet-Serret equations (Figure 2-6 shows the binormal vectors used to calculate torsion), and multiply the quadric matrices of each vertex
with the distance-weighted average of the resulting torsion values for each adjacent edge. Their method makes the claim of improving the retention of features.

Figure 2-6: Binormal vectors for Jong's torsion detection method (2006)

Li and Zhu (2008) multiply each vertex's quadric matrix with a weighted sum of the average length of its incidental edges and the vertex's average "bending degree", based on the difference between the normal vectors of faces adjacent to the vertex. Figure 2-7 shows the determining of the bending degree.

Figure 2-7: Determining bending degree in Li and Zhu's method (2008)

Tang et al. (2010) use the orientations of the faces adjacent to a given edge to calculate the average normal vector for the edge, and then use the angle
between the average normal vector and each adjacent plane to calculate a "back cost" to weight the QEM matrix for the respective plane when calculating each vertex's matrix (Figure 2-8). The algorithm always contracts any given edge to its midpoint.

Figure 2-8: Back cost in Tang et al.'s method (2010)
2.3.1.2 Score penalizing

Similar to Li and-Zhu's approach, Xu et al. (2008) use the normal vectors of the vertex and its adjacent faces to calculate a feature value for each edge, which is then added to with the QEM score to assist in retaining features. In their implementation, the square root of the feature value, multiplied by a weighing factor, is added to one of the coefficients of the matrix; however, in effect, it is the same as adding the feature value multiplied by the square of weighing factor.
(9 Kinfet ial. (2008) extend the/QEM mettodtt meshes with vertex color, by calculating color-related error separately from QEM geometric error, before multiplying the color-related error with the QEM error. Figure 2-9 shows the calculation of visual importance, a component of the color-related error.

Figure 2-9: Visual importance calculation from Kim et al. (2008)

Hussain (2009) calculates a vertex cost based on the normal field of each vertex's one-ring neighborhood for improved quality of simplification. His method calculates the normal field deviation over all edges adjacent to a given vertex, based on the areas and the normal vectors of its adjacent faces (Figure 2-10), and sums them to determine its cost, and then adds the normal field deviation for each given edge to its quadric error score to determine the cost of contracting each edge.

2.3.1.3 Expanded matrices

Garland and Heckbert's own extension to colored meshes (Garland and Heckbert, 1998) extends QEM to higher dimensions (up to 6), thus consuming more
memory than with Kim et al.'s method, as the size of the matrix in higher dimensions is $O\left(n^{2}\right)$.

Wei and Lou (2010) extend QEM to higher-dimensions, using a 6dimension feature sensitive matrix that combines QEM distance with normal variance. Figure 2-11 shows the isosurfaces of the matrices used in Wei and Lou's method. However, as with Garland and Heekbert's extension to colored meshes, the size of the matrix in higher dimensions is $O\left(n^{2}\right)$, thus increasing memory usage in a quadratic manner.

Figure 2-11: Feature sensitive isosurfaces in Wei and Lou's method (2010)

2.3.2 Non-QEM-based approaches \int° ?

 have been proposed. These methods claim various strengths, such as the preservation of appearance, or using less memory.

2.3.2.1 Appearance-preserving

The Simplification Envelopes method (Cohen, 1996) calculates offset surfaces that limit the surface error (Figure 2-12), and then calculates surface intersections to constrain all contractions to remain within the envelopes, thus enforcing a geometric limit on surface error. However, this method requires complicated calculations for both the envelopes, and surface intersections.

Figure 2-12: Determining offset surfaces for Cohen's method (1996)

Cohen et ar.'s (1998) Appearance Preserving Simplification method uses parameterization of the model to normal and texture maps (Figure 2-13), along with a "texture deviation metric", oto slimit contractions to those that preserve the overall appearance of the model, by ensuring that the parameterized maps do not shift by more than a given error constraint. Using an error constraint allows for better quality in simplification, however, it also limits the level of simplification possible.

Figure 2-13: Parameterized normal map for Cohen et al.'s method (1998)

The Image-Driven Simplification (Lindstrom and Turk, 2000) method aims to preserve the appearance of the simplified model by rendering the model from various angles to calculate the error, thus causing the process to be is significantly slower. The use of rendering assures visual quality; however, although Lindstrom and Turk have proposed various techniques to reduce the rendering time, such as "rerendering" only the affected portions of the image, purely geometric approaches are still faster than using direct rendering to determine the error.

Figure 2-14: Rendering angles for Lindstrom and Turk's method (2000)

2.3.2.2 Memory-saving approaches

The Memoryless method (Lindstrom and Turk, 1998) saves on memory usage, by recalculating a quadratic error measure (different from Garland and Heckbert's algorithm) for each affected vertex based on its current configuration, using volume and boundary preservation. Figure 2-15 shows a vertex being placed based on volume preservation and volume optimization constraints. This method has the cost of not storing the originat structure for comparison and using extra running time. However, in practice, it has been shown to produce better geometric results than QEM.

จฬาลงกรณ์มหาวิทยาลัย
Figure 2-15: Determining the optimal vertex placement in the Memoryless method

Hussain et al. (2001) also take a memory saving approach, by using a product of swept area and angular deviation as the error of simplification. Their
approach produces better running time than Lindstrom and Turk's method, but is slightly slower than QSlim, and produces slightly worse Hausdorff distance results.

2.3.2.3 Subdivided meshes

Balmelli et al. (2002) have also proposed a method to simplify subdivided meshes with a 4-8 structure (that is, meshes in which the valence of vertices alternates between 4 and 8). It achieves this by pruning the hierarchy of vertex subdivisions, using a rate-distortion based metric, thus allowing for a "general decimation" method that removes many vertices per cycle. Figure 2-16 shows their result of pruning the subdivision hierarchy. The authors suggest that the method provides an $O(n \log n)$ optimal mesh simplification algorithm for the case of 4-8 structures (in contrast to NP-Hard for the general case).

ศนยวิทยทรพยากร
Figure 2-16: Pruning the hierarchy in Balmelli's method (2002)

Tang et al. (2007) propose two different and complex moment-based metrics based on global feature change, one based on the surface, the other based on volume. Their claim is that these metrics take global change into account. The results show that this approach produces better volume and surface moment results than

QEM; however, they do not use Hausdorff distance results as part of their result evaluation.

2.3.2.5 Optimal placement

Choi et al. (2008) uses shape compactness, angular deviation and curvedness as factors to determine the optimal position from contracting each edge, based on a set of points subdivided from a Bezier patch around the edge. This method is different from the normal procedure of determining the position with the least error cost. Although it produces similar average surface error to QEM, it produces more areas of high surface error (in Figure 2-17(b) and (c), red spots have high surface error).

Figure 2-17: Selecting vertex from subdivided Bézier patch in Choi's method (a), Results fromaragon modebusing QEM (b) and Choi's method (c) (2008)

2.3.3 Heap updating process

Another topic concerning the mesh simplification process is how to update the priority heap. Most edge-contraction based methods are assumed to perform a full heap update after each contraction, that is, each entry in the heap is
checked before updating if necessary. However, a handful of papers have addressed the issue of saving time on this step:

Cohen et al. (1997) defer the updates of edge scores by assigning a "dirty flag" to scores that require updating, and re-calculate and re-insert flagged scores when they are encountered in the heap. A possible pitfall for this method is the possibility of encountering many consecutive "dirty flagged" edges, thus limiting progress.

Wu and Kobbelt (2004) avoid using a heap altogether with their "multiple-choice" method, by randomly picking a small subset of edges, calculating each edge's score, and contracting the edge with the least score. Their reasoning is that when models are simplified ata drastic level, most edges are likely to be contracted anyway.

Chen et al. (2004) save on heap space and execution time by filling the heap up only to a given size limit, and then alternate performing contractions and calculating scores for heap insertion, so as to keep the size of the heap under the limit. Their research claims a constant time for each contraction step (and thus linear time

2.4 Our observations

For most practical mesh reduction methods, we believe that the process should, in addition to producing well-simplified models, work generally well over a wide range of meshes, perform the simplification without requiring user intervention
during the process, rely entirely on geometry-based factors to determine score, and rely on factors that are easily calculated, for speed and coding purposes.

More importantly, however, we have observed that mesh simplification methods that use curvature to improve on QEM generally only use a single score per vertex, which may result in ambiguity with surfaces with different properties receiving the same score. The curvature of a surface can generally be defined using two principal normal curvatures, the maximum ($k_{\max }$) and minimum ($k_{\min }$) curvatures of the local area around a given point, and the directions of the curvatures. We believe that using both curvatures along with their directions can help provide better scoring.

We have also observed that most methods assume a full update on the priority heap after each contraction. Some research has been published that suggests that full updates after each contraction are not necessary for producing quality results from simplification. However, we feel that there should be some degree of assurance that an edge with a "good" score is being contracted at each step (instead of randomly picking a set of edges and expecting the best score among them to be "good"), and that progress iscconstantly being mâde in the simplification process (instead of having to repeatedly recalculate scores due to the "dirty flag").

จหาลงกรณมหาวิทยาลัย
 2.5 Summary

In this chapter, we have discussed background knowledge about polygonal meshes and data structures used to store them, mesh simplification and previous edge-contraction based mesh simplification methods. Polygonal meshes are the most popular method for representing three-dimensional models, using vertices,
edges and faces to represent the surface. Many data structures exist to store this information, such as winged-edge and cell lists. Most mesh simplification algorithms do not specify a specific structure, although a handful exist that do. Mesh simplification can be used to lower the number of faces in a complex threedimensional model. The simplified models can then be more easily stored or rendered using typical hardware. Another reason to simplify models is to reduce the detail of objects far from the viewer.

The problem of optimal mesh simplification is NP-Hard, so research on mesh simplification methods focus on creating heuristics to produce a good result. Many classifications for mesh simplification algorithms exist: mechanism, topology handling and type. The most researched mechanism is edge contraction, and the preferred approach is dynamic simplification, as these properties lend well to level-ofdetail based structures, which allow for models to be represented with an exact number of faces. Based on the state of the ant of edge-contraction based algorithms, we classify the works into two categories: QEM-based and non-QEM-based. Garland and Heckbert's QEM algorithm uses the sums of the distances from the planes of adjacent faces to calculate error score. Since the error is distance-based, it has potential problems, such as ambiguity at sharp corners. QEM-based algorithms take QEM algorithm and add other factors to the score calculation to improve handling of features, while non-QEM-based algorithms calculate scores based on factors such as volume optimization, surface and volume moment, or use normal maps, offset surfaces, or direct rendering to control the process. Also, we note that a handful of papers focus on how to save time updating the priority heap used in edge-contractionbased algorithms.

From our observations, we note that QEM-based algorithms only use a single score per vertex to assist in score calculation. We hypothesize that using both principal curvatures of a surface can help improve the performance. We also consider that heap updating algorithms should guarantee good scores and constant progress.

CHAPTER III

THE SIMPLIFICATION ALGORITHM

In this chapter, we will explain the proposed simplification algorithm. We begin by describing the general overview for the algorithm, along with our notational conventions and the scope of the models that we use. We then describe each step in detail, explaining our implementation choices, before providing a time and memory complexity analysis.

3.1 Overview

The algorithm will follow a similar approach to a typical edgecontraction based simplification algorithm (Figure 3-1): After reading the input data, we then calculate the score of eachedge and place the scores in a priority queue. We then contract edges with the best score, and update the scores in the queue, and then repeat the contraction and update processes until the desired level of detail (LOD) has been reached, or the priority queue is empty. We will explain our notation and scope, before explaining each of the steps in detail. $9 N \& \cap 〕 \approx$
Algorithm: Proposed Algorithm

1. Convert P to Abstract Cellular Complex
2. Score calculation,
3. Repeat \{
4. Edge contraction
5. Heap update
6. \} Until desired LOD reached
7. Output P '
8. End

Figure 3-1: Algorithm for edge-contraction simplification

3.1.1 Notation

In the following explanation of our algorithm, we will use the following notations and definitions:

$$
v_{x} \quad \text { Vertex (Figure 3-2) }
$$

$$
e_{x} \text { or }\left\langle v_{x}, v_{y}\right\rangle \quad \text { Edge (Figure 3-2) }
$$

$$
f_{x} \text { or }\left\langle v_{x}, v_{y}, v_{z}\right\rangle \quad \text { Face (Figure 3-2) }
$$

$F\left(v_{x}\right) \quad$ Set of faces adjacent to vertex v_{x} (Figure 3-2)

Figure 3-2: Explanation for $v_{x}, e_{x}, f_{x},\left\langle v_{x}, v_{y}\right\rangle,\left\langle v_{x}, v_{y}, v_{z}\right\rangle$, and $F\left(v_{x}\right)$

3.1.2 Scope

For our algorithm, we use as our input polygonal meshes with the following properties:

- singular objects
- no textures or colors
- triangular faces
- mostly manifold topology (i.e., boundaries are allowed, as well as a small amount of non-manifold edges with more than two faces adjacent)

3.2 Converting to Abstract Cellular Complex

Converting a face-vertex based polygonal mesh to Abstract Cellular Complex format proposed by Kovalevsky (2001) is rather trivial. After inputting the faces and vertices, for each face, we determine its edges by storing each pair of consecutive endpoints in a binary tree, with lower numbered vertex first, to prevent duplicate edges from being stored. After obtaining all the edges, we then determine and store the faces adjacent to each edge, along with the edges adjacent to each vertex. As the structure calls for specifying a start- and end-point for each edge, we simply designate the lower-numbered vertex as the start-point.

The Abstract Cellular Complex format also allows for volumes to be represented, as well as the right hand rotation order of faces around a given edge;
however, as we do not use these data in our algorithm, we do not need to determine this information.

3.3 Score calculation

After receiving the mesh data input, we first determine the faces adjacent to a given vertex, boundary edges (i.e., edges with exactly one adjacent face), and boundary vertices (the vertices of the boundary edges). Using the cell-list structure, these topological relationships can be determined at relatively small computational cost.

We also calculate the principal curvatures and their directions for each vertex, by calculating the normal vectors at each vertex, and then using Batagelo and Wu's method (Batagelo and Wu, 2007) of using linear least squares to estimate the curvature tensor, and then calculating the eigenvalues and eigenvectors from the resulting tensor. We have chosen Batagelo and Wu's method, because their method is easily implemented, and it is claimed to be fast, as well as robust on noisy meshes, producing fewer outliers than other methods.

Tô calculate the overall score, we first calculate the quadric error based on Garland and Heckbert's method (the QEM score), and then calculate the regularity and angular deviations of the resulting faces to penalize the score. We will now describe each part of the process in detail.

3.3.1 QEM Score

After we have calculated the curvatures, we next calculate the quadric matrices of each vertex. For each face, we calculate its normal vector to determine its corresponding plane, and convert the plane to a K_{p} matrix as per the regular QEM method. To each of the face's constituent vertices, we weight it with the product of the area and incident angle on the vertex. After inspecting every face, we perform a weighted average to obtain a quadrie matrix $Q(v)$ for each vertex:

$$
\begin{equation*}
Q(v)=\frac{\sum_{i=1}^{k} K_{i} p_{i} \theta_{i} w_{i}}{\sum_{i=1}^{k} \theta_{i} w_{i}} \tag{3-1}
\end{equation*}
$$

Where θ_{i} is the angle of face f_{i} with area w_{i} incident on v (see Figure 3-3). It should be noted that this is'the similar to one of the many possible ways Garland and Heckbert propose to weight the quadric matrices to reduce the effects of tessellation, except that Garland and Heckbert do not average the matrices, in order to retain scale variance.

Figure 3-3: Explanation for angular weighting method

After we have prepared the data for simplification, we then determine, for each edge $e=\left\langle v_{x}, v_{y}\right\rangle$, whether e is suitable for contraction. First, we check the valences of the vertices immediately adjacent to both endpoints, discarding any edges where any such vertex has a valence of 3 . This is because contracting the edge will result in two of the faces surrounding the edge having the same vertices, resulting in the resulting edge effectively becoming adjacent to three faces.

Figure 3-4: Edge contraction the area around a vertex with a valence of 3

To explain, in Figure 3-4, v_{d} has three faces around it: $\left\langle v_{x}, v_{b}, v_{d}\right\rangle$, $\left\langle v_{y}, v_{b}, v_{d}\right\rangle$, and $\left\langle v_{x}, v_{y}, v_{d}\right\rangle$. After contracting $\left\langle v_{x}, v_{y} \geqslant\right.$ to v_{x}, the first two faces are effectively combined info a single face, while the third face becomes degenerated. This results in $\left.\mathrm{n}_{\mathrm{j}}<v_{x}, v_{b}\right\rangle$ being adjacent to three faces: $\left\langle v_{a}, v_{b}, v_{x}\right\rangle,\left\langle v_{x}, v_{b}, v_{d}\right\rangle$
 $\left\langle v_{y}, v_{b}, v_{c}\right\rangle$), whereas the pre-contraction configuration has no such edges.

We also determine the number of vertices that are adjacent to both endpoints, and compare to the number of faces adjacent to the edge, and discard edges where these two values are not equal. This prevents a contraction from altering the topology of the model, such as by closing up a triangular hole (Figure 3-5), or closing
up a "cylinder" with a triangular opening (Figure 3-6): In Figure 3-5, two vertices are adjacent to both v_{x} and v_{y}, but only one face is adjacent to $\left\langle v_{x}, v_{y}\right\rangle$, as the edge is opposite a hole. Contracting $\left\langle v_{x}, v_{y}\right\rangle$ closes up the hole. In Figure 3-6, two faces are adjacent to both v_{x} and v_{y} (highlighted on the left), but three vertices are adjacent due to a triangular opening in the structure (v_{x}, v_{y}, v_{c}). Contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{x} results in the opening being closed up, and the edge $\left\langle v_{x}, v_{c} \gg\right.$ becoming adjacent to four faces.

Figure 3-5: Contracting triangular hole

Figure 3-6: Contracting around triangular opening in model

If the edge passes this test, we then determine how to contract each edge of the model, and the score of the contraction. There are two possible choices for determining the position of the vertex resulting from edge contraction: Determine the position with the minimal error score or choosing the endpoint with the lesser score (also known as subset selection or half-edge contraction). Although the former allows for lesser error, choosing between endpoints allows for easier calculation and also avoids having to store coordinate differences in level-of-detail based data structures; therefore, we have chosen the latter method.

We first calculate the score of contracting the edge to either of its endpoints. We first calculate the QEM score in the same fashion as the regular QEM method, by summing together the matrices of the edge's endpoints and using the summed matrices to calculate the QEM score. We then determine the absolute normal curvature from the contracted point to the result point; that is, when contracting v_{x} to v_{y}, we determine the normal curvature in the direction from v_{x} to v_{y}. Where $k_{\max }$ and $k_{\min }$ are the maximum and minimum principal curvatures of v_{x} respectively, $\vec{N}_{v_{x}}$ is the normal vector of v_{x}, and D D is the direction for $k_{\text {max., the }}$ the absofute normal curvature K from v_{x} to v_{y} can be calculated as follows:

$$
\begin{align*}
& K=\left|\cos ^{2} \theta k_{\text {max }}+\left(1-\cos ^{2} \theta\right) k_{\min }\right| \tag{3-3}
\end{align*}
$$

Where \vec{D}^{\prime} is the unit vector representing the direction from v_{x} to v_{y} projected on to the plane defined by $\vec{N}_{v_{x}}$, and θ is the angle between \vec{D}^{\prime} and \vec{D}. We multiply the score with the absolute normal curvature along with the edge length, as
the contraction of a longer edge is more likely to affect the shape of a model than a shorter edge. The QEM score obtained for contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{x} is

$$
\begin{equation*}
s^{\prime}\left(\left\langle v_{x}, v_{y}\right\rangle, v_{x}\right)=\left\|v_{x} v_{y}\right\| K v_{x}^{\top}\left(Q\left(v_{x}\right)+Q\left(v_{y}\right)\right) v_{x} \tag{3-5}
\end{equation*}
$$

3.3.2 Penalties

After obtaining the QEM score, we then apply penalties based on various properties, starting with facial regularity or compactness, which is desirable for applications such as finite element analysis. We calculate the regularity γ of each resulting face as per Guèziec (1995):

$$
\begin{equation*}
\gamma=\frac{4 \sqrt{3} W}{l_{1}^{2}+l_{2}^{2}+l_{3}^{2}} \tag{3-6}
\end{equation*}
$$

Where w is the area of the face, and the I_{i} are the lengths of its edges. This equation produces a result of 1 for an equilateral triangle, and 0 for a degenerate triangle. We determine the face with the least regularity $\gamma_{\text {min }}$, and penalize contractions that result in faces with lower than 0.5 thusly:
$p_{\text {reg }}=\left(\frac{0.5}{r_{\text {min }}}\right)^{2}-1 \quad r_{\text {min }}<0.5$
Our choice of 0.5 allows for a degree of variance in facial regularity from being perfectiy equutateral without any penatty added to the contraction score. Also, the above equation results in a score that tends towards positive infinity as the regularity decreases to 0 .

The next penalty we apply is related to facial orientation. We determine the orientation of the resulting faces using a cross product, and compare the
angle θ with the face's original orientation using a dot product, before penalizing according to the largest angle of change in orientation $\theta_{\text {max }}$ thusly:

$$
\begin{array}{cc}
p_{\text {ang }}= & \frac{\sin \theta_{\max }}{1-\sin \theta_{\max }} \tag{3-8}\\
+\infty & \theta_{\max }<90^{\circ} \\
\theta_{\max } \geq 90^{\circ}
\end{array}
$$

Our choice of 90 degrees as the cutoff limit ensures that faces will never flip over in relation to their original orientations. This procedure is also easier to calculate than Garland and Heckbert requiring the resulting vertex to fall within a given area.

We also compare the angle of each face's orientation to the normal vectors of the resulting vertices and cafculate a curvedness-inverse-weighted average θ^{\prime}, where curvedness is a Pythagorean sum of the maximum and minimum curvatures ($R=\sqrt{k_{\text {min }}^{2}+k_{\text {max }}^{2}} / \sqrt{2}$), under the reasoning that normal vectors at areas of high curvedness are less representative of the ideal facial orientation than those at areas of lower curvedness. We then apply the same penalizing method as above. Where $R_{v i}$ is the curvedness of v_{i} and $\angle\left(\vec{N}_{f}, \vec{N}_{v_{i}}\right)$ is the angle between the normal vector of f and

$$
\begin{align*}
& p_{\text {avg }}=\begin{array}{cc}
\frac{\sin \theta_{\text {max }}^{\prime}}{1-\sin \theta_{\text {max }}^{\prime}} \\
+\infty
\end{array} \quad \begin{array}{l}
\theta_{\text {max }}^{\prime}<90^{\circ} \\
\theta_{\text {max }}^{\prime} \geq 90^{\circ}
\end{array} \tag{3-10}
\end{align*}
$$

We also consider the dihedral angles between the affected faces, and faces immediately adjacent to any affected faces, and compare them to the dihedral angles of the original orientations (Figure 3-7). Note that during later stages of the simplification, the faces being compared may not have been adjacent to each other in the original model.

Figure 3-7: The change in dihedral angle between two faces after contracting $\left\langle v_{x}, v_{y}\right\rangle$

We also consider that the relative orientation of each pair of faces may have changed from concáve to convex, or vice versa. We consider that such changes in orientation are less desirable; therefore, in our-implementation, we detect such a result, and apply an-extra penalty to such contractions:

$$
\hat{\theta}\left(\vec{O}_{1}, \vec{O}_{2}, \vec{N}_{1}, \vec{N}_{2}\right)=\begin{array}{ll}
\sin ^{-1}\left(\left\|\vec{N}_{1} \times \vec{N}_{2}\right\|\right)-\sin ^{-1}\left(\left\|\vec{O}_{1} \times \bar{O}_{2}\right\|\right) & \left(\vec{N}_{1} \times \vec{N}_{2}\right) \cdot\left(\vec{O}_{1} \times \bar{O}_{2}\right)>0 \tag{3-11}\\
2 \sin ^{-1}\left(\left\|\vec{N}_{1} \times \vec{N}_{2}\right\|\right)+\sin ^{-1}\left(\left\|\vec{O}_{1} \times \bar{O}_{2}\right\|\right) & \left(\vec{N}_{1} \times \vec{N}_{2}\right) \cdot\left(\vec{O}_{1} \times \bar{O}_{2}\right) \leq 0
\end{array}
$$

Where \vec{O}_{1} and \vec{O}_{2} are the original unit normal vectors of two faces, and \vec{N}_{1} and \vec{N}_{2} are the unit normal vectors of the same faces after the contraction. We
then use the highest dihedral angle score to calculate the penalty, in the same way as the previous angles above:

$$
\begin{array}{cc}
p_{\text {rdc }}=\begin{array}{cc}
\frac{\sin \hat{\theta}_{\max }}{1-\sin \hat{\theta}_{\max }} & \hat{\theta}_{\max }<90^{\circ} \\
+\infty & \hat{\theta}_{\max } \geq 90^{\circ}
\end{array} . \tag{3-12}
\end{array}
$$

Next, we take boundaries into consideration, by disallowing any contractions that contract a boundary vertes to a non-boundary vertex, while allowing contractions in the opposite direction. This ensures that the vertices of each boundary in the simplified model are a subset of those in the original model's corresponding boundary. We only allow boundary vertices to be contracted if the contracted edge is part of the boundary, and we also apply an extra penalty to the contraction based on overall change in boundary area.

We determine the change in the boundary area thusly: When calculating the score for the contraction of a boundary edge, we determine the boundary vertex that would become adjacent to the contracted vertex, and calculate the area of a triangle between that vertex and the edge to be contracted, which is the area would be immediately affected by the-contraction. For example, in Figure 3-8, when contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{y}, we determine that v_{z} would then become adjacent to v_{y}, resulting in the area ${ }^{2} v_{x}, v_{y}, v_{z}>$ being affected. $9 \cap \frac{2}{9}$ \&

Figure 3-8: Boundary handling during initialization

After we have obtained the affected area, we calculate its ratio ρ to that of an equilateral triangle with the same edge length as the remaining edge. From Figure 3-8, the ratio would be calculated thusly:

Where $A\left(\left(v_{x}, v_{y}, v_{z}\right)\right)$ is the area of a triangle with $\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ as its
corners. We then use the ratio to calculate a score for the boundary change, similar to the angular scores, to prevent severe changes in the boundary;

คูนย่งทยทร่หยากร

The boundary checking process is optional, and may be skipped when simplifying models that have few or no boundaries. (Our implementation automatically skips the scoring portion of the process when the boundary score has been assigned a weight of 0 ; however, it still prevents the contraction of boundary vertices to non-boundary vertices.) Where $s^{\prime}\left(\left\langle v_{x}, v_{y}\right\rangle, v_{x}\right)$ is the original QEM score
from contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{x}, and α, β, and δ represent user-defined weights for each part of the score, the final error score we obtain is as follows:

$$
\begin{equation*}
s\left(\left\langle v_{x}, v_{y}\right\rangle, v_{x}\right)=\log \left(s^{\prime}\left(\left\langle v_{x}, v_{y}\right\rangle, v_{x}\right)\right)+\alpha\left(p_{\text {ang }}+p_{\text {avg }}+p_{r d c}\right)+\beta p_{\text {bdr }}+\delta p_{\text {reg }} \tag{3-15}
\end{equation*}
$$

Taking the logarithm of the QEM score before adding the penalties effectively multiplies the penalties (to the power of the user-defined weights) with the QEM score. However, we will also experiment with a linear combination additionbased penalizing method. After we have obtained the final scores of either possible contraction of each edge, we insert the better score into a priority heap H, along with the following information: the two endpoints (with the better-scoring endpoint listed first), the original edge e, and the update cycle when the score was most recently updated $U(e)$, initially -1 , for the purpose of updating the scores. In our implementation, we have implemented H as a standard array with a value declaring its size $|H|$.

3.4 Edge contraction

As in most other edge-contraction based algorithms, we obtain the edge with the best score from the top of H and contract it, removing faces adjacent to the contracted edge. While contracting edges, we keep track of the faces adjacent to each vertex using F for the purpose of score calculation. We als ∂ keep track of vertex mappings using S and S^{-1}, and when each vertex has been affected by previous contractions, for the purposes of score updating, using U. Initially, for every vertex v, $S(v)=v, S^{-1}(v)=\{v\}$, and $U(v)=-1$.

For point-face relationships in F : When contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{x}, the faces adjacent to exactly one of the endpoints become the faces adjacent to the
remaining vertex. Faces adjacent to both endpoints (i.e., adjacent to the edge) become degenerate and can be removed. Therefore:

$$
\begin{equation*}
F\left(v_{x}\right) \leftarrow F\left(v_{x}\right) \cup F\left(v_{y}\right)-\left(F\left(v_{x}\right) \cap F\left(v_{y}\right)\right) \tag{3-16}
\end{equation*}
$$

For example, in Figure 3-9, the edge $\left\langle v_{x}, v_{y}\right\rangle$ has been contracted to v_{x}. The faces adjacent to either v_{x} or v_{y} (light and medium shading) have now become adjacent to v_{x}, while faces adjacent to the edge (dark shading) have become degenerated.

Figure 3-9: Point-face relationships before and after edge contraction Using S and S^{-1} to track vertex mappings allows us to convert any original face of the model to its face in the model at the current level of simplification (and thus determine a face's yalidity). Storing mappings in both directions in our implementation also allows the mappings to be quickly updated: without the inverse sets, updating would require making a pass over all vertices to êheck for and update mappings, while the inverse indicates exactly which vertices to update. When contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{x}, vertices that were originally mapped to either vertex are now mapped to v_{x}, that is, the resulting inverse is the union of the two sets:

$$
\begin{gather*}
S^{-1}\left(v_{x}\right) \leftarrow S^{-1}\left(v_{x}\right) \cup S^{-1}\left(v_{y}\right) \tag{3-17}\\
\forall v \in S^{-1}\left(v_{x}\right) \cup S^{-1}\left(v_{y}\right), S(v) \leftarrow v_{x} \tag{3-18}
\end{gather*}
$$

To save on memory usage, we remove the QEM matrices and S^{-1} and F sets from contracted vertices immediately after contraction, by setting them to null references. It can be easily shown that, using this method, the total memory used to store S^{-1} remains constant throughout the execution, while the total memory for F reduces according to the number of remaining valid faces, as in both cases, each vertex (or valid face) is represented exactly once (or 3 times) in total amongst the sets of S^{-1} (or F).
3.5 Heap updates

The next step in mesh simplification using an edge-contraction mechanism is to update the priority heap. Most methods are assumed to perform full updates after each contraction. However, we have chosen to perform updates differently from typical edge-contraction based algorithms, by using a novel partial and lazy updating scheme. We describe our scheme in detail, and explain our use of affected vertices to determine which edges to update.

3.5.1 Partial updating scheme

ศนยวีทยรัพยากร

Our scheme aims to combine the concepts of Cohen et al.'s "dirty flag" and Wu and Kobbebt's. ‘multiple-choice" methods as deseribed in the Previous Work section, while providing both a better assurance of contracting a good score and making constant progress during the process, by only updating upon finding an outdated score, and then updating only the topmost portion of H. Our reasoning is that scores that are near the top of H will likely not be affected by contractions, and will thus remain close to the top after the update.

The details of our scheme are as follows:

- Check whether top score needs to be updated, based on vertex mappings and update information, or a certain number of edges have been contracted since the last update. If not, perform contraction, else perform update.
- For all contractions in the top $n-5$ levels of the heap, where $n=$ $\left\lfloor\log _{2}|H|\right]_{\text {, re-calculate score if necessary to update. Our choice of }}$ $n-5$ provides a balance between updating fewer entries resulting in more frequent updates, and updating more entries than necessary. It can be shown that the number of entries in the top $n-5$ levels is between $|H| / 32$ and $|H| 64$. We will also experiment with varying the number of updated levels.
- Restore heap property by swapping values, starting from the last updated score upwards.

ศูนย์วิทยทรัพยากร

3.5.2 Affected vertices

To determine which scores need to be updated, we take into account which vertices have been affected and when. Each edge contraction affects the score of several other contractions involving vertices in the nearby area. Any triangles adjacent to the contracted vertex will change their shape, thus requiring any scores involving those faces to be recalculated. Also, any edges with either vertex are also affected, as the contracted vertex now maps to a new vertex, while the remaining vertex has new faces adjacent to it, as well as a new quadric matrix (the sum of the original vertices' matrices). Therefore, when contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{x} :

- For every triangle T in $F\left(v_{y}\right)$, all vertices in T are affected,
- For every triangle T adjacent to any triangle in $F\left(v_{y}\right)$, all vertices in T are affected, and
- v_{x} is affected

Figure 3-10: Illustrating how vertices are affected by a contraction

To justify this reasoning, Figure 3-10 shows the effects of a contraction from $\left\langle v_{x}, v_{y}\right\rangle$ to v_{x}. In the left figure, the shaded faces are the faces considered when calculating the score of the edge, namely: faces adjacent to either of the two vertices (lightly shaded), or triangles that share an edge with any such face (medium shaded, for determining the dihedral angle score). In the right figure, the shaded faces (originally adjacent to v_{y}) have been altered due to the contraction; therefore, any vertices adjacent to any of those faces are affected. Also, the darker shaded faces are adjacent to the affected faces, resplting in a change in dihedral angle; hence, the vertices of those faces are also affected. The affected vertices are marked in black in the right figure, while unaffected vertices are in gray. v_{y} is also considered to be affected, as any edges that originally had v_{y} as an endpoint will now have v_{x} instead.

To assist in trackjing when each yertex has been most recently affected, we store a value U representing the current update cycle, incrementing it at each update. Our storage of $U(v)$ and $U(e)$ allows us to compare when the score was most recently calculated, with when either endpoint was last affected, to determine whether the score needs to be updated.

คนน้ยวิวทยทรัพยากร

When we mark vertiçes as being affected, we store the current value of the update cyccle phis one: $U\left(v_{x}\right) \& \in t+$. This is so that if two contractions involving the same vertex are encountered during the same update cycle, only the first update will be performed, and the second will trigger a new update cycle. Also, when updating a score immediately after either of its vertices has been affected, the score's update cycle will be equal to that of the affected vertex. Similarly, we also keep track
of when each face has been affected through contractions, under the simpler condition that when contracting v_{x} to v_{y}, all faces in $F\left(v_{x}\right)$ are affected.

The criteria for when an edge's score needs to be updated are as follows:

- Either endpoint of the edge now maps to a different vertex (checked using vertex mappings): $S\left(v_{x}\right) \neq v_{x}$ or $S\left(v_{y}\right) \neq v_{y}$
- The most recent apdate for either endpoint is more recent than that of the score: $\max \left(U\left(v_{x}\right), U\left(v_{y}\right)\right)>U\left(e_{x}\right)$

One could also inspect whether the most recent update for any face in $F\left(v_{x}\right)$ or $F\left(v_{y}\right)$, or any faces adjacent to such faces, is more recent than that of the score, however, the endpoint update condition is easier to check, especially when considering the faces adjacent to those in $F\left(v_{x}\right)$ or $F\left(v_{y}\right)$. We also choose to automatically invoke an update after a certain number of edges have been contracted without any updates being invoked otherwise. We have chosen this limit to be 100 , but we have obseryed thatt fhis lîmit does not appeârl to significiantly affect the overall execution time.

When we re-calculate the score for a given edge, we determine its endpoints using the vertex mappings, and check that the endpoints are different, before determining whether score re-calculation is necessary based on the vertex mapping, $U(v)$ and $U(e)$, and for edges that require re-calculation, determining
whether the edge is valid for contraction, before calculating the score in the same method as during initialization (except for boundary handling, as described below) and updating $U(e)$ to the current update cycle. In the case of edges that are no longer valid for contraction, or whose endpoints now map to the same vertex, we remove them from consideration altogether, by swapping such an entry with the entry at the bottom of the heap $(|H|-1)$ and decrementing $|H|$, thus in effect removing it from the heap. We also consider the possibility of two different edges with endpoints mapping to the same vertices, for example, tyo edges of a triangle that has become degenerate from contraction of the other edge. We search for and store the pairs of mapped vertices in a binary tree, removing edges that map to a vertex pair that has already been stored in the tree.

For score re-calcutation, we consider not only the immediate boundary change as in the initial calculation, but also the area that has been affected by previous contractions. We achieve this by storing this information with the retained edge during the contraction process in a binary tree. When we perform a contraction affecting the boundary, weobtain the vertex/that becomes adjacent to the remaining vertex and the area immediately affected by the contraction, and then search the binary/tree to obtain the affected areas previously associated with the affected edges (if any), and sum them to obtained the total area that has been affected overall, before using it to penalize the contraction and storing it with the retained edge, for use in later updates.

Using Figure 3-11 as an example, after v_{m} and v_{n} have previously been contracted, $\left\langle v_{z}, v_{x}\right\rangle$ has the area of $\left\langle v_{z}, v_{x}, v_{m}\right\rangle$ associated with it, while $\left\langle v_{n}, v_{x}\right\rangle$ has
$\left\langle v_{x}, v_{y}, v_{n}\right\rangle$'s area. Contracting $\left\langle v_{x}, v_{y}\right\rangle$ to v_{y} would then result in the sum of these two areas and $\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ being associated with $\left\langle v_{z}, v_{y}\right\rangle$. This method may in some cases overestimate the affected boundary area (for example, a boundary that alternates between convex and concave); however, this helps to further limit boundary change. Again, we skip the boundary check algorithm in models with few to no boundaries.

Figure 3-11: Boundary handling during score re-calculation

To save on unnecessary re-calculation when calculating the score, we use a novel caching method, by using a binary tree to store a given face's orientation 6 a and regularity after a given contraction: We key the information under the following convention: $\left\langle f_{x}, V_{x}, v_{y}, U\right\rangle$. If the face is unchanged by a given contraction (e.g., f_{x} when contracting v_{x} to v_{y}, where f_{x} has $\mid v_{y} /$ but not $\left.v_{x}\right)$, we store it (and search for it) under the convention $\left\langle f_{x},-1,-1, U\right\rangle$.

When we calculate a score and require the orientation and regularity of a given face after a given contraction, we determine whether the given face and contraction are already in the cache, and then whether update cycle stored in the entry is more recent than that of the face in question. If so, we retrieve the information and
use it, before updating the most recent update cycle to the current value. Otherwise, we (re-)calculate the information, and either insert the information into the cache, keyed according to our convention (if it is not already in the cache), or update the existing cache entry (if it is already in the cache).

To limit the cache size, we have chosen to both perform an update on the whole heap and clear the cache when, at a given update, the size of the cache is 4 times the size of the number of the remaining faces, with a minimum of 10,000 cache entries at low numbers of vertices. (We also update the whole heap where there are less than 128 heap entries remaining.) This choice provides a good balance between memory usage and cache efficiency. We will also experiment with different ratios of cache entries to heap size. Figure $3-12$ shows a summary of the process of updating each heap entry.

 the heap property, Dy swapping scores to their proper positions. We then repeat the cycle of edge contraction and heap updates, until the desired level of simplification has been reached, or in some cases, until no valid contractions remain in the heap.

3.6 Time and Complexity Analysis

Another point of analysis for our algorithm is the complexity of the algorithm, both time-wise and memory-wise. In a similar fashion to Garland and

Heckbert's analysis of their algorithm, it can be shown that, assuming an upper bound on the number of faces adjacent to any given vertex, edge-contraction based algorithms can generally be shown to have $O(n \log n)$ time complexity with respect to face count, as detailed below:

Initialization: Constructing the quadric matrices takes linear time $(O(n))$ with respect to face count, as well as calculating the normal vectors and the resulting curvatures of the vertices. Calculating the score for each entry takes constant time (assuming an upper bound on adjacent faces), and building the priority heap takes $O(n \log n)$ time.

Contraction: Assuming the upper bound on adjacent faces, a constant number of edges are affected with each contraction, and re-calculating the score for each edge takes constant time. ft then takes $O(\log n)$ time (with respect to heap size) to restore the heap property per updated entry. Assuming that a constant number of faces k are removed between every update cycle, the total running time used for the simplification process, with respect to heap size, is:

$$
\begin{equation*}
\log n+\log (n-k)+\log (n-2 k) \nmid \cdots+\log \underset{m_{j}=9 \log }{n!}-\log m!\fallingdotseq O(n \log n) \tag{3-19}
\end{equation*}
$$

Heap size is related to the number of edges. We have observed that in the models we have used, the number of vertices is/approximately half of the face count. Assuming that the model is fully manifold, the number of edges is then approximately $11 / 2$ times the face count. Therefore, our algorithm takes $O(n \log n)$ running time in total.

Next, we will focus on memory complexity, with respect to the numbers of the various structural elements. For each face, we store the constituent
vertices and edges along with its normal vector, nulling the information for each face as it becomes degenerate, and a Boolean variable storing whether it is degenerate. Assuming all-triangular meshes, this information is of constant size. Also, as mentioned earlier, we limit our cache size to a constant multiple of the number of remaining faces (or 10,000). This results in linear complexity storage $(O(n)$) with respect to original face count.

For each edge, we store its start and end vertices, its adjacent faces and a heap entry corresponding to the score of contracting the edge, with a constant size limit for each entry (assuming a futly-manifold model). Again, this results in linear complexity storage.

For each vertex, we store its coordinates, normal vector and curvature data, its adjacent faces, and its cumrent quadric matrix (removing each vertex's data as it has been re-mapped via contractions). As mentioned in the Edge Contraction section, we also store bidirectional mapping information, reassigning and removing the data for re-mapped vertices. All of these data also have a constant storage size, and along withour bidirectional mapping scheme, this results in linear complexity storage. Assuming the number of edges is approximately $1 \frac{1}{2}$ times the face count as before, qur algorithm uses lineabstorage with respect to face count Both results are equal to that of Garland and Heckbert's QEM algorithm and most of its derivatives.

3.7 Summary

In this chapter, we have described our mesh simplification algorithm. We use a typical edge-contraction approach. We begin by calculating quadric matrices of each vertex, along with their principal curvatures and directions. After determining the validity of contracting each edge, we then use the quadric matrices to calculate the quadric error score, before determining the absolute normal curvature in the contraction direction and edge length, and multiplying these values with the quadric error. We then calculate regularity, along with angular and dihedral deviations based on each face's current and original orientation and each vertex's curvedness, and boundary changes where applicable, to calculate penalties to the error, before choosing to contract to the better scoring vertex and storing the scores in a priority heap.

When contracting edges, we keep track of vertex mappings and affected vertices, in order to assist in updating the heap. We use an updating scheme in which we only update the top portion of the heap when encountering a score that requires an update we take overall boundary change into account when necessary. We also store a cache of orientations and regularities of faces resulting from possible contractions to assist in score re-calculation. We limit the size of the cache by clearing it when it reaches a certain size, and performing a full heap update. We contract edges until the desired level of simplification has been reached, or no more valid contractions remain.

We have analyzed the time and complexity for our algorithm. We have determined that initialization takes $O(n \log n)$ running time, and the simplification process also takes $O(n \log n)$ running time. We have also determined that the algorithm uses linear storage space in relation to face count, consistent with Garland and Heckbert's original QEM algorithm and derivatives.

CHAPTER IV

EXPERIMENT AND RESULTS

The following chapter will describe our experiment with the new algorithm and the results obtained from the experiment. We will then discuss the results that we have obtained from the experiment.

4.1 Overview of the Experiment

In our experiment, we aim to compare the quality of the simplified models from our algorithm with that of Garland and Heckbert's quadric error metric method, by using both a visual and geometric comparison (using RMS of luminance difference and Hausdorff distances respectively). We also aim to verify how well the running times for our algorithmenform to the expected $O(n \log n)$ complexity that we have determined in Chapter HI, and how much reduction in running time our partial updating scheme achieves. We also aim to determine the effects of our arbitrary choices for the heap-updating scheme.

4.2 Method

ล $9: 9$ Weflave implemented the algorithm aescribed in Chapter III using Microsoft Visual Basic .NET, and tested it on a Pentium Dual Core system with 2 GB RAM, using a data set of 388 models. 380 of the models used as sample data have been obtained from Princeton University's Benchmark for 3D Mesh Segmentation (Chen et al., 2009), with 5 other large models from the Georgia Tech University's Large Geometric Models Archive (Turbine Blade [Figure A-24(b)], Dragon [Figure

A-23 (c)], Horse [Figure A-24(a)], Canyon [Figure A-23(a)], Angel [Figure 43(b)]), the bunny model from the Stanford 3D Scanning Repository with holes in the bottom (Figure A-22(b)), the large standard Armadillo model from Stanford (Figure A-22(a)), and a dinosaur model (Figure A-23(b)) included to test for boundary handling and scalability. Details of these models can be found in the Appendix.

For each model, we perform the simplification algorithm, obtaining results at $50 \%, 20 \%, 10 \%, 5 \%, 2 \%$ and 1% of its original face count. As most of the models in the test sample have even vertex distribution, we test its performance on models with uneven vertex distribution by using QEM to simplify selected models to 50%, before using our algorithm.

As an alternative to logarithm-based penalizing, we have also decided to experiment with an alternate limear combination addition-based scoring method (as not all models require boundary handling, the weight for boundary penalties β will not be part of the linear combination). As our penalties are all scale-invariant, we will multiply them the length of the model's bounding-box diagonal B :

$$
\begin{align*}
& \text { ค } 98 \cap \text { For the purposes of running time analysis, we take the ti } \tag{4-1}
\end{align*}
$$

fastest of three rounds of execution into consideration. We also perform the algorithm on selected models using a full heap update when encountering any score requiring an update, to determine the time savings from using our partial heap update scheme.

For comparison purposes, we use Garland and Heckbert's QSlim program (a readily-available implementation of their algorithm) to simplify the same models to the same percentages using QEM, with a subset selection policy. For the models used to test uneven vertex distribution performance, we simplify to 50%, and then simplify the reduced model to the same percentages. After we have obtained the results of both mesh simplification methods, we render the results using VRMLView, and compare the results by using Cignoni, Rocchini and Scopigno's (1998) Metro comparison program to obtain the Hausdorff distance between the original model and the simplified models. The Hausdorff distance between two models can be defined as:

$$
\begin{equation*}
d_{H}(X, Y)=\max \left\{\sup _{x \in X, y \in Y} \inf ^{\prime} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\} \tag{4-4}
\end{equation*}
$$

Where X and Y are the models to be compared, and $d(x, y)$ is the distance between two points x and y on the surfaces of X and Y respectively. In other words, the Hausdorff distance between two models is the largest distance between any two closest points on-each model's surface. This metric has been commonly used to assess the quality of simplified meshes. On the meshes reduced to 50% for uneven vertex distribution testing, we compare with the 50% reduced mesh, rather than the full version.

คูนยวทยทรรพากร

ล $9: /$ Forbisual comparison, we use the root-mean-square of luminance

 differences, a metric previously used by Lindstrom and Turk for their Image-Driven Simplification method. For simplicity, we will render the resulting models from a single representative angle, and then determine the root-mean-square of the difference between the luminance Y of each corresponding pixel:$$
\begin{equation*}
R M S=\sqrt{\frac{\sum_{x} \sum_{x y}\left(Y_{0}(x, y)-Y_{1}(x, y)\right)^{2}}{x y}} \tag{4-5}
\end{equation*}
$$

It should be noted that while the Hausdorff distance is a definite indicator that applies to each model and can directly be compared, the RMS of luminance difference between a model and its reduced form will also depend on the rendering angle. Therefore, one should not compare the RMS results of different models; however, all renders of the same model from the same angle can be directly compared.

To determine the effects of the arbitrary values we have chosen in the heap-updating scheme on running time, we will replace the arbitrary values and run the algorithm on selected modets to show the effects. We will run the algorithm by updating $n-8$ and n-4 layers, and clearing the cache and performing a full update when the cache is 6 and 2 times the size of the heap. We will also run the algorithm without using the caching method.

43Ever.mimik kitaิทยทรัพยากร

Q 9% Thesueraged graphical results of the Hausdorff distances from our algorithm and QEM are shown in Figure 4-1. Figures 4-2 to 4-4 shows Hausdorff results from the best and worst results from our data. Figures 4-5 and 4-6 show the running times for each model and LOD plotted against face count using only the Princeton data, as the non-Princeton data include models with about one order of magnitude more faces than the Princeton data, and the correlated trendlines, while

Figure 4-7 shows the plot when including non-Princeton data. Details of all the models that we have used along with the numerical results from Metro for each model, the RMS averages of the luminance differences of each model, and selected visual results from VRMLView and selected graphical Hausdorff results, are shown in Appendix A.

Figure 4-1: Graph comparing average Hausdorff distances between QSlim and our จุหาลงกรณ์ม matx วิทยาลัย

Figure 4-1 plots the average Hausdorff distance with respect to bounding box diagonal from all of our 388 sample models against the level of simplification, between our method (red line) and QEM (blue line), with the horizontal axis representing the remaining percentages of the original face count at which we obtain our result data ($1 \%, 2 \%, 5 \%, 10 \%, 20 \%, 50 \%$), and the vertical axis
representing the Hausdorff distance with respect to bounding box diagonal. We observe that on most of the sample data models, the Hausdorff distance monotonically decreases as the percentage of remaining faces increases, and vice versa. We also observe that the new algorithm produces lower average Hausdorff distances than with QSlim up to between 2% and 5% remaining faces. Lastly, we notice an increased acceleration in the Hausdorff distance at less than 10% remaining faces using our

Figure 4-2: Graph comparing best and worst Hausdorff results with average for all results (normalized using 1\% QEM distance)

Figure 4-2 shows a graph comparing the Hausdorff distance results of the models that produce the best and worst results compared to QEM, with the horizontal axis corresponding to remaining face percentages (as in Figure 4-1), and
the vertical axis corresponding to the Hausdorff distance results, normalized by dividing with the Hausdorff distance of each given model's 1\% QEM simplification. The best results (producing low Hausdorff distances and best visual resemblance) are with the horse (Figure A-22(a), blue line on graph) and one of the head models (\#313 in the Princeton data, Figure A-21(a), red line on graph), while the worst results are with the turbine (Figure A-24(b), purple line on graph) and one of the low-polygon female models (\#20, Figure A-14(b), cyan line on graph). We have also included the average Hausdorff distance, divided by the average 1\% QEM distance (green line on graph).

Figure 4-3: Hausdorff distances for best results: Horse (left) and Head \#313 (right)
 the aforementioned best results (from Figure 4-2), the horse and head models between our method (red lime) and QEM (blue line). We observe that the Hausdorff distance on these models using our method is better than, or at least comparable with, the distance using the QEM method, at all percentages of remaining face count.

Figure 4-4: Hausdorff distances for worst results: Turbine Blade (left) and Female \#20 (right)

Figure 4-4 shows a comparison between the Hausdorff distances for the aforementioned worst results (from Figure 4-2), the turbine blade and female models, between our method (red line) and QEM (blue line). We observe that, while the Hausdorff distance on the female model using our method is better than the distance using the QEM method above 10\% remaining face count, it increases rapidly to become significantly higher than the corresponding distances for QEM from 5\% downwards (similar to Figure 4-1). The turbine model produces better results down to 5\% remaining face count, however, the Hausdorff distance from our method also

Figure 4-5: Hausdorff distances for average results: Teddy Bear \#177 (left) and

Figure 4-5 shows a comparison between the Hausdorff distances for two average results, for teddy bear model \#177 and Princeton armadillo model \#282, between our method (red line) and QEM (blue line). We observe that it both cases, our algorithm produces better or comparative results with QEM up to the 5%, however, the Hausdorff distance from our method also increases rapidly from 5\% downwards.

Figure 4-6:Runtimes for Princeton dataplottedagainst face count with $n \log n$

Figure 4-6 shows the runtimes for the Princeton data at the result percentages: 50\% (magenta), 20\% (orange), 10\% (cyan), 5\% (purple), 2\% (red), 1\% (blue) plotted against the original face count, with horizontal axis indicates the number of the original faces, and vertical showing the run time in seconds. We have also plotted trendlines in the same color as the data, and have shown the trendlines
only in Figure 4-7. We observe that most of the data lies close to the respective trendlines, and the trendlines for the lower percentages of remaining faces lie closer to each other, as there are fewer faces to be reduced at those lower levels.

Figure 4-7: $n \log n$ trendlines for Princeton data on graph

Figure 4-8: Runtimes for all data plotted against face count with $n \log n$ trendlines

Figure 4-8 shows the runtimes for all 388 models (including the larger non-Princeton models) at the result percentages plotted against the original face count as in Figures 4-6 and 4-7. We observe that, while our data generally lies relatively close to the trendlines, the largest models in our sample data (>240,000 faces: turbine, armadillo, and angel) produce significantly higher run times than the trendlines plotted from the $O(n \log n)$ time complexity determined in Chapter III.

4.4 Discussion

In this section, we discuss the running times and results as described in the previous sections, and deternine the strengths and weaknesses of the algorithm. We begin by commenting on the Hausdorff and visual results, comparing the observed empirical running times with our complexity analysis and speculating on possible causes for outlying running times, and lastly, comparing the running times with and without the partial heap updating scheme.

4.4.1 Hausdorff and visual results

Ffom the Hausdorff results as plotted in Figure ${ }^{\text {4-1 }}$, and visual results
shown in the Appendix, we observe that our mesh simplification method shows a better or comparale performance to QEM at dower kevels of simplification on average. Also, the RMS luminance difference from our algorithm is close to that from the QEM algorithm, suggesting that the factors we have implemented are useful for simplification at those stages. These results show that a combination of using the curvature measurement and angular deviations has improved the simplification results when simplifying to 5% of original face count. However, these factors seem to
become less useful at more drastic levels of simplification, resulting in much higher Hausdorff distances than on models simplified using QEM. This shows that, although the curvature estimation is useful during the early stages of simplification, at later stages it may no longer be sufficiently accurate due to changes in the vertex's locality. As a result, a contraction direction with low curvature, while sensible initially, may become less sensible at higher levels, as the contraction may involve features that were not accounted for in the original curvature calculation.

Figure 4-9: Comparison of female model (a) reduced with both $\mathrm{QEM}(\mathrm{b}-\mathrm{g})$ and our methods (h-m)

As an example, in the female model from Princeton shown in Figure $4-9$ at the $5 \%, 2 \%$, and 1% levels (QEM: Figure 4-9(e)-(g), Ours: Figure 4-9(k)-(m)), a vertex in the knee area may become adjacent to a vertex at the ankle or waist areas, while the curvature measure was based on vertices in the knee area at the full face
count level (shown in Figure 4-9(a)), without taking further areas into account. Therefore, a vertex in the knee area may be contracted to either the waist or ankle, based solely on the curvature of the knee area, resulting in higher Hausdorff distances than QEM. Comparing with QEM-based approaches, those that use the original model to penalize the quadric matrices (Kho and Garland, 2003, Jong et al., 2006, Li and Zhu, 2008) , or use larger matrices to take other factors into account (Wei and Lou, 2010) may use more triangles on feature areas (such as facial features and pointed fingers) than the smoother parts of the figure, like our algorithm, while those that use the current state of the mesh to calculate a penalty (Xu et al., 2008, Hussain, 2009, Tang et al., 2010), while also likely to preserve feature areas, may calculate a penalty based on a bad state.

For non-QEM-based approaches the female model, appearance-based methods (Cohen, 1996, Cohen et al., 1998 Lindstrom and Turk, 2000) are likely to generally produce better visual and Hausdorff distance results than QEM and our method, while memory-saving approaches (Lindstrom and Turk, 1998, Hussain et al., 2001) should perform about as well as QEM (and ours at lower levels). Balmelli et al.'s algorithm (2002) is designed only for 4-8 subdivided meshes where the subdivision hierarchy is known, and gs thus Arretevant to our more general figures. Tang et al.'s global moment-based approaches (2007) are likely to produce similar Hausdorff distance results with QEM. Choi's optimal positioning approach (2008) produces more areas of high Hausdorff distance than with QEM, and is likely to produce worse results at lower level than with our algorithm.

Figure 4-10: Comparison of turbine blade model (a), reduced with both QEM (b-g)
and our methods ($\mathrm{h}-\mathrm{m}$)

Another of our worst cases is the turbine blade model (Figure 4-10). It has a complex structure, with inscribed lettering on the lower part of the model, and many faces hidden from view at all angles. We observe that using our method, the general shape of the blade has become highly corrupted at the 1% level (Figure $4-10(\mathrm{~m})$), and we also observe that the lettering on the lower part of the model gradually disappears $\overline{\text { at }}$ higher face count than with QEM. We believe that the algorithm may have used more faces on the non-visible portions of the model, resulting in less faces available for the visible parts of the model. QEM-based methods (Kho and Garland, 2003, Jong et alo, 2006, Li, and Zhu, 2008, Xu et al., 2008, Hussain, 2009, Tang et al., 2010, Wei and Lou, 2010), in concept, treat hidden faces equally as visible, and may end up retaining more faces on hidden surfaces than visible; although Kho and Garland's user-guided approach allows for the user to put a weight on the visible surfaces. Nevertheless, it is not likely for these algorithms to corrupt the blade model at low face counts.

In non-QEM based methods, most methods are also likely not to significantly corrupt the blade model at low face counts. Lindstrom and Turk's direct rendering approach, in particular, should work very well on models such as these, since contractions involving only hidden faces are likely considered not to have any cost as they do not affect the overall rendered image. It should be noted that Lindstrom and Turk use their image-driven method on this model, rendering both normally, and with the frontal faces culled.

Figure 4-11: Comparison of teddy bear model (a), reduced with both QEM (b-g) and U) our methods (h-m)

Figure 4-12: Comparison of Princeton armadillo model (a), reduced with both QEM
(b-g) and our methods (h-m)

Two of our average cases are shown in Figures 4-11 and 4-12: a teddy bear model (\#177) and one of Princeton’s armadillo models (\#282). In both models, the Hausdorff distance for our method starts out comparably with the results from QEM, up until 5\% of original face count, where the Hausdorff distance from QEM becomes lower than that from our algorithm. The extensions used in QEM-based methods mostly focus on retaining features, while maintaining or improving on QEM's Hausdorff results, as the smooth surfaces can be represented with fewer faces without much surface error being mfroduced. Non-QEM-based methods are likely to produce similar Hausdorff distances to QEM, while the appearance-based algorithms, due to their focus on the overall appearance, should produce the best visual results.

Figure 4-13: Comparison of horse model (a), reduced with both QEM (b-g) and our ค 98 Thebest cases from our experiment are the horsemodel (Figure 4-13) and the head (\#313) model (Figure 4-14). For the horse model, we observe that the model's surface is generally smooth all around, except for the ears. We also observe that our method preserves the ear's shape better at the 1% level of total faces, although it results in fewer faces being used for the rest of the horse's body (Figure 4-13(g) and (m)), resulting in a somewhat more faceted look than with QEM. QEM-
based methods that focus on improving feature retention are likely to also devote more faces to smaller features in a similar fashion, while retaining a comparable Hausdorff distance performance to QEM. Most non-QEM-based methods are likely to produce a performance generally close to QEM, with appearance-based algorithms producing the best visual results, due to their focus on overall appearance.

Figure 4-14: Comparison of head model (a), reduced with both QEM (b-g) and our methods ($\mathrm{h}-\mathrm{m}$)

For the head model (Figure 4-14), we observe that most of the model consists of relatively smooth surfaces, with some facial features. We observe that using both algorithms, the facial features have mostly disappeared between 2% and 1% remaining faces. We also notice that a small bump feature towards the bottom of the model ass retained in our method all the way to 1% (Figure 4:14(m)), while in the QEM version, it has completely disappeared at the 1% level (Figure 4-14(g)). QEMbased methods that aim to retain features are likely to put a high score on various features in the model, including the facial features. As with the horse model, non-QEM-based methods should produce a performance of similar quality to QEM, with appearance-based algorithms producing the best visual results.

From the 50% reduced models, we observe that although the average Hausdorff distance is better when using our algorithm at all levels, after we have removed the outliers from consideration, the average of the remaining Hausdorff distances from our method is only comparable with QEM up to 20%, suggesting that uneven vertex distribution has a detrimental effect on the results of simplification.

When using the alternate linear combination addition-based penalizing method, we observe that on most of the models we have tested it with, the original logarithm-based penalizing method produces lower Hausdorff distances than when using the linear combination-based method. This suggests that, at least for our scaleinvariant penalty factors, our logarithm-based penalizing method is more suitable than the linear combination addition-basee method.

From the results we have observed, we conclude that our use of principal curvatures provides a useful indicator of the initial local properties of the surface at a given vertex point, and can help improve simplification performance at lower levels, and/or on models with smooth surfaces. Using both the orientation angle of each individualface and the dihedran angle between each pair of faces to calculate the overall error score of each given edge contraction has also helped faces to retain their orientation. Also, preventing the algopithm from contractingboundary vertices to non-boundary vertices, along with considering the change of area along the boundary, allows for the preservation of boundaries on models, such as in the canyon terrain model. Without this policy, boundaries would be much more noticeably eroded, resulting in higher Hausdorff distances. In the Appendix, Figure A-25 shows a side-by-side comparison of the canyon terrain model simplified to 1% with and without
any form of boundary preservation, showing significant boundary erosion without boundary preservation, while Figure A-26 shows a comparison showing the holes on the bottom of the bunny model, simplified to 1% with and without boundary preservation, with the holes being better preserved when using boundary preservation.

Another possible weak point is the use of a curvedness-inverseweighted average of the angle between the normal vectors of the resulting face and its vertices as an indicator of orientation quality, as it may only provide a partial indication of how well a face's orientation fits the surface with the given vertices. Although this method works well on smooth surfaces, it does not consider "noise" (such as minor projections or corners) in between the vertices (the canyon terrain model provides an example). One possible explanation is that some contractions may result in triangles with a surface covering the area with the noise, and its vertices on the smoother surrounding surface, resulting in an average suggesting that the resulting triangle has a near-ideal orientation, thus producing a low penalty. Another possibility is all three vertices lying on areas of high curvedness (for example, facet edges of a box), producing similar results.

4.4.2 Comparing empirical running time to complexity analysis

จุหาลงกรณม
conforms to the expected $O(n \log n)$ running time complexity, we have divided the running time at each level of detail by $n \log n$ (where n is the face count), along with plotting the results on a graph and determining trendlines, as shown in Figures 4-5 to 4-7. From the graphs, we observe that the simplification of most models conforms well to the expected complexity, with a few outliers. Also, the trendlines for later
stages of simplification are closer, as there are fewer faces between each stage. The maxima, minima, arithmetic means and standard deviations of the results for $t / n \log n$ at each level of detail are shown in Table 4-1.

Table 4-1: Maxima, minima, arithmetic means and standard deviations for $t / n \log n$ at each LOD

LOD	Max	Min	Mean	$\boldsymbol{\Sigma}$
50%	0.000701	0.000310	0.000430	0.000062
20%	0.001100	0.000518	0.000705	0.000089
10%	0.001202	0.000599	0.000786	0.000097
5%	0.001252	0.000632	0.000826	0.000100
2%	0.001282	0.000647	0.000852	0.000103
1%	0.001288	0.000654	0.000862	0.000103

Comparing the actual runtimes with the means and standard deviations, we have noticed that the following models produce running times significantly higher $\left(\frac{(t / n \log n)-\bar{x}}{\sigma}>+1\right)$ than average: 1 11-14 47 100101 103-121 124126128131134 136141143144152156158160161191211231 241-244 246247 249-251 266 301-303 308-311 314 315, Angel, Armadillo, Turbine blade. The following models produce significantly lower running time $(\underline{(t / n \log n)-\bar{x}}<-1): 2568$ 16-21 35-38 40 154183270275276284288307322323328329333335336 343-345 348-350 354357363 365-367 369374375 .

Possible explanations for the discrepancy in running time for the aforementioned figures include:

Changing system workloads during the simplification of each model: Although we have tried to minimize the effects of different workloads affecting the execution of the algorithm by taking the best running times from multiple executions of the algorithm on each model, fluctuations in the system workload and memory usage during the process may still cause some change in overall execution speed, especially in cases involving very large models and long execution time. The three largest models in our test data (all from non-Princeton data) have significantly longer running time, especially so with the angel model (the largest of our data).

Frequency of updates:-The metric and (to some extent) the updating procedure control the order in which edges are selected for contraction, and on some models, it may result in more frequent updates than average, resulting in longer execution time (due to the overhead of searching through the heap during updates). This may depend on the overall facial structure of each model. Although there are no obvious patterns on how a model may produce such a result, we have observed that many of the chair, box and bird models produce significantly higher running time, suggesting the facial structure of those môdels result in contraction sequences that produce frequent updates; while the four-legged animal and trophy models produce lower ranning time (significantly in many cases), possibly due to lengthy sequences of contractions between updates.

We expect that all QEM-based approaches should produce similar running times to our approach, due to the calculated time complexity. Among non-QEM-based approaches, the appearance-preserving algorithms either pre-process the mesh to create simplification envelopes or parameterized maps, or use a rendering-
based approach to calculate the score, thus using more time than QEM-based algorithms. Other non-QEM-based algorithms still use geometrically based factors to calculate the score, and thus should also produce similar running times.
4.4.3 Analysis of running times with full and partial heap updates

Comparing the running times between simplifying with full and partial heap updates at every score to be updated, we observe a speed up by a factor of 5.38 on average. The speed up on the oyerall running time on our selected models ranges from 4.253 (\#391) to 7.734 (\#141). The models we have selected and direct comparisons of the running time are shown in Table A-2 (in the Appendix). These results show that the partial heap updating scheme significantly reduces running time. The reason behind the running time reduction is that our scheme generally only inspects the topmost portion of the heap for updates, with contractions at the bottom of the heap not being checked (except during the occasional full heap update), and edges that would normally be updated many times before it is encountered in the heap may only need to be updated a few times before contraction.

 4.4.4 Analysis of running times using different update parameters

 ล 90 Comparing the rumning times when using different values than we use normally (see Table A-7), we observe the following: increasing the size of the cache before a full update reduces running time, and vice versa, due to having fewer full updates during the execution. However, we believe that the increased cache size may also result in memory problems when reducing larger models than those used to testfor this section. Also, performing the algorithm without the cache tends to use more running time than with the cache.

Updating more layers significantly increases running time, due to the extra overhead of updating more heap entries; however, updating fewer layers mostly produces running times similar to using the normal values. We also note, however, that one model (\#111) does not reduce to 2% when using fewer layers, whereas it does when using the normal values.

4.5 Summary

In this chapter, we have performed an experiment to compare the results of our algorithm with Garland and Heckbert's QEM method, both time-wise and performance-wise (based on the Hausdorff distance between the original and simplified models). We have used a sample array of 388 models to test the algorithm, with 380 models from a sample set by Princeton, with other models from Georgia and Stanford included for scalability and boundary handling testing. Each model was reduced to $50 \%, 20 \%, 10 \%, 5 \%, 2 \%$ and 1%, rendered, and compared to the original to determine Hausdorff distance land RMS average of luminance difference. We also reduced some selected models to 50% using QEM, before then using both of our algorithms, to test its relative performance on meshes with uneven vertex distribution. The QSlim implementation was used to provide the results from the QEM method. According to the experimental results, the average Hausdorff distance using our algorithm on the full-sized models is lower than QEM down to between 5\% and 2\% of the original face count, with RMS average results similar to those from WEM; however, on meshes with uneven vertex distribution, the average distance when using

QEM is significantly better than our algorithm from 10% downwards. We also observe that on most models, the Hausdorff distance increases faster after reducing to 10% remaining faces. We observe that our best results occurring from models with mostly smooth surfaces, with the worst results occur with a model with significantly sharp features and a model with hidden surfaces, with most other models producing average results. The best models produce results better than or comparable to QEM at all percentages of face count, while the worst models produce Hausdorff results many times higher than QEM at 1\% face count. We also observe that the runtimes generally conform to the $O(n \log n)$ time complexity. However, we note that the largest data we have used has significantly higher running time than the trendlines suggest.

The results from our algorithm are worse than QEM at higher rates of simplification, as the curvature measurement may no longer be accurate at more drastic levels of simplification. Comparing the results to other methods we have referenced, QEM-based methods that focus on the retention of features may use more triangles on areas deemed more visually important than with QEM. Among non-QEM methods, our proposed method should produce better visual resemblance than globalmoment based approaches, optimal placement, and memory-saving approaches, although appearance-based algorithms should still produce better visual resemblance, especially in cases where hidden surfaces are involved (such as the turbine blade in Figure 24). Another possible weak point may be that the curvedness-inverse-weighted average of vertex normals may provide only a partial indication of orientation quality.

Although most of our runtimes conform to $O(n \log n)$ time complexity, we observe that many of the models have significantly different running times from
the expected result. We have theorized two possible causes, changes in system loads during the execution, and frequency of heap updates (which may result from facial structures). Runtimes should be comparative to most QEM-based methods, and non-appearance-based non-QEM-based methods, while using less time than the appearance-based methods. We observe that using the original logarithm-based penalizing method produces lower Hausdorff distances than using the linear combination addition-based penalty.

We also observe that our heap updating scheme produces a significant reduction in running time against full updates. We also tested the algorithm when changing our chosen values for number of updated layers and cache size, and note that increasing the number of layers also increases the running time, although reducing the number of layers produces similar running time. Using the cache usually reduces running time, and increasing the cache size before clearing the cache and performing a full heap update significantly reduce the running time, and vice versa; nevertheless, there may be memory issues when reducing large models.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER V

CONCLUSIONS

In this chapter, we will summarize the purpose of our research and the results we have obtained from it. We will then also consider the weaknesses of some of our results, and suggest possibilities for future research into reducing these weaknesses.

5.1 Summary

Mesh simplification is a procedure to simplify the facial complexity of three-dimensional polygonal meshes for easier general handling, while retaining as much resemblance to the original mesh as possible. As finding the optimal simplification has been shown to be NP-Hard problem, much research has been made into determining heuristics that improve the various performance aspects of mesh simplification algorithms. Mesh simplification algorithms based on a vertex contraction mechanism, such as Garland and Heckbert's well-known Quadric Error Metric method, have become popular for research, because such a mechanism lends naturally to levêl-of-detail based structures, which allow for a model to be displayed with a relatively exact number of faces, thereby allowing for better allocation of faces
for rendering.

Many papers have described improvements to the Quadric Error Metric method to extend it from being based solely on geometric distance, while others use a non-QEM-based scoring method. Several papers improving the QEM method use the local geometry of the area to calculate a single curvature-like measure
for each vertex to assist in the scoring. However, we believe that using a single measure may be insufficient in describing the locality around a given vertex, as the surrounding surface can be properly described using maximum and minimum curvatures ($k_{\max }$ and $k_{\min }$), along with principal directions. We also believe that contracting an edge in a direction of low curvature is less likely to cause significant visual changes than contracting in a direction of high curvature. Therefore, our paper presents a method to use these properties to create an improved mesh simplification method based on the edge contraction mechanism.

Our method aims to simplify the possible ambiguity of using a single measure of curvedness on a given vertex by incorporating the calculation of the principal curvatures and their directions to assist in determining the curvature in a given edge's direction, to produce low scores on contracting edges with low curvature and high scores on edges with high curvature, from the same given vertex. We also use the curvatures to help provide a meastre of how well a resulting face would fit the surface, given its constituent vertices and their normal vectors, by calculating a curvedness-inverse-weighted average of the resulting face's normal vector with the vertices' normal vectors. $\partial M \leq M$,
 take into account its regularity, its relative orientation to its original orientation, and its relative dihedral angle with adjacent faces, and use the worst case of each for the score calculation. We also include a simple boundary preservation policy, by disallowing the contraction of boundary vertices to non-boundary vertices, and
considering the change in boundary area when calculating the error score. This measure has been shown to provide preservation for boundaries and holes.

In our implementation of this algorithm, we use some methods to reduce time used for heap updating, namely, updating only the top portion of the heap, and using a cache to store the normal vector and regularity of resulting faces to assist in the calculation of scores. We have shown that the overall algorithm takes $O(n \log n)$ running time and linear storage relative to face count.

Testing our algorithm on 388 models (mostly from Princeton data), we have found that this approach produces lower Hausdorff distances than the QEM method at lower levels of simplification and/or on models with smooth surfaces, suggesting that the use of a direction-based curvature measurement can provide some improvement to the simplification in the early stages. However, the QEM algorithm still produces lower distances at more drastic levels, especially on meshes with uneven vertex distribution, suggesting that the factors we have used to assist the simplification become deficient in later stages, likely due to the increase in the area 6 a covered by the fäces ladjacent fo any given vertex. Also, using the curvedness-inverseweighted average of angles between the face and its vertices' normal vectors, while working well on smooth surfaces, 9 nay/ hot take surface noise such as minor projections, into account. We also observe that our choice of logarithm-based penalty generally produces better Hausdorff results than the linear combination additionbased penalty described in Chapter IV.

We have also found that the running time from our algorithm mostly conforms to the expected $O(n \log n)$ complexity, with a few outliers, although the
models with the highest face count produce significantly higher running times. Comparing the running time results between using and not using our partial heap updating scheme, we have observed a significant decrease in running time. We note that increasing the number of layers updated at each update increases the running time; however, the running time remains similar when reducing the number of layers. We also note that our caching method reduces running time, and increasing the cache size reduces running time, and vice versa.

5.2 Future Work

Although our algorithm produces better Hausdorff distances than QEM in the early stages of simplification, QEM still produces better results at more drastic levels, especially on meshes with meven vertex distribution. Therefore, our future work to improve the algorithm fmctudes improving the curvature factors that we use for score calculation to make them more tolerant to uneven vertex distribution, surface noise and changes in the model during the later stages of simplification. Other possibilities are incluđing easily-calculated factors that remain relatively unaffected by these issues in the algorithm, and improving the robustness of the curvedness-inverse-average of normal vectors assan indicator of ideal facial orientation.

management of the process. Our paper uses various arbitrary values that we consider provide a good balance for our purposes; however, further research into determining the best values for the best balance of performance may be required. Also, further research into determining the best method for applying the penalties to the QEM score may improve results.

REFERENCES

Agarwal, P.K., and Suri S. Surface approximation and geometric partitions. In SODA
'94: Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms, 24-33. Philadelphia : SIAM, 1994.

Balmelli, L., Vetterli, M., and Liebling, T.M. Mesh optimization using global error with application to geometry simplification. Graphical Models 64, 3-4 (May-July 2002): 230-257.

Batagelo, H.C., and Wu, S-T. Estimating curvatures and their derivatives on meshes of arbitrary topology from sampling directions. The Visual Computer 23, 9 (September 2007) : 803-812.

Baumgart, B.G. A Polyhedron Representation for Computer Vision. In AFIPS '75: Proceedings of the May 19-22, 1975, national computer conference and exposition, 589-596. New York: ACM, 1975.

Boubekeur, T., and Alexa, M. Mesh simplification by stochastic sampling and topological clustering. Computers \& Graphics 33, 3 (2009) : 241-249.
Chen, H-H., Lu0, X-N, and ting, R-T, Surface simplificationdsing multi-edge mesh collapse In ICIG '07: Proceedings of the Fourth International Conference on Image and Graphics, 954-959. Washington : IEEE Computer Society, 2007.

Chen, H-K., Fahn, C-S., Tsai, J.J.P., Chen, R-M., and Lin, M-B. A linear time algorithm for high quality mesh simplification. In IEEE Sixth International Symposium on Multimedia Software Engineering, 2004. Proceedings. 169-176. Los Alamitos, CA : IEEE Computer Society, 2004.

Chen, X., Golovinskiy, A., and Funkhouser, T. A benchmark for 3D mesh segmentation. In ACM SIGGRAPH 2009 papers, 73:1-73:12. New York: ACM, 2009.

Choi, H.K., Kim, H.S., and Lee, K.H. A mesh simplification method using noble optimal positioning. In Falai Chen and Bert Jüttler (eds.), GMP'08: Proceedings of the 5th international conference on Advances in geometric modeling and processing, 512-518. Heidelberg : Springer-Verlag Berlin, 2008.

Cignoni, P., Montani, C., and Scopigno, R. A Comparison of Mesh Simplification Algorithms. Computers \& Graphics 22, 1 (1998) : 37-54.

Cignoni, P., Rocchini, C., Montani, C., and Scopigno, R. External memory management and simplification of huge meshes. IEEE Transactions on Visualization and Computer Graphics, 9, 4 (October-December 2003) : 525-537.

Cignoni, P., Rocchini, C. and Scopigno, R. Metro: measuring error on simplified surfaces, Computer Graphics Foram 17,2 (June 1998) : 167-174.

Clark, J.H. Hierarchical geometric models \propto for visible surface algorithms. Communications of the ACM 19, 10 (October 1976): 547-554.

Cohen, J., et al. Simplification envelopes. In SIGGRAPH '96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 119-128. New York : ACM, 1996.

Cohen, J., Manocha, D., and Olano, M. Simplifying polygonal models using successive mappings. In Roni Yagel and Hans Hagen (eds.), VIS '97: Proceedings of the 8th conference on Visualization '97, 395-ff. Los Alamitos, CA : IEEE Computer Society Press, 1997.

Cohen, J., Olano, M., and Manocha, D. Appearance-preserving simplification. In SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, 115-122. New York : ACM, 1998.

Eck, M., et al. Multiresolution Analysis of Arbitrary Meshes. In SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 173-182. New York : ACM, 1995.

Fahn, C-S., Chen, H-K., and Shiau, Y-H. Polygonal Mesh Simplification with Face Color and Boundary Edge Preservation Using Quadric Error Metric. In MSE '02: Proceedings of the Fourth IEEE International Symposium on Multimedia Software Engineering, 174. Washington : IEEE Computer Society, 2002.

Garland, M., and Helckbert, P.S. Simplifying surfaces with color and texture using quadric error metrics. In VIS '98: Proceedings of the conference on Visualization $98,263-269$ Los Alamitos, CA: IEEE Computer Society Press, 1998.

Garland, M., and Heckbert, P.S. Surface simplification using quadric error metrics. In SIGGRAPH '97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 209-216. New York : ACM, 1997.

Gieng, T.S., Hamann, B., Joy, K.I., Schussman, G.L., and Trotts, I.J.. Smooth hierarchical surface triangulations. In Roni Yagel and Hans Hagen (eds.), VIS
'97: Proceedings of the 8th conference on Visualization '97, 379-386. Los Alamitos, CA : IEEE Computer Society Press, 1997.

Guèziec, A. Surface simplification with variable tolerance. In Second Annual Intl.
Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS '95), 132-139. 1995.

Hamann, B. A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design 11, 2 (April 1994) : 197-214.

Hoppe, H. Progressive meshes. In SIGGRAPH '96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 99-108. New York : ACM, 1996

Hussain, M. Efficient Simplification Methods for Generating High Quality LODs of 3D Meshes. Journal of Computer Science and Technology 24, 3 (2009) : 604-inside back cover.
Hussain, M., ORada, Y., and Niijima, K. Fast, Simple and Memory Efficient Mesh Simplification. In Proceedings of the Fourth International Conference on Computer ${ }^{6}$ Graphics and Imaging (CGIM2001), 672-77. Anaheim : IASTED/Acta Press, 2001.

Jia, S., Tang, X., and Pan, H. Fast Mesh Simplification Algorithm Based on Edge Collapse. Lecture Notes in Control and Information Sciences 344 (2006) : 275-286.

Jong, B-S., Tseng, J-L., and Yang, W-H. An efficient and low-error mesh simplification method based on torsion detection. The Visual Computer 22, 1 (January 2007) : 56-67.

Kho, Y., and Garland, M. User-guided simplification. In I3D '03: Proceedings of the 2003 symposium on Interactive 3D graphics, 123-126. New York : ACM, 2003.

Kim, H.S., Choi, H.K., and Lee, K.H. Mesh simplification with vertex color. In Falai Chen and Bert Jüttler, GMP'08: Proceedings of the 5th international conference on Advances in geometric modeling and processing, 258-271. Heidelberg : Springer-Verlag Berlin, 2008.

Kobbelt, L., Campagna, S., and Seidel, H-P. A General Framework for Mesh Decimation. In Torsten Moller and Colin Ware (eds.), Proceedings of Graphics Interface, 43-50. Łethbridge, Alberta : AK Peters/CRC Press, 1998.

Kovalevsky, V.. Algorithms and data structures for computer topology. In Gilles Bertrand, Atsưshi Imiya and Reinhard Klette (eds.), Digital and image geometry, 38-58. New York : Springer-Vendg New York, 2001.

Levoy, M., et al. The digital Michelángelo project. In SIGGRAPH '00: Proceedings of the 27th annual conference on computer graphics and interactive techniques, 131-144. New York : ACM Press/Addison-Wesley, 2000.

Li, Y., and Zhu, Q. A New Mesh Simplification Algorithm Based on Quadric Error Metrics. In ICACTE '08: Proceedings of the 2008 International Conference on Advanced Computer Theory and Engineering, 528-532. Washington : IEEE Computer Society, 2008.

Lindstrom, P. Out-of-core simplification of large polygonal models. In SIGGRAPH '00: Proceedings of the 27 th annual conference on Computer graphics and interactive techniques, 259-262. New York : ACM Press / AddisonWesley, 2000.

Lindstrom, P., and Turk, G. Fast and memory efficient polygonal simplification. In VIS '98: Proceedings of the conference on Visualization '98, 279-286. Los Alamitos, CA : IEEE Computer Society Press, 1998.

Lindstrom, P., and Turk, G. Image-driven simplification. ACM Transactions on Graphics (TOG) 19, 3 (July 2000) : 204-241.

Luebke, D.P. A Developer's Survey of Polygonal Simplification Algorithms. IEEE Computer Graphics \& Applications 21, 3 (May 2001) : 24-35.

Ripolles, O., Chover, M., Gumbat, J., Ramos, F. and Puig-Centelles, A. Rendering continuous level-of-detail meshes by Masking Strips. Graphical Models 71, 5 (September 2009) : 184-195.

Rossignac, J., 3D compression made simple: Edgebreaker with Zip\&Wrap on a corner-fable. δ In International Conference \mid on Shape Modeling and Applications, SMI 2001, 278-283. Los Alamitos, CA』』 IEEE Computer

Rossignac, J., and Borrel, P. Multi-resolution 3D approximations for rendering complex scenes. In B. Falcidieno and T.L. Kunii (eds.), Geometric Modeling in Computer Graphics, 455-465. Genova, Italy : Springer Verlag, 1993.

Schroeder, W.J., Zarge, J.A., and Lorensen, W.E. Decimation of triangle Meshes. In SIGGRAPH '92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, 65-70. New York : ACM, 1992.

Smith, C. On vertex-vertex systems and their use in geometric and biological modelling. Doctoral dissertation, University of Calgary, 2006.

Tang, H., Shu, H.Z., Dillenseger, J.L., Bao, X.D., and Luo, L.M. Technical Section: Moment-based metrics for mesh simplification. Computers and Graphics 31, 5 (October 2007): 710-718.

Tang, Z., Yan, S., and Lan, C. A New Method of Mesh Simplification Algorithm Based on QEM. Information Technology Journal 9, 2 (2010) : 391-394.

Varakorn Ungvichian and Pizzanu Kanongchaiyos. Mapping A 3-D Model into Abstract Cellular Complex Format. Computer-Aided Design and Applications Journal 3, 1-4 (2006) : 395-404.

Vieira, A.W., Velho, L., Tavares, G., and Lewiner, T. Fast stellar mesh simplification. In XVI Brazilian Symposium on Computer Graphics and Image Processing, 2003. SIBGRAPI 2003,, 27-34. Los Ålamitos, CA : IEEE Computer Society, 2003.

Wei, J., ąnd Lou, Y. Feature Preserving Mesh Simplification Using Feature Sensitive Metric. Journal of Computer Science and Technology 25, 3 (2010) : 595605.

Wu, J., and Kobbelt, L. Fast Mesh Decimation by Multiple-Choice Techniques. In Günther Greiner (ed.), Vision, modeling, and visualization 2002, 241-248. Berlin : Aka GmbH, 2002.

Xu, L., Chen W., Liu. J., and Lü, T. An improved quadric error metrics based on feature matrix. In 2008 IEEE Conference on Robotics, Automation and Mechatronics, 582. Chengdu, China. IEEE, 2008.

Zelinka, S., and Garland, M. Permission grids: practical, error-bounded simplification. ACM Transactions on Graphics (TOG) 21, 2 (April 2002) : 207-229.

Zhigeng, P., Jiaoying, S., and Kun, Z. A new mesh simplification algorithm based on triangle collapses. Journal of Computer Science and Technology 16, 1 : (January 2001) : 57-63.

จุหาลงกรณ์มหาวิทยาลัย

APPENDIX

EXPERIMENTAL RESULTS

In this chapter, we will display the complete running time and comparison of Hausdorff distances between QEM and our algorithm. We will then display selected visual results, as well as other images related to our results.

A. 1 Hausdorff distance and luminance difference results

In Table A-1, we display the Hausdorff distances, with respect to bounding box diagonal, of the models in our sample data simplified with QEM (top) and our algorithm (middle), along with the running time (bottom). Table A-2 will display the parameters used to weight the penalties.

Table A-1: Hausdorff distances and rumning times of models simplified with QEM and our algorithm

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
1	9408	0.003054	0.011327	0.012432	0.017059	0.040900	0.040838
		$\begin{aligned} & 0.002224 \\ & 0 \\ & 19.158 \end{aligned}$	$\begin{gathered} 0.005295 \\ 93 \\ 33.048 \end{gathered}$	$\begin{array}{r} 0.012277 \\ \stackrel{y}{3} .902 \end{array}$	$)_{36.953}^{0.032251}$	$\begin{array}{r} 0.043783 \\ 38.445 \end{array}$	$\begin{array}{r} 0.055846 \\ 39.006 \end{array}$
2							$\begin{aligned} & 0.027762 \\ & 0.031017 \end{aligned}$
		32.236	50.753	58.965	62.109	64.162	65.214
3	11278	0.001092	0.006000	0.005410	0.009275	0.019970	0.032207
		0.001957	0.004880	0.010716	0.025016	0.067621	0.073772
		19.869	33.909	36.993	38.585	40.068	40.759

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
11	21994	0.000465	0.005455	0.008881	0.009683	0.014576	0.022895
		0.001086	0.002134	0.004617	0.010499	0.042660	0.046877
		50.633	78.583	86.554	89.479	91.271	91.862
12	11224	0.005916	0.006803	0.008752	0.013763	0.017112	0.053291
		0.00131	002787	0.005350	0.010762	0.017468	0.037312
		23.10		. 450	43.072	44.574	45.195
13	27402	0.00295	002954	0.005334	0.010978	0.018783	0.043622
		0.001163	. 002322	0.004214	0.007249	0.020517	0.038733
		61.844	96.078	110.719	118.188	120.609	121.203
	11378	0.001736	003207	0.005490	0.009510	0.034676	0.034676
		0.001518	0.004575	0.011178	0.022490	0.065200	0.081243
		23.469	-39.109	42.250	43.516	44.578	44.984
15	11258	$0.0 \overline{02190}$	0.004832	0.008484	0.017178	0.037969	0.053825
		0.002342	0.005748	0.012775	0.038460	0.058182	0.100492
		19.328	932.437	35.321	36.833	38.145	38.826
1630450		0.004354	0.004431	0.011743	0.014006	0.014865	0.030845
		$0,001525$	0.003801	0.006686	0.010452	©0,019276	0.035574
		46.407	72.875	84.532	90.340	92.623	93.504
17	31816	0.003263	0.004775	0.005560	0.009595	0.015434	0.021837
fil		0.001567	0.003189	0.006081	0.012974	0.025317	0.051791
		48.980	76.921	89.008	94.997	97.330	98.351

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
18	30766	0.003344	0.007573	0.007573	0.008545	0.016463	0.022869
)		0.002343	0.003291	0.006332	0.010417	0.033494	0.049290
		47.889	74.537	86.51	92.353	94.516	95.337
19	30950	0.002922	. 003350	0.005389	0.009624	0.023589	0.023589
		0.00102	002190	0.0044	0.009257	0.023499	0.040833
				83.470	89.749	92.203	93.164
31396		0.005	$0.005247 \quad 0.008305$		0.008305	0.017013	0.017092
		0.001270	$0.003418 \bigcirc 0.006048$		0.011358	0.023708	0.044669
				85.273	91.191	93.484	94.225
	30396	0.000456	0,001545	0.002955	0.006206	0.012502	0.023335
		0.000828	0.001451	0.003182	0.005664	0.024215	0.036284
		. 185	78.583	86.554	89.479	91.271	91.862
22	30004	0.0004580 .001350		0.0034800 .004213		0.020042	0.018304
$[\square]$		0.000768	0.001642	0.003879	0.017423	0.088027	0.088027
		$9 / 49.301 \mathrm{~d} 9 / 83.1401 \sim 93.314 / 98.912$				101.436	102.017
23	30074	0.000410	0.001318	0.003493	0.005569	0.011790	0.022425
0×1		$0.000702 \approx 0.001462$		0.0029889 .005086		60018029	0.029649
		56.712	111.330	122.086	125.851	129.086	130.478
	30492	0.000488	0.001400	0.002798	0.005451	0.014162	0.024291
		0.000866	0.001612	0.003946	0.012693	0.089179	0.145632
		53.948	91.231	102.327	108.246	111.410	112.151

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%		
25	30170	0.000649	0.002587	0.002573	0.004101	0.007494	0.015958		
		0.000679	0.001842	0.003073	0.005299	0.012456	0.021934		
		58.000	97.625	109.094	113.250	116.281	117.484		
26	30418	0.000649	0.001978	0.002908	0.005539	0.010608	0.021418		
	30274	0.00080	001753	$\begin{array}{rr} 0.003114 & 0.006784 \\ 110.703 & 115.016 \end{array}$		0.022202	0.029708		
		58.90	98.8			118.422	119.781		
		0.00207	0.00390	0.006399	0.005692	0.017711	0.019446		
		0.000964	0.002263	0.004075	0.006605	0.014685	0.037336		
			99.094	110.735	115.047	118.578	120.016		
28	30140	0.001300	0.002887	0.003115	0.016588	0.022814	0.030356		
		0.000785	0.001405	0.002549	0.006865	0.021322	0.041434		
			94.346	104.570	108.356	111.210	112.562		
29	30254	0.000556	0.001631	0.003149	0.005770	0.020690	0.027292		
\bigcirc		0.000793	0.002041	0.004016	0.006430	0.013867	0.048340		
		51.594	9787.376	298.311	$102,127$	104.891	106.073		
30	30008	0.000318	0.001306	$0.002369 \quad 0.003500$		0.008099	0.015741		
		$\begin{array}{rr} 60.000728 & 0.001254 \\ 51.193 & 87.606 \end{array}$		$\begin{array}{r} 90,002263 \\ 98.622 \end{array}$	0.004986 104.500	$.012150$	0.017032		
		107.214	108.156						
31	30454			0.000997	0.003755	0.003755	0.004534	0.019171	0.029141
		0.000911	0.001629	0.002686	0.006126	0.016485	0.029743		
		54.919	92.553	104.100	108.075	111.310	112.832		

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%		
64	13590	0.000704	0.002229	0.003605	0.006881	0.015574	0.022538		
		$\begin{array}{r} 0.001313 \\ 22.472 \end{array}$	$\begin{array}{r} 0.002079 \\ 37.935 \end{array}$	$\begin{array}{r} 0.004485 \\ \hline 41.229 \end{array}$	0.008959	0.016906	0.037636		
		43.352			44.454	45.035			
65	12892		$\begin{array}{ll} 0.000525 & 0.002151 \\ 0.000870 & 0.001727 \end{array}$		0.003973	0.006451	0.014462	0.016017	
1		0.0044440 .006799		0.015688	0.019473				
		$21.781 \quad 36.663$		92	41.920	43.042	43.623		
6615474		000161			0.003329		0.005211	0.008953	0.020068
7		$\begin{array}{r} 0.000562 \\ 24.425 \\ 0.000338 \end{array}$	0.003668		0.006556	0.015426	0.022410		
		43.21	49.	51.384	52.435	52.876			
$67 \quad 15298$			$0.0016410 .002880$		0.005286	0.012643	0.026596		
\square			0.000636	0.001847	0.003832	0.007218	0.012380	0.023534	
		$24.005=42.421=48.289 \quad 50.182$				51.204	51.644		
$68 \quad 11162$		$0.000575 \quad 0.002567 \quad 0.003732$			0.007637	0.013518	0.026025		
		$0.000823-0.002225$		0.004088	0.008769	0.015798	0.025182		
		18.687	31.235	33.899	35.691	36.513	36.943		
6913398		$0.00033780 .001580 \cap \widetilde{0.002760} 0.005664$				0.014374	0.018674		
		0.000645	0.001707	0.004439	0.009875	0.022968	0.122371		
		$622.032 \% 37.844 \sqrt{19741.480} 9 / 43.733$				614.955	45.505		
	1258	0.000347	0.002259	0.003545	0.007512	0.034493	0.043923		
		0.000950	0.001903	0.003970	0.007964	0.019088	0.070189		
		18.056	31.285	34.259	36.052	37.023	37.614		
71	11694	0.000450	0.001782	0.003654	0.006769	0.009775	0.022950		
		0.000866	0.001814	0.004290	0.008492	0.015972	0.033649		
		19.598	32.597	35.461	37.224	38.295	38.776		

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model Faces	50\%	20\%	10\%	5\%	2\%	1\%
7210452	0.000477	0.002253	0.004287	0.009333	0.018166	0.017433
1	0.001067	0.002696	0.004018	0.009133	0.026254	0.037230
	16.734	8.57		32.306	33.438	33.909
$73 \quad 10214$	$0.000611 \quad 0.002102$		$0.004337 \quad 0.008375$		0.012048	0.019892
1	0.001021	0.002304	$0.004553 \quad 0.008757$		0.017561	0.024618
		271		1.816	32.867	33.298
$74 \quad 10084$	0.0	186	0.0039	0.007359	0.011333	0.022221
$\overbrace{75}^{17354}$	0.00106	00273	$\begin{gathered} 0.004934 \\ 30.975 \end{gathered}$	0.013017	0.020280	0.047445
	16	28.46		2.176	33.338	33.979
	0.0004	001632	0.003649	0.004483	0.009898	0.017749
	0.000896	$0001551-0.003459$		0.005426	0.012140	0.019228
	28.831	$48.770 \% \quad 54.949$		57.102	58.154	58.744
7611842	$\begin{array}{llll}0.000415 & 0.001625 & 0.004932\end{array}$			0.005208	0.012860	0.018548
	$0.000735-0.002132$		0.004273	0.008284	0.018641	0.023337
	17.715	31.385	34.470	36.032	37.003	37.454
$77 \quad 131709$	$0.000468 \text { o.001776/ } 0.002842 \bigcirc 0.005595$				0.014212	0.015560
	0.000958	0.001622	0.004186	0.007102	0.015671	0.022026
	$621.531 \approx 36.472 \sqrt{ } / 983.817941 .890$				6142.772	43.392
$78 \quad 14936$	0.000333	0.001332	0.002444	0.003877	0.016021	0.022129
	0.000998	0.002084	0.003241	0.005507	0.015677	0.026219
	24.215	41.159	44.905	47.378	48.800	49.251
$79 \quad 13374$	0.000349	0.001748	0.004105	0.005774	0.011998	0.020762
	0.000717	0.001657	0.003944	0.007338	0.014342	0.024275
	21.801	37.143	40.478	42.521	43.553	44.023

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model Faces	50\%	20\%	10\%	5\%	2\%	1\%
8014698	0.000360	0.001685	0.003259	0.005551	0.015376	0.018567
	0.000644	$0.001758 \quad 0.003027$		0.006742	0.013420	0.024816
	23.283	40.508		47.138	48.750	49.291
$81 \quad 12736$	$0.001768 \quad 0.003946$		$0.005353 \quad 0.011366$		0.027569	0.034290
	$0.001463-0.004588$		$0.013379 \quad 0.022718$		0.035793	0.065673
				3.392	45.045	45.816
8216594	0.0008740 .00342		0.006018	0.013026	0.029155	0.027886
	0.00118	002999	0.006998	0.014243	0.034852	0.059523
	28.00	6.95	51.2	3.898	55.650	56.371
	0.0018	. 003789	0.006423	0.009955	0.022021	0.096273
577	0.0014	0004585	1-38.856	0.018279	0.039005	0.056489
	21.24	35.661		40.719	41.860	42.541
8413696	$0.001257 \quad 0.003380 \quad 0.007003$			0.010610	0.026811	0.037560
$=17$	$0.001225-0.003312$		0.007413	0.013982	0.037606	0.062843
	22.61	38.285	41.660	43.733	45.215	45.776
85167720	$0.000956 \text { व } 0.003230 / 0.006266 \cdot 0.015573$				0.029114	0.030009
$\text { (3) } 10$	0.001415	0.003340	0.008854	0.019719	0.039061	0.063196
	$6 2 8 . 0 1 0 \longdiv { 4 7 . 1 0 8 } \sqrt { } 9 9 5 1 . 3 6 4 / 9 4 . 1 0 8$				655.810	56.621
8614072	0.001048	0.003933	0.007140	0.015672	0.023446	0.040536
	0.001450	0.003649	0.009767	0.016791	0.041171	0.066506
	23.504	39.367	42.892	45.105	46.647	47.418

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model Faces	50\%	20\%	10\%	5\%	2\%	1\%
8714936	0.001758	0.002775	0.005684	0.009261	0.024654	0.029749
	0.001440	$\begin{array}{r} 0.003130 \\ \quad 41.380 \end{array}$	$\begin{array}{r} 0.008026 \\ 45.305 \end{array}$	0.015632	0.031728	0.061128
	24.285			47.909	49.611	50.202
8816416	$0.000939 \quad 0.003094$		$0.005546 \quad 0.008851$		0.024964	0.023400
	$\begin{array}{rr} 0.001213 & 0.002746 \\ 27.309 & 46.036 \end{array}$		$0.005726 \quad 0.018812$		0.029473	0.048502
			19	2.866	55.099	55.800
$89 \quad 15304$	0.0013010 .003231		0.006483	0.013723	0.023992	0.031391
́s97f	0.00	038	. 00874	0.014672	0.043997	0.065579
	25.64	43.16	0.007992	49.621	51.364	52.005
9015750	0.001062	0.003403		0.010002	0.019083	0.026732
	0.001323	65	0.019088		0.050614	0.072136
	$25.957-43.693 \quad 47.639 \quad 50.292$				51.995	52.646
9117276	$0.001094 \quad 0.003254 \quad 0.006445 \quad 0.013678$				0.021187	0.028266
	$0.001305 \quad 0.002815$		$0.006861 \quad 0.015804$		0.039400	0.062954
	28.511	48.299	54.298	56.421	57.553	58.414
9211730	9.001916	9.003606	06008933	0.012003	0.025680	0.076213
$\pi \pi N i$	0.001700	0.003905	0.009087	0.020744	0.049586	0.093215
	$618.807 \sim 32.497$		$19 / 35.491$	937.364	6138.636	39.297
93	0.000809	0.003332	0.006172	0.009387	0.022010	0.034946
	0.001769	0.002725	0.008535	0.012775	0.047612	0.105190
	27.089	45.977	51.754	53.086	55.219	56.111

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Mode	Faces	50\%	20\%	10\%	5\%	2\%	1\%		
94	14468	0.001683	0.003008	0.006121	0.010479	0.018464	0.030114		
		0.001557	0.003000	0.006021	0.014104	0.033916	0.044007		
		24.165	40.308	40.063	46.206	47.689	48.279		
95	14706	$0.000984 \quad 0.003604$		$0.005690 \quad 0.010578$		0.022865	0.039574		
$3 y t$		$\begin{array}{rr} 0.001123 & 0.003442 \\ 23.654 & 40.648 \end{array}$		$0.008047 \quad 0.018715$		0.037867	0.057851		
			. 7	48.279	48.750				
$96 \quad 17004$				0.00100	0.00		0.009940	0.020852	0.042139
xily		$\begin{array}{r} 0.001480 \\ 28.751 \\ 0.001366 \end{array}$	003030	$\begin{gathered} 0.006823 \\ 52.025 \end{gathered}$	0.014600	0.030414	0.072939		
		47.96	4.619		56.401	57.052			
9716330			$0.004283 \approx 0.006576$		0.017716	0.024356	0.035479		
$y^{p o p}$			$0.001471 \quad 0.003500 \quad 0.00825$			0.018087	0.038154	0.066226	
		$27.600-46.146 \quad 50.402 \quad 53.056$				54.949	55.800		
$98 \quad 12304$		$0.001308 \quad 0.004877$		0.005923	0.009647	0.020492	0.040508		
		$\begin{array}{r} 0.001767 \\ 20.660 \end{array}$	0.003513	$0.010243 \quad 0.021207$		0.052989	0.060210		
		34.820	37.955	39.767	41.129	41.790			
99137580			$0.001667 \partial^{0.003056} / 0.006310 \cdot \sqrt{0.010305}$				0.020295	0.032677	
		0.001251	0.003313	0.006999	0.022022	0.032188	0.056484		
						645.676	46.327		
10016124		0.001133	0.004149	0.005076	0.009841	0.019381	0.039986		
		0.001394	0.003043	0.009372	0.015122	0.037247	0.094443		
		32.813	55.703	61.000	64.063	65.844	66.438		
10116998		0.000054	0.001452	0.002917	0.007594	0.016074	0.020075		
		0.000358	0.001688	0.004069	0.007071	0.015602	0.024933		
		35.891	59.250	66.953	70.047	71.172	71.781		

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
102	31456	0.016001	0.016001	0.010288	0.010775	0.017110	0.025999
		0.000855	0.001838	0.003465	0.006740	0.014810	0.020548
		66.171	112.063	$\begin{array}{r} 125.672 \\ 0.009989 \end{array}$	132.719	135.250	136.016
103	19304	0.000469	0.002334		0.009989	0.012717	0.023701
		0.001085	0.002174		0.009971	0.022975	0.079994
		$39.922 \quad 67.625$		76.50	79.5625	81.266	81.891
104	17306	0.000557	0.000820	0.00335	0.006207	0.018272	0.025251
		0.000332	027	65.500	0.021807	0.039594	0.226061
					68.563	70.141	70.547
105	18530		. 001484	0.003975	0.006845	0.017181	0.025543
		$\begin{array}{r} 0.000695 \\ 38.641 \end{array}$	002	. 008725	0.031098	0.303668	N/A*
			. 797	70.953	75.984	76.828	N/A ${ }^{*}$
106	28104	0.008109	0.008610	0.008563	0.008610	0.011811	0.028546
		0.000709	0.001910	0.003809	0.008179	0.023598	0.087128
		69.156	99.234	116.297	120.313	123.031	123.797
107	2285					0.017935	0.023606
						0.027350	0.031460
			80	$\begin{aligned} & 90.828 \\ & 0.004712 \end{aligned}$	$\begin{aligned} & 94.578 \\ & 0.008372 \end{aligned}$	$\begin{gathered} \text { c97.031 } \\ 0.016833 \end{gathered}$	97.953
	008		0.002520				0.023065
		0.001158	0.002026	0.004225	0.008428	0.018176	0.027522
		42.98	73.886	83.410	87.345	90.230	91.862
109	20602	0.000082	0.001549	0.004268	0.007047	0.014546	0.044515
		0.000575	0.001778	0.007350	0.011116	0.043881	0.110542
		48.266	80.031	89.625	93.031	94.953	95.422

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
110	16920	0.008116	0.008230	0.008646	0.008980	0.019305	0.045441
		0.001799	0.003104	0.010567	0.031547	0.128419	N/A ${ }^{*}$
		34.797	62.672		74.093	75.156	N/A ${ }^{*}$
111	16100	0.008094	. 008093	0.008093	0.008433	0.015287	0.024168
		0.001798	0.003412	0.009973	0.110990	0.137811	0.137811
				203	71.500	73.047	73.219
112	27256	0.00687	010115	0.007329	0.010444	0.024986	0.024986
		0.00073	001607	0.00345	0.009775	0.054521	0.370797
		719	108.922	122.609	129.734	132.344	132.750
113	21500	0.003610	0.003613	0.003610	0.008049	0.013139	0.020665
		0.001627	0.001855	0.005113	0.023223	0.148185	0.114980
		46	79.688	90.656	96.125	97.438	97.469
114	11588	0.000263	0.001891	$0.065273=$	0.073310	0.073310	0.170187
		0.001267	0.004398	0.017078	0.050990	0.309078	0.361201
			,				
		23.109	39.656	43.188	45.094	45.953	46.188
	20086	0.002028	0.007305	0.010736	0.005455	0.012650	0.018202
		0.001628	0.001628	0.006733	0.054788	0.119107	0.119107
	9π	645.969	27.1375	1987.781	919.875	6) 94.281	94.406
116	26926	0.026033	0.025989	0.026157	0.026168	0.026266	0.026522
		0.000182	0.001145	0.004168	0.015477	0.087511	0.173991
		61.172	97.703	110.203	116.297	117.578	118.047
117	28744	0.021494	0.022012	0.021923	0.021833	0.022277	0.022138
		0.000000	0.001608	0.004763	0.012955	0.090454	0.121110
	\|	77.296	116.500	129.969	136.781	138.797	139.157

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
118	18306	0.001013	0.003127	0.007241	0.009318	0.015834	0.021306
119	0.000656	0.002372	0.004959	0.010851	0.022189	0.122442	

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model Faces	50\%	20\%	10\%	5\%	2\%	1\%
13421860	0.000931	0.003248	0.005398	0.011213	0.025547	0.042928
VnN	0.001404 46.337	$\begin{array}{r} 0.002643 \\ 78.122 \end{array}$	$\begin{array}{r} 0.005501 \\ 86.164 \end{array}$	$\begin{array}{r} 0.012912 \\ 90.881 \end{array}$	0.034867	0.054317
					93.885	95.257
135	$0.000694-0.002377$		$0.004172 \quad 0.007528$		0.014805	0.026230
	$0.001245-0.002750$		$0.005560 \quad 0.010158$		0.022819	0.037079
	$56.938 \quad 95.422$		106.578	110.578	113.344	114.469
13628248	0.000759	,	0.004596	0.005361	0.024108	0.021799
	$0.000973 \quad 0.002186 \quad 0.003474$			0.007542	0.019627	0.037228
	$62703 \quad 105.969 \quad 118.4375$			122.906	126.000	127.094
13718244	0.001415	$0.002278 \quad 0.004851$		0.009644	0.012918	0.018238
	0.001471	0.003009	-0.009870	0.019497	0.033424	0.080220
	33.1	6×66.2		. 422	71.438	72.094
13819184		004039	0.00500	0.009545	0.014825	0.028533
	$0.001170-0.002796$		0.00827	0.020057	0.047324	0.147565
	34.719 a 60.063		67.500	70.031	71.359	72.109
13916030°	$0.000952 \int 0.003292 / 0.00695660 .009619$				0.018169	0.026486
	0.001631	0.002817	0.006800	0.011664	0.027451	0.040413
	630.344	$251.594 \sqrt{ } 996.031$		988.906	60:578	61.125
14018396	0.001003	0.002502	0.003981	0.008026	0.01364	0.022397
	0.001080	0.002310	0.004719	0.014409	0.022499	0.048058
	35.187	58.906	63.875	67.078	69.156	69.844
14127848	0.011917	0.023325	0.023006	0.023205	0.023405	0.023343
	0.000000	0.000798	0.002153	0.004322	0.018364	0.021316
	62.859	98.843	111.344	116.484	119.813	120.813

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Mode	Faces	50\%	20\%	10\%	5\%	2\%	1\%
16	20462	0.000743	0.002078	0.003873	0.008466	0.017559	0.026919
		0.001093	0.001774	0.003487	0.007450	0.017885	0.042395
		34.049	7.933		67.848	69.820	70.982
16	22176	0.000615	0.002108	0.00388	0.007763	0.014936	0.026147
		0.000953	0.002001	0.003054	0.006148	0.015093	0.023279
		36	2.300	70.051	72.975	75.348	76.460
16725290		0.0005	02153	0,0039	0.006353	0.014970	0.024094
		0.00086	001798	0.002885	0.006081	0.013832	0.026604
		42.291	1.36	80.075	83.360	85.713	86.805
16821500		0.000621	0.001902	0.004184	0.007267	0.019106	0.025951
		0.001060	0.002349	0.003585	0.006920	0.015027	0.026245
			60.807	68.388	71.323	73.766	74.788
16925118		0.000527	0.002087	0.002996	0.006015	0.011797	0.019042
		0.000858	0.001805	0.003984	0.005673	0.012990	0.020789
		42.28	71.939	79.965	83.180	85.563	86.795
$170 \quad 24996$		0.000595	0.001828	0.003050	0.00561	0.011755	0.021255
		641.329	270.541	979.094	82.308	684.572	85.883
17129806		0.000525	0.002130	0.003725	0.007122	0.010932	0.026198
		0.000819	0.001342	0.002617	0.005998	0.018948	0.026481
		52.505	89.549	100.525	104.630	107.845	109.087
	20278	0.000691	0.002110	0.004186	0.008053	0.017056	0.028611
		0.001363	0.001806	0.003614	0.007569	0.016960	0.030721
		33.769	57.413	64.373	67.026	69.019	70.121

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
173	27730	0.000600	0.002046	0.003545	0.007540	0.013687	0.025415
174	0.001007	0.001555	0.003143	0.008311	0.017104	0.032521	

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
189	28164	0.000531	0.001989	0.004548	0.005941	0.012083	0.018721
		0.000740	$\begin{array}{r} 0.001607 \\ 79.054 \end{array}$	$\begin{array}{r} 0.002621 \\ 88.057 \end{array}$	0.004890	0.012421	0.022562
		47.969			91.702	94.326	95.467
190	14996	$0.000759 \quad 0.002827$		$0.005059 \quad 0.009783$		0.018181	0.025621
		$\begin{array}{lll}0.001118 & 0.003084\end{array}$		$0.003617 \quad 0.008577$		0.023913	0.032517
				47.038	0.002	50.125	53.196
19127528		0.00056	02538	0,003708	0.005820	0.013365	0.019965
		0.00096	. 002136	0447	0.005807	0.023554	0.028798
		56.72	96.81	111.000	114.995	119.061	120.223
19213978		0.000780	$0.002277 \sim 0.005283$		0.009351	0.021669	0.029908
		0.001042 23.544	0.002430	0.004326	0.010849	0.018533	0.030146
		$23.544-39.387=43.012 \quad 45.265$				46.907	47.779
193	14624	$0.000840-0.003319-0.005315$			0.010321	0.026369	0.039448
		$0.001335-0.003462$		0.0058070 .012249		0.023823	0.036995
		05	41.620	45.726	48.440	50.262	51.124
19416938		0.000788 d $0.002514 / 0.005236{ }^{\circ} 0.009118$				0.018234	0.029507
		0.001125	0.002834	0.004093	0.010470	0.020766	0.051075
		$68.942 \approx 47.809 / 9.52 .315 d / 55.320$				1657.503	58.594
195	044	0.000879	0.002936	0.004307	0.010113	0.025604	0.030817
		0.001159	0.002593	0.004826	0.008401	0.030715	0.039573
		29.192	48.650	53.186	56.161	58.364	59.445
196	14220	0.000904	0.002824	0.005694	0.010933	0.018607	0.032680
		0.001321	0.003028	0.004101	0.009148	0.014683	0.051775
		23.564	39.907	43.773	46.507	48.550	49.311

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
197	15102	0.000820	0.002973	0.007323	0.014849	0.027483	0.034076
		0.001249	0.002289	0.005178	0.009080	0.031595	0.039703
		25.717	43.202	47.388	50.202	52.205	53.006
198	19124	0.001008	0.001766	0.00378	0.005189	0.015194	0.021681
		0.00107	001752	0.004358	0.008271	0.014003	0.034099
		30.97	2.025	6.79	59.996	62.229	63.221
199	17290	0.00100	003460	0,005242	0.009021	0.018667	0.034023
		0.001718	0.002496	0.006195	0.014424	0.023405	0.044820
		9.67	49.041	53.327	56.341	58.574	59.465
200	3026	0.003791	0.00701	0.011551	0.024244	0.046029	0.098685
		0.004562	0.010350	0.019353	0.040750	0.049974	0.122802
		4.036	-7.120	8.50	9.443	10.435	10.675
201	8970	0.000940	0.002395	0.006269	0.011389	0.016991	0.024085
		0.001128	0.002959	0.005412	0.011096	0.017711	0.027170
		18.136	27.520	30.604	32.657	34.039	34.710
2028978		0.000819	0.003681	0.009003	$=0.006794$	0.014201	0.027807
		0.001409	0.002689	0.006000	0.009792	0.021107	0.037737
		616.864	\% 25.907	$9 / 29.042$	$9 / 30: 764$	632.306	33.158
203	7808	0.001036	0.002670	0.005538	0.009814	0.021726	0.031296
		0.001239	0.002861	0.005229	0.008115	0.020425	0.047523
		13.710	21.571	24.405	25.927	27.540	28.491
20	8810	0.000743	0.002662	0.004436	0.009161	0.013179	0.018473
		0.001376	0.002723	0.006247	0.007513	0.015079	0.026746
		15.352	24.025	26.859	28.631	30.083	30.704

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
205	8952	0.000754	0.010514	0.010514	0.023997	0.041278	0.042360

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
213	7922	0.001063	0.002896	0.004690	0.007707	0.028110	0.035439

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
221	14238	0.000648	0.001990	0.003123	0.007984	0.012909	0.017831
		0.000961	0.002068	0.004672	0.008029	0.023256	0.028294
		22.873	9.437		46.186	47.468	48.129
222	10506	0.00141	0.009320	0.00932	0.009320	0.014978	0.024195
		0.001160	002456	0.004354	0.011620	0.022721	0.044090
			6.899		2.467	33.909	34.770
	13308	0.0005	431	0.004306	0.006909	0.019178	0.019123
		0.00123	002236	0.003812	0.011345	0.020348	0.029352
		22.082	38.00	41.730	44.033	45.285	45.916
	10118	0.000742	0.00239	0.004370	0.008536	0.032093	0.032273
		0.00107	0.002	04	0.009945	0.018658	0.033964
			26	30.5	32.046	33.598	34.430
	12148	0.000547	0.001913	0.003997	0.006279	0.016492	0.023795
1		0.000846	0.002137	0.003800	0.007389	0.016601	0.027402
		20.520	34.720	38.095	40.158	41.440	42.241
22610428		0.002437	0.007309	0.007309	0.018669	0.018669	0.025181
${ }^{1} 0.001017$ 0.001978 10.004171 0.011386 $00.022534-0.051669$							
		616.614	$\text { \% } 26.368$	930.604	$9 / 32.016$	$33: 508$	34.379
	0428	0.002137	0.007309	0.007309	0.018669	0.018669	0.025181
		0.001017	0.001978	0.004171	0.011386	0.022534	0.051669
		16.934	26.708	30.934	32.306	33.779	34.670
228	11180	0.000722	0.002513	0.004323	0.007839	0.019115	0.036614
		0.001078	0.002374	0.004826	0.009839	0.018923	0.042357
		18.677	31.716	34.700	36.312	37.985	38.726

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
245	12946	0.000876	0.002485	0.003491	0.006766	0.013726	0.023762
		0.001021	0.003197	0.004520	0.007665	0.025258	0.029816
246	8434	0.000668	0.002759	0.004581	0.006242	0.028944	0.044472

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
253	12324	0.001322	0.001908	0.003488	0.005515	0.014874	0.021809
		0.000788	00	0.00	0.007763	0.021712	0.029519
		19.391	32.593		36.984	37.719	37.984
254	7272	$0.000647 \quad 0.002251$		$0.003952 \quad 0.006875$		0.024473	0.017940
		$0.000969-0.002425$		$0.004690 \quad 0.011995$		0.038387	0.040786
					. 797	25.375	25.688
25510104		0.00072	0033		0.007398	0.011686	0.020710
		0.0011	. 004945		0.009833	0.017489	0.034060
		18.781 29.734 34.484			5.65	36.875	37.391
$256 \quad 11936$		0.011743	$0.016178 \quad 0.018178$		0.018178	0.018178	0.028971
		0.0007	$0.001591 \quad 0.00401$		0.011878	0.024481	0.106918
		3.203	$39.203 \quad 42.734$		44.562	45.453	46.000
257	4266	0.0367	0.051530	0.051530	0.076139	0.094254	0.192701
		$0.005563-0.015646$		$0.079521 \quad \mathbf{0 . 0 9 1 1 1 9}$		0.109779	0.109779
		8.272	11.937	13.05	13.790	14.781	15.342
25817888		$0.0043230 .005595 / 0.008951 ? 0.011477$				0.019433	0.031010
			0.012232	0.028545	0.064749	0.068432	0.095392
		$633.672 \text { ว } 57.531 / \sqrt{962.656} 9 / 65.563$				7	67.172
	18026	0.000669	0.001877	0.003234	0.005356	0.014701	0.026121
		0.000831	0.001899	0.003629	0.005445	0.014436	0.023062
		35.361	57.713	62.760	66.355	68.368	69.470

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
260	4990	0.003781	0.012264	0.012911	0.042963	0.092943	0.247300
		0.003521	0.009942	0.025309	0.043397	0.067166	0.426666
		9.223	13.089	14.741	15.542	16.113	16.343
28	50542	$\begin{array}{ll} 0.002348 & 0.004108 \\ 0.001501 & 0.002587 \end{array}$		0.0048520 .006469		0.018270	0.031355
				$0.004435 \quad 0.006124$		0.020837	0.035884
		$105.682 \quad 178.196$			01.0	211.694	213.697
28248942		0.0024	4850	0.0067	0.008690	0.011651	0.029683
		0.001	0025	0.005978	0.007660	0.024542	0.040134
			6.39	187.149	196.753	201.580	203.793
283	48964	0.002163	$0.002746 \quad 0.003583$		0.005194	0.015780	0.025718
		0.001257	$0.002437 \quad 0.003194$		0.009889	0.023408	0.043920
		$99.797-166.625 \quad 186.203 \quad 196.109$				200.313	202.234
284	50984	0.002366 0.002584 0.004040			0.005814	0.010392	0.032316
		$0.001365-0.002342$		0.006288	0.012321	0.056800	0.109229
		92.393	157.086	181.611	193.528	216.902	222.760
	50382	0.002438 व $0.003416 / 0.003906^{\circ} 0.006883$				0.011586	0.023389
		0.002339	0.002293	0.004362	0.007357	0.020292	0.037635
		$61.406 \mid \text { 169.063 \| } 191.355 \text { 1202.272 }$				$608: 129$	210.042
286	50212	0.002646	0.004118	0.006273	0.007761	0.014231	0.032564
		0.001272	0.002750	0.003917	0.007078	0.016418	0.036690
		109.708	193.569	217.493	230.241	235.298	237.752
287	50978	0.002910	0.004797	0.004494	0.006312	0.014605	0.027620
		0.001446	0.002862	0.006601	0.016523	0.055717	0.102019
		101.188	177.188	197.391	209.156	214.109	214.625

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
288	39996	0.003453	0.003914	0.004418	0.006517	0.020426	0.031706
		0.001624	0.003178	0.004879	0.009535	0.025422	0.040580
		72.004	9.922		141.924	145.229	146.691
28950418		$0.001276 \quad 0.002816$		$0.004181 \quad 0.006197$		0.009815	0.024683
		$\begin{array}{rr} 0.001162 & 0.002310 \\ 91.031 & 152.079 \end{array}$		$0.003344 \quad 0.005411$		0.016902	0.038586
				169.804178 .907		182.803	184.736
29050858		0.00265	4500	0.004642	0.006121	0.012543	0.026452
		0.00141	0.002939	0.005999	0.021006	0.075459	0.106535
		$88.768 \quad 147.272 \quad 164.547$			173.700	177.555	179.128
29	49226	0.003680	$0.006228-0.008930$		0.008930	0.013989	0.030029
		0.001786	0.003	046	0.007911	0.019760	0.037161
		86.855	144.98	162.18	171.186	174.421	176.033
292	43544	0.0022360 .00388		0.004922	0.007131	0.018535	0.032799
		$0.001522-0.002625$		0.004391	0.009743	0.019232	0.042093
		76.891	128.995	143.997	149.425	154.392	155.714
29329996		$0.0034770 .005483 / 0.005498-0.008854$				0.022563	0.033604
		0.001867	0.003809	0.005902	0.010018	0.023146	0.059177
			F 88.928	999.994	104.160	6107.264	108.506
294	2998	0.001409	0.003387	0.003852	0.006517	0.015962	0.031869
		0.001933	0.002879	0.006016	0.009254	0.024699	0.041768
		56.101	94.125	105.271	109.438	112.802	114.174
295	33556	0.003288	0.003572	0.004888	0.007241	0.021011	0.040401
		0.001924	0.002685	0.004783	0.008635	0.025635	0.049961
		56.782	88.978	102.878	109.988	113.213	114.795

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Mode	Faces	50\%	20\%	10\%	5\%	2\%	1\%
296	31660	0.001483	0.003964	0.005515	0.008954	0.012913	0.041018
		0.001830	0.003246	0.00538	0.009926	0.023292	0.038529
		53.657	83.420		103.289	106.163	107.204
29730626		$\begin{array}{ll} 0.002259 & 0.003476 \\ 0.001920 & 0.003213 \end{array}$		$0.005544 \quad 0.008919$		0.016042	0.044522
				$0.005722 \quad 0.012578$		0.025501	0.043657
		$51.644 \quad 86.745$		96.935	100.39	103.078	104.140
29829996		0.003320	389	0.005609	0.009479	0.023094	0.034523
		0.001802	00337	0.006062	0.010766	0.025550	0.044063
		52.095	87.07	97.580	101.506	104.430	105.532
29934230		0.001299	$0.003399 \sim 0.004930$		0.006905	0.013447	0.039935
		0.001575	0.003144	0.005006	0.010636	0.029246	0.062591
		57.963	$97.190 \sim 108.726$		112.872	116.137	117.489
30034902		$0.001034-0.002850-0.004125$			0.006575	0.013718	0.034051
		$0.001187-0.002840$		$0.003849 \quad 0.008825$		0.020463	0.035228
		$64.473 \quad 115.636$		124.769	136.076	145.940	150.076
30118500		$0.0012790 .003543 / 0.0050970^{0} 0.008633$				0.012728	0.030864
		0.0016130 .003367		0.004583	0.007732	0.021307	0.045735
		256.371/9,61.378			$9 / 6$	Q6.235	66.866
302	0246	0.008379	0.008379	0.009757	0.009757	0.011909	0.018582
		0.004788	0.004853	0.004627	0.009664	0.035713	0.086761
		103.489	170.806	190.915	201.870	208.710	209.872
30	31028	0.006967	0.008942	0.011577	0.007261	0.013702	0.025727
		0.001456	0.002683	0.005509	0.010627	0.021562	0.038396
		56.321	85.243	97.570	103.509	105.502	106.123

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
304	50930	0.000599	0.001842	0.002798	0.007719	0.011441	0.018507
		0.001140	0.001873	0.003466	0.005419	0.015761	0.020099
		82.348	143.657	162.053	171.356	174.841	176.324
30	55644	$\begin{array}{ll} 0.000654 & 0.004173 \\ 0.000963 & 0.001926 \end{array}$		$0.006765 \quad 0.007604$		0.007487	0.010833
				0.002762	0.005794	0.011978	0.029618
			814	182	192.016	197.103	197.945
30653592		0.00054	. 001222	0.004967	0.005063	0.008084	0.010511
		0.000783	$0.001474 \quad 0.002459$		0.002999	0.009116	0.012589
			8.22	176.384	185.587	189.122	190.774
307	54874	0.0005	0.00125	0.002672	0.005348	0.007113	0.013534
		0.000919	0.001529	0.002337	0.003576	0.008647	0.012462
		101.15	65.498	184.30	193.869	197.634	199.307
308	47948	$0.000660 \quad 0.001478$		0.002528	0.005099	0.009404	0.013855
		$0.000846 \quad 0.001543$		0.002261	0.003499	0.008740	0.014985
		82.819	137.718	153.300	161.372	164.376	165.558
30910390		$0.0052950 .011091 / / \widetilde{0.016269}{ }^{\circ} 0.030939$				0.070816	0.116687
		0.007843	0.020992	0.037047	0.090530	0.091532	0.138141
		$612.866) ~ 28.541 / 981.676 \text { / } 9 / 32.997$				$6 \longdiv { 3 4 . 1 9 0 }$	34.600
310	6522	0.001870	0.003964	0.006398	0.015326	0.017712	0.031271
		0.002066	0.003257	0.005543	0.010715	0.020151	0.037356
		28.841	43.933	51.614	53.217	55.069	55.440
311	50456	0.000573	0.002063	0.007105	0.007685	0.016879	0.020937
		0.001211	0.002245	0.003470	0.005399	0.010804	0.020043
		100.104	171.947	193.108	203.703	208.300	209.942

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
312	53966	0.003791	0.004310	0.004290	0.006515	0.013657	0.021130
		0.000868	0.001824	0.003319	0.005230	0.016325	0.031007
313	21700	0.003873	0.013893	0.013893	0.013893	0.033479	0.049448

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
320	54232	0.000477	0.002135	0.004257	0.004663	0.007022	0.011573
		0.001069	0.001587	0.002688	0.004089	0.010056	0.017811
		115.734	196.938	220.641	232.234	236.625	238.578
		0.015154	0.080697	0.080336	0.082307	0.082629	0.085642

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
328	29984	0.000005	0.000006	$\mathbf{0 . 1 2 8 3 9 3}$	$\mathbf{0 . 1 2 8 6 7 8}$	$\mathbf{0 . 1 2 7 9 8 3}$	0.128620
		0.000000	0.000000	0.000005	0.000007	0.028707	0.082320

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
336	31006	0.004041	0.045860	0.045616	0.045805	0.045674	0.045440

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
344	6360	0.002923	0.013797	0.013797	0.016082	0.029316	0.044245
		0.001634	0.003064	0.006492	0.023473	0.057499	0.108977
		11.436	17.045	18.457	19.798	20.770	21.210
	7224	0.007032	0.010248	0.011395	0.017930	0.035908	0.040513

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
360	4396	0.007333	0.007333	0.014286	0.029113	0.054777	0.127590

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
368	22400	0.001136	0.001877	0.003279	0.005355	0.017525	0.028784
		0.001313	0.001834	0.003335	0.007202	0.017397	0.031721

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
376	25132	0.000944	0.002388	0.002732	0.004151	0.008665	0.016223
		0.001030	0.002410	0.003047	0.006917	0.018158	0.023121
		41.640	70.071	78.283	80.967	82.669	83.160
		0.001096	0.001808	0.003805	0.007788	0.012875	0.021184

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Model	Faces	50\%	20\%	10\%	5\%	2\%	1\%
384	9420	0.001663	0.006538	0.008346	0.014631	0.035855	0.075665
		0.002395	0.005217	0.008186	0.021023	0.031447	0.071258
		14.861	3.81		28.281	29.282	29.783
385	20868	$\begin{array}{ll} 0.000838 & 0.002957 \\ 0.000972 & 0.003372 \end{array}$		$0.005476 \quad 0.009009$		0.029864	0.084266
				$0.005985 \quad 0.011942$		0.027239	0.044473
		$32.497 \quad 55.330$			64.333	65.624	66.355
386	4170	0.004		166	0.064145	0.208613	0.208613
		0.008591	2011	0285	0.081359	0.212535	0.333917
			8.8	9.	10.33	10.866	11.076
387	29356	0.00179	00295	0.004167	0.006567	0.018617	0.021281
		0.001247	0:001976	0.004374	0.008457	0.019172	0.035760
		$47.538-80.255=89.769 \quad 93.154$				95.477	96.248
388	16818	$0.000983-0.003286-0.009164-0.018063$				0.020775	0.052769
		$0.001737-0.003315$		0.007386	0.014566	0.028490	0.047109
		26.859	45.195	49.331	51.965	53.737	54.258
38918976		0.001569 व0.004104/ $0.009458 \square^{\circ} 0.016880$				0.030284	0.050725
			0.004735	0.010005	0.018903	0.034803	0.061026
		$630.083 \text { ว } 51.144 / 9955.410$			988.174	$659: 806$	60.547
390	18474	0.004718	0.004718	0.007415	0.009838	0.022606	0.041720
		0.001415	0.002932	0.004859	0.010848	0.032931	0.074411
		29.613	49.691	53.898	56.712	58.364	59.084
391	8626	0.002365	0.006586	0.017498	0.021369	0.047277	0.082662
		0.003351	0.006442	0.013083	0.031258	0.051090	0.088611
		14.551	22.643	25.266	26.448	27.810	28.571

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

Model Faces	50\%	20\%	10\%	5\%	2\%	1\%
39217232	0.001389	0.002923	0.006117	0.009981	0.038493	0.053960
$(1+13$	0.001406 27.319	$\begin{array}{r} 0.002271 \\ 46.647 \end{array}$	$\begin{array}{r} 0.005318 \\ 50.833 \end{array}$	$\begin{array}{r} 0.011862 \\ 53.547 \end{array}$	0.034991	0.047618
					55.390	56.021
393	$\begin{array}{ll} 0.001035 & 0.007336 \\ 0.001885 & 0.003904 \end{array}$		$0.007337 \quad 0.010655$		0.021177	0.034376
			0.009280	0.020976	0.038926	0.083584
					63.752	64.483
39418014	0.00203	006436	0.0069	0.011420	0.016697	0.040365
	0.0014	$002989 \quad 0.007534$		0.013326	0.044649	0.082361
		.063	0.843	3.41	54.929	55.410
39522620	0.272984	0.332769	0.332769	0.332769	0.385494	0.398229
	0.0020	0.007206	0.01760	0.028308	0.147329	0.161227
	$36.482 \quad 56.671 \quad 67.948 \quad 70.541$				71.533	71.893
39611072	$0.010332 \quad 0.010332 \quad 0.019134$			0.040051	0.040983	0.042829
	$0.001887-0.004850$		0.010394	0.024808	0.058231	0.071051
	18.477	31.445	33.909	35.190	36.432	37.083
39714532	$0.0012250 .003593 / 0.00705220 .020791$				0.025646	0.073059
		0.003482	0.009261	0.018979	0.025230	0.069649
	$23.133) \text { ว } 39.877 / \sqrt{2} 93.352$			$9 / 45.495$	6146.937	47.528
3982956	0.004507	0.014878	0.016821	0.027920	0.131701	0.186786
	0.009676	0.033536	0.053987	0.101506	0.129866	0.249447
	3.705	6.169	6.800	7.421	8.142	8.332
3997818	0.002028	0.006164	0.010386	0.016235	0.049335	0.061937
	0.002126	0.005863	0.010436	0.021605	0.042028	0.096367
N	13.059	20.390	23.023	24.465	25.136	25.647

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont'd)

| Model | Faces | $\mathbf{5 0 \%}$ | $\mathbf{2 0 \%}$ | $\mathbf{1 0 \%}$ | $\mathbf{5 \%}$ | $\mathbf{2 \%}$ | $\mathbf{1 \%}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 400 | 7402 | 0.002110 | 0.004891 | 0.011562 | 0.018601 | 0.038060 | 0.129511 |
| Angel | 473986 | 0.000651 | 0.000840 | 0.001590 | 0.002387 | 0.004977 | 0.004795 |

Table A-1: Hausdorff distances and running times of models simplified with QEM and our algorithm (cont’d)

Model	Faces	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
Turbine	239934	0.012420	0.012651	0.023771	0.023771	0.024878	0.025907
Average		0.001682	0.002096	0.005963	0.016141	0.053420	0.082872
		642.264	1071.190	1228.817	1276.355	1302.863	1315.271
Max	QEM	0.007246	0.011695	0.015607	0.020497	0.030282	0.043810
	Ours	0.002154	0.006647	0.010642	0.017894	0.036530	0.061322
	QEM	0.492324	0.492324	0.593273	0.796202	0.803227	0.866060
	Ours	0.073313	0.287812	0.287812	0.287812	0.309078	0.487676
	QEM	0.000000	0.000000	0.000001	0.000183	0.000183	0.001428
	Ours	0.000000	0.000000	0.000000	0.000005	0.000007	0.005283

Bold indicates 10 highest Hausdorff distances at the given percentage for the given algorithm

Italics indicate 10 lowest values at the given percentage for the given algorithm

* N/A: The algorithm exhausted all possible contractions before the given level

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table A-2: Penalty weights for all models

Model	$\boldsymbol{\alpha}$	$\beta \quad \delta$	Model	$\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\delta}$	δ Model	$\alpha \beta$	$\boldsymbol{\beta} \boldsymbol{\delta}$	Model	$\alpha \beta$	β	δ
1	4	04	45	$4 \quad 0 \quad 1$	89	40	01	133	4	0	1
2	4	01	46	$4 \quad 0 \quad 1$	90	40	01	134	4	0	1
3	4	$0 \quad 1$	47	$4 \quad 0 \quad 1$	91	40	01	135	4	0	1
4	4	01	48	$4 \quad 0 \quad 1$	92	40	01	136	4	0	1
5	4	$0 \quad 1$	49	$4 \quad 0 \quad 1$	93	40	01	137	4	0	1
6	4	01	50	$4 \quad 0 \quad 1$	194	40	01	138	4	0	1
7	4	$0 \quad 1$	51	$4 \quad 0 \quad 1$		40	01	139	4	0	1
8	4	01	52	40	96	40	$0 \quad 1$	140	4	0	1
9	4	$0 \quad 1$		40	97	40	01	141	4	0	1
10	4	$0 \quad 1$		401		40	$0 \quad 1$	142	4	0	1
11	4			401	99	40	0	143	4	0	1
12	4	01	56		100	40	01	144	4	0	1
13	4	01		0	101		0	145	4	0	1
14	4	01		01	-102	40	01	146	4	0	1
15	4	01		01	103	40	01	147	4	0	1
16	4	01	60	$4 \quad 0 \quad 1$	104	40	01	148	4	0	1
17	4	01		02	278105	40	01	149	4	0	1
18	4	01	62	0	106	40	01	150	4	0	1
19	4	$0 \quad 1$	63	40	107	40	$0-1$	151	4	0	1
20	4	01		40	108	40	01	152	4	0	1
21	4	02		40	109	40	01	153	4	0	1
22	4	01	66	4 0, 1	15y 110	40	01	154	4	0	1
23	4	$0 \quad 1$	D 67	$4 \quad 0 \quad 1$	111	40		155	4	0	1
24	4	$0 \quad 1$	68	40	112	40		156	4	0	1
25	4	01	- 69	40	113	40	01	157	4	0	1
26	4	01	70	40	114	40	01	158	4	0	1
27	4	01	71	$4 \quad 0 \quad 1$	115	40	01	159	4	0	1
28	4	0		$4 \quad 0 \quad 1$	116	40	01	160	4	0	1
29	4			49	$\bigcirc 117$			161	4	0	1
30	4	01		40	118	40		円 162	4	0	1
31	6	02	75	401						0	1
				$4 \sim 0$				$\stackrel{164}{6}$		$\left.\right\|_{0} ^{0}$	1
34	4	01	78	401	122	40	01	166	4	0	1
35	4	01	79	$4 \quad 0 \quad 1$	123	40	01	167	4	0	1
36	4	01	80	$4 \quad 0 \quad 1$	124	40	01	168	4	0	1
37	4	01	81	$8 \quad 0 \quad 1$	125	40	01	169	4	0	1
38	4	01	82	$4 \quad 0 \quad 1$	126	40	01	170	4	0	1
39	4	01	83	$4 \quad 0 \quad 1$	127	40	01	171	8	0	1
40	4	01	84	$4 \quad 0 \quad 1$	128	40	01	172	4	0	1
41	4	$0 \quad 1$	85	$4 \quad 0 \quad 1$	129	40	01	173	4	0	1
42	4	01	86	$4 \quad 0 \quad 1$	130	40	0	174	4	0	1
43	4	$0 \quad 1$	87	$4 \quad 0 \quad 1$	131	40	01	175	4	0	
44	4	01	88	$4 \quad 0 \quad 1$	132	40	01	176	40	0	

Table A-2: Penalty weights for all models (cont’d)

Model	α	β	δ	Model		$\boldsymbol{\beta} \boldsymbol{\delta}$	Model	$\boldsymbol{\alpha} \boldsymbol{\beta}$	$\boldsymbol{\beta} \boldsymbol{\delta}$	Model	α	β	δ
177	4	0	1	221		02	285	40	01	329	4	0	1
178	4	0	1	222	4	0	286	40	01	330	4	0	1
179	4	0	1	223		$0 \quad 1$	287	40	01	331	4	0	1
180	4	0	1	224		0	288	40	01	332	4	0	1
181	4	0	2	225	4	$0 \quad 1$	289	40	01	333	4	0	1
182	4	0	1	226	4	$0 \quad 1$	290	40	01	334	4	0	1
183	4	0	1	227	4	0		40	01	335	4	0	1
184	4	0	1	228	4	0	29	40	0	336	4	0	1
185	4	0	1	229	4	01	293	40	01	337	4	0	1
186	4	0	1		4	01		40	$0 \quad 1$	338	4	0	1
187	4	0	1				295	40	0	339	4	0	1
188	4	0	1	232			296	40	0	340	4	0	1
189	4	0	1	233		,	297			341	4	0	1
190	4	0	1	234		01	298	40	0	342	4	0	1
191	4	0	1	235			299	40	0	343	4	0	1
192	4	0	1	236			300	40	01	344	4	0	1
193	4	0	1				301	60	01	345	4	0	1
194	4	0	1	238			302	40	01	346	4	0	1
195	4	0	1	239			303	40	$0-1$	347	4	0	1
196	4	0	1	240	4	01	304	40	01	348	4	0	1
197	4	0	1	241	4	01	305	40	01	349	4	0	1
198	4	0	1	242		0, 1	5) 306	40	01	350	4	0	1
199	4	0	1	- 243		01	307	40		351	4	0	1
200	4	0	1	244	4	01	308	40	0	352	4	0	1
201	4	0	2	245		0	309	40	0	353	4	0	1
202	4	0	1	246	4	0	310	40	01	354	4	0	1
203	4	0	1	247	4	0	311	40	01	355	4	0	1
204	4	0		248	-4	01	312	40	01	356	4	0	1
205	4									357	4	0	1
206	4			250		0	314			358	4	0	1
207	4	0		251	4	0		4.0	01			0	1
$\begin{aligned} & 208 \\ & 209 \end{aligned}$		0		$\begin{aligned} & 252 \\ & 253 \end{aligned}$	$\frac{4}{40}$	$\begin{gathered} 0 \\ 0 \end{gathered} \frac{1}{1}$	$\left\lvert\, \begin{aligned} & 316 \\ & 317 \end{aligned}\right.$	$4{ }_{4}^{4} 0$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned} 1$	$\left\|\begin{array}{r} 360 \\ 361 \end{array}\right\|$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\left.\right\|_{0} ^{0}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
210	4	0	1	254		01	318	40	01	362	4	0	1
211	4	0	4	255		01	319	40	01	363	4	0	1
212	4	0	1	256		01	320	40	01	364	4	0	1
213	4	0	1	257		01	321	40	02	365	4	0	1
214	4	0	1	258		01	322	40	01	366	4	0	1
215	4	0	1	259		01	323	40	01	367	4	0	1
216	4	0	1	260		01	324	40	01	368	4	0	1
217	4	0	1	281		02	325	40	01	369	4	0	1
218	4	0	1	282	4	01	326	40	01	370	4	0	1
219	4	0	1	283		01	327	40	01	371	6	0	
220	4	0	1	284	4	01	328	40	01	372	4	0	

Table A-2: Penalty weights for all models (cont’d)

Model	α	β	δ	Model		β	δ	Model		β	δ	Model	α	β	δ
373	4	0	1	382		0	1	391	4	0	1	400	4	0	1
374	4	0	1	383		0	1	392	4	0	1	Angel	4	0	2
375	4	0	1	384		0	1	393	4	0	1	Armadillo	4	0	2
376	4	0	1	385	4	0	1	394	4	0	1	Bunny	4	100	2
377	4	0	1	386		0	1	395	4		1	Canyon	4	100	2
378	4	0	1	387		0	1	396	4	0	1	Dinosaur	4	0	2
379	4	0	1	388		0	1				1	Dragon	4	0	2
380	4	0	1	389	4		1		-	0	1	Horse	4	0	1
381	4	0	1	390	4	0	1	- 399	4	0		Turbine	4	0	2

Table A-3 displays the root-mean-square average of the luminance differences
between a representative rendering of each original model and its reduced versions.

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom)

| Model | $\mathbf{5 0 \%}$ | $\mathbf{2 0 \%}$ | $\mathbf{1 0 \%}$ | $\mathbf{5 \%}$ | $\mathbf{2 \%}$ | $\mathbf{1 \%}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.020873 | 0.026478 | 0.033551 | 0.044898 | 0.066904 | 0.076304 |
| | 0.010394 | 0.023131 | 0.045521 | 0.056132 | 0.070847 | 0.081121 |
| 2 | 0.015726 | 0.018701 | 0.040625 | 0.029208 | 0.042938 | 0.054314 |
| | 0.009920 | 0.014711 | 0.038530 | 0.043373 | 0.041917 | 0.060596 |
| 3 | 0.007333 | 0.018175 | 0.025340 | 0.040738 | 0.058545 | 0.080211 |
| | 0.037244 | 0.021422 | 0.035000 | 0.065657 | 0.087449 | 0.095493 |
| 4 | 0.019127 | 0.025637 | 0.025351 | 0.036422 | 0.055449 | 0.074457 |
| | 0.037164 | 0.041833 | 0.040452 | 0.054015 | 0.076711 | 0.092756 |
| 5 | 0.009988 | 0.019871 | 0.026991 | 0.033823 | 0.047995 | 0.062093 |
| | 0.009509 | 0.022244 | 0.027771 | 0.038274 | 0.058609 | 0.083976 |
| 6 | 0.009095 | 0.040277 | 0.021532 | 0.031795 | 0.046401 | 0.058032 |
| | 0.009728 | 0.018993 | 0.028329 | 0.039344 | 0.060016 | 0.075309 |
| 7 | 0.011710 | 0.018282 | 0.023809 | 0.031727 | 0.043981 | 0.051924 |
| | 0.012753 | 0.017609 | 0.025225 | 0.051491 | 0.065027 | 0.087141 |
| 8 | 0.017151 | 0.016009 | 0.027137 | 0.023601 | 0.034521 | 0.042624 |
| | 0.005866 | 0.038247 | 0.041192 | 0.043176 | 0.056666 | 0.064430 |
| 9 | 0.035529 | 0.043209 | 0.047554 | 0.054941 | 0.067162 | 0.078566 |
| | 0.026535 | 0.032985 | 0.042745 | 0.063882 | 0.078221 | 0.092532 |
| 10 | 0.036529 | 0.039303 | 0.049056 | 0.046728 | 0.057833 | 0.073806 |
| | 0.036831 | 0.017355 | 0.043623 | 0.049667 | 0.060568 | 0.073716 |
| 11 | 0.004446 | 0.014234 | 0.022972 | 0.030997 | 0.044627 | 0.053639 |
| | 0.036659 | 0.018263 | 0.027915 | 0.055099 | 0.082625 | 0.095777 |
| 12 | 0.006495 | 0.026676 | 0.033337 | 0.037133 | 0.057027 | 0.066340 |
| | 0.030173 | $0.033718 /$ | 0.035522 | 0.048517 | 0.066757 | 0.087732 |
| 13 | 0.040061 | 0.042571 | 0.042465 | 0.047231 | 0.046462 | 0.057257 |
| | 0.017786 | 0.023913 | 0.021797 | 0.032060 | 0.065386 | 0.079320 |
| 14 | 0.039155 | 0.042377 | 0.046132 | 0.051522 | 0.063473 | 0.074418 |
| 0 | 0,039534 | 0.025710 | 0.035295 | 0.053133 | 0.102934 | 0.110237 |
| 15 | 0.016762 | 0.026495 | 0.037483 | 0.047541 | 0.065259 | 0.089644 |
| | 0.015164 | 0.029170 | 0.043003 | 0.061445 | 0.095779 | 0.098997 |
| 16 | 0.009791 | 0.020733 | 0.027909 | 0.038393 | 0.051392 | 0.062557 |
| | 0.028560 | 0.032526 | 0.038489 | 0.045337 | 0.060508 | 0.073890 |
| 17 | 0.009428 | 0.021043 | 0.027712 | 0.032192 | 0.039916 | 0.051270 |
| | 0.036813 | 0.019768 | 0.026383 | 0.035620 | 0.050659 | 0.070242 |
| 18 | 0.009543 | 0.019784 | 0.027138 | 0.034785 | 0.059943 | 0.069782 |
| | 0.036321 | 0.039848 | 0.045666 | 0.054031 | 0.066937 | 0.083905 |
| 19 | 0.008173 | 0.016131 | 0.022678 | 0.046968 | 0.045646 | 0.053006 |
| | 0.008004 | 0.021012 | 0.038474 | 0.046114 | 0.060420 | 0.076867 |

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont’d)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
20	0.036894	0.032575	0.041676	0.044968	0.052620	0.060255
	0.032197	0.032066	0.043389	0.046370	0.063905	0.077155
21	0.012165	0.037408	0.039241	0.039437	0.035735	0.059793
	0.036447	0.037244	0.015258	0.021540	0.054924	0.064797
22	0.005154	0.012239	0.019534	0.025672	0.045847	0.067375
	0.032940	0.038926	0.041619	0.053864	$\mathbf{0 . 1 2 7 7 4 1}$	$\mathbf{0 . 1 4 1 8 9 4}$
23	0.018683	0.009402	0.014842	0.021358	0.036113	0.050105
	0.013848	0.009311	0.040490	0.021388	0.048817	0.048488
24	0.038390	0.039788	0.040935	0.045004	0.040209	0.068424
	0.006426	0.012015	0.043259	0.052148	$\mathbf{0 . 1 2 5 9 6 4}$	$\mathbf{0 . 1 4 5 9 1 7}$
25	0.035168	0.036251	0.037950	0.045332	0.048982	0.054134
	0.028968	0.036220	0.037720	0.039924	0.049258	0.056001
26	0.011389	0.015326	0.039928	0.027706	0.039448	0.054486
	0.006167	0.011136	0.025179	0.027371	0.038871	0.053252
27	0.004992	0.037277	0.015318	0.023071	0.042358	0.051950
	0.006172	0.020706	0.024162	0.026597	0.040687	0.059938
28	0.040849	0.041753	0.043691	0.048225	0.054345	0.059327
	0.013444	0.019932	0.019476	0.025497	0.037327	0.051522
29	0.003874	0.009256	0.014052	0.019900	0.031722	0.046328
	0.037190	0.035505	0.039043	0.019702	0.030910	0.057061
30	0.019780	0.035495	0.033888	0.021118	0.034486	0.050008
	0.036179	0.013104	0.016448	0.021084	0.028238	0.049935
31	0.021345	0.018730	0.022222	0.028374	0.044991	0.060361
	0.017012	0.034456	0.022169	0.025274	0.040067	0.048828
32	0.018387	0.034029	0.036208	0.040466	0.035691	0.051027
	0.015966	0.034329	0.035901	0.039049	0.036653	0.058001
33	0.018813	0.027598	0.03418	0.041075	0.065680	0.095086
	0.007253	$0.015661 / / 0.044594$	0.057706	0.077472	0.124286	
34	0.018284	0.010841	0.023674	0.024475	0.036682	0.048344
	0.005819	0.010722	0.016980	0.044111	0.040964	0.055527
35	0.003064	0.007166	0.010716	0.017005	0.030911	0.036368
0	0,003796	0.007333	0.011229	0.016313	0.026060	0.032386
36	0.003489	0.013860	0.049525	0.053609	0.062598	0.068085
	0.038175	0.043453	0.018830	0.047984	0.046860	0.055160
37	0.027581	0.032065	0.026954	0.044723	0.092426	$\mathbf{0 . 1 2 5 1 0 5}$
	0.037213	0.041658	0.033928	0.053930	0.095881	0.133079
38	0.006107	0.015256	0.019579	0.034157	0.045602	0.055418
	0.007367	0.011641	$\mathbf{0 . 1 3 8 5 3 6}$	$\mathbf{0 . 1 4 5 1 3 0}$	0.095780	0.106114
39	0.036044	0.036815	0.038415	0.041251	0.050003	0.057650
	0.036176	0.037741	0.041021	0.047130	0.067578	$\mathbf{0 . 1 5 6 3 2 5}$
40	0.017794	0.018970	0.020862	0.020084	0.026035	0.037410
	0.013773	0.015049	0.016579	0.017318	0.019050	0.034728

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
41	0.055345	0.064009	0.054935	0.064783	0.053176	0.052146
	0.053360	0.052935	0.054213	0.056937	0.056086	0.056828
42	0.015681	0.017428	0.020385	0.038211	0.042100	0.038193
	0.033927	0.018650	0.019569	0.041121	0.066769	0.061894
43	0.003797	0.009106	0.012859	0.016251	0.022876	0.031740
	0.004290	0.010787	0.018227	0.026265	0.038437	0.046978
44	0.012403	0.038098	0.040636	0.026656	0.034698	0.050991
	0.037019	0.038674	0.041677	0.045268	0.038653	0.082408
45	0.007302	0.01731	0.023146	0.027280	0.035208	0.040930
	0.005988	0.01231	0.019180	0.030151	0.045940	0.054097
46	0.005597	0.01641	0.018230	0.024397	0.038036	0.034086
	0.004852	0.01077	0.016685	0.024544	0.035726	0.041812
47	0.005497	0.03776	0.019277	0.028647	0.039494	0.048442
	0.006500	0.017442	0.020272	0.029706	0.046854	0.063371
48	0.003141	0.008790	0.013503	0.025932	0.033074	0.040525
	0.013755	0.034562	0.036701	0.021113	0.066372	0.068417
49	0.034827	0.036480	0.016839	0.021425	0.035058	0.044500
	0.012384	0.020412	0.036862	0.028784	0.044369	0.055347
50	0.012790	0.01459	0.017126	0.020824	0.036916	0.028274
	0.013039	0.026984	0.029240	0.033178	0.038574	0.040528
51	0.006180	0.01873	0.022222	0.028374	0.044991	0.060361
	0.017012	0.034456	0.022169	0.025274	0.040067	0.048828
52	0.007165	0.015988	0.017300	0.022405	0.032223	0.041160
	0.007325	0.017015	0.025947	0.032566	0.041392	0.056097
53	0.017796	0.020671	0.024689	0.030961	0.035812	0.040672
	0.017647	0.021347	0.024753	0.027715	0.038703	0.048025
54	0.023124	0.024976	0.025422	0.030599	0.041127	0.045103
	0.024182	0.027452	0.024797	0.033424	0.040099	0.052242
55	0.098418	0.099455	0.099032	0.097504	0.091511	0.091907
	0.099501	0.098685	0.098400	0.097459	0.10599	0.103130
56	0.004217	0.011505	0.019587	0.027189	0.039205	0.049271
	0,006234	0.013336	0.041594	0.047805	0.051056	0.058754
57	0.010961	0.017745	0.020019	0.028412	0.029442	0.037140
	0.032147	0.025997	0.035429	0.025432	0.047237	0.048394
58	0.019672	0.029731	0.037441	0.047220	0.062400	0.072327
	0.013635	0.026638	0.036841	0.052830	0.075004	0.095466
59	0.013509	0.017735	0.025660	0.029415	0.040487	0.049961
	0.012799	0.023204	0.027596	0.030368	0.043297	0.052989
60	0.006460	0.022868	0.022456	0.030279	0.040113	0.044324
	0.006794	0.039550	0.022698	0.028849	0.042755	0.053602
61	0.004276	0.021572	0.039456	0.036961	0.045406	0.052572
	0.006123	0.012082	0.034114	0.035530	0.040334	0.053991

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
62	0.012793	0.015820	0.019560	0.025419	0.037240	0.052021
	0.013855	0.025424	0.020538	0.089241	0.047395	0.057483
63	0.036358	0.038918	0.015853	0.024808	0.029696	0.045907
	0.004198	0.014269	0.015668	0.024880	0.039440	0.066106
64	0.003257	0.010801	0.017358	0.024155	0.035874	0.051914
	0.004629	0.009647	0.023256	0.029559	0.042865	0.051933
65	0.036448	0.009677	0.013940	0.028572	0.038982	0.044470
	0.019173	0.037338	0.039250	0.042791	0.039639	0.050065
66	0.018147	0.036354	0.013129	0.028394	0.030534	0.039298
	0.036240	0.01423	0.018361	0.025630	0.037083	0.046046
67	0.002303	0.00896	0.014640	0.040792	0.031525	0.049181
	0.004377	0.01119	0.014979	0.022996	0.037147	0.046982
68	0.010687	0.033613	0.036737	0.027295	0.036136	0.048629
	0.012747	0.015427	0.020630	0.027930	0.039933	0.052851
69	0.011937	0.015099	0.015823	0.020373	0.036508	0.047638
	0.004586	0.010160	0.039977	0.045951	0.045324	0.087454
70	0.011590	0.010484	0.017243	0.023476	0.037704	0.047398
	0.004597	0.011208	0.018596	0.045425	0.044940	0.068743
71	0.017183	0.020577	0.019876	0.027594	0.041367	0.052429
	0.012198	0.037940	0.040753	0.046576	0.059564	0.067387
72	0.003301	0.010755	0.017775	0.029089	0.050706	0.066159
	0.041794	0.013628	0.040050	0.028334	0.064515	0.059559
73	0.037074	0.040091	0.018226	0.024841	0.040730	0.050133
	0.036561	0.016066	0.021557	0.031340	0.052497	0.048892
74	0.003423	0.010194	0.015731	0.026804	0.034517	0.063033
	0.032086	0.033450	0.040709	0.027587	0.042103	0.056211
75	0.003488	0.009098	0.014870	0.022657	0.031566	0.047957
	0.004798	0.037176	0.035838	0.022367	0.030243	0.056534
76	0.002010	0.036207	0.015142	0.022364	0.033096	0.043244
	0.004472	0.021017	0.025572	0.032424	0.04163	0.049541
77	$\begin{aligned} & 0.003646 \\ & 0,026691 \end{aligned}$	$\begin{aligned} & 0.019544 \\ & 0.011021 \end{aligned}$	$\begin{gathered} 0.024630 \\ 0.016701 \end{gathered}$	$\begin{aligned} & 0.024984 \\ & 0.026189 \end{aligned}$	$\begin{aligned} & 0.039376 \\ & 0.036713 \end{aligned}$	$\begin{array}{r} 0.051084 \\ 0.052889 \end{array}$
78	0.002814	0.009606	0.040008	0.038922	0.045265	0.060083
	0.005018	0.014026	0.025691	0.025686	0.050584	0.054996
79	0.003173	0.009494	0.016605	0.041500	0.038528	0.049716
	0.017693	0.010305	0.017007	0.024556	0.039225	0.060252
80	0.013372	0.018444	0.018788	0.023404	0.039411	0.051899
	0.004941	0.010313	0.016132	0.025703	0.039116	0.050970
81	0.008934	0.029518	0.032407	0.049212	0.064347	0.077778
	0.010703	0.021966	0.032911	0.049576	0.068737	0.088960
82	0.016389	0.028029	0.032816	0.045927	0.066745	0.081196
	0.038110	0.033356	0.045182	0.043435	0.060140	0.091319

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
83	0.007487	0.017535	0.043527	0.035373	0.052656	0.064941
	0.007828	0.040286	0.043969	0.036691	0.054784	0.074617
84	0.008281	0.017135	0.044046	0.036977	0.056184	0.071275
	0.037231	0.016267	0.043854	0.052946	0.062170	0.070875
85	0.021763	0.028652	0.031374	0.044385	0.064471	0.084664
	0.036663	0.040783	0.037448	0.050334	0.076169	0.105866
86	0.019146	0.023284	0.028592	0.036513	0.050275	0.068852
	0.020361	0.02269	0.032632	0.041936	0.063166	0.065637
87	0.035668	0.02445	0.023341	0.033340	0.053460	0.061710
	0.008874	0.015643	0.043168	0.049226	0.053338	0.084037
88	0.036837	0.04232	0.049134	0.047842	0.071726	0.087992
	0.009459	0.022299	0.037852	0.066844	0.084465	0.123601
89	0.028363	0.032376	0.037326	0.036149	0.053007	0.067121
	0.036083	0.038807	0.025979	0.037418	0.055082	0.070963
90	0.016006	0.041760	0.034319	0.045247	0.068400	0.092513
	0.013885	0.024013	0.035892	0.067631	0.086791	0.102254
91	0.032954	0.027573	0.034973	0.057357	0.079632	0.098087
	0.015510	0.026717	0.037968	0.058970	0.079920	0.102030
92	0.009828	0.022229	0.033098	0.044112	0.064247	0.077778
	0.011423	0.022325	0.048657	0.049766	0.072747	0.103566
93	0.015614	0.021578	0.027174	0.034687	0.049334	0.063774
	0.036725	0.018000	0.027953	0.044660	0.061714	0.082626
94	0.008574	0.041479	0.032684	0.048095	0.068422	0.096822
	0.015661	0.042342	0.049369	0.050045	0.085364	0.105506
95	0.011849	0.020828	0.030378	0.041550	0.058106	0.077435
	0.011369	0.020115	0.032875	0.051349	0.086359	0.117713
96	0.008996	0.017133	0.027747	0.038995	0.056430	0.069193
	0.037215	0.018165	0.027738	0.051417	0.070652	0.088745
97	0.015538	0.023692	0.031654	0.045170	0.066476	0.079567
	0.026236	0.036973	0.043783	0.047764	0.06605	0.093257
98	0.037021	0.041907	0.048371	0.046393	0.067120	0.073549
	0,03744	0.039317	0.034641	0.060036	0.085457	0.095085
99	0.005661	0.039621	0.021402	0.045961	0.046821	0.058114
	0.037370	0.039278	0.042462	0.029595	0.044876	0.057225
100	0.029817	0.022804	0.029718	0.037503	0.055261	0.068001
	0.019056	0.022723	0.025634	0.037753	0.052432	0.069756
101	0.009435	0.015421	0.022077	0.031176	0.044764	0.056546
	0.005475	0.015703	0.023057	0.030230	0.050370	0.060868
102	0.035168	0.029600	0.035115	0.044710	0.052993	0.073107
	0.026191	0.028504	0.032860	0.044045	0.055477	0.069380
103	0.002987	0.009525	0.017250	0.025106	0.036686	0.046566
	0.005423	0.011049	0.025418	0.027738	0.042436	0.061142

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
104	0.006625	0.006277	0.022537	0.026391	0.037739	0.051584
	0.019055	0.020257	0.024390	0.035141	0.058033	0.086016
105	0.008716	0.008261	0.028909	0.026799	0.040529	0.052607
	0.010031	0.013924	0.024200	0.049348	0.076242	$\mathrm{~N} / \mathrm{A}^{*}$
106	0.027250	0.028225	0.018407	0.024734	0.043907	0.054794
	0.005926	0.009469	0.030948	0.027125	0.049831	0.084974
107	0.014269	0.017960	0.026499	0.034021	0.049881	0.065856
	0.015242	0.027213	0.032184	0.035139	0.056018	0.068440
108	0.035269	0.023126	0.022281	0.030079	0.043395	0.055171
	0.013793	0.018248	0.026648	0.046161	0.056395	0.070811
109	0.002313	0.033837	0.037214	0.044405	0.041900	0.050915
	0.005355	0.012823	0.020841	0.035991	0.053714	0.099765
110	0.036224	0.012264	0.029096	0.069767	0.047923	0.067233
	0.012782	0.019626	0.034146	0.066182	0.111557	$\mathrm{~N} / \mathrm{A}^{*}$
111	0.010483	0.021599	0.029541	0.029867	0.040911	0.060546
	0.017995	0.018780	0.031116	0.087560	0.104379	0.104466
112	0.028395	0.012973	0.038298	0.023648	0.033357	0.044389
	0.005699	0.010907	0.017931	0.046796	0.071849	0.099822
113	0.009499	0.006659	0.020466	0.018542	0.029497	0.041277
	0.035457	0.038171	0.019843	0.036775	0.095770	0.088165
114	0.021002	0.016596	0.022498	0.029842	0.038542	0.044022
	0.009696	0.016267	0.027234	0.071246	0.098583	0.091111
115	0.012025	0.034613	0.024013	0.028704	0.042244	0.051080
	0.005021	0.021341	0.028172	0.062393	0.110413	0.113044
116	0.032665	0.032935	0.034393	0.026176	0.037398	0.045094
	0.016482	0.017685	0.022738	0.039101	0.092916	0.116432
117	0.035700	0.035757	0.036419	0.021913	0.029600	0.049443
	0.014609	$0.036367 / / 0.038843$	0.045864	0.087399	0.092919	
118	0.027670	0.021704	0.02713	0.035461	0.047863	0.057173
	0.018912	0.021820	0.023957	0.032797	0.054623	0.097614
119	0.005851	0.006492	0.038565	0.041238	0.051112	0.058415
0	0,009865	0.009484	0.02119	0.045396	0.086164	0.109732
120	0.003399	0.019344	0.022638	0.029936	0.044283	0.055403
	0.019654	0.021684	0.027313	0.046477	$\mathbf{0 . 1 2 7 6 7 8}$	0.128122
121	0.009057	0.017788	0.027887	0.039473	0.059514	0.081618
	0.018713	0.046716	0.052885	0.047204	0.070719	0.103546
122	0.029471	0.035564	0.040708	0.058412	0.081204	$\mathbf{0 . 1 1 3 6 1 8}$
	0.025984	0.032783	0.043333	0.054602	0.087590	0.113636
123	0.003629	0.019887	0.022147	0.028988	0.043085	0.050994
	0.019604	0.021356	0.024095	0.045624	0.046720	0.065535
124	0.011888	0.034224	0.034119	0.040269	0.049917	0.052846
	0.038128	0.045088	0.043103	0.060275	0.069411	0.069549

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
125	0.019351	0.038551	0.054716	0.059799	0.082051	0.094118
	0.026888	$\mathbf{0 . 0 6 2 0 5 1}$	$\mathbf{0 . 0 8 4 5 8 2}$	$\mathbf{0 . 0 9 9 3 2 0}$	0.114330	0.166166
126	0.021761	0.029547	0.034466	0.044627	0.070231	0.082393
	0.038430	0.023169	0.050136	0.060099	0.086148	0.100499
127	0.035580	0.038055	0.043299	0.045806	0.072503	0.086346
	0.020468	0.025577	0.044174	0.052524	0.080671	0.103370
128	0.033473	0.038522	0.044077	0.051884	0.070574	0.086241
	0.024077	0.030187	0.036392	0.046863	0.073652	0.087279
129	0.036267	0.039470	0.043467	0.051238	0.063378	0.069982
	0.041783	0.044555	0.049885	0.057617	0.076729	0.094098
130	0.037607	0.023654	0.040205	0.053227	0.066885	0.080165
	0.037933	0.031422	0.037543	0.042697	0.070986	0.083427
131	0.007745	0.020367	0.032549	0.045258	0.071615	0.102075
	0.014691	0.024522	0.035115	0.051038	0.086626	0.125124
132	0.011562	0.022805	0.032311	0.047471	0.069759	0.090845
	0.036788	0.041672	0.054889	0.076850	0.105003	$\mathbf{0 . 1 3 8 5 8 0}$
133	0.010648	0.020352	0.031800	0.046706	0.074031	0.095504
	0.016010	0.022904	0.037265	0.057364	0.105091	$\mathbf{0 . 1 7 5 4 9 2}$
134	0.040487	0.037672	0.051630	0.065181	$\mathbf{0 . 0 9 5 6 8 0}$	$\mathbf{0 . 1 2 0 8 9 2}$
	0.027402	0.026683	0.038752	0.068643	0.100290	$\mathbf{0 . 1 4 2 8 8 5}$
135	0.010009	0.029717	0.038841	0.060643	0.085125	0.100023
	0.035086	0.027983	0.035990	0.063987	0.081859	0.116397
136	0.030827	0.037645	0.017850	0.029121	0.053000	0.055540
	0.036742	0.012359	0.041266	0.032665	0.050744	0.065172
137	0.036411	0.036373	0.030275	0.048403	0.059271	0.068792
	0.028151	0.036081	0.043172	0.047852	0.063092	0.076268
138	0.036434	0.040190	0.044844	0.048366	0.065608	0.081947
	0.032954	$0.036266 / 0.041730$	0.052939	0.075047	0.111684	
139	0.035974	0.040182	0.046730	0.056796	0.070056	0.091818
	0.036516	0.040755	0.048028	0.057468	0.078934	0.110005
140	0.034874	0.034072	0.026382	0.050242	0.064292	0.083205
0	0,035253	0.038409	0.035845	0.045185	0.061939	0.080492
141	0.000408	0.003712	0.039758	0.015593	0.031320	0.022035
	0.033460	0.037042	0.008170	0.012164	0.036578	0.051351
142	0.000074	0.015416	0.020659	0.030004	0.047478	0.058657
	0.031647	0.015149	0.019141	0.029100	0.052737	0.067001
143	0.027652	0.018739	0.016892	0.023906	0.034163	0.052359
	0.036578	0.036514	0.012690	0.041739	0.047120	0.062273
144	0.015407	0.015390	0.017915	0.025700	0.034807	0.047380
	0.014887	0.014923	0.024267	0.023853	0.038661	0.061775
145	0.009281	0.012179	0.013188	0.033505	0.045982	0.051629
	0.024973	0.024110	0.025644	0.019338	0.045128	0.046036

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont’d)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
146	$\mathbf{0 . 0 6 4 4 9 2}$	0.054494	0.053841	0.058037	0.063506	0.071698
	$\mathbf{0 . 0 5 3 1 3 2}$	0.053102	0.065239	0.055868	0.060149	0.066807
147	0.029022	0.029624	0.016391	0.022159	0.026600	0.033679
	0.015395	0.014131	0.029382	0.021678	0.033151	0.051184
148	0.000341	0.008016	0.013398	0.021254	0.037848	0.047890
	0.004496	0.010699	0.013782	0.027738	0.042866	0.054224
149	0.004663	0.006046	0.008654	0.012917	0.019954	0.028834
	0.035375	0.005097	0.014381	0.038077	0.041988	0.053020
150	0.031948	0.033097	0.034811	0.021791	0.032151	0.038960
	0.017569	0.033333	0.034846	0.037024	0.043665	0.055019
151	0.033317	0.022129	0.024564	0.028285	0.035192	0.040913
	0.021394	0.022170	0.024269	0.023616	0.035655	0.043156
152	0.013483	0.036035	0.038119	0.044514	0.057050	0.069951
	0.028589	0.028590	0.031865	0.036857	0.025044	0.047730
153	0.007982	0.008405	0.011294	0.015328	0.026824	0.031244
	0.032288	0.032390	0.033019	0.034487	0.042565	0.048867
154	0.035889	0.037356	0.032531	0.043085	0.049089	0.058248
	0.032263	0.033384	0.034890	0.037913	0.045588	0.055264
155	0.000179	0.004780	0.012298	0.040603	0.027977	0.039741
	0.036079	0.036561	0.038138	0.040842	0.037235	0.058673
156	0.053529	0.018301	0.024030	0.028735	0.036103	0.039222
	0.016425	0.023315	0.023060	0.028221	0.038217	0.047422
157	0.028356	0.025464	0.029092	0.036385	0.042807	0.049798
	0.028855	0.029693	0.031834	0.035473	0.045453	0.072846
158	0.001046	$\overline{0.006024}$	0.014946	0.018050	0.022496	0.029384
	0.035592	0.006315	0.038118	0.039898	0.034233	0.037999
159	0.030068	0.031472	0.033701	0.038386	0.046559	0.047460
	0.037379	$0.038497 / / 0.039700$	0.041791	0.042930	0.049853	
160	0.023923	0.014186	0.009180	0.012754	0.015386	0.021242
	0.019720	0.032504	0.019139	0.032852	0.050815	$\mathrm{~N} / \mathrm{A}^{*}$
161	0.030460	0.015234	0.039903	0.028244	0.048046	0.061454
9	0,014328	0.017089	$0.022559 /$	0.030330	0.047182	0.067411
162	0.012685	0.016385	0.021234	0.032002	0.046525	0.062563
	0.013220	0.016503	0.021088	0.037857	0.046949	0.067784
163	0.004347	0.011135	0.019672	0.048401	0.049063	0.063655
	0.021198	0.011454	0.019364	0.030622	0.048249	0.064421
164	0.028104	0.036658	0.032295	0.049462	0.054332	0.069624
	0.036737	0.028777	0.039227	0.044705	0.057575	0.066194
165	0.032331	0.036376	0.039280	0.065179	0.077096	0.068294
	0.034892	0.019030	0.023889	0.031602	0.049216	0.066572
166	0.019591	0.026486	0.026418	0.035967	0.050299	0.062236
	0.021263	0.016372	0.030906	0.036773	0.051831	0.062780

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
167	0.036755	0.037884	0.040134	0.040034	0.055335	0.069958
	0.005631	0.010643	0.017138	0.043953	0.054353	0.064080
168	0.020096	0.010367	0.017881	0.031851	0.046333	0.059204
	0.021239	0.022937	0.037275	0.032333	0.047043	0.064854
169	0.036170	0.034060	0.037019	0.041217	0.057212	0.069331
	0.006032	0.011106	0.04099	0.045099	0.058966	0.073080
170	0.009635	0.013296	0.018430	0.027367	0.046245	0.062118
	0.006830	0.01172	0.020709	0.027696	0.043011	0.062168
171	0.027667	0.02927	0.032377	0.027203	0.041529	0.065206
	0.005073	0.013219	0.017812	0.024224	0.039437	0.062373
172	0.025209	0.028003	0.032498	0.063964	0.077437	0.072353
	0.015435	0.02744	0.031284	0.035490	0.054773	0.071337
173	0.036908	0.031728	0.033841	0.039764	0.051827	0.062275
	0.029802	0.031299	0.033971	0.039328	0.049480	0.066740
174	0.027925	0.015027	0.021191	0.029870	0.046588	0.067778
	0.036407	0.037602	0.017270	0.026719	0.040573	0.057336
175	0.032649	0.034422	0.038099	0.036577	0.060677	0.079772
	0.032418	0.021982	0.038126	0.045658	0.049292	0.073931
176	0.004263	0.012857	0.021920	0.031394	0.052897	0.075493
	0.036582	0.012443	0.018531	0.029055	0.047587	0.070382
177	0.037188	0.03840	0.041694	0.035808	0.054207	0.068132
	0.036746	0.017616	0.040465	0.045900	0.057649	0.062739
178	0.031059	0.032357	0.041006	0.048918	0.059944	0.074226
	0.032864	0.034181	0.044910	0.048617	0.052503	0.059927
179	0.027208	0.028928	0.018588	0.026766	0.043403	0.071765
	0.036801	0.037706	0.039443	0.026028	0.050298	0.063448
180	0.035957	0.010417	0.017371	0.026303	0.037218	0.057330
	0.005595	0.011174	0.016730	0.045436	0.053866	0.069775
181	0.036037	0.038161	0.034331	0.047986	0.058971	0.067669
	0.024867	0.033081	0.042475	0.051786	0.066245	0.074110
182				0.034416	0.052383	0.057957
	0,027182	0.041683	0.043990	0.038801	0.058995	0.073190
183	0.036788	0.021751	0.022721	0.037877	0.059405	0.083643
	0.037164	0.039662	0.044175	0.052496	0.059866	0.095613
184	0.034237	0.038911	0.045382	0.060248	0.085937	0.108878
	0.029743	0.035841	0.039945	0.057045	0.079764	0.098131
185	0.031429	0.038416	0.046870	0.057608	0.070649	0.089549
	0.031787	0.041285	0.051026	0.064280	0.080630	0.088273
186	0.020902	0.024387	0.042774	0.050930	0.063359	0.071313
	0.008112	0.024731	0.030646	0.041022	0.068601	0.083812
187	0.036179	0.038250	0.042277	0.049201	0.059528	0.073478
	0.007701	0.014377	0.042518	0.048223	0.062894	0.078789

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
188	0.031559	0.033087	0.035573	0.039978	0.050271	0.050167
	0.027765	0.029144	0.026705	0.033900	0.051732	0.063762
189	0.027387	0.028656	0.025939	0.033791	0.045062	0.043634
	0.028290	0.029589	0.029977	0.035117	0.047335	0.051606
190	0.004290	0.013064	0.019012	0.029246	0.048015	0.057726
	0.006367	0.013493	0.020097	0.033845	0.048051	0.068220
191	0.024257	0.010207	0.017457	0.042435	0.053515	0.069319
	0.036364	0.037451	0.040177	0.044578	0.056449	0.071095
192	0.004500	0.039608	0.022393	0.044997	0.054187	0.073505
	0.007789	0.01401	0.024255	0.031045	0.051446	0.065521
193	0.014048	0.01664	0.023923	0.031440	0.046839	0.062265
	0.026796		0.034009	0.041511	0.049160	0.065146
194	0.017525	0.02332	0.028599	0.034958	0.048903	0.059936
	0.013346	0.01675	0.026745	0.040491	0.050746	0.081421
195	0.032163	0.034096	0.037317	0.031616	0.046178	0.057431
	0.026939	0.024729	0.026632	0.034055	0.047672	0.063890
196	0.039637	0.012330	0.021919	0.036482	0.049494	0.061564
	0.036457	0.038679	0.041814	0.049417	0.059164	0.086099
197	0.007890	0.014903	0.020530	0.030215	0.044381	0.055281
	0.012618	0.01371	0.040435	0.031308	0.046035	0.060098
198	0.032797	0.02847	0.038330	0.041041	0.047816	0.055970
	0.031939	0.033004	0.038532	0.041129	0.044786	0.061166
199	0.018705	0.038137	0.034385	0.041651	0.064433	0.077479
	0.023879	0.022822	0.029782	0.039955	0.059085	0.086134
200	0.041021	0.029728	0.043709	0.058443	0.082808	0.109976
	0.022405	0.032584	0.047987	0.063091	0.093125	0.102363
201	0.036660	0.038571	0.042709	0.048694	0.064501	0.077726
	0.037060	0.039293	0.047153	0.053868	0.065956	0.071253
202	0.020731	0.024248	0.053616	0.035380	0.049351	0.070593
	0.033272	0.024465	0.030216	0.038743	0.052903	0.080115
203	0.006630	0.019059	0.025563	0.035052	0.053809	0.070735
	0,034424 0.022604	0.020435 0.023326	0.026895	0.039683	0.062826 0.054178	0.087807
204	0.028383	0.030460	0.034887	0.039541	0.055963	0.067989
205	0.039449	0.042396	0.045339	0.048204	0.066750	0.092365
	0.007691	0.035455	0.043616	0.051055	0.062256	0.085635
206	0.033879	0.035670	0.038233	0.047915	0.060762	0.078197
	0.037856	0.027352	0.032287	0.040828	0.059444	0.073200
207	0.049402	0.044973	0.045750	0.051409	0.049336	0.060143
	0.037041	0.022925	0.020641	0.037628	0.061677	0.076873
208	0.023553	0.026319	0.029835	0.035075	0.050630	0.073613
	0.021110	0.023530	0.027789	0.036910	0.054078	0.076246

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
209	0.032465	0.020286	0.024807	0.032244	0.047689	0.072874
	0.018027	0.020573	0.025651	0.033712	0.059178	0.075057
210	0.024229	0.044884	0.045730	0.049362	0.061061	0.071662
	0.032471	0.043279	0.041182	0.042182	0.056892	0.066848
211	0.037086	0.038865	0.041219	0.046551	0.052529	0.068941
	0.013473	0.014737	0.030497	0.035903	0.055705	0.073065
212	0.035315	0.039317	0.042537	0.048217	0.059141	0.072114
	0.035791	0.037810	0.040814	0.046314	0.066421	0.081316
213	0.005539	0.013236	0.020565	0.031212	0.060103	0.073954
	0.036129	0.014842	0.025299	0.035176	0.067314	0.082943
214	0.014118	0.018651	0.023931	0.037770	0.068647	0.078767
	0.007648	0.019113	0.024980	0.039461	0.058856	0.088586
215	0.020521	0.035916	0.037662	0.044819	0.054923	0.070000
	0.033348	0.028082	0.036644	0.045427	0.059825	0.078239
216	0.038173	0.040397	0.043566	0.050531	0.065168	0.079825
	0.025719	0.040736	0.044385	0.051445	0.062569	0.077296
217	0.019626	0.030536	0.034986	0.038175	0.064506	0.075035
	0.023367	0.025974	0.037314	0.040812	0.050559	0.076638
218	0.039898	0.052879	0.055747	0.055931	0.063131	0.076396
	0.019988	0.022662	0.026462	0.033382	0.047369	0.068750
219	0.023255	0.027866	0.032200	0.050117	0.073278	0.086501
	0.034877	0.025541	0.030803	0.052499	0.066922	0.097204
220	0.015339	0.014322	0.022617	0.029948	0.043685	0.066648
	0.013985	0.015048	0.024127	0.036566	0.070991	0.103982
221	0.039226	0.039820	0.041286	0.041737	0.054706	0.058086
	0.035494	0.036271	0.041774	0.047326	0.059364	0.077065
222	0.035392	0.037399	0.039130	0.024333	0.032436	0.054926
	0.036322	$0.037270 / 0.016172$	0.029418	0.057231	0.069374	
223	0.017689	0.034993	0.038054	0.042398	0.056085	0.060297
	0.033733	0.031248	0.018356	0.025812	0.041627	0.066328
224	0.012577	0.010524	0.017849	0.028525	0.046878	0.063580
0	0,005325	0.011144	$0.031859 /$	0.027472	0.044294	0.070199
225	0.011655	0.026358	0.020996	0.028515	0.042578	0.057797
	0.018046	0.020563	0.025264	0.028846	0.040750	0.054913
226	0.003746	0.022576	0.025600	0.030545	0.032051	0.045311
	0.004239	0.019335	0.022173	0.031787	0.053551	0.073464
227	0.014356	0.016836	0.020714	0.026584	0.032051	0.045311
	0.004239	0.012047	0.016215	0.027959	0.052119	0.074760
228	0.011541	0.013905	0.018186	0.024123	0.037705	0.047290
	0.021613	0.014135	0.019110	0.024042	0.044847	0.064378
229	0.012083	0.014996	0.019017	0.024375	0.036698	0.049939
	0.027579	0.015328	0.018753	0.024921	0.040991	0.068753

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
230	0.039479	0.033234	0.038626	0.042525	0.049935	0.061182
	0.023750	0.025131	0.038983	0.043274	0.055076	0.066569
231	0.036328	0.013881	0.022135	0.030532	0.054618	0.077891
	0.036405	0.038268	0.042351	0.031779	0.057832	0.074418
232	0.031097	0.034422	0.020050	0.036588	0.049217	0.068576
	0.036580	0.038410	0.021409	0.032553	0.066609	0.082209
233	0.013170	0.017110	0.025262	0.031108	0.044932	0.058897
	0.037367	0.020503	0.042603	0.033979	0.049411	0.062718
234	0.016995	0.02783	0.032145	0.031981	0.051698	0.061969
	0.025673	0.02313	0.032386	0.039232	0.056904	0.072037
235	0.018724	0.02113	0.032418	0.032675	0.047541	0.062227
	0.029306	0.03122	0.034221	0.033854	0.045408	0.073015
236	0.019369	0.02300	0.028392	0.036727	0.051361	0.073644
	0.014556	0.02288	0.027650	0.038529	0.057106	0.103989
237	0.005479	0.014178	0.020030	0.027763	0.045193	0.068000
	0.036611	0.038564	0.041639	0.032919	0.058485	0.103647
238	0.039802	0.039080	0.021847	0.038050	0.053450	0.064820
	0.012895	0.014440	0.020932	0.034674	0.066045	0.097447
239	0.004794	0.012448	0.020277	0.036414	0.045614	0.070397
	0.030642	0.032608	0.040889	0.029507	0.040977	0.064017
240	0.009288	0.01502	0.023878	0.031507	0.045821	0.067555
	0.012005	0.016648	0.022106	0.030772	0.054523	0.067659
241	0.038456	0.040242	0.043263	0.047241	0.053333	0.062068
	0.027459	0.030095	0.034183	0.047835	0.055393	0.060771
242	0.033979	0.037642	0.018294	0.024688	0.034425	0.043164
	0.005075	0.018699	0.017758	0.026066	0.038486	0.059393
243	0.020727	0.023855	0.028537	0.034341	0.059306	0.079307
	0.032458	0.034520	0.038526	0.043908	0.055797	0.075906
244	0.035601	0.038022	0.044821	0.048736	0.051726	0.055128
	0.028442	0.037728	0.042711	0.046855	0.059353	0.075512
245				0.038562	0.044072	0.053796
	0,018486	0.030700	0.034333	0.038382	0.048473	0.061839
246	0.029896	0.039692	0.042365	0.046610	0.058646	0.067445
	0.038325	0.039860	0.033306	0.037370	0.048573	0.067989
247	0.011610	0.012957	0.021970	0.030194	0.042036	0.059776
	0.015347	0.019095	0.024370	0.027901	0.048558	0.067075
248	0.014313	0.017188	0.022355	0.029667	0.050821	0.053794
	0.035355	0.036358	0.021638	0.029466	0.042219	0.058524
249	0.005285	0.014871	0.023696	0.035220	0.052985	0.063999
	0.035877	0.025982	0.030719	0.039518	0.063645	0.085934
250	0.029115	0.036412	0.039231	0.042091	0.049885	0.058559
	0.043865	0.044997	0.048171	0.044483	0.052924	0.100629

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
251	0.024889	0.016552	0.022787	0.038361	0.053914	0.075360
	0.016264	0.024108	0.026245	0.033156	0.050028	0.075877
252	0.036966	0.038755	0.041126	0.041677	0.053019	0.063504
	0.037233	0.038930	0.041908	0.047435	0.054775	0.061590
253	0.037188	0.015072	0.041832	0.044907	0.052673	0.065326
	0.037460	0.015691	0.049694	0.033244	0.055607	0.073537
254	0.004071	0.020930	0.042007	0.025236	0.041969	0.042708
	0.012526	0.016561	0.019191	0.025665	0.040681	0.050438
255	0.033038	0.035291	0.038687	0.043299	0.056796	0.070561
	0.033345	0.035143	0.037898	0.035428	0.052879	0.079070
256	0.035380	0.035187	0.039359	0.042982	0.049972	0.056179
	0.035494	0.036772	0.018153	0.028189	0.054149	0.069215
257	0.041925	0.055093	0.064371	$\mathbf{0 . 0 7 6 5 8 3}$	$\mathbf{0 . 1 0 7 6 8 7}$	$\mathbf{0 . 1 3 5 0 6 6}$
	0.036531	0.047809	$\mathbf{0 . 0 8 3 0 0 5}$	$\mathbf{0 . 1 0 7 6 9 2}$	$\mathbf{0 . 1 1 9 6 3 0}$	0.124961
258	0.014133	0.022314	0.030859	0.048918	0.060210	0.072412
	0.014620	0.047034	$\mathbf{0 . 0 8 5 8 6 7}$	$\mathbf{0 . 1 0 3 8 4 3}$	$\mathbf{0 . 1 2 2 6 3 4}$	0.125800
259	0.005583	0.012301	0.017944	0.033969	0.043219	0.067418
	0.035562	0.037250	0.020275	0.033096	0.066221	0.077498
260	0.017371	0.032071	0.042577	0.053483	0.067971	0.079211
	0.020054	0.041677	0.048565	0.064029	0.084030	0.094424
281	0.020442	0.029167	0.031890	0.043215	0.058997	0.069868
	0.016303	0.026815	0.032724	0.043014	0.064682	0.084224
282	0.009027	0.019363	0.025594	0.033187	0.047130	0.056739
	0.010362	0.017814	0.025363	0.034514	0.052894	0.065253
283	0.039492	0.021058	0.025641	0.029390	0.038556	0.047985
	0.036979	0.039075	0.041748	0.046768	0.059830	0.071167
284	0.017559	0.032338	0.041223	0.051360	0.079555	0.086517
	0.019407	$0.028843 / 0.040333$	0.059800	0.113224	0.128247	
285	0.037667	0.031793	0.027320	0.034979	0.047613	0.058715
	0.010232	0.040860	0.044453	0.049201	0.061565	0.075273
286	0.031319	0.021793	0.047540	0.038359	0.058069	0.064826
0	0,032572	0.019976	$0.044318 /$	0.046009	0.062602	0.076812
287	0.015458	0.022949	0.026950	0.036047	0.050530	0.061267
	0.038274	0.042207	0.048080	0.062478	0.098610	0.107542
288	0.014604	0.024969	0.030381	0.038479	0.053374	0.064562
	0.011692	0.020073	0.026578	0.053668	0.057430	0.076068
289	0.010017	0.019810	0.025608	0.033436	0.047052	0.061476
	0.031323	0.040122	0.043816	0.049199	0.062360	0.068808
290	0.010454	0.043903	0.029129	0.038274	0.054660	0.064371
	0.013000	0.023424	0.036733	0.064383	$\mathbf{0 . 1 2 6 6 7 7}$	0.129734
291	0.016076	0.036669	0.033198	0.048916	0.061991	0.071980
	0.033053	0.038560	0.033452	0.042171	0.059850	0.076801

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
292	0.009251	0.041555	0.042342	0.032291	0.054376	0.053423
	0.010251	0.016110	0.022401	0.032485	0.046760	0.058034
293	0.019210	0.028568	0.047067	0.043447	0.058578	0.073460
	0.017982	0.024871	0.032641	0.045188	0.061261	0.077770
294	0.015269	0.020958	0.025323	0.030016	0.039157	0.046257
	0.016465	0.020925	0.025659	0.033915	0.049602	0.065659
295	0.011519	0.021529	0.046303	0.037318	0.051787	0.062647
	0.040093	0.042719	0.026727	0.036655	0.055141	0.068499
296	0.014162	0.036665	0.042731	0.050251	0.058057	0.068817
	0.040121	0.044301	0.048378	0.056652	0.064639	0.088544
297	0.013776	0.026103	0.035103	0.044250	0.065601	0.076755
	0.016064	0.023903	0.031953	0.042711	0.061187	0.082733
298	0.018941	0.025558	0.031475	0.038893	0.051498	0.065386
	0.019308	0.024444	0.031988	0.039047	0.057739	0.085005
299	0.014336	0.034304	0.036086	0.044882	0.064066	0.078654
	0.038875	0.044061	0.049568	0.057999	0.081252	0.087155
300	0.019749	0.023456	0.030486	0.040116	0.054311	0.067831
	0.013593	0.042591	0.047395	0.055741	0.069587	0.089204
301	0.033725	0.038016	0.041164	0.048194	0.056847	0.070306
	0.038671	0.040860	0.043740	0.041365	0.061001	0.077528
302	0.012131	0.023520	0.033391	0.043100	0.066386	0.083031
	0.031518	0.024177	0.033781	0.052205	0.085949	0.130768
303	0.039322	0.046278	0.051450	0.050074	0.070912	0.086197
	0.023849	0.039364	0.047707	0.051844	0.075833	0.090049
304	0.030050	0.032250	0.027917	0.026363	0.038598	0.049286
	0.038867	0.037953	0.040827	0.027639	0.046007	0.056231
305	0.011344	0.018001	0.025837	0.032712	0.042973	0.052568
	0.012623	$0.019143 /$	0.022839	0.030527	0.045317	0.057787
306	0.033274	0.026911	0.029340	0.033191	0.040691	0.055039
	0.033573	0.034607	0.036697	0.033107	0.038208	0.050480
307	0.016362	0.020890	0.029158	0.034995	$0: 043720$	0.061554
9	0,017138	0.014619	0.020720	0.033362	0.045818	0.060619
308	0.012623	0.015448	0.016601	0.022857	0.035136	0.050482
	0.013544	0.014441	0.038574	0.041148	0.035398	0.047049
309	0.030019	0.049724	$\mathbf{0 . 0 6 5 5 9 7}$	0.071097	0.091955	0.097089
	$\mathbf{0 . 0 6 6 2 2 3}$	$\mathbf{0 . 0 7 9 8 9 8}$	0.045054	0.050725	0.086897	0.118179
310	0.013247	0.038691	0.043925	0.042656	0.037797	0.032055
	0.047153	0.041861	0.061980	0.070382	0.077317	0.074089
311	0.007042	0.020318	0.033451	0.039887	0.054566	0.067626
	0.016578	0.040817	0.028684	0.040294	0.054165	0.065775
312	$\mathbf{0 . 0 5 6 0 6 1}$	0.039934	0.044073	0.036681	0.052565	0.065280
	$\mathbf{0 . 0 7 5 1 7 8}$	0.005972	0.015476	0.019954	0.027879	0.041233

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont’d)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
313	0.015624	0.032660	0.044797	0.058313	0.078953	0.093628
	0.036557	0.045465	0.041929	0.054056	0.073364	0.092819
314	0.003547	0.011933	0.019593	0.030289	0.033519	0.042966
	0.037071	0.012441	0.019201	0.026185	0.039678	0.058905
315	0.004941	0.013380	0.021253	0.029951	0.045111	0.053167
	0.039610	0.041212	0.024417	0.032604	0.044987	0.057846
316	0.007001	0.026707	0.027024	0.035407	0.052525	0.071127
	0.014310	0.021705	0.029555	0.039310	0.051411	0.067905
317	0.004305	0.022539	0.042832	0.029065	0.042814	0.055844
	0.036557	0.038001	0.041284	0.045807	0.039252	0.054786
318	0.014566	0.019928	0.026089	0.047021	0.042081	0.052456
	0.032021	0.034322	0.041953	0.033309	0.047658	0.055522
319	0.038188	0.037554	0.038925	0.019896	0.034877	0.043660
	0.036697	0.037338	0.038666	0.040637	0.036196	0.047840
320	0.011930	0.021856	0.030812	0.039424	0.054865	0.071512
	0.015521	0.022030	0.035000	0.047872	0.062191	0.074565
321	0.033423	0.033428	0.034399	0.035503	0.018431	0.018449
	0.034251	0.034261	0.034256	0.034244	0.040195	0.078185
322	0.029137	0.029590	0.010968	0.011026	0.011073	0.011289
	0.009862	0.009764	0.012913	0.009838	0.031495	0.080610
323	0.010798	0.009822	0.010018	0.010221	0.010238	0.010370
	0.037133	0.032469	0.009862	0.009930	0.029404	0.058864
324	0.037399	0.037544	0.016345	0.038899	0.029584	0.034661
	0.034259	0.034390	0.035214	0.038782	0.063612	0.118004
325	0.032934	0.033596	0.015650	0.015626	0.015596	0.015610
	$\mathbf{0 . 0 5 1 2 4 8}$	0.016616	0.016748	0.015424	0.022553	0.094249
326	0.034589	0.016060	0.016646	0.034503	0.017840	0.017788
	0.015527	$0.015704 / 0.016384$	0.035405	0.056654	0.086593	
327	0.025920	0.025934	0.028597	0.019865	0.021586	0.021737
	0.039699	0.035351	0.021415	0.023902	0.115884	0.119284
328	0.009716	0.037126	0.005828	0.010521	0.010602	0.010719
0	0,010486	0.010487	0.010490	0.008067	0.032455	0.086779
329	0.034269	0.015521	0.017608	0.020434	0.017725	0.107499
330	0.016379	0.018637	0.015768	0.015505	0.016932	0.015501
331	0.033675	0.015387	0.015387	0.015387	0.015422	0.015461
31	$\mathbf{0 . 0 5 1 2 4 5}$	0.010986	0.010987	0.013719	0.022516	0.061507
	0.03502	$\mathbf{0 . 0 6 3 0 1 0}$	0.063010	0.061504	0.061509	0.061504
332	0.015375	0.035167	0.035167	0.033455	0.030674	0.087899
	0.033806	0.033388	0.015798	0.015839	0.015943	0.018267
333	$\mathbf{0 . 0 6 0 1 5 2}$	0.060162	0.021530	0.021667	0.031486	0.048657
	0.035749	0.035765	0.035767	0.068606	0.057334	0.057342
				0.035773	0.038152	0.102844

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
334	0.034452	0.034454	0.034457	0.033339	0.015444	0.015493
	0.033810	0.033808	0.033810	0.033830	0.062056	0.088876
335	0.036020	0.036029	0.036974	0.034178	0.017525	0.017547
	0.018644	0.019494	0.036073	0.036071	0.042031	0.136684
336	0.031627	0.031854	0.03248	0.017965	0.022386	0.024934
	0.032976	0.033056	0.033406	0.034367	0.036313	0.039532
337	0.003849	0.009695	0.021488	0.029421	0.038527	0.059027
	0.006706	0.01244	0.017421	0.027365	0.045752	0.067751
338	0.004666	0.01330	0.017334	0.020967	0.026755	0.031017
	0.025650	0.01353	0.038314	0.040999	0.036994	0.045491
339	0.060440	0.06182	0.068721	0.068491	0.061494	0.061940
	0.033723	0.033629	0.033613	0.033569	0.008984	0.105922
340	0.022163	0.01150	0.021982	0.015472	0.014988	0.015525
	0.033707	0.033706	0.033701	0.033741	0.076426	0.111734
341	0.003555	0.006497	0.015582	0.028401	0.055451	0.065758
	0.029057	0.065742	0.086430	0.088122	0.094099	0.096824
342	0.003660	0.005574	0.013168	0.024402	0.053644	0.061209
	0.024218	0.071273	0.078470	0.081077	0.086222	0.088369
343	0.036825	0.005059	0.012063	0.028150	0.050137	0.059590
	0.029160	0.04846	0.056093	0.068023	0.077166	0.083651
344	0.016774	0.014697	0.016462	0.013974	0.022426	0.034481
	0.036350	0.005427	0.018415	0.022308	0.049328	0.076655
345	0.017474	0.014318	0.036256	0.014143	0.026721	0.037521
	0.030021	0.007140	0.012352	0.036703	0.057068	0.078294
346	0.041571	0.020369	0.012159	0.018204	0.033587	0.045844
	0.036288	0.036748	0.012544	0.034426	0.060096	0.090781
347	0.022780	0.032564	0.034608	0.036906	0.046269	0.059915
	0.020296	0.022196	0.029298	0.056969	0.082133	0.074818
348	0.019078	0.019210	0.019505	0.020103	0.025881	0.030874
	0.035625	0.034223	0.040312	0.050348	0.05145	0.065942
349	0.021623	0.021916	0.007433	0.022598	0.028055	0.040521
	0,04625b	0.080327	0.084748	0.091138	0.092877	0.098157
350	0.014591	0.020566	0.014898	0.015684	0.021196	0.025952
	0.018399	0.018561	0.019251	0.021788	0.035029	0.068934
351	0.099964	0.122034	0.145123	0.150743	0.149662	0.148789
	0.006093	0.013978	0.066741	N/A*	N/A*	N/A*
352	0.035514	0.002272	0.003518	0.006488	0.010312	0.014555
	0.013160	0.002761	0.035454	0.005897	0.036582	0.047959
353	0.098041	0.098873	0.125329	0.126612	0.129216	0.130942
	0.060939	0.104302	0.106399	0.107001	0.107397	0.108763
354	0.036563	0.007728	0.012401	0.019559	0.035361	0.042515
	0.006560	0.010990	0.019443	0.059044	0.062067	0.069873

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
355	0.035881	0.035589	0.035634	0.037065	0.011763	0.011857
	0.010975	0.011445	0.011688	0.011812	0.036132	0.037055
356	0.023784	0.017473	0.017564	0.031183	0.014092	0.014329
	0.025041	0.021982	0.022929	0.025293	0.025467	0.027383
357	0.036749	0.050686	0.046849	0.047587	0.036413	0.036413
	0.035716	0.035852	0.035853	0.036403	0.042991	0.068385
358	$\mathbf{0 . 1 1 5 5 2 9}$	$\mathbf{0 . 1 2 7 9 8 8}$	$\mathbf{0 . 1 3 3 3 3 9}$	$\mathbf{0 . 1 3 0 3 1 3}$	$\mathbf{0 . 1 2 5 2 5 4}$	$\mathbf{0 . 1 2 5 2 5 8}$
	0.013474	0.004765	0.036285	0.040724	0.086428	0.090747
359	0.021337	0.043221	0.045796	0.021767	0.029336	0.041042
	$\mathbf{0 . 1 6 9 6 7 7}$	0.005088	0.005491	0.014987	0.067794	0.075491
360	0.004997	$\mathbf{0 . 0 6 3 9 0 2}$	0.037336	0.027108	0.049055	0.061159
	0.008318	0.013503	0.023317	0.053048	0.067392	0.061392
361	0.014192	0.020194	0.032142	0.041208	0.064334	0.083246
	0.025607	0.025346	0.034771	0.045483	0.069192	0.095120
362	0.011218	0.015297	0.023938	0.017678	0.024637	0.032841
	0.019014	0.017784	0.020016	0.026824	0.032391	0.041060
363	0.003186	0.019585	0.006026	0.037842	0.021191	0.021614
	0.017021	0.017317	0.017907	0.018993	0.023527	0.025203
364	0.044246	0.037988	0.041562	0.055936	0.069391	0.086666
373	0.044552	0.047310	0.033718	0.054004	0.077385	0.104757
365	0.035862	0.037886	0.019643	0.025955	0.039703	0.059451
	0.036874	0.038379	0.041084	0.045484	0.060452	0.092060
366	0.038342	0.037167	0.038751	0.042131	0.053589	0.067457
367	0.036645	0.037028	0.038244	0.036864	0.051392	0.069675
368	0.020715	0.029680	0.038338	0.052387	0.066465	0.087319
369	0.0086369	0.009401	0.017060	0.035625	0.051832	0.080835

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont'd)

Model	50\%	20\%	10\%	5\%	2\%	1\%
376	0.037890	0.019831	0.026650	0.036877	0.048805	0.073962
	0.010843	0.018190	0.026538	0.038288	0.059683	0.075852
377	0.036192	0.039732	0.022564	0.026800	0.041006	0.053846
	0.031554	0.036221	0.039033	0.030358	0.049707	0.066639
378	0.025766	0.031738	0.028878	0.037394	0.060051	0.079311
	0.013559	0.031907	0.032504	0.042939	0.064249	0.101953
379	0.038339	0.025393	0.029799	0.039215	0.054897	0.079790
	0.038173	0.039717	0.043752	0.044248	0.062579	0.092830
380	0.035271	0.036411	0.039118	0.042346	0.046920	0.064122
	0.035603	0.036588	0.038431	0.041227	0.056984	0.075035
381	0.017810	0.027090	0.034577	0.041604	0.060909	0.070302
	0.018791	0.021957	0.033607	0.052884	0.083574	0.104570
382	0.009857	0.022055	0.032701	0.044965	0.066789	0.091750
	0.011240	0.024846	0.037586	0.049391	0.083102	0.113167
383	0.039449	0.043620	0.027740	0.041480	0.065546	0.085802
	0.037465	0.041971	0.047685	0.059925	0.087317	0.102060
384	0.016709	0.032814	0.046728	0.062700	0.082563	0.104156
	0.018707	0.033810	0.047204	0.064633	0.097648	0.112693
385	0.024013	0.028725	0.034305	0.041667	0.060470	0.075048
	0.023614	0.021268	0.030283	0.046088	0.072050	0.094646
386	0.032765	0.056731	0.070538	0.093188	0.109616	0.125969
	0.033682	0.057727	0.079221	0.122038	0.166601	0.164513
387	0.028701	0.017406	0.024502	0.030900	0. 047411	0.055359
	0.036617	0.039304	0.043122	0.034930	0.052733	0.072936
388	0.038862	0.024280	0.023834	0.033771	0.048734	0.066822
	0.008195	0.039458	0.044810	0.045672	0.067031	0.096332
389	0.023405	0.030347	0.035908	0.044602	0.057269	0.069628
	0.023793	C0.029653	0.037153	90.048005	0.066058	0.070522
390	0.004386	0.012468	0.026146	0.031259	0.033696	0.042980
	0.023894	0.035228	0,021810	0.026012	0.043553	0.071985
391	00.040034	0.046122	0.052076	0.054710	0.074287	0.086228
	0,040370	0.043379	0.048020	0.063651	0.075665	0.112865
392	0.038457	0.014630	0.031490	0.033173	0.043447	0.064331
	0.017198	0.032059	0.037382	0.046816	0.067212	0.095152
393	0.031258	0.029566	0.033358	0.038830	0.053428	0.064344
	0.022994	0.043444	0.048576	0.055086	0.075791	0.096666
394	0.006977	0.016284	0.039943	0.035915	0.043194	0.060266
	0.007795	0.015825	0.031423	0.036778	0.057584	0.095898
395	0.094308	0.114682	0.116990	0.123211	0.126083	0.128233
	0.023710	0.030328	0.051266	0.070986	0.108379	0.112407
396	0.036722	0.022547	0.030471	0.044056	0.067894	0.082868
	0.037541	0.042352	0.047971	0.050204	0.093812	0.106416

Table A-3: RMS of luminance differences of models simplified with QEM (top) and our algorithm (bottom) (cont’d)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0} \%$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
397	0.014823	0.017081	0.027800	0.044083	0.054088	0.060429
	0.032805	0.035549	0.040401	0.051204	0.061278	0.070160
398	0.019700	0.044719	0.060138	$\mathbf{0 . 0 7 6 7 6 5}$	$\mathbf{0 . 1 0 4 8 4 9}$	0.105356
	0.045139	$\mathbf{0 . 0 5 3 2 6 4}$	$\mathbf{0 . 0 8 6 9 7 4}$	$\mathbf{0 . 1 2 4 4 9 5}$	$\mathbf{0 . 1 5 3 1 2 2}$	0.112469
399	0.021150	0.021828	0.030966	0.042424	0.060172	0.074959
	0.010991	0.020166	0.030869	0.054618	0.067030	0.080650
400	0.008576	0.018690	0.029387	0.039228	0.055594	0.066406
	0.032525	0.022718	0.032211	0.037369	0.059039	0.079814
Angel	0.014139	0.032132	0.032910	0.034025	0.032070	0.040792
	0.031598	0.032095	0.032787	0.034232	0.037597	0.042236
Armadillo	0.031939	0.030912	0.034436	0.037393	0.049770	0.057793
	0.016829	0.024094	0.035528	0.040600	0.045008	0.053709
Bunny	0.025511	0.041030	0.055987	$\mathbf{0 . 0 7 2 6 4 4}$	$\mathbf{0 . 0 9 4 8 4 4}$	0.110413
	0.025744	0.041697	0.057375	0.077030	$\mathbf{0 . 1 2 2 5 5 1}$	$\mathbf{0 . 1 6 0 4 2 6}$
Canyon	0.049364	$\mathbf{0 . 0 9 3 4 9 7}$	$\mathbf{0 . 1 1 1 5 8 9}$	$\mathbf{0 . 1 2 1 9 5 8}$	$\mathbf{0 . 1 4 1 5 2 3}$	$\mathbf{0 . 1 5 0 1 3 4}$
	$\mathbf{0 . 0 8 5 0 5 9}$	$\mathbf{0 . 1 1 5 7 3 9}$	0.035854	$\mathbf{0 . 1 3 5 8 8 1}$	$\mathbf{0 . 1 5 7 2 0 0}$	$\mathbf{0 . 1 6 7 6 9 9}$
Dinosaur	0.005684	0.009487	0.038467	0.019460	0.027968	0.040933
	0.039054	0.037134	0.038648	0.020738	0.035993	0.054517
Dragon	0.028082	0.033012	0.025692	0.044294	0.052977	0.063510
	0.013399	0.020140	0.027092	0.036105	0.056378	0.080200
Horse	0.040753	0.032168	0.034074	0.029448	0.050884	0.046243
	0.025982	0.027367	0.028554	0.022322	0.054128	0.064437
Turbine	0.027627	0.032332	0.036445	0.041952	0.052423	0.059264
	0.027614	0.033361	0.040413	0.054371	0.083463	0.097988
Average	$0.0226 \overline{43}$	0.027375	0.031574	0.037908	0.049846	0.061883
	0.024873	0.027678	0.033843	0.042246	0.059792	0.077612
Max	0.115529	0.127988	0.145123	0.150743	0.149662	0.150134
	0.169677	0.115739	0.138536	0.145130	0.166601	0.175492
Min	0.000074	0.002272	0.003518	0.006488	0.010238	0.010370
	0.003791	0.002761	0.005491	0.005897	0.008984	0.015501
Bing						

Bold indicates 10 highest RMS luminance difference averages at the given percentage
for the given algorithm
Italics indicate 10 lowest values at the given percentage for the given algorithm

* N/A: The algorithm exhausted all possible contractions before the given level

Table A-4 displays the results for meshes with uneven vertex distribution that were created using QEM reduction to 50%, before performing further simplification with both algorithms. As this test has been performed using fewer meshes, we have chosen to display two sets of averages, one with all data, and the other with significant outliers (marked in italics) removed.

Table A-4: Hausdorff distances on 50% reduced meshes

Model	50\% - 20\%	10\%	5\%	2\%	1\%
1	$0.005891 \quad 0.011402$	0.018834	0.022061	0.084247	0.111470
	$0.004732 \quad 0.018146$	0.030507	0.043841	0.061621	0.131485
11	$0.005012 \quad 0.008881$	0.009686	0.014576	0.021207	0.021621
	0.0015390 .004419	0.008734	0.018541	0.053077	0.060882
21	0.0020230 .002953	0.005251	0.016580	0.024810	0.044302
	0.0013960 .003481	0.009428	0.022292	0.057157	0.101220
101	0.001638 0.002910	0.005363	0.010694	0.023517	0.030562
	0.0012230 .005134	0.008143	0.017886	0.112510	0.273840
121	0.0027250 .005364	0.009598	0.016891	0.023798	0.149994
	0.002315	0.019638	0.025271	0.143526	0.182596
131	0.0016970 .003414	0.006209	0.011061	0.020580	0.036597
	$0.001750 \quad 0.006385$	0.013237	0.023101	0.083554	0.083554
141	$0.274710 \quad 0.345206$	0.368698	0.368698	0.368710	0.390440
	$0.000450 \quad 0.003112$	0.020969	0.180241	0.195543	N / A^{*}
151	$0.159593-0.270593$	0.270593	0.283130	0.319881	0.544245
	$0.001587 \quad 0.003423$	0.009555	0.253358	0.264896	0.275277
161	$0.001210 \sim 0.003185$	0.005423	0.016790	0.021774	0.039356
	$60.002049 \sim 0.003349$	0.006403	0.012046	0.032734	0.061718
171	0.0010870 .002799	0.005156	0.009667	0.015228	0.034612
	0.0010780 .002987	0.006094	0.014582	0.025857	0.053851
Q18T	$\begin{array}{ll} 0.001622 \\ 0.001927 & 0.004910 \\ 0.004567 \end{array}$	$\begin{aligned} & 0.009234 \\ & 0.007839 \end{aligned}$	$\begin{aligned} & 0.027287 \\ & 0.016862 \end{aligned}$	$\begin{array}{r} 0.031706 \\ 0.061106 \end{array}$	$\begin{aligned} & 0.031642 \\ & 0.107411 \end{aligned}$
${ }^{9} 191$	$0.112850 \quad 0.369641$	0.409859	0.409859	0.459248	0.461870
	0.0014630 .002904	0.007286	0.020929	0.027186	0.070660
201	$0.003040 \quad 0.011038$	0.010554	0.017694	0.044833	0.051810
	0.002088 0.005312	0.012609	0.020542	0.045132	0.102804
211	0.0012810 .003021	0.014202	0.015640	0.015640	0.040179
	0.0016380 .003865	0.006155	0.012420	0.023633	0.041620
221	0.0011760 .003438	0.007301	0.008456	0.018090	0.045353
	0.0015480 .003648	0.009002	0.014075	0.037553	0.055626
231	0.0020220 .003345	0.011016	0.011394	0.021515	0.038959
	0.0016710 .004549	0.009484	0.017799	0.046244	0.054597

Table A-4: Hausdorff distances on 50\% reduced meshes (cont’d)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
241	0.001499	0.004409	0.005709	0.010546	0.044435	0.040879
	0.001951	0.005069	0.010844	0.018118	0.069945	0.092267
251	0.001930	0.003842	0.006587	0.012511	0.036436	0.061209
	0.001977	0.006226	0.010290	0.027637	0.046993	0.046993
Average	0.032278	0.058908	0.065515	0.071308	0.088648	0.120839
	0.001799	0.005303	0.011457	0.042197	0.077126	0.105671
(no outliers)	0.002257	0.004994	0.008675	0.014790	0.029854	0.051903
	0.001925	0.005734	0.011227	0.020334	0.060043	0.096698
Max	0.274710	0.369641	0.409859	0.409859	0.459248	0.544245
	0.004732	0.018146	0.030507	0.253358	0.264896	0.275277
Min	0.001087	0.002799	0.005156	0.008456	0.015228	0.021621
	0.000450	0.002904	0.006094	0.012046	0.023633	0.041620

* N/A: The algorithm exhausted all possible contractions before the given level

Table A-5 shows results from a smaller experiment with an additionbased penalizing system, as described in Chapter V. The results from the original penalizing method are also shown for comparison. All of the models used in this experiment (except for the Canyon model) were fully manifold, therefore, β (weight for boundary penalty) was set to 0 for all models (for the Canyon model, β was set to $1)$. The α and δ weights (angular and regularity penalties) used in the experiment are displayed with the results.

Table A-5: Hausdorff results from addition-based (top) and logarithm-based (bottom) penalizing

Model	α			20\%	10\%	5\%	2\%	1\%
1	. 04	. 04	0.00322	0.008186	0139	0.050261	0.046100	0.052993
			0.002224	0.005295	0.012277	0.032251	0.043783	0.055846
11	. 04	. 02	0.001773	0.005697	010630	0.013751	0.041870	0.059879
			0.00108	0.002134	0.004617	0.010499	0.042660	0.046877
21	. 02	. 02	0.000859	0,00562	012069	0.022804	0.041686	0.068408
			0.000828	0.001451	0.003182	0,005664	0.024215	0.036284
31	. 02	$\begin{array}{r} .020 .001046 \\ 0.000911 \end{array}$		0.004171	0.00911	0.013396	0.032604	0.044061
				0.001629	0.002686	0.006126	0.016485	0.029743
41	. 02	. 01	$\begin{aligned} & 0.003745 \\ & 0.000735 \end{aligned}$	0.010782		0.022632	0.044625	0.051597
				0.002029	0.005805	0.012352	0.016966	0.029383
51	$\left..04 \rho^{0}\right\|^{01} \left\lvert\, \begin{aligned} & 0: 004701 \\ & 0.001045 \end{aligned}\right.$				013608	$0,021043$	0.063311	0.063311
				0.002857	007269	0,198070	0.035696	0.082072
61	. 04 ¢ 02		0.001672	0.004870	0.007596	0.01278	0.024877	0.043107
	9.0	$\text { OD } \begin{gathered} 0.000936 \\ 0.001342 \\ 0.000866 \end{gathered}$		0.002663	0.005099	0.012780	0,017481	0.048546
71				0.003355	0.006685	0.008866	0.022761	0.039401
				0.001814	0.004290	0.008492	0.015972	0.033649
81	. 08	. 01	0.003344	0.013319	0.023162	0.031626	0.082547	0.082547
			0.001463	0.004588	0.013379	0.022718	0.035793	0.065673
91	. 04	. 01	0.002704	0.010609	0.016245	0.026014	0.040292	0.060484
			0.001305	0.002815	0.006861	0.015804	0.039400	0.062954
101	. 04	. 01	0.002158	0.006011	0.013504	0.014754	0.033577	0.039902
			0.000358	0.001688	0.004069	0.007071	0.015602	0.024933
111	. 04	. 02	0.004063	0.008094	0.013912	0.020512	0.039066	0.069711
			0.001798	0.003412	0.009973	0.110990	0.137811	0.137811

Table A-5: Hausdorff results from addition-based (top) and logarithm-based (bottom) penalizing (cont'd)

Model	α	δ	50\%	20\%	10\%	5\%	2\%	1\%
121	. 02	. 01	0.003183	0.013139	0.023718	0.029295	0.038815	0.104132
			0.001723	0.003308	0.009335	0.016785	0.035186	0.054382
131	. 04	. 01	0.003925	0.007276	0.014393	0.024043	0.045249	0.063384
			0.001141	0.002175	0.004784	0.009780	0.039497	0.039497
141	. 04	. 01	0.000007	0.001240	. 004102	0.010815	0.021084	0.059335
			0.000000	0.00079	0.002153	0.004322	0.018364	0.021316
151	. 04	. 01	0.000027	. 00336	0.005408	0.008219	0.013736	0.024338
			0.000002	0.001568	0.002214	0.004966	0.009630	0.019507
161	. 02	. 01	0.001093	0.004736	0.012361	2681	0.028093	0.036708
			0.00105	0.002250	0.003568	0.006740	0.018576	0.030684
171	. 02	. 01	0.00104	. 004368	0.00	931	0.030683	0.057850
			0.000819	0.001342	0.002617	. 005998	0.018948	0.026481
181	. 02	. 02	0.00149	0.006862	0.00916	,	0.042370	0.044638
			0.001321	0.002688	0.004843	0.009168	0.026919	0.033829
191	. 02	. 01	0.0012	0.003562	0.010515	0.012513	0.026983	0.054035
			0.000960	0.002136	0.004479	0.005807	0.023554	0.028798
201	. 02	. 02	0.001618	0.004905	0.006739	0.011644	0.023292	0.031477
			0.001	0.002959	0.005412	0.011096	0.017711	0.027170
211	. 04	. 04	0.00	0.004357	0.008335	0.020163	0.027414	0.031591
			0.001424	0.002741	0.006083	0,009328	0.021282	0.028368
221	. 04	. 02	0.001003	0.005319	0.011424	0.016682	0.028560	0.054341
			0.000961	0.002068	0.004672	0.008029	0.023256	0.028294
231	. 04	. 01	0.001171	0.007742	0.012605	0.022419	0.038736	0.051755
			0.000964	0.002802	0.004548	0.007698	0.021810	0.040588
241			0.001866/	0.00651	0008518	0.013869	0.020003	0.081559
			0.000936	0.002048	0.005365	0.010416	0.021014	0.030753
251	. 04	01	0.002925	0.006509	0.013227	0.014528	0.026519	0.039704
			0.001559	40.002748	0.005973	0.01212	0.030985	0.057274
	. 02	. 0	0.001511	0.004942	0.009003	0.020984	0.035004	0.050837
			0.001501	0.002587	0.004435	0.006124	0.020837	0.035884
291	. 02	. 01	0.001852	0.006249	0.015005	0.022746	0.048905	0.047393
			0.001786	0.003055	0.004644	0.007911	0.019760	0.037161
301	. 06	. 01	0.001672	0.005768	0.011444	0.024936	0.053522	0.061029
			0.001613	0.003367	0.004583	0.007732	0.021307	0.045735
311	. 04	. 01	0.001423	0.004729	0.011786	0.018082	0.024727	0.031528
			0.001211	0.002245	0.003470	0.005399	0.010804	0.020043
313	. 04	. 01	0.007135	0.007461	0.014864	0.027092	0.038751	0.065515
			0.002407	0.004258	0.007805	0.012166	0.026915	0.048070

Table A-5: Hausdorff results from addition-based penalizing (cont’d)

Model	$\boldsymbol{\alpha}$	$\boldsymbol{\delta}$	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
321	.04	.02	0.000000	0.000569	0.003871	0.008705	0.012630	0.015814
			0.000000	0.000000	0.000005	0.000006	0.025466	0.120618
331	.04	.01	0.000000	0.000007	0.000007	0.011459	0.011087	0.027787
			0.000000	0.000000	0.000005	0.000007	0.020965	0.076975
341	.04	.01	0.029733	0.141720	0.162863	0.211988	0.220224	0.220224
			0.025949	0.115654	0.195246	0.197037	0.197037	0.197037
351	.02	.01	0.001526	0.019115	0.088408	$\mathrm{~N}^{*} \mathrm{~A}^{*}$	$\mathrm{~N}^{*} \mathrm{~A}^{*}$	$\mathrm{~N}^{*} \mathrm{~A}^{*}$
			0.006076	0.001245	0.084882	$\mathrm{~N} / \mathrm{A}^{*}$	$\mathrm{~N}^{*} \mathrm{~A}^{*}$	$\mathrm{~N} / \mathrm{A}^{*}$
361	.06	.01	0.002499	0.010469	0.016088	0.022784	0.032267	0.067565
			0.001337	0.002258	0.005189	0.011103	0.038002	0.081720
371	.04	.01	0.000696	0.002157	0.004087	0.008030	0.019108	0.029171
			0.000681	0.001358	0.002228	0.003419	0.007498	0.017142
381	.02	.01	0.002091	0.010843	0.023459	0.045668	0.058461	0.053997
			0.001673	0.005275	0.007882	0.017825	0.055342	0.068584
391	.04	.01	0.008792	0.016667	0.024697	0.037599	0.065090	0.065454
			0.003351	0.006442	0.013083	0.031258	0.051090	0.088611
Canyon	.02	.02	0.001684	0.006566	0.011067	0.022801	0.030387	0.035161
	$\beta: 1$	0.004899	0.012800	0.028362	0.033196	0.033319	0.034957	
Horse	.04	.01	0.000566	0.002303	0.005272	0.008983	0.014943	0.025378
			0.000490	0.001019	0.004283	0.004283	0.005694	0.014777
F								

[^0]Figures A-1 to A-13 show graphs of the Hausdorff distances between our method and the QEM method for selected models.

Figure A-1: Hausdorff distances for Female (left) and Male (right) models

Figure A-2: Hausdorff distances for Cup (left) and Chair (right) models

Figure A-3: Hausdorff distances for Squid (left) and Squid 2 (right) models

Figure A-4: Hausdorff distances for Table (left) and Table 2 (right) models

Figure A-5: Hausdorff distances for Teday (left) and Teddy 2 (right) models

Figure A-6: Hausdorff distances for Hand (left) and Hand 2 (right) models

Figure A-7: Hausdorff distances for Pliers (left) and Pliers 2 (right) models

Figure A-8: Hausdorff distances for Dolphin (left) and Fish (right) models

Figure A-9: Hausdorff distances for Bird (left) and Bird 2 (right) models

Figure A-10: Hausdorff distances for Angel (left) and Armadillo (right) models

Figure A-11: Hausdorff distances for Bunny (left) and Canyon (right) models

Figure A-12: Hausdorff distances for Dinosaur (left) and Dragon (right) models

Figure A-13: Hausdorff distances for Horse (left) and Turbine (right) models

A. 2 Running times with and without partial updates, and with different updating

parameters

In Table A-6, we compare the running times of selected models when running with (top row) and without (middle row) partial updates, and display the ratios of the running times (bottom row).

Table A-6: Comparing running time with and without partial updates: (top row) with partial updates, (middle row) without partial updates, (bottom row) ratio

Model	50\%	20\%	10\%	5\%	2\%	1\%
1	19.158	33.048	- 35.902	36.953	38.445	39.006
	114.719	74.953	191,328	198.203	201.844	202.891
	5.988	5.294	(c) 5.329	5.364	5.250	5.202
11	50.633	78.583	-86.554	89.479	91.271	91.862
	254.563	375.734	, 414.578	432.313	440.563	443.047
	5.028	4.781	2.74 .790	4.831	4.827	4.823
21	52.185	78.583	86.554	89.479	91.271	91.862
	375.688	550.969	602.013	623.469	634.875	638.313
	7.199	7.011	\% 6.955	6.968	6.956	6.949
31	54.919	92.553	104.100	108.075	111.310	112.832
	373.641	543.172	590.781	611.391	621.906	625.406
	6.803	5.869	5.675	5.657	5.587	5.543
61	19.418	33.078	36.202	38.355	39.817	40.338
	116.938	170.391	184.984	191.266	194.844	196.016
	6.022	65.151	5.110	4.987	4.893	4.859
81	21.721	8137.143		$8 \cdot 43.392$	~ 45.045	45.816
	138.2346	203.859	224.969	233.516	$\partial 238.234$	239.469
	6.364	5.488	5.483	5.382	5.289	5.227
111	0.38 .344	62.891	70,203	, 31.500	73.047	73.219
	/339.438	430.922	. 456.250	d 469.594	4 476.734	479.016
	8.852	6.852	- 6.499	6.568	- 6.526	6.542
121	23.484	38.896	42.571	45.065	47.488	48.700
	148.516	211.203	227.156	234.125	239.047	240.047
	6.324	5.430	5.336	5.195	5.034	4.929
131	48.547	81.813	92.328	95.781	98.172	99.031
	276.891	399.906	435.188	448.875	456.859	459.031
	5.704	4.888	4.713	4.686	4.654	4.635
141	62.859	98.843	111.344	116.484	119.813	120.813
	634.078	844.766	896.344	920.625	931.531	934.422
	10.087	8.547	8.050	7.903	7.775	7.734

Table A-6: Comparing running time with and without partial updates: (top row) with partial updates, (middle row) without partial updates, (bottom row) ratio (cont’d)

Model	50\%	20\%	10\%	5\%	2\%	1\%
151	48.688	82.844	95.750	100.156	103.156	103.875
	494.343	665.609	706.828	723.828	733.016	735.734
	10.153	8.034	7.382	7.227	7.106	7.083
171	52.505	89.549	100.525	104.630	107.845	109.087
	357.141	520.406	564.344	585.484	596.813	599.891
	6.802	5.811	5.61	5.596	5.534	5.499
181	27.844	47.328	51.391	54.047	56.141	57.141
	155.203	230.906	250.859	262.500	267.953	269.594
	5.574	4.879	4.881	4.857	4.773	4.718
191	56.722	96.819	111.000	114.995	119.061	120.223
	337.734	509.531	556.938	577.281	587.172	590.343
	5.954	5.263	\% 5.017	5.020	4.932	4.910
201	18.136	27.520	30.604	32.657	34.039	34.710
	103.734	154.343	168.984	174.969	178.109	178.969
	5.720	5.608	5.522	5.358	5.232	5.156
211	17.797	27.984	31.156	32.891	34.031	34.641
	98.906	145.797	\%162.891	168.547	171.844	172.844
	5.557	5.210	25.228	5.124	5.050	4.990
221	22.873	39.437	43.713	46.186	47.468	48.129
	165.250	241.906	262.125	271.078	275.906	277.297
	7.225	6.134	4. 5.996	5.869	5.812	5.762
231	24.688	42.156	46.625	49.109	50.391	51.109
	142.688	204.609	223.203	230.813	234.984	236.359
	5.780	4.854	4.787	4.700	4.663	4.625
241	14.844			$26,141$	27.328	27.891
	69.438	102.719	111.672	116.000	118.125	118.859
	4.678	${ }^{6}-4.550$	4.470	4.437	- 4.322	4.262
251	12.829	$8 \mid 21.391$	923.813	$\text { Q } 24.969$	\% 25.922	26.297
	65.438	96.313	104.359	407.859	ס 110.297	110.953
	5.101		4.382	4.320	4.255	4.219
281						213.697
	$\mid 664.609$	$\sqrt{969.344}$	1047,641	1086,172	$1108,375$	1114.891
	6.289	5.440	5.294	5.232	5.236	5.217
291	86.855	144.988	162.183	171.186	174.421	176.033
	622.922	923.109	1008.250	1042.344	1061.484	1067.453
	7.172	6.367	6.217	6.089	6.086	6.064
301	33.328	56.371	61.378	64.473	66.235	66.866
	203.984	301.516	330.844	348.469	355.891	357.984
	6.120	5.349	5.390	5.405	5.373	5.354
311	100.104	171.947	193.108	203.703	208.300	209.942
	844.359	1183.766	1266.609	1302.000	1320.469	1326.438
	8.435	6.884	6.559	6.392	6.339	6.318

Table A-6: Comparing running time with and without partial updates: (top row) with partial updates, (middle row) without partial updates, (bottom row) ratio (cont'd)

Model	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{5 \%}$	$\mathbf{2 \%}$	$\mathbf{1 \%}$
321	81.838	123.698	134.443	138.860	141.503	142.204
	427.766	624.266	686.578	718.297	733.031	738.453
	5.227	5.047	5.107	5.173	5.180	5.193
331	77.031	128.938	143.719	148.719	151.781	153.203
	435.813	655.078	722.594	751.891	766.891	771.094
	5.658	5.081	5.028	5.056	5.053	5.033
341	4.777	7.751	8.512	8.943	9.303	9.544
	32.109	55.328	60.047	62.500	63.781	64.141
	6.722	7.138	7.054	6.989	6.856	6.721
351	18.987	35.030	36.693	$\mathrm{~N} / \mathrm{A}^{*}$	$\mathrm{~N} / \mathrm{A}^{*}$	$\mathrm{~N} / \mathrm{A}^{*}$
	125.359	175.141	190.109	$\mathrm{~N} / \mathrm{A}^{*}$	$\mathrm{~N} / \mathrm{A}^{*}$	$\mathrm{~N} / \mathrm{A}^{*}$
	6.602	5.000	5.181	$\mathrm{~N} / \mathrm{A}^{*}$	$\mathrm{~N} / \mathrm{A}^{*}$	$\mathrm{~N} / \mathrm{A}^{*}$
361	49.631	88.770	93.965	97.891	100.955	102.267
	312.938	467.938	510.234	529.391	539.813	543.531
	6.305	5.271	5.430	5.408	5.347	5.315
371	58.394	87.265	98.652	104.530	107.044	108.426
	306.875	452.984	491.719	509.453	519.391	522.531
	5.255	5.191	4.984	4.874	4.852	4.819
381	28.150	46.206	50.483	52.846	54.398	55.430
	134.938	200.953	220.609	229.438	234.406	235.766
	4.794	4.349	4.370	4.342	4.309	4.253
391	14.551	22.643	25.266	26.448	27.810	28.571
	81.016	121.563	132.594	137.547	140.156	140.875
	5.568	5.369	5.248	5.201	5.040	4.931
Avg.	6.408	5.645	5.534	5.491	5.424	5.383

* N/A: The algorithm exhausted all possible contractions before the given level ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table A-7 displays the running times when changing the parameters
used in our updating scheme as described in Chapter V, along with running times when not using caching. For comparison, we also display the running times using normal parameters.

Table A-7: Running times after changing update parameters

Model	Parameters	50\%	20\%	10\%	5\%	2\%	1\%
1	$n-8$ layers	25.891	41.422	47.578	51.422	53.828	54.859
	$n-4$ layers	28.703	43.906	47.641	49.484	50.063	50.266
	$\|C\| \geq\|H\| \times 6$	13.797	25.656	30.328	32.391	33.844	34.516
	$\|C\| \geq\|H\| \times 2$	33.969	49.861	52.984	54.234	55.500	56.234
	No Cache	19.438	35.703	38.422	39.484	40.844	41.422
	Regular	9.158	33.048	35.902	36.953	38.445	39.006
11	$n-8$ layers	1.359	84.016	99.688	105.531	108.922	112.578
	$n-4$ layers	62.516	95.469	109.156	112.656	114.547	114.984
	$\|C\| \geq\|H\| \times 6$	30.594	57.672	69.031	73.125	75.703	76.703
	$\|C\| \geq\|H\| \times 2$	113.188	157.672	171.078	176.547	179.578	180.672
	No Cache	48.844	77.969	86.828	90.078	92.219	93.016
	Regular	50.633	78.583	86.554	89.479	91.271	91.862
21	$n-8$ layers	67.797	102.078	116.938	124.813	127.938	130.094
	$n-4$ layers	85.453	128.547	145.984	152.172	154.547	155.172
	$\|C\| \geq\|H\| \times 6$	43.953	80.719	94.797	-99.016	101.844	102.859
	$\|C\| \geq\|H\| \times 2$	78.594	140.031	152.219	159.109	161.734	162.656
	No Cache	60.500	103.156	115.375	119.750	123.094	124.203
	Regular	52.185	78.583	86.554	89.479	91.271	91.862
31	$n-8$ layers	¢ 81.672		107.547		118.453	121.328
	n-4 layers	[84.328\|	128.891	146.703	153.391	156.250	157.109
	$\|C\| \geq\|H\| \times 6$	47.250	87.234	102.188	106.844	110.125	111.484
	$\|C\| \geq\|H\| \times 2$	77.203	139.891	152.531	159.563	162.375	163.484
				121.672	126.797	130.797	132.344
	${ }^{9} \text { Regular } 6$	54.9196	$\|92,553\|$	104.100	108.075	11.310	112.832
41	n-8 layers	25.672	40.594	47.750	50.500	52.969	54.297
	$n-4$ layers	41.141	66.328	70.703	73.344	74.828	75.250
	$\|C\| \geq\|H\| \times 6$	21.719	38.813	45.750	48.266	49.531	50.453
	$\|C\| \geq\|H\| \times 2$	39.016	58.906	66.016	68.578	70.031	70.938
	No Cache	29.875	50.031	54.391	57.078	58.594	59.547
	Regular	23.023	38.936	42.431	44.474	45.616	46.347

Table A-7: Running times after changing update parameters (cont'd)

Model	Parameters	50\%	20\%	10\%	5\%	2\%	1\%
51	$n-8$ layers	11.344	17.797	19.766	22.109	23.734	24.172
	$n-4$ layers	18.250	25.875	28.094	28.953	29.688	29.875
	$\|C\| \geq\|H\| \times 6$	9.219	16.578	18.750	19.953	21.250	21.984
	$\|C\| \geq\|H\| \times 2$	13.781	20.250	21.906	23.438	24.578	25.359
	No Cache	11.594	18.391.	20.703	21.781	22.813	23.563
	Regular	9.664	15.262	17.145	18.326	19.158	19.708
61	$n-8$ layers	20.422	33.094	38.656	40.688	43.516	44.547
	$n-4$ layers	30.422	46.484	51.703	52.938	54.063	54.313
	$\|C\| \geq\|H\| \times 6$	17.625	31.234	36.703	38.188	39.547	40.250
	$\|C\| \geq\|H\| \times 2$	31.141	46.875	50.797	52.953	54.359	55.063
	No Cache	22.641	39.000	42.531	44.813	46.328	46.813
	Regular	19.418	33.078	36.202	38.355	39.817	40.338
71	$n-8$ layers	1.328	34.141	39.953	42.063	44.531	45.734
	$n-4$ layers	31.938	52.516	56.281	58.484	59.438	59.953
	$\|C\| \geq\|H\| \times 6$	17.969	32.422	38.297	39.906	41.563	42.031
	$\|C\| \geq\|H\| \times 2$	32.078	48.078	52.375	54.797	56.203	56.781
	No Cache	25.656	42.125	45.813	48.031	49.484	50.141
	Regular	19.598	32.597	35.461	37.224	38.295	38.776
81	$n-8$ layers	24.234	38.594	45.188	48.234	51.906	53.156
	$n-4$ layers	36.688	55.906	63.031	65.688	67.203	67.516
	$\|C\| \geq\|H\| \times 6$	19.844	35.875	42.313	44.578	46.203	47.063
	$\|C\| \geq\|H\| \times 2$	37.359	54.922	61.047	62.906	65.109	65.922
	No Cache	27.516	46.656	50.984	54.203	56.375	58.094
	Regular	21.721	37.143	41.029	43.392	45.045	45.816
91	$n-8$ layers	32.672	51.297	60.234	64.578	68.422	69.953
	$n-4$ layers	49.375	75.563	86.250	89.234	90.578	91.359
	$\|C\| \geq\|H\| \times 6$	26.281	49.266 e	57.844	61.094	63.453	64.172
	$\|C\| \geq\|H\| \times 29$	49.594			86.328	88.625	89.734
	No Cache	43.578	$75.203{ }^{\circ}$	83.156	85.891	87.422	88.625
	Regular	28.511	48.299	54,298	56.421	57.553	58.414
101	ค $n=8$ layers	33.203	62.359	76.234	81.859	85.984	88.188
	$n-4 \text { layers }$	48.34.46	74,594/	85.672	88.5780	90.016	90.797
	$9 C\|\geq\|H\| \times 6$	30.438	48.906	57.016	60.047	62.016	62.781
	$\|C\| \geq\|H\| \times 2$	47.781	83.906	99.469	104.375	106.656	108.469
	No Cache	43.672	70.375	79.094	82.125	83.984	85.313
	Regular	35.891	59.250	66.953	70.047	71.172	71.781
111	n-8 layers	39.250	65.016	76.219	80.703	83.313	N/A ${ }^{*}$
	$n-4$ layers	52.547	78.500	88.844	91.703	92.906	93.094
	$\|C\| \geq\|H\| \times 6$	27.578	47.625	55.984	59.000	60.281	60.391
	$\|C\| \geq\|H\| \times 2$	66.031	101.250	108.625	111.484	112.734	112.750
	No Cache	39.141	63.891	73.656	76.281	78.766	79.078
	Regular	38.344	62.891	70.203	71.500	73.047	73.219

Table A-7: Running times after changing update parameters (cont'd)

Model	Parameters	50\%	20\%	10\%	5\%	2\%	1\%
121	$n-8$ layers	27.578	43.594	51.422	54.625	58.000	59.813
	$n-4$ layers	34.000	50.563	55.688	56.922	58.047	58.344
	$\|C\| \geq\|H\| \times 6$	20.500	35.297	40.953	42.719	44.625	45.297
	$\|C\| \geq\|H\| \times 2$	29.328	51.688	55.609	57.875	59.344	60.281
	No Cache	25.234	42.766	46.484	49.063	50.953	51.844
	Regular	23.484	38.896	42.571	45.065	47.488	48.700
131	$n-8$ layers	65.563	99.563	114.031	119.469	123.750	126.516
	$n-4$ layers	65.422	95.984	109.344	112.766	114.750	115.250
	$\|C\| \geq\|H\| \times 6$	37.359	64.313	75.031	79.203	82.078	83.703
	$\|C\| \geq\|H\| \times 2$	47.359	93.813	104.031	108.297	111.234	112.734
	No Cache	45.328	75.828	85.109	88.641	91.234	92.328
	Regular	48.547	81:813	92.328	95.781	98.172	99.031
141	$n-8$ layers	59.516	93.531	105.391	110.406	114.109	115.781
	$n-4$ layers	66.375	107.531	123.750	129.938	132.203	132.641
	$\|C\| \geq\|H\| \times 6$	68.344	100.688	113.672	118.688	122.094	123.438
	$\|C\| \geq\|H\| \times 2$	80.141	139.453	157.328	165.531	169.891	170.688
	No Cache	61.125	95.438	107.656	112.656	116.141	117.219
	Regular	62.859	98.843	111.344	116.484	119.813	120.813
151	$n-8$ layers	41.797	80.500	91.266	95.313	99.250	101.938
	$n-4$ layers	56.094	97.281	108.219	114.281	116.703	117.219
	$\|C\| \geq\|H\| \times 6$	50.531	. 75.031	90.109	94.813	98.031	99.234
	$\|C\| \geq\|H\| \times 2$	63.109	105.109	120.797	125.063	127.922	128.969
	No Cache	49.828	81.703	93.375	97.813	100.688	101.531
	Regular	48.688	82.844	95.750	100.156	103.156	103.875
161	$n-8$ layers	59.484	93.281	108.391	117.703	121.000	122.953
	$n-4$ layers	80.500	129.281	141.625	147.953	150.438	151.078
	$\|C\| \geq\|H\| \times 6$	41.797	75.391	88.250	92.922	96.328	97.609
	$\|C\| \geq\|H\| \times 2$	82.578	128:844	144.813	149.063	152.359	153.813
	No Cache	57.531	-97.297	108.938	113.188	116.438	117.828
	Regular	66.976	102.497	112.121	115.586	118.210	119.452
171		67.156	104.6418	120.547	128.625	131.969	133.594
	9 n -4 layers	85.938	137.859	150.547	157.6256	160.516	161.516
	$9 C\|\geq\|H\| \times 6$	44.453	81.188	95.547	102.531	104.922	105.734
	$\|C\| \geq\|H\| \times 2$	88.563	137.703	154.906	159.578	163.234	164.719
	No Cache	64.063	108.172	122.125	127.156	131.219	132.766
	Regular	41.329	70.541	79.094	82.308	84.572	85.883
181	$n-8$ layers	28.859	46.156	53.672	56.438	59.453	61.125
	$n-4$ layers	41.063	62.094	68.750	71.125	72.453	72.703
	$\|C\| \geq\|H\| \times 6$	19.750	36.297	42.750	44.859	45.984	46.719
	$\|C\| \geq\|H\| \times 2$	35.438	62.094	68.531	70.234	72.391	73.344
	No Cache	29.547	49.266	53.375	56.156	57.750	58.531
	Regular	27.844	47.328	51.391	54.047	56.141	57.141

Table A-7: Running times after changing update parameters (cont'd)

Model	Parameters	50\%	20\%	10\%	5\%	2\%	1\%
191	$n-8$ layers	54.047	84.766	99.031	106.922	112.172	114.531
	$n-4$ layers	79.453	119.875	136.250	142.266	144.344	144.984
	$\|C\| \geq\|H\| \times 6$	40.969	76.250	91.391	95.844	99.031	100.453
	$\|C\| \geq\|H\| \times 2$	81.328	125.141	140.594	144.359	147.172	148.141
	No Cache	55.078	93.859	105.625	109.734	112.750	113.813
	Regular	56.722	96.819	111:000	114.995	119.061	120.223
201	$n-8$ layers	18.766	29.516	33.641	36.641	39.422	40.391
	$n-4$ layers	23.250	41.938	44.875	45.813	46.828	47.047
	$\|C\| \geq\|H\| \times 6$	13.406	23.969	27.078	28.984	29.922	30.344
	$\|C\| \geq\|H\| \times 2$	22.625	36.438	39.688	41.344	42.156	42.813
	No Cache	19.203	29.625	32.891	34.844	36.000	36.547
	Regular	18.136	27.520	30.604	32.657	34.039	34.710
211	$n-8$ layers	21.031	32.578	37.469	39.813	42.641	43.500
	$n-4$ layers	5.375	37.641	40.250	41.156	41.984	42.219
	$\|C\| \geq\|H\| \times 6$	15.141	27.922	31.500	33.438	34.594	35.188
	$\|C\| \geq\|H\| \times 2$	21.969	35.516	38.469	39.609	40.828	41.656
	No Cache	18.000	28.313	31.547	33.328	34.516	35.141
	Regular	17.797	27.984	31.156	32.891	34.031	34.641
221	$n-8$ layers	31.625	48.109	56.313	59.688	62.469	64.281
	$n-4$ layers	39.969	62.859	69.766	72.266	73.531	73.859
	$\|C\| \geq\|H\| \times 6$	21.469	40.750	47.781	50.094	51.656	52.453
	$\|C\| \geq\|H\| \times 2$	34.234	60.375	66.891	69.172	70.375	71.141
	No Cache	28.641	49.031	53.484	56.438	58.094	58.953
	Regular	22.873	39.437	43.713	46.186	47.468	48.129
231	$n-8$ layers	24.094	40.609	47.766	50.922	54.500	56.016
	$n-4$ layers	34.250	52.938	59.109	61.266	62.234	62.641
	$\|C\| \geq\|H\| \times 6$	19.656	35.2030	41.797	43.813	44.813	45.234
	$\|C\| \geq\|H\| \times 29$	35.734	252.813	958.563	60.047	61.578	62.250
	No Cache	26.031	44.328	48.609	51.203	52.453	53.156
	Regular	24.688	42.156	46.625	49.109	50.391	51.109
241						33.875	34.781
	$n-4 \text { layers }$	16.1096	27.406	29.875	31.0636	31.484	31.672
	$9 C\|\geq\|H\| \times 6$	10.344	18.906	21.422	22.516	23.438	23.781
	$\|C\| \geq\|H\| \times 2$	17.906	26.438	29.219	30.578	32.219	32.906
	No Cache	14.531	22.531	25.094	26.328	27.578	28.172
	Regular	14.844	22.578	24.984	26.141	27.328	27.891
251	$n-8$ layers	15.844	23.516	26.953	30.563	32.781	33.375
	$n-4$ layers	16.859	29.500	32.172	33.516	33.891	34.031
	$\|C\| \geq\|H\| \times 6$	9.625	17.781	20.375	21.703	23.156	23.922
	$\|C\| \geq\|H\| \times 2$	15.359	22.688	25.188	26.406	27.578	28.109
	No Cache	13.047	20.563	23.000	24.172	25.203	25.672
	Regular	12.829	21.391	23.813	24.969	25.922	26.297

Table A-7: Running times after changing update parameters (cont’d)

Model	Parameters	50\%	20\%	10\%	5\%	2\%	1\%
281	$n-8$ layers	114.859	179.906	208.578	222.641	229.984	231.813
	$n-4$ layers	153.328	229.391	259.344	270.516	277.031	278.578
	$\|C\| \geq\|H\| \times 6$	88.250	161.719	199.078	207.094	213.875	215.328
	$\|C\| \geq\|H\| \times 2$	158.047	238.438	266.266	277.313	283.344	284.719
	No Cache	106.797	177.281	197.484	207.625	211.750	213.625
	Regular	105.682	178.196	197.905	207.599	211.694	213.697
291	$n-8$ layers	109.438	164.156	188.438	200.250	206.453	208.063
	$n-4$ layers	148.281	224.109	253.891	265.188	271.484	273.000
	$\|C\| \geq\|H\| \times 6$	84.250	150.047	173.922	182.063	189.047	190.891
	$\|C\| \geq\|H\| \times 2$	154.594	233.266	260.563	271.391	277.188	278.422
	No Cache	104.891	174.172	194.000	203.969	207.969	210.000
	Regular	86.855	144.988	162.183	171.186	174.421	176.033
301	$n-8$ layers	36.547	58.000	67.594	71.453	74.922	77.313
	$n-4$ layers	52.859	84.984	92.891	95.938	97.813	98.234
	$\|C\| \geq\|H\| \times 6$	30.359	58.438	63.484	66.578	68.688	69.516
	$\|C\| \geq\|H\| \times 2$	53.422	85.016	93.250	96.109	97.813	98.797
	No Cache	37.375	65.109	73.875	78.547	80.156	81.672
	Regular	33.328	56.371	61.378	64.473	66.235	66.866
311	$n-8$ layers	100.453	171.516	185.891	198.688	205.578	207.094
	$n-4$ layers	168.156	279.563	307.063	325.984	332.203	333.344
	$\|C\| \geq\|H\| \times 6$	132.859	190.219	205.406	220.281	225.156	227.094
	$\|C\| \geq\|H\| \times 2$	131.609	235.516	263.828	275.000	280.906	281.922
	No Cache	116.594	194.344	218.688	230.219	234.828	236.766
	Regular	100.104	171.947	193.108	203.703	208.300	209.942
321	$n-8$ layers	74.438	122.234	131.453	140.750	143.625	144.188
	$n-4$ layers	128.844	179.438	193.281	202.219	206.500	207.703
	$\|C\| \geq\|H\| \times 6$	112.375	170.641	181.203	187.922	192.500	193.438
	$\|C\| \geq\|H\| \times 2$	Q103.453	152.719	165.828	174.156	177.156	177.844
	No Cache	-101.625	150.297°	163.656	168.750	172.047	172.922
	Regular	81.838	123.698	134.443	138.860	141.503	142.204
331						122.891	125.156
	$n-4 \text { ayęs }$	111.172	160.797	178.141	187.938	192.313	193.953
	$9 C\|\geq\|H\| \times 6$	84.047	140.219	151.563	158.156	161.922	162.594
	$\|C\| \geq\|H\| \times 2$	95.609	146.953	164.391	169.531	172.938	173.391
	No Cache	105.969	172.641	191.984	198.656	203.063	203.875
	Regular	77.031	128.938	143.719	148.719	151.781	153.203
341	$n-8$ layers	4.578	7.594	8.609	10.609	11.594	11.953
	$n-4$ layers	9.766	14.516	15.859	16.453	16.953	17.250
	$\|C\| \geq\|H\| \times 6$	5.766	8.656	9.469	9.922	10.156	10.266
	$\|C\| \geq\|H\| \times 2$	5.156	8.438	9.234	9.641	9.984	10.250
	No Cache	6.813	11.063	12.078	12.578	12.984	13.297
	Regular	4.777	7.751	8.512	8.943	9.303	9.544

Table A-7: Running times after changing update parameters (cont’d)

Model	Parameters	50\%	20\%	10\%	5\%	2\%	1\%
351	$n-8$ layers	18.625	29.594	32.984	N/A ${ }^{*}$	N/A*	N/A ${ }^{*}$
	$n-4$ layers	28.953	51.531	56.359	N/A*	N/A*	N/A*
	$\|C\| \geq\|H\| \times 6$	21.234	36.172	39.984	N/A*	N/A*	N/A*
	$\|C\| \geq\|H\| \times 2$	20.969	38.188	41.797	N/A*	N/A*	N/A*
	No Cache	25.750	44.234	46.625	N/A*	N/A*	N/A*
	Regular	18.987	35.030	36.693	N/A*	N/A ${ }^{*}$	N/A ${ }^{*}$
361	$n-8$ layers	55.375	86.375	100.781	108.359	111.750	114.031
	$n-4$ layers	97.078	150.516	169.938	177.109	180.063	181.297
	$\|C\| \geq\|H\| \times 6$	45.609	84.797	99.250	104.406	108.203	109.797
	$\|C\| \geq\|H\| \times 2$	74.781	137.063	153.688	157.922	161.172	162.734
	No Cache	79.563	134.016	150.250	156.391	160.844	162.563
	Regular	49.63	88.770	93.965	97.891	100.955	102.267
371	$n-8$ layers	54.063	83.016	95.734	100.828	106.016	108.500
	$n-4$ layers	84.219	130.000	145.516	152.547	155.797	156.750
	$\|C\| \geq\|H\| \times 6$	40.906	76.938	90.125	94.531	98.141	99.297
	$\|C\| \geq\|H\| \times 2$	76.781	129.266	146.828	151.422	154.813	156.297
	No Cache	77.625	120.766	139.109	148.438	151.813	153.438
	Regular	58.394	+87.265	98.652	104.530	107.044	108.426
381	$n-8$ layers	25.516	40.625	47.734	50.250	53.203	54.672
	$n-4$ layers	40.484	61.750	69.438	72.313	73.828	74.281
	$\|C\| \geq\|H\| \times 6$	21.297	38.563	45.313	47.609	49.094	49.969
	$\|C\| \geq\|H\| \times 2$	39.578	58.188	64.797	67.109	68.672	69.609
	No Cache	36.375	62.328	67.953	71.375	73.281	74.453
	Regular	28.150	46.206	50.483	52.846	54.398	55.430
391	$n-8$ layers	16.328	25.125	28.109	29.734	31.719	32.609
	$n-4$ layers	21.734	36.891	41.422	42.531	43.281	43.750
	$\|C\| \geq\|H\| \times 6$	12.547	22.984 C	25.875	27.766	28.516	29.453
	$\|C\| \geq\|H\| \times 29$	22.859	P35.484	938.078	39.203	40.359	41.063
	No Cache	23.703	35.109	38.344	39.891	41.422	42.375
	Regular	14.551	22.643	25,266	26.448	,27.810	28.571

* N/A:The algorithm exhausted at possible contractions before the given level

A. 3 Pictures of results

For all figures: (Top row) Full model, 1\% simplification with QEM, and our method; (Bottom row) 10\% simplification with QEM, and our method.

Figure A-14: 1\% and 10\% simplified models: (a) Female 1 and (b) Female 2

Figure A-15: 1\% and 10\% simplified models: (a) Cup, (b) Chair, (c) Squid

Figure A-16: 1\% and 10\% simplified models: (a) Squid 2, (b) Table 1, (c) Table 2

Figure A-17: 1\% and 10\% simplified models: (a) Teddy, (b) Teddy 2

Figure A-18: 1\% and 10\% simplified models: (a) Hand, (b) Hand 2

Figure A-19: 1\% and 10\% simplified models: (a) Pliers, (b) Pliers 2, (c) Dolphin

Figure A-20: 1\% and 10\% simplified models: (a) Fish, (b) Bird, (c) Bird 2

Figure A-21: 1\% and 10\% simplified models: (a) Head, (b) Angel

Figure A-22: 1\% and 10\% simplified models: (a) Big Armadillo, (b) Bunny

Figure A-23: 1\% and 10\% simplified models: (a) Canyon, (b) Dinosaur, (c) Dragon

Figure A-24: 1\% and 10\% simplified models: (a) Horse, (b) Turbine

Figure A-25: Canyon model, simplified with (left) and without (right) boundary

Figure A-26:Botton of bunnyg model: Full (left), simplified with boundary
preservation (middle), without (right)

BIOGRAPHY

Varakorn Ungvichian was born on 22 May, 1983. Ungvichian received a Bachelor of Engineering (B.Eng.) degree in Computer Engineering from the Faculty of Engineering, Chulalongkorn University in 2005, entered the Master of Engineering curriculum at the Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University the same year, received a Master of Engineering (M.Eng.) degree in 2007, and entered the Doctor of Engineering curriculum at the Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University in 2007.

Ungvichian has presented two of his research papers at international level conferences: "Mapping a 3-DModel into Abstract Cellular Complex Format" at CAD '06 in Phuket, Thailand from June 19-23, 2006, and "Quadrangle Collapse Mesh Reduction with Regularity and Angular Deviation Bias" at ICCMS 2010 in Sanya, China from January 22-24, 2010.

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย
[^0]: *N/A: The algorithm exhausted all possible contractions before the given level

