

IDENTIFICATION AND CHARACTERIZATION OF GENES FUNCTIONALLY RELATED TO REPRODUCTION OF THE GIANT TIGER SHRIMP
 Penaeus monodon

Thesis Title

By
Field of study
Thesis Principal Advisor
Thesis Co-advisor

Identification and characterization of genes functionally related to reproduction of the giant tiger shrimp Penaeus monodon

Miss Rungnapa Leelatanawit
Biotechnology
Professor Piamsak Menasveta, Ph.D.
Sirawut Klinbunga, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree
Deputy Dean for Administrative Affairs,
Minolvan fimpon.......................ing Dean, The Faculty of Science
(Associate Professor Vimolvan Pimpan, Ph.D.)

THESIS COMMITTEE

(Associate Professor Charoen Nitithamyong, Ph.D.)

(Professor Piamsak Menasveta, Ph.D.)

Thesis Co-advisor
(Sirawut Klinbunga, Ph.D.)

Lin Livduzuz~ir
(Associate Professor Thaithaworn Lirdwitayaprasit, Ph.D.)

(Associate Professor Warawut Chulalaksananukul, Ph.D.)

รงงนภา ลีละธนาวิทย์ : การระบุละลักษณะสมบิติขจงยีนที่มีหน้าที่เกี่ยวกับการสีบพันธุขจงกุ้งกุตาดำ Penaeus monodon (IDENTIFICATION AND CHARACTERIZATION OF GENES FUNCTIONALLY RELATED TO REPRODUCTION OF THE GIANT TIGER SHRIMP Penaeus monodon) ๑. ที่ปรีกษาวิทยานิหนธ์นลัก : ต.ดร. เปี่ยมศักดิ์ เมนะเศวต, จ. ที่ปรีกษาวิทยานิพนธ์ร่วม : ดร. คิราุธ กลิ่นบุหงา, 307 หน้า.

 ชัณทะ เป็น small ubiquitin-like modifier 1 (SUMO-1), cyclophlilin A และ dynactin subunit 5 นยกจากนี้งังwบยี่น transformer-2

 ไาลที่สมมมุกโ์ขจงีีนได้จ่านวน 16 ยีน ประกยบด้วย PMTST1, multiple inositol polyphosphate phosphatase 2 (MIPP2). prohibitin-2, cell division kinase 7 (cdk7), fiotilin 2. growth factor receptor-bound protein, innexin 1, innexin 2, RacGIPase activating protein 1, transformer 2 (Tra-2), Dmo1, progestin membrane receptor component 1 (PGMRC1). saposin, troponin T isoform 3, Ero1L CG1333-PB isoform B, และ dihydrolipoamide dehydrogenase

 ชีนที่มีแนาใน้มการนสดงออกในรังไช่มากกว่าในอัณทะจำนวนทั้งหมด 36 ยีน

 stem-cell renewal factor, MIPP2 และ HSP70-2 ในฮัณทะจูงกว่าในร้ไไ่ ($P<0.05$) ในทณะที่ระดับการนงดงอยกของ $C Y A$ และ

 0.05)

นจกจากนี้เังทำการสางางโปรตีนจูกผสมขจงยีน DmC1, spermatogonial stem-cell renewal factor, SUMO-1 และ $C Y A$ ใน E.coli น่าโปปรตีนดูกนสมของ Dmc1 spermatogonial stem-cell renewal factor และ CYA ที่ทำบริดุทสิ์ไนลิต polyclonal antibody ในกระต่าย เพื่อใข้ตรวจสอบระดับการนรดงอยกในระัับการแปลรหัสและหน้าที่ของโปรตีนตังกล่าวต่อไป

ปีการศึกษา 2551 ลายมีอชื่อ จ.ที่ปรึกษาวิทยานิพนธ์หลัก. ลายมือชื่อ จ.ที่ปรักษาวิทยานิพนธ์ร่วม.... C.....aไt.

\#\# 4773831023 : MAJOR BIOTECHNOLOGY

KEY WORD : Penaeus monodon / GIANT TIGER SHRIMP / TESTICULAR DEVELOPMENT / cDNA LIBRARY / RT-PCR

RUNGNAPA LEELATANAWIT: IDENTIFICATION AND CHARACTERIZATION OF GENES FUNCTIONALLY RELATED TO REPRODUCTION OF THE GIANT TIGER SHRIMP Penaeus monodon. THESIS PRINCIPAL ADVISOR: PROF. PIAMSAK MENASVETA, Ph.D. THESIS COADVISOR: SIRAWUT KLINBUNGA, Ph.D., 307 pp.

Low degrees of reproductive maturation of the giant tiger shrimp (Penaeus monodon) in captivity have limited the ability to genetically improve this important species effectively. Therefore, mechanisms governing gonadal maturation of P. monodon at the molecular level are important and can be directly applied to the shrimp industry. Genes expressed in testes of P. monodon were identified and characterized by EST analysis. A total of 896 clones from the conventional testis cDNA library were sequenced and 606 ESTs (67.6%) significantly matched sequences in the GenBank (E-value $<1 \mathrm{e}-04$). In addition, 178 clones from the forward and 187 clones from the reverse SSH libraries between CDNA in testes of broodstock and juvenile P. monodon were also constructed and sequenced. Of which, 67 ESTs (37.1\%) and 104 ESTs (54.0%) significantly matched known genes. Several genes functionally involved in testicular development were found such as small ubiquitin-like modifier (SUMO-1), cyclophilin A and dynactin subunit 5 . In addition, transformer-2 (Tra-2), a gene involving sex determination cascades, was also found.

Apart from the full length cDNA that found in the established libraries, additional 16 functionally important gene homologues including low molecular weight neurofilament protein $X N F-L$ (termed P. monodon testis-specific transcript 1, PMTST1), multiple inositol polyphosphate phosphatase 2 (MIPP2), prohibitin-2, cell division kinase 7 (cdk7), flotillin 2, growth factor receptor-bound protein, innexin 1, innexin 2, Rac-GTPase activating protein 1, transformer 2 (Tra-2), meiotic recombination protein DMCI/LIM15 homolog isoform 1 (Dmcl), progestin membrane receptor component 1 (PGMRCl), saposin, troponin T isoform 3, ErolL CG1333-PB isoform B, and dihydrolipoamide dehydrogenase were successfully characterized by RACE-PCR.

Expression patterns of 59 gene homologues in testes and ovaries of juvenile and broodstock P. monodon ($N=4$ for each group) were non-quantitatively examined by RT-PCR. P MTSTI was only expressed in testes $(N=8)$ but not ovaries $(\mathrm{N}=8)$ whereas MIPP, MIPP2, Dmcl, and HSP70-2 exhibited a trend of preferential expression in testes of P. monodon. Thirty-six genes showed a trend of greater expression levels in ovaries than testes.

Semiquatitative RT-PCR and quantitative real-time PCR were carried out to examine expression levels of 12 gene homologues in different groups of shrimp. Testis-specific expression of PMTST1 was confirmed. CYA and Trap240 were more abundantly expressed in ovaries than testes ($P<0.05$). Dmcl, saposin, spermatogonial stem-cell renewal factor, MIPP and HSP70-2 were preferentially expressed in testes to ovaries ($P<0.05$). Expression levels of SUMO-1,Tra-2 and prohibitin2 in ovaries and testes of P. monodon were not significantly different $(P>0.05)$. PMTSTI was up-regulated but that of the remaining genes in testes of P. monodon broodstock was down-regulated after shrimp were molted ($P<0.05$). Significant reduction of SUMO-1, Dmcl, and spermatogonial stem-cell renewal factor and increment of prohibitin2 transcripts in domesticated broodstock $(P<0.05)$ suggested that these reproductively related genes may be used as biomarkers to evaluate reduced degrees of the reproductive maturation in domesticated P. monodon. In addition, effects of dopamine on expression of $P G M R C l$ and $D m c I$ in testes of juvenile P. monodon ($3,6,12$, and 24 hr post injection) were examined. Dopamine administration (10^{-6} $\mathrm{mol} /$ shrimp) resulted in up-regulation of $P G M R C l$ in testes of juvenile P. monodon at 3 h post treatment (P <0.05) but had no effect on $\operatorname{Dmcl}(P>0.05)$.

Recombinant proteins of Dmcl, spermatogonial stem-cell renewal factor, SUMO-1, and CYA were successfully expressed in vitro. The polyclonal antibody was produced from recombinant Dmc1, spermatogonial stem-cell renewal factor, and CYA proteins for further functional analysis of these genes at the translational level.

ACKNOWLEDGMENTS

I would like to express my deepest sense of gratitude to my advisor Professor Dr. Piamsak Menasveta and my co-advisor, Dr. Sirawut Klinbunga for their great help, guidance, encouragement, valuable suggestion and supports throughout my study.

My sincere gratitude is also extended to Associate Professor Dr. Charoen Nitithamyong, Assistant Professor Dr. Thaithaworn Lirdwitayaprasit, Associate Professor Dr. Warawut Chulalaksananukul, and Dr. Sittiruk Roytrakul who serve as the committee of my thesis.

I would particularly like to thank the Center of excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University and Aquatic Animal Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) for providing facilities and the Golden Jubilee PhD program, the Thailand Research Funds (TRF) for a student grant.

I would like to extend my special thank to Professor Dr. Takashi Aoki, Professor Dr. Ikuo Hirono, Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Japan and many thanks are also expressed to Dr. Ubolsree Leartsakulpanich for kindly suggestions.

In addition, many thanks are also expressed to my beloced friend; Ms. Kanchana Sittikhankeaw, Ms. Natechanok Tamneamdee, and Ms. Sirikarn Prasertlux), Mister Arun Buaklin, and everyone in our laboratory for their helps and friendly assistance.

Finally, I would like to express my deepest gratitude to my parents and members of my family for their love, understanding and encouragement extended throughout my study.

CONTENTS

Page
THAI ABSTRACT iv
ENGLISH ABSTRACT V
ACKNOWLEDGMENTS vi
CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xxix
CHAPTER I INTRODUCTION 1
1.1 General introduction. 1
1.2 Taxonomy of P. monodon 4
1.3 The reproductive organs of marine shrimp 4
1.4 The importance for domestication of P. monodon 4
1.5 Molecular genetic approaches used in this thesis 7
1.5.1 PCR 7
1.5.2 Expression Sequence Tag (EST) analysis 7
1.5.3 Suppression subtractive hybridization (SSH) 9
1.5.4 Reverse transcription-polymerase chain reaction (RT-PCR) 12
1.5.5 Rapid amplification of cDNA ends-polymerase chain reaction RACE-PCR 14
1.5.6 Real-time PCR 14
1.5.7 Microarray analysis. 17
1.6 Sex determining systems. 17
1.7 Spermatogenesis 22
1.8 Histology of testes of penaeid shrimp 23
1.9 Candidate genes involved with testicular development and spermatogenesis of P. monodon 28
1.10 Objectives 35
CHAPTER II MATERIALS AND METHODS 36
2.1 Experimental animals 36
2.2 RNA extraction 36
Page
2.3 Measuring concentrations of extracted RNA using spectrophotometry and electrophoresis. 37
2.4 Construction of conventional cDNA libraries from heart and testes and suppression subtractive hybridization (SSH) cDNA libraries from different stages of testes of P. monodon. 37
2.4.1 Purification of mRNA. 37
2.4.2 Construction of the conventional testis and heart cDNA libraries of P. monodon. 38
2.4.2.1 First and second strand cDNA synthesis. 38
2.4.2.2 Bunting the cDNA Termini. 39
2.4.2.3 Ligation of EcoR I Adapters. 39
2.4.2.4 Phosphorylation of EcoR I Ends. 40
2.4.2.5 Xho I digestion. 40
2.4.2.6 Size Fractionation. 40
2.4.2.6.1 Assembling and loading the drip column. 40
2.4.2.6.2 Collecting the sample fractions. 41
2.4.2.7 Processing the cDNA fraction. 42
2.4.2.8 Ligation of the CDNA insert. 42
2.4.2.9 Packaging and tittering. 42
2.4.2.9.1 Packaging. 42
2.4.2.9.2 Titering of the primary library. 43
2.4.2.10 Amplification of the library. 43
2.4.2.11 In vivo excision to convert the lambda library to the
ค) 9 phagemid library. 44
2.4.2.12 Colony PCR 45
จุหา2.4.2.13 Plasmid DNA extraction.45
2.4.2.14 Sequencing, EST clustering and assembly 46
2.4.3 Construction of suppression subtractive hybridization (SSH) cDNA libraries 46
2.4.3.1 First strand cDNA synthesis. 46
2.4.3.2 Second strand cDNA synthesis and purification. 47
2.4.3.3 Rsa I Digestion. 47
2.4.3.4 Adaptor Ligation 48
2.4.3.5 First Hybridization. 49
Page
2.4.3.6 Second Hybridization 51
2.4.3.7 PCR Amplification 51
2.4.3.8 Ligation of PCR products to the pGEM ${ }^{\circledR}-$ T easy 52 Vector.
2.4.3.9 Transformation of ligation products to E. coli host cells 53
2.4.3.10 Colony PCR of the recombinant clones. 53
2.4.3.11 Extraction of recombinant plasmid DNA 53
2.4.3.12 Sequencing, EST clustering and assembly 54
2.5 Isolation and characterization of the full length cDNA of functionally important gene homologues of P. monodon using Rapid Amplification of cDNA Ends-Polymerase Chain Reaction (RACE-PCR) 54
2.5.1 Preparation of the 5^{\prime} and 3^{\prime} RACE template 54
2.5.2 Primer design 55
2.5.3 RACE-PCR 55
2.5.4 Agarose gel electrophoresis 59
2.5.5 Elution of DNA fragments from agarose gels 59
2.5.6 Ligation of PCR products to the pGEM ${ }^{\circledR}-\mathrm{T}$ easy vector. 60
2.5.7 Transformation of ligation products to E. coli host cells 60
2.5.7.1 Preparation of competent cells 60
2.5.7.2 Transformation 60
2.5.8 DNA sequencing and assembly sequence 61
2.5.9 Phylogenetic analysis of CyclophilinA, SUMO,
Tra-2, PGRMC1, and Dmc1 61
2.6 Examination of expression patterns of genes related with testicular development by RT-PCR and Tissue distribution analysis 61
2.6.1 Primer design 61
2.6.2 First strand cDNA synthesis 62
2.6.3 RT-PCR analysis 62
2.6.4 Tissue distribution analysis 69
2.7 Semiquantitative RT-PCR of functionally important gene homologues in testes and ovaries of broodstock and juvenile P. monodon 70
Page
2.7.1 Experiment animals 70
2.7.2 Primers 70
2.7.3 Total RNA extraction and the first strand cDNA synthesis. 70
2.7.4 Optimization of semiquantitative RT-PCR conditions 71
2.7.4.1 Primer concentration 71
2.7.4. MgCl_{2} concentration 71
2.7.4.3 Cycle numbers. 71
2.7.4.4 Gel electrophoresis, quantitative, and data analysis 71
2.8 Examination of expression levels of interesting genes in testes of P. monodon by real-time PCR 72
2.8.1 Effects of dopamine on expression of genes in testes of juvenile P. monodon. 72
2.8.2 Expression of genes in testes in different groups of P. monodon 72
2.8.3 Primers and construction of the standard curve 73
2.8.4 Quantitative real-time RT-PCR 73
2.9 Large scale examination of gene expression of P. monodon by microarray analysis. 74
2.9.1 Total RNA extraction 74
2.9.2 Synthesis of target cDNA 74
2.9.3 Hybridization and detection 76
2.10 In vitro expression of the full length cDNA using the bacterial expression system. 76
2.10.1 Designation of primers 76
จุ 2.10.2 Construction of recombinant plasmid in cloning and expression vectors 77
2.10.3 Expression of recombinant proteins 78
2.10.4 Detection of recombinant proteins 78
2.10.5 Mass spectrometric analysis of recombinant proteins 79
2.10.6 Purification of recombinant proteins. 79
2.10.7 Polyclonal antibody production 79
Page
CHAPTER III RESULTS 80
3.1 Construction of conventional testis cDNA library of P. monodon. 80
3.2 Construction of suppression subtractive hybridization (SSH) cDNA libraries from testes juvenile and broodstock of P. monodon 88
3.3 Construction of conventional heart cDNA library of P. monodon. 97
3.4 Isolation and characterization of the full length cDNA of functionally important gene homologues of P. monodon 102
3.5 Examination of expression patterns and tissue distribution analysis of genes related to testicular development by RT-PCR 167
3.6 Semiquantitative RT-PCR of functionally important gene homologues in testes and ovaries of broodstock and juvenile P. monodon 178
3.6.1 Optimization of the primer concentration, MgCl_{2} concentration, and cycle numbers 178
3.6.2 Semiquantitative RT-PCR analysis. 180
3.7 Quantitative analysis of interesting genes in testes by real-time PCR 188
3.7.1 Expression level of Dmc1 and progestin receptor membrane component 1 (PGRMC1) in testes of juvenile P. monodon in response to dopamine administration 188
3.7.2 Expression levels of SUMO-1, cyclophilinA (CYA), Dmc1, saposin and spermatogonial stemcell renewal factor at different stage of testes and ovaries of P. monodon. 191
3.8 Large scale examining expression patterns of genes in testes of P. monodon by microarray analysis 198
จุห 3.8.1 Gene differentially expressed in testes of juvenile and broodstock P. monodon 198
3.8.2 Gene expression of dopamine-treated testes at 3 and 6 hours post injection of juvenile P. monodon. 201
3.9 In vitro expression of interesting genes using the bacterial expression system 206
3.9.1 Construction of recombinant plasmid in cloning and expression vector 206
3.9.2 In vitro expression of recombinant protein 208
Page
3.9.3 Peptide sequencing of recombinant cyclophilin A and SUMO-1 217
3.9.4 Purification of recombinant protein 217
3.9.4.1 The first trial 217
3.9.4.2 The second trial 220
CHAPTER IV DISCUSSION 226
CHAPTER V CONCLUSION 238
REFERENCES 240
APPENDEICES 250
Appendix A 251
Appendix B 284
Appendix C. 293
Biography. 306

LIST OF TABLES

Page
Table 1.1 Thai Frozen Shrimp Export between 2001-2006. 2
Table 1.2 Comparisons between Thai frozen shrimp export between January-June 2007 and 2008 3
Table 2.1 Sequences of the PCR-Select cDNA synthesis primer, adaptors and PCR primers. 48
Table 2.2 Ligation reactions of cDNA of ovaries (tester 1-1 and 1-2) and testes (tester 2-1 and 2-2) 49
Table 2.3 Composition of the first hybridization reaction of each subtraction. 49
Table 2.4 Preparation of the primary PCR master mix. 51
Table 2.5 Preparation of the secondary PCR master mix 52
Table 2.6 Primer sequences for the first strand cDNA synthesis and RACE - PCR. 55
Table 2.7 Gene-Specific Primers (GSPs) used for further characterization of the full length cDNA of functionally important gene homologues in P. monodon. 56
Table 2.8 Internal primers used for primer walking sequencing of the full length cDNA of functionally important gene homologues in P. monodon. 57
Table 2.9 Composition of 5' RACE-PCR. 58
Table 2.10 Composition of 3' RACE-PCR. 58
Table 2.11 Sequence, melting temperature and expected product sizes from primers designed from testis cDNA library and SSH cDNA libraries of P. monodon. 63
Table 2.12 Sequence, melting temperature and expected product sizes from primers designed from heart cDNA library of P. monodon. 69
Table 2.13 Nucleotide sequences of primers used for real-time PCR analysis of Dmc1, PGRMLC1, SUMO-1, cyclophilinA, spermatogonial stem-cell renewal factor and saposin in P. monodon. 75
Table 2.14 Nucleotide sequences of primers used for in vitro expression of cyclophilin A, SUMO-1, spermatogonial stem-cell renewal factor, PGRMC1 and Dmc1 in P. monodon. 77
Page
Table 3.1 Functional categories of ESTs significantly matched with data in GenBank of testis cDNA library 83
Table 3.2 Functionally important gene homologues found in a conventional testis cDNA library of P. monodon 84
Table 3.3 Functional categories of ESTs in testes of P. monodon identified by SSH analysis 91
Table 3.4 Known transcripts found in the forward SSH library of testes of P. monodon. 93
Table 3.5 Known transcripts found in the reverse SSH library of testes of P. monodon 95
Table 3.6 Functional categories of ESTs of the conventional heart cDNA library of P. monodon significantly matched previously deposited sequences in GenBank 99
Table 3.7 Functionally important gene homologues from a conventional heart cDNA library of P. monodon 100
Table 3.8 Summary of the full length CDNA of gene homologues found in the testes and heart cDNA libraries. 112
Table 3.9 Summary of the full lengths of gene homologues from testis of P. monodon using RACE-PCR 160
Table 3.10 Summary of expression patterns of various gene homologues analyzed by RT-PCR. 167
Table 3.11 Gene homologues that specifically expressed in testes but not ovaries and those showing a treánd of preferentially expressed in testes to ovaries of P. monodon. 169
Table 3.12 Gene homologues showing a trend of more abundant expression Q 98 patterns in ovaries than testes of P. monodon. 172
Table 3.13 Gene homologues that did not exhibit differential expression in testes and ovaries of P. monodon 175
Table 3.14 Gene homologues that exhibit non-specific amplification from RT-PCR analysis 175
Table 3.15 Optimal primer and MgCl_{2} concentrations and the number of PCR cycles for semiquantitative RT-PCR analysis of gene homologues in P. monodon 179
Page
Table 3.16 A summary on the number of up- or down-regulated genes in testes of broodstock and juvenile P. monodon analyzed by microarrays.199
Table 3.17 Examples of up- or down-regulated genes in testes of broodstock in comparison with those in testes of juvenile P. monodon 200
Table 3.18 A summary on the number of up- or down-regulated genes of testes of dopamine-treated P. monodon at 3 hours and 6 hours post injection 202
Table 3.19 Examples of up- or down-regulated genes in testes of normal and dopamine-treated juveniles of P. monodon 204
Table 3.20 Summary of conditions used for purification of recombinant proteins in this study 223
Table 3.21 ELISA results illustrating the titers of polyclonal antibodiesafter rabbits were boosted by recombinant spermatogonial stemcell renewal factor, Dmc1 and cyclophilin A after rabbits wereboosted 4 times.224
Table 3.22 ELISA results illustrating the titers of polyclonal antibodiesafter rabbits were boosted by recombinant spermatogonialstem cell renewal factor, Dmc1 and cyclophilin A after rabbitswere boosted 5 times.225
ศูนย์วิทยทรัพยากร

LIST OF FIGURES

Page
Figure 1.1 World shrimp production since 1996-2003 (Globefish) 1
Figure 1.2 Diagram of male, dorsal view (A) and lateral view (B) to show reproductive organ. $\mathrm{T}=$ testis, $\mathrm{VD}=$ vas deferens, and $\mathrm{TA}=$ terminal ampoule. 5
Figure 1.3 Sexes of juveniles and broodstok of penaeid shrimp can be externally differentiated by petasma of male (A) and thelycum of female (B) 5
Figure 1.4 General illustration of the polymerase chain reaction (PCR) for amplification of the target DNA 8
Figure 1.5 Overview for construction of cDNA inserts (A) and automated DNA sequencing (single-pass) of randomly selected cDNA clones (the entire process simply called EST analysis) 10
Figure 1.6 Overview of the Clontech PCR-Select ${ }^{\text {TM }}$ procedure. The CDNA in which specific transcripts are to be found is called "tester" and the reference cDNA is called "driver" 11
Figure 1.7 Overall concept of the RT-PCR.. 13
Figure 1.8 Overview of the SMART ${ }^{\text {TM }}$ RACE cDNA Amplification Kit. 15
Figure 1.9 An overall concept of the Real-time PCR procedure. 16
Figure 1.10 An overall concept for large scale screening of gene expression based on microarray analysis 18
Figure 1.11 General diagram of spermatogenesis. 23Figure 1.12 (1) Longitudinal section of a less than 1.0 gram juveniles showingthe testes (Tes)/vas deferens (Vsd) junction. (2) Cross sectionalorientation view of a laterally projecting testicular lobe (Tes) from
Q 99/ a 2.0 gram juvenile.25
Figure 1.13 (1) Longitudinal orientation section from a less than 1.0 gram juvenile showing the proximal vas deferens (Vsd). (2-4) Longitudinal orientation section of the medial vas deferens (Vsd), from a 2.0 gram juvenile.26
Figure 1.14 (1) Longitudinal orientation view of the enlarged distal vas deferens or terminal ampoule (Tam) from a less than 1.0 gram juvenile. (2) Longitudinal section of the terminal ampoule (Tam), (itself sectioned transversely or obliquely), from a less than 2.0

Page

gram juvenile. (3) Longitudinal view of the terminal ampoule from a less than 2.0 gram juvenile. and (4) Orientation view of the terminal ampoule from a mature 35.0+ gram shrimp27

Figure 1.15 (1) Enlarged view of early testicular development stages from a 2.0 gram juvenile. (2) Enlarged view of mature testes from 15.0+ gram shrimp. (3) Orientation view of mature spermatozoa arranged in bundles, each of which is presumably surrounded by an acellular "primary spermatophore layer". The bundles appear very similar to seminiferous tubules with spermatozoa (Sp4) in the central core and the periphery partially made up of presumed nurse cells (hollow arrows). (4) Enlarged view of mature sperm of spermatozoa from terminal ampoule.29

Figure 2.1 Assembly of the drip column for size-fctionation of syhthesizeed
cDNA. 41
Figure 2.2 Preparation of adaptor-ligated tester cDNA for hybridization and PCR. 50
Figure 3.1 Total RNA and mRNA (A) of P. monodon testes were used to construct testis cDNA library. First and second strand cDNA (B) were synthesized from purified mRNA. 80
Figure 3.2 Size-fractionation of testes cDNA of P. monodon 81
Figure 3.3 Colony PCR for determining sizes of inserts of positive clones from a conventional testis cDNA library of P. monodon. 82
Figure 3.4 The relative discovery rate of new genes from a conventional testis CDNA library of P. monodon. 82
Figure 3.5 Agarose gel electrophoresis illustrating digested cDNA of
Q 98P P. monodon with Rsa I. 89
Figure 3.6 Primary and secondary suppression PCR of subtracted and nonsubtracted of forward (A) and reverse (B) SSH of testis cDNA of P. monodon. 89
Figure 3.7 Colony PCR for determining sizes of inserts of positive clones from the forward SSH testis library of P. monodon. 90
Figure 3.8 Colony PCR for determining sizes of inserts of positive clones from the reverse SSH testis library of P. monodon. 90

Figure 3.9 Total RNA (A) and mRNA (B) of heart of P. monodon used to construct a conventional cDNA library. The first and second strand cDNA (C) were synthesized from purified mRNA of heart of juvenile P. monodon.

98
Figure 3.10 Size-fractionation of heart cDNA of P. monodon............................ 98
Figure 3.11 Colony PCR for determining sizes of inserts of positive clones from a conventional heart cDNA library of P. monodon.99

Figure 3.12 The full length cDNA sequences of SUMO (1305 bp in length with an ORF of 282 bp corresponding to a polypeptide of 93 aa) of P. monodon.
Figure 3.13 The full length cDNA sequences of cyclophilin A (929 bp in length with an ORF of 495 bp corresponding to a polypeptide of 164 aa) of P. monodon.
Figure 3.14 The full length cDNA sequences of translationally controlled tumor protein (730 bp in length with an ORF of 507 bp corresponding to a polypeptide of 168 aa) of P. monodon.104

Figure 3.15 The full length cDNA sequences of small nuclear ribonucleoprotein polypeptide G (694 bp in length with an ORF of 234 bp corresponding to a polypeptide of 77 aa) of P. monodon.

Figure 3.16 The full length cDNA sequences of dynactin subunit 5 (1436 bp in length with an ORF of 594 bp corresponding to a polypeptide of 197 aa) of P. Monodon.
Figure 3.17 The full length cDNA sequences of ubiquitin conjugating enzyme 2 (1416 bp in length with an ORF of 675 bp
Q. 98 corresponding to a polypeptide of 224 aa) of P. monodon.

Figure 3.18 The full length cDNA sequences of BUB3 budding uninhibited by benzimidazoles 3 homolog (3554 bp in length with an ORF of 981 bp corresponding to a polypeptide of 326 aa) of P. monodon.
Figure 3.19 The full length cDNA sequences of cell division control protein 2 ($c d c 2,1696 \mathrm{bp}$ in length with an ORF of 900 bp corresponding to
a polypeptide of 299 aa) of P. Monodon....................................... 109

Figure 3.20 The full length cDNA sequences of thioredoxin 1 (731 bp in length with an ORF of 318 bp corresponding to a polypeptide of 105 aa) of P. Monodon.110
Figure 3.21 The full length cDNA sequences of multiprotein bridging factor 1 (715 bp in length with an ORF of 450 bp corresponding to a polypeptide of 149 aa) of P. monodon. 110
Figure 3.22 The full length cDNA sequences of myosin 1 light chain (1414 bp in length with an ORF of 465 bp corresponding to a polypeptide of 154 aa) of P. monodon. 111
Figure 3.23 5'RACE-PCR (A) and 3'RACE-PCR (B) products of low molecular weight neurofilament protein (called PMTST1) and 3'RACE-PCR products of prohibitin-2 (B), and growth factor receptor-bound protein (C) of P. monodon. 113
Figure 3.24 The full length cDNA and deduced protein sequences (2194 bp in length with an ORF of 339 bp corresponding to a polypeptide of 112 aa) of a short form of PMTST1 of P. monodon (PMTST1-s)..... 115
Figure 3.25 The full length cDNA and deduced protein sequences (2406 bp in length with an ORF of 339 bp corresponding to a polypeptide of 112 aa) of a long form of PMTST1 of P. monodon (PMTST1-I). 116
Figure 3.26 Pairwise alignments of different isoforms of PMTST1 cDNAs of P. monodon 117
Figure 3.27 The full length cDNA and deduced protein sequences of prohibitin-2 (1380 bp ; ORF 891 bp , 296 aa) of P. monodon. 118
Figure 3.28 The full length cDNA and deduced protein sequences of the short form of growth factor receptor-bound protein (GFRBP-s, 1188 Q 98 bp ; ORF $636 \mathrm{bp}, 211 \mathrm{aa}$) of P. monodon. 119
Figure 3.29 The full length cDNA and deduced protein sequences of the long form of growth factor receptor-bound protein (GFRBP-l, 1885 bp ; ORF $636 \mathrm{bp}, 211 \mathrm{aa}$) of P. monodon. 120
Figure 3.30 Pairwise alignments of different isoforms of growth factor receptor-bound protein (GFRBP) of P. monodon. 121
Figure $3.31 \quad$ 5'RACE-PCR products of MIPP (A) and 3^{\prime} and 5'RACE-PCR of MIPP2 (B) of P. monodon. 122

Figure 3.32 The full length cDNA and deduced amino acid sequences of multiple inositol polyphosphate phosphatase (MIPP, 1644 bp ; ORF $1374 \mathrm{bp}, 457 \mathrm{aa}$) of P. monodon.123

Figure 3.33 The full length cDNA and deduced amino acid sequences of multiple inositol polyphosphate phosphatase 2 (MIPP2, 1746 bp ; ORF $1194 \mathrm{bp}, 397$ aa) of P. monodon.
Figure 3.34 Amino acid alignments of two isoforms of multiple inositol polyphosphate phosphatase (MIPP) of P. monodon.125

Figure 3.35 Pairwise alignment of different forms of P. monodon multiple inositol polyphosphate phosphatase (MIPP).126

Figure 3.36 5'RACE-PCR products of transformer-2 (A) and Rac GTPaseactivating protein 1 (B), and 3'RACE-PCR products of flotillin-2 (C) of P. monodon.

Figure 3.37 The full length CDNA and deduced protein sequences of the long form of Tra-2 (Tra-2l, 2673 bp ; ORF $804 \mathrm{bp}, 267 \mathrm{aa}$) of P. monodon

Figure 3.38 The full length cDNA and deduced protein sequences of the short form of Tra-2 (Tra-2s, 2658 bp ; ORF $789 \mathrm{bp}, 262 \mathrm{aa}$) of P. monodon.

Figure 3.39 Amino acid alignments of two isoforms of Tra-2 of P. monodon.... 130
Figure 3.40 Pairwise alignments of different forms of Tra-2 of P. monodon...... 132
Figure 3.41 The full length cDNA and deduced protein sequences of Rac GTPase-activating protein 1 (2838 bp; ORF $1812 \mathrm{bp}, 603 \mathrm{aa}$) of
P. monodon.. 133
Figure 3.42 The full length cDNA and deduced protein sequences of flotillin 2

$$
\left.\begin{array}{rl}
\text { Figure } 3.43 & \text { (1937 bp; ORF } 1320 \text { bp, } 439 \text { aa) of P. monodon.......................... } \\
\text { The RACE-PCR products of 5'- and 3'- DMC1/LIM15 homolog }
\end{array}\right]
$$

Figure 3.44 The full length cDNA and deduced protein sequences of DMC1/LIM15 homolog isoform 1 (1661 bp; ORF 1026 bp, 341 aa) of P. monodon.

Figure 3.45 The full length cDNA and deduced protein sequences of a short form of progestin receptor membrane component 1 (PGMRC1-s) (2028 bp; ORF $573 \mathrm{bp}, 190 \mathrm{aa}$) of P. monodon.137

Figure 3.46 The full length cDNA and deduced protein sequences of the medium form of PGMRC1 (PGMRC1-m, 2896 bp ; ORF 573 bp , 190 aa) of P. monodon.
Figure 3.47 The full length cDNA and deduced protein sequences of the long form of PGMRC1 (PGMRC1-l, 3019 bp ; ORF $573 \mathrm{bp}, 190 \mathrm{aa}$) of P. monodon

Figure 3.48 Multiple alignment of three different forms of PGMRC1 (PGMRC1-s, PGMRC1-m and PGMRC1-I) of P. monodon142

Figure $3.49 \quad 5^{\prime}$ RACE-PCR product of innexin1 (A) and 5^{\prime} and 3^{\prime} RACE-PCR products innexin2 (B) of P. monodon.
Figure 3.50 The full length CDNA and deduced protein sequences of innexin1 (2505 bp ; ORF $1143 \mathrm{bp}, 380 \mathrm{aa}$) of P. monodon.144

Figure 3.51 The full length cDNA and deduced protein sequences of innexin2 (1615 bp ; ORF $1077 \mathrm{bp}, 358$ aa) of P. monodon.145

Figure 3.52 The RACE-PCR products of 5'-Saposin (A and B), 3'-CDK7 (C) and 3^{\prime} Dihydrolipoamide dehydrogenase (C) of P. monodon.
Figure 3.53 The full length cDNA and deduced protein sequences of saposin (3034 bp ; ORF $2589 \mathrm{bp}, 862 \mathrm{aa}$) of P. monodon.
Figure 3.54 The full length cDNA and deduced protein sequences of $c d k 7$ (1431 bp ; ORF $1062 \mathrm{bp}, 353 \mathrm{aa}$) of P. monodon.
Figure $3.55 \quad 3^{\prime}$ RACE-PCR of troponinT (A), 5'RACE-PCR of dihydrolipoamide dehydrogenase (B) and ERO1 (C) and Q 981 3'RACE-PCR of ERO1 (D) of P. monodon...
Figure 3.56 The full length cDNA and deduced protein sequences of troponin T isoform 3 (1430 bp ; ORF $1107 \mathrm{bp}, 368 \mathrm{aa}$) of P. monodon
Figure 3.57 The full length cDNA and deduced protein sequences of the short form of Ero1L, isoform B (ERO1-s, 1756 bp ; ORF 1413 bp , 470 aa) of P. monodon.
Figure 3.58 The full length cDNA and deduced protein sequences of the long form of Ero1L, isoform B (ERO1-l; $1774 \mathrm{bp} ; 1434 \mathrm{bp}, 477$ aa) of P. monodon.

Page

Figure 3.59 Pairwise alignments of deduced amino acid sequences of the short and long forms of P. monodon Ero1 isoform B.154

Figure 3.60 Pairwise alignments of different isoforms of Ero1, isoform B of P. monodon.

Figure 3.61 The full length cDNA sequences of the short form of dihydrolipoamide dehydrogenase (DLADH-s, 1770 bp ; ORF $1521 \mathrm{bp}, 506$ aa) of P. monodon.156

Figure 3.62 The full length cDNA sequences of the long form of
dihydrolipoamide dehydrogenase (DLADH-l, 2050 bp ; ORF
$1521 \mathrm{bp}, 506$ aa) of P. monodon. 158
Figure 3.63 Pairwise alignments of different isoforms of Dihydrolipoamide dehydrogenase of P. monodon. 159
Figure 3.64 A bootstrapped neighbor-joining tree illustrating relationships between Tra-2 of various taxa. 162

Figure 3.65 A bootstrapped neighbor-joining tree illustrating relationships between Dmc1 of various taxa.163

Figure 3.66 A bootstrapped neighbor-joining tree illustrating relationships between PGRMC of various taxa.164

Figure 3.67 A bootstrapped neighbor-joining tree illustrating relationships between a homologue of Cyclophilin A from P. monodon (PMCYA), and that of various taxa.165

Figure 3.68 A bootstrapped neighbor-joining tree illustrating relationships between a homologue of small ubiquitin modifier- 1 from P. monodon (PMSUMO-1), and that of various taxa.166

Figure 3.69 RT-PCR of PMTST1 (374 bp) using the first strand cDNA of
2. testes of broodstock and juveniles and ovaries of broodstock and
juveniles of P. monodon for 25 (A), 30 (B) and 35 (C) cycles........ 168

Figure 3.70 RT-PCR of MIPP2 (A) and MIPP (B), using the first strand cDNA of testes of broodstock and juveniles and ovaries of broodstock and juveniles of P. monodon for 25 cycles.170

Figure 3.71 RT-PCR of Dmc1 (A) and HSP70-2 (B), using the first strand cDNA of testes of broodstock and juveniles and ovaries of
broodstock and juveniles of P. monodon for 25 cycles................... 171

Figure 3.72 RT-PCR of SUMO-1 (A), CYA (B), Tra-2 (C), prohibitin-2 (D), Trap240 (E), growth factor receptor-bound protein (F), and D2LIC (G) using the first strand cDNA of testes of broodstock and juveniles and ovaries of broodstock and juveniles of P. monodon for 25 cycles.

Figure 3.73 RT-PCR of carbonyl reductase 1 (A), Cdk2 (B), ubiquitin carboxyl-terminal hydrolase 14 (C), ubiquitin carboxyl-terminal hydrolase 5 (D), cdc2 (E), E1B-55kDa-associated protein 5 isoform 5 (F), and oncoprotein nm23(G) using the first strand cDNA of testes of broodstock and juveniles and ovaries of broodstock and juveniles of P. monodon for 25 cycles.
Figure 3.74 RT-PCR of innexin 2 (A), PGRMC1 (B) using the first strand cDNA of testes of broodstock and juveniles and ovaries of broodstock and juveniles of P. monodon for 25 cycles.
Figure 3.75 Tissue distribution of prohibitin-2 (A), Trap240 (B), Tra-2 (C), SUMO-1 (D), CYA (E), growth factor receptor-bound protein (F), D2LIC (G) and saposin (H) using the first strand cDNA of testes (T), ovaries (O), eyestalks (E), gills (G), heart (H), hepatopancreas (HP), hemocytes (HC), lymphoid organs (LO), intestine (IT), stomach (ST), pleopods (PL), and thoracic ganglion (TG) of P. monodon broodstock for 25 cycles.
Figure 3.76 A 1.6\% ethidium bromide-strained agarose gel showing the expression levels of PMTST1 and $E F-1 \alpha$ of testis from wild broodstock (WB-TT), domesticated broodstock (DB-TT), cultured juveniles (CJ-TT), and ovaries from wild broodstock (WB-OV),

ล9ำand cultured juveniles ($\mathrm{CJ}-\mathrm{OY}$) and testes from broodstock after molting for Day 1-5, Day 6-9, and Day 10-16.
Figure 3.77 Histograms showing the expression levels of PMTST1 in gonads of P. monodon.
Figure 3.78 A 1.6\% ethidium bromide-strained agarose gel showing the expression levels of MIPP and EF-1 α of testis from wild broodstock (WB-TT), domesticated broodstock (DB-TT), cultured juveniles (CJ-TT), and ovaries from wild broodstock (WB-OV),

Page

and cultured juveniles (CJ-OV) and testes from broodstock after molting for Day 1-5, Day 6-9, and Day 10-16.
Figure 3.79 Histograms showing the expression levels of MIPP in gonads of P. monodon.

Figure $\mathbf{3 . 8 0}$ A 1.6\% ethidium bromide-strained agarose gel showing the expression levels of Tra-2 and EF-1 α of testis from wild broodstock (WB-TT), domesticated broodstock (DB-TT), cultured juveniles (CJ-TT), and ovaries from wild broodstock (WB-OV), and cultured juveniles (CJ-OV) and testes from broodstock after molting for Day 1-5, Day 6-9, and Day 10-16.
Figure 3.81 Histograms showing the expression levels of Tra-2 in gonads of P. monodon.
Figure 3.82 A 1.6\% ethidium bromide-strained agarose gel showing the expression levels of prohibitin 2 and $E F-1 \alpha$ of testis from wild broodstock (WB-TT), domesticated broodstock (DB-TT), cultured juveniles (CJ-TT), and ovaries from wild broodstock (WB-OV), and cultured juveniles (CJ-OV) and testes from broodstock after molting for Day 1-5, Day 6-9, and Day 10-16
Figure 3.83 Histograms showing the expression levels of prohibitin 2 in gonads of P. monodon.
Figure 3.84 A 1.6\% ethidium bromide-strained agarose gel showing the expression levels of Trap240 and EF-1 α of testis from wild broodstock (WB-TT), domesticated broodstock (DB-TT), cultured juveniles (CJ-TT), and ovaries from wild broodstock (WB-OV), and cultured juveniles (CJ-OV) and testes from broodstock after Q 98/ molting for Day 1-5, Day 6-9, and Day 10-16.
Figure 3.85 Histograms showing the expression levels of Trap240 in gonads of P. monodon.
Figure 3.86 A 1.6\% ethidium bromide-strained agarose gel showing the expression levels of HSP70-2 and EF-1 α of testis from wild broodstock (WB-TT), domesticated broodstock (DB-TT), cultured juveniles (CJ-TT), and ovaries from wild broodstock (WB-OV), and cultured juveniles (CJ-OV) and testes from broodstock after molting for Day 1-5, Day 6-9, and Day 10-16.

Page

Figure 3.87 Histograms showing the expression levels of HSP70-2 in gonads of P. monodon
Figure 3.88 Standard curve of $\operatorname{Dmc1}\left(\mathrm{A} ; \mathrm{r}^{2}\right.$ for the standard curve $\left.=0.996820\right)$ and EF-1 $\alpha\left(\mathrm{B} ; \mathrm{r}^{2}\right.$ for the standard curve $=0.99327$) in testes of juvenile P. monodon.
Figure 3.89 Standard curve of $\operatorname{PGRMC1}\left(\mathrm{A} ; \mathrm{r}^{2}\right.$ for the standard curve $=$ $0.99820)$ and $E F-1 \alpha\left(B ; r^{2}\right.$ for the standard curve $\left.=0.99520\right)$ in testes of juvenile P. monodon..
Figure 3.90 Real-time PCR analysis illustrating relative expression levels of Dmc1 in testes of juvenile P. monodon after injected with normal saline or dopamine ($10^{-6} \mathrm{~mol} /$ shrimp) for $3,6,12$ and 24 hr

Figure 3.91 Standard curve of SUMO-1 (Efficiency for the standard curve = 1.993) and CYA (Efficiency for the standard curve $=1.980$).192

Figure 3.92 Standard curve of Dmc1 (Efficiency for the standard curve $=$ 1.971) and saposin (Efficiency for the standard curve $=1.984$).192

Figure 3.93 Standard curve of spermatogonial stem-cell renewal factor (Efficiency for the standard curve $=2.027$) and $E F-1 \alpha($ Efficiency for the standard curve $=1.945$)192

Figure 3.94 Real-time PCR analysis illustrating the relative expression levels of CYA (A) and SUMO-1 (B) in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting.
Figure 3.95 Real-time PCR analysis illustrating the relative expression levels of saposin in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting.

Figure 3.96 Real-time PCR analysis illustrating the relative (A) and absolute (B) expression levels of spermatogonial stem cell renewal factor in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting.
Figure 3.97 Real-time PCR analysis illustrating the relative (A) and absolute (B) expression levels of Dmc1 in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting.

Figure 3.98 Microarray analysis using cDNA of testes of juveniles and broodstock of P. monodon labeled with Cy 3 and Cy 5 as the probes, respectively199

Figure 3.99 Microarray analysis using cDNA of broodstock and juvenile testes of P. monodon labeled with Cy 3 and Cy 5 as the probes, respectively200

Figure 3.100 Microarray analysis showing up- and/or down-regulation of examined genes in testes of broodstock (A) and juvenile (B) P. monodon.201

Figure 3.101 Microarray analysis using cDNA of normal testes and dopamine-treated testes of juvenile shrimps $\left(10^{-6} \mathrm{~mol} / \mathrm{shrimp}\right)$ at 3 hours post injection labeled with Cy 3 and Cy 5 as the probes, respectively.
Figure 3.102 Microarray analysis using cDNA of normal testes and dopamine-treated testes of juvenile shrimps $\left(10^{-6} \mathrm{~mol} / \mathrm{shrimp}\right)$ at 6 hours post injection labeled with Cy 3 and Cy 5 as the probes, respectively
Figure 3.103 Microarray analysis showing up- and/or down-regulation of examined genes in testes of dopamine-treated juveniles of P. monodon at $3 \mathrm{hr}(\mathrm{A})$ and 6 hr post injection.205

Figure 3.104 Alignments between the full length cDNA of spermatogonial stem-cell renewal factor initially characterized from testes (ORF-TT) and ovaries (ORF-OV) of P. monodon.207

Figure 3.105 Alignments of deduced amino acid sequences of spermatogonial stem-cell renewal factor from testes (ORF-TT) and ovaries

Figure 3.106

$$
\begin{array}{lll}
\text { QRF-OV) of P. monodon.. } & 208 \\
\text { e 3.106 } & \text { SDS-PAGE showing in vitro expression of four recombinant }
\end{array}
$$

Figure 3.107 SDS-PAGE showing in vitro expression of four recombinant clones of SUMO-1 (A) and cyclophilin A (B) of P. monodon at $0 \mathrm{hr}, 3 \mathrm{hr}$, and 6 hr after induced by 1.0 mM IPTG

Page

Figure 3.108 In vitro expression of eight recombinant clones of PGRMC1 of P. monodon after induced by 1 mM IPTG overnight using SDS-PAGE (A) and western blot analysis (B)210

Figure 3.109 In vitro expression of recombinant spermatogonial stem cell renewal factor of P. monodon at $0,1,2,3,6,12$, and 24 hr after induced by 1 mM IPTG using SDS-PAGE (A) and western blot analysis (B).

Figure 3.110 In vitro expression of recombinant Dmc1 of P. monodon at 0,1 , $2,3,6,12$, and 24 hr after induced by 1 mM IPTG using SDS-PAGE (A) and western blot analysis (B)211

Figure 3.111 In vitro expression of recombinant SUMO-1 of P. monodon at 0 , $1,2,3,6,12$, and 24 hr after induced by 1 mM IPTG using SDS-PAGE (A) and western blot analysis (B).212

Figure 3.112 In vitro expression of recombinant cyclophilin A of P. monodon at $0,1,2,3,6,12$, and 24 hr after induced by 1 mM IPTG using SDS-PAGE (A) and western blot analysis (B)
Figure 3.113 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant spermatogonial stem cell renewal factor after IPTG induction for 6 hr at $37^{\circ} \mathrm{C}$ as the insoluble protein.
Figure 3.114 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant spermatogonial stem cell renewal factor after IPTG induction overnight at $15^{\circ} \mathrm{C}$ as both soluble and insoluble proteins.
Figure 3.115 SDS-PAGE (A) and western blot analysis (B) showing

expression of recombinant Dmc1 after IPTG induction for 6 hr at $37^{\circ} \mathrm{C}$ as the insoluble protein.
Figure 3.116 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant Dmc1 after IPTG overnight at $15^{\circ} \mathrm{C}$ as the insoluble protein
Figure 3.117 SDS-PAGE (A) and western blot analysis (B) showing more expression of recombinant cyclophilin A after IPTG induction for 3 hr at $37^{\circ} \mathrm{C}$ as the insoluble protein than the soluble protein..

Figure 3.118 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant cyclophilin A after IPTG induction
overnight at $15^{\circ} \mathrm{C}$ as both soluble and insoluble proteins............. 216
Figure 3.119 SDS-PAGE (A) and western blot analysis (B) showing equal expression of recombinant SUMO-1 after IPTG induction for 6 hr at $37^{\circ} \mathrm{C}$ as the soluble and insoluble proteins.216

Figure 3.120 Purification of recombinant spermatogonial stem cell renewal factor of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight).
Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D)..218

Figure 3.121 Purification of recombinant Dmc1 of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).218

Figure 3.122 Purification of recombinant SUMO-1 of P. monodon (cultured at $37^{\circ} \mathrm{C}$, for 6 hr). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).219

Figure 3.123 Purification of recombinant cyclophilin of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D)219

Figure 3.124 Purification of recombinant spermatogonial stem cell renewal factor of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight).

Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).221

Figure 3.125 Purification of recombinant Dmc1 of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).
Figure 3.126 Purification of recombinant cyclophilin A of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D)

LIST OF ABBREVIATIONS

CHAPTER I

INTRODUCTION

1.1 General introduction

A total of 343 economically important shrimp species are reported by the FAO (Bailey-Brock and Moss, 1992). Among cultured marine shrimp, one of the most economically important species is the giant tiger shrimp, Penaeus monodon. The world shrimp aquaculture production (Fig. 1.1), which had stabilized in the 1990s, has shown strong increases in subsequent years. In 2003, shrimp aquaculture exceeded 1.6 million metric tons (MT).

In Thailand, P. monodon had been intensively cultured for more than two decades and had contributed approximately 60% of the total cultivated shrimp production. The reasons for this are supported by several factors including the appropriate farming areas without serious disturbing from typhoons or cyclone, small variable of seawater during seasons, and ideal soils for pond construction. Culture of P. monodon had increased the national revenue, therefore P. monodon was, until recently, the most economically important cultured species in Thailand.

The production of P. monodon is largely constrained by the current dependency on wild-caught broodstock which varies in both quality and quantity. Recently, the farming of P. monodon in the region has significantly declined. Previously, annual production of farmed P. monodon in Thailand alone has reached or exceeded 200,000 metric tons since 1993 (Asian Shrimp Culture Council, 1996) but the production was recently dropped owing to shrimp diseases and the lack of high quality wild and/or domesticated broodstock of P. monodon (Limsuwan, C., 2004). Therefore, Litopenaeus vannamei was introduced as a new cultured species and significantly contributed to the production since 2004.

The amount of exported frozen shrimp is relatively stable (Tables 1.1 and 1.2). However, the annual production of P. monodon has consistently decreased even though values of frozen shrimp export increase since 2003 (Table 1.1).

World shrimp production

(4) GLOBEFISH

Figure 1.1 World shrimp production since 1996-2003 (Globefish).

Table 1.1 Thai frozen shrimp export between 2001-2006.

Item	2001	2002	2003	2004	2005	2006
Value (MB)						
Total export	2,923,941.4	3,325,630.1	3,874,823.8	4,439,310.6	4,439,310.6	4,938,508.2
Chilled and frozen shrimp	34,406.2	$35,921.2$	32,536.1	37,730.3	37,730.3	37,802.5
Black tiger shrimp	$28,283$	$24,179$	$15,029$	$8,571$	$8,571$	6,991
Giant freshwater prawn	494	603	796	$1,356$	$1,356$	1,714
Other shrimp	5,629	11,139	16,711	7,804	27,804	29,098

Source: Ministry of Commerce Thailand

Table 1.2 Comparisons between Thai frozen shrimp export between January-June 2007 and 2008

Country	Jan -Jun 2007		Jan -Jun 2008		\% difference	
	Quantity (MT)	Value (MB)	Quantity (MT)	Value (MB)	Quantity (MT)	Value (MB)
Asia	41,612	9,805	49,249	10,381	18.35	5.87
China	1,779	357	3,588	452	101.69	26.61
Japan	26,591	6,642	30,789	7,392	15.79	11.29
- others	13,242	2,806	14,872	2,537	12.31	-9.59
USA	74,186	17,161	70,837	15,722	-4.51	-8.39
EU	12,696	3,244	14,476	3,532	14.02	8.88
Australia	3,420	777	2,609	595	-23.71	-23.42
Others	14,451	3,077	11,990	2,458	-17.03	-20.12
Total	146,365	34,064	149,161	32,688	1.91	-4.04

Source: Ministry of Commerce Thailand (Amounts-tons and values-million bahts)

Farming of P. monodon, in Thailand relies almost entirely on wild-caught broodstock for supply of juveniles because pond-reared P. monodon rarely produced sufficient quality of larvae required by the industry (Withyachumnarnkul et al., 1998). Low degrees of reproductive maturation of captive P. monodon females and low quality of spermatozoa of captive males have limited the potential of genetic improvement resulted in remarkably slow domestication and selective breeding programs of P. monodon in Thailand (Withyachumnarnkul et al., 1998; Preechaphol et al., 2007). Selective breeding for the improvement of particular performance traits, such as growth and survival, is important for the future growth of penaeid aquaculture

Practically, breeding of P. monodon using spermatozoa of captive males yields low quality offspring. The use of spermatozoa from wild males with either wild or pond-reared females has resolved the problem successfully (B. Withyachumnarnkul, personal communication).

The basic information related to testicular development and sperm quality is rather limited in penaeid shrimp (Benzie, 1998). An initial step toward understanding
molecular mechanisms of testicular and spermatozoa development in P. monodon is to identify and characterize differentially expressed genes in different stages of testicular development of this species.

In addition, the fundamental controls of growth in penaeid shrimp are largely unstudied. Genes encoding vertebrate-like growth factors and cell cycle regulating proteins should be characterized.

1.2 Taxonomy of P. monodon

The giant tiger shrimp (P. monodon) is taxonomically classified as a member of Phylum Arthropoda; Subphylum Crustacea; Class Malacostraca; Subclass Eumalacostraca; Order Decapoda; Suborder Natantia; Infraorder Penaeidea; Superfamily Penaeoidea; Family Penaeidae Rafinesque, 1985; Genus Penaeus Fabricius, 1798 and Subgenus Penaeus. (Bailey-Brock and Moss, 1992).

The scientific name of giant tiger shrimp is Penaeus monodon where the English common name is the giant (black) tiger shrimp.

1.3 The reproductive organs of marine shrimp

The male reproductive system includes paired testes, paired vas deferens, and a petasma (Fig. 1.3). Mating of P. monodon occurs at night after the female molts. Sperm is deposited into a special structure called the thelycum on the underside of the female's thorax (Fig. 1.3). A single female usually produces 250,000-800,000 eggs, which are released into the water and hatch within 18 hours into nauplii larvae. Larvae pass through six nonfeeding nauplii, 3 zoeal and 3 mysis stages and metamorphoresed to the postlarva. Life span of shrimp is probably less than two years.

1.4 The importance for domestication of P. monodon

Farming of P. monodon presently relies almost entirely on wild-caught broodstock for the seed supply because breeding of P. monodon in captivity is extremely difficult. This open reproductive cycle and reliance on wild stocks of P. monodon results in heavy exploitation of female broodstock from wild populations.

Figure 1.2 Diagram of male, dorsal view (A) and lateral view (B) to show reproductive organ. $\mathrm{T}=$ testis, $\mathrm{VD}=$ vas deferens, and $\mathrm{TA}=$ terminal ampoule (after King, 1998).

Figure 1.3 Sexes of juveniles and broodstock of penaeid shrimp can be externally differentiated by petasma of males (A) and thelycum of females (B) (after King, 1998).

The lack of high quality wild and/or domesticated broodstock of P. monodon has possibly caused an occurrence of a large portion of stunted shrimps at the harvest time (3-5 g rather than approximately 25 g body weight at 4 month cultivation period). As a result, the farmed production of P. monodon has significantly decreased since the last few years.

Progress in genetic and biotechnology researches in penaeid shrimps have been slow because a lack of knowledge on fundamental aspects of their biology (Benzie, 1998). A research concerning domestication of P. monodon is being carried out in Thailand by production of high quality pond-reared P. monodon broodstock. Subsequently, it is expected that selective breeding programs of P. monodon will be the key to provide shrimps having commercially desired phenotypes (e.g. high growth rate and/or disease resistance) and to produce P. monodon stocks with the ability to induce high quality egg development in domesticated females without the irreversible side-effects caused by a typical eyestalk ablation technique (Lyons and Li, 2002).

Despite the success of the farmed production, the shrimp industry has encountered several problems including environmental degradation, outbreaks of diseases, and shortages of high quality broodstock. The white shrimp (Litopenaeus vannamei) was then introduced into the country and initially contributed on the cultured production of Thailand significantly. However, the price of L. vannamei is quite low and broodstock used relies almost entirely on genetic improved stocks brought from different sources. In addition, the labor costs in Thailand are higher than other countries (e.g. Vietnam and China) preventing the advantage of competition for the world market. In contrast, the market of premium-sized P. monodon is still open. Applications of the knowledge for genetic selection and biotechnology of P. monodon should be studied and practically implemented to fulfill that purpose.

Determining the relative effect that male and female broodstock quality is having on reproductive performance, particularly for key parameters such as hatching rate, will enhance the rate at which improvements reproductive performance of domesticated stocks can be achieved. Previous studies assessing the reproductive performance of reciprocally crossed wild and pond-reared broodstock found that the
wild females outperformed domesticated females in terms of maturation, spawning and total egg production in P. monodon (Menasveta et al., 1993)

Although phenotypic improvement can be accomplished through conventional breeding programs, knowledge from genome studies and molecular markers linked to important traits (marker-assisted selection, MAS) can also be directly applied to improve artificial selection processes more efficiently.

1.5 Molecular genetic approaches used in this thesis

1.5.1 PCR

The introduction of the polymerase chain reaction (PCR; Mullis et al.,1987) has opened a new approach for molecular genetic studies. This method is technique for enzymatically replicating DNA without using a living organism, such as E. coli or yeast and is a method using specific DNA sequences by the two oligonucleotide primers, usually 18-27 nucleotides in length. Million copies of the target DNA sequence can be synthesized from the low amount of starting DNA template within a few hours.

The PCR reaction components are composed of DNA template, a pair of primers for the target sequence, dNTPs (dATP, dCTP, dGTP and dTTP), PCR buffer and heat-stable DNA polymerase (usually Taq polymerase). The amplification reaction typically consists of three steps; denaturation of double stranded DNA at high temperature, annealing to allow primers to form hybrid molecules at the optimal temperature, and extension of the annealed primers by heat-stable DNA polymerase. The cycle is repeated for $30-40$ times (Figure 1.4). The amplification product is determined by agarose or polyacrylamide gel electrophoresis.

1.5.2. Expression Sequence Tag (EST) analysis

ESTs are large-scale single-pass sequences of randomly picked clones from a cDNA library usually constructed from mRNA at a particular developmental stage and/or tissue. This method has been widely employed for discovering novel and uniquely expressed genes, and for characterizing the gene expression profiles of several tissues.

The general principles for construction of a cDNA library (Figure 1.5) begin with purification of the target mRNA that is reverse-transcribed to the first-strand cDNA. This step is catalyzed by reverse transcriptase using the oligo (dT) primer as the synthesizing primer. The second-strand DNA is then copied from the first-strand cDNA using E. coli DNA polymerase I. The double-strand cDNA is ligated to adapter and subsequently to an appropriate vector using T4 DNA ligase. The recombinant vector-cDNA molecules are packaged (λ vector) in vitro and transfected to the appropriate host. If a plasmid is used recombinant plasmid is transformed into E. coli host cells to generate a cDNA library.

Figure 1.4 General illustration of the polymerase chain reaction (PCR) for amplification of the target DNA (Avise, 1994).

ESTs can be sequenced from either 5^{\prime} or 3^{\prime} ends of cloned cDNA. The 3^{\prime} end of the cloned insert is usually marked by the poly A stretch which is often problematic for thermostable polymerase sequencing, and sequencing through poly T can reduce the length and quality of the subsequent sequence. Nevertheless, 3^{\prime} UTR usually exhibit high polymorphism and is a promising location for SNP identification. The 5^{\prime} ESTs have the advantage of being more likely to include some of the open reading frame (ORF) of the cDNA and thus facilitate identification of the encoded product.

EST sequences are used as the tag to homology search through the sequence data in the GenBank (Altschl et al., 1990). The BlastN program uses nucleotide sequence to compare against the NCBI nucleotide database whereas the BLASTX uses the translated protein products to compare against the NCBI protein database in all possible 6 reading frames. Generally, sequences are considered to be significantly matched when the possibility value (E-value) is less than 10^{-4} and the match length is > 100 nucleotides for BlastN and a match length is >10 amino acid residues for Blast X, respectively, (Anderson and Brass, 1998).

EST analysis is an important tool for several applications. This approach has mainly applied for rapid gene discovery of genes, comparative genomics and functional genomics in various organisms. After characterization and annotation, cDNA or designed oligonucleotides of transcripts can be further used for microarray analysis. Construction of genetic linkage maps and/or physical maps of interesting species can be carried out by development and sequencing of EST-derived markers using genomic DNA of species under investigation (Liu and Cordes, 2004).

1.5.3 Suppression subtractive hybridization (SSH)

Suppression subtractive hybridization is a powerful technique to compare two populations of mRNA to obtain clones of genes that are expressed (or differential expressed) in one population but not in the other. Although there are several different methods, a Clontech PCR select cDNA subtraction method is convenient for generation of differentially expressed sequences (Fig. 1.6).

Figure 1.5 Overview for construction of cDNA inserts (A, www.bdbiosciences.com) and automated DNA sequencing (single-pass) of randomly selected cDNA clones. The entire process simply called EST analysis.

First, cDNA is synthesized from two types of mRNA populations and cDNA that contains specific (differentially expressed) transcripts is regarded as where the tester, and the reference cDNA is regarded as the driver. The tester and driver are digested with Rsa I. The tester cDNA is divided to two portions, and each is ligated with different cDNA adaptor. The ends of adaptor do not have a phosphate group,

Figure 1.6 Overview of the Clontech PCR-Select ${ }^{\text {TM }}$ procedure (www.bdbiosciences.com). The cDNA in which specific transcripts are to be found is called "tester" and the reference cDNA is called "driver".
therefore only one strand of each adaptor attaches to the 5^{\prime} ends of cDNA. The two adaptors have stretches of identical sequences to allow annealing of the PCR primer once recessed ends have been filled in.

Tester and driver cDNAs are hybridized. In the first hybridization, an excess of the driver is added to each tester. The samples are heat-denatured and allow to anneal Differential expressed transcripts are then enriched. During the second hybridization, template for PCR amplification is generated from differentially expressed transcripts. Two rounds of suppression PCR was carried out and only differentially expressed transcripts are amplified exponentially. Subtractive cDNA products are then cloned into the T-vector. Positive clones are characterized by hybridization or sequencing.

1.5.4 Reverse transcription-polymerase chain reaction (RT-PCR)

RT-PCR is a comparable method of conventional PCR but the first strand cDNA template rather than genomic DNA was used as the template in the amplification reaction (Fig. 1.7). It is a direct method for examination of gene expression of known sequence transcripts in the target species. The template for RTPCR can be the first stranded cDNA synthesized from total RNA or poly A ${ }^{+}$RNA. Reverse transcription of total RNA can be performed with oligo(dT) or random primers using a reverse transcriptase The product is then subjected to the second strand synthesis using a gene-specific forward primer.

RT-PCR can also be used to identify homologues of interesting genes by using degenerate primers and/or conserved gene-specific primers from the original species and the first strand cDNA of the interesting species is used as the template. The amplified product is further characterized by cloning and sequencing.

Semi-quantitative RT-PCR is an quantitative approach where the target genes and the internal control (e.g. a housekeeping gene) were separately or simultaneously amplified using the same template. The internal control (such as β-actin; elongation factor, $E F-1 \alpha$ or $G 3 P D H$) is used under the assumption that those coding genes are transcribed constantly and independently from the extracellular environment stimuli
and that their transcripts are reverse transcribed with the same efficiency as the product of interesting transcript.

Figure 1.7 Overall concepts of RT-PCR. During the first strand cDNA synthesis, an oligo $\mathrm{d}(\mathrm{T})$ (or random primers) primer anneals and extends from sites present within mRNA. The second strand cDNA synthesis primed by the $18-25$ base specific primer proceeds during a single round of DNA synthesis catalyzed by thermostable DNA polymerase (e.g. Taq polymerase) (www.copewithcytokines.de).

1.5.5 Rapid amplification of cDNA ends-polymerase chain reaction RACE-PCR

RACE-PCR is the common approach used for isolation of the full length of characterized cDNA. Using SMART (Switching Mechanism At 5^{\prime} end of RNA Transcript) technology, terminal transferase activity of Powerscript Reverse Transcriptase (RT) adds 3-5 nucleotides (predominantly dC) to the 3^{\prime} end of the first-strand cDNA. This activity is harnessed by the SMART oligonucleotides whose terminal stretch of dG can anneal to the dC-rich cDNA tail and serve as an extended template for reverse transcriptase. A complete cDNA copy of original mRNA is synthesized with the additional SMART sequence at the end (Fig. 1.8).

The first strand cDNA of 5^{\prime} and 3^{\prime} RACE is synthesized using a modified oligo (dT) primers and serve as the template for RACE PCR reactions. Gene specific primers (GSPs) are designed from interested gene for 5'- RACE PCR (antisense primer) and 3^{\prime}-RACE PCR (sense primer) and used with the universal primer (UPM) that recognize the SMART sequence. RACE products are characterized. Finally, the full length cDNA is constructed.

1.5.6 Real-time PCR

Real Time PCR is a kinetic approach based on the polymerase chain reaction, which is used to amplify and simultaneously quantify a target DNA molecule. It enables both detection and quantification (as absolute number of copies or relative amount when normalized to DNA input or additional normalizing genes) of a specific sequence in the sample.

The procedure follows the general principle of PCR. Its key feature is that the amplified DNA is quantified as it accumulates in the reaction in real time after each amplification cycle. Two common methods of quantification are the use of fluorescent dyes that intercalate with double-stranded DNA such as SYBR green, and modified DNA oligonucleotide probes that are fluorescent when hybridized with a complementary DNA.

The general principle of SYBR green polymerase chain reaction composed of first step, denaturation: at the beginning of amplification, the unbound dye molecules weakly fluorescence, the second step, annealing: after annealing of the primer, a few
dye molecules bind to the double strand. The last step, extension: during elongation, more dye molecules bind to the newly synthesized DNA. Fluorescence measurement at the end of the elongation step of every PCR cycle is performed to monitor the increasing amount of amplified DNA (Fig. 1.9).

Poly A+ RNA

Figure 1.8 Overview of the SMART ${ }^{\mathrm{TM}}$ RACE CDNA Amplification Kit (www.bdbiosciences.com).
A. Mechanism of SMART cDNA synthesis. First strand synthesis is primed using a modified oligo (dT) primer. After reverse transcriptase reaches the end of the mRNA template, it added several dC residues. The SMART II A Oligonucleotide annels to the tail of the cDNA and serves as an extended template for PowerScript-RT.
B. Relationships of gene-specific primers to the cDNA template. This diagram shows a generalized first strand cDNA template.

Real-time polymerase chain reaction in the laboratory can be applying numerous applications. It is commonly used for both diagnostic and research applications. For diagnostic purposes, real-time PCR is applied to rapidly detect the presence of genes involved in infectious diseases, cancer and genetic abnormalities. In the research applications, real-time PCR is mainly used to provide highly sensitive quantitative measurements of gene transcription.

The technology may be used in determining how the genetic expression of a particular gene changes over time, such as in the response of tissue and cell cultures to an administration of a pharmacological agent, progression of cell differentiation, or in response to changes in environmental conditions.

Figure 1.9 An overall concept of the Real-time PCR procedure (www.thaiscience.com/lab_vol/p23/Real-Time_PCR.asp).

1.5.7 Microarray analysis

A microarray is a tool for analyzing expression of a large number of genes simultaneously. A microarray consists of a small membrane or glass slide containing samples of many genes arranged in a regular pattern. Advances in biotechnology allow the identification and classification of this DNA sequence information and the assignment of functions to these new genes: the emergence of DNA microarray technology.

Microarrays are therefore useful when one wants to survey a large number of genes quickly. Microarrays may be used to assay gene expression within a single sample or to compare gene expression in two different cell types or tissue samples, such as in healthy and diseased tissue. Because a microarray can be used to examine the expression of hundreds or thousands of genes at once, it promises to revolutionize the way scientists examine gene expression. This technology is still considered to be in its infancy; therefore, many initial studies using microarrays have represented simple surveys of gene expression profiles in a variety of cell types.

A microarray works by exploiting the ability of a given mRNA molecule to bind specifically to, or hybridize to, the DNA template from which it originated. By using an array containing many DNA samples, scientists can determine, in a single experiment, the expression levels of hundreds or thousands of genes within a cell by measuring the amount of mRNA bound to each site on the array. With the aid of a computer, the amount of mRNA bound to the spots on the microarray is precisely measured, generating a profile of gene expression in the cell.

Apart from the control of reproductive maturation, manipulation of sex ratio is an important tool for crustacean aquaculture. An understanding of sex determination and differentiation is, therefore, necessary for designing appropriate breeding programs in penaeid species.

Prepare Target mRNAs

Figure 1.10 An overall concept for large scale screening of gene expression based on microarray analysis (www.microarray.lu/en/MICROARRAY_Overview.shtml).

Sex determination is problematic in researches of many species. This can usually be solved by the application of DNA based technology but this is only possible if a sexspecific (located on unique sex chromosomes) marker is available. The lack of sex chromosomes reported in P. monodon and other penaeid shrimps implied that development of genomic DNA-based sex determination markers in P . monodon may not be possible.

Manipulation of sex ratio and sexual maturation are important tools for crustacean aquaculture. Although sex determination in crustaceans has been reviewed and interested during the last two decades, the genetic basis for sex determination in decapods has not been studied.

Vertebrates have sex determination systems but do not conserve across distant related species. Sex determination systems consist of species illustrating sex chromosomes (e.g. XX/XY, XX/XO and ZZ/ZW systems) and those lacking sex chromosomes but sex differentiation of those species is controlled by autosomal genes (Baker et al., 1976). Sex determination systems in invertebrates completely differ from those of vertebrates because most invertebrates do not possess sex chromosomes.

The $\mathrm{XX} / \mathrm{XY}$ system is found in mammals. Males possess heterogametic sex chromosomes (XY) and females exhibit homogametic sex chromosomes (XX). In contrast, the $\mathrm{XX} / \mathrm{XO}$ system which is found in grasshoppers, crickets, roaches and some insects, males exhibit a single set of X chromosome (XO) but females possess homogametic sex chromosomes (XX). In addition, ZZ/ZW system is found in birds, some fishes and some insects including butterflies and moths. Sex heterogametic chromosomes (ZW) are found in females but sex homogametic chromosomes (ZZ) are found in males.

In insects, sex determination system has been well studied in Drosophila melanogaster because several spontaneous mutants affecting sex determination were found. The ratio of X chromosomes (X) to autosomes (A) is the primary signal for sex determination in this species. The gene Sex-lethal (Sxl) controls sex determination, dosage compensation, and oogenesis in D. melanogaster and can be activated only when the X / A was 1 or more and a female develops. Alternatively, a ratio of 0.5 (X: AA) leaves $s x l$ inactivate and male development occurs.

Sxl participates in the female-specific splicing of its own pre-mRNA. The downstream target of Sxl is the transformer (Tra) which encodes a non-functional truncated Tra protein in males (Inoue et al., 1990). The female Tra protein induces female-specific splicing of the doublesex ($d s x$) pre-mRNA in cooperation with the Tra-2 gene product promoting female sexual development (Burtis et al., 1991; Jursnich and Burtis, 1993; An and Wensink, 1995).

The $d s x$ gene is known as the final gene of the sex-determining cascade in D. melanogaster. Female- or male-specific proteins of dsx regulate the expression of sexspecific differentiation gene such as yolk protein genes (Burtis et al., 1991; Jursnich et
al., 1993; An et al., 1995a, b). The $d s x$ proteins have a zinc finger-like domain called DM domain (Erdman et al., 1993; Erdman et al., 1996; Raymond et al., 1998).

The $d s x$ homologues have been identified in many other species including mab-3 from Caenorhabditis elegans (Shen et al., 1988), DMRT1 from human (Raymond et al., 1998; Moniot et al., 2000) and Dmrt1 from mouse and chicken (Raymond et al., 1999; De Grandi et al., 2000). These dsx homologues were all contain DM domain and considered to regulate sexual differentiation and have been evolutionarily conserved as sex-determining genes.

Sex determination mechanisms have long been of major interest from both developmental and evolutionary points of view (Delvin and Nagahama, 2002). An understanding of sexual biology of any sexual-reproducing species is important for designing breeding programs in that species (Preechaphol et al., 2007). In Drosophila, sex determination is under the control of the sex lethal (Sxl) gene (Burtis et al., 1991).

In M. rosenbergii, implantation of androgenic glands in sexually undifferentiated females produced reproductively competent neomales. Mating of neomales with normal females suggested a complex heterogametic (ZW) system of females in this species.

In mammalian species, X -linked zinc figer proten gene (Zfx) and Y -linked zinc finger protein gene (Zfy) usually showed fixed single nucleotide polymorphism (SNP) between males and females. Previously, a homologue of zinc finger protein gene was isolated in P. monodon. The amplification product of this gene in females and males of P. monodon was characterized by sequencing. Unlike mammalian species, this gene homologue did not exhibit fixed polymorphism between genders

In P. monodon, females exhibit approximately $10 \%-20 \%$ greater growth rate than do males (Browdy, 1998). The diploid chromosome numbers of penaeid shrimps have been reported in P. esculentus, P. monodon, Farfantepenaeus aztecus, Fenneropenaeus chinensis, Fenneropenaeus merguiensis, Fenneropenaeus penicillatus and Marsupenaeus japonicus, and ($2 \mathrm{~N}=88$), P. semisulcatus and Litopenaeus setiferus (2N =90) and Farfantepenaeus californiensis and Litopenaeus
occidentalis $(2 \mathrm{~N}=92)$ (Benzie, 1998). Neither sex chromosomes nor environmental sex determination have been reported in penaeid shrimps.

Sex chromosomes have not been cytologically identified in penaeid species. Recently, Li et al. (2003) constructed genetic linkage maps of the kuruma shrimp, Masupenaeus japonicus, based on AFLP analysis and revealed that sex of female progeny ($N=54$) was tightly mapped to the linkage group 28 of the female map (LOD $=5.0$) which led to the argument of female heterogamy $(Z W)$ in this species. Moreover, triploidy affects the sex ratio in Feneropenaeus chinensis (Li et al., 2003) and M. japonicus (Preston et al., 2004) where the female-to-male ratio was almost 4:1 in the former but all triploids were female in the latter. These further support complex heterogametic sex in penaeid shrimp (Preston et al., 2004).

Wilson et al. (2002) used an identical approach to construct the male and female genetic linkage maps in P. monodon. A total of 673 polymorphic AFLP loci that confirmed to Mendelian segregation ratios were scored in three families and used to constructed separate male and female linkage maps for each family. Common markers found in two or more reference families were used to construct a common linkage map across three families. Nevertheless, sex-linked AFLP markers were not found in P. monodon. This indirectly implied that female-linked markers found in M. japonicus placed in the female map may be resulted artifact AFLP bands.

Staelens et al. (2008) constructed sex-specific high-density linkage maps and identified sex-linked markers for P. monodon. In total, 44 male and 43 female linkage groups from the analysis of 2306 AFLP markers segregating in three full-sib families, covering 2378 and 2362 cM , respectívely. Twenty-one putatively homologous linkage groups, including the sex-linkage groups, were identified between the female and male linkage maps. Six sex-linked AFLP marker alleles were inherited from female parents in the three families, suggesting that the P. monodon adopts a WZ-ZZ sexdetermining system. Two sex-linked AFLP markers, one of which was converted into an allele-specific assay, confirmed their association with sex in a panel of 52 genetically unrelated animals.

1.7 Spermatogenesis

Spermatogenesis is a complex cell differentiation process required a coordinated series of both mitosis and meiosis cycle events (Abe, 1987) and consists of a series of complex cellular events, in which different genes express to ensure the proper development of spermatozoa. The process of spermatogenesis follows an endocrine-regulated developmental program that features the transformation of an undifferentiated diploid stem cell into highly differentiated haploid spermatozoa.

In mammals, spermatogenesis is composed of three stages; the mitotic proliferation of spermatogonia, meiotic division of spermatocytes, and morphogenetic processes converting haploid spermatids to spermatozoa (Abe, 1987). Spermiation and sperm maturation occur during the final stage of spermatogenesis and are critical step for successful fertilization (Callard, 1991; Zirkin, 1993).

The mitotic proliferation of spermatogonia includes the germinal stem cells and other mitotic germinal cells produced from the stem cells (Grimes, 2004) and starts with the self-renewal and differentiation of a small population of spermatogonial stem cell. Spermatogonial stem cells are found in the basal part of the seminiferous epithelium, in contact with the basement membrane. They are also in close association with the nursing Sertoli cells, which produce the growth factors necessary to induce self-renewal and differentiation (Braydich-Stolle et al., 2007).

For the second stage, meiotic division of spermatocytes, DNA replication does not occur in spermatocytes but DNA repair is critical during this time period. Many unique genes are involved in the process of genetic recombination for example unique genes encode SCP1 and COR1 proteins are components of the synaptonemal complex, protein involved in recombination and DNA repair, and the Dmc1 gene are all expressed in spermatocytes (Grim, 2004).

In addition, a targeted mutation of $70-\mathrm{kDa}$ heat-shock gene Hsp70-2, which is expressed in the meiotic phase of spermatocytes in mice, leads to infertility. Development is arrested in late pachytene spermatocytes at the G2/M phase of the meiotic cell cycle. Hsp70-2 may be molecular chaperones required for Cdc2 activation that may facilitate dimerization of Cdc2 with cyclinB1 to become the active kinase in male germ cells (Eddy, 1999).

Figure 1.11 General diagram of spermatogenesis (http://www.luc.edu/faculty/ wwasser/dev/spermeio.htm)

The third stage, called spermiogenesis, is morphogenetic processes converting haploid spermatids to mature spermatozoa. Many molecular events occur in spermatids that are required for completion of spermatogenesis. Significant progress has been made in understanding the unique chromatin remodeling and regulation of post-meiotic transcription in male germ cells that occurs during spermiogenesis (Sassone-Corsi, 2002). There is greatly increased transcriptional activity giving rise to several indispensable post-meiotic proteins in the early spermatids. For example, testis-specific isoforms of TATA-binding protein (TBP) are typically found (SassoneCorsi, 2002). cAMP-responsive elements (CREs), members of the CREB family of transcription factors (Sassone-Corsi, 1998) are poorly expressed in testis, but another CREB family member, CREM, is present at high levels.

1.8 Histology of testes of penaeid shrimp

Histological studies of normal penaeid shrimp were reported (Bell and Lightner, 1988). A composition of male reproductive system is showed in Figures 1.12-1.14. As can be seen from Figure 1.12.1, the central core cells of the ventrally
directed vas deferens appear to have a highly granular, basophilic cytoplasm, with sparse nuclei (Nuc). The core cells are surrounded by a thin, fibrous, bi-layered sheath, with elongated nuclei (bold arrow); possibly representing the basal lamina and muscle layers found in older males. In addition, Figure 1.12.2 indicated that testes are paired organs straddling the median plane, and extend laterally around both sides of the hepatopancreas (Hep). In this view, a lateral lobe of the testes (Tes) is closely apposed by the hepatopancreas (Hep) proximally and muscle (Mus) peripherally. Its origin is near the posterior aorta (Aop).

From Figure 1.13.1, a distinct morphological evolution occurs in the vas deferens proceeding from the proximal to the distal region. The section depicts the vas deferens as having two separate lumens, a dorsal primary lumen and ventral secondary lumen. As can be seen Figure 1.13.2-1.13.4, a longitudinal septum (Sep) formed within the vas deferens dividing it into the primary (Lvp) and secondary lemen (Lvs). Formation of the longitudinal fold (Fld) increased the secondary channel surface area. The peripheral sheath (1.13.3; bold arrow) comprises fibrous and muscular components. The central region is the longitudinal septum (Sep), with the longitudinal fold (Sld) to the left and the primary lumen (Lvp) main wall to the right (1.13.4). The double layer of the longitudinal septum epithelial cells (Ept), and dividing connective tissue/hemal sinus layer (4; hollow arrow) might indicate an infolding of the immature single-channelled vas deferens forming the septum.

From Figure 1.14.1, the spermatozoa, encased within a spermatophore (neither of which are present at this age), is transferred to the female during copulation from the terminal ampoule (Tam) to the genital pore (bold arrow) via the distal "terminal ampoule duct" (Tad). It appears that the "terminal ampoule duct" in juvenile males is merely an undeveloped portion of the terminal ampoule; the duct does not exist in adult males. The genital pore opens to the exterior on the coax of the fifth pereiopods (Pp5). Four distinct chambers have been reported from adult penaeids; they are discernable even in the small shrimp.

Morphology of shrimp with 2.0 cm in body length is slightly more complex than that noted in the younger shrimp (Fig. 1.14.1). This micrograph 1.14 .2 shows only two of the four lumen chambers. The epithelium (Ept) typically consists of very tall columnar cells. A think, complex, fibrous and muscular wall (Wal) surrounds the
epithelium. The organ wall is composed of multiple layers if muscle (Msz), oriented in various directions, and connective tissue. The outer-most layer is reported to be a thin layer of squamous epithelium (Eps).

Figure 1.12 (1) Longitudinal section of a less than 1.0 gram juveniles showing the testes (Tes)/vas deferens (Vsd) junction. Msz: muscle layers, Epm: epithelium, and Lum: lumen. Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson’s fixative, bar length $=50 \mu \mathrm{~m}$. (2) Cross sectional orientation view of a laterally projecting testicular lobe (Tes) from a 2.0 gram juvenile. Transverse $4-5 \mu \mathrm{~m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=400 \mu \mathrm{~m}$. (Bell and Lightner, 1988)

In Fig. 1.14.3, the section illustrated the lumen (Lum) of only a single chamber. As in Fig. 1.14.2, the wall is composed of a single layer of very tall columnar eg., epithelial cells (Ept), and a thick layer of connective tissue and muscle (hollow arrow). In addition, the terminal ampoule had been excised from the shrimp prior to preparation (Fig. 1.14.4). The spermatophore, in this preparation, is in the very early development stages, as indicated by the small mass of spermatozoa (Sp4) located dorsally. This appears to depict multiple interconnecting chambers or lumina. These have been arbitrarily labeled \#1 through \#4. A cellular material (bold arrow) is noted within chamber \#2. The large ventral mass (hollow arrow) contains a rather amorphous cellular material.

Figure 1.13 (1) Longitudinal orientation section from a less than 1.0 gram juvenile showing the proximal vas deferens (Vsd). Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=100 \mu \mathrm{~m}$. (2-4) Longitudinal orientation section of the medial vas deferens (Vsd), from a 2.0 gram juvenile. Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=100 \mu \mathrm{~m}$ and $30 \mu \mathrm{~m}$ for (2) and (3-4), respectively. (Bell and Lightner, 1988)
ศูนยวิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

Figure 1.14 (1) Longitudinal orientation view of the enlarged distal vas deferens or terminal ampoule (Tam) from a less than 1.0 gram juvenile. Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=100 \mu \mathrm{~m}$. (2) Longitudinal section of the terminal ampoule (Tam), (itself sectioned transversely or obliquely), from a less than 2.0 gram juvenile. Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=50 \mu \mathrm{~m}$. (3) Longitudinal view of the terminal ampoule from a less than 2.0 gram juvenile. Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=400 \mu \mathrm{~m}$. and (4) Orientation view of the terminal ampoule from a mature $35.0+$ gram shrimp. Longitudinal $4-5 \mu \mathrm{~m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $11 \mu \mathrm{~m}$. (Bell and Lightner, 1988)

From Figure 1.15.1, each aluminal tubule or testicular cord (Tec) as they are more commonly called, like the lobe as a unit, is surrounded by a delicate fibrous connective tissue (Cnf) layer, of which a fibrocyte nucleus (Nuc) is noted. The cords are separated by hemal sinuses (Sin). Cellular differentiation has probably not yet began. A germinal layer of spermatogonia (Sp0) is typically localized on one side of
the cord's periphery. Spermatogonia contain a large granular nucleus with sparse cytoplasm. Spermatogonia are noted here to be dividing mitotically. Synchrony in cellular division is typical, note the large number of the mitotic figures (bold arrows). Nurse cells (Ncl) occupy a peripheral position.

From Fig. 1.15.2, the major differences between that of the shrimp sectioned in Fig. 1.15.1 are a) seminiferous tubules rather than the aluminal testicular cords are present, b) each tubule has a lumen and is significantly larger in size, c) each tubule contains a significantly higher number of cells, d) and the cells occupying the core of the tubule are primarily spermatids (Sp 3), with possibly some primary (Sp 1) and secondary spermatocytes (Sp2). As noted earlier in less mature shrimp, one side of the tubular periphery is composed of spermatogonia (Sp 0), while the remainder of the periphery is composed primarily of nurse cells (Ncl).

Orientation view of mature spermatozoa (Fig. 1.15.3) arranged in bundles, each of which is presumably surrounded by an acellular "primary spermatophore layer". The bundles appear very similar to seminiferous tubules with spermatozoa (Sp4) in the central core and the periphery partially made up of presumed nurse cells (hollow arrows). The terminal ampoule has been excised from the shrimp prior to preparation (Fig. 1.15.4). The spermatophore, in this preparation, is in the very early developmental stage, as indicated by the small mass of spermatozoa (Sp4) located dorsally. This preparation appears to depict multiple interconnecting chambers or lumina. These have been arbitrarily labeled as \#1 through \#4. An acellular material (bold arrow) is noted within chamber \#2. The large ventral mass (hollow arrow) contains a rather amorphous cellular material.

1.9 Candidate genes involved with testicular development and spermatogenesis

 of \boldsymbol{P}. monodonSeveral functional important genes possible related with growth, testicular development and spermatogenesis have been reported. An example of these genes is small ubiquitin-related modifier-1 (SUMO-1), a member of a ubiquitin-related protein family. Ubiquitin and its related proteins play important roles in diverse reproductive functions such as spermatogenesis and modulation of steroid receptor activity. SUMO-binding motif have been identified in several nuclear receptor including the
androgen receptor (AR), progesterone receptor (PR) and glucocorticoid receptor (GR) suggesting distinct roles of SUMO for growth and reproduction. Sumoylation is a posttranslational modification system that covalently attaches SUMO to target protein.

Figure 1.15 (1) Enlarged view of early testicular development stages from a 2.0 gram juvenile. Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=40 \mu \mathrm{~m}$. (2) Enlarged view of mature testes from $15.0+$ gram shrimp. Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length $=50$ $\mu \mathrm{m}$. (3) Orientation view of mature spermatozoa arranged in bundles, each of which is presumably surrounded by an acellular "primary spermatophore layer". The bundles appear very similar to seminiferous tubules with spermatozoa (Sp4) in the central core and the periphery partially made up of presumed nurse cells (hollow arrows). Longitudinal 4-5 $\mu \mathrm{m}$ paraffin section, H\&E stain, Davidson's fixative, bar length = $100 \mu \mathrm{~m}$. (4) Enlarged view of mature sperm of spermatozoa from terminal ampoule. Longitudinal 4-5 μ m paraffin section, H\&E stain, Davidson's fixative, bar length = 1 mm. (Bell and Lightner, 1988)

Meiosis is an indispensable process of sexual reproduction. However, detailed information on the regulatory mechanisms that initiate meiosis is not available. Progestins are important steroids regulating final maturation in male and female vertebrates. In male teleosts, it is known that progestin induces spermiation and sperm maturation. However, a role for progestin in early spermatogenesis or meiosis has not yet been described.

Recently, the functions of progestin on the initiation of meiosis in male Japanese eel were reported. A natural progestin in teleost fish $17 \alpha, 20 \beta$-dihydroxy-4-pregnen-3-one (DHP) and its receptors were present in the testis at an early stage of spermatogenesis. By using an eel testicular culture system, DHP was shown to induce DNA replication in spermatogonia. Although 11-ketotestosterone, a known initiator of spermatogenesis, also stimulated DNA synthesis in spermatogonia, antibodies against DHP prevented DNA replication when added during the period in which meiosis was initiated. DHP treatment also induced the expression of meiosis-specific markers, such as Dmc1 and Spo11. Furthermore, Spo11 expression and synaptonemal complexes, specific features of the meiotic prophase, were detected in testicular fragments cultured with DHP in some germ cells that showed morphological characteristics of undifferentiated spermatogonia. Therefore, DHP is an essential factor for the initiation of meiosis (Miura et al., 2006).

Dmc1 (a RAC A-like recombinase) is known as a specific factor for meiotic recombination and has been identified as a gene product specifically expressed during the early meiotic prophase. Using the yeast two hybrid system, interaction between Ubc9 which is required as the enzyme for SUMO-1 conjugation to targets, and Dmc1 was illustrated in the basidiomycete Coprinus cinereus (Koshiyama, A. et al., 2006).

Recently, the A-type cyclins (cyclins A1 and A2) and Dmc1 cDNAs from the eel testis were cloned. Cyclin A1 mRNA was predominantly expressed in the livers, ovaries and testes of the eels. In contrast, a very high expression of cyclin A2 mRNA was observed in brains, livers, kidneys, spleens, ovaries, and testes of the eels. Dmc1 mRNA was predominantly expressed in the testes and ovaries; expression in the brain was also detected. In the eel testis, a few type-A spermatogonia incorporating 5-bromo-2-deoxyuridine (BrdU) were seen before the initiation of spermatogenesis by
hormonal induction. On day 1 after hormonal induction, the number of BrdU-labeled spermatogonia increased remarkably, and after 3 and 6 days, many labeled type-B spermatogonia were also observed. The expression of cyclin A2 increased 1 day after the induction of spermatogenesis and reached a plateau after 6 days, when many typeB spermatogonia with high proliferative activity were found. In contrast, the expression of cyclin A1 mRNA was detected after 9 days, coincident with the first appearance of spermatocytes. Cyclin A1 mRNA was localized in germ cells of all stages, from primary spermatocytes to round spermatids, whereas cyclin A2 mRNA was specifically localized in spermatogonia, secondary spermatocytes, round spermatids, and testicular somatic cells, including Sertoli cells. Dmc1 was localized only in the earlier stages of primary spermatocytes; before this stage, cyclin A1 mRNA was not detectable. Overall, cyclin A2, Dmc1, and cyclin A1 are expressed in spermatogenic cells sequentially before and during meiosis in the eel testis (KajiuraKobayashi et al., 2005).

Mitotic and meiosis cell divisions are fundamental processes of eukaryotes (Kobayashi et al., 1991). Progression through the cell cycle is regulated by association between cyclin-dependent kinases (Cdks) and their cyclin partners governing at different points in the cell division. Cyclin B-dependent cdc2 kinase activity has a key role in triggering the G2/M-phase transition during the mitotic and meiotic cell cycles.

The 70 kDa heat-shock proteins (HSP70) are molecular chaperones that assist other proteins in their folding, transport and assembly into complex. HSP70.2 is a testis-specific member of the HSP70 family, known to play a critical role in the completion of meiosis during male germ cells differentiation. Although abundantly present in post-meiotic cells, its function during spermiogenesis remained obscure. The HSP70-2 protein is synthesized during the meiotic phase of spermatogenesis and is abundant in pachytene spermatocytes. The knockout approach was used to determine whether HSP70-2 is a chaperone for proteins involved in meiosis. Male mice lacking HSP70-2 were infertile while females lacking HSP70-2 were fertile.

Spermatogenic cell development was arrested in prophase of meiosis I at the G2-M-phase transition and late pachytene spermatocytes were eliminated by apoptosis, resulting in an absence of spermatids. HSP70-2 is required for cdc2 to form a heterodimer with cyclin B1, suggesting that it is a chaperone necessary for the
progression of meiosis in the germ cells of male mice. HSP70-2 is also associated with the synaptonemal complex and desynapsis is disrupted in male mice lacking this protein. Homologues of HSP70-2 are present in the testes of many animals, suggesting that the role of this spermatogenic cell chaperone is conserved across phyla (Eddy, 1999).

A global proteomic approach was used to identify genome-organizing proteins in condensing spermatids and an unexpected role for HSPA2 (formerly HSP70.2), which acquires new functions and becomes tightly associated with major spermatid DNA-packaging proteins, Transition Proteins (TP) 1 and 2, were discovered. Therefore, HSPA2 is identified here as the first TP chaperone and these data provided the initial understanding on the yet totally unknown process of genome condensing structures assembly in spermatids (Govin et al., 2006).

Recently it has been indicated that estrogen, estradiol-17 β (E2), is involved in regulating the renewal of spermatogonial stem cells in eels. Subtractive cDNA between testes of eel cultured with estradiol-17 $\beta(\mathrm{E}+$) and without ($\mathrm{E}-$) were constructed to identify genes directly regulated this process. From northern blot analysis, eel spermatogenesis-related substance 34 (eSRS34) was expressed in testis cultured with E2 but was not expressed in that cultured with 11-ketotestosterone (11KT, an androgen of teleosts, induces complete spermatogenesis, including spermatogonial prolifilation toward meiosis). Therefore, it was suggested that eSRS34 was associated only with the regulation of spermatogonial stem cell renewal. The longest cDNA clone of eSRS34 showed similarity with human platelet-derived endothelial cell growth factor (PD-ECGF). Recombinant protein of eSRS34 was constructed and produced polyclonal antibody. Function of eSRS34 was examined using several in vitro systems. Results showed that recombinant eSRS34 induced spermatogonial mitosis in testicular organ culture. Furthermore, the addition of an antibody specific for eSRS34 prevented spermatogonial mitosis induced by E2 stimulation in a germ cell/somatic cell co-culture system. Therefore, eSRS34 concluded that is a spermatogonial stem cell renewal factor (Miura, 2007).

Prosaposin, the other reproductively related gene, is a precursor of four saposins, termed saposin A, B, C, and D, which activate glycosphingolipid hydrolysis. All four saposins contain six equally placed cysteines and a conserved N -
glycosylation site. The prosaposin gene contains 15 exons. It is transcribed into several mRNAs generated by alternative splicing of exon 8 . Several functions of prosaposin were found such as in the nervous system, cancer development, and fertilization. Prosaposin was found to be important in development, maintenance and differentiation of male reproductive organs, spermatogenesis and fertilization such as human, mouse, rat, and chicken.

SGP-l/prosaposin can be secreted or targeted to the lysosomes where it is processed into smaller saposins (A, B, C, and D) required for the hydrolysis of glycosphingolipids. The deficiency of saposins B and C results in variant forms of metachromatic leukodystrophy and Gaucher's disease, respectively, which are characterized by lysosomal storage of undegraded glycosphingolipids. In the nervous system, prosaposin presents trophic activity.

A mouse model was recently developed by creating a null allele in embryonic stem cells through gene targeting to investigate the phenotypic diversity of prosaposin mutations and the involvement of this protein in lysosomal storage diseases, and for the development of therapeutic approaches. Mice homozygous mutants die at the age of 35-40 days and neurological disorders contribute to the early demise of the mutant mice. Male reproductive organs in homozygous mutants show several abnormalities, such as a decrease in testis size with reduced spermiogenesis and an involution of the prostate, seminal vesicles, and epididymis. In these animals, the blood levels of testosterone remain normal. In the prostate of homozygous mutants, only the basal epithelial cells appear to be present, while the secretory cells are absent. These findings suggest that prosaposin may be involved in the development and maintenance of the male reproductive organs, as well as, in cellular differentiation (Morales et al., 2000).

The level and cellular localization of fotillin-1, a lipid raft protein, was examined in the testis of rats during postnatal development and spermatogenesis. The testes of rats were sampled on postnatal days $7,14,21,40$, and 60 , and analyzed by Western blot and immunohistochemistry. Western blot analysis detected flotillin-1 in the testes at days 7 and 14 after birth but the level decreased significantly at postnatal days 21,40 and 60 . At postnatal days $7,14,21$, and 40 , flotillin- 1 immunolocalization was observed mainly in the Sertoli cells. However, there was little flotillin-1
immunolabeling in the spermatogenic cells from the seminiferous tubule of the testes. In the seminiferous tubule of the testes at postnatal day 60, flotillin-1 immunoreactivity in the Sertoli cells varied according to the stages of the spermatogenic cycle; intense immunoreactivity being observed in stages IX-III and less in stages IV-VIII. These results suggest that flotillin-1 participates in the developmental process of Sertoli cells and is involved in the regulation of spermatogenesis (Kim et al., 2008).

Different biotechnological approaches, for example; injection of vertebrate steroid hormones, neurotransmitters and ecdysteroids (Benzie, et al., 1998) and the use of specially formulated feed have been applied to induce the gonad maturation of penaeid shrimp but results are inconsistent owing to limited knowledge on genetic and hormonal control of penaeid species.

Biogenic amines (e.g serotonin or 5-HT, epinephrine and dopamine) and peptide neuroregulators are known to modulate the release of neuropeptide hormones from the sinus gland. Serotonin, epinephrine and dopamine cause hyperglycemic effects possibly due to the release of crustacean hyperglycemic hormone (CHH) from the sinus gland. Injections of Dopamine result in hyperglycemia in normal but not bilaterally eyestalk-ablated P. monodon (Kuo et al., 1995).

Dopamine injections ($10^{-8}, 10^{-7}$, or $10^{-6} \mathrm{~mol} /$ shrimp $)$ affects levels of glucose, lactate, $\mathrm{Na}+$, $\mathrm{K}+$, $\mathrm{Cl}-$, protein, and oxyhemocyanin in the hemolymph and its osmolality in juvenile L. vanammei. Elevations of hemolymph glucose and lactate was observed at between 2 and 4 hours whereas increases in hemolymph osmolality, $\mathrm{Cl}-, \mathrm{Na}+$, and total protein were found at 2 hours, and a reduction in hemolymph oxyhemocyanin was found at 4 hours after the dopamine injection. All physiological parameters except $\mathrm{K}+$ had returned to the control values $8-16$ hours after receiving the dopamine (Chiu et al., 2006).

Injections of serotonin and dopamine antagonist, spiperone ($25 \mu \mathrm{~g} / \mathrm{g}$ body weight +1.5 or $5 \mu \mathrm{~g} / \mathrm{g}$ body weight) induced ovarian maturation and spawning in wild L. stylirostris and pond reared L. vannamei (Alfaro et al., 2004). In addition, in vivo effects of dopamine, a dopaminergic antagonist (spiperone), and a dopaminergic agonist (ADTN) on maturation of the testes in the fiddler crab, Uca pugilator, were
determined. Dopamine inhibited testicular maturation dose-dependently. ADTN also inhibited maturation of the testes whereas spiperone induced testicular maturation. (Sarojini et al., 1999).

In newt (Cynop pyrrhogaster), apoptosis of spermatogonia are induced by prolactin. In spring to summer when the ambient temperature is mild, dopamine is released from hypothalamus to suppress prolactin release from the pituitary. The spermatogonia survive and undergo active spermatogenesis with the assistance of FSH. On the other hand, low temperature in fall to winter suppresses dopamine release resulting in prolactin release from the pituitary inducing spermatogonial death (Abe, 2004).

Several neurotransmitters and neuropeptides (e.g MCL1 and neuroparsin) that are found in heart are important for cardiac regulation, brain development, growth and reproduction in several species. The roles of neuropeptides for growth and reproductive regulation have been reported in gastropods (i.e. abalone) for examples; mutation of the MCL1 protein causes brain disorders (Schmitt et al, 2003), Neuroparsin A and B involved with brain development and reproductive physiology in gonads (Janssen et al, 2001).

1.10 Objectives

The objectives of this thesis were identification and characterization of genes involving testicular development and spermatogenesis of P. monodon. Expressed sequence tag (ESTs) analysis was carried out using cDNAs from a conventional testes library and from suppression subtractive hybridization libraries of P. monodon. The full length cDNA of various genes were isolated and characterized by RACE-PCR. In addition, the expression profiles of genes in juvenile and adult P. monodon were examined using RT-PCR, semi-quantitative RT-PCR, real-time PCR, or microarray analysis. Recombinant proteins of functionally important gene homologues were expressed in vitro and used for production of the polyclonal antibody.

CHAPTER II

MATERIALS AND METHODS

2.1 Experimental animals

Specimens used in this study were male broodstock of P. monodon collected from Satun (Andaman Sea, west). This group of samples was used for construction of conventional testes cDNA library and RACE-PCR. In addition, broodstock-sized of male and female P. monodon were also live-caught from Angsila, Chonburi (Gulf of Thailand, east) and juvenile P. monodon males and females (approximately 20 g body weight, 4-month-old) were purchased from local farms in Chachengsao, eastern Thailand and used for construction of suppression subtractive hybridization (SSH) cDNA libraries, RT-PCR or semiquantitative RT-PCR analyses. Male broodstock originated from the Andaman Sea were collected at different periods after molting. These specimens were used for semiquantitative PCR and real-time PCR analyses.

2.2 RNA extraction

Total RNA was extracted from ovaries and testes of each the shrimp using TRI REAGENT ${ }^{\circledR}$. A piece of tissues was immediately placed in mortar containing liquid nitrogen and ground to the fine powder. The tissue powder was transferred to a microcentrifuge tube containing $500 \mu \mathrm{l}$ of TRI REAGENT ($1 \mathrm{ml} / 50-100 \mathrm{mg}$ tissue) and homogenized. Additional $500 \mu \mathrm{l}$ of TRI REAGENT were added. The homogenate and left for 5 min , before adding 0.2 ml of chloroform. The homogenate was vortexed for 15 s and left at room temperature for 2-15 min and centrifuged at 12000 g for 15 \min at $/ 4^{\circ} \mathrm{C}$. The mixture was separated into the lower red phenol-chloroform phase, the interphase, and the colorless upper aqueous phase. The aqueous phase (inclusively containing RNA) was transferred to a new 1.5 ml microcentrifuge tube. RNA was precipitated by an addition of 0.5 ml of isopropanol and mixed thoroughly. The mixture were left at room temperature for 10-15 min and centrifuged at 12000 g for 10 \min at $4-25{ }^{\circ} \mathrm{C}$. The supernatant was removed. The RNA pellet was washed with 1 ml of 75% ethanol and centrifuged at 12000 g for 5 min at $4^{\circ} \mathrm{C}$. The ethanol was removed. The RNA pellet was air-dried for 5-10 min. RNA was dissolved in DEPC-
treated $\mathrm{H}_{2} \mathrm{O}$ for immediately used. Alternatively, the RNA pellet was kept under absolute ethanol in a - $80{ }^{\circ} \mathrm{C}$ freezer for long storage.

Total RNA was also extracted from other tissues including eyestalks, gills, heart, hemocytes, hepatopancreases, lymphoid organs, intestine, stomach, pleopods and thoracic ganglion of P. monodon using the same extraction procedure.

2.3 Measuring concentrations of extracted RNA by spectrophotometry and electrophoresis

The concentration of extracted RNA samples was estimated by measuring the optical density at 260 nanometer $\left(\mathrm{OD}_{260}\right)$. An OD_{260} of 1.0 corresponds to a concentration of $40 \mu \mathrm{~g} / \mathrm{ml}$ single stranded RNA and $33 \mu \mathrm{~g} / \mathrm{ml}$ single stranded DNA (Sambrook et al., 2001). Therefore, the concentration of RNA samples were estimated in $\mu \mathrm{g} / \mathrm{ml}$ by using the following equation,

$$
\text { [RNA] }=\mathrm{OD}_{260} \mathrm{x} \text { dilution factor } \mathrm{x} 40 \text { (or } 33 \text { for single stranded DNA) }
$$

The purity of DNA samples can be evaluated from a ratio of $\mathrm{OD}_{260} / \mathrm{OD}_{280}$. The ratios of appropriately purified RNA were 2.0 (Sambrook et al., 2001).
2.4 Construction of conventional cDNA libraries from heart and testes and suppression subtractive hybridization (SSH) cDNA libraries from different stages of testes of \boldsymbol{P}. monodon

2.4.1 Purification of mRNA

Total RNA was extracted from testes of wild P. monodon caught from Satun (Andaman Sea, west) using TRI-REAGENT. Messenger (m) RNA was further purified using a QuickPrep micro mRNA Purification Kit (GE Healthcare).

Four hundred microliters of the extraction buffer were added to a microcentrifuge tube containing $25 \mu \mathrm{l}$ of total RNA and mixed by pipetting. Two volume (0.8 ml) of the elution buffer was added and mixed thoroughly. The mixture was centrifuged at $16,000 \mathrm{~g}$ for 1 min . Concurrently, the tube containing 1 ml of oligo(dT)-cellulose for each purification was centrifuged at the same speed for 1 min . The supernatant was removed. The homogenate was transferred into the
microcentrifuge tube containing the oligo(dT)-cellulose pellet. The tube was gently inverted to resuspend the oligo(dT)-cellulose for 3 min and centrifuged at 16000 g for 10 s at room temperature. The supernatant was carefully removed. The high salt buffer (1 ml) was added to a microcentrifuge tube and spun for 10 s at 16000 g . The supernatant was carefully removed. The wash was repeated four more times, as described above. The low salt buffer (1 ml) was added to the oligo(dT)-cellulose pellet. The tube was inverted and spun at 16000 g for 10 s . This wash was repeated once. The pellet from the final wash was resuspended in 0.3 ml of the low salt buffer. The slurry was transferred to a MicroSpin column and spun for 5 s . The flow-though solution was discarded. The low salt buffer (0.5 ml) was added and further spun for 5 s. This step was repeated twice. The column was then placed into a sterile 1.5 ml microcentrifuge tube and briefly centrifuged. The mRNA was eluted out by an addition of 0.2 ml of the prewarmed elution buffer $\left(55^{\circ} \mathrm{C}\right)$ to the top of column and centrifuged at 16000 g for 5 s . Additional 0.2 ml of the prewarmed elution buffer was added to the top of column to elute residual mRNA and centrifuged as described above.

2.4.2 Construction of the conventional testis and heart cDNA libraries of \boldsymbol{P}. monodon

The typical cDNA libraries were carried out using a cDNA Synthesis Kit, ZAP-cDNA Synthesis Kit, and ZAP-cDNA Gigapack III Gold Cloning Kit (Clontech).

2.4.2.1 First and second strand cDNA synthesis

Five micrograms of testis or heart mRNA was combined with $5 \mu \mathrm{l}$ of 10 x firststrand buffer, $3 \mu \mathrm{l}$ of first-strand methyl nucleotide mixture (10 mM dATP, dGTP, and dTTP supplemented with 5 mM 5 -methyl dCTP), $2 \mu \mathrm{l}$ of linker-primer (1.4 $\mu \mathrm{g} / \mu \mathrm{l}$), and $1 \mu \mathrm{l}$ of (40 units $/ \mu \mathrm{l}$) RNase Block Ribonuclease Inhibitor. DEPC-treated water was added to a final volume of $50 \mu \mathrm{l}$. The reaction was gently vortexed and briefly centrifuged. The reaction was incubated at room temperature for 10 min and $1.5 \mu \mathrm{l}$ of (50 units $/ \mu \mathrm{l}$) StrataScript RT was added to the first strand synthesis reaction. The reaction was gently vortexed and briefly centrifuged. Five microliters of the firststrand synthesis reaction was transferred to a separate tube and served as the first-
strand synthesis control reaction. The reaction was incubated at $42{ }^{\circ} \mathrm{C}$ for 1 hr . The tubes were placed on ice to terminate the first strand cDNA synthesis.

The components of second-strand synthesis reaction including $20 \mu \mathrm{l}$ of 10x second-strand buffer, $6 \mu \mathrm{l}$ of second-strand dNTP mixture (10 mM dATP, dGTP, and dTTP plus 26 mM dCTP), $116 \mu \mathrm{l}$ of Sterile distilled water, $2 \mu \mathrm{l}$ of (1.5 units $/ \mu \mathrm{l}$) RNase H, and $11 \mu \mathrm{l}$ of (9.0 units/ $\mu \mathrm{l}$) DNA polymerase were added to the first-strand synthesis reaction on ice. The reaction was gently vortexed, briefly centrifuged, and incubated at $16{ }^{\circ} \mathrm{C}$ for 2.5 hr . After second-strand synthesis reaction, immediately placed the reaction tube on ice.

2.4.2.2 Bunting the cDNA termini

Twenty-three microliters of blunting dNTP mix and $2 \mu \mathrm{l}$ of (2.5 units/ $\mu \mathrm{l}$) cloned Pfu DNA polymerase were added to the second-strand synthesis reaction. The reaction was gently vortexed, briefly centrifuged, and incubated at $72{ }^{\circ} \mathrm{C}$ for 30 min .

An equal volume ($200 \mu \mathrm{l}$) of phenol-chloroform [1:1 (v/v)] was added. The mixture was vortexed and centrifuged at 14000 g for 2 min at room temperature. The upper aqueous layer was transferred to a new tube. An equal volume of chloroform: isoamyl alcohol (24:1) was added and vortexed. The mixture was centrifuged at 14000 g for 2 min at room temperature and the upper aqueous layer was transferred to a new tube. The cDNA was precipitated by adding $20 \mu \mathrm{l}$ of 3 M sodium acetate and $400 \mu \mathrm{l}$ of absolute ethanol. The reaction was vortexed and kept overnight at $-20^{\circ} \mathrm{C}$.

The synthesized cDNA was recovered by centrifugation at 14000 g for 60 min at $4^{\circ} \mathrm{C}$. The cDNA pellet was gently washed by adding $500 \mu \mathrm{l}$ of $75 \%(\mathrm{v} / \mathrm{v})$ ethanol to the side of the tube away from the precipitate and centrifuged at 14000 g for 2 min at room temperature. The pellet was air-dried, resuspended in $9 \mu \mathrm{l}$ of EcoR I adapters, and incubated at $4^{\circ} \mathrm{C}$ for at least 30 min .

2.4.2.3 Ligation of EcoR I adapters

One microliter of 10x ligase buffer, $1 \mu \mathrm{l}$ of 10 mM rATP, and $1 \mu \mathrm{l}$ of T4 DNA ligase (4 units $/ \mu \mathrm{l}$) were added to the tube containing the blunted cDNA and the EcoR I adapters. The reaction was centrifuged and incubated overnight at $8^{\circ} \mathrm{C}$ or at $16^{\circ} \mathrm{C}$
for 2 days. After ligation reaction, the ligase activity was heat-inactivated at $70{ }^{\circ} \mathrm{C}$ for 30 min . The reaction was centrifuged for 2 min at room temperature and cooled at room temperature for 5 min .

2.4.2.4 Phosphorylation of EcoR I ends

The components including $1 \mu \mathrm{l}$ of 10x ligase buffer, $2 \mu \mathrm{l}$ of 10 mM rATP, $5 \mu \mathrm{l}$ of sterile water, and $2 \mu \mathrm{l}$ of T 4 polynucleotide kinase (5 units/ $\mu \mathrm{l}$) were added to the reaction and incubated at $37^{\circ} \mathrm{C}$ for 30 min . The kinase activity was heat-inactivated at $70^{\circ} \mathrm{C}$ for 30 min . The reaction was centrifuged for 2 min at room temperature and cooled at room temperature for 5 min .

2.4.2.5 Xho I digestion

Twenty-eight microliters of Xho I buffer and $3 \mu \mathrm{l}$ of Xho I ($40 \mathrm{units} / \mu \mathrm{l}$) were added. The reaction was incubated at $37{ }^{\circ} \mathrm{C}$ for 1.5 hr . Digested cDNA was precipitated by adding $5 \mu \mathrm{l}$ of 10x STE buffer ($1 \mathrm{M} \mathrm{NaCl}, 200 \mathrm{mM}$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$, and 100 mM EDTA) and $125 \mu \mathrm{l}$ of absolute ethanol and incubated overnight at $-20^{\circ} \mathrm{C}$. Following precipitation, the reaction was centrifuged at 14000 g for 60 min at $4^{\circ} \mathrm{C}$. The pellet was dried, resuspended in $14 \mu \mathrm{l}$ of 1 x STE buffer and $3.5 \mu \mathrm{l}$ of the column loading dye (50\% (v/v) glycerol, 10\% (v/v) 10x STE buffer, and 40\% (w/v) saturated bromophenol blue). The resuspended sample was ready to be size-fractionated through a drip column containing sepharose CL-2B gel filtration medium.

2.4.2.6 Size fractionation

2.4.2.6.1 Assembling and loading the drip column

A sterile 1-ml pipette was used as column. Small piece (about 8 millimeters) of the connecting tubing was used to connect the 1 ml pipette to the 10 ml syringe (Fig 2.1). Prior to loading the drip column, sepharose CL-2B gel filtration medium was gently mixed until the resin was uniformly suspended and 2 ml of 1 x STE buffer ($100 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ Tris-HCl pH 7.5, and 100 mM EDTA) and added to a column until the surface of the packed bed was approximately 0.25 inch below the "lip of the pipette" (the point where the pipet and the syringe were joined). The drip column was washed with 10 ml of 1 x STE buffer. When about $50 \mu \mathrm{l}$ of the STE buffer remained
above the surface of the resin, cDNA sample was immediately loaded using an automatic pipette.

2.4.2.6.2 Collecting the sample fractions

Sepharose CL-2B gel filtration medium separated molecules on the basis of size. Three drops per fraction were collected to a fresh microcentrifuge tube. The fractions began to collect when the leading edge of the dye reached the -.4 ml graduation of the pipette (Fig 2.1), and stopped when trailing edge of the dye reached the -.3 ml graduation. Before processing the fractions and recovering the sizefractionated cDNA, $8 \mu \mathrm{l}$ of each collected fraction was electrophoresed in a 5% nondenaturing polyacrylamide gel to determine the appropriate fractions used for ligation.

Figure 2.1 Assembly of the drip column for size-fractionation of synthesized cDNA

2.4.2.7 Processing the cDNA fraction

The collected fractions that did not contain linkers (>500 bp frgments) were selected and extracted with an equal volume of phenol-chloroform [1:1 (v/v)], vortexed, and spun in a microcentrifuge at the maximum speed for 2 min at room temperature. The upper aqueous layer was transferred to a fresh microcentrifuge tube. An equal volume of chloroform:isomyl alcohol (24:1) was added, vortexed, and spun in a microcentrifuge at the maximum speed for 2 min at room temperature. Two volume of absolute ethanol was added to extracted sample and cDNA was precipitated overnight at $-20^{\circ} \mathrm{C}$. The sample was centrifuged at the maximum speed for 60 min at $4^{\circ} \mathrm{C}$. The pellet was carefully washed with $200 \mu \mathrm{l}$ of $80 \%(\mathrm{v} / \mathrm{v})$ ethanol. The sample was centrifuged at the maximum speed for 2 min at room temperature. The pellet was air-dried and resuspended in 3.5-5 $\mu \mathrm{l}$ of sterile water.

2.4.2.8 Ligation of the CDNA insert

Size-selected cDNAs (>500 bp) were ligated into dephosphorylated Eco RI/Xho I-digested UNI-ZAP XR. The ligation reaction contained 100 ng of resuspended cDNA, $0.5 \mu \mathrm{l}$ of 10 x ligase buffer, $0.5 \mu \mathrm{l}$ of 10 mM rATP (pH 7.5), 1.0 $\mu \mathrm{l}$ of the predigested Uni-ZAP XR vector ($1 \mu \mathrm{~g}$), sterile water for a final volume of $4.5 \mu \mathrm{l}$, and $0.5 \mu \mathrm{l}$ of T4 DNA ligase ($4 \mathrm{U} / \mu \mathrm{l}$). The ligated reaction was incubated overnight at $12{ }^{\circ} \mathrm{C}$ or for up to 2 days at $4^{\circ} \mathrm{C}$.

2.4.2.9 Packaging and titering

2420.2 คrouesueg ทยทรพยากร

The packaging extract was removed from a $-80^{\circ} \mathrm{C}$ freezer and placed the on ice. Three microliters (containing 0.1-1.0 $\mu \mathrm{g}$) of the ligation product was added to the packaging extract, gently stirred the tube with a pipette, and briefly centrifuged. The tube was incubated at room temperature for 2 hr and $500 \mu \mathrm{l}$ of SM buffer and $20 \mu \mathrm{l}$ of chloroform were added to the tube and mixed gently. The tube was centrifuged briefly and the supernatant was transferred to a newly sterile tube. The supernatant containing the phage was ready for tittering. The supernatant may be stored at $4^{\circ} \mathrm{C}$ for up to 1 month.

2.4.2.9.2 Titering of the primary library

E. coli XL1-Blue MRF' cells were cultured in LB broth with supplements ($0.2 \%(\mathrm{w} / \mathrm{v})$ maltose and 10 mM MgSO 4$)$ with shaking at $37{ }^{\circ} \mathrm{C}$ for $4-6 \mathrm{hr}\left(\mathrm{OD}_{600}<\right.$ 1.0), or overnight at $30^{\circ} \mathrm{C}$. The bacterial cells were centrifuged at 1000 g for 10 min , and the cell pellet was resuspended in 25 ml of sterile 10 mM MgSO 4 . After OD determination, the culture was diluted to an OD_{600} of 0.5 with sterile 10 mM MgSO 4 .

To determine the titer of the primary library, $1 \mu \mathrm{l}$ of the final packaged reaction and $200 \mu \mathrm{l}$ of E. coli XL1-Blue MRF^{\prime} cells at an OD_{600} of 0.5 . In addition, 1 $\mu \mathrm{l}$ of a 1:10 dilution of the final packaged reaction was also combined with $200 \mu \mathrm{l}$ of E. coli XL1-Blue MRF' cells. The phage/bacteria mixture was incubated at $37^{\circ} \mathrm{C}$ for 15 min to allow the phage to attach to the cells. The component was added into 3 ml of the melted NZY top agar that was pre-cooled to approximately $48^{\circ} \mathrm{C}$, and plated immediately onto dry, the prewarmed NZY agar plate. The plate was incubated at $37^{\circ} \mathrm{C}$ about 6-8 hr. The plaques were counted and the titer of the library was estimated and expressed in plaque-forming units per milliliter (pfu/ml).

2.4.2.10 Amplification of the library

The E. coli XL1-Blue MRF' cells were overnight cultured in LB broth with supplements at $30{ }^{\circ} \mathrm{C}$ with shaking. The cells were gently centrifuged and resuspended in 25 ml of 10 mM MgSO 4 . The cell suspensions were measured at 600 mM and then diluted to an OD_{600} of 0.5 using 10 mM MgSO 4 .

Aliquots of the packaged mixture containing about 5×10^{4} pfu of bacteriophage ($<300 \mu \mathrm{l}$ of phage) with $600 \mu \mathrm{l}$ of E. coli XL1-Blue MRF' cells at OD_{600} of 0.5 were combined in polypropylene tubes. To amplify 1×10^{6} plaques, a total of 20 aliquots were combined (each aliquot contained 5×10^{4} plaques $/ 150-\mathrm{mm}$ plate).

Each aliquot tube was incubated for 15 min at $37^{\circ} \mathrm{C}$ and 6.5 ml of the NZY top agar, melted and cooled to $48^{\circ} \mathrm{C}$, was mixed with each aliquot of infected bacteria and evenly spread onto a $150-\mathrm{mm}$ NZY agar plate. Plates were incubated at $37^{\circ} \mathrm{C}$ for $6-8 \mathrm{hr}$. After that plates were overlaid with $5-10 \mathrm{ml}$ of SM buffer and stored at $4^{\circ} \mathrm{C}$ overnight.

The bacteriophage suspension from each plate was recovered and pooled into a sterile polypropylene container. Each plate was rinsed with additional 2 ml of SM buffer and pooled. Chloroform was added to a $5 \%(\mathrm{v} / \mathrm{v})$ final concentration, mixed well, and incubated for 15 min at room temperature. The cell debris was removed by centrifugation for 10 min at 500 g . Chloroform was added to a final concentration of $0.3 \%(\mathrm{v} / \mathrm{v})$. Aliquots of the amplified library were stored in $7 \%(\mathrm{v} / \mathrm{v}) \mathrm{DMSO}$ at $-80^{\circ} \mathrm{C}$

2.4.2.11 In vivo excision to convert the lambda library to the phagemid library

The lambda library was converted into the pBluescript library by in vivo excision. E. coli XL1-Blue MRF' and SOLR cells were overnight cultured in LB broth with supplements at $30^{\circ} \mathrm{C}$ with shaking. The cells were gently centrifuged and resuspended in 25 ml of 10 mM MgSO 4 . The OD_{600} of the cell suspensions was measured and then diluted to an OD_{600} of $1.0\left(8 \times 10^{8}\right.$ cells $\left./ \mathrm{ml}\right)$ using 10 mM MgSO 4 .

A portion of the amplified lambda bacteriophage library was combined with E. coli XL1-Blue MRF' cells in a $50-\mathrm{ml}$ conical tube at a MOI of 1:10 lambda phage-tocell ratio. It is recommended to excise 10 - to 100 -fold more lambda phage than the size of the primary library to ensure statistical representation of the excised clones and ExAssist helper phage was added at a 10:1 helper phage-to-cell ratio to ensure that every cell was co-infected with lambda phage and helper phage.

A mixture containing 10^{7} pfu of the lambda phage, 10^{8} cells of E. coli XL1Blue MRF', and 10^{9} pfu of ExAssist helper phage were combined in a conical tube and incubated at $37 \mathrm{C}^{\circ}$ for 15 min . After that, 20 ml of LB broth with supplements was added and the conical tube was incubated at $37 \mathrm{C}^{\circ}$ for 2.5-3.0 hr with shaking. The conical tube was heated at $65-70^{\circ} \mathrm{C}$ for 20 min to lyse the lambda phage particles and the cells, centrifuged at 1000 g for 10 min , and the supernatant was transferred into a sterile conical tube. One microliter of the supernatant containing excised phagemids was combined with $200 \mu \mathrm{l}$ of E. coli SOLR cells in a 1.5 ml microcentrifuge tube, and incubated at $37 \mathrm{C}^{\circ}$ for 15 min . The cell mixtures were plated onto LB ampicillin agar plates ($50 \mu \mathrm{~g} / \mathrm{ml}$) and incubated overnight at $37 \mathrm{C}^{\circ}$.

2.4.2.12 Colony PCR

Recombinant clones were selected by a lacZ' system following standard protocols (Sambrook and Russel, 2001). Colony PCR was performed to identify sizes of positive clones. Recombinant clones carrying insert sizes greater than 500 were extracted from testis and heart cDNA library.

Colony PCR was performed in a 25 ul reaction mixture containing 10 mM Tris-HCl, $\mathrm{pH} 8.8,50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton $\mathrm{X}-100$, 100 mM of each dNTP, 2 mM $\mathrm{MgCl}_{2}, 0.1 \mu \mathrm{M}$ each of pUC1 (5'-CCG GCT CGT ATG TTG TGT GGA-3') and pUC2 (5'-GTG GTG CAA GGC GAT TAA GTT GG-3'), 0.5 unit of Dynazyme ${ }^{\text {TM }}$ DNA Polymerase (FINNZYMES, Finland). An interesting colony was picked by a pipette tip and served as the template in the reaction, PCR was carried out in a thermocycler consisting of predenaturation at $94^{\circ} \mathrm{C}$ for 3 min followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $50^{\circ} \mathrm{C}$ for 1 min and extension at $72{ }^{\circ} \mathrm{C}$ for 2 min . The final extension was carried out at the same temperature for 7 min . The colony PCR products were electrophoresed though 1.2% agarose gel and visualized after ethidium bromide staining.

2.4.2.13 Plasmid DNA extraction

Plasmid DNA was isolated using a HiYield ${ }^{\mathrm{TM}}$ Plasmid Mini Kit (RBC; Real Biotech Corporation). A recombinant clone was inoculated into 3 ml of LB broth (1\% tryptone, 0.5% yeast extract, $1.0 \% \mathrm{NaCl}$) containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin and incubated at $37^{\circ} \mathrm{C}$ with constant shaking at 250 rpm overnight. The culture was transferred into 1.5 ml microcentrifuge tube and centrifuged at $14,000 \mathrm{rpm}$ for 1 min . The supernatant was discarded. The bacterial cell pellet wâs collected and resuspended with $200 \mu \mathrm{l}$ of the PD1 buffer containing RNaseA and thoroughly mixed by vortexed. The resuspended cells were lysed by the addition of $200 \mu \mathrm{l}$ of the PD2 buffer and mixed gently by inverting the tube 10 times. The mixture was stood for 2 min at room temperature. After that, $300 \mu \mathrm{l}$ of the buffer PD3 was added to neutralize the alkaline lysis step and mixed immediately by inverting the tube for 10 times. To separate the cell debris, the mixture was centrifuged at $14,000 \mathrm{rpm}$ for 15 min . The supernatant was transferred into a new microcentrifuge tube and to the PD column and centrifuged at $6,000 \mathrm{~g}(8,000 \mathrm{rpm})$ for 1 min . The flow-through was discarded.

The PD column was placed back in the collection tube. The column was washed by adding $400 \mu \mathrm{l}$ of the W 1 buffer and centrifuged at $6,000 \mathrm{~g}$ ($8,000 \mathrm{rpm}$) for 1 min . After discarding the flow-through, $600 \mu \mathrm{l}$ of the ethanol-added Wash buffer was added and centrifuged as above. The flow-through was discarded. The spin tube was centrifuge for an additional 2 min at full speed ($14,000 \mathrm{rpm}$) to remove the residual Wash buffer. The dried PD column was placed in a new 1.5 ml microcentrifuge tube and $30-50 \mu \mathrm{l}$ of the Elution buffer or water was added at the center of the column to elute the extracted plasmid DNA. The column was left at room temperature for 2 min and centrifuge at $14,000 \mathrm{rpm}$ for 2 min . The concentration of extracted plasmid DNA was spectrophotometrically measured.

2.4.2.14 Sequencing, EST clustering and assembly

A total of 896 from the testis cDNA library and 412 clones from the heart cDNA library were randomly selected and unidirectional sequenced from the 5' direction using a MegaBase 1000 automated DNA sequencer (GE Healthcare). Nucleotide sequences of ESTs were compared with those previously deposited in the GenBank using BLASTN and BLASTX (Altschul et al., 1990, available at http://www.ncbi.nlm.nih.gov). Significant matched nucleotides/proteins were considered when the E-value was $<10^{-4}$. Clustering and assembling of sequences were performed using TIGR Gene Indices Clustering Tools (TGICL) (Pertea et al., 2003) with CAP3 (Huang and Madan, 1999).

2.4.3 Construction of suppression subtractive hybridization (SSH) cDNA libraries

Forward and reverse subtractions (Diatchenko et al., 1996) from testes cDNAs of broodstock and juvenile of P. monodon were carried out using a PCR Select cDNA Subtraction Kit (Clontech, USA).

2.4.3.1 First strand cDNA Synthesis

One microgram of each tester and driver mRNA was combined with $1 \mu \mathrm{l}$ of 10 $\mu \mathrm{M}$ of the cDNA synthesis primer in a sterile microcentrifuge tube. Sterile $\mathrm{H}_{2} \mathrm{O}$ was added to a final volume of 5μ l. The reaction mixture was mixed by pipetting and centrifuged briefly. The reaction tube was incubated at $70^{\circ} \mathrm{C}$ in a thermal cycler for 2
min. The tube was cooled on ice for 2 min and briefly centrifuged. The first strand cDNA synthesis was synthesized by adding $2 \mu \mathrm{l}$ of 5 x First-Strand Buffer (250 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.5,40 \mathrm{mM} \mathrm{MgCl} 2,150 \mathrm{mM} \mathrm{KCl}$ and 5 mM dithiothreitol), $1 \mu \mathrm{l}$ of dNTP Mix (10 mM each of dNTPs), $1 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$, and $1 \mu \mathrm{l}$ of (20 units) AMV Reverse Transcriptase. The reaction was gently vortexed and briefly centrifuged. The reaction was incubated at $42{ }^{\circ} \mathrm{C}$ for 1.5 hr in an air incubator. The tubes were placed on ice to terminate the first strand cDNA synthesis.

2.4.3.2 Second strand cDNA synthesis and purification

The first strand synthesis reaction mixture was combined with $48.4 \mu \mathrm{l}$ of Sterile $\mathrm{H}_{2} \mathrm{O}, 16.0 \mu \mathrm{l}$ of 5 x second strand buffer (100 mM Tris-HCl, pH 7.5, 25 mM $\mathrm{MgCl}_{2}, 500 \mathrm{mM} \mathrm{KCl}, 50 \mathrm{mM}$ ammonium sulfate, $0.75 \mathrm{mM} \beta-\mathrm{NAD}$ and $0.25 \mathrm{mg} / \mathrm{ml}$ BSA), $1.6 \mu \mathrm{l}$ of dNTP mix (10 mM) and $4.0 \mu \mathrm{l}$ of 20 x second strand enzyme cocktail (DNA polymerase I, 6 units $/ \mu \mathrm{l}$; RNase H, 0.25 units $/ \mu \mathrm{l}$; and E. coli DNA ligase, 1.2 units $/ \mu \mathrm{l}$), mixed and briefly spun. The reaction was incubated at $16^{\circ} \mathrm{C}$ for 2 hr . After that, $2 \mu \mathrm{l}$ of T4 DNA Polymerase (3 units/ $\mu \mathrm{l}$) were added to the second strand reaction mixture and further incubated at $16^{\circ} \mathrm{C}$ for 30 min . Then, $4 \mu \mathrm{l}$ of 20x EDTA / Glycogen (0.2 mM EDTA; $1 \mathrm{mg} / \mathrm{ml}$ glycogen) was added to the reaction and mixed thoroughly. Then, $100 \mu \mathrm{l}$ of phenol:chloroform:isoamyl alcohol (25:24:1) were added and vortexed. The mixture was centrifuged at $14,000 \mathrm{rpm}$ for 10 min at room temperature. The top aqueous layer was carefully transferred to a sterile microcentrifuge tube. The phenol extraction was repeated. To precipitate the synthesized cDNA, $40 \mu \mathrm{l}$ of $4 \mathrm{M} \mathrm{NH} H_{4} \mathrm{OAc}$ and $300 \mu \mathrm{l}$ of absolute ethanol were added and thoroughly mixed by vortexing and centrifuged at $14,000 \mathrm{rpm}$ for 20 min at room temperature. The supernatant was carefully removed. The pellet was overlaid with $500 \mu \mathrm{l}$ of 80% ethanol and centrifuged at $14,000 \mathrm{rpm}$ for 10 min . The pellet was air dried for 10 min to evaporate residual ethanol. The pellet was dissolved in $50 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$.

2.4.3.3 Rsa I Digestion

The restriction mixture containing $43.5 \mu \mathrm{l}$ of double strand cDNA of tester and driver, $5.0 \mu \mathrm{l}$ of 10x Rsa I restriction buffer (100 mM Bis Tris Propane-HCl (pH 7.0), 100 mM MgCl 2 and 1 mM DTT) and $1.5 \mu \mathrm{l}$ of Rsa I (10 units/ $\mu \mathrm{l}$) was set up. The

Table 2.1 Sequences of the PCR select cDNA synthesis primer, adaptors and PCR primers

Primer/Adaptor	Sequence
cDNA synthesis primer	5'- TTTTGTACAAGCTT ${ }_{30} \mathrm{~N}_{1} \mathrm{n}-3^{\prime}$
Adaptor 1	5'- CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT -3'
	3'- GGCCCGTCCA -5'
Adaptor 2R	5'-CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3'
	3'-GCCGGCTCCA-5'
PCR primer 1	5'- CTAATACGA CTCCATATAGGGC -3'
Nested PCR primer 1	5'- TCGAGCGGCCGCCCGGGCAGGT -3'
Nested PCR primer 2R	5'- AGCGTGGTCGCGGCCGAGGT -3'
Control Primers:	2 a
G3PDH 5' Primer	5'- ACCACAGTCCATGCCATCAC -3'
G3PDH 3' Primer	5'- TCCACCACCCTGTTGCTGTA -3'

digestion was incubated at $37{ }^{\circ} \mathrm{C}$ for 1.5 hr . At the end of the incubation time, $5 \mu \mathrm{l}$ of the digest were collected for analysis of Rsa I digestion efficiency by agarose gel electrophoresis. After that, $2.5 \mu \mathrm{l}$ of 20x EDTA/glycogen mix was added to terminate the reaction. An equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) was added and vortexed. The reaction tube was centrifuged at $14,000 \mathrm{rpm}$ for 10 min at room temperature. The top aqueous layer was carefully removed and placed in a sterile microcentrifuge tube. The phenol/chloroform extraction was repeated. To recover the digested cDNA, $25 \mu \mathrm{l}$ of $4 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$ and $187.5 \mu \mathrm{l}$ of absolute ethanol were added. The tube was thoroughly vortexed and centrifuged at 14,000 rpm for 20 min at room temperature. The supernatant was carefully removed. The pellet was briefly washed with $200 \mu \mathrm{l}$ of 80% ethanol and centrifuged at 14,000 rpm for 5 min . The pellet was air dried for about 10 min and dissolved in $5.5 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$ and stored at $-20^{\circ} \mathrm{C}$. This digested cDNA served as the experimental driver cDNA. Subsequently, the sample was ligated with adapters to create tester cDNAs for forward and reverse subtraction.

2.4.3.4 Adaptor Ligation

One microliter of Rsa I-digested tester cDNA was diluted with 5μ l of sterile $\mathrm{H}_{2} \mathrm{O}$. A ligation master mix was prepared by combining $3 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}, 2 \mu \mathrm{l}$ of 5 x ligation
buffer (250 mM Tris- HCl ; $\mathrm{pH} 7.8,50 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 10 \mathrm{mM}$ DTT and $0.25 \mathrm{mg} / \mathrm{ml}$ BSA) and $1 \mu \mathrm{l}$ of T4 DNA ligase (400 units/ $\mu \mathrm{l}$). For each experimental tester cDNA, the reagents were combined in Table 2.7 in order,

Table 2.2 Ligation reactions of cDNA of testes (tester 1-1 and 1-2) and testes (tester 2-1 and 2-2)

Component	cDNA for ovaries		cDNA for testes	
	Tube 1	Tube 2	Tube 3	Tube 4
	Tester 1-1	Tester 1-2	Tester 2-1	Tester 2-2
	$(\boldsymbol{\mu} \mathbf{l})$	$(\boldsymbol{\mu} \mathbf{l})$	$(\boldsymbol{\mu})$	$(\boldsymbol{\mu})$
Diluted tester cDNA	2	2	2	2
Adaptor $1(10 \mu \mathrm{M})$	2	-	2	-
Adaptor $2 \mathrm{R}(10 \mu \mathrm{M})$		2	-	2
Master Mix	6	6	6	6
Final volume	10	10	10	10

* Tester 1-1 and 1-2 and 2-1 and 2-2 were mixed and subsequently served as unsubtracted tester control 1-C and 2-C, respectively.

The tubes were briefly centrifuged and incubated at $16{ }^{\circ} \mathrm{C}$ overnight. The ligation reactions were stopped by adding $1 \mu \mathrm{l}$ of the EDTA/glycogen mix, heated at $72^{\circ} \mathrm{C}$ for 5 min to inactivate the ligase activity.

2.4.3.5 First Hybridization

For each experimental subtraction, the reaction mixture was prepared in order according to Table 2.8. A drop of mineral oil and centrifuged briefly. The samples were incubated in a thermal cycler at $98{ }^{\circ} \mathrm{C}$ for 1.5 min . The first hybridization

Table 2.3 Composition of the first hybridization reaction of each subtraction

| Component |
| :--- | :---: | :---: | :---: |

[^0]

Figure 2.2 Preparation of adaptor-ligated tester cDNA for hybridization and PCR
was carried out at $68{ }^{\circ} \mathrm{C}$ for 8 hr and proceeded immediately to the second hybridization step.

2.4.3.6 Second Hybridization

To carry out the second hybridization: $1 \mu \mathrm{l}$ of Rsa I - digested driver cDNA, 1 $\mu \mathrm{l}$ of 4 x Hybridization Buffer and $2 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$ were added to a 0.5 ml microcentrifuge tube. One microliter of mixture was placed in another 0.5 ml microcentrifuge tube and overlaid with a drop of mineral oil. The mixture was incubated in a thermal cycler at $98{ }^{\circ} \mathrm{C}$ for 1.5 min and simultaneously mixed with the two hybridization samples (hybridization samples 1 and 2 from the first hybridization, Table 2.8) by pipetting. The reaction was incubated at $68{ }^{\circ} \mathrm{C}$ overnight. After that 200 $\mu \mathrm{l}$ of dilution buffer (20 mM HEPES, $\mathrm{pH} 6.6,20 \mathrm{mM} \mathrm{NaCl}$ and 0.2 mM EDTA, pH 8.0) was added and mixed by pipetting. The reaction mixture was heated in a thermal cycler at $68{ }^{\circ} \mathrm{C}$ for 7 min and stored at $-20^{\circ} \mathrm{C}$.

2.4.3.7 PCR Amplification

The PCR templates were prepared by aliquot $1 \mu \mathrm{l}$ of each subtracted cDNA samples or unsubtracted testes control into an appropriately labeled tube. A master mix enough for all of the primary PCR tubes was prepared (Table 2.4).

Table 2.4 Preparation of the primary PCR master mix

Reagent	Amount per reaction $(\boldsymbol{\mu l})$
Sterile $\mathrm{H}_{2} \mathrm{O}$	
10x PCR reaction buffer	
dNTP Mix $(10 \mathrm{mM})$	
PCR primer $1(10 \mathrm{mM})$	19.5
50x Advantage cDNA Polymerase Mix	2.5
Total volume	0.5

The reaction was mixed well by vortexing, and briefly centrifuged. An aliquot of $24 \mu \mathrm{l}$ of the master mix was dispensed to each tube and overlaid with $50 \mu \mathrm{l}$ of mineral oil. The reaction was incubated in a thermal cycler at $75{ }^{\circ} \mathrm{C}$ for 5 min to
extend the adaptors. The amplification reaction was carried out for 27 cycles composing of a $94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 66{ }^{\circ} \mathrm{C}$ for 30 s and a $72{ }^{\circ} \mathrm{C}$ for 1.5 min . After amplification, $8 \mu \mathrm{l}$ from each tube were electrophoretically through a 2.0% agarose gel.

A ten-fold dilution was performed using $3 \mu \mathrm{l}$ of each primary PCR mixture. One microliter of each diluted primary PCR product mixture was added into an appropriately labeled tube. A master mix for secondary PCR was prepared (Table 2.5).

Table 2.5 Preparation of the secondary PCR master mix

Reagent	Amount per reaction ($\mathbf{\mu l}$)
Sterile $\mathrm{H}_{2} \mathrm{O}$	18.5
10x PCR reaction buffer	2.5
Nested PCR primer $1(10 \mu \mathrm{M})$	1.0
Nested PCR primer 2R $(10 \mu \mathrm{M})$	1.0
dNTP Mix $(10 \mathrm{mM})$	0.5
50x Advantage cDNA Polymerase Mix	0.5
Total volume	24.0

The reaction was mixed well and briefly centrifuged. An aliquot of $24 \mu \mathrm{l}$ of the second master mix was dispensed to each of tube and overlaid with a drop of mineral oil. The reaction was carried out for 12 cycles composing of a $94^{\circ} \mathrm{C}$ for 30 s , $68{ }^{\circ} \mathrm{C}$ for 30 s and a $72{ }^{\circ} \mathrm{C}$ for 1.5 min . After PCR, $8 \mu \mathrm{l}$ from each tube were sizefractionated through a 2.0% agarose gel.

2.4.3.8 Ligation of PCR products to the pGEM ${ }^{\circledR}-$ T easy vector

The resulting products from the forward subtraction (cDNA from ovaries as the tester) and reverse reaction (cDNA from testes as the tester) were separately ligated to the pGEM - T Easy vector (Promega, USA) in a $10 \mu \mathrm{l}$ reaction volume containing $5 \mu \mathrm{l}$ of 2 x Rapid Ligation Buffer (60 mM Tris- HCl , $\mathrm{pH} 7.8,20 \mathrm{mM} \mathrm{MgCl} 2$, 20 mM DTT, 2 mM ATP and 10\% polyethylene glycol; MW 8000), 3 weiss units of T4 DNA ligase, 25 ng of $\mathrm{pGEM}^{\mathrm{R}}-\mathrm{T}$ easy vector and 50 ng of DNA insert. The reaction mixture was incubated overnight at $4^{\circ} \mathrm{C}$ before transformed to E. coli JM109.

2.4.3.9 Transformation of ligation products to E. coli host cells

The commercial E. coli JM109 competent cells (Stratagene) were thawed on ice for 5 min . Two to four microliters of the ligation mixture were added and gently mixed by pipetting and left on ice for 30 min . The transformation reaction was heatshocked in a $42{ }^{\circ} \mathrm{C}$ water bath for exactly 45 s without shocking. The reaction tube was immediately placed in ice for $2-3 \mathrm{~min}$. The mixture were removed from the tubes and added to a new tube containing 1 ml of prewarmed SOC (2\% Bacto tryptone, 0.5% Bacto yeast extract, $10 \mathrm{mM} \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{MgSO} 4$ and 20 mM glucose). The cell suspension was incubated with shaking at $37^{\circ} \mathrm{C}$ for 90 min. The mixture were centrifuged for 20 s at room temperature, and gently resuspended in $100 \mu \mathrm{l}$ of SOC medium and spread onto a selective LB agar plates containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin, $25 \mu \mathrm{~g} / \mathrm{ml}$ of IPTG and $20 \mu \mathrm{~g} / \mathrm{ml}$ of X-gal and further incubated at $37^{\circ} \mathrm{C}$ overnight (Sambrook et al., 2001). The recombinant clones containing inserted DNA are white whereas those without inserted DNA are blue.

2.4.3.10 Colony PCR of the recombinant clones

Recombinant clones were selected by a lacZ' system following standard protocols (Sambrook and Russel, 2001). Colony PCR was performed to identify sizes of positive clones. Recombinant clones carrying insert sizes greater than 250 bp was extracted from broth SSH libraries (approximately 200 clones from each SSH libraries). Colony PCR was performed with condition and cycles following 2.4.2.11. The colony PCR products were electrophoresed though 1.2% agarose gel and visualized after ethidium bromide staining.

2.4.3.11 Extraction of recombinant plasmid DNA

A colony was inoculated into a sterile tube containing 3 ml of LB broth supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin and incubated with shaking (200 rpm) at 37 ${ }^{\circ} \mathrm{C}$ overnight. Plasmid DNA was isolated using HiYield ${ }^{\mathrm{TM}}$ Plasmid Mini Kit (RBC; Real Biotech Corporation) following 2.4.2.12. The concentration of extracted plasmid DNA was spectrophotometrically measured.

2.4.3.12 Sequencing, EST clustering and assembly

Three hundred and sixty-seven clones (178 and 189 clones for subtractive cDNA libraries of testis from broodstock and juvenile, respectively) were randomly selected and unidirectional sequenced from the 5' direction using a MegaBase 1000 automated DNA sequencer (GE Healthcare). Nucleotide sequences of ESTs were compared with those previously deposited in the GenBank using BLASTN and BLASTX (Altschul et al., 1990, available at http://www.ncbi.nlm.nih.gov). Significant matched nucleotides/proteins were considered when the E-value was $<10^{-4}$. Clustering and assembling of sequences were performed using TIGR Gene Indices Clustering Tools (TGICL) (Pertea et al., 2003) with CAP3 (Huang and Madan, 1999).

2.5 Isolation and characterization of the full length cDNA of functionally important gene homologues of \boldsymbol{P}. monodon using Rapid Amplification of cDNA Ends-Polymerase Chain Reaction (RACE-PCR)

2.5.1 Preparation of the 5^{\prime} and 3^{\prime} RACE template

Full length cDNAs of interesting gene homologues were further characterized using a SMART RACE cDNA Amplification Kit (Clontech). Total RNA was extracted from testis of P. monodon using TRI-REAGENT. Messenger (m) RNA was purified using a QuickPrep micro mRNA Purification Kit (GE Healthcare) as described previously. RACE-Ready cDNA was prepared by combining $1 \mu \mathrm{~g}$ of ovarian mRNA with $1 \mu \mathrm{l}$ of 5^{\prime}-CDS primer and $1 \mu \mathrm{l}$ of $10 \mu \mathrm{~m}$ SMART II A oligonucleotide for 5^{\prime} - RACE-PCR and $1 \mu \mathrm{~g}$ of ovarian mRNA with $1 \mu \mathrm{l}$ of 3^{\prime}-CDS primer A for $5^{\prime}-$ RACE-PCR. The components were mixed and spun briefly. The reaction was incubated at $70^{\circ} \mathrm{C}$ for 2 min and snap-cooled on ice for 2 min . The reaction tube was spun briefly. After that, $2 \mu \mathrm{l}$ of $5 \times$ First-Strand buffer, $1 \mu \mathrm{l}$ of 20 mM DTT, $1 \mu \mathrm{l}$ of dNTP Mix (10 mM) and $1 \mu \mathrm{l}$ of PowerScript Reverse Transcriptase were added. The reactions were mixed by gently pipetting and centrifuged briefly to collect the contents at the bottom. The tubes were incubated at $42^{\circ} \mathrm{C}$ for 1.5 hr in a thermocycler. The first strand reaction products were diluted with $250 \mu \mathrm{l}$ of TricineEDTA (or TE) buffer and heated at $72^{\circ} \mathrm{C}$ for 7 min . The first strand cDNA template can be stored at $-20^{\circ} \mathrm{C}$ for up to three months.

2.5.2 Primer design

Gene-specific primers (GSPs) were designed from interesting transcripts obtained from testis and heart cDNA libraries and the subtractive testis cDNA libraries of P. monodon. Antisense and/or sense primers were designed for 5'RACEPCR and 3'RACE-PCR, respectively (Table 2.6-2.7). Internal forward and/or reverse primers were also designed for further sequencing of the internal regions of large RACE-PCR fragments (Table 2.8).

2.5.3 RACE-PCR

The master mix for 5^{\prime} RACE-PCR and 3^{\prime} RACE-PCR was prepared. For each $25 \mu \mathrm{l}$ amplification reaction, $16.0 \mu \mathrm{l}$ of PCR-grade water, $2.5 \mu \mathrm{l}$ of 10x Advantage 2 PCR buffer, $0.5 \mu \mathrm{l}$ of $10 \mu \mathrm{M}$ dNTP mix and $1 \mu \mathrm{l}$ of 50x Advantage 2 polymerase mix were combined. 5^{\prime} RACE-PCR and 3^{\prime} RACE-PCR were set up according to Table 2.9 and 2.10 respectively.

Table 2.6 Primer sequences for the first strand cDNA synthesis and RACE - PCR

Primer	Sequence
SMART II A Oligonucleotide	5'-AAGCAGTGGTATCAACGCAGAGTACGC GGG-3'
3'-RACE CDS Primer A	$\begin{aligned} & 5^{\prime} \text {-AAGCAGTGGTATCAACGCAGAGTAC }(\mathrm{T})_{30} \\ & \mathrm{~N}_{-1} \mathrm{~N}-\mathrm{B}^{\prime} \\ & \left(\mathrm{N}=\mathrm{A}, \mathrm{C}, \mathrm{G} \text { or } \mathrm{T} ; \mathrm{N}_{-1}=\mathrm{A}, \mathrm{G} \text { or } \mathrm{C}\right) \end{aligned}$
5'-RACE CDS Primer	$5^{\prime}-(\mathrm{T})_{25} \mathrm{~N}_{-1} \mathrm{~N}-3^{2} \int^{\circ} ? \int$ ($\mathrm{N}=\mathrm{A}, \mathrm{C}, \mathrm{G}$ or T; $\mathrm{N}_{-1}=\mathrm{A}, \mathrm{G}$ or C)
10X Universal Primer A Mix Long: 5'-CTAATACGACTCACTATAGGGCAA (UPM) GCAGTGGTATCAACGCAGAGT-3' Short : 5'-CTAATACGACTCACTATAGGGC-3'	
Nested Universal Primer A (NUP)	5'- AAGCAGTGGTATCAACGCAGAGT-3'

Table 2.7 Gene-specific primers (GSPs) used for further characterization of the full length cDNA of functionally important gene homologues in P. monodon

Primer	Sequence	Tm (${ }^{\circ} \mathrm{C}$)
Cell division protein kinase 7 (CDK7)		
3'-RACE	5'-GGCAGAAAAACCGTCTCTCAAGCGAAAG-3'	84
Flotillin 2		
3'-RACE	5'-GAGGAGAGCGTGATGGTTGGTGGAGGA-3'	86
Growth factor receptor-bound protein		
3'-RACE	5'-GGGGCTCTTTCCTGCCACCTACG-3'	76
Innexin 1		
5'-RACE	5'-CAGGGAGTGTGAAGAGGGCAACTCGG-3'	84
Low molecular weight neurofilament protein XNF-L		
5'-RACE	5'-GTATTCAAGGACGACCTCCCACGGAC-3'	82
3'-RACE	5'-AGAAGGGGAAAGCGAGGCGGTACAAGA-3'	84
Multiple inositol polyphosphate phosphatase 2 (TT 0004)		
5'-RACE	5'-TGAACAGCCCCAGTAAGGTAATGAACG-3'	80
Multiple inositol polyphosphate phosphatase 2 (TT 0678)		
5'-RACE	5'-CATGGTGCGGAGTTTGGTTAAGTTGAC-3'	80
3'-RACE	5'-TTGGCGGAAGCGAAAAATGGGCTGAGCA-3'	86
Prohibitin 2 (a repressor of estrogen receptor activity)		
3'-RACE	5'-TACAGCCATCCCTAACATCCACCAGA-3'	78
Rac GTPase activating protein 1		
5'-RACE	5'-CGCAATACTGGTGTGACAAGATTGTGTG-3'	82
Transformer-2		
5'-RACE	5'-CAGGCACTTAGATGGCTCGGGATTGTC-3'	84
Innexin2		
5'-RACE	5'-GCTACGATGATGAACCAGAACCACAGGA-3'	84
3'-RACE	5'-TCGGGTAGCCTGGAGAAGCACGACGGAC-3'	92
Meiotic recombination protein DMC1/LIM15 homolog isoform 1		
Progestin receptor membrane component 1		
5-RACE	5'-TGTCGTTTCATCTTGGGCACAGGAGGTT-3'	84
3'-RACE	5'-GCAAAGGACACCAAAGCGAAGACGGATG-3'	86
Dihydrolipoamide dehydrogenase		
5'-RACE	5'-AGGGATGCCTGGGAAGGGAGTAACC-3'	80
3'-RACE	5'-GGTCGCATTCCTGTCAACTCTCGCTTCC-3'	88
ERO-1		
5'-RACE	5'-TCAAGTATCCAAGGTCATTCTCTCCATC-3'	80
3'-RACE	5'-ATTGATGACGACAGTTCTGAGGAT-3'	68

Table 2.7 (cont.)

Primer	Sequence	Tm (${ }^{\circ} \mathbf{C}$)
TroponinT		
3'-RACE	5'-CGACGCACAGACAGGAGGACCTATGACG-3'	90
Saposin		86
5'-RACE-1	5'-CTGGCACCAATAAGAAGGACCCCAAGTG-3'	86
5'-RACE-2	5'-CAGATGGGCAGAGATGCAGCATAGGACA-3'	86

Table 2.8 Internal primers used for primer walking sequencing of the full length cDNA of functionally important gene homologues in P. monodon

Primer	Sequence	Tm (${ }^{\circ} \mathrm{C}$)
BUB3 budding uninhibited by benzimidazoles 3 homolog (mitotic checkpoint)		
TT153seq-F1	5'-CTGAGGAACATGGGCTTTGC-3'	62
Mitoticseq-F2	5'-AGACCAAGTATTTGACCAGCAC-3'	64
TT153Seq-F3	5'-ATGATATGAACAGTGTAAGTGAC-3'	62
TT153Seq-R1	5'-GGTCAGAAAAACCTTTGAGGAAG-3'	66
Cell division cycle 2 (Cdc-2)		
cdc-2seq-F1	5'-CATTTACCTTGTGTTCCGAGTTCC-3'	70
cdc-2seq-F2	5'-GAGACCAAACATCAACAGGACAGG-3'	72
Innexin 1		
Innexin1seq-F	5'-TGACCCTCTTATCTACCGTGACATC-3'	74
Flotillin 2		
Flotillin2-F	5'-CGAGAATGTAGAAACCTCCCTGG-3'	70
Flotillin2-R	5'-TACTCTCTGCGTCTGCCTTACCC-3'	70
Rac GTPase activating protein 1 (For 3' end)		
TT1036seq-F 5'-TCCTACAGCCTTGGTGGTCC-3' Transformer-2 (For 3' end)		
Tra2seq-F1	5'-CACTCCAACTCCAGGAAT ATAC-3'	64
$\begin{aligned} & \text { Tra2seq-F2 } \\ & \text { Tra2seq-R } \end{aligned}$	5'-TTTCGACCGTTATACAGTTACA-3' 5'-ATGAGAAGGTGTTTGAGTGAC-3'	64 60
Translationally controlled tumor protein (TCTP)		
TT449seq-F	5'-CTGATGGCATGGTTGTTCTC-3'	60
Ubiquitin conjugating enzyme 2 CG6720-PA, isoform A isoform 1		
TT872seq-F	5'-ATTCAAACCACCTAAGGTCACG-3'	64
Molecular weight neurofilament protein XNF-L		
3'NEUseq-F	5'-GGCATTGGAGAATCATTGGG-3'	60
3'NEUseq-R	5'-CACCAATTTGAACTCAGCACAG-3'	64

Table 2.8 (cont.)

Primer	Sequence	Tm $\left(^{\circ} \mathbf{C}\right.$)
Progestin receptor membrane component 1		
Prog800-F	5'-CACAGCACCTACCAAACTTATCC-3'	68
Prog800-R	5'-TGAAGAACAGTTAACAAGGCAGC-3'	66
ProgSeq-F	5'-GACAACAGGATCATAATGCTGC-3'	64
3Prog1-5Seq-F	5'-GTGCTGGTGGTGTAAGGTCC-3'	64
Saposin		66
5'Prosa2Seq-R	5'-TGCCAGTCTGACGACACAAGC-3'	66
ERO-1	5'-ATTGATGACGACAGTTCTGAGGAT-3'	68
ERO-1seqF		

Table 2.9 Composition of 5'RACE-PCR

Component	5^{\prime}-RACE Sample	UPM only (-Control)	GSP1 only (-Control)
5'-RACE-ReadycDNA	$1.5 \mu \mathrm{l}$	$1.5 \mu \mathrm{l}$	$1.5 \mu \mathrm{l}$
UPM $(10 \mathrm{x})$	$2.5 \mu \mathrm{l}$	$2.5 \mu \mathrm{l}$	-
GSP1 $(10 \mu \mathrm{M})$	$1.0 \mu \mathrm{l}$	-	$1.0 \mu \mathrm{l}$
GSP2 $(10 \mu \mathrm{M})$	-	-	-
$\mathrm{H}_{2} \mathrm{O}$	-	$1.0 \mu \mathrm{l}$	$2.5 \mu \mathrm{l}$
Master Mix	$20.0 \mu \mathrm{l}$	$20.0 \mu \mathrm{l}$	$20.0 \mu \mathrm{l}$
Final volume	$25 \mu \mathrm{l}$	$25 \mu \mathrm{l}$	$25 \mu \mathrm{l}$

Table 2.10 Composition of 3'RACE-PCR

If Tm of GSP $>70^{\circ} \mathrm{C}$, the reaction was carried out for 5 cycles composing of a $94{ }^{\circ} \mathrm{C}$ for 30 s , and $72{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 5$ cycles composing of a $94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 70^{\circ} \mathrm{C}$ for 1 min and $72{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 20$ cycles composing of a $94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 68{ }^{\circ} \mathrm{C}$ for 1 \min and $72{ }^{\circ} \mathrm{C}$ for 2 min . The final extension was carried out at $72{ }^{\circ} \mathrm{C}$ for 7 min .

If Tm of GSP $<70^{\circ} \mathrm{C}$, the reaction was carried out for 25 cycles composing of a $94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 65-68{ }^{\circ} \mathrm{C}$ for 1 min and $72{ }^{\circ} \mathrm{C}$ for 2 min . The final extension was carried out at $72{ }^{\circ} \mathrm{C}$ for 7 min . Five microliters of RACE product was electrophoretically analyzed.

2.5.4 Agarose gel electrophoresis

An appropriate amount of agarose was weighed out and mixed with an appropriate volume of $1 \times$ TBE buffer (89 mM Tris- $\mathrm{HCl}, 89 \mathrm{mM}$ boric acid and 2 mM EDTA, pH 8.3). The gel slurry was boiled in a microwave oven to complete solubilization, and allowed to approximately $60^{\circ} \mathrm{C}$ before poured into the gel mold. A comb was inserted. The gel was left to solidified. When needed, the comb was carefully removed. The agarose gel was submerged in a chamber containing an enough amount of $1 \times$ TBE buffer covering the gel for approximately 0.5 cm .

Appropriate volumes of PCR products were mixed with the one-fourth volume of the 10x loading dye (0.25% bromophenol blue and 25% Ficoll in water) and loaded into the well. A 100 bp DNA ladder was used as the standard DNA marker. Electrophoresis was carried out at 5-6 volts/cm until bromophenol blue moved to approximately one-half of the gel. The electrophoresed gel was stained with an ethidium bromide solution ($2.5 \mu \mathrm{~g} / \mathrm{ml}$) for 5 min and destained in running tap water to remove unbound ethidium bromide from the gel. DNA fragments were visualized under a UV transilluminator and photographed through a red filter using Fomapan Classic 100 film. The exposure time was $10-18 \mathrm{~s}$.

2.5.5 Elution of DNA fragments from agarose gels

After electrophoresis, the desired DNA fragment was excised from the agarose gel (200-300 mg) using a sterile scalpel and placed in a preweighed microcentrifuge tube. DNA was isolated using HiYield ${ }^{\mathrm{TM}} \mathrm{Gel} / \mathrm{PCR}$ DNA Extraction Kit (RBC; Real

Biotech Corporation). 0.5 ml of DF buffer was added and mixed by vortexing. The mixture was incubated at $55^{\circ} \mathrm{C}$ for $10-15 \mathrm{~min}$ or until the gel slice was completely dissolved. The mixture was transferred into a DF column inserted in a collection tube and centrifuged at 8000 rpm for 30 s . The flow-though solution was discarded. After this step, 0.5 ml of wash buffer was added to the DF column and centrifuged as above. The flow-though solution was discarded. The column was recentrifuged to remove the trace amount of the washing solution. The DF column was then placed into a sterile 1.5 ml microcentrifuge tube. DNA was eluted out by an addition of $15 \mu \mathrm{l}$ of the Elution buffer or $\mathrm{H}_{2} \mathrm{O}$ to the center of the DF membrane and left for 1 min , before centrifuged at 12000 rpm for 2 min .

2.5.6 Ligation of PCR products to the PGEM $^{\circledR}$-T easy vector

DNA fragments were ligated to the pGEM - T Easy vector (Promega, USA) in a $10 \mu \mathrm{l}$ reaction volume as described previously. The reaction mixture was incubated overnight at $4^{\circ} \mathrm{C}$.

2.5.7 Transformation of ligation products to E. coli host cells

2.5.7.1 Preparation of competent cells

A single colony of E. coli JM109 was inoculated in 10 ml of LB broth (1\% tryptone, 0.5% yeast extract and $0.5 \% \mathrm{NaCl}, \mathrm{pH} 7.0$) with vigorous shaking at $37{ }^{\circ} \mathrm{C}$ overnight. The starting culture was then inoculated into 50 ml of LB broth and continued culture at $37^{\circ} \mathrm{C}$ with vigorous shaking to an OD_{600} of 0.5 to 0.8 . The cells were briefly chilled on ice for 10 min , and recovered by centrifugation at 2700 g for 10 \min at $4^{\circ} \mathrm{C}$. The pellets were resuspended in 30 ml of ice-cold $\mathrm{MgCl}_{2} / \mathrm{CaCl}_{2}$ solution (80 mM MgCl 2 and 20 mM CaCl) and centrifuged as above. After resuspended in 2 ml of ice-cold $0.1 \mathrm{M} \mathrm{CaCl}_{2}$, the concentrated cell suspension was divided to $200 \mu \mathrm{l}$ aliquots. These competent cells was either used immediately or stored at $-80^{\circ} \mathrm{C}$ for subsequently used.

2.5.7.2 Transformation

The competent cells were thawed on ice for 5 min . Two to four microliters of the ligation mixture were added and gently mixed by pipetting and left on ice for 30
min. The transformation reaction was heat-shocked in a $42^{\circ} \mathrm{C}$ water bath for exactly 45 s without shocking. The reaction tube was immediately placed in ice for 2-3 min. The mixture were removed from the tubes and added to a new tube containing 1 ml of prewarmed SOC (2% tryptone, 0.5% yeast extract, $10 \mathrm{mM} \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{KCl}, 10$ $\mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{MgSO} 4$ and 20 mM glucose). The cell suspension was incubated with shaking at $37^{\circ} \mathrm{C}$ for 90 min . The mixture were centrifuged for 20 s at room temperature, and gently resuspended in $100 \mu \mathrm{l}$ of SOC medium and spread onto a selective LB agar plates containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin, $25 \mu \mathrm{~g} / \mathrm{ml}$ of IPTG and $20 \mu \mathrm{~g} / \mathrm{ml}$ of X-gal and further incubated at $37^{\circ} \mathrm{C}$ overnight (Sambrook and Russell, 2001). The recombinant clones containing inserted DNA are white whereas those without inserted DNA are blue.

2.5.8 DNA sequencing and assembly sequence

The recombinant clones were unidirectional sequenced using the M13 forward and reverse primer on an automatic sequencer at Macrogen (Korea). Nucleotide sequence from RCAE product was assembled with EST sequence using clustalW. Nucleotide sequences were blasted against data in the GenBank using BlastN (nucleotide similarity) and Blast X (translated protein similarity). Significant similarity was considered when the probability (E) value was $<10^{-4}$.

2.5.9 Phylogenetic analysis of CyclophilinA, SUMO, Tra-2, PGRMC1, and Dmc1

Protein sequences of Dmc1, PGMRC1, cyclophilin A, SUMO-1 and Tra-2 from various species were retrieved from GenBank and compared with those of P. monodon. Multiple alignments were carried out using ClustalW (Thompson et al., 1994). Sequences were bootstrapped 1000 times using Aeqboot. The divergence between pairs of protein sequences was estimated using Prodist. A bootstrapped neighbor-joining tree (Saitou and Nei, 1987) was constructed to illustrate phylogenetic relationships among sequences using Neighbor and Consense. All phylogenetic programs described were routine in PHYLIP (Felsenstein, 1993).

2.6 Examination of expression patterns of genes related with testicular development by RT-PCR and tissue distribution analysis

2.6.1 Primer design

Forward and reverse primers of each gene were designed from nucleotide sequence obtained from the conventional cDNA libraries of heart and testis and the subtractive cDNA libraries of P. monodon testis using Primer Premier 5 program (Table 2.11).

2.6.2 First stranded cDNA synthesis

One and a half micrograms of total RNA from various tissues of P. monodon were reverse-transcribed to the first strand cDNA using an ImProm- I^{TM} Reverse Transcription System Kit (Promega). Total RNA was combined with 0.5μ g of oligo dT_{12-18} and appropriate DEPC-treated $\mathrm{H}_{2} \mathrm{O}$ in final volume of 5μ. The reaction was incubated at $70^{\circ} \mathrm{C}$ for 5 minutes and immediately placed on ice for 5 minutes. Then $5 x$ reaction buffer, MgCl_{2}, dNTP Mix, RNasin were added to final concentrations of $1 \mathrm{x}, 2.25 \mathrm{mM}, 0.5 \mathrm{mM}$ and 20 units, respectively. Finally, $1 \mu \mathrm{l}$ of ImProm- $\mathrm{II}^{\mathrm{TM}}$ Reverse transcriptase was add and gently mixed by pipetting. The reaction mixture was incubated at $25^{\circ} \mathrm{C}$ for 5 minutes and at $42^{\circ} \mathrm{C}$ for 90 minutes. The reaction mixture was incubated at $70^{\circ} \mathrm{C}$ for 15 minutes to terminate the reverse transcriptase activity. Concentration and rough quality of the newly synthesized first strand cDNA was spectrophotometrically examined $\left(\mathrm{OD}_{260} / \mathrm{OD}_{280}\right)$ and electrophoretically analyzed by 1.0% agarose gels.

2.6.3 RT-PCR analysis

Basically, amplification reactions were performed in a $25 \mu \mathrm{l}$ reaction volume containing 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.8$ at $25^{\circ} \mathrm{C}, 50 \mathrm{mM} \mathrm{KCl}$ and 0.1% Triton $\mathrm{X}-100$, $1.5-2.0 \mathrm{mM} \mathrm{MgCl} 2,100-200 \mu \mathrm{M}$ each of dATP, dCTP, dGTP and dTTP, 0.2-0.4 $\mu \mathrm{M}$ of each primer, 1 unit of Dynazyme ${ }^{\text {TM }}$ DNA Polymerase (FINNZYMES, Finland) and $2 \mu \mathrm{l}$ of a 10 fold-diluted first strand CDNA (about 200 ng). RT-PCR was initially performed by predenaturation at $94{ }^{\circ} \mathrm{C}$ for 3 min followed by 25 cycles of a $94{ }^{\circ} \mathrm{C}$ denaturation for 30 s , a $55^{\circ} \mathrm{C}$ annealing for 45 s and a $72{ }^{\circ} \mathrm{C}$ extension for 45 s . The final extension was carried out at $72{ }^{\circ} \mathrm{C}$ for 7 min . Eight microliters of the amplification products were electrophoretically analyzed though 1.0-2.0\% agarose gel.

Table 2.11 Sequence, melting temperature and expected product sizes from primers designed from the conventional testis cDNA library and SSH cDNA libraries of P. monodon

Gene/Primer	Sequence	Tm (${ }^{\circ} \mathrm{C}$)	Size (bp)
1. Actin-binding protein anillin			
F:	5'-TGTTTGAGGATGTTGGGGGCT-3'	64	199
R:	5'-AACTGGAAGGTATGCTGACGGG-3'	68	
2. Acyl-CoA oxidase (ACX3)			
F:	5'-CACTGCGTATCTTTGCTGCTC-3'	64	250
	5'-TCATCCGTTTCCTTGTCGTAA-3'	60	
3. Adapter-related protein complex 1 beta 1 subunit			
F:	5'-TTCCCTGATGTGGTCAACTGTATG-3'	70	290
R :	5'-TGGTCTACGCAGATAGCAGCAG-3'	68	
4. Arginyl-tRNA-protein transferase 1 (Arginyltransferase 1)			
F:	5'-GGGATGGAGACGGAGTGGAA-3'	64	292
R:	5'-TGGCATCTGGAGGGATACACC-3'	66	
5. B-cell receptor-associated protein 37 (Prohibitin2)			
F:	5'-CGTATGGCATCTCGCAGTCC-3'	64	563
R:	5'-CCTCTCCTGTCTCGCTCTCTCG-3'	72	
6. BCS-2			
F.	5'-TGAAGTGTAAAGTGCTGTGGGG-3'	66	372
R :	5'-TGGGCGGTGAACTCCGTGGT-3'	66	
7. Budding uninhibited by benzimidazoles 3 homolog (mitotic checkpoint)			
	5'-GCTGACCATCTAAGCCTCCACT-3'		
8. Carbonyl reductase 1 F: 5'-GCTTCGCTCCTCGTTTTCATCA-3'			
R :	5'-ATACGCCAACTTTGCTCTACCAC-3'	68	
9. Cell division cycle 2 (Cdc2)			
F:	5'-AAGAACCGCAAAAGTGGGAAG-3'	66	510
R:	5'-GCCAAGAGACCAAACATCAACAG-3'	68	

Table 2.11 (cont.)

Table 2.11 (cont.)

Table 2.11 (cont.)

Table 2.11 (cont.)

Table 2.11 (cont.)

Gene/Primer	Sequence	$\operatorname{Tm}\left({ }^{\circ} \mathrm{C}\right)$	Size (bp)
50.			

50. Thyroid hormone receptor-associated protein complex 240 kDa component (Trap240)

F:	5'-TAGGTAGGCTTGGTAGAATGGGC-3'	70	335
R:	5'-GGAATCTCTGCTGTGCTGACTGA-3'	70	

51. Transformer-2
F: 5'-CACCAGAGACAATCCCGAGC-3' 64
R: 5'-GTCAATCTCCATCCCAGAACACT-3' 68
52. Ubiquitin specific protease 14
F: 5'-ATACTGCCGAACCCCCAATG-3'
62
240
R: 5'-CAGTGTTCCTCTCAGCTTCAGTCA-3' 60
53. Ubiquitin carboxyl-terminal hydrolase 5 (old name: Ubiquitin isopeptidase T)
F: 5'-CAAGTTGGCTGCCCCTGAAG-3'
64
528
R: 5'-GTTGCCTGCTCTCGTGTGAATC-3'
68
54. Ubiquitin-conjugating enzyme E2

F:	5^{\prime}-TCTGCCTCGCCTGCTGGT-3'	60	232
R:	5^{\prime}-TGGTGCTGAGTGCCTTTGACAT-3'	66	

55. USO-1

F: 5'-GCIGACCTATTCCTGCGTCTTTG-3' 70
R: 5'-TCGTGTTTCTTGGCGACCCTTTG-3' 70
56. Meiotic recombination protein DMC1/LIM15 homolog isoform 1 (Dmc1)

F:	5'-ATGGAAGATCAGGCTTTAGATGC-3'	
R:	5'-GTGACGCAGAGAGTGTGGGAG-3'	66

57. Innexin2

58. Progestin receptor membrane component 1 (PGRMC1)
F: 5'-GCCCAAGATGAAACGACAGG-3' 62
122
R: 5'-TGGAGCCTCGGGTGACATC-3' 62
59. Prosaposin isoform 3
F: 5'-GCTATGGTTCAGGTTGATGACTTGC-3'
74
614
R: 5'-ACTCCCTTCCACACCTTCGTTTC-3' 70

Table2.12 Sequence, melting temperature and expected product sizes from primers designed from the heart cDNA library of P. monodon

2.6.4 Tissue distribution analysis

Total RNA was extracted from eyestalks, gills, heart, hemocytes, hepatopancreas, lymphoid organs, intestine, pleopods, stomach, testes and thoracic ganglion of a male and ovaries of a female broodstock of P. monodon and subjected to the first strand cDNA synthesis.

Two microliters (approximately 200 ng) of the first strand cDNA was used as the template in a $25 \mu \mathrm{l}$ reaction volume containing 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.8$ at $25^{\circ} \mathrm{C}$, 50 mM KCl and 0.1% Triton $\mathrm{X}-100,2 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 100 \mu \mathrm{M}$ each of dATP, dCTP, dGTP and dTTP, $0.2 \mu \mathrm{M}$ of each primer and 1 unit of Dynazyme ${ }^{\text {TM }}$ DNA Polymerase (FINNZYMES, Finland). The reaction was predenaturation at $94{ }^{\circ} \mathrm{C}$ for 3 min followed by 25 cycles composing of a $94{ }^{\circ} \mathrm{C}$ denaturation step for 30 s , a $55^{\circ} \mathrm{C}$ annealing step for 45 s and a $72{ }^{\circ} \mathrm{C}$ extension step for 45 s . The final extension was carried out at $72{ }^{\circ} \mathrm{C}$ for 7 min . Eight microliters of the amplification product was electrophoretically analyzed though 1.8% agarose gels.
2.7 Semiquantitative RT-PCR of functionally important gene homologues in testes and ovaries of broodstock and juvenile P. monodon

2.7.1 Experiment animals

Six sample groups composed of testes from different periods (1-5, 6-9 and 1016 days after molting) of broodstock-sized shrimp after molting, wild broodstocksized shrimp, domesticated broodstock-sized shrimp, and juvenile males and ovaries from wild broodstock-sized shrimp and juvenile females were used for semiquantitative RT-PCR analysis.

2.7.2 Primers

Expression levels of 6 specific primers, low molecular weight neurofilament protein XNF-L (PMTT1), transformer-2 (Tra-2), prohibitin2, thyroid hormone receptor-associated protein complex 240 kDa component (Trap240), multiple inositol polyphosphate phosphatase 2 (MIPP2) and heat shock-related protein 2 (HSP70-2), were determined. EF-1 α gene was used as an internal control. Primers used for RTPCR were also used for semiquantitative RT-PCR except the forward primer for Tra2 was replaced by a new forward primer (5^{\prime}-CAGTCTCACACCTCGTTCGC- 3^{\prime}) and the expected sized was 499 bp .

2.7.3 Total RNA extraction and the first strand cDNA synthesis

Total RNA was extracted from testes from molted shrimp broodstock ($N=18$), wild broodstock-sized shrimp $(N=8)$, domesticated broodstock-sized shrimp $(N=9)$,
and juvenile males $(N=5)$ and ovaries from wild broodstock-sized shrimp ($N=4$) and juvenile female P. monodon ($N=4$) using TRI REAGENT. The first strand cDNA synthesis was carried out as described previously.

2.7.4 Optimization of semiquantitative RT-PCR conditions

Amplification was performed in a $25 \mu \mathrm{l}$ reaction volume containing $2 \mu \mathrm{l}$ of the first strand cDNA template diluted ten-fold, $1 \times$ PCR buffer (10 mM Tris- HCl pH 8.8, , 50 mM KCl and 0.1% Triton $\mathrm{X}-100$), $200 \mu \mathrm{M}$ each of dATP, dCTP, dGTP and dTTP and 1 unit of Dynazyme ${ }^{\text {TM }}$ DNA Polymerase (FINNZYMES, Finland). PCR was carried out using the conditions described in the standard RT-PCR.

2.7.4.1 Primer concentration

The optimal primer concentration for each primer pair (between 0.1-0.4 $\mu \mathrm{M}$) was examined using the standard PCR conditions. The resulting product was electrophoretically analyzed. The primer concentration that gave product specificity and clear results were selected for further optimization of PCR conditions.

2.7.4.2 $\mathbf{M g C l}_{2}$ concentration

The optimal MgCl_{2} concentration of each primer pair (between $1-4 \mathrm{mM} \mathrm{MgCl}{ }_{2}$) was examined using the standard PCR conditions and the optimized primer concentration. The concentration that gave the highest specificity was chosen.

2.7.4.3 Cycle numbers

The PCR amplifications were carried out at different cycles (e.g. 20, 25, 30 and 35 cycles) using the optimized concentration of primers MgCl_{2} and analyzed by gel electrophoresis. The number of cycles that still provided the PCR product in the exponential rage and did not reach a plateau level of amplification was chosen.

2.7.4.4 Gel electrophoresis, quantitative, and data analysis

Eight microliters of the PCR products were combined with $2 \mu \mathrm{l}$ of the loading dye before loaded to 1.8% agarose gel and electrophoresed at 5-6 volts/cm. The gel was stained with $2.5 \mu \mathrm{~g} / \mathrm{ml} \mathrm{EtBr}$ for 5 min and destained in the running tap water for

15 min . The intensity of target and control bands was quantified from photographs of the gels using the Gel Pro program.

The expression level of each transcript was normalized by that of $E F-1 \alpha$. Significantly different expression levels between different groups of P. monodon were tested using one way analysis of variance (ANOVA) followed by Duncan multiple range test ($P<0.05$).

2.8 Examination of expression levels of interesting genes in testes of P. monodon by real-time PCR

Expression levels of several transcripts related with testicular development, for examples; SUMO-1, cyclophilin A (CYA), Dmc1, progestin receptor membrane component 1 (PGRMC1), saposin, and spermatogonial stemcell renewal factor were examined using quantitative real-time PCR analysis.

2.8.1 Effects of dopamine on expression of genes in testes of juvenile P. monodon

Female juveniles of P. monodon (with the body weight about $20-25 \mathrm{~g}$) were purchased from a local farm in Chonburi, eastern Thailand. Shrimp were acclimatized for 7 days at the laboratory conditions (25 ppt of seawater and the ambient temperature) and fed daily at approximately 5% of the body weight. Eight shrimp were placed in a glass aquarium (150 L) for each treatment and were not fed at 24 hr before the treatment.

Shrimp were intramuscularly injected individually with normal saline (control, $N=5$) and dopamine hydrochloride to obtain the doses of $10^{-6}, 10^{-7}$ and 10^{-8} $\mathrm{mol} / \mathrm{shrimp}$. Testes of the negative control (no injection), normal saline-injected and treated shrimp at $0,3,6,12$ and 24 hr post treatment ($N=5$ for each treatment) were sampling and immediately placed in liquid N_{2}. The samples were stored at $-80^{\circ} \mathrm{C}$ prior to RNA extraction and first-stand cDNA synthesis.

2.8.2 Expression of genes in testes in different groups of P. monodon

Shrimp at the intermolt stage were used in the experiments. However, stages of molted male broodstock were accounted as days after molting (DAM). Of these, juvenile males and females (4 months old with a body weight of approximately 25-30
g) were purchased from a commercial farm in Chachoengsao (eastern Thailand). Broodstock-sized domesticated shrimp (F1 generation, an average body weight, ABW $=88.66 \pm 9.02 \mathrm{~g}$; the gonadosomatic index, GSI $=0.34 \pm 0.15 \%, N=9$) were obtained from the broodstock management center located at Burapha University (Chanthaburi, eastern Thailand). Wild male (ABW $=81.69 \pm 15.63 \mathrm{~g}, \mathrm{GSI}=0.84 \pm$ $0.32 \%, N=8$) and wild female (ABW $=142.98 \pm 28.37 \mathrm{~g}, \mathrm{GSI}=2.98 \pm 2.02 \%, N=4$) broodstock were also collected. Shrimp were acclimated under the laboratory conditions ($28-30^{\circ} \mathrm{C}$ ambient temperature and 30 ppt salinity) for 3-5 days before their gonads were dissected out. The other group of wild shrimp were maintained in the farm and testes of each shrimp were collected at 1-5 (ABW $=104.79 \pm 12.40 \mathrm{~g}$, GSI $=0.40 \pm 0.13 \%, N=6), 6-9(\mathrm{ABW}=99.19 \pm 14.94 \mathrm{~g}, \mathrm{GSI}=0.41 \pm 0.29 \%, N=4)$ and 10-16 days $(\mathrm{ABW}=102.73 \pm 19.23 \mathrm{~g}, \mathrm{GSI}=0.48 \pm 0.16 \%, N=8)$ after molting.

2.8.3 Primers and construction of the standard curve

Primers for Dmc1, spermatogonial stem-cell renewal factor, saposin and cyclophilin A (Table 2.11) previously designed and ORF primers of PGRMLC1 and SUMO-1 (Table 2.13) were applied for real-time PCR analysis. For construction of the tandard curve of each gene, the PCR product was amplified, electrophoresed through agarose gel and eluted out. The gel eluted product was cloned into pGEMTEasy vector and transformed into E. coli JM109. Plasmid DNA were extracted and used as the template for construction of the standard curve. Templates of each gene homologues were ten fold diluted to cover $10^{3}-10^{9}$ copy numbers. Real-time RTPCR assay was carried out in a 96 well plate and each standard point was run in triplicate.

คนยวทยทรพยากร

2.8.4 Quantitative real-time RT-PCR

The first strand cDNA was reverse-transcribed. The target transcript (PGMRC1 and Dmc1) and the internal control (EF-1 α) of each shrimp treated with $10^{-6} \mathrm{~mol} /$ shrimp of dopamine at the different time-point were amplified in a reaction volume of $25 \mu \mathrm{l}$ containing $12.5 \mu \mathrm{l}$ of 2 x SYBR Green Master Mix (QIAGEN). The specific primer pairs were used at a final concentration of $0.4 \mu \mathrm{M}$. The thermal profile for SYBR Green RT-PCR was $95{ }^{\circ} \mathrm{C}$ for 15 min followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 15
$\mathrm{s}, 55^{\circ} \mathrm{C}$ for 30 s and at $72^{\circ} \mathrm{C}$ for 45 s . Continually, cycles for the melting curve analysis was carried out at $95^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 1 min and at $95^{\circ} \mathrm{C}$ for 15 s .

In addition, SUMO-1, cyclophilin A, spermatogonial stem-cell renewal factor, Dmc1 and saposin and the internal control ($E F-1 \alpha$) of shrimp possessing different stages of testes and ovaries were amplified in a reaction volume of $15 \mu \mathrm{l}$ containing $7.5 \mu \mathrm{l}$ of 2 x LightCycler 480 SYBR Green I Master (Roche). The specific primer pairs were used at a final concentration of $0.4 \mu \mathrm{M}$ (except Saposin where $0.2 \mu \mathrm{M}$ primers were used). The thermal profile for SYBR Green RT-PCR was $95^{\circ} \mathrm{C}$ for 10 min followed by 40 cycles of $95^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 30 s and at $72^{\circ} \mathrm{C}$ for 30 s . Continually, cycles for melting curve analysis was $95^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 65^{\circ} \mathrm{C}$ for 1 min and at $97^{\circ} \mathrm{C}$ for continue and cooling was $40^{\circ} \mathrm{C}$ for 10 s . Real-time RT-PCR assay was carried out in a 96 well plate and each sample was run in duplicate. Relative expression levels of different groups of samples were statistically tested by ANOVA followed by Duncan's new multiple range test or Tukey test ($P<0.05$).

2.9 Large scale examination of gene expression of P. monodon by microarray analysis

2.9.1 Total RNA extraction

Total RNA was extracted from testes of normal juvenile and broodstock of P. monodon and those of juvenile shrimp treated with dopamine. For treated P. monodon, juveniles treated with $10^{-6} \mathrm{~mol} /$ shrimp of dopamine solution at 3 and 6 hr post injection were further used.

2.9.2 Synthesis of target cDNA

Twenty micrograms of total RNA were fluorescently labeled with AminoallyldUTP using a LabelStar Array Kit, cDNA Labeling Module (QIAGEN). After incubation at $65{ }^{\circ} \mathrm{C}$ for 5 min , total RNA was immediately placed on ice and briefly centrifuge immediately and centrifuge briefly. The denatured template was added into $30 \mu \mathrm{l}$ of the master mix containing 1X RT-Buffer RT, dNTP mix (0.5 mM for dATP, dCTP, dGTP and Aminoallyl-dUTP), $2 \mu \mathrm{M}$ Oligo(dT) primer, 20 units of RNase Inhibitor, and LabelStar Reverse Transcriptase and incubate at $37^{\circ} \mathrm{C}$ for 2 hr

Table 2.13 Nucleotide sequences of primers used for real-time PCR analysis of Dmc1, PGRMLC1, SUMO-1, cyclophilinA, spermatogonial stem-cell renewal factor and saposin in P. monodon

Gene/Primer	Sequence	Tm (${ }^{\circ} \mathrm{C}$)	Size (bp)
Dmc1			
Real-time	F: 5'-ATGTGCGAGAAGCGAAGGC-3'	60	150
	R: 5'-GCAGAGAGTGTGGGAGATTTGTG-3'	70	
PGRMLC1			
Standard	F: 5'-ATGGCGGACGAGGGAGCG-3'	62	573
	R: 5'-CTAATCATCCGTCTTCGCTTTGGT-3'	70	
Real-time	F: 5'-GCCCAAGATGAAACGACAGG-3'	62	122
	R: 5'-TGGAGCCTCGGGTGACATC-3'	62	
SUMO			
Standard	F: 5'-ATGTCTGATAACACTGACGCCAAGC-3'	74	282
	R: 5'-TCAATGGCCGCCGGTCTG-3'	60	
Real-time	F: 5'-AGAAGGGGAAGGGAACGAATACA-3'	68	148
	R: 5'-ACGCAGCGATGCTACAGGGA-3'	64	
CyclophilinA			
	F: 5'-GGGCGGCAAGTCCATCTACG-3'	66	160
	R: 5'-GTGCTTGTTGTCCAGCCAGGG-3'	78	
Spermatogonial stem-cell renewal factor			
	F: 5'-ATCTGTGCCGCTCATCGTCTCGT-3'	72	121
	R: 5'- CCCTGCCTCCTCCTGGGTCTTC-3'	74	
Saposin	F: 5'-CCATAAAGTTCTGCCCCCACCAC-3'	68	145
R: 5'-СССТТССАСАССТТ$E F-1 \alpha$			
Standard	F: 5'-GCTCTTACCGAGGCTGTCCC-3'	66	434
	R: 5'-GTGGGTGTAATCAAGGAGGTCAA-3'	68	
Real-time	F: 5'-TTCCGACTCCAAGAACGACC-3'	62	122
	R: 5'-GAGCAGTGTGGCAATCAAGC-3'	62	

At the end of the incubation period, $2 \mu \mathrm{l}$ of the stop solution was added and mixed thoroughly. Labeled samples were purified using a QIAquick PCR Purification Kit. Subsequently, cDNA was labeled with Cy 3 to represent the control sample and Cy5 to represent the tested sample at room temperature for 1 hr ., $\mathrm{Cy} 3 / \mathrm{Cy} 5$ labeled cDNA were purified prior to hybridization using a LabelStar Array Kit, cDNA cleanup Module (QIAGEN).

2.9.3 Hybridization and detection

The hybridization buffer (5X SSC, 4X Denhardt's solution and 0.5\% SDS) was heated at $95^{\circ} \mathrm{C}$ for 2 min and placed on ice for 1 min . Poly A and formamide ($10 \% \mathrm{v} / \mathrm{v}$) were added and pre-hybridized at $42{ }^{\circ} \mathrm{C}$ for 15 min with a microarray chip (5776 spots representing 2036 ESTs from hemocyte cDNA library of P. monodon and M. japonicus). Cy3/Cy5 labeled cDNA was added and further hybridized at $42^{\circ} \mathrm{C}$ for 16 - 20 hr . The microarray chip was post-hybridization washed once with 5X SSC $/ 0.1 \%$ SDS at $30^{\circ} \mathrm{C}$ for 10 min , twice with 0.5 X SSC at $30^{\circ} \mathrm{C}$ for 2 min and once with 0.5 X SSC/0.01\% Tween20 for 2 min. The microarray chip was air-dried and scanned with GenePix 4000B Array Scanner (Axon Instruments, Inc.). The signal intensities were converted to approximate measurement of absolute expression by subtracting the background signal levels and normalized with the signal levels of the positive control ($E F-1 \alpha$ and/or β-actin) across different arrays.
2.10 In vitro expression of the full length cDNA using the bacterial expression system

2.10.1 Designation of primers

A primer pair was designed to amplify the mature full length cDNA of cyclophilin A, SUMO, spermatogonial stem-cell renewal factor, PGMRC1 and Dmc1. The forward and reverse primers containing a Nde I site and an Eco RI site and six His encoded nucleotides were shown in Table 2.14, respectively.

2.10.2 Construction of recombinant plasmid in cloning and expression vectors

The mature cDNA of cyclophilin A, SUMO-1, spermatogonial stem-cell renewal factor, PGMRC1, and Dmc1 were amplified, ligated, cloned into pGEM-T easy vector and transformed into E. coli JM109. Plasmid DNA of the positive clones was sequenced to confirm the orientation of recombinant clones and used as the template for amplification using the forward and reverse primers for cloning into the pET32a expression vector.

Table 2.14 Nucleotide sequences of primers used for in vitro expression of cyclophilin A, SUMO-1, spermatogonial stem-cell renewal factor, PGRMC1 and Dmc1 in P. monodon

Primer	Sequence
ORF	
Cyclophilin A-ORF	
	R: 5'-TTACAGCTGGCCGCAGTTGGCG-3'
SUMO-ORF	F: 5^{\prime}-ATGTCTGATAACACTGACGCCAAGC-3'
	R: 5'- TCAATGGCCGCCGGTCTG-3'
Spermatogonial-ORF	F: 5^{\prime}-ATGAGCGCTGCACAGACCTCTCA-3'
	R:5'-CTAGACAACGCGAGCGGCAAC-3'
PGRMC1-ORF	F:5'-ATGGCGGACGAGGGAGCG-3'
	R:5'-CTACTAATCATCCGTCTTCGCTTTGGT-3'
DMC1-ORF	F:5'-ATGGAAGATCAGGCTTTAGATGC-3'
	R:5'-TTACTCСTTAGCATCAGCAATGC-3'
ORF+HIStag+Restrictionsites	
CycA-NdeI	F:5'-TTT CAT ATG GGC AAC CCC AAA GTC TTT TTC GA-
CycA-EcoRI+His	R:5'-AAA GAA TTC TTA ATG ATG ATG ATG ATG GTG CAG CTG GCC GCA GTT GGC G-3'
SUMO-NdeI	F:5'-TTT CAT ATG TCT GAT AAC ACT GAC GCC AAG C-3'
SUMO-EcoRI+His	R:5'-AAA GAATTC TCA ATG ATG ATG ATG ATG GTG ATG GCC GCC GGT CTG-3'
Spermatogonial-NdeI	F:5'-TTT CAT ATG AGC GCT GCA CAG ACC TCT CA-3'
SpermatogonialEcoRI+His	R:5'-AAA GAA TTC CTA ATG ATG ATG ATG ATG GTG GAC AAC GCG AGC GGC AAC-3'
PGRMC1-NdeI	F:5'-TTT CAT ATG GCG GAC GAG GGA GCG GAC-3'
PGRMC1-EcoRI+His	R:5'-AAA GAA TTC CTA ATG ATG ATG ATG ATG GTG ATC ATC CGT CTT CGC- 3^{\prime}
DMC1-NdeI	F:5'-TTT CAT ATG GAA GAT CAG GCT TTA GAT GC-3'
DMC1-EcoRI+His	R:5'-AAA GAA TTC TTA ATG ATG ATG ATG ATG GTG CTC CTT AGC ATC AGC AAT GC- 3^{\prime}

The amplification product was digested with Nde I and Eco RI and analyzed by agarose gel electrophoresis. The gel-eluted product was ligated into pET32a and transformed into E. coli JM109. Plasmid DNA of the positive clones was subsequently transformed into E. coli BL21(DE3)codon+ RIPL.

2.10.3 Expression of recombinant proteins

A single colony of recombinant E. coli BL21(DE3) codon+ RIPL carrying desired recombinant plasmid was inoculated into 3 ml of LB medium, containing 50 $\mu \mathrm{g} / \mathrm{ml}$ ampicillin and $34 \mu \mathrm{~g} / \mathrm{ml}$ chloramphinical at $37^{\circ} \mathrm{C}$ and $50 \mu \mathrm{l}$ of the overnight culture was transferred to 50 ml of LB medium containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin 34 $\mu \mathrm{g} / \mathrm{ml}$ chloramphinical and further incubated to an OD_{600} of $0.4-0.6$. After IPTG induction (1.0 mM final concentration), appropriate volume of the culture corresponding to the OD of 1.0 was time-interval taken ($1,2,3,6,12$ and 24 hr) and centrifuged at 12000 g for 1 min . The pellet was resuspended and examined by 15% SDS-PAGE (Laemmli, 1970). In addition, aliquots of 1 ml of the IPTG inducedculture (3 or 6 hr) were centrifuged, resuspended in 1X PBS and repeated freeze-thaw 4 times in liquid nitrogen. The protein concentration of both soluble and insoluble portions was measured using a dye-binding assay (Bradford, 1972). Overexpression of the recombinant protein was analyzed by 15% SDS-PAGE.

2.10.4 Detection of recombinant proteins

Recombinant protein was analyzed in 15\% SDS-PAGE. The electrophoresed proteins were transferred to a PVDF membrane (Hybond P; GE Healthcare) (Towbin, 1979). The membrane was washed three times with 1 X TBST (100 ml of 10X TBS, $900 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$ and $500 \mu \mathrm{l}$ of Tween20) for 5 min , blocked with 20 ml of a blocking buffer (1.0 g of BSA in 20 ml of $1 \mathrm{X} \mathrm{TBST)} \mathrm{and} \mathrm{incubate} \mathrm{for} 1 \mathrm{hr}$ at room temperature with gentle shaking. The membrane was washed three times in 1xTBST and incubated with diluted Anti-His (GE Healthcare; 1:5,000) in the blocking buffer for 1 hr. The membrane was incubated with diluted Anti-mouse-IgG-AP Conjugate (Promega; $1: 10,000$) in the blocking buffer for 1 hr . The AP activity was detected by adding BCIP/NBT. The membrane was incubated in the dark place for 2-15 min.

2.10.5 Mass spectrometric analysis of recombinant proteins

The rPMCYA and rPMSUMO-1 were resolved in 15% SDS-PAGE and the protein bands at the expected molecular mass of 18.86 kDa and 8.78 kDa were excised from the gel. In-gel trypsin digestion was performed as described elsewhere (Shevchenko et al., 1996). The digests were injected into the mass spectrometer through a $100 \times 0.18 \mathrm{~mm}, 5 \mu \mathrm{~m}$ BioBasic C18 Kappa column (Thermo Electron) flowing at $800 \mathrm{~nL} / \mathrm{min}$. Peptides were eluted from the column using an acetonitrile/0.1\% formic acid gradient ($2-65 \%$ acetonitrile over 40 min). The peptide spectra were measured by a liner ion trap mass spectrometer (Finnigan LTQ) equipped with electrospray ionization and searched against the non-redundant protein database (http://www.ncbi.nlm.nih.gov) using SEQUEST.

2.10.6 Purification of recombinant proteins

Recombinant protein was purified by using a His GraviTrap kit (GE Healthcare). Initially 250 ml of IPTG-induced culture were harvested by centrifugation at 5000 rpm for 15 min . The pellet was resuspended in the binding buffer (20 mM sodium phosphate, $500 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, pH 7.4), sonicated and centrifuged at 14000 rpm for 30 min . The soluble and insoluble fractions were separated. Soluble or insoluble fraction composed of the recombinant protein was loaded into column. The column was washed with 10 ml of binding buffer containing 20 mM imidazole (20 mM sodium phosphate, $500 \mathrm{mM} \mathrm{NaCl}, 20$ mM imidazole, pH 7.4) and 5-10 ml of the binding buffer containing 80 mM imidazole (20 mM sodium phosphate, $500 \mathrm{mM} \mathrm{NaCl}, 80 \mathrm{mM}$ imidazole, pH 7.4). After that the recombinant protein was eluted with 6 ml of the elution buffer (20 mM sodium phosphate, $500 \mathrm{mM} \mathrm{NaCl}, 500 \mathrm{mM}$ imidazole, pH 7.4). Each fraction of the washing and eluting step were analyzed by SDS-PAGE and western blotting. The recombinant proteins in the insoluble fraction were purified under denaturing conditions. The purified proteins were stored at $-20^{\circ} \mathrm{C}$.

2.10.7 Polyclonal antibody production

Polyclonal antibody was commercially produced from the purified recombinant protein in rabbit by Faculty of Associated Medical Sciences, Changmai University.

CHAPTER III

RESULTS

3.1 Construction of a conventional testis cDNA library of P. monodon

Genes related with testicular development of P. monodon were identified by an EST analysis. A conventional testis cDNA library of P. monodon broodstock was established. Initially, mRNA was purified from pooled total RNA extracted from testis of P. monodon broodstock (Fig. 3.1). Testis mRNA (7.5 $\mu \mathrm{g}$) were used for cDNA library construction. First and second strand cDNA were synthesized and manipulated before cNDA was sized-fractionated by gel filtration (Sepharose CL-2B). Fractions were collected and a $5 \mu \mathrm{l}$ aliquot of each fraction was examined in 5% native polyacrylamide gels. Fractions 4-6 of testes cDNA which were free from adaptors (Fig. 3.2) were selected, pooled and subjected to ligation of the cDNA insert and preparation of a lambda library, respectively.

Inserted sizes of randomly selected clones were examined by colony PCR. Clones carrying the inserted sizes > 500 bp (excluding approximately 340 bp of the vector) were further analyzed (Fig. 3.3). Plasmid DNA is extracted and

Figure 3.1 Total RNA (A, lanes 1-2) and mRNA (A, lanes 4-5) of P. monodon testes were used to construct testis cDNA library. First (B, lane 1) and second (B, lanes 2) strand cDNA were synthesized from purified mRNA.

Figure 3.2 Size-fractionation of testes cDNA of P. monodon. Lanes 1-7 (A) and 1-4 and 5-7 (B) correspond to fractions 2-8, 9-12 and 13-15, respectively. Lanes $\mathrm{M}=\mathrm{a}$ 100 bp marker.
unidirectionally sequenced from the 5^{\prime} direction. Nucleotide sequences were compared with those previously deposited in the GenBank using BLASTN and BLASTX.

The primary titer of a testis CDNA library of P. monodon was 5.7×10^{6} $\mathrm{pfu} / \mathrm{ml}$. The percentage of positive clones was 94.0% (1366/1453 clones) and 73.6\% of which carrying the inserts greater than 500 bp in size. From 896 recombinant clones sequenced, 606 ESTs (67.6\%) corresponded to known sequences (E-value < 1e-04) whereas 290 sequences were regarded as novel (unknown) transcripts (32.4%, E -value $>1 \mathrm{e}-04$). The relative discovery rate of new genes was approximately 30% for every 100 ESTs examined (Fig. 3.4). Six hundred and one transcripts (109 contigs and 492 singletons with the average length of 823 and 578 hucleotides) were obtained after sequence assembling.

Six hundred and six known transcripts from the conventional testis cDNA library of P. monodon were functionally categorized to 10 groups (Table 3.1). Disregarding ribosomal (16.8\%) and hypothetical (newly unidentified transcripts, 11.3\%) protein homologues, matched ESTs categorized as members of gene expression and protein synthesis (9.6\%) predominated followed by those classified as

Figure 3.3 Colony PCR for determining sizes of inserts of positive clones from a conventional testis cDNA library of P. monodon.

Figure 3.4 The relative discovery rate of new genes from a conventional testis cDNA library of P. monodon.
members of miscellaneous function (6.3\%), metabolism (6.7\%), internal/external structure (4.5\%), and defense and homeostasis (3.3\%). The remaining ESTs allocated to other functional categories (cell division/DNA synthesis, transport or mitochondrial proteins) were accounted for less than 3.2% of the characterized ESTs in this library.

Gene homologues functionally categorized to members of cell division/DNA synthesis, repair and replication, defense and homeostasis, gene expression, regulation and protein synthesis, internal/external structure and motility, metabolism, miscellaneous function, mitochondrial protein, transport, ribosomal and rRNA, newly unidentified (hypothetical) proteins, and unknown proteins are illustrated in Appendix A.

Transcripts involved in sex determination and sex differentiation and testicular development were found in this library such as transformer-2, serine/threonine protein kinase family, B-cell receptor-associated protein 37 (prohibitin-2 or repressor of estrogen receptor activity). In addition, those associated with flagellar architecture of sperm including dynactin subunit 5 and dynein were also found.

Table 3.1 Functional categories of ESTs significantly matched with data in GenBank of testis cDNA library

Functional category	No. of clones (\%)	
1	Gene expression, regulation and protein synthesis	$86(9.6)$
2	Internal/external structure and motility	$40(4.5)$
3	Metabolism	$60(6.7)$
4	Defense and homeostasis	$30(3.3)$
5	Cell division/ DNA synthesis, repair and replication	$29(3.2)$
6	Ribosomal and rRNA	$151(16.8)$
7	Mitochondrial protein	$25(2.8)$
8	Transport	$28(3.1)$
9	Miscellaneous function	$56(6.3)$
10	Unidentified (hypothetical) - similar to other cDNA/DNA	$101(11.3)$
11	Unknown	$290(32.4)$
Total	$\mathbf{8 9 6 (1 0 0)}$	

Table 3.2 Functionally important gene homologues found in a conventional testis cDNA library of P. monodon

Clone No.	Transcripts	Closest species	E-value
TT-N-S01-0483-W	26S protease regulatory subunit	Aedes aegypti	1e-119
TT-N-S01-0385-W	26S Proteasome non-ATPase regulatory subunit 3 (Diphenol oxidase A2 component)	Apis mellifera	6e-69
TT-N-S01-0283-W	26 proteasome regulatory complex subunit p48B	Drosophila melanogaster	$2 \mathrm{e}-50$
TT-N-S01-0638-W	$26 S$ proteasome subunit P45 family protein	Tetrahymena thermophila SB210	$5 \mathrm{e}-67$
TT-N-S01-0373-W	2-Cys thioredoxin peroxida	Aedes aegypti	$1 \mathrm{e}-35$
TT-N-S01-0813-W			$5 \mathrm{e}-63$
TT-N-S01-0076-W	Actin-binding protein anillin, contractile ring component anillin	Xenopus laevis	3e-56
TT-N-S01-0447-W	Acyl-CoA oxidase (ACX3)	Tetrahymena thermophila SB210	$7 \mathrm{e}-66$
TT-N-S01-0177-W	Adaptor-related protein complex 1, beta 1 subunit, isoform CRA_c	Homo sapiens	$2 \mathrm{e}-38$
TT-N-S01-0917-W	Arginyl-tRNA--protein transferase 1 (Arginyltransferase 1) (Arginine-tRNA-protein transferase 1)	Apis mellifera	$5 \mathrm{e}-43$
TT-N-S01-0090-W	B-cell receptor-associated protein 37 (Prohibitin-2)(Repressor of estrogen receptor activity	Tribolium castaneum	$3 \mathrm{e}-84$
TT-N-S01-0900-W	Bromodomain containing 8 (Skeletal muscle abundant protein, SMAP, SMAP2, Thyroid hormone receptor coactivating protein 120 kDa , $\operatorname{Tr} C$ P120)	Apis mellifera	$3 \mathrm{e}-36$
TT-N-S01-0153-W	BUB3 budding uninhibited by benzimidazoles 3 homolog	Xenopus tropicalis	$2 \mathrm{e}-72$
TT-N-S01-0008-W	Carbonyl reductase 1-like	Tribolium castaneum	2e-68
TT-N-S01-0190-W	Cell division cycle 2	Danio rerio	$2 \mathrm{e}-31$
TT-N-S01-0169-W	Cell division protein kinase 7 (CDKactivating kinase)	Mus musculus	$8 \mathrm{e}-85$
TT-N-S01-0752-W	checkpoint kinase 1 (Serine/threonineprotein kinase)	Strongylocentrotus purpuratus	$9 \mathrm{e}-76$
TT-N-S01-0525-W	CHK1 checkpoint homolog	Xenopus tropicalis	3e-06
TT-N-S01-0567-W	(Serine/threonine-protein kinase) Chromobox protein homolog 1 (Heterochromatin protein 1 homolog beta) (HP1 beta) (Modifier 1 protein) (M31) (Heterochromatin protein p25)	Apis mellifera	$1 \mathrm{e}-58$
TT-N-S01-0475-W	COP9 constitutive photomorphogenic homolog subunit 5 isoform 1	Apis mellifera	$5 \mathrm{e}-73$
TT-N-S01-0695-W	Cyclin dependent kinase 2	Sphaerechinus granularis	$8 \mathrm{e}-82$
TT-N-S01-0020-W	Cyclophilin A	Chlamys farreri	7e-74
TT-N-S01-0217-W	Cystathionine gamma-lyase	Rattus norvegicus	$1 \mathrm{e}-52$

Table 3.2 (cont.)

Clone No.	Transcripts	Closest species	E-value
TT-N-S01-0933-W	Der1-like domain family member 1 (Degradation in endoplasmic reticulum protein 1, DER1)	Bombyx mori	$1 \mathrm{e}-59$
TT-N-S01-0067-W	Dynactin 5 (p25)	Strongylocentrotus	purpuratus

Table 3.2 (cont.)

Clone No.	Transcripts	Closest species	E-value
TT-N-S01-1067-W	Proteasome (prosome, macropain) 26S subunit, non-ATPase, 13	Apis mellifera	6e-34
TT-N-S01-0554-W	Proteasome (prosome, macropain) subunit, alpha type, 1, isoform CRA_a	Homo sapiens	3e-07
TT-N-S01-0287-W	Proteasome alpha 3 subunit	Bombyx mori	2e-73
TT-N-S01-0405-W	Proteasome subunit alpha type	Aedes aegypti	8e-99
TT-N-S01-0812-W			Зе-65
TT-N-S01-0949-W			$2 \mathrm{e}-80$
TT-N-S01-0063-W	Proteasome subunit alpha type 1 (Proteasome component C2) (Macropain subunit C2) (Multicatalytic endopeptidase complex subunit C2)	Canis familiaris	6e-06
TT-N-S01-0369-W	Proteasome subunit beta type 1 (Proteasome 26 kDa subunit)	Tribolium castaneum	$5 \mathrm{e}-26$
TT-N-S01-0916-W	Proteasome subunit beta type 2 (Proteasome component C7-I) (Macropain subunit C7-I)	Tribolium castaneum	6e-64
TT-N-S01-0879-W	Proteasome subunit, alpha type, 5	Apis mellifera	$1 \mathrm{e}-20$
TT-N-S01-0087-W	Protein mago nashi (mago-nashi homolog,	Apis mellifera	3e-76
TT-N-S01-0974-W	proliferation-associated) MAGOH		$4 \mathrm{e}-60$
TT-N-S01-0863-W	Protein serine/threonine kinase	Dictyostelium discoideum AX4	3e-22
TT-N-S01-0957-W	RAB, member of RAS oncogene family-like 3	Apis mellifera	7e-64
TT-N-S01-1036-W	Rac GTPase activating protein 1 isoform 1	Canis familiaris	2e-27
TT-N-S01-1040-W			4e-28
TT-N-S01-1048-W			2e-23
TT-N-S01-0556-W	RAD1 homolog isoform 1	Rattus norvegicus	$5 \mathrm{e}-13$
TT-N-S01-0220-W	RAS protein	Bombyx mori	$1 \mathrm{e}-56$
TT-N-S01-0203-W	RAS-related GTP binding protein	Bombyx mori	4e-62
TT-N-S01-0118-W	Receptor for activated protein kinase C-like	Blattella germanica	1e-122
TT-N-S01-0039-W TT-N-S01-1009-W	Ring finger protein 20 Ring finger protein 20 isoform 3	Gallus gallus Macaca mulatta	$8 \mathrm{e}-06$ $1 \mathrm{e}-26$
TT-N-S01-0905-W	Ring finger protein 44 isoform 3 -	Pan troglodytes	7e-44
TT-N-S01-0847-W	Ruvbl2-prov protein (RuvB-like DNA helicase reptin)	Xenopus laevis	1e-115
TT-N-S01-0150-W	Serine palmitoyl transferase LCB2 subunit	Drosophila melanogaster	$4 \mathrm{e}-34$
TT-N-S01-0427-W	Serine/arginine repetitive matrix 1	Gallus gallus	$4 \mathrm{e}-05$
TT-N-S01-0667-W	Serine/threonine protein kinase Pto (Ptolike serine/threonine kinase)	Lycopersicon esculentum	3e-07
TT-N-S01-0903-W	Serine/threonine-protein kinase 23 (Musclespecific serine kinase 1) (MSSK-1)	Apis mellifera	$4 \mathrm{e}-90$
TT-N-S01-0843-W	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform (PP2A-beta)	Tribolium castaneum	1e-109

Table 3.2 (cont.)

Clone No.	Transcripts	Closest species	E-value
TT-N-S01-0430-W	IMP4, U3 small nucleolar ribonucleoprotein, homolog	Apis mellifera	2e-48
TT-N-S01-0206-W	LSM4 homolog, U6 small nuclear RNA associated	Danio rerio	$7 \mathrm{e}-46$
TT-N-S01-0205-W	U2 small nuclear ribonucleoprotein auxiliary factor 2 isoform 1	Bombyx mori	$2 \mathrm{e}-62$
TT-N-S01-0967-W	Small nuclear ribonucleoprotein D2-like protein	Toxoptera citricida	$5 \mathrm{e}-41$
TT-N-S01-0673-W	Small nuclear ribonucleoprotein E	Bombyx mori	$1 \mathrm{e}-31$
TT-N-S01-0915-W			$1 \mathrm{e}-15$
TT-N-S01-0873-W	Small nuclear ribonucleoprotein polypeptide G	Homo sapiens	$2 \mathrm{e}-23$
TT-N-S01-0259-W	Spermidine synthase	Gallus gallus	2e-39
TT-N-S01-0144-W	SUMO, small ubiquitin-like modifier,	Apis mellifera	$5 \mathrm{e}-38$
TT-N-S01-0175-W	SUMO, small ubiquitin-like modifier SMO-		$8 \mathrm{e}-38$
TT-N-S01-0426-W	1 (10.2 kD)		$5 \mathrm{e}-38$
TT-N-S01-0626-W	Synaptobrevin-like protein 1	Canis familiaris	$1 \mathrm{e}-48$
TT-N-S01-0414-W	T-complex protein 1, alpha subunit(TCP-1-alpha)(CCT-alpha)	Delia antique	$5 \mathrm{e}-73$
TT-N-S01-0702-W	Tetratricopeptide repeat domain 9C (TTC9)	Rattus norvegicus	$3 \mathrm{e}-23$
TT-N-S01-0897-W	Thioredoxin 1	Litopenaeus vannamei	$1 \mathrm{e}-51$
TT-N-S01-0232-W	Thyroid hormone receptor-associated protein complex 240 kDa component (Trap240) (Thyroid hormone receptor associated protein 1)	Canis familiaris	$2 \mathrm{e}-57$
TT-N-S01-0407-W	TPA_inf: troponin I isoform a2	Drosophila pseudoobscura	$1 \mathrm{e}-26$
TT-N-S01-0941-W	Transformer-2 protein A	Bombyx mori	3e-34
TT-N-S01-0985-W	Transformer-2 protein B	Bombyx mori	$6 \mathrm{e}-57$
TT-N-S01-0223-W	Ubiquitin carboxyl-terminal hydrolase 14 (Ubiquitin thiolesterase 14) (Ubiquitinspecific processing protease 14)	Apis mellifera	$2 \mathrm{e}-51$
TT-N-S01-0972-W	Ubiquitin carboxyl-terminal hydrolase 5 (Ubiquitin thiolesterase 5) (Ubiquitin-specific-processing protease 5)(Isopeptidase T) isoform 2	Rattus norvegicus	$4 \mathrm{e}-65$
TT-N-S01-0872-W	Ubiquitin-conjugating enzyme E2	Aedes aegypti	$1 \mathrm{e}-58$
TT-N-S01-0657-W	WD repeat domain 61 (Meiotic recombination REC14 protein homolog)(WDR61)	Bombyx mori	3e-64
TT-N-S01-0883-W	Zinc finger protein 420	Danio rerio	$8 \mathrm{e}-44$
TT-N-S01-0874-W	Zinc finger protein 420 isoform 1	Mus musculus	$2 \mathrm{e}-33$
TT-N-S01-0573-W	Zinc finger protein 501	Pongo pygmaeus	$4 \mathrm{e}-45$
TT-N-S01-0578-W	Zinc finger, ZZ domain containing 3	Apis mellifera	3e-48

Moreover, transcripts involving meiotic cell division such as cell division cycle 2 (cdc2 also called cdk1), cell division protein kinase 7 (cdk7), and cyclin dependent kinase 2 (cdk2) and those involving apoptosis, for example, programmed cell death protein 7 and inhibitor of apoptosis protein were also found (Table 3.2). Examples of other functionally important transcripts found in this library were serine/threonine protein kinase family, ring finger protein, small nucleolar ribonucleoprotein, and several proteasome subunits.

3.2 Construction of suppression subtractive hybridization (SSH) cDNA libraries from testes of juvenile and broodstock of P. monodon

Forward and reverse subtractions between testis cDNAs of broodstock and juvenile P. monodon (cDNAs of broodstock as the tester whereas those of juveniles as the driver and vice versa) were carried out. Initially, first and second strand cDNA were separately synthesized from mRNA of broodstock and juveniles P. monodon. Double strand cDNA of tester and driver was digested with Rsa I (Fig. 3.5). Only digested testers were ligated with the adapter. Tester and driver were hybridized twice. Each subtracted cDNA was sequentially amplified twice using suppression PCR (Fig. 3.6). The resulting products are ligated to pGEM-T Easy vector and transformed to E. coli JM109. Recombinant clones of both forward and reverse SSH library were identified by colony PCR (Figs. 3.7 and 3.8). Plasmid DNA is extracted and unidirectionally sequenced.

A total of 367 ESTs of testes (178 and 189 clones from the forward and reverse SSH libraries, respectively) of P. monodon were unidirectionally sequenced. The positive recombinant clones of both libraries were 95.1 and 96.4%. Of which 82.4 and 86.2% had insert sizes >250 bp in length. The percentage of ESTs significantly matched known genes in respective libraries was 37.1 (67 ESTs) and 54.0\% (104 ESTs). Unknown transcripts predominated in both forward and reverse SSH libraries. They were 112 and 87 ESTs accounting for 62.9 and 46.0%, respectively (E -value $>1 \mathrm{e}-04$) (Table 3.3).

Figure 3.5 Agarose gel electrophoresis illustrating digested cDNA of P. monodon with Rsa I. Lanes 1 and 3 = undigested testis cDNA of broodstock-sized and juvenile P. monodon, respectively. Lanes 2 and $4=$ Rsa I-digested testis cDNA of broodstocksized and juvenile P. monodon, respectively.

Figure 3.6 Primary (A; lanes 1-2) and secondary (B; lanes 4-5) suppression PCR of subtracted (lanes 1) and nonsubtracted (lanes 2) of forward (A) and reverse (B) SSH of testis cDNA of P. monodon.

Figure 3.7 Colony PCR for determining sizes of inserts of positive cones clones from the forward SSH testis library of P. monodon.

Figure 3.8 Colony PCR for determining sizes of inserts of positive cones clones from the reverse SSH testis library of P. monodon.

Table 3.3 Functional categories of ESTs in testes of P. monodon identified by SSH analysis

Category	Forward SSH (\%)	Reverse SSH (\%)	Both libraries
Matched EST	$\mathbf{6 7 (3 7 . 1)}$	$\mathbf{1 0 4 (5 4 . 0)}$	$\mathbf{1 7 1}$
Sex related genes	$1(0.6)$	$1(0.5)$	2
Stress response and cell defense protein	$4(2.2)$	$13(6.9)$	17
Protein synthesis and DNA replication Internal / external structure, motility, and	$14(7.9)$	$22(11.6)$	36
Transport			
\quad Metabolism	$18(10.1)$	$7(3.7)$	9
Ribosomal proteins	$18(10.1)$	$13(6.9)$	31
Unidentified functions	$9(5.1)$	$36(19.1)$	54
Unmatched EST	$\mathbf{1 1 2 (6 2 . 9)}$	$10(5.3)$	19
Total EST	$\mathbf{1 7 8 (1 0 0)}$	$\mathbf{8 7 (4 6 . 0)}$	$\mathbf{1 9 9}$

Seven known transcripts: allergen Pen m 2 (tyrosine kinase), COI, EF-1a, GTP-binding protein, 26 S proteasome non-ATPase subunit 12, receptor for activated protein kinase C (RACK) and myelodysplasia/myeloid leukemia factor, were found with low frequencies in both libraries suggesting that the cDNA subtraction was successful (Tables 3.4 and 3.5).

ESTs significantly matched known genes from both libraries were functionally categorized to 7 groups (Table 3.3). Disregarding ribosomal and hypothetical (functionally unidentified) protein homologues, ESTs categorized as members of gene expression and protein synthesis (14 and 22 ESTs accounting for 7.9 and 11.6% in the forward and reverse SSH libraries, respectively) and metabolism (18 and 13 ESTs accounting for 10.1 and 6.9%) predominated among known transcripts in both SSH libraries. Numbers of transcripts belonged to internal/external structure and stress response/cell defense groups of the forward SSH library (2 and 4 ESTs accounting for 1.1 and 2.2%) were lower than those of the reverse SSH library (7 and 13 ESTs accounting for 3.7 and 6.9\%).

Highly redundant ESTs were not observed and a relatively large number of known gene homologues were found in these libraries (Tables 3.4 and 3.5). The diversity of genes found in these libraries demonstrated the promise in discovery of genes with functional importance by a SSH approach.

Sequence assembly revealed that 112 unknown transcripts of the forward SSH library were composed of 12 contigs and 55 singletons, whereas 87 unknown transcripts of the reverse SSH library were clustered to 12 contigs and 60 singletons.

Sex-related transcripts including meiotic recombination protein DMC1/LIM15 homolog isoform 1, progestin receptor membrane component 1, and innexin 2 were found in both SSH libraries. Meiotic recombination protein DMC1/LIM15 homolog isoform 1 (Dmc1) is involved in meiotic recombination occurred during the meiotic prophase (Ozaki et al., 2006). Progestins are sex steroid hormones that play important roles in gametogenesis. In fish, progestin also plays an important role in spermiation and sperm maturation (Miura et al., 2006). Two totally distinct classes of putative membrane-bound progestin receptors have been reported in vertebrates: progestin membrane receptor component (PGMRC; subtypes 1 and 2) and membrane progestin receptors (mPR; subtypes α, β, γ). Both have never been studied in any crustacean (Mourot et al., 2006).

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

Table 3.4 Known transcripts found in the forward SSH library of testes of P. monodon

Clone No.	Transcripts	Closest Species	E-value
TT-N-ST01-0155-W	26S proteasome regulatory complex ATPase RPT4	Aedes aegypti	2e-81
TT-N-ST01-0077-W	Actin-depolymerizing factor 1	Bombyx mori	$8 \mathrm{e}-21$
TT-N-ST01-0116-W	Activated protein kinase C receptor	Toxoptera citricida	4e-70
TT-N-ST01-0148-W	Allergen Pen m 2	Penaeus monodon	5e-22
TT-N-ST01-0150-W	Antimicrobial peptide	Fenneropenaeus chinensis	2e-22
TT-N-ST01-0156-W	ATP-dependent RNA helicase	Aedes aegypti	3e-76
TT-N-ST01-0085-W	Basic leucine zipper and W2 domain-containing protein 2	Danio rerio	$2 \mathrm{e}-09$
TT-N-ST01-0109-W	Bmsqd-2	Apis mellifera	1e-102
TT-N-ST01-0149-W	C-1-tetrahydrofolate synthase, cytoplasmic (C1THF synthase)	Pongo pygmaeus	$7 \mathrm{e}-85$
TT-N-ST01-0147-W	C2 domain containing protein	Tetrahymena thermophila SB210	2e-19
TT-N-ST01-0053-W	Cytochrome c oxidase subunit 6 a polypeptide 1	Xenopus tropicalis	$2 \mathrm{e}-08$
TT-N-ST01-0007-W	Cytochrome c oxidase subunit I	Fenneropenaeus chinensis	4e-76
TT-N-ST01-0137-W		Marsupenaeus japonicus	1e-112
TT-N-ST01-0030-W	Cytochrome c oxidase subunit III	Penaeus monodon	$1 \mathrm{e}-70$
TT-N-ST01-0119-W	Cytosolic manganese	Penaeus monodon	2e-12
TT-N-ST01-0141-W	superoxide dismutase		$6 \mathrm{e}-13$
TT-N-ST01-0131-W	DEAD (Asp-Glu-Ala-Asp) boxx polypeptide 54 isoform 3	Pan troglodytes	1e-19
TT-N-ST01-0125-W	Dolichyl-diphosphooligosaccharideproteinglycotransferase	Branchiostoma belcheri tsingtaunese	4e-19
TT-N-ST01-0059-W	elongation factor-1 alpha	Penaeus monodon	7e-62
TT-N-ST01-0099-W	กd6が1	Armadillidium vulgare	2e-95
TT-N-ST01-0039-W	Eukaryotic translation initiation factor 2 subunit 2	Bombyx mori	$7 \mathrm{e}-36$
TT-N-ST01-0182-W	GTP-binding protein	Bombyx mori	$5 \mathrm{e}-49$
TT-N-ST01-0010-W	Malate dehydrogenase 1, NAD (soluble), isoform CRA_d	Homo sapiens	$4 \mathrm{e}-43$
TT-N-ST01-0019-W	Meiotic recombination protein DMC1/LIM15 homolog isoform 1	Canis familiaris	$1 \mathrm{e}-24$

Table 3.4 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-ST01-0069-W	Myelodysplasia/myeloid leukemia factor CG8295-PD, isoform D	Drosophila melanogaster	1e-33
TT-N-ST01-0034-W	Myosin	Dictyostelium discoideum AX4	$6 \mathrm{e}-23$
TT-N-ST01-0093-W	NTF2-related export protein (p15)	Tribolium castaneum	4e-19
TT-N-ST01-0088-W	Oncoprotein nm23	Ictalurus punctatus	$6 \mathrm{e}-34$
TT-N-ST01-0108-W	Proteasome (prosome, macropain) $26 S$ subunit, ATPase, 5 , isoform CRA_a	Homo sapiens	3e-12
TT-N-ST01-0161-W	Proteasome 26S non-ATPase subunit 12	Tribolium castaneum	4e-18
TT-N-ST01-0074-W	Proteasome subunit alpha type 2 (Proteasome component C3) (Macropain subunit C3) (Multicatalytic endopeptidase complex subunit C3)	Strongylocentrotus purpuratus	$4 \mathrm{e}-40$
TT-N-ST01-0056-W	Proteasome subunit, alpha type, 5	Apis mellifera	4e-23
TT-N-ST01-0143-W	Ras-related nuclear protein	Marsupenaeus japonicus	$4 \mathrm{e}-50$
TT-N-ST01-0035-W TT-N-ST01-0058-W	Receptor for activated protein kinase C RACK 1 isoform 1	Bombyx mori	$\begin{gathered} 1 \mathrm{e}-113 \\ 7 \mathrm{e}-17 \end{gathered}$
TT-N-ST01-0178-W	Sensitized chromosome inheritance modifier 19 CG9241-PA	Drosophila melanogaster	$3 \mathrm{e}-15$
TT-N-ST01-0103-W	Signal peptidase complex subunit 2 homolog	Tribolium castaneum	$3 \mathrm{e}-28$
TT-N-ST01-0138-W	signal sequence receptor	Bombyx mori	$9 \mathrm{e}-14$
TT-N-ST01-0162-W	Transmembrane protein	Pan troglodytes	2e-64

Table 3.5 Known transcripts found in the reverse SSH library of testes of P. monodon

Clone No.	Transcripts	Closest Species	E-value
TT-N-ST02-0155-LF	ABC transporter ATP-binding protein	Flavobacteriales bacterium HTCC2170	5e-73
TT-N-ST02-0029-LF	Alcohol dehydrogenase	Bombyx mori	3e-35
TT-N-ST02-0156-LF			$2 \mathrm{e}-90$
TT-N-ST02-0176-LF			2e-90
TT-N-ST02-0024-LF	Allergen Pen m 2	Penaeus monodon	$2 \mathrm{e}-21$
TT-N-ST02-0188-LF			5e-22
TT-N-ST02-0097-LF	Calcitonin gene-related peptidereceptor component protein isoform a	Homo sapiens	$8 \mathrm{e}-21$
TT-N-ST02-0001-LF	Calcium-dependent chloride channel-1	Homo sapiens	4e-11
TT-N-ST02-0010-LF	Cathepsin B	Hippoglossus hippoglossus	$1 \mathrm{e}-26$
TT-N-ST02-0063-LF	Cement precursor protein 3B	Phragmatopoma	3e-08
TT-N-ST02-0106-LF	variant 2	californica	2e-11
TT-N-ST02-0136-LF			3e-07
TT-N-ST02-0038-LF	Centromere/kinetochore protein zw10 homolog	Apis mellifera	$1 \mathrm{e}-20$
TT-N-ST02-0141-LF	Cytochrome b	Penaeus monodon	$3 \mathrm{e}-80$
TT-N-ST02-0007-LF	Cytochrome c oxidase subunit I	Fenneropenaeus chinensis	$5 \mathrm{e}-68$
TT-N-ST02-0020-LF			$1 \mathrm{e}-66$
TT-N-ST02-0117-LF			7e-68
TT-N-ST02-0131-LF	Drosophila melanogaster eEF1delta	Drosophila yakuba	$8 \mathrm{e}-16$
TT-N-ST02-0004-LF	Elongation factor-1 alpha	Armadillidium vulgare	1e-113
TT-N-ST02-0033-LF			1e-113
TT-N-ST02-0008-LF	Eukaryotic translation initiation factor 3 subunit 4	Danio rerio	$1 \mathrm{e}-55$
TT-N-ST02-0133-LF			$1 \mathrm{e}-55$
TT-N-ST02-0092-LF	F-box only protein 22 Ferric reductase-like protein	Gallus gallus Aedes aegypti	$6 \mathrm{e}-08$
TT-N-ST02-0142-LF			$1 \mathrm{e}-28$
TT-N-ST02-0138-LF	Gelsolin, cytoplasmic (Actindepolymerizing factor) (ADF) GTP binding protein	Homarus americanus	$3 \mathrm{e}-05$
TT-N_ST02-0166-LF			3e-05
TT-N-ST02-0075-EF		Bombyx mori	2e-70
TT-N-ST02-0054-LF	Heat shock protein gp96	Strongylocentrotus purpuratus	$1 \mathrm{e}-21$
TT-N-ST02-0087-LF	Helicase, lymphoid-specific isoform 2	Danio rerio	$1 \mathrm{e}-43$
TT-N-ST02-0009-LF	Innexin 2	Penaeus monodon	1e-62
TT-N-ST02-0177-LF	Intracellular fatty acid binding protein	Penaeus monodon	1e-156
TT-N-ST02-0071-LF	Karyopherin (importin) alpha 4	Rattus norvegicus	$8 \mathrm{e}-08$

Table 3.5 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-ST02-0193-LF	Kinesin heavy chain	Loligo pealei	$1 \mathrm{e}-20$
TT-N-ST02-0053-LF	Mcm3-prov protein (minichromosome maintenance protein 3)	Xenopus laevis	3e-09
TT-N-ST02-0039-LF	Myeloid leukemia factor 2 (Myelodysplasia-myeloid leukemia factor 2)	Danio rerio	$2 \mathrm{e}-06$
TT-N-ST02-0078-LF	Niemann-Pick disease type C2	Oreochromis	$5 \mathrm{e}-06$
TT-N-ST02-0108-LF		mossambicus	$5 \mathrm{e}-06$
TT-N-ST02-0013-LF	Nop56 CG13849-PA, isoform A (nucleolar KKE/D repeat protein; DmNOP56)	Drosophila melanogaster	2e-49
TT-N-ST02-0017-LF	Nucleolin	Xenopus laevis	$3 \mathrm{e}-04$
TT-N-ST02-0047-LF	Peptidylprolyl isomerase A	Ictalurus punctatus	$8 \mathrm{e}-15$
TT-N-ST02-0022-LF	Progestin receptor membrane component 1	Oryzias latipes	$1 \mathrm{e}-47$
TT-N-ST02-0040-LF	Proteasome (prosome, macropain) 265 subunit, nonATPase, 13	Tribolium castaneum	2e-78
TT-N-ST02-0101-LF	Proteasome 26S non-ATPase	Tribolium castaneum	1e-71
TT-N-ST02-0130-LF	subunit 12		$1 \mathrm{e}-71$
TT-N-ST02-0049-LF	Proteasome 26S subunit subunit 4 ATPase CG5289-PA	Drosophila melanogaster	$1 \mathrm{e}-89$
TT-N-ST02-0165-LF	Receptor for activated protein kinase C RACK 1 isoform 1	Bombyx mori	1e-107
TT-N-ST02-0084-LF	Ribosomal RNA methyltransferase	Aedes aegypti	$6 \mathrm{e}-10$
TT-N-ST02-0015-LF	RNA polymerase 1-1	Mus musculus	2e-25
TT-N-ST02-0028-LF	Small nuclear ribonucleoprotein D2 polypeptide 16.5 kDa , isoform CRA b	Homo sapiens ากร	2e-34
TT-N-ST02-0170-LF	Small nuclear ribonucleoprotein	Drosophila	2e-14
TT-N-ST02-0065-LF	E (snRNP-E) (Sm protein E) (SmE) Small optic lobes CG1391-PB,	melanogaster Apis mellifera	$7 \mathrm{e}-81$
TT-N-ST02-0070-LF	isoform B (Calpain)		7e-81
TT-N-ST02-0185-LF	Tetraspanin 3, isoform CRA_a	Homo sapiens	$4 \mathrm{e}-10$
TT-N-ST02-0056-LF	Tetraspanin 96F CG6120-PA	Drosophila melanogaster	5e-14
TT-N-ST02-0151-LF	Transcription initiation factor TFIID subunit 12 (Transcription initiation factor TFIID 20/15 kDa subunits)	Xenopus laevis	$1 \mathrm{e}-21$
TT-N-ST02-0016-LF	Variable surface lipoprotein	Mycoplasma bovis	$1 \mathrm{e}-08$

3.3 Construction of a conventional heart cDNA library of P. monodon

In addition, a conventional cDNA library of heart of P. monodon was also constructed. Initially, mRNA was purified from total RNA extracted from heart (Fig 3.9) of juvenile shrimp. Heart mRNA ($4.3 \mu \mathrm{~g}$) were used for a cDNA library construction. First and second strand cDNA were synthesized and manipulated before cDNA was sized-fractionated through column containing Sepharose CL-2B gel filtration medium. Fractions were collected and a $5 \mu \mathrm{l}$ aliquot of each fraction was examined by polyacrylamide gel electrophoresis. Fractions 4-7 of the heart cDNA which were free from adaptors (Fig. 3.10) were selected, pooled and subjected to ligation of the cDNA insert and preparation of a lambda library, respectively.

The primary titer of the heart cDNA library was $1.55 \times 10^{6} \mathrm{pfu} / \mathrm{ml}$. The percentage of positive clones examined by colony PCR was 93.4% ($605 / 648$ clones) and 98.7% of which carrying the inserts greater than 500 bp in size (Fig. 3.11) and subjected to similarity search using Blast N and Blast X. A total of 413 recombinant clones were sequenced, 283 ESTs (68.5\%) corresponded to known sequences (Evalue $<1 \mathrm{e}-04$) whereas 130 sequences were regarded as novel (unknown) transcripts (31.5%, E-value $>1 \mathrm{e}-04$). Genes encoding mitochondrial proteins such as cytochrome b, several subunits of cytochrome c oxidase and NADH dehydrogenase were highly redundant. Functionally important gene homologues such as Myosin light chain 1 (MLC1), Profilin, ERO1-like, Troponin T, and Thyroid hormone receptor interactor 12 isoform 7 were also found (Tables 3.6 and 3.7).

Two hundred and eighty-three known ESTs from the heart cDNA library were allocated to 10 functional categories (Table 3.6). Mitochondrial protein (25.2\%) and ribosomal protein (16.9\%) were abundant in this library. Disregarding hypothetical protein (9.7\%) homologues, matched ESTs categorized as members of metabolism (6.5\%) predominated followed by those classified as members of miscellaneous function (3.9\%), gene expression and protein synthesis (3.2\%), defense and homeostasis (1.5\%), and internal/external structure (1.2\%). A single EST allocated to cell division/DNA synthesis (0.2%) and transport (0.2%) was high mobility group protein DSP1 (Dorsal switch protein 1) which significantly matched that of Tribolium
castaneum (4e-56) and electron-transfer-flavoprotein beta polypeptide which significantly matched that of Bombyx mori (6e-50), respectively.

Figure 3.9 Total RNA (A) and mRNA (B) of heart of P. monodon used to construct a conventional cDNA library. The first (C, lane 1) and second strand (C, lane 2) cDNA were synthesized from purified mRNA of heart of juvenile P. monodon.

Figure 3.10 Size-fractionation of heart cDNA of P. monodon. Lanes 1-9 (A) and 1-4 and 5-9 (B) correspond to fractions 2-10, 11-14 and 15-19, respectively. Lanes $\mathrm{M}=\mathrm{a}$ 100 bp marker.

Figure 3.11 Colony PCR for determining sizes of inserts of positive cones clones from a conventional heart cDNA library of P. monodon.

Table 3.6 Functional categories of ESTs of the conventional heart cDNA library of P. monodon significantly matched previously deposited sequences in GenBank

Functional category		No. of clones (\%)
1	Gene expression, regulation and protein synthesis	$13(3.2)$
2	Internal / external structure and motility	$5(1.2)$
3	Metabolism	$27(6.5)$
4	Defense and homeostasis	$6(1.5)$
5	Cell division / DNA synthesis	$1(0.2)$
6	Ribosomal protein	$70(16.9)$
7	Mitochondrial protein	$104(25.2)$
8	Transport	$1(0.2)$
9	Miscellaneous function	$16(3.9)$
10	Unidentified (hypothetical)-similar to other cDNA/DNA	$40(9.7)$
11	Unknown	$130(31.5)$
Total	$\mathbf{4 1 3 (1 0 0)}$	

Table 3.7 Functionally important transcripts from a conventional heart cDNA library of P. monodon

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0012-LF	Hydroxyproline-rich protein	Micrococcus sp. 28	$4 \mathrm{e}-05$
HT-N-S01-0016-LF	Electron-transfer-flavoprotein beta polypeptide	Bombyx mori	$6 \mathrm{e}-50$
HT-N-S01-0023-LF	Myosin light chain 1	Aedes aegypti	2e-38
HT-N-S01-0032-LF	Fast tropomyosin isoform	Homarus americanus	3e-44
HT-N-S01-0089-LF	High mobility group 20A	Mus musculus	$1 \mathrm{e}-43$
HT-N-S01-0093-LF	Calponin	Aedes aegypti	4e-34
HT-N-S01-0119-LF	ADP/ATP translocase	Bombyx mori	$7 \mathrm{e}-73$
HT-N-S01-0128-LF	Troponin T	Libellula pulchella	2e-12
HT-N-S01-0144-LF	Serine proteinase inhibitor	Pacifastacus leniusculus	4e-42
HT-N-S01-0154-LF HT-N-S01-0297-LF	Fructose 1,6-bisphosphate	Oncometopia nigricans	$1 \mathrm{e}-16$ 1e-37
HT-N-S01-0158-LF	Profilin (Chickadee protein)	Tribolium castaneum	$7 \mathrm{e}-38$
HT-N-S01-0162-LF	NADH-ubiquinone oxidoreductase Fe-S protein 7	Bombyx mori	3e-62
HT-N-S01-0165-LF	C-type lectin	Penaeus monodon	$7 \mathrm{e}-06$
HT-N-S01-0178-LF	Dehydrogenase/3-ketoacylCoenzyme A thiolase	Danio rerio	5e-09
HT-N-S01-0185-LF	Latency associated nuclear antigen	Saimiriine herpesvirus 2	$9 \mathrm{e}-12$
HT-N-S01-0198-LF	GRN protein (granulin)	Xenopus tropicalis	$1 \mathrm{e}-33$
HT-N-S01-0200-LF	Troponin T-1	Drosophila melanogaster	1e-12
HT-N-S01-0204-LF	Tetratricopeptide repeat domain 35	Danio rerio	2e-47
$\begin{aligned} & \text { HT-N-S01-0218-LF } \\ & \text { HT-N-S01-0219-LF } \end{aligned}$	Peroxisomal 3,2-trans-enoylCoA isomerase (DodecenoylCoA delta-isomerase) isoform 1 Plasminogen	Strongylocentrotus purpuratus Sus scrofa	$5 \mathrm{e}-53$ 2e-13
	High mobility group protein DSP1 (Dorsal switch protein 1) Papilin	Tribolium castaneum Aedes aegypti	$4 \mathrm{e}-56$ $3 \mathrm{e}-36$
HT-N-S01-0231-LF	gcdh protein (GlutarylCoenzyme A dehydrogenase)	Danio rerio	4e-70
HT-N-S01-0241-LF	Neuroparsin A precursor	Locusta migratoria	$9 \mathrm{e}-11$
HT-N-S01-0243-LF	Myosin 1 light chain	Lonomia obliqua	$1 \mathrm{e}-48$
HT-N-S01-0244-LF	ERO1-like	Gallus gallus	2e-41
HT-N-S01-0247-LF	ATP synthase	Penaeus monodon	$6 \mathrm{e}-74$
HT-N-S01-0289-LF	Neuroparsin A precursor	Locusta migratoria	$5 \mathrm{e}-06$
HT-N-S01-0291-LF	Glutathione S-transferase	Anopheles gambiae	$7 \mathrm{e}-35$

Table 3.7 (cont.)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0294-LF	Trifunctional enzyme beta subunit (tp-beta)	Aedes aegypti	3e-48
HT-N-S01-0296-LF	ATP synthase	Penaeus monodon	$9 \mathrm{e}-93$
HT-N-S01-0306-LF	Serpin 3	Plutella xylostella	$9 \mathrm{e}-09$
HT-N-S01-0317-LF	Glyceraldehyde-3-phosphate dehydrogenase	Procambarus clarkii	$6 \mathrm{e}-76$
HT-N-S01-0350-LF	ATP lipid-binding protein like protein	Marsupenaeus japonicus	$1 \mathrm{e}-30$
HT-N-S01-0358-LF	Thyroid hormone receptor interactor 12 isoform 7	Canis familiaris	$7 \mathrm{e}-35$
HT-N-S01-0382-LF	Lipoamide dehydrogenase	Sus scrofa	3e-51
HT-N-S01-0384-LF	Supervillin, isoform CRA_a	Homo sapiens	8e-16
HT-N-S01-0397-LF	Phosphoglycerate kinase	Aedes aegypti	1e-14
HT-N-S01-0407-LF	Fasciclin-like protein	Aplysia californica	3e-27
HT-N-S01-0417-LF	Reticulon 4-L2	Takifugu rubripes	$6 \mathrm{e}-42$
HT-N-S01-0419-LF	Muscle lim protein	Aedes aegypti	$2 \mathrm{e}-34$
HT-N-S01-0421-LF	Tyrosine-protein phosphatase non-receptor type 13 (Proteintyrosine phosphatase 1E) (PTP E1) (hPTPE1) (PTP-BAS)	Tribolium castaneum	$8 \mathrm{e}-50$
HT-N-S01-0427-LF	Receptor for activated protein kinase C RACK 1 isoform 1	Bombyx mori	$1 \mathrm{e}-90$
HT-N-S01-0433-LF	Macrophage migration inhibitory factor	Bombyx mori	$5 \mathrm{e}-25$
HT-N-S01-0441-LF	Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain	Danio rerio	$4 \mathrm{e}-73$
HT-N-S01-0450-LF	Cathepsin D	Aedes aegypti	$7 \mathrm{e}-86$
HT-N-S01-0452-LF	Arginine kinase	Fenneropenaeus chinensis	$2 \mathrm{e}-40$

3.4 Isolation and characterization of the full length cDNA of functionally important gene homologues of P. monodon

The full length cDNA of 11 functionally important genes was discovered from testis (10 transcripts) and heart (1 transcript) cDNA libraries (Table 3.8). There were small ubiquitin-like modifier (SUMO, 1304 bp in length with an ORF of 282 bp corresponding to 93 aa, Fig. 3.12), peptidyl-prolyl cis-trans isomerase (cyclophilin A, 929 bp ; ORF of $495 \mathrm{bp}, 164$ aa, Fig. 3.13), translationally controlled tumor protein (TCTP, 730 bp; ORF 507 bp, 168 aa, Fig. 3.14), small nuclear ribonucleoprotein polypeptide G (676 bp; ORF $234 \mathrm{bp}, 77$ aa, Fig. 3.15), dynactin subunit 5 (1436 bp; ORF 594 bp, 197 aa, Fig. 3.16), ubiquitin conjugating enzyme 2 (1416 bp; ORF 675 bp, 224 aa, Fig. 3.17), BUB3 budding uninhibited by benzimidazoles 3 homolog (mitotic checkpoint, 3554 bp; ORF 981 bp, 326 aa, Fig. 3.18), cell division control protein 2 homolog (Cdc2, 1696 bp; ORF 900 bp, 299 aa, Fig. 3.19), thioredoxin 1 (731 bp ; ORF 318 bp, 105 aa, Fig. 3.20), multiprotein bridging factor 1 (715 bp ; ORF $450 \mathrm{bp}, 149 \mathrm{aa}$, Fig. 3.21), and myosin 1 light chain (MLC1, 1414 bp; ORF 465 bp, 154 aa, Fig. 3.22). All full length cDNA except thioredoxin 1 and multiprotein bridging factor 1 contained the ORF with 3^{\prime} UTR and the poly A tail.

Sequence analysis revealed that SUMO of P. monodon (Fig. 3.12) contained an ubiquitin domain $\left(17^{\text {th }}-88^{\text {th }}\right.$ of the deduced protein, E-value $\left.=6.2 \mathrm{e}-15\right)$. The expected MW and $\mathrm{p} I$ of this deduced protein were 10.58 kDa and 4.99 , respectively.

Cyclophilin A of P. monodon (Fig. 3.13) contains a pro-isomerase domain (also called cyclophilin type peptidyl-prolyl cis-trans isomerase/CLD domain, positions $5^{\text {th }}-164^{\text {th }}$, E-value $=2.2 \mathrm{e}-116$) commonly found in the cyclophillin (also called peptidyl-prolyl isomerase) protein family. The expected MW and pI of this gene product were 18.86 kDa and 8.78 , respectively.

TCTP (Fig. 3.14) contained a TCTP domain (positions $1^{\text {th }}-165^{\text {th }}$, E-value $=$ $1.40 \mathrm{e}-58$). Mammalian translationally controlled tumor protein (TCTP) (or P23) is a protein which has been found to be preferentially synthesized in cells during the early growth phase of some types of tumor, but which is also expressed in normal cells. The expected MW and pI of this gene product were 19.22 kDa and 4.39, respectively.

Abstract

AAGACCACGCGTTCCTCCAACAAATTCATCAATAATGTCTGATAACACTGACGCCAAGCC 60 $\begin{array}{lllllllll}\mathbf{M} & \mathbf{S} & \mathbf{D} & \mathbf{N} & \mathbf{T} & \mathbf{D} & \mathbf{A} & \mathbf{K} & \mathbf{P} \\ \mathbf{9}\end{array}$ AGAAGGGGAAGGGAACGAATACATCAAACTTAAAGTTGTAGGACAGGACTCCAATGAGAT 120 $\begin{array}{lllllllllllllllllll}\mathbf{E} & \mathbf{G} & \mathbf{E} & \mathbf{G} & \mathbf{N} & \mathbf{E} & \mathbf{Y} & \mathbf{I} & \mathbf{K} & \mathbf{L} & \mathbf{K} & \mathbf{V} & \mathbf{V} & \mathbf{G} & \mathbf{Q} & \mathbf{D} & \mathbf{S} & \mathbf{N} & \mathbf{E} \\ \mathbf{I} & \mathbf{2 9}\end{array}$ CCACTTCCGAGTGAAGATGACCACACAGATGGGCAAGTTAAAGAAGTCATACAGTGAGCG 180 $\begin{array}{lllllllllllllllllllll}\mathbf{H} & \mathbf{F} & \mathbf{R} & \mathbf{V} & \mathbf{K} & \mathbf{M} & \mathbf{T} & \mathbf{T} & \mathbf{Q} & \mathbf{M} & \mathbf{G} & \mathbf{K} & \mathbf{L} & \mathbf{K} & \mathbf{K} & \mathbf{S} & \mathbf{Y} & \mathbf{S} & \mathbf{E} & \mathbf{R} & 49\end{array}$ GGTGGGAGTCCCTGTAGCATCGCTGCGTTTCCTCTTTGACGGACGACGCATTAATGACGA 240 $\mathbf{V} \quad \mathbf{G} \quad \mathbf{V}$ AGAAACGCCCAAAGCTCTGGAAATGGAGAATGATGACGTAATTGAAGTGTACCAGGAGCA 300 $\begin{array}{llllllllllllllllllll}\mathbf{E} & \mathbf{T} & \mathbf{P} & \mathbf{K} & \mathbf{A} & \mathbf{L} & \mathbf{E} & \mathbf{M} & \mathbf{E} & \mathbf{N} & \mathbf{D} & \mathbf{D} & \mathbf{V} & \mathbf{I} & \mathbf{E} & \mathbf{V} & \mathbf{Y} & \mathbf{Q} & \mathbf{E} & \mathbf{Q} \\ \mathbf{8 9}\end{array}$ GACCGGCGGCCATTGATGCAACACATTCCCGCGACCATAGGAATAAGACATCGTTAGGTT 360 \mathbf{T} G G H * $\quad 93$ AAGGAAGTTTATTTTTCGCCACACAGTGTACCTTTATTTTCTGGCTGAGATTTTCGCACA 420 GACCAGGCAATGTGCGCAGACCTTTTTAGATGGAATTTCTGCGAGTCTCGTACAATGTAT 480 AATCACGCAAGAGTCTGAAAAATTATTAAATTTTCTCTTTTTCTTTTTATATATGTATGT 540 TATTTGCCCAAGGATGGTTTCCTAGAGCAAATTGTGCAGCAGAAGTGTGCGACTTCACCA 600 GGCCTATCTCAAGACCAGGCATGAGAGAACTTAAGTTTCTGCATAGCTTTTGAGATTTAG 660 GTGTTAACGCATCTAATATGTTGTTAACCAAAAGAATGAAGATTTCCCTCTCCTCTTTTT 720 ATTTTTTTGAAAGCATTGTAAAAGTCATGAATGTTAGTACCTTTTTTCATTTTATTTTTT 780 ATTTCAAATCCTTATAATTCCAAGTAGCAGGAAGGAAAGACATCAAATTTAAATTCTCGA 840 CAAGGGTTATGTTTAACTATTAGTCTGTACCGTTCGAATGTTCTTGTAATAGTCTGCAGC 900 GTGACATCTTTATTGCTGTGAACCAAAATAGACTCTGTGAGTTCTATGTGTTATTCAATA 960 CATTCTAAATATAACCCAATTTCGTCTTTTTGTTTTATATTATTTGTGGATAGCAAAAAA 1020 TTTTAATATTTCATACATAATGTGAGAAGCAGTGAAGTAAAATGATTGTGTAAAAAAAAA 1080 AAATCAAGATGAAGCTTCACTTTCTTCTTGGTATTCTATTGTCGACGGTAATCATGTTGG 1140 CGGAAGCGAAAAATGGGCTGAGCAGTCGGACAGGCAGTAAAGAACACATGGACATCTAAA 1200 CCAGTGTCCTGGAAATCCTCTTTTCCAGGCAGGATCAACATTTCTTTTTAGTCTCAATAA 1260 AAGAAAATTGTGATTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1305

Figure 3.12 The full length cDNA sequences of SUMO (1305 bp in length with an ORF of 282 bp corresponding to a polypeptide of 93 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An ubiquitin domain $\left(17^{\text {th }}-\right.$ $88^{\text {th }}$ of the deduced protein was highlighted.

Small nuclear ribonucleoprotein polypeptide G (Fig. 3.15) contained a sm domain (positions $7^{\text {th }}-72^{\text {th }}$, E-value $=1.74 \mathrm{e}-20$). Small nuclear ribonucleoprotein particles (snRNPs or snRNP Sm proteins) involved in pre-mRNA splicing. The expected MW and pI of this gene product were 8.65 kDa and 9.98 , respectively.

Ubiquitin conjugating enzyme 2 (Fig. 3.17) contained an UBCc domain (positions $81^{\text {th }}-224^{\text {th }}, \mathrm{E}$-value $=1.85 \mathrm{e}-72$). The expected MW and pI of this gene product were 23.89 kDa and 7.64 , respectively. Ubiquitin proteosome pathway is a major means in eukaryotic cells for targeted protein proteolysis. The system generally includes three classes of ubiquitin enzymes: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s or UBC) and ubiquitin protein ligases (E3s).

Figure 3.13 The full length cDNA sequences of cyclophilin A (929 bp in length with an ORF of 495 bp corresponding to a polypeptide of 164 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A pro-isomerase domain (positions $5^{\text {th }}-164^{\text {th }}$ of the deduced protein is highlighted.

Figure 3.14 The full length cDNA sequences of translationally controlled tumor protein (730 bp in length with an ORF of 507 bp corresponding to a polypeptide of 168 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A TCTP domain (positions $1^{\text {th }}-165^{\text {th }}$ of the deduced protein) is highlighted.

Dynactin subunit 5 has the expected MW and pI of 21.54 kDa and 8.84 (Fig. 3.16) whereas those of BUB3 budding uninhibited by benzimidazoles 3 homolog (Fig.
3.18) were 37.01 kDa and 7.48 , respectively. Functionally important domains were not found in both transcripts.

AATCACAATTTCTTTTATTGAGACTAAAAAGAAATGTTGATCCTGCCTGGAAAAGAGGAT 60 TTCCAGGACACTGGTTTAGATGTCCATGTGTTCTTCATTGCCTCTCCGATTGGTCAGCCC 120 ATTTTTCGCTTCCGCCAACATGATTACCGTCGACAATAGAATACCGAGAAGAAAGTGAAG 180 CTTCATCTTGATGTTTTGACTTCGAGAAACAACTGTTTTCGCCCCAAATAAGCTTTCAGG 240 ATGAGCAAGGCACATCCACCAGAGTTGAAGAAGTACATGGACAAGCGCGTCATGACCAAG 300 $\begin{array}{llllllllllllllllllll}\mathbf{M} & \mathbf{S} & \mathbf{K} & \mathbf{A} & \mathbf{H} & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathbf{L} & \mathbf{K} & \mathbf{K} & \mathbf{Y} & \mathbf{M} & \mathbf{D} & \mathbf{K} & \mathbf{R} & \mathbf{V} & \mathbf{M} & \mathbf{T} & \mathbf{K}\end{array}$ CTGAATGGTGGACGCGTGGTCGAGGGAACACTAAGAGGCTTTGACCCCTTCATGAACCTT 360
 GTGGTGGATGATGGGGTGGAAGTGCGCAGGAGTGGAGATCGTGTCAGGGTTGGCTTTGTG 420
 GTCATCCGAGGCAGTAGCATCATCATGCTTGAAGCCCTGGATCGGATATCGTAGTCTTGT 480

ACCCAAATAATATTAAACTTTAAGTTAGGATCTTAGAAAGATGTAATTCAGCTTAAGTTT 540 TGATTAGAAGCAGCCATTCTTATATGTGAAGAATTATTTAGTTTTTCCGAAGAATTTCCA 600 GTTTTTTCCTGGAATTATTATGTGAATGTGTTTTCAGTAAAATAATGATTTTGTAAAAAA 660 AAAAAAAAAAAAAAAA $\quad 276$

Figure 3.15 The full length cDNA sequences of small nuclear ribonucleoprotein polypeptide G (676 bp in length with an ORF of 234 bp corresponding to a polypeptide of 77 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A sm domain (positions $7^{\text {th }}-72^{\text {nd }}$ of the deduced protein) was highlighted.

AATCACAATTTCTTTTATTGAGACTAAAAAGAAATGTTGATCCTGCCTGGAAAAGAGGAT 60 TTCCAGGACACTGGTTTAGATGTCCATGTGTTCTTTACTGCCTGTCCGACTGCTCAGCCC 120 AAGGTCCTGTGACCAAATCTACAGGTACACAAGAAATGACGGACAGGCTGACGAGTCGGG 160 ATTTTTCGCTTCCGCCAACATGATTACCGTCGACAATAGAATACCGAGAAGAAAGTGAAG 180 CTTCATCTTGATTCAGCTGCTGATCCCCGAACTCTGCCGTGCGGACCCGAGGGAGAATTC 240 CCCACGTAAAGGCTTCGTCATGGAATTGCAGGATTCCTTTTATCCCAGAGCTCAGTATAT 300
$\begin{array}{llllllllllllll}\bar{M} & E & \mathbf{L} & \mathbf{Q} & \mathbf{D} & \mathbf{S} & \mathbf{F} & \mathbf{Y} & \mathbf{P} & \mathbf{R} & \text { A } & \mathbf{Q} & \mathbf{Y} & \mathbf{I} \\ 14\end{array}$ TGAGACTGCCACAGGAAACCGTGTCAGCCGTGCAAGTGTGTTATGTGGATCTCAGAACAT 360
 TGTTTTAAGTGGTAAAGTTATCGTGCTTAGTGGTGTGATTATCAGAGGAGACCTTGCCAA 420 \mathbf{V} L S G K V I V L S G V I I TGTCAGAGTAGGACGCCACTGTGTGATATCATCCAAAGCGGTTATCAGACCTCCATTTAA 480 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{R} & \mathbf{V} & \mathbf{G} & \mathbf{R} & \mathbf{H} & \mathbf{C} & \mathbf{V} & \mathbf{I} & \mathbf{S} & \mathbf{S} & \mathbf{K} & \mathbf{A} & \mathbf{V} & \mathbf{I} & \mathbf{R} & \mathbf{P} & \mathbf{P} & \mathbf{F} & \mathbf{K} & \mathbf{7 4}\end{array}$ AAAATTCAGTAAGGGAGTAGCATTTTTCCCACTTCACATTGGGGATCATGTTTATATTGG 540 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{F} & \mathbf{S} & \mathbf{K} & \mathbf{G} & \mathbf{V} & \mathbf{A} & \mathbf{F} & \mathbf{F} & \mathbf{P} & \mathbf{L} & \mathbf{H} & \mathbf{I} & \mathbf{G} & \mathbf{D} & \mathbf{H} & \mathbf{V} & \mathbf{Y} & \mathbf{I} & \mathbf{G} & \mathbf{9 4}\end{array}$ TGAGGGTTCTGTTGTAAATGCTGCAGTCNCACTGGTTCATATGTCTACATTGGACAAGAA 600 $\begin{array}{lllllllllllllllllllll}\text { E } & \mathbf{G} & \mathbf{S} & \mathbf{V} & \mathbf{V} & \mathrm{N} & \text { A } & \text { A } & \mathbf{V} & \mathbf{X} & \mathbf{L} & \mathbf{V} & \mathbf{H} & \mathrm{M} & \mathbf{S} & \mathbf{T} & \mathbf{L} & \mathrm{D} & \mathbf{K} & \mathbf{N} & 114\end{array}$ CTGTGTTATTGGACGCCGTTGCGTGCTCAAAGACTGCTGCATGATTGCGGACAACACAGT 660 $\begin{array}{lllllllllllllllllllll}\mathbf{C} & \mathbf{V} & \mathbf{I} & \mathbf{G} & \mathbf{R} & \mathbf{R} & \mathbf{C} & \mathbf{V} & \mathbf{L} & \mathbf{K} & \mathbf{D} & \mathbf{C} & \mathbf{C} & \mathbf{M} & \mathbf{I} & \text { A } & \mathbf{D} & \mathbf{N} & \mathbf{T} & \mathbf{V} & 134\end{array}$ CTTGCCTCCCGAGACTGTTGTTCCACCATTTGCAGTCTACAATGGTTCACCTGCCAAGCA 720 $\begin{array}{lllllllllllllllllll}\mathbf{L} & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathbf{T} & \mathbf{V} & \mathbf{V} & \mathbf{P} & \mathbf{P} & \mathbf{F} & \mathbf{A} & \mathbf{V} & \mathbf{Y} & \mathbf{N} & \mathbf{G} & \mathbf{S} & \mathbf{P} & \mathbf{A} & \mathbf{K} \\ \mathbf{H} & \mathbf{1 5 4}\end{array}$ CACAGGAGACTTGCCAGAGGCTACCCAAGATCTTATGACTGATTACACTAAATCATGTTA 780 $\begin{array}{lllllllllllllllllllll}\mathbf{T} & \mathbf{G} & \mathbf{D} & \mathbf{L} & \mathbf{P} & \mathbf{E} & \mathbf{A} & \mathbf{T} & \mathbf{Q} & \mathbf{D} & \mathbf{L} & \mathbf{M} & \mathbf{T} & \mathbf{D} & \mathbf{Y} & \mathbf{T} & \mathbf{K} & \mathbf{S} & \mathbf{C} & \mathbf{Y} & 174\end{array}$ TCACCATTTCATCAGAGTCAAAGATATGCCACCACAGGCAAAGGAAGGAACTACAAAGCT 840 $\begin{array}{lllllllllllllllllllll}\mathbf{H} & \mathbf{H} & \mathbf{F} & \mathbf{I} & \mathbf{R} & \mathbf{V} & \mathbf{K} & \mathbf{D} & \mathbf{M} & \mathbf{P} & \mathbf{P} & \mathbf{Q} & \mathbf{A} & \mathbf{K} & \mathbf{E} & \mathbf{G} & \mathbf{T} & \mathbf{T} & \mathbf{K} & \mathbf{L} & 194\end{array}$

TATTGAAATTTAGGTACAGAAAGCTGTTTTTTTGCTTCCCTGTTTCCTCAAACCAAAGGT 900
 I E I * 197

ATATTATCCAGCCTGAATCATGGATCTTCAGTTGAACTCAATGAAGAAGAGAAAATATCT 960
GCAGTATACTATTTATTTCAAATCAGTTACTTTAGCATTTAGCAAAGGTATGAATTAAAT 1020 TATGGTATGTTTACATTTAGCAATGGACTATGATGTCATTTGAAATTTGCCTAAATATAT 1080 TACTAGGAGATTTCTGTGTCTACTACTAATAGGAAATGCAGTGTATGTCATTCCAGTATG 1140 ATACTGACAACATTGAGGATATTATTATTTAAGAAGCTTTAAATATTCGTTTTAGTTTTT 1200 TTTATATATAGAACAATAAAAAAGAAAAAGATAAAATTTTCATTATCACCAGGTTATCTT 1260 CTGCAGCCGAATATTATGGCTAGGTAATAGTAATTGATTTAAAGGCAGTTATAAAATGAA 1320 TGAATATATAAGACTTTCTTAAGAATGACTTAATTTTCAAGCTGAATAATGAAGTGATAT 1380 ATATCATTATGTGCTTCTATATGTTAAAATAAAGTAAATAATGGCAAAAAAAAAAA 1436

Figure 3.16 The full length cDNA sequences of dynactin subunit 5 (1436 bp in length with an ORF of 594 bp corresponding to a polypeptide of 197 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined.

AGAAACCTCGCATGGAGAAAGAGGAGCTCGAGAGGCAACTCAAAGACAACTTTAACCTTC 60 TGCTTTGTAGCTTTATAACAAAGAAAATTACTTTGGGGTGGGGGGAATAATCGAAGGAAC 120 TTCACCCTTCATTTCTATCTCACAAACGGAACACATTCAGAGGTAGATCATGGTGAGTTA 180 TCAGGAATATGGTCATGTGCATTGATTGATGTCTGCCTCGCCTGCTGGTGCCACCGGGTC 240 $\begin{array}{llllllllllll}M & \mathbf{S} & \mathbf{A} & \mathbf{S} & \mathbf{P} & \mathbf{A} & \mathbf{G} & \mathbf{A} & \mathbf{T} & \mathbf{G} & \mathbf{S} & 11\end{array}$
TGACTCTGTCCCCGTGTCTCCCTCAAACCCCCCCACCACCACTAGTCCCCCCTCGTCAGC 300
$\begin{array}{llllllllllllllllllllll}\mathbf{D} & \mathbf{S} & \mathbf{V} & \mathbf{P} & \mathbf{V} & \mathbf{S} & \mathbf{P} & \mathbf{S} & \mathbf{N} & \mathbf{P} & \mathbf{P} & \mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{S} & \mathbf{P} & \mathbf{P} & \mathbf{S} & \mathbf{S} & \mathbf{A} & 31\end{array}$
GACCTTGACCGCAGCGTCTGCTGGGTCAGCCCTCTCTCCCTCAAGCACTGCCACCAGTTC 360

CCAGCAGTCGGCCCCGGTAGAGCCCCCCGTTGTGCGTGAGGTCAGGCCACACAACCCCAA 420
$\begin{array}{lllllllllllllllllllll}\mathbf{Q} & \mathbf{Q} & \mathbf{S} & \mathbf{A} & \mathbf{P} & \mathbf{V} & \mathbf{E} & \mathbf{P} & \mathbf{P} & \mathbf{V} & \mathbf{V} & \mathbf{R} & \mathbf{E} & \mathbf{V} & \mathbf{R} & \mathbf{P} & \mathbf{H} & \mathbf{N} & \mathbf{P} & \mathbf{K} & \mathbf{7 1}\end{array}$
AATGTCAAAGGCACTCAGCACCAGTGCTAAGAGGATACAAAAGGAACTCGCAGAAATAAC 480
$\begin{array}{llllllllllllllllllllll}\mathbf{M} & \mathbf{S} & \mathbf{K} & \mathbf{A} & \mathbf{L} & \mathbf{S} & \mathbf{T} & \mathbf{S} & \mathbf{A} & \mathbf{K} & \mathbf{R} & \mathbf{I} & \mathbf{Q} & \mathbf{K} & \mathbf{E} & \mathbf{L} & \mathbf{A} & \mathbf{E} & \mathbf{I} & \mathbf{T} & \mathbf{9 1}\end{array}$
ACTAGACCCCCCACCCAACTGCAGCGCTGGGCCTAAGGGAGACAATCTGTATGAATGGGT 540
$\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{D} & \mathbf{P} & \mathbf{P} & \mathbf{P} & \mathbf{N} & \mathbf{C} & \mathbf{S} & \mathbf{A} & \mathbf{G} & \mathbf{P} & \mathbf{K} & \mathbf{G} & \mathbf{D} & \mathbf{N} & \mathbf{L} & \mathbf{Y} & \mathbf{E} & \mathbf{W} & \mathbf{V} & 111\end{array}$
GTCGACTATCCTGGGTCCACCTGGGTCCGTGTATGAGGGTGGGGTCTTCTTTCTAGATAT 600
$\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{T} & \mathbf{I} & \mathbf{L} & \mathbf{G} & \mathbf{P} & \mathbf{P} & \mathbf{G} & \mathbf{S} & \mathbf{V} & \mathbf{Y} & \mathbf{E} & \mathbf{G} & \mathbf{G} & \mathbf{V} & \mathbf{F} & \mathbf{F} & \mathbf{L} & \mathbf{D} & \mathbf{I} \\ \mathbf{1} & 131\end{array}$
CCATTTCTCGGCAGAATACCCATTCAAACCACCTAAGGTCACGTTTCGTACACGAATTTA 660
$\begin{array}{lllllllllllllllllllll}\mathbf{H} & \mathbf{F} & \mathbf{S} & \mathbf{A} & \mathbf{E} & \mathbf{Y} & \mathbf{P} & \mathbf{F} & \mathbf{K} & \mathbf{P} & \mathbf{P} & \mathbf{K} & \mathbf{V} & \mathbf{T} & \mathbf{F} & \mathbf{R} & \mathbf{T} & \mathbf{R} & \mathbf{I} & \mathbf{Y} & \mathbf{1 5 1}\end{array}$
TCACTGCAACATCAACTCCCAAGGAGTGATATGTTTAGATATTCTTAAGGATAACTGGTC 720
$\begin{array}{lllllllllllllllllllll}\mathbf{H} & \mathbf{C} & \mathbf{N} & \mathbf{I} & \mathbf{N} & \mathbf{S} & \mathbf{Q} & \mathbf{G} & \mathbf{V} & \mathbf{I} & \mathbf{C} & \mathbf{L} & \mathbf{D} & \mathbf{I} & \mathbf{L} & \mathbf{K} & \mathbf{D} & \mathbf{N} & \mathbf{W} & \mathbf{S} & \mathbf{1 7 1}\end{array}$
TCCAGCCCTCACTATCTCCAAGGTTCTGCTGTCCATCTGCTCTCTTCTTACAGATTGCAA 780

TCCAGCTGATCCCCTCGTAGGAAGCATTGCCACACAGTACCTCCAAAACAGGGAAGAACA 840
 TGATAGAATTGCACGGCTCTGGACCAAGCGTTATGCTACGTGATCACTTCCCGGTAGCTG 900 $\begin{array}{lllllllllllllll}\mathbf{D} & \mathbf{R} & \mathbf{I} & \mathbf{A} & \mathbf{R} & \mathbf{L} & \mathbf{W} & \mathbf{T} & \mathbf{K} & \mathbf{R} & \mathbf{Y} & \mathbf{A} & \mathbf{T} & \text { * } & \mathbf{2 2 4}\end{array}$ TGAACAGGGTATTAGGCATCTCTTTCACCATGCCAATTTGGGTTTAATCATTTTATATAA 960 GTAATTTCCACTCGGCCCCTTGATTTCTAGAGTATCTCAGCTTCTGAAAGAAAAAAAAAG 1020 ATATAAAAATAATAAAACCAAACAAATTAAAAAATCTAACAAAAAAAAATTAAATATAAA 1080 AAAAAAAAAAAAAAACCTCCAAGAAAAGGAATGCACCATGGATAAGCGAATATTAATCCT 1140 GGTTCTTTTAGTGTCTTCGCTGTGCATAATGGCTGATGCTCATGAGAAGAGGAGTCCGCT 1200 AGCCAGAAGTGGCCCAAGCCGTCCGCCAGGGAGTAAAGGAAAGCGCTCAGTTTCCTACGA 1260 AGGCCTGGAGGAGGAATGCCTTTGCCAAAGGTGATCACGGCTCGGCGTGAGACTCGTCGG 1320 CTCAGCGCTCGGTCGTTCGGTTTCGGCGAGTAATTGGCGATGTCACGATTTGGGAATTAA 1380 AGGTTGACATCAATAAAAAAAAAAAAAAAAAAAAAA 1416

Figure 3.17 The fulll length cDNA sequences of ubiquitin conjugating enzyme 2 (1416 bp in length with an ORF of 675 bp corresponding to a polypeptide of 224 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An UBCc domain (positions $81^{\text {th }}-224^{\text {th }}$ of the deduced protein) is highlighted.

TTTGTTTTCTTCCTTTTCCTTCGTGTGTTTTCGAGTCTGAAGTCGGCAAAATGAGTGAAT 60 \bar{M} S E S 4
CTCGCATGGAATTTCGGTTGAAGAATACTCCGAGTGACTGTATTCAAAGTGTCAAGTTTG 120 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{M} & \mathbf{E} & \mathbf{F} & \mathbf{R} & \mathbf{L} & \mathbf{K} & \mathbf{N} & \mathbf{T} & \mathbf{P} & \mathbf{S} & \mathbf{D} & \mathbf{C} & \mathbf{I} & \mathbf{Q} & \mathbf{S} & \mathbf{V} & \mathbf{K} & \mathbf{F} & \mathbf{G} \\ 24\end{array}$ GGCCTTCATCTTCACAGTTCCTTCTAGTAGCATCGTGGGACAAAAGTGTTCGCCTTTATG 180 $\begin{array}{llllllllllllllllllll}\mathbf{P} & \mathbf{S} & \mathbf{S} & \mathbf{S} & \mathbf{Q} & \mathbf{F} & \mathbf{L} & \mathbf{L} & \mathbf{V} & \mathbf{A} & \mathbf{S} & \mathbf{W} & \mathbf{D} & \mathbf{K} & \mathbf{S} & \mathbf{V} & \mathbf{R} & \mathbf{L} & \mathbf{Y} & \mathbf{D}\end{array} \mathbf{4 4}$ ATGTTGTCAATAATAACATGCGGTTACAGTATCAGCATACAGGCCCGGTTTTGGATTGCT 240
 GCTTCCAGGATGCTGTCCATGCATACAGTGGAGGCTTAGATGGTCAGCTCAAGACCTTTG 300 $\begin{array}{llllllllllllllllllll}\mathbf{F} & \mathbf{Q} & \mathbf{D} & \mathbf{A} & \mathbf{V} & \mathbf{H} & \mathbf{A} & \mathbf{Y} & \mathbf{S} & \mathbf{G} & \mathbf{G} & \mathbf{L} & \mathbf{D} & \mathbf{G} & \mathbf{Q} & \mathbf{L} & \mathbf{K} & \mathbf{T} & \mathbf{F} & \mathbf{D} \\ \mathbf{8 4}\end{array}$ ATCTCAACACAAACACAGAATCTGTGGTTGGCTCTCATGATGCTCCAATCAGGTGTGTGG 360
 AATTTTGCCCAGAAGTAAATGTTGTGATCACAGGAGCTTGGGATTCCAACATCAAACTCT 420 F Clllllllllllllllllll 120 GGGATCCTCGTGGACCACGGGAAGCTGGTACTTTCCAACAGCCAAATAAGGTGTACACCA 480 $\begin{array}{llllllllllllllllllll}\mathbf{D} & \mathbf{P} & \mathbf{R} & \mathbf{G} & \mathbf{P} & \mathbf{R} & \mathbf{E} & \mathbf{A} & \mathbf{G} & \mathbf{T} & \mathbf{F} & \mathbf{Q} & \mathbf{Q} & \mathbf{P} & \mathbf{N} & \mathbf{K} & \mathbf{V} & \mathbf{Y} & \mathbf{T} & \mathbf{M} \\ \mathbf{1 4 4}\end{array}$ TGGGCCTTGGTGGAGAAAAGTTGGTAGTGGGGACATCCAATAGAAAAGTGATGGTTTGGG 540
 ATCTGAGGAACATGGGCTTTGCTCAACAGCGCCGAGAATCTTCTCTCAAATACCAGACTC 600
 GCTGCATTCAGTGCTTCCCCAACAAACAGGGTTATGTTGTGTCCAGTATTGAGGGTCGTG 660
 TGGCTGTTGAGTACCTTGACCCGAGCCCGGAAGTCCAGAAGAAGAAGTATGCCTTCAAGT 720
 GCCACAGACTTAAAGAGGATGGGATTGAGAAAATTTTCCCTGTTAATGCCATAAGTTTCC 780
 ACAATGGTTACAATACCTTTGCAACAGGAGGTTCTGATGGGTATGTCAATATATGGGACG 840
 GCTTCAACAAGAAGCGCCTGTGCCAGTTCCATCGTTATCCAACTTCCATATCCTCCCTAT 900
 GCTTCAGCAATGATGGTAACACACTAGCAATTGCCTGCTCCTATATGTATGAACAAGAGG 960 $\begin{array}{llllllllllllllllllll}\mathbf{F} & \mathbf{S} & \mathbf{N} & \mathbf{D} & \mathbf{G} & \mathbf{N} & \mathbf{T} & \mathbf{L} & \text { A } & \mathbf{I} & \text { A } & \mathbf{C} & \mathbf{S} & \mathbf{Y} & \mathbf{M} & \mathbf{Y} & \mathbf{E} & \mathbf{Q} & \mathbf{E} & \mathbf{E} 304\end{array}$ AAATTGACCCCATGCCAGAGGATTGCATCTTCATCCGTCGTGTGACAGACCAAGAGACGA 1020 $\begin{array}{llllllllllllllllllll}\mathbf{I} & \mathbf{D} & \mathbf{P} & \mathbf{M} & \mathbf{P} & \mathbf{E} & \mathbf{D} & \mathbf{C} & \mathbf{I} & \mathbf{F} & \mathbf{I} & \mathbf{R} & \mathbf{R} & \mathbf{V} & \mathbf{T} & \mathbf{D} & \mathbf{Q} & \mathbf{E} & \mathbf{T} & \mathbf{K} \\ 324\end{array}$ AGCCAAAATAAGGAGCCAGAGCAGACAAAGAGCTTGCATCTTTTTACAGTAATCCCTCTGT 1080 P K *
CACGATGTAGCAAAGAGGGCTGTCCATTACACGGGTCCAATGTGTGTCGGTGGGCTCTGG 1140 GACGTTAACACTCATAGTACCTCAATTTTGTATATGGTGGTATGTATGTATGCCATTCTA 1200 TATGAAGTGTTAGTGAATTTTAAAGTTATGATTAGACCAAGTATTTGACCAGCACTTATT 1260 TAGTGTAGTCAGATAAAAGGTGCTTCTTTCATATCTTTTAATAGTTTTCTATGTATTTTA 1320 TCAGTAGCTTGGCGATTCAGGCCTTAATTACTTTTAAGCAAATGGGTAAATATGCTTAAT 1380 AACCTCCAAATGTCTTTACCATTATTTTCAAAGTTCATTTTCAATGTGGGAACTTGTGAA 1440 TCCTGTATTCATATTCATGCAGTTTCCAGGAAGATCTGAAGAAGAATACCAGTTAATGTT 1500 TAGAAGATACTGAATGAAGTCGGCAGAATTTTTGTGAATGCCTTTGTTGGTTTTATTTAT 1560 CTCCATGTGGATAGTTCTTTAGTGTTGAGAGGTACAGCCCAGTTTACAAGACTTTGGCAG 1620 TGTAGATAAATGATTATTGAAATCTTTTTATTAATGTATTTTTCAATTGCAACAGTACAA 1680 AAGTGTCAGGGGTTATTTCACATATTTACCACTGCTGCATATGCCAAAGTATGCCTAGGG 1740 AGAATTACAATGTCAGCAATAACTACATAGAATGGTTCCATCCTCCTTAGAACTTGATAG 1800 CATTTGGAATAAGGCCCACCGACCTCTGCCTTCTCTTTCATGCCTTTTTTTTTTTCTTCT 1860 TCTTCTTCTTCTTTTGTCTGATTCTTTGTTTCTTCATCATTATGATATGAACAGTGTAAG 1920 TGACAATTCTTTAACTATCAAAGAAAAGAAAAGTGTATTCAGAATTTCTTTAGCCAGCTT 1980 GTGGTATAAAACATTTTTATCTTTTGTTTTAGTTTTTATTGTCCATTTCATTCATTTATC 2040 TTTTGATAAATTCTTTGAGGTTGCCTCCTTCACAAAGCATAAAAAATTACAATAATAAAT 2100 GCAATTGAAGCTTTTGTTTCTTCAGTTATCATTATCAATGTCATTGTTGTTGTTATTATT 2160 ATTATCATTATTATTATTATTATCATTATTATTATTATTATTATTATTATTATTATCACT 2220 ATTATTATTATCATTATTATTATTGTTATTATTATTATTATCATTATCATCTTCATTATC 2280 ATTATTATTATTACTACTATTTTTTTGTCCCCTTGCCATTTCTCTGCTTGGCTCTTTCTA 2340 CTGCTTGAAACCTTCATAAGAAAAGCAAACAAAAAATATTGCCTATGAAGCTCAAACAGT 2400 ATACCAACAAGTGTGAACCCCCAAGCTTGCATGTAGGTAAAGGTCCAGTACTTTGAGGTA 2460 CAAGGTATACTAAAAATGTCCATTAAATTATTTTGACATGTATCTGCAAAATGTGTTAAG 2520 CATGGGCTTGTGAGATATTTATCTTTTGGAGGAATTTTTAGATAATATTTCCTTAGTGAT 2580 AGAACTGTATTAAAGCTTTCCTTTTACTTAACCTAGTAATTGGAAGAGTTATGCACATAA 2640 TTTTATATTTTGATGAAAAACTAGGGTAGAAATGCAAATTCAGTGGAGATGGTTGAAACT 2700 GTCACTGCCAGAATAAACAACAATAAATACATTCAAAGAAGGATTTACTTATTTTTTTCT 2760 TTTCTTTGAAAGAGATTATCTTTTCCTCAACAATGCTCGTAATAAAAAAAAAACACCAGA 2820 GACTTGAGACTTGGTTTATAGTATTGATGCTCAAGGATACCATTCTTGTCATTCAGATGG 2880 CAATTTTGTTAGTTGCTACTCTTTCATATCAACATTAAAAGGGAAGTAAATGATAGTTTT 2940 ACAGGGTTATGCTTATGGAGGAAATTGAAGGAAATTACTCTTTTCATCTCTCTTATATTT 3000

TATCCTTCTATTTTCTAAGTCATACTTAAGCAATGGCTTCTGCACTCACTTTGTCTCAAA 3060 GATATGAAAATAATGACGACATCTGACAATCTCAGCTACAGTCACCATGGAGATTGTAAA 3120 TGACTACTAAAGTTGCTGCTGCATCTTCATCTTTGATTCTTCCTCAAAGGTTTTTCTGAC 3180 CTCCTCCTATCATTAGTCTGTTGAATCCTCCTCCTTTCCTTTTCATTCTGATTGTCCTTC 3240 TCAGCCTCATTAATTTTCATTCTGTCCTATTTTTGGTAGCTCTATTTCTATTGCTCTGCT 3300 GGCTAAGAGCTTTCAGTGCCATGATAGTAAGAATTTTAACTTGTATCTAGTGAGATAACA 3360 GCAAGTTATCTCAAGTGGTATTTTAATTTTACAGCACATAATGAGCATAAAGTTATATCA 3420 AGAGACTGAAAAAAAAGTTGTATTTCCAGTAAATGCTAAAAGTTGCTCTTCAAAAGAAGG 3480 AAAGGCACTCACTGGTGGTATTGAATGAAGACCCTGTATAAATAAATTCTAGAAAGCAAA 3540 AAAAAAAAAAAAAA 3554

Figure 3.18 The full length cDNA sequences of BUB3 budding uninhibited by benzimidazoles 3 homolog (3554 bp in length with an ORF of 981 bp corresponding to a polypeptide of 326 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined.

Cdc2 (Fig. 3.19) contained a S_TKc domain (serine/threonine protein kinase catalytic domain; positions $4^{\text {th }}-287^{\text {th }}$, E-value $\left.=6.40 \mathrm{e}-104\right)$. The expected MW and $\mathrm{p} I$ of this deduced protein were 34.69 kDa and 8.46 , respectively. Protein kinases are a group of enzymes that possess a catalytic subunit which transfers the gamma phosphate from nucleotide triphosphates (often ATP) amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein functions. Proteins containing serine/threonine protein kinase catalytic domain can be divided into two broad classes with respect to substrate specificity; serine/threonine or tyrosine.

Thioredoxin 1 (Fig. 3.20) contained a thioredoxin domain (positions $2^{\text {th }}-$ $104^{\text {th }}$, E-value $=1.30 \mathrm{e}-43$). The expected MW and pI of this gene product were 12.0 kDa and 4.57 , respectively. Thioredoxins are small enzymes that participate in the redox reactions, via the reversible oxidation of an active centre disulfide bond.

Multiprotein bridging factor 1 (Fig. 3.21) contained a HTH_XRE domain (positions $80^{\text {th }}-135^{\text {th }}$, E-value $=1.41 \mathrm{e}-09$). The expected MW and $\mathrm{p} I$ of this gene product were 16.64 kDa and 10.11, respectively. Helix-turn-helix XRE family-like proteins are large family of DNA binding helix-turn helix proteins.

MLC1 (Fig. 3.22) contained two EFh domains (calcium binding motif; positions $12^{\text {th }}-40^{\text {th }}$ and $86^{\text {th }}-114^{\text {th }}, \mathrm{E}$-value $=1.62 \mathrm{e}+00$ and $\left.8.99 \mathrm{e}+00\right)$. The expected MW and $\mathrm{p} I$ of this gene product were 17.71 kDa and 4.74 , respectively. EF-hands are
calcium-binding motifs that occur at least in pairs. Each motif consists of a 12 residue loop flanked on either side by a 12 residue alpha-helix. EF-hands undergo a conformational change upon binding calcium ions.

Figure 3.19 The full length cDNA sequences of cell division control protein 2 (cdc2, 1696 bp in length with an ORF of 900 bp corresponding to a polypeptide of 299 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A S_TKc domain (serine/threonine protein kinase catalytic domain; positions $4^{\text {th }}-287^{\text {th }}$ of the deduced protein) is highlighted.

Figure 3.20 The full length cDNA sequences of thioredoxin 1 (731 bp in length with an ORF of 318 bp corresponding to a polypeptide of 105 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A thioredoxin domain (positions $2^{\text {th }}-104^{\text {th }}$ of the deduced protein) is highlighted.

Figure 3.21 The full length cDNA sequences of multiprotein bridging factor 1 (715 bp in length with an ORF of 450 bp corresponding to a polypeptide of 149 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A HTH_XRE domain (positions $80^{\text {th }}-135^{\text {th }}$ of the deduced protein) is highlighted.

[^1]Figure 3.22 The full length cDNA sequences of myosin 1 light chain (1414 bp in length with an ORF of 465 bp corresponding to a polypeptide of 154 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. Two EFh domains (positions $12^{\text {th }}-40^{\text {th }}$ and $86^{\text {th }}-114^{\text {th }}$ of the deduced protein) are highlighted.

Table 3.8 Summary of the full length cDNA of gene homologues found in the testes and heart cDNA libraries

In addition, the full length cDNAs of 17 functionally important gene homologues were also characterized. Both 5' (550 bp) and 3' RACE-PCR (2 kb) of a low molecular weight neurofilament protein XNF-L homologue was successfully carried out (Fig. 3.23). The newly unidentified transcripts of 2194 and 2406 bp with an identical ORF encoding a polypeptide of 112 amino acids but polymorphic 3' UTR were obtained (Figs. 3.24-3.25). This transcript (called P. monodon testis-specific transcript, PMTST1) did not match any gene in the GenBank (E-value > 1e-04). The prediction of translational start site did not reveal the possible site according to the best known Kozak rule (CTCATGG rather than A/GXXATGG, Kozak, 1983). Accordingly, PMTT1 need to be further characterized. Nucleotide sequences of two PMTST1 isoforms were aligned and polymorphic 3' UTRs were observed (Fig.3.26).

Figure 3.23 5'RACE-PCR (A, lane 1) and 3'RACE-PCR (B, lane 1) products of low molecular weight neurofilament protein (called PMTST1) and 3'RACE-PCR products of prohibitin-2 (B, lane 2), and growth factor receptor-bound protein (C, lane 1) of P. monodon. A 100 bp DNA ladder (lanes M1) and λ Hind III (lane M2) were used as the markers.

The 3' RACE-PCR of prohibitin-2 (a repressor of estrogen receptor activity) homologue was successfully carried out. The RACE product of approximately 1000 bp in size was obtained (Fig. 3.23). The full length cDNA of prohibitin-2 was composed of 1382 bp with the predicted ORF of 891 bp in length corresponding to a polypeptide of 296 amino acids (Fig. 3.27). This sequence significantly matched that of Tribolium castaneum (E -value $=2 \mathrm{e}-128$). The expected MW and pI of this deduced protein were 32.56 kDa and 9.73, respectively. A deduced prohibitin-2 protein contained a prohibitin domain (PHB, positions $39^{\text {th }}-200^{\text {th }}$, E-value $=1.25 \mathrm{e}-42$).

The 3' RACE-PCR products of growth factor receptor-bound protein (GFRBP) were 600 bp and 1200 bp in length (Fig. 3.23). Nucleotide sequences of EST and 3' RACE products were assembled and two different forms of the full length cDNA (1188 bp and 1883 bp with an identical ORF of 636 bp corresponding to a polypeptide of 211 amino acids) were found (Fig. 3.28-3.29). Nucleotide sequences of two GFRBP isoforms were aligned and polymorphic 3^{\prime} UTRs were observed (Fig.3.30). This sequence significantly matched that of Aedes aegypti (E-value $=5 \mathrm{e}-$ 91). A deduced GFRBP protein contained a Src homology 2 domain (SH2, positions $58^{\text {th }}-140^{\text {th }}$, E-value $=6.37 \mathrm{e}-35$) and 2 domains of Src homology 3 motifs (SH3, positions $1-57$ and $155-210$, E -value $=3.34 \mathrm{e}-18$ and $4.76 \mathrm{e}-23$, respectively). The expected MW and pI of this gene product were 24.44 kDa and 5.51 , respectively.

GACTCTCGTTCCCGTCTTCTGACAGTATATACAGCTCAATCTCAGTCCTGTCCAAGTCTT 60 GAGGCCGTCCTCATGGCTAACCCACGCCACGAAGCCGTCAAGAACGACTTGCTGGAGGCA 120
 GTCAAGAGCCGCGAGGCCGGCGCTTACCTGGAAGAGATCGACGCCTTCCTGAAGCAAAAG 180
 AAGAAGTACAACGCCGACGACGTCAACCTGGCCCACCAGATCATTGACGTGTGTCTCGTC 240
 AGCGACATCCTCGAGAAGGAGCTGGAGGATGTGAACGGGCGCCTCAAGGAGAAGTACACG 300
 CTTAGCAACGAGAACGCCGAGCTCAAAGTCAAGATGAAGAAGAAGACGACGGTGAAGAAG 360
 GGGAAAGCGAGGCGGTACAAGAAGGTTCCGGCCGACAAGGAGGAGTCATAAGGAGGACCA 420
 TGCATCGGATATCCATAATTGGTGTTCAGTTGAAGGAGCAGGCCTTTGGTATTCAAGGAC 480 GACCTCCCACGGACGAGGAGAGCCTCGAGACGACAAAACCTTCGGCAGGATAAGGACCTC 540 CTCGCACCATGGGTCGTCGGAGGGACTTCGGAGGGCCAGGGTGCTTCGTCCAAGAACTGA 600 ACATGGATCTAGTGATATCGGTGCTGTGATCAGTGGCATTGGAGAATCATTGGGGTGTTC 660 TTCCTACCTTTCCTCGTGCTTTTATGCGTAATCTCTCTCTCTСТСТСТСТСТСТСТСТСТ 720 CTCTCTCGCTCGCTCTCTCTCTGAACTTATATTTGTCGGTCATCATCTACTTTTTTCTCC 780 GTCATTTTGTTATTCAACTTTACCACATCAGTCATTATTTCTTTTCAAAACAACTGTTTT 840 GACCACCATGGCTATCTCGTTTTCGCCTTTCATATTTTACCTTTATTTCTCGAGTTTTCT 900 TTTTTCTTCGCATTTTTTCACCATCGTACTCTCCTCGTTTTCCTTTTTTTTTGACTATCT 960 CTTCTCTTCGCAGAAATAGTTAGCCTTTCTCTTTAGTTTACCTTAACATTCTGTCTTTCT 1020 ATGTCTCCTATAATATGTTATATTTTTTCTTGCATTCTCCCGCTTCTGTTCTATCTGTCA 1080

TATCATTTTTTTTCTCGCTCACTTTCTTCTCATTTTATAATCTTATAATCTTCTTAAATG 1140 CAAGTTGTTTTAAGGAAAGTGAAGTGAATATATGCATTTAACAATTTATTTATTCGGCGA 1200 ATGCAAAGAGTGGAAATGTCTACACAAGAAAATTACAGGATATAAGAGGAAAATGGGATA 1260 ATTGAAAGCGACAGAAAAAGTAGACCATTAGTCTGTGTAAGAATTATCGATGATTGGTTT 1320 TACTGCAGTGAAAAATGATTGAAAGTTTGCAAAGTTAGAAAGATTTTTCATTTAGGTCAG 1380 TGGCTATTCGTAGTTTTCGTTCAGTGATAATTCAACTGCAAGGAATAACTGAAAAAAGTT 1440 AATTAGCAATTTATAGCCACGTTCCCTTGTGTAAATATGTTCCAATATACCCTCTGCATT 1500 TACTTACGAGATATCATGTACTTGCATACATAAGTCTACATTTGTTTTCATGCAAGGAAG 1560 GTGGTAAAACACTCAACCGTGCAGTATACGCTGAATATAGAAATTTTTATATATCTTCAT 1620 TCAAGAAATCTATTTTGTGTGCAGTGGGTTTTTCTGCCAAGTTAGCTGTTTTAGGTATTT 1680 TAGAAATACTTCGGAATTCTCATTTTTTACTTAATCGATTTAATCATTATATTGTTATTA 1740 TTATATATATCTATTTTTTTGTGTGTGTGAACTGCGTAACAAATGTGGTATTTGTGTGTG 1800 CTGATATATATTCATTACTGTGCTGAGTTCAAATTGGTGCTGTAAACCCTCGTTCCTAAA 1860 GAGAAATGCAATCTCATTTAATGTAGACTCGGGACACTCTATAAGATTAGCTTTTGATCT 1920 TTGTCACTGCTGTTATGCTAAATTTCATTTCCTTCTTTTTTTAATTGTATTGGTTGCTCA 1980 TATTCTAGTTTTTGACTCTTGAATATTCCATCTCTTTCATCTTTGAAAAGGAAACTAAAT 2040 AAGAATTTTCAACAGAATGTATGGGTTTAGATACTGATTATTGGTATTGATAACCTTATA 2100 AATTTTATACACTAATTTCTCATATAATGATTTGTTCATTTGTTATAGCTCCCCTCTCCA 2160 TACTGCCAAAAAAAAAAAAAAAAAAAAAAAAAAA

2194
Figure 3.24 The full length cDNA and deduced protein sequences (2194 bp in length with an ORF of 339 bp corresponding to a polypeptide of 112 aa) of a short form of PMTST1 of P. monodon (PMTST1-s). Start and stop codons were illustrated in boldface and underlined.

GACTCTCGTTCCCGTCTTCTGACAGTATATACAGCTCAATCTCAGTCCTGTCCAAGTCTT 60 GAGGCCGTCCTCATGGCTAACCCACGCCACGAAGCCGTCAAGAACGACTTGCTGGAGGCA 120 $\begin{array}{lllllllllllllllll}\mathbf{M} & \mathbf{A} & \mathbf{N} & \mathbf{P} & \mathbf{R} & \mathbf{H} & \mathbf{E} & \mathbf{A} & \mathbf{V} & \mathbf{K} & \mathbf{N} & \mathbf{D} & \mathbf{L} & \mathbf{L} & \mathbf{E} & \mathbf{A} & \mathbf{1 6}\end{array}$ GTCAAGAGCCGCGAGGCCGGCGCTTACCTGGAAGAGATCGACGCCTTCCTGAAGCAAAAG 180 $\begin{array}{llllllllllllllllllllll}\mathbf{V} & \mathbf{K} & \mathbf{S} & \mathbf{R} & \mathbf{E} & \mathbf{A} & \mathbf{G} & \mathbf{A} & \mathbf{Y} & \mathbf{L} & \mathbf{E} & \mathbf{E} & \mathbf{I} & \mathbf{D} & \mathbf{A} & \mathbf{F} & \mathbf{L} & \mathbf{K} & \mathbf{Q} & \mathbf{K} & \mathbf{3 6}\end{array}$ AAGAAGTACAACGCCGACGACGTCAACCTGGCCCACCAGATCATTGACGTGTGTCTCGTC 240 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{K} & \mathbf{Y} & \mathbf{N} & \mathbf{A} & \mathbf{D} & \mathbf{D} & \mathbf{V} & \mathbf{N} & \mathbf{L} & \mathbf{A} & \mathbf{H} & \mathbf{Q} & \mathbf{I} & \mathbf{I} & \mathbf{D} & \mathbf{V} & \mathbf{C} & \mathbf{L} & \mathbf{V} & 56\end{array}$ AGCGACATCCTCGAGAAGGAGCTGGAGGATGTGAACGGGCGCCTCAAGGAGAAGTACACG 300 $\begin{array}{lllllllllllllllllllll}\mathbf{S} & \mathbf{D} & \mathbf{I} & \mathbf{L} & \mathbf{E} & \mathbf{K} & \mathbf{E} & \mathbf{L} & \mathbf{E} & \mathbf{D} & \mathbf{V} & \mathbf{N} & \mathbf{G} & \mathbf{R} & \mathbf{L} & \mathbf{K} & \mathbf{E} & \mathbf{K} & \mathbf{Y} & \mathbf{T} & \mathbf{7 6}\end{array}$ CTTAGCAACGAGAACGCCGAGCTCAAAGTCAAGATGAAGAAGAAGACGACGGTGAAGAAG 360 $\begin{array}{llllllllllllllllllllll}\mathbf{L} & \mathbf{S} & \mathbf{N} & \mathbf{E} & \mathbf{N} & \mathbf{A} & \mathbf{E} & \mathbf{L} & \mathbf{K} & \mathbf{V} & \mathbf{K} & \mathbf{M} & \mathbf{K} & \mathbf{K} & \mathbf{K} & \mathbf{T} & \mathbf{T} & \mathbf{V} & \mathbf{K} & \mathbf{K} & \mathbf{9 6}\end{array}$ GGGAAAGCGAGGCGGTACAAGAAGGTTCCGGCCGACAAGGAGGAGTCATAAGGAGGACCA 420 $\begin{array}{llllllllllllllllll}\mathbf{G} & \mathbf{K} & \mathbf{A} & \mathbf{R} & \mathbf{R} & \mathbf{Y} & \mathbf{K} & \mathbf{K} & \mathbf{V} & \mathbf{P} & \mathbf{A} & \mathbf{D} & \mathbf{K} & \mathbf{E} & \mathbf{E} & \mathbf{S} & \boldsymbol{*} & \mathbf{1 1 2}\end{array}$ TGCATCGGATATCCATAATTGGTGTTCAGTTGAAGGAGCAGGCCTTTGGTATTCAAGGAC 480 GACCTCCCACGGACGAGGAGAGCCTCGAGACGACAAAACCTTCGGCAGGATAAGGACCTC 540 CTCGCACCATGGGTCGTCGGAGGAACTTCGGAGGGCCAGGGTGCTTCGTCCAAGAACTGA 600 ACATGGATCTAGTGATATCGGTGCTGTGATCAGTGGCATTGGAGAATCATTGGGGTGTTC 660 TTCCTACCTTTCCTCATGCTTTTATGCGTAATCTCTCTCTCTCTCTCGCTCTCTCTCTGA 720 ACTTATATTTGTCGGTCATCATCTACTTTTTTCTCCTTCATTTTGTTATTAAATTTTAGT 780 CACTCCCAGCTTTTATGGAATCTCTCTCTCTCTCTCGCTCTCTCTCTGAACTTATATTCC 840 CCTTATAGGATCTACTTTTTTCTCCTTCATTTTGTTATTCCCTTTAACCACATCAGTCAT 900 TATTTCTTTTCAAAACAGCTGTTATGACCACCATGGCTATCTCGTTTCCTCCTTTCATAT 960 TTTAGCTTTATTTCTCGAGTTTTCTTTTCTCTTCGCATTTTTTCACCATCTTACTCTCCT 1020 CGTTTTCTTTTTCTTTTCTTTTTTTCTTTTTTCCTTTGACTATCTCTTCTCTTCGCAGAA 1080 ATAGTTAGCCTTTCTCTTAACTTTACCTTAACACTCTGTCTTTCTATGTCTCCTGTAATA 1140 TGATATTTTTTTTTCTTGCATTCTCCCGCTTCTGTTCTATCTGTCATATCATTTTTTTTC 1200 TCGCTCACTTTCTTCTCATTTTATAATCTTATAATCTTCTTAAATGCAAGTTGTTTTAAG 1260 GAAAGTGAAGTGAATATATGCATTTAACAATTTATTTATTCGGCAAATGCAAAGAGTGGA 1320 AATGTCTACACAAGAAAATTACAGGATAAAAGTGAAAATGGGATAATTGAAAGCGACAGA 1380 AAAAGTAGACCATTAGTCTGTGTAAGAATTATCGATGATCGGTTTTACTGCAGTGAAAAA 1440 TGATTGAAAGTTTGCAAAGTTAGAAAGATTTTTCATTTAGGTCAGTGGCTATTCGTAGTT 1500 TTCGTTCAGTGATAATTCAACTGCAAGGAATAACTGAAAAAAGTTAATTAGCAATTTATA 1560 GCCACGTTCCCTTGTGTAAATATGCTCCAATATACCCTCTGCATTTACTTACGAGATACC 1620 ATGTACTTGCATACATAAGTCTACATTTGTTTTCATGCAAGGAAGGTGGTAAAACACTCA 1680 ACCGTGCAGTATACGCTGAATATAGAAATTTTTATATATCTTCATTCAAGAAATCTATTT 1740 TGTGTGCAGTGGGTTTTTCTGCCAAGTTAGCTGTTTTAGGTATTTTAGAAATACTTCGGA 1800 ATTCTCATTTTTTACTTAATCGATTTAATCATTATACTGTTATTATTATATATATCTATT 1860

TTTTGTGTGTGAACTGCGTAACAAATGTGGTATTTGTGTGTGCTGATATATATTCATTAC 1920
 TGTGCTGAGTTCAAATTGGTGCTGTAAACCCTGGTTCCTAAAGAGAAATGGAATTTCATT 1980 TAATGTAGACTCGGGACACTCTATAAGATTAGCTTTTGATTTTTGTCACTGCTGTTATGC 2040 TAAATTTCATTTCCTTTTTTTTTTAATTGTATTGATTGCTCATATTCTAGTTTTTGACTC 2100 TTGAATATTCCATTTCTTTCATCTTTGTAAAGGAAACTAAATAAGAATTTTCAACAGAAT 2160 GTATGGGTTTAGATACTGATTATTGGTATTGATAACCTTATAAATTTTATACACTAATTT 2220 CTCATATATTGATTTGTTTATTTGTTATAGCTCCCCTCTCCATACTGCCATATATTTTCA 2280 CTTTGTAAAGGAAACGTTGTATAATGATCATATTATTTGAATATAATGATCATGATATTC 2340 AAACGTTATTATATATTCCAATACATTTTATAAGTTGAAAAAAAAAAAAAAAAAAAAAAA 2400 AAAAAA 2406

Figure 3.25 The full length cDNA and deduced protein sequences (2406 bp in length with an ORF of 339 bp corresponding to a polypeptide of 112 aa) of a long form of PMTST1 of P. monodon (PMTST1-l). Start and stop codons were illustrated in boldface and underlined.

PMTST1-S PMTST1-1

PMTST1-S PMTST1-1

PMTST1-PMTST1-1

PMTST1-S PMTST1-1

PMTST1-s PMTST1-1

PMTST1-S PMTST1-1

PMTST1-s PMTST1-

PMTST1-PMTST1-1

PMTST1-S PMTST1-1

PMTST1-PMTST1-1

PMTST1-s PMTST1-1

PMTST1-S PMTST1-1

PMTST1-S PMTST1-1

PMTST1-S PMTST1-1

PMTST1-s PMTST1-1

PMTST1-
PMTST1-1
PMTST1-S PMTST1-1

PMTST1-s CGTTTTCCTTTTTTTTT------------------GACTATCTCTTCTCTTCGCAGAA 975 PMTST1-1 CGTTTTCTTTTTCTTTTCTTTTTTTCTTTTTTCCTTTGACTATCTCTTCTCTTCGCAGAA 1080

PMTST1-S PMTST1-1

ATAGTTAGCCTTTCTCTTTAGTTTACCTTAACATTCTGTCTTTCTATGTCTCCTATAATA 1035 ATAGTTAGCCTTTCTCTTAACTTTACCTTAACACTCTGTCTTTCTATGTCTCCTGTAATA
PMTST1-s TGTTATATTTTTT-CTTGCATTCTCCCGCTTCTGTTCTATCTGTCATATCATTTTTTTTC 1094 PMTST1-1 TGATATTTTTTTTTCTTGCATTCTCCCGCTTCTGTTCTATCTGTCATATCATTTTTTTTC
PMTST1-S TCGCTCACTTTCTTCTCATTTTATAATCTTATAATCTTCTTAAATGCAAGTTGTTTTAAG 1154 PMTST1-1 TCGCTCACTTTCTTCTCATTTTATAATCTTATAATCTTCTTAAATGCAAGTTGTTTTAAG 1260 $* ~$

PMTST1-s GAAAGTGAAGTGAATATATGCATTTAACAATTTATTTATTCGGCGAATGCAAAGAGTGGA 1214 PMTST1-1 GAAAGTGAAGTGAATATATGCATTTAACAATTTATTTATTCGGCAAATGCAAAGAGTGGA 1320

PMTST1-s AATGTCTACACAAGAAAATTACAGGATATAAGAGGAAAATGGGATAATTGAAAGCGACAG 1274 PMTST1-1 AATGTCTACACAAGAAAATTACAGGATAAAAGTG-AAAATGGGATAATTGAAAGCGACAG 1379

PMTST1-s AAAAAGTAGACCATTAGTCTGTGTAAGAATTATCGATGATTGGTTTTACTGCAGTGAAAA 1334 PMTST1-1 AAAAAGTAGACCATTAGTCTGTGTAAGAATTATCGATGATCGGTTTTACTGCAGTGAAAA 1439 PMTST1-s ATGATTGAAAGTTTGCAAAGTTAGAAAGATTTTTCATTTAGGTCAGTGGCTATTCGTAGT 1394 PMTST1-1 ATGATTGAAAGTTTGCAAAGTTAGAAAGATTTTTCATTTAGGTCAGTGGCTATTCGTAGT 1499 PMTST1-s TTTCGTTCAGTGATAATTCAACTGCAAGGAATAACTGAAAAAAGTTAATTAGCAATTTAT 1454 PMTST1-1 TTTCGTTCAGTGATAATTCAACTGCAAGGAATAACTGAAAAAAGTTAATTAGCAATTTAT 1559 PMTST1-s AGCCACGTTCCCTTGTGTAAATATGTTCCAATATACCCTCTGCATTTACTTACGAGATAT 1514 PMTST1-1 AGCCACGTTCCCTTGTGTAAATATGCTCCAATATACCCTCTGCATTTACTTACGAGATAC 1619 ************************* ************************************
PMTST1-s CATGTACTTGCATACATAAGTCTACATTTGTTTTCATGCAAGGAAGGTGGTAAAACACTC 1574 PMTST1-1 CATGTACTTGCATACATAAGTCTACATTTGTTTTCATGCAAGGAAGGTGGTAAAACACTC 1679

PMTST1-s AACCGTGCAGTATACGCTGAATATAGAAATTTTTATATATCTTCATTCAAGAAATCTATT 1634 PMTST1-1 AACCGTGCAGTATACGCTGAATATAGAAATTTTTATATATCTTCATTCAAGAAATCTATT 1739 AACCGTGCAGTATACGCTGAATATAGAAATTTTATATATCTTCATTCAAGAAATCTATT

PMTST1-s TTGTGTGCAGTGGGTTTTTCTGCCAAGTTAGCTGTTTTAGGTATTTTAGAAATACTTCGG 1694 PMTST1-1 TTGTGTGCAGTGGGTTTTTCTGCCAAGTTAGCTGTTTTAGGTATTTTAGAAATACTTCGG 1799

PMTST1-s AATTCTCATTTTTTACTTAATCGATTTAATCATTATATTGTTATTATTATATATATCTAT 1754 PMTST1-1 AATTCTCATTTTTTACTTAATCGATTTAATCATTATACTGTTATTATTATATATATCTAT 1859

PMTST1-s TTTTTTGTGTGTGTGAACTGCGTAACAAATGTGGTATTTGTGTGTGCTGATATATATTCA 1814 PMTST1-1 TTTTT---GTGTGTGAACTGCGTAACAAATGTGGTATTTGTGTGTGCTGATATATATTCA 1916 PMTST1-S TTACTGTGCTGAGTTCAAATTGGTGCTGTAAACCCTCGTTCCTAAAGAGAAATGCAATCT 1874 PMTST1-1 TTACTGTGCTGAGTTCAAATTGGTGCTGTAAACCCTGGTTCCTAAAGAGAAATGGAATTT 1976 PMTST1-s CATTTAATGTAGACTCGGGACACTCTATAAGATTAGCTTTTGATCTTTGTCACTGCTGTT 1934 PMTST1-1 CATTTAATGTAGACTCGGGACACTCTATAAGATTAGCTTTTGATTTTTGTCACTGCTGTT 2036

PMTST1-S ATGCTAAATTTCATTTCCTTCTTTTTTTAATTGTATTGGTTGCTCATATTCTAGTTTTTG 1994 PMTST1-1 ATGCTAAATTTCATTTCCTTTTTTTTTTAATTGTATTGATTGCTCATATTCTAGTTTTTG 2096 ******************** ***************** *************************
PMTST1-S ACTCTTGAATATTCCATCTCTTTCATCTTTGAAAAGGAAACTAAATAAGAATTTTCAACA 2054 PMTST1-1 ACTCTTGAATATTCCATTTCTTTCATCTTTGTAAAGGAAACTAAATAAGAATTTTCAACA 2156 ****************************** *********************************
PMTST1-s GAATGTATGGGTTTAGATACTGATTATTGGTATTGATAACCTTATAAATTTTATACACTA 2114 PMTST1-1 GAATGTATGGGTTTAGATACTGATTATTGGTATTGATAACCTTATAAATTTTATACACTA 2216
PMTST1-S ATTTCTCATATAATGATTTGTTCATTTGTTATAGCTCCCCTCTCCATACTGCCAAAAAAA 2174 PMTST1-1 ATTTCTCATATATTGATTTGTTTATTTGTTATAGCTCCCCTCTCCATACTGCCATATATT 2276

PMTST1-s AAAAAAAAAAAAAAAAAAAA--2194
PMTST1-1 TTCACTTTGTAAAGGAAACGTTGTATAATGATCATATTATTTGAATATAATGATCATGAT 2336
PMTST1-s
PMTST1-1 ATTCAAACGTTATTATATATTCCAATACATTTTATAAGTTGAAAAAAAAAAAAAAAAAAA 2396
PMTST1-s
PMTST1-1 AAAAAAAAAA 2406
Figure 3.26 Pairwise alignments of different isoforms of PMTST1 cDNAs of P. monodon.

GCACGAGGGTGTTTACATGTGAGTGAAGTTACATCAGCAAGAATGGGCGACAAACTGAAC 60
$\bar{M} \quad \mathbf{G} \quad \mathbf{D} \quad \mathbf{L} \quad \mathbf{N} \quad 6$
GACCTCGCTGGACGCTTCGGCAAAGGACCTCGTGGTTTGGGTCTGGGTCTCAAGCTCTTG 120 $\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{L} & \mathbf{A} & \mathbf{G} & \mathbf{R} & \mathbf{F} & \mathbf{G} & \mathbf{K} & \mathbf{G} & \mathbf{P} & \mathbf{R} & \mathbf{G} & \mathbf{L} & \mathbf{G} & \mathbf{L} & \mathbf{G} & \mathbf{L} & \mathbf{K} & \mathbf{L} & \mathbf{L} & \mathbf{2 6}\end{array}$ GCAACGGCGGGAGCAGCGGCGTATGGCATCTCGCAGTCCATGTACACCGTTGAGGGTGGT 180 $\begin{array}{lllllllllllllllllllll}\mathbf{A} & \mathbf{T} & \mathbf{A} & \mathbf{G} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{Y} & \mathbf{G} & \mathbf{I} & \mathbf{S} & \mathbf{Q} & \mathbf{S} & \mathbf{M} & \mathbf{Y} & \mathbf{T} & \mathbf{V} & \mathbf{E} & \mathbf{G} & \mathbf{G} & 46\end{array}$ CACAGAGCCATCATCTTCAACCGTATTGGAGGAGTGCAGCCAGATATTTACACTGAAGGG 240 $\begin{array}{lllllllllllllllllllll}\mathbf{H} & \mathbf{R} & \mathbf{A} & \mathbf{I} & \mathbf{I} & \mathbf{F} & \mathbf{N} & \mathbf{R} & \mathbf{I} & \mathbf{G} & \mathbf{G} & \mathbf{V} & \mathbf{Q} & \mathbf{P} & \mathbf{D} & \mathbf{I} & \mathbf{Y} & \mathbf{T} & \mathbf{E} & \mathbf{G} & \mathbf{6 6}\end{array}$ TTGCACTTCAGGATTCCATGGTTCCAGTACCCAGTAGTCTATGATATCAGGGCTCGGCCT 300 $\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{H} & \mathbf{F} & \mathbf{R} & \mathbf{I} & \mathbf{P} & \mathbf{W} & \mathbf{F} & \mathbf{Q} & \mathbf{Y} & \mathbf{P} & \mathbf{V} & \mathbf{V} & \mathbf{Y} & \mathbf{D} & \mathbf{I} & \mathbf{R} & \mathbf{A} & \mathbf{R} & \mathbf{P} & \mathbf{8 6}\end{array}$ AGAAAGATCAGCTCACCCACAGGTAGCAAAGACTTGCAGATGGTGAACATTTCCCTTAGG 360 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{K} & \mathbf{I} & \mathbf{S} & \mathbf{S} & \mathbf{P} & \mathbf{T} & \mathbf{G} & \mathbf{S} & \mathbf{K} & \mathbf{D} & \mathbf{L} & \mathbf{Q} & \mathbf{M} & \mathbf{V} & \mathbf{N} & \mathbf{I} & \mathbf{S} & \mathbf{L} & \mathbf{R} \\ \mathbf{1 0 6}\end{array}$ GTCTTGTCACGCCCTGTAGGTACAGCCATCCCTAACATCCACCAGACCTTAGGGCCAGAC 420 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{L} & \mathbf{S} & \mathbf{R} & \mathbf{P} & \mathbf{V} & \mathbf{G} & \mathbf{T} & \mathbf{A} & \mathbf{I} & \mathbf{P} & \mathbf{N} & \mathbf{I} & \mathbf{H} & \mathbf{Q} & \mathbf{T} & \mathbf{L} & \mathbf{G} & \mathbf{P} & \mathbf{D} & \mathbf{1 2 6}\end{array}$ TTCGATGAGAAGGTGCTTCCATCTATTTGCAATGAAGTCCTCAAATCAGTTGTAGCAAAA 480 $\begin{array}{lllllllllllllllllllll}\mathbf{F} & \mathbf{D} & \mathbf{E} & \mathbf{K} & \mathbf{V} & \mathbf{L} & \mathbf{P} & \mathbf{S} & \mathbf{I} & \mathbf{C} & \mathbf{N} & \mathbf{E} & \mathbf{V} & \mathbf{L} & \mathbf{K} & \mathbf{S} & \mathbf{V} & \mathbf{V} & \mathbf{A} & \mathbf{K} & \mathbf{1 4 6}\end{array}$ TTTAATGCTGCTCAATTAATCACAATGAGACAGCAAGTCTCTTTGATGATCCGCCGTGAT 540 $\begin{array}{lllllllllllllllllllll}\mathbf{F} & \mathbf{N} & \mathbf{A} & \mathbf{A} & \mathbf{Q} & \mathbf{L} & \mathbf{I} & \mathbf{T} & \mathbf{M} & \mathbf{R} & \mathbf{Q} & \mathbf{Q} & \mathbf{V} & \mathbf{S} & \mathbf{L} & \mathbf{M} & \mathbf{I} & \mathbf{R} & \mathbf{R} & \mathbf{D} & \mathbf{1 6 6}\end{array}$ TTGACTCAGAGAGCAGAAGACTTCAACATAATCCTTGATGACGTTTCCATTACTGAGCTC 600 $\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{T} & \mathbf{Q} & \mathbf{R} & \mathbf{A} & \mathbf{E} & \mathbf{D} & \mathbf{F} & \mathbf{N} & \mathbf{I} & \mathbf{I} & \mathbf{L} & \mathbf{D} & \mathbf{D} & \mathbf{V} & \mathbf{S} & \mathbf{I} & \mathbf{T} & \mathbf{E} & \mathbf{L} & \mathbf{1 8 6}\end{array}$ AGCTTTGGCAGAGAATACACCAGTGCTGTTGAAGCCAAACAGGTGGCCCAGCAAGAGGCC 660 $\mathbf{S} \quad \mathbf{F} \quad \mathbf{G} \quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{Y} \quad \mathbf{T} \quad \mathbf{S}$ A $\quad \mathbf{V}$ E CAGCGAGCCTCTTTCATTGTCGAGAGAGCGAGACAGGAGAGGCAGCAGAAGATTGTGCAA 720 $\begin{array}{lllllllllllllllllllll}\mathbf{Q} & \mathbf{R} & \mathbf{A} & \mathbf{S} & \mathbf{F} & \mathbf{I} & \mathbf{V} & \mathbf{E} & \mathbf{R} & \mathbf{A} & \mathbf{R} & \mathbf{Q} & \mathbf{E} & \mathbf{R} & \mathbf{Q} & \mathbf{Q} & \mathbf{K} & \mathbf{I} & \mathbf{V} & \mathbf{Q} & \mathbf{2 2 6}\end{array}$ GCTGAGGGTGAAGCTGAAGCTGCCAAATTGATTGGTAATGCCATTGGGTTGAATCCAGGT 780 $\begin{array}{lllllllllllllllllllll}\text { A } & \mathbf{E} & \mathbf{G} & \mathbf{E} & \mathbf{A} & \mathbf{E} & \mathbf{A} & \mathbf{A} & \mathbf{K} & \mathbf{L} & \mathbf{I} & \mathbf{G} & \mathbf{N} & \mathbf{A} & \mathbf{I} & \mathbf{G} & \mathbf{L} & \mathbf{N} & \mathbf{P} & \mathbf{G} & 246\end{array}$ TATCTGAAGCTCCGAAAGATCAAGGCTGCTGCTAGCATTGGCAAGACAATTTCTCAGGCA 840
 CAGAACAGAGTGTATCTTGGTGCTGACACACTGATGCTCAACCTGAATGACAAGGATTTC 900
 GATGCCAGCGCAACCCGTGTGACCAAGAAGTAAAACAGATGTTTAGCCAAGAAATATGAA 960 \mathbf{D} A $\quad \mathbf{S}$ AGTTAATGGGCAGTAGAGCAACTACAGTGTATTGAAGACTTATTGTCAGCCGCACTATAA 1020 TCCCAATTAATTTCTCCTTTTATGATGTTTTCTGTAGGAAAGCTCCTCATTATGTAACCC 1080 AGTGCTTTGATTTGCAGATACATGTTTTCCCTCTTCTCCCATCCAATTGTTAGAAGGTTT 1140 GACAACCATACTGGTTTACTTGCCTTCAGTGGATATGTATGGAAGGATTTAATTTTTGTT 1200 AGTTTATAGTAATAAACCTTGTTTGTACATGAAAAGTTGAAAGATTTGTGGATATTTTCA 1260 GACAAATGTACATATATTATGAATTCATTTGTCAAAGATGTATATAGATAGAAACAAATA 1320 TGGGCATCCACCTTTTTGCAAATAAATGTATAGGAAAAAAAAAAAAAAAAAAAAAAAAAA 1380

Figure 3.27 The full length cDNA and deduced protein sequences of prohibitin-2 (1380 bp; ORF $891 \mathrm{bp}, 296 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A prohibitin domain (PHB, positions $39^{\text {th }}-200^{\text {th }}$ of the deduced protein) is highlighted.

TTCAACTCCCTAAATGAATTGGTGGAGTACCATCGGTCAGCGTCTGTGTCCCGGTCCCAT 540
 GACATTAAGCTCAAAGACATGACTCCAGAAGAATTCTTAGTGCAAGCCCTATACGACTTC 600 $\begin{array}{llllllllllllllllllll}\mathbf{D} & \mathbf{I} & \mathbf{K} & \mathbf{L} & \mathbf{K} & \mathbf{D} & \mathbf{M} & \mathbf{T} & \mathbf{P} & \mathbf{E} & \mathbf{E} & \mathbf{F} & \mathbf{L} & \mathbf{V} & \mathbf{Q} & \mathbf{A} & \mathbf{L} & \mathbf{Y} & \mathbf{D} & \mathbf{F} \\ \mathbf{1} & 163\end{array}$ ACCCCTCAGGAGCAGGGCGAGTTGGAATTCAAGCGAGGTGATGTCATCACTGTCACAGAC 660 $\begin{array}{llllllllllllllllllll}\mathbf{T} & \mathbf{P} & \mathbf{Q} & \mathbf{E} & \mathbf{Q} & \mathbf{G} & \mathbf{E} & \mathbf{L} & \mathbf{E} & \mathbf{F} & \mathbf{K} & \mathbf{R} & \mathbf{G} & \mathbf{D} & \mathbf{V} & \mathbf{I} & \mathbf{T} & \mathbf{V} & \mathbf{T} & \mathbf{D} \\ \mathbf{1 8 3}\end{array}$ CGGTCAGACCCCCACTGGTGGAGCGGCGAAATGGGCAATCGCAGGGGGCTCTTTCCTGCC 720 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{H} & \mathbf{W} & \mathbf{W} & \mathbf{S} & \mathbf{G} & \mathbf{E} & \text { M } & \mathbf{G} & \mathbf{N} & \mathbf{R} & \mathbf{R} & \mathbf{G} & \mathbf{L} & \mathbf{F} & \mathbf{P} & \text { A } & 203\end{array}$ ACCTACGTGGCTCCCTACCACACCTAGATGCCCAGTGCAGGAGCTCCACCTCGAGTACCA 780
 CGTCATAACCGGAGTCAGCAGCCATTCGTACCAGGAGGCTGCTCAAATAGTATCTTAACA 840 GAAACAATGAAAGAGACCTTGCTGAAAACAATGAATGGAAACTTGGCCAGGCTTAAGGGT 900 GCTTTGGCCTACACACAGTGACAGACTGAGGGAGGCCTTGCAGGAGATGAATAGTAGTTG 960 GCTGGCACCCTATACAGTTTTTGGTTTGTGTTTCTGTGGCTTTCACCCCAGTCAGTAATT 1020 GTGCCTACATTCTACTTTGATTTTGCCCCCATCCATTTATATTGGATTAGCCAGTAAATA 1080 TGTTTTATTATTGGTGCCATCTCATACCTTTTCATCCTACATGGTTTTGTAAAGAATGAC 1140 TTTTTAAAAAAAAGGAATTACAAAAAAAAAAAAAAAAAAAAAAAAAAA 1188

Figure 3.28 The full length cDNA and deduced protein sequences of the short form of growth factor receptor-bound protein (GFRBP-s, 1188 bp ; ORF $636 \mathrm{bp}, 211 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A Src homology 2 domain (SH2, positions $58^{\text {th }}-140^{\text {th }}$) and 2 domains of Src homology 3 domain (SH3, positions $1^{\text {th }}-57^{\text {th }}$ and $155^{\text {th }}-210^{\text {th }}$ of the deduced protein) are highlighted.

GCGCCTTCCACCCTCACGCACTCTTAGGGCGAATCTCGGGCGTTTTCACCCTTTGCCACG 60 GCGAGAAAGGGCGGCTCTCGCGGCGTGCGCTCCGGAGGGACAGATTTCACCATGGAGGCG 120 M E A 3
ATAGCAAAACATGACTTTAACGCCACAGCTGAGGACGAGCTCAGTTTTAGGAAAGGGCAG 180 $\begin{array}{lllllllllllllllllllll}\mathbf{I} & \mathbf{A} & \mathbf{K} & \mathbf{H} & \mathbf{D} & \mathbf{F} & \mathbf{N} & \mathbf{A} & \mathbf{T} & \mathbf{A} & \mathbf{E} & \mathbf{D} & \mathbf{E} & \mathbf{L} & \mathbf{S} & \mathbf{F} & \mathbf{R} & \mathbf{K} & \mathbf{G} & \mathbf{Q} & \mathbf{2 3}\end{array}$ ATTCTTAAGGTACTAAATATGGAAGATGATATGAACTGGTTCAGAGCAGAGCTGGACGGC 240 $\begin{array}{lllllllllllllllllllll}\mathbf{I} & \mathbf{L} & \mathbf{K} & \mathbf{V} & \mathbf{L} & \mathbf{N} & \mathbf{M} & \mathbf{E} & \mathbf{D} & \mathbf{D} & \mathbf{M} & \mathbf{N} & \mathbf{W} & \mathbf{F} & \mathbf{R} & \mathbf{A} & \mathbf{E} & \mathbf{L} & \mathbf{D} & \mathbf{G} & 43\end{array}$ AGAGAAGGACTCATCCCTAGCAACTACATCGAGATGAAGAGTCATGAATGGTATTATGGA 300 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{E} & \mathbf{G} & \mathbf{L} & \mathbf{I} & \mathbf{P} & \mathbf{S} & \mathbf{N} & \mathbf{Y} & \mathbf{I} & \mathbf{E} & \mathbf{M} & \mathbf{K} & \mathbf{S} & \mathbf{H} & \mathbf{E} & \mathbf{W} & \mathbf{Y} & \mathbf{Y} & \mathbf{G}\end{array} \mathbf{6 3}$ AGGATAACTCGCGCAGATGCGGAAAAACTCTTGCTTAATAAACACGAAGGAGCGTTCCTC 360 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{I} & \mathbf{T} & \mathbf{R} & \mathbf{A} & \mathbf{D} & \mathbf{A} & \mathbf{E} & \mathbf{K} & \mathbf{L} & \mathbf{L} & \mathbf{L} & \mathbf{N} & \mathbf{K} & \mathbf{H} & \mathbf{E} & \mathbf{G} & \mathbf{A} & \mathbf{F} & \mathbf{L} & \mathbf{8 3}\end{array}$ ATCCGAGTTAGTGAGAGTTCTCCGGGAGATTTTTCATTATCCGTCAAATGTGGAGATGGT 420 $\begin{array}{lllllllllllllllllllll}\mathbf{I} & \mathbf{R} & \mathbf{V} & \mathbf{S} & \mathbf{E} & \mathbf{S} & \mathbf{S} & \mathbf{P} & \mathbf{G} & \mathbf{D} & \mathbf{F} & \mathbf{S} & \mathbf{L} & \mathbf{S} & \mathbf{V} & \mathbf{K} & \mathbf{C} & \mathbf{G} & \mathbf{D} & \mathbf{G} & \mathbf{1 0 3}\end{array}$ GTTCAGCACTTTAAGGTCTTGAGGGACACACAGGGCAAGTTTTTCCTCTGGGTCGTCAAG 480
 TTCAACTCCCTAAATGAATTGGTGGAGTACCATCGGTCAGCGTCTGTGTCCCGGTCCCAT 540 $\begin{array}{lllllllllllllllllllll}\mathbf{F} & \mathbf{N} & \mathbf{S} & \mathbf{L} & \mathbf{N} & \mathbf{E} & \mathbf{L} & \mathbf{V} & \mathbf{E} & \mathbf{Y} & \mathbf{H} & \mathbf{R} & \mathbf{S} & \mathbf{A} & \mathbf{S} & \mathbf{V} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{H} & \mathbf{1 4 3}\end{array}$ GACATTAAGCTCAAAGACATGACTCCAGAAGAATTCTTAGTGCAAGCCCTATACGACTTC 600
 ACCCCTCAGGAGCAGGGCGAGTTGGAATTCAAGCGAGGTGATGTCATCACTGTCACAGAC 660 $\mathbf{T} \quad \mathbf{P} \quad \mathbf{Q} \quad \mathbf{E} \quad \mathbf{Q} \quad \mathbf{G} \quad \mathbf{E} \quad \mathbf{L}$ CGGTCAGACCCCCACTGGTGGAGCGGCGAAATGGGCAATCGCAGGGGGCTCTTTCCTGCC 720 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{H} & \mathbf{W} & \mathbf{W} & \mathbf{S} & \mathbf{G} & \mathbf{E} & \mathbf{M} & \mathbf{G} & \mathbf{N} & \mathbf{R} & \mathbf{R} & \mathbf{G} & \mathbf{L} & \mathbf{F} & \mathbf{P} & \mathbf{A} & 203\end{array}$ ACCTACGTGGCTCCCTACCACACCTAGATGCCCAGTGCAGGAGCTCCACCTCGAGTACCA 780 $\mathbf{T} \quad \mathbf{Y} \quad \mathbf{V} \quad \mathbf{A} \quad \mathbf{P} \quad \mathbf{Y} \quad \mathbf{H} \quad \mathbf{T} \quad{ }^{*} \quad \mathbf{2 1 1}$ CGTCATAACCGGAGTCAGCAGCCATTCGTACCAGGAGGCTGCTCAAATAGTATCTTAACA 840 GAAACAATGAAAGAGACCTTGCTGAAAACAATGAATGGAAACTTGGCCAGGCTTAAGGGT 900 GCTTTGGCCTACACACAGTGACAGACTGAGGGAGGCCTTGCAGGAGATGAATAGTAGTTG 960 GCTGGCACCCTATACAGTTTTTGGTTTGTGTTTCTGTGGCTTTCACCCCAGTCAGTAATT 1020 GTGCCTACATTCTACTTTGATTTTGCCCCCATCCATTTATATTGGATTAGCCAGTAAATA 1080 TGTTTTATTATTGGTGCCATCTCATACCTTTTCATCCTACATGGTTTTGTAAAGAATGAC 1140 TTTTTAAAAAAAAGGAATTGCATGTGTATTATTCTTGCCACAAGCTTTGATTGCAGAATT 1200 TTTAGAAATATATCAATGGAAAATACATTAGTATCCATAACATAAAATTGAATATTCAAT 1260 AGCTTGAAGAATAAACCAATTAGCCTTGCATGGCTTTTGCAGTGTTGCAGTGATTCATCT 1320

Abstract

GGTACATAACAATTTGTGCACAAAATTATTGGTAATGTACTTTACAAAATGTTTATGTCC 1380 CACCTATGCACCTGGAGTGATTCTTTTTTTTCTTTCTTTCTTTTTTTCATTTTTTCTATT 1440 TTATTTTTTATTTTTTTTTCTCTCCTTTTGATAGGAAGCTGTTTCCACCTTTACCTGAAT 1500 TTAAGAAATCTTTACAGACAATTTGCCCAAAAGTCCATGAAATGTCTTTTTAGAGATAAG 1560 GTACATTTAGAGACACTATATTTTTTTGTTTTCTCGTTTCTCTTCGGACCTTAAATCCAG 1620 GTAAAGTTGGTCCAGATTTTAGAATTTATGATTCCTCGAATAGATCAAGCCATGTTTGCA 1680 AGAGGAAAGCACAAGTGATTGTTCGAGGTCTCTCTTTTACATTTTGTTTTATTCAGGCCA 1740 GGCAAGCACAAAAAACTTTTTTTTTTTTTTTAATACAGTTAGGCTTTTTTTTTTTTTTTT 1800 TTTTTTCTATCTTTCTTTCTTTTTGATTTTTGATTTTTTATATCTATATAGTGTGTAAAA 1860 AAAAAAAAAAAAAAAAAAAAAAAAA 1883

Figure 3.29 The full length cDNA and deduced protein sequences of the long form of growth factor receptor-bound protein (GFRBP-l, 1885 bp ; ORF $636 \mathrm{bp}, 211 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A Src homology 2 domain (SH2, positions $58^{\text {th }}-140^{\text {th }}$) and 2 domains of Src homology 3 domain (SH3, positions $1^{\text {th }}-57^{\text {th }}$ and $155^{\text {th }}-210^{\text {th }}$ of the deduced protein) were highlighted.

GFRBP-s GCGCCTTCCACCCTCACGCACTCTTAGGGCGAATCTCGGGCGTTTTCACCCTTTGCCACG 60 GFRBP-1 GCGCCTTCCACCCTCACGCACTCTTAGGGCGAATCTCGGGCGTTTTCACCCTTTGCCACG 60 GFRBP-s GCGAGAAAGGGCGGCTCTCGCGGCGTGCGCTCCGGAGGGACAGATTTCACCATGGAGGCG 120 GFRBP-1 GCGAGAAAGGGCGGCTCTCGCGGCGTGCGCTCCGGAGGGACAGATTTCACCATGGAGGCG 120 GFRBP-s ATAGCAAAACATGACTTTAACGCCACAGCTGAGGACGAGCTCAGTTTTAGGAAAGGGCAG 180 GFRBP-1 ATAGCAAAACATGACTTTAACGCCACAGCTGAGGACGAGCTCAGTTTTAGGAAAGGGCAG 180 GFRBP-s ATTCTTAAGGTACTAAATATGGAAGATGATATGAACTGGTTCAGAGCAGAGCTGGACGGC 240 GFRBP-1 ATTCTTAAGGTACTAAATATGGAAGATGATATGAACTGGTTCAGAGCAGAGCTGGACGGC 240 GFRBP-s AGAGAAGGACTCATCCCTAGCAACTACATCGAGATGAAGAGTCATGAATGGTATTATGGA 300 GFRBP-1 AGAGAAGGACTCATCCCTAGCAACTACATCGAGATGAAGAGTCATGAATGGTATTATGGA 300

GFRBP-s AGGATAACTCGCGCAGATGCGGAAAAACTCTTGCTTAATAAACACGAAGGAGCGTTCCTC 360 GFRBP-1 AGGATAACTCGCGCAGATGCGGAAAAACTCTTGCTTAATAAACACGAAGGAGCGTTCCTC 360 GFRBP-s ATCCGAGTTAGTGAGAGTTCTCCGGGAGATTTTTCATTATCCGTCAAATGTGGAGATGGT 420 GFRBP-1 ATCCGAGTTAGTGAGAGTTCTCCGGGAGATTTTTCATTATCCGTCAAATGTGGAGATGGT 420 GFRBP-s GTTCAGCACTTTAAGGTCTTGAGGGACACACAGGGCAAGTTTTTCCTCTGGGTCGTCAAG 480 GFRBP-1 GTTCAGCACTTTAAGGTCTTGAGGGACACACAGGGCAAGTTTTTCCTCTGGGTCGTCAAG 480 GFRBP-s GFRBP-

GFRBP-GFRBP-1

GFRBP-s GFRBP-1

GFRBP-s CGGTCAGACCCCCACTGGTGGAGCGGCGAAATGGGCAATCGCAGGGGGCTCTTTCCTGCC 720 GFRBP-1 CGGTCAGACCCCCACTGGTGGAGCGGCGAAATGGGCAATCGCAGGGGGCTCTTTCCTGCC 720

GFRBP-s ACCTACGTGGCTCCCTACCACACCTAGATGCCCAGTGCAGGAGCTCCACCTCGAGTACCA 780 GFRBP-1 ACCTACGTGGCTCCCTACCACACCTAGATGCCCAGTGCAGGAGCTCCACCTCGAGTACCA 780

GFRBP-s CGTCATAACCGGAGTCAGCAGCCATTCGTACCAGGAGGCTGCTCAAATAGTATCTTAACA 840 GFRBP-1 CGTCATAACCGGAGTCAGCAGCCATTCGTACCAGGAGGCTGCTCAAATAGTATCTTAACA 840

GFRBP-s GAAACAATGAAAGAGACCTTGCTGAAAACAATGAATGGAAACTTGGCCAGGCTTAAGGGT 900 GFRBP-1 GAAACAATGAAAGAGACCTTGCTGAAAACAATGAATGGAAACTTGGCCAGGCTTAAGGGT 900

GFRBP-s GCTTTGGCCTACACACAGTGACAGACTGAGGGAGGCCTTGCAGGAGATGAATAGTAGTTG 960 GFRBP-1 GCTTTGGCCTACACACAGTGACAGACTGAGGGAGGCCTTGCAGGAGATGAATAGTAGTTG 960

GFRBP-s	GCTGGCACCCTATACAGTTTTTGGTTTGTGTTTCTGTGGCTTTCACCCCAGTCAGTAATT 1020
GFRBP-1	GCTGGCACCCTATACAGTTTTTGGTTTGTGTTTCTGTGGCTTTCACCCCAGTCAGTAATT 1020
GFRBP-s	GTGCCTACATTCTACTTTGATTTTGCCCCCATCCATTTATATTGGATTAGCCAGTAAATA 1080
GFRBP-1	GTGCCTACATTCTACTTTGATTTTGCCCCCATCCATTTATATTGGATTAGCCAGTAAATA 1080 **
GFRBP-s	TGTTTTATTATTGGTGCCATCTCATACCTTTTCATCCTACATGGTTTTGTAAAGAATGAC 1140
GFRBP-1	TGTTTTATTATTGGTGCCATCTCATACCTTTTCATCCTACATGGTTTTGTAAAGAATGAC 1140
GFRBP-s	TTTTTAAAAAAAAGGAATTACAAAAAAAAAAAAAAAAAAAAAAAAAA------------1188
GFRBP-1	TTTTTAAAAAAAAGGAATTGCATGTGTATTATTCTTGCCACAAGCTTTGATTGCAGAATT 1200
GFRBP-s	
GFRBP-1	TTTAGAAATATATCAATGGAAAATACATTAGTATCCATAACATAAAATTGAATATTCAAT 1260
GFRBP-s	
GFRBP-1	AGCTTGAAGAATAAACCAATTAGCCTTGCATGGCTTTTGCAGTGTTGCAGTGATTCATCT 1320
GFRBP-s	
GFRBP-1	GGTACATAACAATTTGTGCACAAAATTATTGGTAATGTACTTTACAAAATGTTTATGTCC 1380
GFRBP-s	
GFRBP-1	CACCTATGCACCTGGAGTGATTCTTTTTTTTTTTCTTTCTTTCTTTTTTTAATTTTTTCT 1440
GFRBP-s	
GFRBP-1	TTTCTTTTATTATTTTTTTTTTCTCTCCTTTTGATAGGAAGCTGTTTCCACCTTTACCTG 1500
GFRBP-s	
GFRBP-1	AATTTAAGAAATCTTTACAGACAATTTGCCCAAAAGTCCATGAAATGTCTTTTTAGAGAT 1560
GFRBP-s	
GFRBP-1	AAGGTACATTTAGAGACACTATATTTTTTTGTTTTCTCGTTTCTCTTCGGACCTTAAATC 1620
GFRBP-s	
GFRBP-1	CAGGTAAAGTTGGTCCAGATCTTAGAATTTATGATTCCTCGAATAGATCAAGCCATGTTT 1680
GFRBP-s	
GFRBP-1	GCAAGAGGAAAGCACAAGTGATTGTTCGAGGTCTCTCTTTTACATTTTGTTTTATTCAGG 1740
GFRBP-s	
GFRBP-1	CCAGGCAAGCACAAAAAACTTTTTTTTTTTTTTTTTTAATACTGTTAGGCTTTTTTTTTT 1800
GFRBP-s	
GFRBP-1	TTTTTCTATCTTTCTTTCTTTTTGATTTTTGATTTTTTATATCTATATAGTGTGTAAAAA 1860
GFRBP-s	-----------------------
GFRBP-1	AAAAAAAAAAAAAAAAAAAAAAAAA 1885

Figure 3.30 Pairwise alignments of different isoforms of growth factor receptor-

 found and further characterized. 5' RACE-PCR of MIPP (clone no. TT-N-S01-0004W) was carried out and the amplification product of 1,100 was obtained (Fig. 3.31). Whereas 3' RACE-PCR of this gene do not identified. The full length cDNA of MIPP of P. monodon (1644 bp in length with an ORF of 1374 bp corresponding to a polypeptide of 457 amino acids, Fig. 3.32) was identified. This transcript significantly matched multiple inositol polyphosphate phosphatase of Nasonia vitripennis (E-value $=9 \mathrm{e}-35$). A deduced MIPP protein contained an acid phosphatase A domain
(positions $52^{\text {th }}-398^{\text {th }}$, E-value $=3.20 \mathrm{e}-06$). The expected MW and pI of a deduced P. monodon MIPP were 52.59 kDa and 8.83 , respectively.

In addition, 5^{\prime} and 3^{\prime} RACE-PCR of MIPP2 (clone no. TT-N-S01-0678-W) generated fragments of 650 and 200 bp , respectively. After sequence assembly, the full length cDNA of MIPP2 of P. monodon (1746 bp in length with an ORF of 1194 bp corresponding to 397 amino acids, Fig. 3.33) was successfully characterized. This transcript significantly matched with MIPP2 (CG4317-PA) of Apis mellifera (E-value $=4 \mathrm{e}-31$). A deduced MIPP2 protein contained an acid phosphatase A domain located at positions $27^{\text {th }}-338^{\text {th }}$ of the deduced protein (E-value $=9.70 \mathrm{e}-07$). The expected MW and pI of the deduced MIPP2 were 45.58 kDa and 8.91 , respectively.

Deduced amino acid and nucleotide sequences of different isoforms of MIPP were aligned (Fig. 3.34-3.35) and results indicated large differences between these genes. This suggested that MIPP isoforms should be encoded from different loci.

Figure 3.31 5'RACE-PCR products of MIPP (A, lane 1) and 3' (B, lane 1) and 5'RACE-PCR of MIPP2 (B, lanes 2) of P. monodon. λ-Hind III (lanes M1) and 100 bp markers (lanes M2) were used as the marker.

ACTCGGAGGCGGCAGCTTACGGAGACTCAGGGCCTTTAGACTTAACACAAAAGCTTATGG 60

M D 2

ACTCTGCTAAGAGGAAAGCAGGGCAACGCAGGACCACGGGCAGTATGTATTGTCTCTCCG 120

AAGACGCTAATCCTTACACGGGCTTCGCTACCATGACTCCATACAGGATCGCCTCCACGC 180
$\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{A} & \mathbf{N} & \mathbf{P} & \mathbf{Y} & \mathbf{T} & \mathbf{G} & \mathbf{F} & \mathbf{A} & \mathbf{T} & \mathbf{M} & \mathbf{T} & \mathbf{P} & \mathbf{Y} & \mathbf{R} & \mathbf{I} & \mathbf{A} & \mathbf{S} & \mathbf{T} & \mathbf{P} & 42\end{array}$
CCTTGAAGGCGGACGATGTTATTCCGAGAGAATGTAAGCCAGTGCAGATATGGCACCTGA 240
 TTCGCCACGGAAGCCACGGTGCTCACAGGAACGACTACATAAAGTTTGAAGATGAGTTGC 300
$\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{H} & \mathbf{G} & \mathbf{S} & \mathbf{H} & \mathbf{G} & \mathbf{A} & \mathbf{H} & \mathbf{R} & \mathbf{N} & \mathbf{D} & \mathbf{Y} & \mathbf{I} & \mathbf{K} & \mathbf{F} & \mathbf{E} & \mathbf{D} & \mathbf{E} & \mathbf{L} & \mathbf{P} \\ \mathbf{8 2}\end{array}$
CATTTCTTAGGAGAAAGATCTTCCGAGCTCGCGCGCATTGGAAGGGGAATCTCTGTGACA 360
$\begin{array}{llllllllllllllllllll}\mathbf{F} & \mathbf{L} & \mathbf{R} & \mathbf{R} & \mathbf{K} & \mathbf{I} & \mathbf{F} & \mathbf{R} & \mathbf{A} & \mathbf{R} & \mathbf{A} & \mathbf{H} & \mathbf{W} & \mathbf{K} & \mathbf{G} & \mathbf{N} & \mathbf{L} & \mathbf{C} & \mathbf{D} & \mathbf{K} \\ 102\end{array}$
AAGACCTGAAATTAATTAGGCTCTGGAAAGTGTCTAAGATGATGAGCAAGACAGGTACTC 420

TTTCTGTGGAAGGTATGGAAGAAATTGCCGGTTTAGCTGACCGGTTCAAGTCCGTTTTCC 480
$\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{V} & \mathbf{E} & \mathbf{G} & \text { M } & \mathbf{E} & \mathbf{E} & \mathbf{I} & \mathbf{A} & \mathbf{G} & \mathbf{L} & \text { A } & \mathbf{D} & \mathbf{R} & \mathbf{F} & \text { K } & \mathbf{S} & \mathbf{V} & \mathbf{F} & \mathbf{P} \\ 142\end{array}$
CAGGTCTTCTTGAAAAAAAATTCTCAGCTAAGCTACATCCCGGAGCTGGTAATAAGATTG 540

CCTTCGGTACCGGCCGCCAGAACCAGCAGAGCGCCGTCGCCTATGTTTCTAGCATGTACG 600

GCCCCTTCGCGCGGTTCGTCCCCGTAGGTTCAATACCATCGAGGGATCTGCAGTTCTACG 660
$\begin{array}{llllllllllllllllllll}\mathbf{P} & \mathbf{F} & \mathbf{A} & \mathbf{R} & \mathbf{F} & \mathbf{V} & \mathbf{P} & \mathbf{V} & \mathbf{G} & \mathbf{S} & \mathbf{I} & \mathbf{P} & \mathbf{S} & \mathbf{R} & \mathbf{D} & \mathbf{L} & \mathbf{Q} & \mathbf{F} & \mathbf{Y} & \mathbf{D} 202\end{array}$
ACTACTGTAGAAACTACATTGAAAGTGTATTGAACATGCACAAGAAGTTGAAGCCGTACC 720
$\begin{array}{lllllllllllllllllll}\mathbf{Y} & \mathbf{C} & \mathbf{R} & \mathbf{N} & \mathbf{Y} & \mathbf{I} & \mathbf{E} & \mathbf{S} & \mathbf{V} & \mathbf{L} & \mathbf{N} & \text { M } & \mathbf{H} & \text { K } & \text { K } & \mathbf{L} & \mathbf{K} & \mathbf{P} & \mathbf{Y} \\ \mathbf{H} & 222\end{array}$
ACAACTTCATGTCAGGGAGCATCATGAATTCTGTTCTTCGAAGAGTGTCCGAACGTCTTG 780
N \quad F \quad M $\quad \mathbf{S}$ G \mathbf{S} I M N S V L
GATTTCCGGTAACCGTGGCCAATGTTCGTGTGATGTACAACGCATGTCGGTACTACTATG 840
$\begin{array}{lllllllllllllllllll}\mathbf{F} & \mathbf{P} & \mathbf{V} & \mathbf{T} & \mathbf{V} & \mathbf{A} & \mathbf{N} & \mathbf{V} & \mathbf{R} & \mathbf{V} & \mathbf{M} & \mathbf{Y} & \mathbf{N} & \mathbf{A} & \mathbf{C} & \mathbf{R} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \\ \mathbf{A} & 262\end{array}$
CGTGGTACAAAAATATTGTGTCGCCCTGGTGCACTGTCTTCACCCCGATGGATCTGAAGG 900

TGCTGGAATACTGGGAAGACCTAAGGGTATATCACGATCAAGGCCACCGCTTCGAGATCA 960

GCTCAAAGCAAGCCTGCGTTCTTGGCAAAGACGTGATGGATCAGTTCCGAAATCGAGTGG 1020

AAAACGGCAGTACGGAACTCTACGCCGCCTCGTATTTCGTCAATCCGGAGGCTTTGGTAA 1080
N G S T \quad E L \quad Y A A
CGTTCATTACCTTACTGGGGCTGTTCAATGATGAGGAGCCCATAACTGAGTTTTACATCC 1140
$\begin{array}{llllllllllllllllllll}\mathbf{F} & \mathbf{I} & \mathbf{T} & \mathbf{L} & \mathbf{L} & \mathbf{G} & \mathbf{L} & \mathbf{F} & \mathbf{N} & \mathbf{D} & \mathbf{E} & \mathbf{E} & \mathbf{P} & \mathbf{I} & \mathbf{T} & \mathbf{E} & \mathbf{F} & \mathbf{Y} & \mathbf{I} & \mathbf{P} \\ \mathbf{3} & 62\end{array}$
CCTCGTCCCGCTTGTGGAAAACATCCCAGTTTGCTGGTTTCGGTAGCAACTTGGCCATCT 1200
$\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{S} & \mathbf{R} & \mathbf{L} & \text { W K } & \text { T } & \text { S } & \text { Q } & \text { F } & \text { A } & \text { G } & \text { F } & \text { G } & \text { S } & \text { N } & \text { L } & \text { A } & \text { I } & \text { L } & 382\end{array}$
TGCTCTCTTTGTGTGCTGATGACAGCTTTTGGGTGAGCGCTCTCCTCAACGAGAAACCAG 1260
L S L C C A D D S F W V S A L L N
TTCAACTACCGGGATGTGACAGCAGCCTGGGTTGTCCTTGGAATAATTTCAGTCAATACT 1320

ACGACTACCTAAGTGACTGCAACTTCGATGAGCTTTGTGGAAGCTTTTCGAGTCTGCTGA 1380

CGCAGAGTCGCCACTGGTATGCTCTCTACATGAATGAACAATGGATGTAGAAAACTCAGC 1440

AGATGAATGCAGCTTTTATTTTCATCGTCCTTTCAGACCAGAAATGCATCACTTATGTGT 1500 TTAGTCCTACATTTTCATTTATTTCAAGAGAAAGGATTTAAGAAGGAAGAATTTTGGAGG 1560 AAATTTGTATATTGTTTGTGAACTTACCGGATGTATGGAAAACATGTATGATTTCAATTC 1620
AACATTAGAGTGAACCCTCGTGCC $\sim 19 \| 9 \cap_{\cap} \cap 9 \cap \cap \cap 1644$
Figure 3.32 The full length cDNA and deduced amino acid sequences of multiple inositol polyphosphate phosphatase (MIPP, 1644 bp ; ORF $1374 \mathrm{bp}, 457 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An acid phosphatase A domain (positions $52^{\text {th }}-398^{\text {th }}, \mathrm{E}$-value $=3.20 \mathrm{e}-06$) is highlighted.

Figure 3.33 The full length cDNA and deduced amino acid sequences of multiple inositol polyphosphate phosphatase 2 (MIPP2, 1746 bp ; ORF $1194 \mathrm{bp}, 397 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An acid phosphatase A domain (positions $27^{\text {th }}-338^{\text {th }}$, E -value $=9.70 \mathrm{e}-07$) is highlighted.

MIPP	MDSAKRKAGQRRTTGSMYCLSEDANPYTGFATMTPYRIASTPLKADDVIPRECKPVQIWH 60
MIPP2	
MIPP	LIRHGSHGAHRNDYIKFEDELPFLRRKIFRARAHWKGNLCDKDLKLIRLWKVSKMMS-KT 119
MIPP2	-MDFMKMETQLPILKRKILAAHSLGSGELCTQDLALIRGWKLKDMDKGKA 49
	. .**.*.***. *.. *.** .** **
MIPP	GTLSVEGMEEIAGLADRFKSVFPGLLEKKFS------AKLHPGAGNKIAFGTGRQNQQ 171
MIPP2	GTLTPEGRAEVESIASRFKAAFPDLVYKRYSISKTAAENVRQQPGEGTKVAFAPSRQTYE 109
MIPP	SAVAYVSSMYGPFARFVPVGSIPSRDLQFYDYCRNYIESVLNMHKKLKPYHNFMSGSIMN 231
MIPP2	SAVSYLEALYGRQWGHVGLPVRGSQSLQYYDYCKNYINKVVALKKKSKPFHIFTKGKSME 169
MIPP	SVLRRVSERLGFPVTVANVRVMYNACRYYYAWYKNIVSPWCTVFTPMDLKVLEYWEDLRV 291
MIPP2	AVMDRVSRRTGVTVNLTKLRTMYNACRYQKAWAPQDPSPWCVVFTPSDLQVLEYWEDLRI 229
	:*: ***.* *..*.: : : *.******* ** : ****.**** **:********
MIPP	YHDQGHRFEISSKQACVLGKDVMDQFRNRVENGSTELYAASYFVNPEALVTFITLLGLFN 351
MIPP2	HHDHGYAHSINYKQACIFGNDIFLHFRNRIESGVTNTDSTTYFVNMEAFVPFMALLGLFK 289 :**:*: ..*. ****::*:*:: :****:*.* *: :::**** **:*.*: :****:
MIPP	DEEPITEFYIPSSRLWKTSQFAGFGSNLAILLSLCADD--SFWVSALLNEKPVQLPGCDS 409
MIPP2	DPEPLTSEVANPDRVWKTSKFAGYGSNLGFLLSTCGNDSASWWITAILNEEKIKLPGCET 349
	* **:*. ..*:****:***:****.:*** .:* *:*: *****: : :****:
MIPP	SLGCPWNNFSQYYDYLSDCNFDELCGSFSSLLTQSRHWYALYMNEQWM 457
MIPP2	SLGCPWERFVSEYDFLEDCDFTRLCGRYSDKLWRSQHWRLSYIMHNWM 397
	******:.*. **:*.**:* .*** :*.* :*:** *: . ${ }^{* *}$

Figure 3.34 Amino acid alignments of two isoforms of multiple inositol polyphosphate phosphatase (MIPP) of P. monodon.

Figure 3.35 Pairwise alignment of different forms of P. monodon multiple inositol polyphosphate phosphatase (MIPP).

A 450 bp fragment was obtained from 5' RACE-PCR of transformer-2 (Tra-2, Fig. 3.36). After sequence assembly, two forms of the full length cDNA of P. monodon Tra-2 (Tra-2l; $2673 \mathrm{bp}, 804 \mathrm{bp}, 267$ aa and Tra-2s; $2658 \mathrm{bp}, 789 \mathrm{bp}, 262$ aa, Figs. 3.37 and 3.38) was obtained. These different isoforms sequences significantly matched that of Bombyx mori ($\mathrm{E}-\mathrm{value}=1 \mathrm{e}-40$ and $4 \mathrm{e}-40$, respectively). Amino acid and nucleotide sequences of $\operatorname{Tra-2l}$ and Tra-2s were aligned and these deduced proteins were different due to an indel of a SVHSS pentapeptide (Figs. 3.39-3.40). A deduced nonsecretory Tra-2 protein contained a RNA recognition motif domain (RRM, positions $109^{\text {th }}-182^{\text {th }}$, E-value $=1.49 \mathrm{e}-22$ for Tra - 21 and positions $104^{\text {th }}$ $177^{\text {th }}$, E-value $=1.49 \mathrm{e}-22$ for $\operatorname{Tra}-2 \mathrm{~s}$, respectively). The expected MW and pI of these gene products were 30.23 kDa and 11.46 and 29.73 kDa and 11.46 , respectively.

The 5' RACE-PCR product (1100 bp) of Rac GTPase-activating protein 1 homologue was characterized (Fig. 3.36). Its full length cDNA was composed of 2838 bp with an ORF of 1812 bp in length corresponding to a polypeptide of 603 amino acids (Fig. 3.41). This sequence significantly matched that of Apis mellifera (E-value $=3 \mathrm{e}-99$). A deduced Rac GTPase-activating protein 1 protein contained a RhoGAP
domain (positions $364^{\text {th }}-540^{\text {th }}$, E-value $=6.4 \mathrm{e}-47$) and protein kinase C conserved region 1 domains or cysteine-rich domains (C 1 , positions $317^{\text {th }}-365^{\text {th }}$, E-value $=$ $5.32 \mathrm{e}-06$). The expected MW and $\mathrm{p} I$ of these gene products were 68.62 kDa and 8.58 , respectively.

A 550 bp fragment was obtained from 3' RACE-PCR of flotillin-2 was carried out (Fig. 3.36). The full length cDNA of Flotillin-2 of P. monodon was composed of 1937 bp with ORF of 1320 bp in length encoding a polypeptide of 439 amino acids (Fig. 3.42). This sequence significantly matched that of Drosophila melanogaster (Evalue $=0.0$). A deduced flotillin-2 contained a prohibitin domain (PHB, positions $87^{\text {th }}$ $-268^{\text {th }}$, E-value $=4.24 \mathrm{e}-04$). The expected MW and pI of these gene products were 47.69 kDa and 5.38 , respectively.

Figure 3.36 5'RACE-PCR products of transformer-2 (A, lane 1) and Rac GTPaseactivating protein 1 (B, lane 1), and 3'RACE-PCR products of flotillin-2 (C, lane 1) of P. monodon. A 100 bp marker (lanes M1) and λ-Hind III (lane M2) were used as the marker.

Abstract

TACATGGTGGGAAAAGGCGGCTTCAACGCGTGAGGTTCCCGAATTTTTGCGATTTTTTGG 60 CTTTTTCTACTTAAAATGGAGAGTCCAGAGGGTGAACGGAACAGTCTCACACCTCGTTCG 120 $\begin{array}{llllllllllllll}\mathbf{M} & \mathbf{E} & \mathbf{S} & \mathbf{P} & \mathbf{E} & \mathbf{G} & \mathbf{E} & \mathbf{R} & \mathbf{N} & \mathbf{S} & \mathbf{L} & \mathbf{T} & \mathbf{P} & \mathbf{R} \\ \mathbf{S} & 15\end{array}$ CGGTCGCGCTCAAGGTCACGTCTAGAGTCACCAGCCGCTTCCCCTGCTCATCGCCGCACA 180 $\begin{array}{llllllllllllllllllllll}\mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{L} & \mathbf{E} & \mathbf{S} & \mathbf{P} & \mathbf{A} & \mathbf{A} & \mathbf{S} & \mathbf{P} & \mathbf{A} & \mathbf{H} & \mathbf{R} & \mathbf{R} & \mathbf{T} & \mathbf{3 5}\end{array}$ GCCACTTCGCAGTCAAGGTCTCCCCAGCCTCGCAGACGCTCATTTTCCAGGTCGCGATCC 240 $\begin{array}{llllllllllllllllllll}\mathbf{A} & \mathbf{T} & \mathbf{S} & \mathbf{Q} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{P} & \mathbf{Q} & \mathbf{P} & \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{F} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} \\ \mathbf{5 5}\end{array}$ CGAACTCCACGCAGGCATCGCTCCCGGAGTGGCTCACCTCGAAATGGTCATGATGGAAGC 300 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{T} & \mathbf{P} & \mathbf{R} & \mathbf{R} & \mathbf{H} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{G} & \mathbf{S} & \mathbf{P} & \mathbf{R} & \mathbf{N} & \mathbf{G} & \mathbf{H} & \mathbf{D} & \mathbf{G} & \mathbf{S} & \mathbf{7 5}\end{array}$ AGTCGCCGCTCCCGACGCAGCCGGTCGGTCCACTCAAGCTCCCCGATGTCGAACCGGAGG 360 $\begin{array}{lllllllllllllllllllll}\mathbf{S} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{V} & \mathbf{H} & \mathbf{S} & \mathbf{S} & \mathbf{S} & \mathbf{P} & \mathbf{M} & \mathbf{S} & \mathbf{N} & \mathbf{R} & \mathbf{R} & \mathbf{9 5}\end{array}$ CGGCATATTGGCACCAGAGACAATCCCGAGCCATCTAAGTGCCTGGGGGTGTTCGGCCTG 420 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{H} & \mathbf{I} & \mathbf{G} & \mathbf{T} & \mathbf{R} & \mathbf{D} & \mathbf{N} & \mathbf{P} & \mathbf{E} & \mathbf{P} & \mathbf{S} & \mathbf{K} & \mathbf{C} & \mathbf{L} & \mathbf{G} & \mathbf{V} & \mathbf{F} & \mathbf{G} & \mathbf{L} \\ \mathbf{1 1 5}\end{array}$ AGTGTGCATACCACGGAAAGACAGCTGTACACCATTTTTGACAAGTTTGGCCCTCTGGAG 480 $\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{V} & \mathbf{H} & \mathbf{T} & \mathbf{T} & \mathbf{E} & \mathbf{R} & \mathbf{Q} & \mathbf{L} & \mathbf{Y} & \mathbf{T} & \mathbf{I} & \mathbf{F} & \mathbf{D} & \mathbf{K} & \mathbf{F} & \mathbf{G} & \mathbf{P} & \mathbf{L} & \mathbf{E} \\ \mathbf{1} & 135\end{array}$ AAAGTACAAGTAGTCCTGGATTCGAAAACGGGCAAGTCAAGAGGCTTTGCGTTTGTGTAC 540 K V \mathbf{Q} Q V V L TTTGAGTCACTTAAGGATGCCTCAGAAGCCAAAAATGAGTGTTCTGGGATGGAGATTGAC 600 GGCCGGAGGATTAGAGTTGATTATTCCATTACCAAGCGGCCACACACTCCAACTCCAGGA 660 $\begin{array}{llllllllllllllllllll}\mathbf{G} & \mathbf{R} & \mathbf{R} & \mathbf{I} & \mathbf{R} & \mathbf{V} & \mathbf{D} & \mathbf{Y} & \mathbf{S} & \mathbf{I} & \mathbf{T} & \mathbf{K} & \mathbf{R} & \mathbf{P} & \mathbf{H} & \mathbf{T} & \mathbf{P} & \mathbf{T} & \mathbf{P} & \mathbf{G} \\ \mathbf{1} & 195\end{array}$ ATATACATGGGTAGACCCACATCTCGCGGTGGCTACGACCGGGGCTACGGCCGAGGAGGC 720 $\begin{array}{lllllllllllllllllll}\mathbf{I} & \mathbf{Y} & \mathbf{M} & \mathbf{G} & \mathbf{R} & \mathbf{P} & \mathbf{T} & \mathbf{S} & \mathbf{R} & \mathbf{G} & \mathbf{G} & \mathbf{Y} & \mathbf{D} & \mathbf{R} & \mathbf{G} & \mathbf{Y} & \mathbf{G} & \mathbf{R} & \mathbf{G} \\ \mathbf{G} & \mathbf{2 1 5}\end{array}$ CACCGCGGAGACAGGTACCGTTCCCCGTCACCCCGTTACCGGCCTCGCTCCAGCGGTGGT 780 $\begin{array}{lllllllllllllllllllll}\mathbf{H} & \mathbf{R} & \mathbf{G} & \mathbf{D} & \mathbf{R} & \mathbf{Y} & \mathbf{R} & \mathbf{S} & \mathbf{P} & \mathbf{S} & \mathbf{P} & \mathbf{R} & \mathbf{Y} & \mathbf{R} & \mathbf{P} & \mathbf{R} & \mathbf{S} & \mathbf{S} & \mathbf{G} & \mathbf{G} & 235\end{array}$ CGCCGCGACTATTACGATCGTGGGTATGTACTCGGCCAGGGCGTTACCGCACAACTCAAG 840 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{R} & \mathbf{D} & \mathbf{Y} & \mathbf{Y} & \mathbf{D} & \mathbf{R} & \mathbf{G} & \mathbf{Y} & \mathbf{V} & \mathbf{L} & \mathbf{G} & \mathbf{Q} & \mathbf{G} & \mathbf{V} & \mathbf{T} & \mathbf{A} & \mathbf{Q} & \mathbf{L} & \mathbf{K} \\ 255\end{array}$ CCACCACAAGATATAATAGTTCATGTGGAGGCAAGCTAGTTAAAGCAAGTTTACAGAAGC 900 TTCTTAAGTAGGCCAAGGGGCTGAAGATGATCAACTCCCAAGTTAATGGTGAAGGTGGTT 960 AAGAATTGATGGATTGATGGAAAGGATTCACGGTTTGTTCAGAGCAACCCTCCAAAGGCA 1020 ATTGACAAGTGCAGATGAAAAAACAGTAAAATTGTGAGGAAAAACCTGTGAACTGAAGAT 1080 TTCTAAGAGATTTGAGGTATGACCGCGGGGACAGGAGCTACGACAGAGGCTATGACCGCT 1140 ACGACAGGCCTCAATACCATGACCGCTATGATAGGTATGACCGTGCTTATGACAAGTACG 1200 ATCGCTACGATAGGTCCAGATCTCGCTCCTATTCTCCACGAAGATACAAGTATTGATGAT 1260 TGTACACCAGACAAAACTGCAAGATTACTACAGAAAGGTTGTAGATGCTCCATACTTGAC 1320 GGTGCTGTGCAGACGGCTGGCTCCAGAGAACGTTTCGACCGTTATACAGTTACAAATTCT 1380 CAGTCTCATTTGTCATGCTAGTTATCAAAATATTTTAAGATAAGCTGTAGATAACAAGGT 1440 CTAAGAAAGAAAAACACTTTTTTTTTTTTCTATTTTTTCTTTCTTTTTTCTGTCTTTTTT 1500 CTGTCTTTTCTTATAGGTAATGTACTCTCСTCCACCCATATCCCCTTCCCTTCTTCCCGA 1560 GTCAAGCACGTGTGTTGAAATTTTTTATCAATCAGTTGTTTGTATGTGATTCATTTGTAGC 1620 ATGGCTGATGTTGTGTGTCAAAAAAGTGGTGAGGATTCAGGAATTTCTGTGCTAATTGTG 1680 TGCAGATTGACTTCAGAAACAAAACCAAAAACAAAAACAAAACAAGGAAATGTAAAAATA 1740 TATATTAATGTATGTGAAAGACATTGAAGTGTTTGATACATGGCAGCATCTGTGGAGTAT 1800 GGGTGTGTAATGACCTTGTGGTTCAATGCAACTTTGACAGATATCTTTTTTTTTCTCTCT 1860 CTCTCTTTCCACTTTTCTCTATTTCCATCAAAAGAAAAAACATTGGAAGTGTGAGTGTAT 1920 GATTGATAGTCGCACGGTAAACTTGCACAGATACTTTTTTATTATTATTATTATTTCCTA 1980 AATTGTTTTATCACTTCCCTTACAAAGAAAATTAGTGATAAGAAATATGCAGCTGAATCT 2040 CCAACAAGTTGCATTTGTGAGAAGTCTCGGTGTGTAGCTTCAAATTATTGATATTTTACT 2100 TGCTGTCACTCAAACACCTTCTCATCTTTTTTTTTTTTTTTCTTCTTTTTTTTCTTTTAT 2160 TGTACTTTAATAAAGAATCCCCATAAGCTTGAAAGGACTTCTTTGTTTTAACTTCATGAA 2220 TATGGTTACTATAATTTTTGAACGTTTTATTATGTTCTCTCTTCATTCAGAAAGTATCTT 2280 TTAAGTTCTCACTTAAGTTTTGTATATTTACCACATGATGATTATGTGATATGTGTATTT 2340 TTTCTTACCTTTTTTGGGATTTTGTGTTCCTTGGAAATAAAAACAAAGATTGATAATTTG 2400 TAGAGAAAAAGAAGAGAGATGTAAAAAGCTTTCTTTACCTGTGTCAGTTACAAAAGAAAA 2460 TTACTGCGATATGTTTTGTGTTTCATTAAACGCACTTGAATATCATCAACTCGTTGGTAA 2520 ACTTTGGCCTCCAATGTGCTTGATGTGAGGTATGACTACAATGTGAAAACCCTTTGTAAC 2580 AAAGCTCAGGTCATCAAGTTGTCTCCTCCTGGTTCTTGCACTTGCTTTGTTAAGTTAGGG 2640 TTTTGTCAAACCAATTATGGACGGTAAAAAAAA

Figure 3.37 The full length cDNA and deduced protein sequences of the long form of
Tra-2 (Tra-2l, 2673 bp ; ORF $804 \mathrm{bp}, 267$ aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. The RNA recognition motif domain (RRM, positions $109^{\text {th }}-182^{\text {th }}$ of the deduced prtein) is highlighted.

TACATGGTGGGAAAAGGCGGCTTCAACGCGTGAGGTTCCCGAATTTTTGCGATTTTTTGG 60

CTTTTTCTACTTAAAATGGAGAGTCCAGAGGGTGAACGGAACAGTCTCACACCTCGTTCG 120
$\begin{array}{lllllllllllllll}\mathbf{M} & \mathbf{E} & \mathbf{S} & \mathbf{P} & \mathbf{E} & \mathbf{G} & \mathbf{E} & \mathbf{R} & \mathbf{N} & \mathbf{S} & \mathbf{L} & \mathbf{T} & \mathbf{P} & \mathbf{R} & \mathbf{S} \\ \mathbf{1 5}\end{array}$ CGGTCGCGCTCAAGGTCACGTCTAGAGTCACCAGCCGCTTCCCCTGCTCATCGCCGCACA 180 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{L} & \mathbf{E} & \mathbf{S} & \mathbf{P} & \mathbf{A} & \mathbf{A} & \mathbf{S} & \mathbf{P} & \mathbf{A} & \mathbf{H} & \mathbf{R} & \mathbf{R} & \mathbf{T} & \mathbf{3 5}\end{array}$ GCCACTTCGCAGTCAAGGTCTCCCCAGCCTCGCAGACGCTCATTTTCCAGGTCGCGATCC 240 $\begin{array}{lllllllllllllllllllll}\mathbf{A} & \mathbf{T} & \mathbf{S} & \mathbf{Q} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{P} & \mathbf{Q} & \mathbf{P} & \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{F} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & 55\end{array}$ CGAACTCCACGCAGGCATCGCTCCCGGAGTGGCTCACCTCGAAATGGTCATGATGGAAGC 300 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{T} & \mathbf{P} & \mathbf{R} & \mathbf{R} & \mathbf{H} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{G} & \mathbf{S} & \mathbf{P} & \mathbf{R} & \mathbf{N} & \mathbf{G} & \mathbf{H} & \mathbf{D} & \mathbf{G} & \mathbf{S} & \mathbf{7 5}\end{array}$ AGTCGCCGCTCCCGACGCAGCCGCTCCCCGATGTCGAACCGGAGGCGGCATATTGGCACC 360 $\begin{array}{llllllllllllllllllllll}\mathbf{S} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{R} & \mathbf{S} & \mathbf{P} & \mathbf{M} & \mathbf{S} & \mathbf{N} & \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{H} & \mathbf{I} & \mathbf{G} & \mathbf{T} & \mathbf{9 5}\end{array}$ AGAGACAATCCCGAGCCATCTAAGTGCCTGGGGGTGTTCGGCCTGAGTGTGCATACCACG 420 $\begin{array}{llllllllllllllllllllll}\mathbf{R} & \mathbf{D} & \mathbf{N} & \mathbf{P} & \mathbf{E} & \mathbf{P} & \mathbf{S} & \mathbf{K} & \mathbf{C} & \mathbf{L} & \mathbf{G} & \mathbf{V} & \mathbf{F} & \mathbf{G} & \mathbf{L} & \mathbf{S} & \mathbf{V} & \mathbf{H} & \mathbf{T} & \mathbf{T} & \mathbf{1 1 5}\end{array}$ GAAAGACAGCTGTACACCATTTTTGACAAGTTTGGCCCTCTGGAGAAAGTACAAGTAGTC 480 $\begin{array}{lllllllllllllllllll}\mathbf{E} & \mathbf{R} & \mathbf{Q} & \mathbf{L} & \mathbf{Y} & \mathbf{T} & \mathbf{I} & \mathbf{F} & \mathbf{D} & \mathbf{K} & \mathbf{F} & \mathbf{G} & \mathbf{P} & \mathbf{L} & \mathbf{E} & \mathbf{K} & \mathbf{V} & \mathbf{Q} & \mathbf{V} \\ \mathbf{V} & \mathbf{1 3 5}\end{array}$ CTGGATTCGAAAACGGGCAAGTCAAGAGGCTTTGCGTTTGTGTACTTTGAGTCACTTAAG 540 $\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{D} & \mathbf{S} & \mathbf{K} & \mathbf{T} & \mathbf{G} & \mathbf{K} & \mathbf{S} & \mathbf{R} & \mathbf{G} & \mathbf{F} & \mathbf{A} & \mathbf{F} & \mathbf{V} & \mathbf{Y} & \mathbf{F} & \mathbf{E} & \mathbf{S} & \mathbf{L} & \mathbf{K} & \mathbf{1 5 5}\end{array}$ GATGCCTCAGAAGCCAAAAATGAGTGTTCTGGGATGGAGATTGACGGCCGGAGGATTAGA 600 $\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{A} & \mathbf{S} & \mathbf{E} & \mathbf{A} & \mathbf{K} & \mathbf{N} & \mathbf{E} & \mathbf{C} & \mathbf{S} & \mathbf{G} & \mathbf{M} & \mathbf{E} & \mathbf{I} & \mathbf{D} & \mathbf{G} & \mathbf{R} & \mathbf{R} & \mathbf{I} & \mathbf{R} & \mathbf{1 7 5}\end{array}$ GTTGATTATTCCATTACCAAGCGGCCACACACTCCAACTCCAGGAATATACATGGGTAGA 660 $\mathbf{V} \quad \mathbf{D} \quad \mathbf{Y}$ CCCACATCTCGCGGTGGCTACGACCGGGGCTACGGCCGAGGAGGCCACCGCGGAGACAGG 720 $\begin{array}{lllllllllllllllllllll}\mathbf{P} & \mathbf{T} & \mathbf{S} & \mathbf{R} & \mathbf{G} & \mathbf{G} & \mathbf{Y} & \mathbf{D} & \mathbf{R} & \mathbf{G} & \mathbf{Y} & \mathbf{G} & \mathbf{R} & \mathbf{G} & \mathbf{G} & \mathbf{H} & \mathbf{R} & \mathbf{G} & \mathbf{D} & \mathbf{R} & \mathbf{2 1 5}\end{array}$ TACCGTTCCCCGTCACCCCGTTACCGGCCTCGCTCCAGCGGTGGTCGCCGCGACTATTAC 780 $\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{R} & \mathbf{S} & \mathbf{P} & \mathbf{S} & \mathbf{P} & \mathbf{R} & \mathbf{Y} & \mathbf{R} & \mathbf{P} & \mathbf{R} & \mathbf{S} & \mathbf{S} & \mathbf{G} & \mathbf{G} & \mathbf{R} & \mathbf{R} & \mathbf{D} & \mathbf{Y} & \mathbf{Y} & \mathbf{2} 55\end{array}$ GATCGTGGGTATGTACTCGGCCAGGGCGTTACCGCACAACTCAAGCCACCACAAGATATA 840
 ATAGTTCATGTGGAGGCAAGCTAGTTAAAGCAAGTTTACAGAAGCTTCTTAAGTAGGCCA 900 $\mathbf{I} \quad \mathbf{V} \quad \mathbf{H} \quad \mathbf{V} \quad \mathbf{E} \quad \mathbf{A} \quad \mathbf{S}$ 262 AGGGGCTGAAGATGATCAACTCCCAAGTTAATGGTGAAGGTGGTTAAGAATTGATGGATT 960 GATGGAAAGGATTCACGGTTTGTTCAGAGCAACCCTCCAAAGGCAATTGACAAGTGCAGA 1020 TGAAAAAACAGTAAAATTGTGAGGAAAAACCTGTGAACTGAAGATTTCTAAGAGATTTGA 1080 GGTATGACCGCGGGGACAGGAGCTACGACAGAGGCTATGACCGCTACGACAGGCCTCAAT 1140 ACCATGACCGCTATGATAGGTATGACCGTGCTTATGACAAGTACGATCGCTACGATAGGT 1200 CCAGATCTCGCTCCTATTCTCCACGAAGATACAAGTATTGATGATTGTACACCAGACAAA 1260 ACTGCAAGATTACTACAGAAAGGTTGTAGATGCTCCATACTTGACGGTGCTGTGCAGACG 1320 GCTGGCTCCAGAGAACGTTTCGACCGTTATACAGTTACAAATTCTCAGTCTCATTTGTCA 1380 TGCTAGTTATCAAAATATTTTAAGATAAGCTGTAGATAACAAGGTCTAAGAAAGAAAAAC 1440 ACTTTTTTTTTTTTCTATTTTTTCTTTCTTTTTTCTGTCTTTTTTCTGTCTTTTCTTATA 1500 GGTAATGTACTCTCCTCCACCCATATCCCCTTCCCTTCTTCCCGAGTCAAGCACGTGTGT 1560 TGAAATTTTTATCAATCAGTTGTTTGTATGTGATTCATTTGTAGCATGGCTGATGTTGTG 1620 TGTCAAAAAAGTGGTGAGGATTCAGGAATTTCTGTGCTAATTGTGTGCAGATTGACTTCA 1680 GAAACAAAACCAAAAACAAAAACAAAACAAGGAAATGTAAAAATATATATTAATGTATGT 1740 GAAAGACATTGAAGTGTTTGATACATGGCAGCATCTGTGGAGTATGGGTGTGTAATGACC 1800 TTGTGGTTCAATGCAACTTTGACAGATATCTTTTTTTTTCTCTCTCTCTCTTTCCACTTT 1860 TCTCTATTTCCATCAAAAGAAAAAACATTGGAAGTGTGAGTGTATGATTGATAGTCGCAC 1920 GGTAAACTTGCACAGATACTTTTTTATTATTATTATTATTTCCTAAATTGTTTTATCACT 1980 TCCCTTACAAAGAAAATTAGTGATAAGAAATATGCAGCTGAATCTCCAACAAGTTGCATT 2040 TGTGAGAAGTCTCGGTGTGTAGCTTCAAATTATTGATATTTTACTTGCTGTCACTCAAAC 2100 ACCTTCTCATCTTTTTTTTTTTTTTTCTTCTTTTTTTTCTTTTATTGTACTTTAATAAAG 2160 AATCCCCATAAGCTTGAAAGGACTTCTTTGTTTTAACTTCATGAATATGGTTACTATAAT 2220 TTTTGAACGTTTTATTATGTTCTCTCTTCATTCAGAAAGTATCTTTTAAGTTCTCACTTA 2280 AGTTTTGTATATTTACCACATGATGATTATGTGATATGTGTATTTTTTCTTACCTTTTTT 2340 GGGATTTTGTGTTCCTTGGAAATAAAAACAAAGATTGATAATTTGTAGAGAAAAAGAAGA 2400 GAGATGTAAAAAGCTTTCTTTACCTGTGTCAGTTACAAAAGAAAATTACTGCGATATGTT 2460 TTGTGTTTCATTAAACGCACTTGAATATCATCAACTCGTTGGTAAACTTTGGCCTCCAAT 2520 GTGCTTGATGTGAGGTATGACTACAATGTGAAAACCCTTTGTAACAAAGCTCAGGTCATC 2580 AAGTTGTCTCCTCCTGGTTCTTGCACTTGCTTTGTTAAGTTAGGGTTTTGTCAAACCAAT 2640 TATGGACGGTAAAAAAAA

2658
Figure 3.38 The full length cDNA and deduced protein sequences of the short form of Tra-2 (Tra-2s, 2658 bp ; ORF $789 \mathrm{bp}, 262$ aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined obtained from EST. The RNA recognition motif domain (RRM, positions and $104^{\text {th }}-177^{\text {th }}$ of the deduced prtein) are highlighted.

Tra-21	MESPEGERNSLTPRSRSRSRSRLESPAASPAHRRTATSQSRSPQPRRRSFSRSRSRTPRR 60
Tra-2s	MESPEGERNSLTPRSRSRSRSRLESPAASPAHRRTATSQSRSPQPRRRSFSRSRSRTPRR 60 $\star \star \star \star *$
Tra-21	HRSRSGSPRNGHDGSSRRSRRSRSVHSSSPMSNRRRHIGTRDNPEPSKCLGVFGLSVHTT 120
Tra-2s	
Tra-21	ERQLYTIFDKFGPLEKVQVVLDSKTGKSRGFAFVYFESLKDASEAKNECSGMEIDGRRIR 180
Tra-2s	ERQLYTIFDKFGPLEKVQVVLDSKTGKSRGFAFVYFESLKDASEAKNECSGMEIDGRRIR 175 ***
Tra-21	VDYSITKRPHTPTPGIYMGRPTSRGGYDRGYGRGGHRGDRYRSPSPRYRPRSSGGRRDYY 240
Tra-2s	VDYSITKRPHTPTPGIYMGRPTSRGGYDRGYGRGGHRGDRYRSPSPRYRPRSSGGRRDYY 235 $\star *$
Tra-21	DRGYVLGQGVTAQLKPPQDIIVHVEAS 267
Tra-2s	DRGYVLGQGVTAQLKPPQDIIVHVEAS 262

Figure 3.39 Amino acid alignments of two isoforms of Tra-2 of P. monodon.

Tra-2s	TACATGGTGGGAAAAGGCGGCTTCAACGCGTGAGGTTCCCGAATTTTTGCGATTTTTTGG	60
Tra-21	TACATGGTGGGAAAAGGCGGCTTCAACGCGTGAGGTTCCCGAATTTTTGCGATTTTTTGG	60
Tra-2s	CTTTTTCTACTTAAAATGGAGAGTCCAGAGGGTGAACGGAACAGTCTCACACCTCGTTCG	120
Tra-21	CTTTTTCTACTTAAAATGGAGAGTCCAGAGGGTGAACGGAACAGTCTCACACCTCGTTCG	120
Tra-2s	CGGTCGCGCTCAAGGTCACGTCTAGAGTCACCAGCCGCTTCCCCTGCTCATCGCCGCACA	180
Tra-21	CGGTCGCGCTCAAGGTCACGTCTAGAGTCACCAGCCGCTTCCCCTGCTCATCGCCGCACA ***	180
Tra-2s	GCCACTTCGCAGTCAAGGTCTCCCCAGCCTCGCAGACGCTCATTTTCCAGGTCGCGATCC	240
Tra-21	GCCACTTCGCAGTCAAGGTCTCCCCAGCCTCGCAGACGCTCATTTTTCCAGGTCGCGATCC 	240
Tra-2s	CGAACTCCACGCAGGCATCGCTCCCGGAGTGGCTCACCTCGAAATGGTCATGATGGAAGC	300
Tra-21	CGAACTCCACGCAGGCATCGCTCCCGGAGTGGCTCACCTCGAAATGGTCATGATGGAAGC ***	300
Tra-2s	AGTCGCCGCTCCCGACGCAGCCG-------------CTCCCCGATGTCGAACCGGAGG	345
Tra-21	AGTCGCCGCTCCCGACGCAGCCGGTCGGTCCACTCAAGCTCCCCGATGTCGAACCGGAGG ***********************	360
Tra-2s	CGGCATATTGGCACCAGAGACAATCCCGAGCCATCTAAGTGCCTGGGGGTGTTCGGCCTG	405
Tra-21	CGGCATATTGGCACCAGAGACAATCCCGAGCCATCTAAGTGCCTGGGGGTGTTCGGCCTG	420
Tra-2s	AGTGTGCATACCACGGAAAGACAGCTGTACACCATTTTTGACAAGTTTGGCCCTCTGGAG	465
Tra-21	AGTGTGCATACCACGGAAAGACAGCTGTACACCATTTTTGACAAGTTTGGCCCTCTGGAG **)	480
Tra-2s	AAAGTACAAGTAGTCCTGGATTCGAAAACGGGCAAGTCAAGAGGCTTTGCGTTTGTGTAC	525
Tra-21	AAAGTACAAGTAGTCCTGGATTCGAAAACGGGCAAGTCAAGAGGCTTTGCGTTTGTGTAC ***	540
Tra-2s	TTTGAGTCACTTAAGGATGCCTCAGAAGCCAAAAATGAGTGTTCTGGGATGGAGATTGAC	585
Tra-21	TTTGAGTCACTTAAGGATGCCTCAGAAGCCAAAAATGAGTGTTCTGGGATGGAGATTGAC	600
Tra-2s	GGCCGGAGGATTAGAGTTGATTATTCCATTACCAAGCGGCCACACACTCCAACTCCAGGA	645
Tra	GGCCGGAGGATTAGAGTTGATTATTCCATTACCAAGCGGCCACACACTCCAACTCCAGGA	660
Tra-2s	ATATACATGGGTAGACCCACATCTCGCGGTGGCTACGACCGGGGCTACGGCCGAGGAGGC	705
Tra-21	ATATACATGGGTAGACCCACATCTCGCGGTGGCTACGACCGGGGCTACGGCCGAGGAGGC ***	720
Tra-2s	CACCGCGGAGACAGGTACCGTTCCCCGTCACCCCGTTACCGGCCTCGCTCCAGCGGTGGT	765
Tra-21	CACCGCGGAGACAGGTACCGTTCCCCGTCACCCCGTTACCGGCCTCGCTCCAGCGGTGGT ***	780
Tra-2s	CGCCGCGACTATTACGATCGTGGGTATGTACTCGGCCAGGGCGTTACCGCACAACTCAAG	825
Tra-21	CGCCGCGACTATTACGATCGTGGGTATGTACTCGGCCAGGGCGTTACCGCACAACTCAAG **	840
Tra-2s	CCACCACAAGATATAATAGTTCATGTGGAGGCAAGCTAGTTAAAGCAAGTTTACAGAAGC	885
Tra-21	CCACCACAAGATATAATAGTTCATGTGGAGGCAAGCTAGTTAAAGCAAGTTTACAGAAGC ***	900
Tra-2s	TTCTTAAGTAGGCCAAGGGGCTGAAGATGATCAACTCCCAAGTTAATGGTGAAGGTGGTT	945
Tra-2l	TTCTTAAGTAGGCCAAGGGGCTGAAGATGATCAACTCCCAAGTTAATGGTGAAGGTGGTT	960

Tra-2s	AAGAATTGATGGATTGATGGAAAGGATTCACGGTTTGTTCAGAGCAACCCTCCAAAGGCA	1005
Tra-21	AAGAATTGATGGATTGATGGAAAGGATTCACGGTTTGTTCAGAGCAACCCTCCAAAGGCA	1020
Tra-2s	ATTGACAAGTGCAGATGAAAAAACAGTAAAATTGTGAGGAAAAACCTGTGAACTGAAGAT	1065
Tra-21	ATTGACAAGTGCAGATGAAAAAACAGTAAAATTGTGAGGAAAAACCTGTGAACTGAAGAT **	1080
Tra-2s	TTCTAAGAGATTTGAGGTATGACCGCGGGGACAGGAGCTACGACAGAGGCTATGACCGCT	1125
Tra-21	TTCTAAGAGATTTGAGGTATGACCGCGGGGACAGGAGCTACGACAGAGGCTATGACCGCT	1140
Tra-2s	ACGACAGGCCTCAATACCATGACCGCTATGATAGGTATGACCGTGCTTATGACAAGTACG	1185
Tra-21	ACGACAGGCCTCAATACCATGACCGCTATGATAGGTATGACCGTGCTTATGACAAGTACG	1200
Tra-2s	ATCGCTACGATAGGTCCAGATCTCGCTCCTATTCTCCACGAAGATACAAGTATTGATGAT	1245
Tra-2l	ATCGCTACGATAGGTCCAGATCTCGCTCCTATTCTCCACGAAGATACAAGTATTGATGAT ***	1260
Tra-2s	TGTACACCAGACAAAACTGCAAGATTACTACAGAAAGGTTGTAGATGCTCCATACTTGAC	1305
Tra-21	TGTACACCAGACAAAACTGCAAGATTACTACAGAAAGGTTGTAGATGCTCCATACTTGAC ***	1320
Tra-2s	GGTGCTGTGCAGACGGCTGGCTCCAGAGAACGTTTCGACCGTTATACAGTTACAAATTCT	1365
Tra-21	GGTGCTGTGCAGACGGCTGGCTCCAGAGAACGTTTCGACCGTTATACAGTTACAAATTCT **	1380
Tra-2s	CAGTCTCATTTGTCATGCTAGTTATCAAAATATTTTAAGATAAGCTGTAGATAACAAGGT	1425
Tra-21	CAGTCTCATTTGTCATGCTAGTTATCAAAATATTTTTAAGATAAGCTGTAGATAACAAGGT	1440
Tra-2s	CTAAGAAAGAAAAACACTTTTTTTTTTTTCTATTTTTTCTTTCTTTTTTCTGTCTTTTTT	1485
Tra-21	CTAAGAAAGAAAAACACTTTTTTTTTTTTCTATTTTTTCTTTCTTTTTTCTGTCTTTTTT **	1500
Tra-2s	CTGTCTTTTCTTATAGGTAATGTACTCTCCTCCACCCATATCCCCTTCCCTTCTTCCCGA	1545
Tra-21	CTGTCTTTTCTTATAGGTAATGTACTCTCCTCCACCCATATCCCCTTCCCTTCTTCCCGA **	1560
Tra-2s	GTCAAGCACGTGTGTTGAAATTTTTATCAATCAGTTGTTTGTATGTGATTCATTTGTAGC	1605
Tra-21	GTCAAGCACGTGTGTTGAAATTTTTATCAATCAGTTGTTTGTATGTGATTCATTTGTAGC ***	1620
Tra-2s	ATGGCTGATGTTGTGTGTCAAAAAAGTGGTGAGGATTCAGGAATTTCTGTGCTAATTGTG	1665
Tra-2l	ATGGCTGATGTTGTGTGTCAAAAAAGTGGTGAGGATTCAGGAATTTCTGTGCTAATTGTG	1680
Tra-2s	TGCAGATTGACTTCAGAAACAAAACCAAAAACAAAAACAAAACAAGGAAATGTAAAAATA	1725
Tra-21	TGCAGATTGACTTCAGAAACAAAACCAAAAACAAAAACAAAACAAGGAAATGTAAAAATA ***	1740
Tra-2s	TATATTAATGTATGTGAAAGACATTGAAGTGTTTGATACATGGCAGCATCTGTGGAGTAT	1785
Tra-21	TATATTAATGTATGTGAAAGACATTGAAGTGTTTGATACATGGCAGCATCTGTGGAGTAT ***	1800
Tra-2s	GGGTGTGTAATGACCTTGTGGTTCAATGCAACTTTGACAGATATCTTTTTTTTTCTCTCT	1845
Tra-21	GGGTGTGTAATGACCTTGTGGTTCAATGCAACTTTGACAGATATCTTTTTTTTTTCTCTCT ***	1860
Tra-2s	СТСТСТTTCСАСТTTTCTCTATTTCСATCAAAAGAAAAAACATTGGAAGTGTGAGTGTAT	1905
Tra-21	СТСТСТTTCCACTTTTCTCTATTTCCATCAAAAGAAAAAACATTGGAAGTGTGAGTGTAT	1920
Tra-2s	GATTGATAGTCGCACGGTAAACTTGCACAGATACTTTTTTATTATTATTATTATTTCCTA	1965
Tra-21	GATTGATAGTCGCACGGTAAACTTGCACAGATACTTTTTTATTATTATTATTATTTCCTA	1980
Tra-2s	AATTGTTTTATCACTTCCCTTACAAAGAAAATTAGTGATAAGAAATATGCAGCTGAATCT	2025
Tra-21	AATTGTTTTATCACTTCCCTTACAAAGAAAATTAGTGATAAGAAATATGCAGCTGAATCT	2040
Tra-2s	CCAACAAGTTGCATTTGTGAGAAGTCTCGGTGTGTAGCTTCAAATTATTGATATTTTACT	2085
Tra-21	CCAACAAGTTGCATTTGTGAGAAGTCTCGGTGTGTAGCTTCAAATTATTGATATTTTTACT **	2100
$\begin{aligned} & \text { Tra-2s } \\ & \text { Tra-2l } \end{aligned}$	TGCTGTCACTCAAACACCTTCTCATCTTTTTTTTTTTTTTTCTTCTTTTTTTTCTTTTAT TGCTGTCACTCAAACACCTTCTCATCTTTTTTTTTTTTTTTTCTTCTTTTTTTTCTTTTAT	2145
Tra-2s	TGTACTTTAATAAAGAATCCCCATAAGCTTGAAAGGACTTCTTTGTTTTAACTTCATGAA	2205
Tra-21	TGTACTTTAATAAAGAATCCCCATAAGCTTGAAAGGACTTCTTTGTTTTAACTTCATGAA	2220
Tra-2s	TATGGTTACTATAATTTTTGAACGTTTTATTATGTTCTCTCTTCATTCAGAAAGTATCTT	2265
Tra-21	TATGGTTACTATAATTTTTGAACGTTTTATTATGTTCTCTCTTCATTCAGAAAGTATCTT	2280
Tra-2s	TTAAGTTCTCACTTAAGTTTTGTATATTTACCACATGATGATTATGTGATATGTGTATTT	2325
Tra-21	TTAAGTTCTCACTTAAGTTTTGTATATTTACCACATGATGATTATGTGATATGTGTATTT ***	2340
Tra-2s	TTTCTTACCTTTTTTGGGATTTTGTGTTCCTTGGAAATAAAAACAAAGATTGATAATTTG	2385
Tra-21	TTTCTTACCTTTTTTGGGATTTTGTGTTCCTTGGAAATAAAAACAAAGATTGATAATTTG **	2400
Tra-2s	TAGAGAAAAAGAAGAGAGATGTAAAAAGCTTTCTTTACCTGTGTCAGTTACAAAAGAAAA	2445
Tra-21	TAGAGAAAAAGAAGAGAGATGTAAAAAGCTTTCTTTACCTGTGTCAGTTACAAAAGAAAA	2460

Tra-2s	TTACTGCGATATGTTTTGTGTTTCATTAAACGCACTTGAATATCATCAACTCGTTGGTAA 2505
Tra-21	TTACTGCGATATGTTTTGTGTTTCATTAAACGCACTTGAATATCATCAACTCGTTGGTAA 2520
Tra-2s	ACTTTGGCCTCCAATGTGCTTGATGTGAGGTATGACTACAATGTGAAAACCCTTTGTAAC 2565
Tra-21	ACTTTGGCCTCCAATGTGCTTGATGTGAGGTATGACTACAATGTGAAAACCCTTTGTAAC 2580
Tra-2s	AAAGCTCAGGTCATCAAGTTGTCTCCTCCTGGTTCTTGCACTTGCTTTGTTAAGTTAGGG 2625
Tra-21	AAAGCTCAGGTCATCAAGTTGTCTCCTCCTGGTTCTTGCACTTGCTTTGTTAAGTTAGGG 2640
Tra-2s	TTTTGTCAAACCAATTATGGACGGTAAAAAAAA 2658
Tra-21	TTTTGTCAAACCAATTATGGACGGTAAAAAAAA 2673

Figure 3.40 Pairwise alignments of different forms of Tra-2 of P. monodon.

TCCAGGAGTTTGAAAAGTGAGGAAGGAGGTTGGAGGCAGTGATGACTTTTCTCCGTTTCT 60 AGCGACCAAGAGCTGAAATCAGAGTAACACAGGACCAACATGGAGTCCCTTTCAGCACAG 120 $\begin{array}{lllllll}M & E & S & L & S & A & \mathbf{Q} \\ \mathbf{7}\end{array}$ TTTGATGACCTGATGCGCCAGATGCAGGTTCTGGCAGATCCAGCAGAGTACAAATTCCTC 180 $\begin{array}{lllllllllllllllllll}\mathbf{F} & \mathbf{D} & \mathbf{D} & \mathbf{L} & \mathbf{M} & \mathbf{R} & \mathbf{Q} & \mathbf{M} & \mathbf{Q} & \mathbf{V} & \mathbf{L} & \mathbf{A} & \mathbf{D} & \mathbf{P} & \mathbf{A} & \mathbf{E} & \mathbf{Y} & \mathbf{K} & \mathbf{F} \\ \mathbf{L} & \mathbf{2 7}\end{array}$ GAATTTTTAGACCATGAAGAGAAAAATCGGGTTCAGTTAAGAGAACTTGAAGCAGAAGTG 240
 AGTCGTCTTAATGAGCAAGCAGCAAGATACCAAAAGGAAATTAAAAGCCTGGAGATGAAA 300 $\begin{array}{lllllllllllllllllllll}\mathbf{S} & \mathbf{R} & \mathbf{L} & \mathbf{N} & \mathbf{E} & \mathbf{Q} & \mathbf{A} & \mathbf{A} & \mathbf{R} & \mathrm{Y} & \mathbf{Q} & \mathbf{K} & \mathrm{E} & \mathbf{I} & \mathbf{K} & \mathbf{S} & \mathbf{L} & \mathbf{E} & \mathrm{M} & \mathbf{K} & \mathbf{6 7}\end{array}$ TTAAAAAATGCAAAGCACATGCTAGATGTAGAAAAGGCCAAGAGAATCACAACAGAAAAA 360
 GAGAAAAATGATTTGGCAGGACAGATTGGTCTGGTCATGGAGTTGTTGGGAAGAGGTCAG 420
 GTCAATGAGACAAGAGAAAGACTGCAACAGTTACAGCACTCGTTTACCTTTAGTGGAACA 480 $\mathbf{V} \quad \mathbf{N} \quad \mathbf{E} \quad \mathbf{T} \quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{R} \quad \mathbf{L} \quad \mathbf{Q} \quad \mathbf{Q} \quad \mathbf{L} \quad \mathbf{Q}$ GTAACAAATCAGCGGCGAAGTACAAGAGACTTGTCACCAGGACCTCTTTCTACTATCACA 540
 GAAGACAATGACACAATGGGTTCCATCCTTAGTGTATCAGACATTGATATTACTGAGGAT 600 E Dlllllllllllllllllll 1 GATTTAGAAGAATCACGTCTCCGATCAGGACGATCATTCAAACGCAGATCTTCACCAGAA 660
 CGCCAGGATTCTTCTAAGGGAAAAAGGCGCTCAGGCAGGAGAAGTGAGGACATGCAGACC 720 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{Q} & \mathbf{D} & \mathbf{S} & \mathbf{S} & \mathbf{K} & \mathbf{G} & \mathbf{K} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{G} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{E} & \mathbf{D} & \mathbf{M} & \mathbf{Q} & \mathbf{T} \\ \mathbf{2 0 7}\end{array}$ CATGAGGTGAAGACTCAAGTCACATACTATACACAAGGTGAAGAAATTAAGAAAATCCAT 780 $\begin{array}{llllllllllllllllllll} & H & E & \mathbf{V} & \mathbf{K} & \mathbf{T} & \mathbf{Q} & \mathbf{V} & \mathbf{T} & \mathbf{Y} & \mathbf{Y} & \mathbf{T} & \mathbf{Q} & \mathbf{G} & \mathbf{E} & \mathbf{E} & \mathbf{I} & \mathbf{K} & \mathbf{K} & \mathbf{I} \\ \mathbf{H} & 227\end{array}$ ACAGAGACGAAAGTCAAGCCATCAGCACCTCCACTTTCCACAGATGAAGAGACTGAGGTT 840 $\begin{array}{lllllllllllllllllllll}\mathbf{T} & \mathbf{E} & \mathbf{T} & \mathbf{K} & \mathbf{V} & \mathbf{K} & \mathbf{P} & \mathbf{S} & \mathbf{A} & \mathbf{P} & \mathbf{P} & \mathbf{L} & \mathbf{S} & \mathbf{T} & \mathbf{D} & \mathbf{E} & \mathbf{E} & \mathbf{T} & \mathbf{E} & \mathbf{V} & \mathbf{2 4 7}\end{array}$ AGTCACCTTAAGAAACCTACCCACGGCCATACTCTCAATACACCCTCAACTCCACATATT 900 $\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{H} & \mathbf{L} & \mathbf{K} & \mathbf{K} & \mathbf{P} & \mathbf{T} & \mathbf{H} & \mathbf{G} & \mathbf{H} & \mathbf{T} & \mathbf{L} & \mathbf{N} & \mathbf{T} & \mathbf{P} & \mathbf{S} & \mathbf{T} & \mathbf{P} & \mathbf{H} & \mathbf{I} \\ \mathbf{2} & 267\end{array}$ CCTCAGACTGCATACTCACCACACTTTCCAAACCCAATAACACCTCAGAAACAGGGCACA 960 $\begin{array}{lllllllllllllllllllll}\mathbf{P} & \mathbf{Q} & \mathbf{T} & \mathbf{A} & \mathbf{Y} & \mathbf{S} & \mathbf{P} & \mathbf{H} & \mathbf{F} & \mathbf{P} & \mathbf{N} & \mathbf{P} & \mathbf{I} & \mathbf{T} & \mathbf{P} & \mathbf{Q} & \mathbf{K} & \mathbf{Q} & \mathbf{G} & \mathbf{T} & 287\end{array}$ GGTCAGATGTACTACACTCCTACACACAATCTTGTCACACCAGTATTGCGCACCCATTCC 1020 G \mathbf{Q} M \mathbf{Y} Y \mathbf{T} P T H N L V T P V L R TCAGTTACAAAGATAAACCAAAGACCTCATGCCTTCTACACCAAGACTATATACAAGACT 1080 $\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{V} & \mathbf{T} & \mathbf{K} & \mathbf{I} & \mathbf{N} & \mathbf{Q} & \mathbf{R} & \mathbf{P} & \mathbf{H} & \mathbf{A} & \mathbf{F} & \mathbf{Y} & \mathbf{T} & \mathbf{K} & \mathbf{T} & \mathbf{I} & \mathbf{Y} & \mathbf{K} & \mathbf{T} \\ & 327\end{array}$ GAACATTGTCAGCCATGTGGCAAAAGAATTAAGTTTGGTAAGATTGCCCTTAAGTGTCGA 1140 $\begin{array}{llllllllllllllllllll}\mathbf{E} & \mathbf{H} & \mathbf{C} & \mathbf{Q} & \mathbf{P} & \mathbf{C} & \mathbf{G} & \mathbf{K} & \mathbf{R} & \mathbf{I} & \mathbf{K} & \mathbf{F} & \mathbf{G} & \mathbf{K} & \mathbf{I} & \mathbf{A} & \mathbf{L} & \mathbf{K} & \mathbf{C} & \mathbf{R} \\ \mathbf{3} & 347\end{array}$ GACTGTCGCGCTACCTGTCATCCTGAGTGTCGTGAATCTGTGCCGCTTCCTTGTGTTCCT 1200 $\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{C} & \mathbf{R} & \mathbf{A} & \mathbf{T} & \mathbf{C} & \mathbf{H} & \mathbf{P} & \mathbf{E} & \mathbf{C} & \mathbf{R} & \mathbf{E} & \mathbf{S} & \mathbf{V} & \mathbf{P} & \mathbf{L} & \mathbf{P} & \mathbf{C} & \mathbf{V} & \mathbf{P} & 367\end{array}$ ACAGCCTTGGTGGTCCATTGCACCAATGAGGTAGAAAACCGTGGTTTGAGTGAAGTTGGA 1260 $\begin{array}{lllllllllllllllllllll}\mathbf{T} & \mathbf{A} & \mathbf{L} & \mathbf{V} & \mathbf{V} & \mathbf{H} & \mathbf{C} & \mathbf{T} & \mathbf{N} & \mathbf{E} & \mathbf{V} & \mathbf{E} & \mathbf{N} & \mathbf{R} & \mathbf{G} & \mathbf{L} & \mathbf{S} & \mathbf{E} & \mathbf{V} & \mathbf{G} & 387\end{array}$ ATTTATCGAGTACCAGGAGCAGAAAAGGATGTGAAGGAACTAAAGGATCAGTTTCTGCGA 1320 $\begin{array}{lllllllllllllllllllll}\mathbf{I} & \mathbf{Y} & \mathbf{R} & \mathbf{V} & \mathbf{P} & \mathbf{G} & \mathbf{A} & \mathbf{E} & \mathbf{K} & \mathbf{D} & \mathbf{V} & \mathbf{K} & \mathbf{E} & \mathbf{L} & \mathbf{K} & \mathbf{D} & \mathbf{Q} & \mathbf{F} & \mathbf{L} & \mathbf{R} & \mathbf{4 0 7}\end{array}$ GGTAAAGGCATGCCTAACCTGTCCCAGCTTGATATCCATGTTGTTTGTGGTGCACTTAAG 1380 $\begin{array}{llllllllllllllllll}\mathbf{G} & \mathbf{K} & \mathbf{G} & \mathbf{M} & \mathbf{P} & \mathbf{N} & \mathbf{L} & \mathbf{S} & \mathbf{Q} & \mathbf{L} & \mathbf{D} & \mathbf{I} & \mathbf{H} & \mathbf{V} & \mathbf{V} & \mathbf{C} & \mathbf{G} & \mathbf{A} \\ \text { GACTTCATGCGGTCACTTAAGGACCACTTGTCACCCACCTCCTCTGGCGAGACTTTACA } & \mathbf{1} & \mathbf{1} 440\end{array}$
 AGTGCTGCAGAAAAGTCGGAGGCCCAAGATTACCTTGCGGCTCTCTACCAGGCAATCTCA 1500 $\begin{array}{llllllllllllllllllllll}\mathbf{S} & \mathbf{A} & \text { A } & \mathbf{E} & \mathbf{K} & \mathbf{S} & \mathbf{E} & \text { A } & \mathbf{Q} & \mathbf{D} & \mathbf{Y} & \mathbf{L} & \text { A } & \text { A } & \mathbf{L} & \mathbf{Y} & \mathbf{Q} & \text { A } & \mathbf{I} & \mathbf{S} & 467\end{array}$

Abstract

GAATTACCACAGCCCAACAGGGATACTTTGGCTTGGATCATGACTCATCTTCAAAGAGTA 1560 $\begin{array}{lllllllllllllllllllll}\mathbf{E} & \mathbf{L} & \mathbf{P} & \mathbf{Q} & \mathbf{P} & \mathbf{N} & \mathbf{R} & \mathbf{D} & \mathbf{T} & \mathbf{L} & \mathbf{A} & \mathbf{W} & \mathbf{I} & \mathbf{M} & \mathbf{T} & \mathbf{H} & \mathbf{L} & \mathbf{Q} & \mathbf{R} & \mathbf{V} & 487\end{array}$ GCTGAATGTCCTGAATGCAAAATGCCGGCTAGCAACCTAGCCAAGGTGTTTGGGCCAACA 1620 $\begin{array}{lllllllllllllllllllll}\mathbf{A} & \mathbf{E} & \mathbf{C} & \mathbf{P} & \mathbf{E} & \mathbf{C} & \mathbf{K} & \mathbf{M} & \mathbf{P} & \mathbf{A} & \mathbf{S} & \mathbf{N} & \mathbf{L} & \mathbf{A} & \mathbf{K} & \mathbf{V} & \mathbf{F} & \mathbf{G} & \mathbf{P} & \mathbf{T} & \mathbf{5} 07\end{array}$ CTTGTAGGATACTCAGTACCAGAACCTGATCCAGCCACTATGCTGACTGAAACTCGACAA 1680 $\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{V} & \mathbf{G} & \mathbf{Y} & \mathbf{S} & \mathbf{V} & \mathbf{P} & \mathbf{E} & \mathbf{P} & \mathbf{D} & \mathbf{P} & \mathbf{A} & \mathbf{T} & \mathbf{M} & \mathbf{L} & \mathbf{T} & \mathbf{E} & \mathbf{T} & \mathbf{R} & \mathbf{Q} & \mathbf{5 2 7}\end{array}$ CAGCAAATGGTCATGGAAAAGCTGCTTGAAATCTCCACAGACTACTGGAACACTTTCATT 1740 $\begin{array}{lllllllllllllllllllll}\mathbf{Q} & \mathbf{Q} & \mathbf{M} & \mathbf{V} & \mathbf{M} & \mathbf{E} & \mathbf{K} & \mathbf{L} & \mathbf{L} & \mathbf{E} & \mathbf{I} & \mathbf{S} & \mathbf{T} & \mathbf{D} & \mathbf{Y} & \mathbf{W} & \mathbf{N} & \mathbf{T} & \mathbf{F} & \mathbf{I} & 547\end{array}$ AACGTTACTGATGAGAATGTGCACCAGGGAGTTCAGCAGGTTCCTACTCTAGAAGGTGGC 1800 ACTCTCCTTGGAGGTTTCCCATCCTCCAACACGCGTCGACGCTCTATACTTACTCGCACT 1860 $\begin{array}{lllllllllllllllllllll}\mathbf{T} & \mathbf{L} & \mathbf{L} & \mathbf{G} & \mathbf{G} & \mathbf{F} & \mathbf{P} & \mathbf{S} & \mathbf{S} & \mathbf{N} & \mathbf{T} & \mathbf{R} & \mathbf{R} & \mathbf{R} & \mathbf{S} & \mathbf{I} & \mathbf{L} & \mathbf{T} & \mathbf{R} & \mathbf{T} & 587\end{array}$ CCACTAACCCCCAGGGAAACTCCAAAGAACCGCTATGTCTTCCGGAAGTGAGGTTGCTGA 1920 $\begin{array}{llllllllllllllllll}\mathbf{P} & \mathbf{L} & \mathbf{T} & \mathbf{P} & \mathbf{R} & \mathbf{E} & \mathbf{T} & \mathbf{P} & \mathbf{K} & \mathbf{N} & \mathbf{R} & \mathbf{Y} & \mathbf{V} & \mathbf{F} & \mathbf{R} & \mathbf{K} & \boldsymbol{*} & \mathbf{6}\end{array}$ AATCTTTTTTTGTTTGATACAAATCAAGATGGACATAATATTATTTTATAAAATGTATTA 1980 CTAGGGCAATATGTGCCAAAAGAAATTGTATACTTTAACCATGCTTCTAGTTTAGTTAGC 2040 CTTTTGTGTATATATATTTCATTTATTTCATATTTGTATACATGTTTGTGCGTGTGCATG 2100 CGAGTTTACATTGTTTTGTGTGAGCATGTACTTATGTAACTGTACAGAACGAAAGATGAT 2160 TAGATGCTGATATAGTAGTGTGAAGTGGAGATATTGAAATTGTGGTACCAGGACATCAGC 2220 CATTCCTTTGAATCAGAATTGAGCCTATTAAGATGATTATGTTATACAAGTTTATACCAC 2280 TGTAGGAGAAGTTTATCAACTGATATTCTAGTTTTAAGGTTCTTCTAATTAAGTATTTTT 2340 GTAATAACTTTACATTTTGAAATATTGTCACAGTTGTACAGATTTTGATAATAACCTGAC 2400 TTAACCTTGTTACATCTGGTATGAATGCAATATCTAGTTTTTAGTTATTGCTGTGTTAGT 2460 CATGAAACAAAATACATTAAATATATACTACATTAATGCATGTAAATAATGGGTCAGGTC 2520 ATAACCAGACAAATTCTCTTAAACAGAAATGCTTTACTGTGAAGTTGATTAGAATCATTT 2580 GTGTTATTTTATTTTATTTATTTATTATTATTATTATTTTTTTTTTTTTTTATTGACTAT 2640 TTTTCATCTATCCACACCAAAGGAGCATTGTGAGATATGTATGTTTCTTTTATATTATTT 2700 TTAATGTGCATTATTAATACATTTCACATTACTCATAAATTCGCAGATAATCTATTATTT 2760 CTTGTATTTTTTAGGAAATTTCTCTTTTGAAGAAAATTTTTTATATATTGTGGAAAAAAA 2820 AAAAAAAATAAAAAAAAA 2838

Figure 3.41 The full length cDNA and deduced protein sequences of Rac GTPaseactivating protein 1 (2838 bp; ORF $1812 \mathrm{bp}, 603 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A RhoGAP domain (positions $364^{\text {th }}-540^{\text {th }}$) and Protein kinase C conserved region 1 domains or Cysteine-rich domains (C1, positions $317^{\text {th }}-365^{\text {th }}$ of the deduced amino acid, underlined) are highlighted.

CACGGTCTAGGTGTTGCTCGTCCTTCCCACGTTCGAAATACCTTAAAATCTGAGATAACG 60 AGTGCTTCCGATCTGTTACGCGAGAATCGGGGTATCGCGACGGTGTCTTGCGCAAGAGGT 120 CACGAGGGATAGATATGCTGTGAGTGTGAGATTCCAACTTCAGAGAAGCGCTGTTTGTAT 180 GAGGAGTCGCGGATTGGAAGAAGCGCAGGGCGTCGTCTGCATGTTTACATAGCGCAGTTT 240 GGGACGCGTTCCTCACCCTCCGATATTTGTAACCTCTTCGAGCGACAGGAGAACACGGCG 300 AAGACAAGCTAGACAACATGGGCAACATACACACCGTCGGACCAAACGAAGCTCTCGTGG 360 | \bar{M} | \mathbf{G} | \mathbf{I} | \mathbf{H} | \mathbf{T} | \mathbf{V} | \mathbf{G} | \mathbf{P} | \mathbf{N} | \mathbf{E} | \mathbf{A} | \mathbf{L} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{V} | \mathbf{V} | 15 | | | | | | | | | | TGTCAGGTGGCTGCTGCGGCGCCACGTCCAAGAAGACCATCGTCGGCGGATGGGCGTGGG 420

 CGTGGTGGTTCGTGACCGACGTGCAGAGGCTCTCCCTCGAGGTGATCACGCTAAACCCAC 480
 GATGCGAGAATGTAGAAACCTCCCTGGGTGTACAGGTGACAGTGACGGGCGTAGCACAGG 540
 TGAAGGTCATGAAGGAAGAGAAGGTGCTGAAGATTGCCTCAGAGCAGTTCCTGGGCATGT 600
$\begin{array}{llllllllllllllllllll}\mathbf{K} & \mathbf{V} & \mathbf{M} & \mathbf{K} & \mathbf{E} & \mathbf{E} & \mathbf{K} & \mathbf{V} & \mathbf{L} & \mathbf{K} & \mathbf{I} & \text { A } & \mathbf{S} & \mathbf{E} & \mathbf{Q} & \mathbf{F} & \mathbf{L} & \mathbf{G} & \mathbf{M} & \mathbf{S} \\ \mathbf{9 5}\end{array}$ CGAGCGATGAGATCAAGGGCACCATCCTCATGACACTCGAGGGCCATCTCAGGGCCATCT 660
$\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{D} & \mathbf{E} & \mathbf{I} & \mathbf{K} & \mathbf{G} & \mathbf{T} & \mathbf{I} & \mathbf{L} & \mathbf{M} & \mathbf{T} & \mathbf{L} & \mathbf{E} & \mathbf{G} & \mathbf{H} & \mathbf{L} & \mathbf{R} & \text { A } & \mathbf{I} & \mathbf{L} \\ \mathbf{1 1 5}\end{array}$
TGGCCACACTGACGGTAGAAGAGGTGTACCGTGACCGAGACCAGTTTGCATCCCTTGTGA 720

GAGAAGTGGCTGGAATGGATGTTGGAAGAATGGGTATTGAGATTCTGTCCTTTACCATCA 780

Figure 3.42 The full length cDNA and deduced protein sequences of flotillin 2 (1937 bp; ORF 1320 bp, 439 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A prohibitin domain (PHB , positions $87^{\text {th }}-268^{\text {th }}$ of the deduced protein) is highlighted.

A homologue of DMC1/LIM15 isoform 1 initially found in the forward SSH

 library was further characterized by RACE-PCR. The amplification products of 1000 bp and 600 bp were obtained from 5^{\prime} and $3^{\prime} \mathrm{RACE}-\mathrm{PCR}$, respectively (Fig. 3.43). The full length cDNA of DMC1/LIM15 homolog isoform 1 was composed of 1661 bp with an ORF of 1026 bp in length encoding a polypeptide of 341 amino acids. The predicted pI and MW of the deduced DMC1/LIM15 isoform 1 protein were 5.35 and 37.54 kDa , respectively. The deduced DMC1/LIM15 homolog isoform 1 protein contained an AAA domain (positions $118^{\text {th }}-308^{\text {th }}$, E -value $=9.73 \mathrm{e}-06$, Fig. 3.44). The closest similarity of this transcript was meiotic recombination protein DMC1/LIM15 homolog isoform 1 of Canis familiaris $(\mathrm{E}-\mathrm{value}=1 \mathrm{e}-146)$.

Figure 3.43 The RACE-PCR products of 5'- and 3'- DMC1/LIM15 homolog isoform 1 (A), 5'- PGMRC1 (B), and $3^{\prime}-$ PGMRC1 (C) of P. monodon. The λ Hind III (lane M) was used as the markers.

A homologue of progestin receptor membrane component 1 (PGMRC1) initially found in the reverse SSH library was also further characterized. The full length cDNA of this gene homologue was successfully identified by RACE-PCR. The 5^{\prime} and 3^{\prime} RACE-PCR products of 200 bp and 1500 and 2300 bp were obtained, respectively (Fig. 3.43). Three full length cDNAs of PGMRC1: PGMRC1-s (1980 bp), PGMRC1-m (2848 bp), and PGMRC1-1 (2971 bp) were found in P. monodon (Fig. 3.45-3.47). These transcripts shared an identical ORF of 573 bp deducing to a 190 aa polypeptide but differed in length of the 3^{\prime} 'UTR region. Neucleotide sequences of different isoforms of PGMRC1 were multiple aligned and length polymorphism of the 3 'UTR was observed (Fig. 3.48). The predicted pI and MW of the protein encoded by this cDNA were 4.60 and 20.98 kDa , respectively. A cytochrome b-5 like heme/steroid binding domain (Cyt-b5 domain; positions $68^{\text {th }}-166^{\text {th }}$, E-value $=1.3 \mathrm{e}-$ 19) functionally important for ubiquitous electron transportation (Ozols, 1989) in heme-binding protein and progesterone receptor (Meyer et al., 1996) was found in the deduced PGMRC1. The closest similarity of these transcripts was PGMRC1 of the medaka, Oryzias latipes (E -value $=1 \mathrm{e}-41,2 \mathrm{e}-41$, and $2 \mathrm{e}-41$, respectively).

AAAAAAAAAAATCCGACGGACAGGCGAAGACGTACATCTTTTCCGCCGCCGATTTTTTTT	60								
TACAAAAAATAACCTCGACACACAACCTTCTCCTTCCGTTTAGAAGAACCGAAGAATCAC	120								
AATGGAAGATCAGGCTTTAGATGCCGAGGAATGCATCCTGGACGATGAAATAAGCTTCTT	180								
$\mathbf{M} \mathbf{E}$	\mathbf{D}	\mathbf{Q}	\mathbf{A}	\mathbf{L}	\mathbf{D}	\mathbf{A}	\mathbf{E}	\mathbf{E}	\mathbf{C}
\mathbf{I}	\mathbf{L}	\mathbf{D}	\mathbf{D}	\mathbf{E}	\mathbf{I}	\mathbf{S}	\mathbf{F}	\mathbf{F}	$\mathbf{2 0}$
CACAGATATAGATGAATTACAAGCTCATGGCATCAACGCGGGCGGATATTAAGAAGCTAAA	240								
\mathbf{T}	\mathbf{D}	\mathbf{I}	\mathbf{D}	\mathbf{E}	\mathbf{L}	\mathbf{Q}	\mathbf{A}	\mathbf{H}	\mathbf{G}
\mathbf{I}	\mathbf{N}	\mathbf{A}	\mathbf{A}	\mathbf{D}	\mathbf{I}	\mathbf{K}	\mathbf{K}	\mathbf{L}	\mathbf{K}
$\mathbf{4 0}$									

Figure 3.44 The full length cDNA and deduced protein sequences of DMC1/LIM15 homolog isoform 1 (1661 bp; ORF $1026 \mathrm{bp}, 341 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An AAA domain (positions $118^{\text {th }}$ $-308^{\text {th }}$ of the deduced protein) is highlighted.

[^2]GGGGAGCATGGGCGTGTGTGTGCGGCAGTTAATGGCAAGATCTTTGATGTCACCCGAGGC 360
 TCCAAGTTCTATGGCCCAGGTGGGCCGTATTCTGCCTTTGCTGGCCGAGATGCAACAAGA 420 $\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{K} & \mathbf{F} & \mathbf{Y} & \mathbf{G} & \mathbf{P} & \mathbf{G} & \mathbf{G} & \mathbf{P} & \mathbf{Y} & \mathbf{S} & \mathbf{A} & \mathbf{F} & \mathbf{A} & \mathbf{G} & \mathbf{R} & \mathbf{D} & \mathbf{A} & \mathbf{T} & \mathbf{R} \\ \mathbf{1 2 0}\end{array}$ GCTCTGGCAACCTTCAGTGTAAAGGATGTAAAGGAAGAGTACGATGACCTCAGTGACCTC 480 $\begin{array}{llllllllllllllllllll}\text { A } & \text { L } & \text { A } & \text { T } & \text { F } & \text { S } & \text { V } & \text { K } & \text { D } & \text { V } & \text { K } & \text { E } & \text { E } & \text { Y } & \text { D } & \text { D } & \text { L } & \text { S } & \text { D } & \text { L } \\ 140\end{array}$ TCCTCTATGCAGATGGACTCTGTCAGGGAATGGGAGATGCAGTTCACAGAAAAGTACGAT 540
 TATATTGGTAAATTTTTGAAACCAGGAGAACAGCCCACAGAGTACTCAGATGATGAGGAA 600
 GCAAAGGACACCAAAGCGAAGACGGATGATTAGATGTAGTTGAGGTGATTGCGCATTGCT 660 A K D T K A K T D D ${ }^{*}$, 190 GTATAGGTTAAGGCCTCTCGGTTCCACCAGACTCCAAAGCCCTTGAGCATGGTCTTAAGA 720 TTAGGATGTGGACGTGAAAAAAAGTAAAAAAAAAAAAAAAGAACCCCACTCAATTAGTCA 780 CTAATGATACGGTGTGATGGAAAAAGCCTACATTAGGTTGGGGGTTGGAGGTTTAAACTA 840 TATGTAAAACTACTACTTTATATTTTTTTCTCATAAGGGGCTAATTAATCCCAAATATGTT 900 CTCAATAAAGATTGTCTACTTTGAACAATTTATCGATATGTGGTGACTTTGGTTAGTCTG 960 GGTGAGCCATGAAAGTTTGAGTAGGAGGAGCAGGAGGTGACAAGATCAGTCATTATCAGG 1020 CTTATTGGGGTATTTCATAAGGTATAATCTTGCAGTTAAAATGGAAAATAAAGTCTCTTA 1080 CAAAGGAGAGAGAAGGCTGATAGATATGCAGCTTTGTAGACCAATGCAAGCGACAAGTAT 1140 GTGTATACAGATTAATATAATTATAGAAGTGATTATTGAAGGATTGGGTCCCATTGAAAC 1200 ACAGCACCTACCAAACTTATCCTATTGTGTGATATATTTGTATAGATGGTTGAGATGTTG 1260 TTTTGTGTGGAATAAATGAATCATAGTAGTTTTGAAAATTGTTTTATGAGAATGATTGGA 1320 TATAGTTTATGAATGAGCAGCCCAAAGATGATGAGTTGGGAAGAGTGCAAGTGCAAGGAA 1380 TTCATCCTCAAATCAAACTTTCAGCCTTATAGAATACTGCAGAGGACTCATAATTGCTGG 1440 TCTGACTCAGAGTTATTTTGATACCTAACCTCTTGCCAGCATGGCATGATCCCCATCTTT 1500 TTCTAATCTGCCATGATTTATATTGTACTGTGGATACTCAGTGTGTGGATCCTTTATTCA 1560 GTCAATGTTTTAACATGTAAATATAGTGTATTCACCGTTGCCAAGTCCTGAAAAGACGTC 1620 CTCCAAATCTGCCTGCCTATCACGTTTGGGAATGGTAAATGACTTAGATATTGGAATGAG 1680 AGTGCAAGGGGATTATCTATTTTTTCTAGAAGTTTAGAGAGATAATGTTAACATGATTAC 1740 TCTGAACTTACTGGTTGAGTGTTTTCAGTACTCTTTTCTAACGAGTCTTTAGATGACATG 1800 TAGGTTCTGGCACAAACATGTGAAAGATGTATCTCGAGAGACAACAGGATCATAATGCTG 1860 CCTTGTTAACTGTTCTTCATCTTTAAGCAAGTAAGGCCTTTAGGTAGTGTCAGTCATTGT 1920 AAAGAGTTTGTTTTGAGAAAATGAAGGCATAAACACTAGGCTTAGTTGACTGGGGACTGT 1980 TCATCATTCAGAAATTTGTACAAAAAAAAAAAAAAAAAAAAAAAAAAA 2028

Figure 3.45 The full length CDNA and deduced protein sequences of a short form of progestin receptor membrane component 1 (PGMRC1-s) (2028 bp; ORF 573 bp, 190 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined.
A cytochrome b-5 like heme/steroid binding domain (Cyt-b5 domain; positions $68^{\text {th }}$ $166^{\text {th }}$ of the deduced protein) is highlighted.

TACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGACTCGACTATC 60 ATGGCGGACGAGGGAGCGGACGCCGTCTCCATCGAAGAGTCCTTCCTGGGCTCACTACTC 120 $\begin{array}{lllllllllllllllllllll}\mathbf{M} & \text { A } & \mathbf{D} & \mathbf{E} & \mathbf{G} & \text { A } & \mathbf{D} & \mathbf{A} & \mathbf{V} & \mathbf{S} & \mathbf{I} & \mathbf{E} & \mathbf{E} & \mathbf{S} & \text { F } & \mathbf{L} & \mathbf{G} & \mathbf{S} & \mathbf{L} & \mathbf{L} & 20\end{array}$ AAAGAAATATTCACCTCCCCACTTAATGTGTTCCTCTTGGGTGTCTGTACCGTCCTCATC 180 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{E} & \mathbf{I} & \mathbf{F} & \mathbf{T} & \mathbf{S} & \mathbf{P} & \mathbf{L} & \mathbf{N} & \mathbf{V} & \mathbf{F} & \mathbf{L} & \mathbf{L} & \mathbf{G} & \mathbf{V} & \mathbf{C} & \mathbf{T} & \mathbf{V} & \mathbf{L} & \mathbf{I} & \mathbf{4 0}\end{array}$ TATAAGATATTCCGTTCGTCCGATGGCAGTGGAGGAGCAACAGGTCCAGTGGAACCTCCT 240 $\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{K} & \mathbf{I} & \mathbf{F} & \mathbf{R} & \mathbf{S} & \mathbf{S} & \mathbf{D} & \mathbf{G} & \mathbf{S} & \mathbf{G} & \mathbf{G} & \mathbf{A} & \mathbf{T} & \mathbf{G} & \mathbf{P} & \mathbf{V} & \mathbf{E} & \mathbf{P} & \mathbf{P} & \mathbf{6 0}\end{array}$ GTGCCCAAGATGAAACGACAGGACATGACCTTGGAGCAGTTGAAGCAGTATGATGGCATG 300 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{P} & \mathbf{K} & \mathbf{M} & \mathbf{K} & \mathbf{R} & \mathbf{Q} & \mathbf{D} & \mathbf{M} & \mathbf{T} & \mathbf{L} & \mathbf{E} & \mathbf{Q} & \mathbf{L} & \mathbf{K} & \mathbf{Q} & \mathbf{Y} & \mathbf{D} & \mathbf{G} & \mathbf{M} & \mathbf{8 0}\end{array}$ GGGGAGCATGGGCGTGTGTGTGCGGCAGTTAATGGCAAGATCTTTGATGTCACCCGAGGC 360 $\mathbf{G} \quad \mathbf{E} \quad \mathbf{H} \quad \mathbf{G} \quad \mathbf{R} \quad \mathbf{V} \quad \mathbf{C} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{V} \quad \mathbf{N} \quad \mathbf{G} \quad \mathbf{K}$ TCCAAGTTCTATGGCCCAGGTGGGCCGTATTCTGCCTTTGCTGGCCGAGATGCAACAAGA 420 $\begin{array}{lllllllllllllllllllll}\mathbf{S} & \mathbf{K} & \mathbf{F} & \mathbf{Y} & \mathbf{G} & \mathbf{P} & \mathbf{G} & \mathbf{G} & \mathbf{P} & \mathbf{Y} & \mathbf{S} & \mathbf{A} & \mathbf{F} & \mathbf{A} & \mathbf{G} & \mathbf{R} & \mathbf{D} & \mathbf{A} & \mathbf{T} & \mathbf{R} & \mathbf{1 2 0}\end{array}$ GCTCTGGCAACCTTCAGTGTAAAGGATGTAAAGGAAGAGTACGATGACCTCAGTGACCTC 480 $\begin{array}{lllllllllllllllllllll}\text { A } & \mathbf{L} & \mathbf{A} & \mathbf{T} & \mathbf{F} & \mathbf{S} & \mathbf{V} & \mathbf{K} & \mathbf{D} & \mathbf{V} & \mathbf{K} & \mathbf{E} & \mathbf{E} & \mathbf{Y} & \mathbf{D} & \mathbf{D} & \mathbf{L} & \mathbf{S} & \mathbf{D} & \mathbf{L} & \mathbf{1 4 0}\end{array}$ TCCTCTATGCAGATGGACTCTGTCAGGGAATGGGAGATGCAGTTCACAGAAAAGTACGAT 540 $\mathbf{S} \quad \mathbf{S} \quad \mathbf{M} \quad \mathbf{Q} \quad \mathbf{M} \quad \mathbf{D} \quad \mathbf{S} \quad \mathbf{V} \quad \mathbf{R}$ TATATTGGTAAATTTTTGAAACCAGGAGAACAGCCCACAGAGTACTCAGATGATGAGGAA 600
$\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{I} & \mathbf{G} & \mathbf{K} & \mathbf{F} & \mathbf{L} & K & \mathbf{P} & \mathbf{G} & \mathbf{E} & \mathbf{Q} & \mathbf{P} & \mathbf{T} & \mathbf{E} & \mathbf{Y} & \mathbf{S} & \mathbf{D} & \mathbf{D} & \mathbf{E} & \mathbf{E} & \mathbf{1 8 0}\end{array}$ GCAAAGGACACCAAAGCGAAGACGGATGATTAGATGTAGTTGAGGTGATTGCGCATTGCT 660 $\begin{array}{lllllllllll}\mathbf{A} & \mathbf{K} & \mathbf{D} & \mathbf{T} & \mathbf{K} & \mathbf{A} & \mathbf{K} & \mathbf{T} & \mathbf{D} & \mathbf{D} & \text { * }\end{array}$

190 GTATAGGTTAAGGCCTCTCGGTTCCACCAGACTCCAAAGCCCTTGAGCATGGTCTTAAGA 720 TTAGGATGTGGACGTGAAAAAAAGTAAAAAAAAAAAAAAAGAACCCCACTCAATTAGTCA 780 CTAATGATACGGTGTGATGGAAAAAGCCTACATTAGGTTGGGGGTTGGAGGTTTAAACTA 840 TATGTAAAACTACTACTTTATATTTTTTCTCATAAGGGGCTAATTAATCCCAAATATGTT 900 CTCAATAAAGATTGTCTACTTTGAACAATTTATCGATATGTGGTGACTTTGGTTAGTCTG 960 GGTGAGCCATGAAAGTTTGAGTAGGAGGAGCAGGAGGTGACAAGATCAGTCATTATCAGG 1020 CTTATTGGGGTATTTCATAAGGTATAATCTTGCAGTTAAAATGGAAAATAAAGTCTCTTA 1080 CAAAGGAGAGAGAAGGCTGATAGATATGCAGCTTTGTAGACCAATGCAAGCAACAAGTAT 1140 GTGTATACAGATTAATATAATTATAGAAGTAATTATTGAAGGATTGGATCCCATTGAAAC 1200 ACAGCACCTACCAAACTTATCCTATTGTGTGATATATTTGTATAGATGGTTGAAATGTTG 1260 TTTTGTGTGGAATAAATGAATCATAGTAGTTTTGAAAATTGTTTTATGAGAATGATTGGA 1320 TATAGTTTATGAATGAGCAGCCCAAAGATGATGAGTTGGGAAGAGTGCAAGTGCAAGGAA 1380 TTCATCCTCAAATCAAACTTTCAGCCTTATAGAATACTGCAGAGGACTCATAATTGCTGG 1440 TCTGACTCAGAGTTATTTTGATACCTAACCTCTTGCCAGCATGGCATGATCCCCATCTTT 1500 TTCTAATCTACCATGATTTATATTGTACTGTGGATACTCAGTGTGTGGATCCTTTATTCA 1560 GTCAATGTTTTAACATGTAAATATAGTGTGTTCACCGTTGCCAAGTCCTGAAAAGACGTC 1620 CTCCAAATCTGCCTGCCTATCACGTTTGGGAATGGTAAATGACTTAGATATTGGAATGAG 1680 AGTGCAAGGGGATTATCTATTTTTTCTAGAAGTTTAGAGAGATAATGTTAACATGATTAC 1740 TCTGAACTTACTGGTTGAGTGTTTTCAGTACTCTTTTCTAACGAGTCTTTAGATGACATG 1800 TAGGTTCTGGCACAAACATGTGAAAGATGTATCTCGAGAGACAACAGGATCATAATGCTG 1860 CCTTGTTAACTGTTCTTCATCTTTAAGCAAGTAAGGCCTTTAGGTAGTGTCAGTCATTGT 1920 AAAGAGTTTGTTTTGAGAAAATGAAGGCATAAACACTAGGCTTAGTTGACTGGGGACTGT 1980 TCATCATTCAGAAATTTGTACAAAAAAAAAAAGTTATGACTTGCTCTCTTAAGTAAATTC 2040 CTTGGCAACTAAAAGAAAAGAGGTGTTTTTAATAAGAATAAGATGATTGGGCATATAGAT 2100 TTATATGCTTTGTTACCTCCAGCCAGTAGAGGTAAATAAGATTATGCTAACAGCTTCTAT 2160 GTTCAACAGGATTATATTTTGATGTTGTAGTTGATTCACCCTTATAAACGTATGAAGAAA 2220 TGTTCATTTTAAAGCTTACGAGTTTTCATTTCTTATAAAAACTGATAAACAGAAAGTTGA 2280 ATGAGTGCTTCTCCCATGGCTTGATGGTTGCAACACTAGATGTCATATGATCAAGGCTTT 2340 CCTTCTTTTCACACATCAATGTTTGATAAATGGCAGTTGTGAAAGGAAGATCCAGGAAGC 2400 TTCCACTAATGGCTTAAAAGCCTGATAAGTGAGTGTATTCTTAACAAAGGGAACTCCCGA 2460 GGCAGCTGTTGCAGTGCTGGTGGTGTAAGGTCCCTGGGGGATGTGATCTTCATTGATGAT 2520 CTAGATTTATCATTATAAGGTATACTACTTTGTTATGTTCATTTTTGTTATTTTTCATAT 2580 CCTTTATTTTCTATTTATTTATTTTCTTTTTTTTTCTTCCATATAGGGAGAATTTATATT 2640 TTGGACATCAGAGTTTCGTGAGCTGGAAATTCCTGTAATTGTGTGTGCATACCAGTTTTT 2700 GGCTAGCTATATCCAGCAATCTGTTCATTTGGCATTCCTGAAAGTTGCTCTTCAGGCTTT 2760 GCGTGAAGGAGTTGATTTAACTTTGTGATATTTAGAGAAGCAGAATTTGTATTTATATTT 2820 TTTACACATTGTCAATGTAGTTTGATAATATCCACATGGAACAAATGTTAAAAAAAAAAA 2880 AAAAAAAAAAAAAAAA

Figure 3.46 The full length CDNA and deduced protein sequences of the medium form of PGMRC1 (PGMRC1-m, 2896 bp; ORF 573 bp, 190 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A cytochrome b-5 like heme/steroid binding domain (Cyt-b5 domain; positions $68^{\text {th }}-166^{\text {th }}$ of the deduced

TACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGACTCGACTATC 60 ATGGCGGACGAGGGAGCGGACGCCGTCTCCATCGAAGAGTCCTTCCTGGGCTCACTACTC 120
 AAAGAAATATTCACCTCCCCACTTAATGTGTTCCTCTTGGGTGTCTGTACCGTCCTCATC 180 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{E} & \mathbf{I} & \mathbf{F} & \mathbf{T} & \mathbf{S} & \mathbf{P} & \mathbf{L} & \mathbf{N} & \mathbf{V} & \mathbf{F} & \mathbf{L} & \mathbf{L} & \mathbf{G} & \mathbf{V} & \mathbf{C} & \mathbf{T} & \mathbf{V} & \mathbf{L} & \mathbf{I} & \mathbf{4 0}\end{array}$ TATAAGATATTCCGTTCGTCCGATGGCAGTGGAGGAGCAACAGGTCCAGTGGAACCTCCT 240 $\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{K} & \mathbf{I} & \mathbf{F} & \mathbf{R} & \mathbf{S} & \mathbf{S} & \mathbf{D} & \mathbf{G} & \mathbf{S} & \mathbf{G} & \mathbf{G} & \mathbf{A} & \mathbf{T} & \mathbf{G} & \mathbf{P} & \mathbf{V} & \mathbf{E} & \mathbf{P} & \mathbf{P} & \mathbf{6 0}\end{array}$ GTGCCCAAGATGAAACGACAGGACATGACCTTGGAGCAGTTGAAGCAGTATGATGGCATG 300 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{P} & \mathbf{K} & \mathbf{M} & \mathbf{K} & \mathbf{R} & \mathbf{Q} & \mathbf{D} & \mathbf{M} & \mathbf{T} & \mathbf{L} & \mathbf{E} & \mathbf{Q} & \mathbf{L} & \mathbf{K} & \mathbf{Q} & \mathbf{Y} & \mathbf{D} & \mathbf{G} & \mathbf{M} & \mathbf{8 0}\end{array}$ GGGGAGCATGGGCGTGTGTGTGCGGCAGTTAATGGCAAGATCTTTGATGTCACCCGAGGC 360 $\mathbf{G} \quad \mathbf{E} \quad \mathbf{H} \quad \mathbf{G} \quad \mathbf{R} \quad \mathbf{V} \quad \mathbf{C} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{V} \quad \mathbf{N} \quad \mathbf{G} \quad \mathbf{K} \quad \mathbf{I} \quad \mathbf{F} \quad \mathbf{D} \quad \mathbf{V} \quad \mathbf{T} \quad \mathbf{R} \quad \mathbf{G} \mathbf{1 0 0}$ TCCAAGTTCTATGGCCCAGGTGGGCCGTATTCTGCCTTTGCTGGCCGAGATGCAACAAGA 420

Abstract

$\begin{array}{llllllllllllllllllll}\mathbf{S} & \mathbf{K} & \mathbf{F} & \mathbf{Y} & \mathbf{G} & \mathbf{P} & \mathbf{G} & \mathbf{G} & \mathbf{P} & \mathbf{Y} & \mathbf{S} & \mathbf{A} & \mathbf{F} & \mathbf{A} & \mathbf{G} & \mathbf{R} & \mathbf{D} & \mathbf{A} & \mathbf{T} & \mathbf{R} \\ \mathbf{1} & \mathbf{1 2 0}\end{array}$ GCTCTGGCAACCTTCAGTGTAAAGGATGTAAAGGAAGAGTACGATGACCTCAGTGACCTC 480 A L A Tlllllllllllllllll 1 TCCTCTATGCAGATGGACTCTGTCAGGGAATGGGAGATGCAGTTCACAGAAAAGTACGAT 540 TATATTGGTAAATTTTTGAAACCAGGAGAACAGCCCACAGAGTACTCAGATGATGAGGAA 600 $\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{I} & \mathbf{G} & \mathbf{K} & \mathbf{F} & \mathbf{L} & \mathbf{K} & \mathbf{P} & \mathbf{G} & \mathbf{E} & \mathbf{Q} & \mathbf{P} & \mathbf{T} & \mathbf{E} & \mathbf{Y} & \mathbf{S} & \mathbf{D} & \mathbf{D} & \mathbf{E} & \mathbf{E} & 180\end{array}$ GCAAAGGACACCAAAGCGAAGACGGATGATTAGATGTAGTTGAGGTGATTGCGCATTGCT 660 A K D T K A K T D D * 190 GTATAGGTTAAGGCCTCTCGGTTCCACCAGACTCCAAAGCCCTTGAGCATGGTCTTAAGA 720 TTAGGATGTGGACGTGAAAAAAAGTAAAAAAAAAAAAAAAGAACCCCACTCAATTAGTCA 780 CTAATGATACGGTGTGATGGAATAAGCCTACATTAGGTTGGGGGTTGGAGGTTTAAACTA 840 TATGTAAAACTACTACTTTATATTTTTTCTCATAAGGGGCTAATTAATCCCAAATATGTT 900 CTCAATAAAGATTGTCTACTTTGAACAATTTATCGATATGTGGTGACTTTGGTTAGTCTG 960 GGTGAGCCATGAAAGTTTGAGTAGGAGGAGCAGGAGGTGACAAGATCAGTCATTATCAGG 1020 CTTATTGGGGTATTTCATAAGGTATAATCTTGCAGTTAAAATGGAAAATAAAGTCTCTTA 1080 CAAAGGAGAGAGAAGGCTGATAGATATGCAGCTTTGTAGACCAATGCAAGCAACAAGTAT 1140 GTGTATACAGATTAATATAATTATAGAAGTAATTATTGAAGGATTGGATCCCATTGAAAC 1200 ACAGCACCTACCAAACTTATCCTATTGTGTGATATATTTGTATAGATGGTTGAAATGTTG 1260 TTTTGTGTGGAATAAATGAATCATAGTAGTTTTGAAAATTGTTTTATGAGAATGATTGGA 1320 TATAGTTTATGAATGAGCAGCCCAAAGATGATGAGTTGGGAAGAGTGCAAGTGCAAGGAA 1380 TTCATCCTCAAATCAAACTTTCAGCCTTATAGAATACTGCAGAGGACTCATAATTGCTGG 1440 TCTGACTCAGAGTTATTTTGATACCTAACCTCTTGCCAGCATGGCATGATCCCCATCTTT 1500 TTCTAATCTGCCATGATTTATATTGTACTGTGGATACTCAGTGTGTGGATCCTTTATTCA 1560 GTCAATGTTTTAACATGTAAATATAGTGTATTCACCGTTGCCAAGTCCTGAAAAGACGTC 1620 CTCCAAATCTGCCTGCCTATCACGTTTGGGAATGGTAAATGACTTAGATATTGGAATGAG 1680 AGTGCAAGGGGATTATCTATTTTTTCTAGAAGTTTAGAGAGATAATGTTAACATGATTAC 1740 TCTGAACTTACTGGTTGAGTGTTTTCAGTACTCTTTTCTAACGAGTCTTTAGATGACATG 1800 TAGGTTCTGGCACAAACATGTGAAAGATGTATCTCGAGAGACAACAGGATCATAATGCTG 1860 CCTTGTTAACTGTTCTTCATCTTTAAGCAAGTAAGGCCTTTAGGTAGTGTCAGTCATTGT 1920 AAAGAGTTTGTTTTGAGAAAATGAAGGCATAAACACTAGGCTTAGTTGACTGGGGACTGT 1980 TCATCATTCAGAAATTTGTACAAAAAAAAAAAGTTATGACTTGCTCTCTTAAGTAAATTC 2040 CTTGGCAACTAAAAGAAAAGAGGTGTTTTTAATAAGAATAAGATGATTGGGCATATAGAT 2100 TTATATGCTTTGTTACCTCCAGCCAGTAGAGGTAAATAAGATTATGCTAACAGCTTCTAT 2160 GTTCAACAGGATTATATTTTGATGTTGTAGTTGATTCACCCTTATAAACGTATGAAGAAA 2220 TGTTCATTTTAAAGCTTACGAGTTTTCATTTCTTATAAAAACTGATAAACAGAAAGTTGA 2280 ATGAGTGCTTCTCCCATGGCTTGATGGTTGCAACACTAGATGTCATATGATCAAGGCTTT 2340 CCTTCTTTTCACACATCAATGTTTGATAAATGGCAGTTGTGAAAGGAAGATCAAGGAAGC 2400 TTCCACTAATGGCTTAAAAGCCTGATAAGTGAGTGTATTCTTAACAAAGGGAACTCCCGA 2460 GGCAGCTGTTGCAGTGCTGGTGGTGTAAGGTCCCTGGGGGATGTGATCTTCATTGATGAT 2520 CTAGATTTATCATTATAAGGTATACTACTTTGTTATGTTCTTTTTGTTATTTTTCATATC 2580 CTTTATTTTCTATTTATTTATTTTCTTTTTTTTTCTTCCATATAGGGAGAATTTATATTT 2640 TGGACATCAGAGTTTCGTGAGCTGGAAATTCCTGTAATTGTGTGTGCATACCAGTTTTTG 2700 GCTAGCTATATCCAGCAATCTGTTCATTTGGCATTCCTGAAAGTTGCTCTTCAGGCTTTG 2760 CGTGAAGGAGTTGATTTAACTTTGTGATATTTAGAGAAGCAGAATTTGTATTTATATTTT 2820 TTACACATTGTCAATGTAGTTTGATAATATCCACATGGAACAAATGTTAAAAAAGGAAAA 2880 AAAAGTCTGTGTAATAAAGGAAAACTTCTCCAATAGATGAAAGTTTTCATTTATGTACAG 2940 TTGAGTGTTAAATATTGTTCTAAATGAAATCAATAAATTTACCCAATAAAAAAAAAAAAA 3000 AAAAAAAAAAAAAAAAAAA ||| || 3019

Figure 3.47 The full length cDNA and deduced protein sequences of the long form of PGMRC1 (PGMRC1-I, 3019 bp ; ORF $573 \mathrm{bp}, 190 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A cytochrome b-5 like heme/steroid binding domain (Cyt-b5 domain; positions $68^{\text {th }}-166^{\text {th }}$ of the deduced protein) is highlighted.

PGMRC1-S
PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-I
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1

TACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGACTCGACTATC 60 TACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGACTCGACTATC 60 TACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGACTCGACTATC 60

ATGGCGGACGAGGGAGCGGACGCCGTCTCCATCGAAGAGTCCTTCCTGGGCTCACTACTC 120 ATGGCGGACGAGGGAGCGGACGCCGTCTCCATCGAAGAGTCCTTCCTGGGCTCACTACTC 120 ATGGCGGACGAGGGAGCGGACGCCGTCTCCATCGAAGAGTCCTTCCTGGGCTCACTACTC 120

AAAGAAATATTCACCTCCCCACTTAATGTGTTCCTCTTGGGTGTCTGTACCGTCCTCATC 180 AAAGAAATATTCACCTCCCCACTTAATGTGTTCCTCTTGGGTGTCTGTACCGTCCTCATC 180 AAAGAAATATTCACCTCCCCACTTAATGTGTTCCTCTTGGGTGTCTGTACCGTCCTCATC 180 TATAAGATATTCCGTTCGTCCGATGGCAGTGGAGGAGCAACAGGTCCAGTGGAACCTCCT 240 TATAAGATATTCCGTTCGTCCGATGGCAGTGGAGGAGCAACAGGTCCAGTGGAACCTCCT 240 TATAAGATATTCCGTTCGTCCGATGGCAGTGGAGGAGCAACAGGTCCAGTGGAACCTCCT 240

GTGCCCAAGATGAAACGACAGGACATGACCTTGGAGCAGTTGAAGCAGTATGATGGCATG 300 GTGCCCAAGATGAAACGACAGGACATGACCTTGGAGCAGTTGAAGCAGTATGATGGCATG 300 GTGCCCAAGATGAAACGACAGGACATGACCTTGGAGCAGTTGAAGCAGTATGATGGCATG 300 GGGGAGCATGGGCGTGTGTGTGCGGCAGTTAATGGCAAGATCTTTGATGTCACCCGAGGC 360 GGGGAGCATGGGCGTGTGTGTGCGGCAGTTAATGGCAAGATCTTTGATGTCACCCGAGGC 360 GGGGAGCATGGGCGTGTGTGTGCGGCAGTTAATGGCAAGATCTTTGATGTCACCCGAGGC 360 TCCAAGTTCTATGGCCCAGGTGGGCCGTATTCTGCCTTTGCTGGCCGAGATGCAACAAGA 420 TCCAAGTTCTATGGCCCAGGTGGGCCGTATTCTGCCTTTGCTGGCCGAGATGCAACAAGA 420 TCCAAGTTCTATGGCCCAGGTGGGCCGTATTCTGCCTTTGCTGGCCGAGATGCAACAAGA 420 *** GCTCTGGCAACCTTCAGTGTAAAGGATGTAAAGGAAGAGTACGATGACCTCAGTGACCTC 480 GCTCTGGCAACCTTCAGTGTAAAGGATGTAAAGGAAGAGTACGATGACCTCAGTGACCTC 480 GCTCTGGCAACCTTCAGTGTAAAGGATGTAAAGGAAGAGTACGATGACCTCAGTGACCTC 480 TCCTCTATGCAGATGGACTCTGTCAGGGAATGGGAGATGCAGTTCACAGAAAAGTACGAT 540 TCCTCTATGCAGATGGACTCTGTCAGGGAATGGGAGATGCAGTTCACAGAAAAGTACGAT 540 TCCTCTATGCAGATGGACTCTGTCAGGGAATGGGAGATGCAGTTCACAGAAAAGTACGAT 540 *** TATATTGGTAAATTTTTGAAACCAGGAGAACAGCCCACAGAGTACTCAGATGATGAGGAA 600 TATATTGGTAAATTTTTGAAACCAGGAGAACAGCCCACAGAGTACTCAGATGATGAGGAA 600 TATATTGGTAAATTTTTGAAACCAGGAGAACAGCCCACAGAGTACTCAGATGATGAGGAA 600

GCAAAGGACACCAAAGCGAAGACGGATGATTAGATGTAGTTGAGGTGATTGCGCATTGCT 660 GCAAAGGACACCAAAGCGAAGACGGATGATTAGATGTAGTTGAGGTGATTGCGCATTGCT 660 GCAAAGGACACCAAAGCGAAGACGGATGATTAGATGTAGTTGAGGTGATTGCGCATTGCT 660 ***
GTATAGGTTAAGGCCTCTCGGTTCCACCAGACTCCAAAGCCCTTGAGCATGGTCTTAAGA 720 GTATAGGTTAAGGCCTCTCGGTTCCACCAGACTCCAAAGCCCTTGAGCATGGTCTTAAGA 720 GTATAGGTTAAGGCCTCTCGGTTCCACCAGACTCCAAAGCCCTTGAGCATGGTCTTAAGA 720 TTAGGATGTGGACGTGAAAAAAAGTAAAAAAAAAAAAAAAGAACCCCACTCAATTAGTCA 780 TTAGGATGTGGACGTGAAAAAAAGTAAAAAAAAAAAAAAAGAACCCCACTCAATTAGTCA 780 TTAGGATGTGGACGTGAAAAAAAGTAAAAAAAAAAAAAAAGAACCCCACTCAATTAGTCA 780 CTAATGATACGGTGTGATGGAAAAAGCCTACATTAGGTTGGGGGTTGGAGGTTTAAACTA 840 CTAATGATACGGTGTGATGGAAAAAGCCTACATTAGGTTGGGGGTTGGAGGTTTAAACTA 840 CTAATGATACGGTGTGATGGAATAAGCCTACATTAGGTTGGGGGTTGGAGGTTTAAACTA 840

TATGTAAAACTACTACTTTATATTTTTTCTCATAAGGGGCTAATTAATCCCAAATATGTT 900 091 TATGTAAAACTACTACTTTATATTTTTTCTCATAAGGGGCTAATTAATCCCAAATATGTT 900 TATGTAAAACTACTACTTTATATTTTTTCTCATAAGGGGCTAATTAATCCCAAATATGTT 900 ***) CTCAATAAAGATTGTCTACTTTGAACAATTTATCGATATGTGGTGACTTTGGTTAGTCTG 960 CTCAATAAAGATTGTCTACTTTGAACAATTTATCGATATGTGGTGACTTTGGTTAGTCTG 960 CTCAATAAAGATTGTCTACTTTGAACAATTTATCGATATGTGGTGACTTTGGTTAGTCTG 960 GGTGAGCCATGAAAGTTTGAGTAGGAGGAGCAGGAGGTGACAAGATCAGTCATTATCAGG 1020 GGTGAGCCATGAAAGTTTGAGTAGGAGGAGCAGGAGGTGACAAGATCAGTCATTATCAGG 1020 GGTGAGCCATGAAAGTTTGAGTAGGAGGAGCAGGAGGTGACAAGATCAGTCATTATCAGG 1020 CTTATTGGGGTATTTCATAAGGTATAATCTTGCAGTTAAAATGGAAAATAAAGTCTCTTA 1080 CTTATTGGGGTATTTCATAAGGTATAATCTTGCAGTTAAAATGGAAAATAAAGTCTCTTA 1080 CTTATTGGGGTATTTCATAAGGTATAATCTTGCAGTTAAAATGGAAAATAAAGTCTCTTA 1080

CAAAGGAGAGAGAAGGCTGATAGATATGCAGCTTTGTAGACCAATGCAAGCGACAAGTAT 1140 CAAAGGAGAGAGAAGGCTGATAGATATGCAGCTTTGTAGACCAATGCAAGCAACAAGTAT 1140 CAAAGGAGAGAGAAGGCTGATAGATATGCAGCTTTGTAGACCAATGCAAGCAACAAGTAT 1140

PGMRC1-s
PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s PGMRC1-m PGMRC1-1

PGMRC1-s
PGMRC1-m PGMRC1-1

PGMRC1-s
PGMRC1-m PGMRC1-1

PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1

GTGTATACAGATTAATATAATTATAGAAGTGATTATTGAAGGATTGGGTCCCATTGAAAC 1200 GTGTATACAGATTAATATAATTATAGAAGTAATTATTGAAGGATTGGATCCCATTGAAAC 1200 GTGTATACAGATTAATATAATTATAGAAGTAATTATTGAAGGATTGGATCCCATTGAAAC 1200 ACAGCACCTACCAAACTTATCCTATTGTGTGATATATTTGTATAGATGGTTGAGATGTTG 1260 ACAGCACCTACCAAACTTATCCTATTGTGTGATATATTTGTATAGATGGTTGAAATGTTG 1260 ACAGCACCTACCAAACTTATCCTATTGTGTGATATATTTGTATAGATGGTTGAAATGTTG 1260 TTTTGTGTGGAATAAATGAATCATAGTAGTTTTGAAAATTGTTTTATGAGAATGATTGGA 1320 TTTTGTGTGGAATAAATGAATCATAGTAGTTTTGAAAATTGTTTTATGAGAATGATTGGA 1320 TTTTGTGTGGAATAAATGAATCATAGTAGTTTTGAAAATTGTTTTATGAGAATGATTGGA 1320

TATAGTTTATGAATGAGCAGCCCAAAGATGATGAGTTGGGAAGAGTGCAAGTGCAAGGAA 1380 TATAGTTTATGAATGAGCAGCCCAAAGATGATGAGTTGGGAAGAGTGCAAGTGCAAGGAA 1380 TATAGTTTATGAATGAGCAGCCCAAAGATGATGAGTTGGGAAGAGTGCAAGTGCAAGGAA 1380

TTCATCCTCAAATCAAACTTTCAGCCTTATAGAATACTGCAGAGGACTCATAATTGCTGG 1440 TTCATCCTCAAATCAAACTTTCAGCCTTATAGAATACTGCAGAGGACTCATAATTGCTGG 1440 TTCATCCTCAAATCAAACTTTCAGCCTTATAGAATACTGCAGAGGACTCATAATTGCTGG 1440 TCTGACTCAGAGTTATTTTGATACCTAACCTCTTGCCAGCATGGCATGATCCCCATCTTT 1500 TCTGACTCAGAGTTATTTTGATACCTAACCTCTTGCCAGCATGGCATGATCCCCATCTTT 1500 TCTGACTCAGAGTTATTTTGATACCTAACCTCTTGCCAGCATGGCATGATCCCCATCTTT 1500 TTCTAATCTGCCATGATTTATATTGTACTGTGGATACTCAGTGTGTGGATCCTTTATTCA 1560 TTCTAATCTACCATGATTTATATTGTACTGTGGATACTCAGTGTGTGGATCCTTTATTCA 1560 TTCTAATCTGCCATGATTTATATTGTACTGTGGATACTCAGTGTGTGGATCCTTTATTCA 1560
 GTCAATGTTTTAACATGTAAATATAGTGTATTCACCGTTGCCAAGTCCTGAAAAGACGTC 1620 GTCAATGTTTTAACATGTAAATATAGTGTGTTCACCGTTGCCAAGTCCTGAAAAGACGTC 1620 GTCAATGTTTTAACATGTAAATATAGTGTATTCACCGTTGCCAAGTCCTGAAAAGACGTC 1620 CTCCAAATCTGCCTGCCTATCACGTTTGGGAATGGTAAATGACTTAGATATTGGAATGAG 1680 CTCCAAATCTGCCTGCCTATCACGTTTGGGAATGGTAAATGACTTAGATATTGGAATGAG 1680 CTCCAAATCTGCCTGCCTATCACGTTTGGGAATGGTAAATGACTTAGATATTGGAATGAG 1680 AGTGCAAGGGGATTATCTATTTTTTCTAGAAGTTTAGAGAGATAATGTTAACATGATTAC 1740 AGTGCAAGGGGATTATCTATTTTTTCTAGAAGTTTAGAGAGATAATGTTAACATGATTAC 1740 AGTGCAAGGGGATTATCTATTTTTTTTAGAAGTTTAGAGAGATAATGTTAACATGATTAC 1740

TCTGAACTTACTGGTTGAGTGTTTTCAGTACTCTTTTCTAACGAGTCTTTAGATGACATG 1800 TCTGAACTTACTGGTTGAGTGTTTTCAGTACTCTTTTCTAACGAGTCTTTAGATGACATG 1800 TCTGAACTTACTGGTTGAGTGTTTTCAGTACTCTTTTCTAACGAGTCTTTAGATGACATG 1800 *** TAGGTTCTGGCACAAACATGTGAAAGATGTATCTCGAGAGACAACAGGATCATAATGCTG 1860 TAGGTTCTGGCACAAACATGTGAAAGATGTATCTCGAGAGACAACAGGATCATAATGCTG 1860 TAGGTTCTGGCACAAACATGTGAAAGATGTATCTCGAGAGACAACAGGATCATAATGCTG 1860 CCTTGTTAACTGTTCTTCATCTTTAAGCAAGTAAGGCCTTTAGGTAGTGTCAGTCATTGT 1920 CCTTGTTAACTGTTCTTCATCTTTAAGCAAGTAAGGCCTTTAGGTAGTGTCAGTCATTGT 1920 CCTTGTTAACTGTTCTTCATCTTTAAGCAAGTAAGGCCTTTAGGTAGTGTCAGTCATTGT 1920 AAAGAGTTTGTTTTGAGAAAATGAAGGCATAAACACTAGGCTTAGTTGACTGGGGACTGT 1980 AAAGAGTTTGTTTTGAGAAAATGAAGGCATAAACACTAGGCTTAGTTGACTGGGGACTGT 1980 AAAGAGTTTGTTTTGAGAAAATGAAGGCATAAACACTAGGCTTAGTTGACTGGGGACTGT 1980

TCATCATTCAGAAATTTGTACAAAAAAAAAAAAAAAAAA -AAAAAAAAA--- 2028 TCATCATTCAGAAATTTGTACAAAAAAAAAAAGTTATGACTTGCTCTCTTAAGTAAATTC 2040 TCATCATTCAGAAATTTGTACAAAAAAAAAAAGTTATGACTTGCTCTCTTAAGTAAATTC 2040 ******************************** * * \quad ** ***

CTTGGCAACTAAAAGAAAAGAGGTGTTTTTAATAAGAATAAGATGATTGGGCATATAGAT 2100 CTTGGCAACTAAAAGAAAAGAGGTGTTTTTAATAAGAATAAGATGATTGGGCATATAGAT 2100

TTATATGCTTTGTTACCTCCAGCCAGTAGAGGTAAATAAGATTATGCTAACAGCTTCTAT 2160

PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1 TGTTCATTTTAAAGCTTACGAGTTTTCATTTCTTATAAAAACTGATAAACAGAAAGTTGA 2280

```
PGMRC1-s
PGMRC1-m
ATGAGTGCTTCTCCCATGGCTTGATGGTTGCAACACTAGATGTCATATGATCAAGGCTTT 2340
PGMRC1-1 ATGAGTGCTTCTCCCATGGCTTGATGGTTGCAACACTAGATGTCATATGATCAAGGCTTT 2340
PGMRC1-s
PGMRC1-m
PGMRC1-1
AGGAAGC 2400
PGMRC1-s
PGMRC1-m TTCCACTAATGGCTTAAAAGCCTGATAAGTGAGTGTATTCTTAACAAAGGGAACTCCCGA 2460
PGMRC1-1 TTCCACTAATGGCTTAAAAGCCTGATAAGTGAGTGTATTCTTAACAAAGGGAACTCCCGA 2460
PGMRC1-s
PGMRC1-m
PGMRC1-1
GGCAGCTGTTGCAGTGCTGGTGGTGTAAGGTCCCTGGGGGATGTGATCTTCATTGATGAT 2520
PGMRC1-S
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-m
PGMRC1-1
PGMRC1-s
PGMRC1-
TTGGACATCAGAGTTTCGTGAGCTGGAAATTCCTGTAATTGTGTGTGCATACCAGTTTTT }269
PGMRC1-s
PGMRC1-m
PGMRC1-1
    GGCTAGCTATATCCAGCAATCTGTTCATTTGGCATTCCTGAAAGTTGCTCTTCAGGCTTT }276
PGMRC1-S
PGMRC1-m
PGMRC1-I
PGMRC1-s
PGMRC1-m
PGMRC1-
PGMRC1-S
PGMRC1-m
PGMRC1-I
PGMRC1-S
PGMRC1-m
PGMRC1-1
PGMRC1-S
PGMRC1-m
PGMRC1-1
```

Figure 3.48 Multiple alignment of three different forms of PGMRC1 (PGMRC1-s, PGMRC1-m and PGMRC1-l) of P. monodon.

จุหาลงกรณ์มหาวิทยาลัย

Innexin1 and innexin2 were initially found in the conventional and reverse SSH libraries, respectively. The full length cDNA of innexin1 and innexin2 of P. monodon were successfully characterized. The amplification products of 5'RACEPCR of innexin1 were 1000 bp whereas those of 5^{\prime} and 3^{\prime} RACE products of innexin2 were 1000 and 800 bp , respectively (Fig. 3.49). The full length cDNAs of innexin1 was 2505 bp in length with an ORF of 1143 bp corresponding to a polypeptide of 380
amino acids (Fig. 3.50) while the full length of innexin2 was 1651 bp in length with an ORF of 1077 bp corresponding to a protein of 358 amino acids (Fig. 3.51).

The closest similarity of these transcripts were innexin1 of Schistocerca americana $(\mathrm{E}$-value $=6 \mathrm{e}-120)$ and innexin2 of Homarus gammarus $(\mathrm{E}$-value $=7 \mathrm{e}-$ 161), respectively. Deduced innexin1 and innexin2 proteins contained an innexin domain (positions $22^{\text {nd }}-363^{\text {rd }}$, E-value $=3.30 \mathrm{e}-84$ and positions $20^{\text {th }}-358^{\text {th }}, \mathrm{E}$-value $=$ 9.90e-77, respectively). The expected MW and pI of innexin1 were 44.0 kDa and 6.42, respectively and those of innexin2 of P. monodon were 41.68 kDa and 6.37 , respectively.

Figure 3.495^{\prime} RACE-PCR product of innexin1 (A) and 5^{\prime} and 3^{\prime} RACE-PCR products innexin2 (B) of P. monodon, A 100 bp marker (lanes M2) and λ-Hind III (lane M1) were used as the marker.

Figure 3.50 The full length cDNA and deduced protein sequences of innexin1 (2505 bp ; ORF $1143 \mathrm{bp}, 380 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An innexin domain (positions $22^{\text {th }}-363^{\text {th }}$ of the deduced protein) is highlighted.

ACGCGGGGAGTGCCACTTGGACGTCCTAGCGAGGAGGAGTGCCTTACCTCCCGTTGCTGG 60 ATCCTTTATAGGATATTTTCTCTCTGCGTGGCTAGTCTCGAAGCCCCCTCGCCTCTCCAC 120 GATGCGTGATGTTTTCGACTCAATCCGGGGTCTGCTCAAAGTGGACTCCCTCAGCGTGGA 180 $\begin{array}{llllllllllllllllllll}\bar{M} & \mathbf{R} & \mathbf{D} & \mathbf{V} & \mathbf{F} & \mathbf{D} & \mathbf{S} & \mathbf{I} & \mathbf{R} & \mathbf{G} & \mathbf{L} & \mathbf{L} & \mathbf{K} & \mathbf{V} & \mathbf{D} & \mathbf{S} & \mathbf{L} & \mathbf{S} & \mathbf{V} & \mathbf{D} \\ \mathbf{2} & 20\end{array}$ CAACAAGATCTTCCAAATGCACTACAAAGTCACGATGTTCTTTCTCCTGGCGTGTAGCTT 240 $\begin{array}{lllllllllllllllllll}\mathbf{N} & \mathbf{K} & \mathbf{I} & \mathbf{F} & \mathbf{Q} & \mathbf{M} & \mathbf{H} & \mathbf{Y} & \mathbf{K} & \mathbf{V} & \mathbf{T} & \mathbf{M} & \mathbf{F} & \mathbf{F} & \mathbf{L} & \mathbf{L} & \mathbf{A} & \mathbf{C} & \mathbf{S} \\ \mathbf{L} & \mathbf{4 0}\end{array}$ GCTCGTGACACAGCGGCAGTACTTCGGCGACCCCATCGACTGCATCGTGGAAACGGTGGA 300

\mathbf{L}	\mathbf{V}	\mathbf{T}	\mathbf{Q}	\mathbf{R}	\mathbf{Q}	\mathbf{Y}	\mathbf{F}	\mathbf{G}	\mathbf{D}	\mathbf{P}	\mathbf{I}	\mathbf{D}	\mathbf{C}	\mathbf{I}
$\mathbf{l l}$														

Figure 3.51 The full length cDNA and deduced protein sequences of innexin2 (1615 bp; ORF $1077 \mathrm{bp}, 358 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An innexin domain (positions positions $20^{\text {th }}-358^{\text {th }}$ of the deduced protein) is highlighted.

A homologue of saposin was initially found in the heat stress hemocyte cDNA library. The full length cDNA of saposin were successfully characterized in testis of P. monodon. 5' RACE-PCR of saposin was carried out twice. A fragment of 1100 bp obtained from the first 5^{\prime} RACE-PCR was cloned and sequenced (Fig. 3.52). Nevertheless, the full length cDNA was still not obtained. Another primer was designed and the second 5' RACE-PCR was carried out and the amplification product of 1700 bp was cloned and sequenced.

The full length cDNAs of saposin was 3034 bp in length with an ORF of 2589 bp corresponding to a polypeptide of 862 amino acids (Fig. 3.53). The closest similarity of this transcript was saposin of Aedes aegypti (E-value $=5 \mathrm{e}-140$). A deduced saposin protein contained 2 domains of saposin/surfactant protein-B A-type domain (SAPA domains, positions $25^{\text {th }}-58^{\text {th }}$ and $823^{\text {rd }}-856^{\text {th }}$, E-value $=2.74 \mathrm{e}-12$ and $1.56 \mathrm{e}-07$, respectively) and 7 domains of Saposin (B) domains (SAPB domains, positions $68^{\text {th }}-144^{\text {th }}, 178^{\text {th }}-251^{\text {st }}, 272^{\text {nd }}-346^{\text {th }}, 437^{\text {th }}-512^{\text {th }}, 531^{\text {st }}-606^{\text {th }}, 646^{\text {th }}-$ $721^{\text {st }}$, and $738^{\text {th }}-813^{\text {th }}$, E-value $=1.32 \mathrm{e}-22,5.32 \mathrm{e}-09,7.28 \mathrm{e}-16,4.34 \mathrm{e}-23,4.61 \mathrm{e}-27$, $2.63 \mathrm{e}-22$, and $5.83 \mathrm{e}-15$, respectively). The expected MW and $\mathrm{p} I$ of the deduced saposin were 95.63 kDa and 4.65 , respectively.

Figure 3.52 RACE-PCR products of $5^{\prime}-\operatorname{saposin}$ (A and B), $3^{\prime}-c d k 7$ (C; lane 1) and 3^{\prime} dihydrolipoamide dehydrogenase (C; lane 2) of P. monodon. The 100 bp marker (lane M2) and λ-Hind III (lane M1) was used as the marker.
3^{\prime} RACE-PCR of cdk7 was successfully carried out and the amplification product of 500 bp was identified (Fig. 3.52). After sequence assembly, the full length cDNA of cdk7 was obtained. It was 1431 bp in length with an ORF of 1062 bp corresponding to a polypeptide of 353 amino acids (Fig. 3.54). The closest similarity of this transcript was cdk7 of Drosophila melanogaster (E -value $=1 \mathrm{e}-122$). A deduced cdk7 protein contained serine/threonine protein kinases, catalytic domain
(S_TKc domain, positions $20^{\text {th }}-304^{\text {th }}$ of the deducede protein, E-value $=2.83 \mathrm{e}-96$).
The expected MW and pI of this gene product were 95.63 kDa and 4.65 , respectively.

ATACATCACATGACGACTCTCGGCTGATCTCTTCCGTTTTGCTTCACTTGTGTGTGTTCT 60
CTCTGGTGCTGGGGTTGTGGTCGTCCTTACTGCGTAGGTCAAGTTCCTAAGCCACCATGA 120
M K 2
AGCTGCCTGGCTTTGGGTTGGCTCTCCTCCTGGCAGCATGTGTTGTGCACAGTGAAGCTA 180

CCTTGTTAGGATCCAGGAAGTGCACATTTGGTCCCAGTTACTGGTGCCACTCTATTCAAA 240
$\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{L} & \mathbf{G} & \mathbf{S} & \mathbf{R} & \mathbf{K} & \mathbf{C} & \mathbf{T} & \mathbf{F} & \mathbf{G} & \mathbf{P} & \mathbf{S} & \mathbf{Y} & \mathbf{W} & \mathbf{C} & \mathbf{H} & \mathbf{S} & \mathbf{I} & \mathbf{Q} & \mathbf{N} & 42\end{array}$ ATGCTAAGGAGTGCAATGCAGTTAATCACTGTATTCAGACGATATGGGAAAACCTGGAAT 300
 TGCCTGAAGACAATGATGATATTTGCACCTTGTGTAAGAACATGGTGAAGGAGGCCAGAG 360
$\begin{array}{lllllllllllllllllllll}\mathbf{P} & \mathbf{E} & \mathbf{D} & \mathbf{N} & \mathbf{D} & \mathbf{D} & \mathbf{I} & \mathbf{C} & \mathbf{T} & \mathbf{L} & \mathbf{C} & \mathbf{K} & \mathbf{N} & \mathbf{M} & \mathbf{V} & \mathbf{K} & \mathbf{E} & \mathbf{A} & \mathbf{R} & \mathbf{D} & 82\end{array}$ ACCAACTTCTCAGTAATGAAACCCAGGAAGAAATTCGTGAGGTGTTTGATGGGTCATGCC 420 $\mathbf{Q} \quad \mathbf{L} \quad \mathbf{L} \quad \mathbf{S} \quad \mathbf{N} \quad \mathbf{E} \quad \mathbf{T} \quad \mathbf{Q} \quad \mathbf{E} \quad \mathbf{E} \quad \mathbf{I} \quad \mathbf{R} \quad \mathbf{E} \quad \mathbf{V} \quad \mathbf{F} \quad \mathbf{D} \quad \mathbf{G} \quad \mathbf{S} \quad \mathbf{C} \quad \mathbf{R} 102$ GTCTCATCCCCATTAAGATAATCTCTGACGAATGTGTTGATATTGCCAACGACTTCATTC 480
$\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{I} & \mathbf{P} & \mathbf{I} & \mathbf{K} & \mathbf{I} & \mathbf{I} & \mathbf{S} & \mathbf{D} & \mathbf{E} & \mathbf{C} & \mathbf{V} & \mathbf{D} & \mathbf{I} & \mathbf{A} & \mathbf{N} & \mathbf{D} & \mathbf{F} & \mathbf{I} & \mathbf{P} & \mathbf{1 2 2}\end{array}$ CCGAATTGATTGACACACTGGCATCACAGATGAACCCCCAGTTGGTCTGTGCCACTGCAG 540

E L I D T L A \quad I
GTCTTTGCAACTCTGCCAGAGTTGACAAACTCATCAGTGAAAATCAGGCTGCTCTTCAAG 600
$\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{C} & \mathbf{N} & \mathbf{S} & \mathbf{A} & \mathbf{R} & \mathbf{V} & \mathbf{D} & \mathbf{K} & \mathbf{L} & \mathbf{I} & \mathbf{S} & \mathbf{E} & \mathbf{N} & \mathbf{Q} & \mathbf{A} & \mathbf{A} & \mathbf{L} & \mathbf{Q} & \mathbf{G} & \mathbf{1 6 2}\end{array}$
GATTCAACCCTAATGCATTAAAGCACTCGGGGGAGCACCCACAACCAGGAGACTGTGAAT 660
$\begin{array}{lllllllllllllllllllll}\mathbf{F} & \mathbf{N} & \mathbf{P} & \mathbf{N} & \mathbf{A} & \mathbf{L} & \mathbf{K} & \mathbf{H} & \mathbf{S} & \mathbf{G} & \mathbf{E} & \mathbf{H} & \mathbf{P} & \mathbf{Q} & \mathbf{P} & \mathbf{G} & \mathbf{D} & \mathbf{C} & \mathbf{E} & \mathbf{S} & 182\end{array}$
CTTGCAGGGACTTCATTGCACGAACCATCCGCCTTGTCAAGACCCACTCTCGAGCTGAGC 720
$\mathbf{C} \quad \mathbf{R} \quad \mathbf{D} \quad \mathbf{F} \quad \mathbf{I} \quad \mathbf{A} \quad \mathbf{R} \quad \mathbf{T} \quad \mathbf{I} \quad \mathbf{R} \quad \mathbf{L} \quad \mathbf{V} \quad \mathbf{K} \quad \mathbf{T} \quad \mathbf{H} \quad \mathbf{S} \quad \mathbf{R} \quad \mathbf{A} \quad \mathbf{E} \quad \mathbf{L} 202$
TCGTGGACAGATTGATAGCTATATGTGGACGTTTTGGATCTCTCTCTGATGGCTGCAGTG 780

CCTTGGTTGAAGCTAACTTCGATGATATTTACAATTTCTTAACAGATCAGCTTACACCAG 840
$\mathbf{L} \quad \mathbf{V} \quad \mathbf{E} \quad \mathbf{A} \quad \mathbf{N} \quad \mathbf{F} \quad \mathbf{D} \quad \mathbf{D} \quad \mathbf{I} \quad \mathbf{Y} \quad \mathbf{N} \quad \mathbf{F} \quad \mathbf{L} \quad \mathbf{T} \quad \mathbf{D} \quad \mathbf{Q} \quad \mathbf{L} \quad \mathbf{T} \quad \mathbf{P} \quad \mathbf{E} 242$
AAGACTTCTGTGACCTAGTTGAAATGTGTGAGAACAGAATGCACCAGAGTGGACAGTACA 900 $\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{F} & \mathbf{C} & \mathbf{D} & \mathbf{L} & \mathbf{V} & \mathbf{E} & \mathbf{M} & \mathbf{C} & \mathbf{E} & \mathbf{N} & \mathbf{R} & \mathbf{M} & \mathbf{H} & \mathbf{Q} & \mathbf{S} & \mathbf{G} & \mathbf{Q} & \mathbf{Y} & \mathbf{T} & 262\end{array}$
CTCGTCNTGCACTTTCACACTCTGGTGATGAACCTTGCGACTTCTGTGAAGCAATTGTGC 960

AACACTGGAGAGAGGTTCTTACAGCAAATACCACTGAAGAAGAATTCAAAGAGATCCTAG 1020 $\begin{array}{lllllllllllllllll}\mathbf{H} & \mathbf{W} & \mathbf{R} & \mathbf{E} & \mathbf{V} & \mathbf{L} & \mathbf{T} & \mathbf{A} & \mathbf{N} & \mathbf{T} & \mathbf{T} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{F} & \mathbf{K} & \mathbf{E} \\ \mathbf{I} & \mathbf{L} & \mathbf{D} & 302\end{array}$ ATGGCTTGTGTCGTCAGACTGGCAGGTTCAGCAAGAACTGCCTTGCTTTGGTAGATGAAT 1080 $\begin{array}{lllllllllllllllllllll}\mathbf{G} & \mathbf{L} & \mathbf{C} & \mathbf{R} & \mathbf{Q} & \mathbf{T} & \mathbf{G} & \mathbf{R} & \mathbf{F} & \mathbf{S} & \mathbf{K} & \mathbf{N} & \mathbf{C} & \mathbf{L} & \mathbf{A} & \mathbf{L} & \mathbf{V} & \mathbf{D} & \mathbf{E} & \mathbf{Y} & 322\end{array}$
ATTACCTGATTGTGTACAGCTTTCTGGTCTCTGAAATTCAACCCAAGGAAATCTGTGAAG 1140 $\mathbf{Y} \quad \mathbf{L} \quad \mathbf{I} \quad \mathbf{V} \quad \mathbf{Y}$
CTGTAGGACTTTGTGGTTCTAATTCAGTTTTCAGTGGAGAGCATCCAGCTTGGACAGTGC 1200 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{G} & \mathbf{L} & \mathbf{C} & \mathbf{G} & \mathbf{S} & \mathbf{N} & \mathbf{S} & \mathbf{V} & \mathbf{F} & \mathbf{S} & \mathbf{G} & \mathbf{E} & \mathbf{H} & \mathbf{P} & \mathbf{A} & \mathbf{W} & \mathbf{T} & \mathbf{V} & \mathbf{L} & 362\end{array}$
TTGATGTAAGCCAGAGAATTCCACAAACTCCTCTTAGGCCATCATTGATGGTTGGGCAGC 1260

ACTTGATTGGTGGAGATGAAAGCAGTGCCATCAGATTTGAGAGTGAAAACCAAGGTTCAA 1320
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{G} \quad \mathbf{D} \quad \mathbf{E} \quad \mathbf{S} \quad \mathbf{S} \quad \mathbf{A} \quad \mathbf{I} \quad \mathbf{R}$
ATTTGCCACGTGTGAAGCTATCAAAAAGTGGCATTGGTGTGTCGAATGCTGGTAGGAATG 1380 $\mathbf{L} \mathbf{P} \mathbf{R}$ V K L S K S G I G V S N A G R N G 422
GGATGTTGGCTGCACCTGTTGGAAAGGGACGCGTTGGGGATGACAACAAGTGTGTGATGT 1440
$\begin{array}{llllllllllllllllllll}\mathbf{M} & \mathbf{L} & \mathbf{A} & \mathbf{A} & \mathbf{P} & \mathbf{V} & \mathbf{G} & \mathbf{K} & \mathbf{G} & \mathbf{R} & \mathbf{V} & \mathbf{G} & \mathbf{D} & \mathbf{D} & \mathbf{N} & \mathbf{K} & \mathbf{C} & \mathbf{V} & \mathbf{M} & \mathbf{C} \\ 442\end{array}$
GCGAGTTTGCTCTTCATTTCCTGCAGAATATGCTTGAGCAGAAGGACACTCGTAAGGACA 1500
$\begin{array}{lllllllllllllllllllll}\mathbf{E} & \mathbf{F} & \mathbf{A} & \mathbf{L} & \mathbf{H} & \mathbf{F} & \mathbf{L} & \mathbf{Q} & \mathbf{N} & \mathbf{M} & \mathbf{L} & \mathbf{E} & \mathbf{Q} & \mathbf{K} & \mathbf{D} & \mathbf{T} & \mathbf{R} & \mathbf{K} & \mathbf{D} & \mathbf{I} 462\end{array}$
TCGAAGATGCTGTTGAGAGGCTGTGCACCATGATGCCCCATTCACTGGCAGAGGAGTGTG 1560
 AGGACTATGTAGATGCCTATGGTGACCAAGTTATTGAGTTGCTGGCTCAAGAGATTGACC 1620 $\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{Y} & \mathbf{V} & \mathbf{D} & \mathbf{A} & \mathbf{Y} & \mathbf{G} & \mathbf{D} & \mathbf{Q} & \mathbf{V} & \mathbf{I} & \mathbf{E} & \mathbf{L} & \mathbf{L} & \mathbf{A} & \mathbf{Q} & \mathbf{E} & \mathbf{I} & \mathbf{D} & \mathbf{P} & 502\end{array}$
CATCCCAGATCTGTCCTATGCTGCATCTCTGCCCATCTGAAGGAGAGTCAGAGGAGGCAG 1680 $\mathbf{S} \quad \mathbf{Q} \quad \mathbf{I} \quad \mathbf{C} \quad \mathbf{P} \quad \mathbf{M} \quad \mathbf{L} \quad \mathbf{H} \quad \mathbf{L}$ AGCAGGTCACATCTGAAAAACCTGATGTATCTTGTGTTGTGTGTGAGTATGCTTTGACCC 1740
 AGCTGGAGGACATGTTGGAAGATAACAGAACTGAAGCAGGCATTGAGAGTGCTCTAGAAA 1800 $\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{E} & \mathbf{D} & \mathbf{M} & \mathbf{L} & \mathbf{E} & \mathbf{D} & \mathbf{N} & \mathbf{R} & \mathbf{T} & \mathbf{E} & \mathbf{A} & \mathbf{G} & \mathbf{I} & \mathbf{E} & \mathbf{S} & \mathbf{A} & \mathbf{L} & \mathbf{E} & \mathbf{R} 562\end{array}$
GGTTGTGTGCCCTTTTGCCCAAGTCAGCACGTAAAGAATGTGATATGTTTGTTGAAATGT 1860 $\begin{array}{llllllllllllllllllllll}\mathbf{L} & \mathbf{C} & \mathbf{A} & \mathbf{L} & \mathbf{L} & \mathbf{P} & \mathbf{K} & \mathbf{S} & \mathbf{A} & \mathbf{R} & \mathbf{K} & \mathbf{E} & \mathbf{C} & \mathbf{D} & \mathbf{M} & \mathbf{F} & \mathbf{V} & \mathbf{E} & \mathbf{M} & \mathbf{Y} & 582\end{array}$

ACACTGATCAGGTCATACAGATGTTGCTCAACAACTTGTCCCCTGATGAAATATGCACTA 1920
$\mathbf{T} \quad \mathbf{D} \quad \mathbf{Q} \quad \mathbf{V} \quad \mathbf{I}$ Q $\quad \mathbf{M}$ L L
ACCTGGGATTGTGTAAGCAAACAGAAAGTGCATTGCCTGTGCTTGATGCCTCTCACCAGT 1980 L $\mathbf{G} \quad \mathbf{L} \quad \mathbf{C} \quad \mathbf{K}$ TGCCAGTGTCTCGCATGTTCGTTCCAGCTGTATCATCACAAACAACAAACAACTTGGAGA 2040 $\begin{array}{lllllllllllllllllllll}\mathbf{P} & \mathbf{V} & \mathbf{S} & \mathbf{R} & \mathbf{M} & \mathbf{F} & \mathbf{V} & \mathbf{P} & \mathbf{A} & \mathbf{V} & \mathbf{S} & \mathbf{S} & \mathbf{Q} & \mathbf{T} & \mathbf{T} & \mathbf{N} & \mathbf{N} & \mathbf{L} & \mathbf{E} & \mathrm{M} \mathbf{6 4 2}\end{array}$ TGACACAGTCTGCAGCATGTGTGTTGTGCGAGTTTGCTATGGTTCAGGTTGATGACTTGC 2100
 TCTCAGAAAATGCTACTGAGGATGAAATCATTGAAGTTGTGGACTTCATTTGTGCTCATA 2160 S E N A A \quad I TGCCAGGTGTTCTTGCTGATGATTGTATTGGCTTTGTTGAACAGTATGCTGATGCCATCA 2220 $\begin{array}{llllllllllllllllllll}\mathbf{P} & \mathbf{G} & \mathbf{V} & \mathbf{L} & \mathbf{A} & \mathbf{D} & \mathbf{D} & \mathbf{C} & \mathbf{I} & \mathbf{G} & \mathbf{F} & \mathbf{V} & \mathbf{E} & \mathbf{Q} & \mathbf{Y} & \mathbf{A} & \mathbf{D} & \mathbf{A} & \mathbf{I} & \mathbf{I} \\ 702\end{array}$
TCAAGTTATTGGTTCATGAACTTGGTCCGAAGACTGTTTGCCAACAGATCAAGCTCTGCA 2280 $\begin{array}{llllllllllllllllllll}\mathbf{K} & \mathbf{L} & \mathbf{L} & \mathbf{V} & \mathbf{H} & \mathbf{E} & \mathbf{L} & \mathbf{G} & \mathbf{P} & \mathbf{K} & \mathbf{T} & \mathbf{V} & \mathbf{C} & \mathbf{Q} & \mathbf{Q} & \mathbf{I} & \mathbf{K} & \mathbf{L} & \mathbf{C} & \mathbf{K} 722\end{array}$
AACCTCCATCATTTGAAAGTATGAGAGCCCTTATTAATATGAGAATGGACAAATGCCAAG 2340

TTTGTGAGGGAGTTGTTAACTATATTGACAAGAAGCTGAAGGATGGAGATGCAACGACCA 2400 C $\quad \mathbf{E} \quad \mathbf{G} \quad \mathbf{V}$
CCATTGACACGGTTCTTGAAGAAGTTTATCGACTCTTCCCGAATAATGCAAAGGACACGT 2460

GCCGCAGTATGATCGAAGTTTATGGGCCCTATGTAGTGAACCTCCTGGCTGAACTAGGGG 2520

ACTCGAAGCGTGTGTGCCAGGCCATAAAGTTCTGCCCCCACCACACTTCGGAACCACTCC 2580
 TGGGAGCTGAAAAGTGCACTTGGGGTCCTTCTTATTGGTGCCAGACCAAGATGCATGCAA 2640 G A E K C C W G P S Y W CAGCCTGTAAGGCAACTGTTCACTGTGAAACGAAGGTGTGGAAGGGAGTTGTTCCTGCCA 2700
 TTTAAAGATAAGAGGATTGATTGCAAGAAGAGGAGGAGGAAGAAAAGAAAAGAAAAAAAA 2760

AAAGAAATGAAGATGAAGACAGAGTGGATGTAGATATTGGGAGGGCTTATTTTTTTCTCA 2820 AAAAAGCAGCAGTGCAAAAAAAAGATAAATGGTTTCAAATATACACTTGTCATTATGAGA 2880 ACTACTGTCTGTGATGAATATTTTTTAATGCTTAATGATTATGATTCCTCCAGTTTGACT 2940 TATATTTTGTCTTGTTAGTTGTAAGGAATATTGGAATAACCAGGATATGTAAGAATATAT 3000 AGAAGAATAATTTTAAAAAAAAAAAAAAAAAAAA

Figure 3.53 The full length cDNA and deduced protein sequences of saposin (3034 bp; ORF $2589 \mathrm{bp}, 862$ aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. Two domains of saposin/surfactant protein-B A-type domain (SAPA domain, positions $25^{\text {th }}-58^{\text {th }}$ and $823^{\text {rd }}-856^{\text {th }}$) and 7 domains of saposin (B) Domains (SAPB domains, positions $68^{\text {th }}-144^{\text {th }}, 178^{\text {th }}-251^{\text {st }}, 272^{\text {nd }}-346^{\text {th }}, 437^{\text {th }}-$ $512^{\text {th }}, 531^{\text {st }}-606^{\text {th }}, 646^{\text {th }}-721^{\text {st }}$, and $738^{\text {th }}-813^{\text {th }}$ of the deduced protein) are highlighted.

Figure 3.54 The full length cDNA and deduced protein sequences of cdk7 (1431 bp; ORF $1062 \mathrm{bp}, 353 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A serinetthreonine protein kinases catalytic domain (S_TKc domain, positions $20^{\text {th }}-304^{\text {th }}$ of the deduced protein) is highlighted.

3' RACE-PCR of troponinT homologue were carried out. 3' RACE products (600 bp) were cloned and sequenced (Fig. 3.55). After sequences of the RACR-PCR product and EST were assembled, the full length CDNA of troponinT was successfully isolated. It was 1430 bp in length with an ORF of 1107 bp encoding a polypeptide of 368 amino acids (Fig. 3.56). The closest similarity of this transcript was TPA_inf: troponin T isoform 3 of Drosophila pseudoobscura (E-value $=3 \mathrm{e}-$ 133). No functionall protein domain was found in the deduced troponin T of P. monodon. The expected MW and $\mathrm{p} I$ of the deduced troponinT protein were 43.92 kDa and 4.94, respectively.

5' and 3' RACE-PCR of ERO1 homologue were carried out. The resulting products of 650 bp and 1100 bp were cloned and sequenced (Fig. 3.55). Two forms of the full length cDNA of ERO1 were successfully characterized. The short form of

ERO1 was 1756 bp in length with an ORF of 1413 bp (ERO1-s; Fig. 3.57) corresponding to 470 amino acids. The long form of ERO1 was 1774 bp in length with an ORF of 1434 bp corresponding to 477 amino acids (ERO1-l; Fig. 3.58). The closest similarity of these transcripts were Ero1L CG1333-PB, isoform B of Apis mellifera (E -value $=8 \mathrm{e}-145$ and $4 \mathrm{e}-143$, respectively). A deduced ERO1 protein contained an ERO1 domain (ERO1-s at positions $66^{\text {th }}-468^{\text {th }}$, E-value $=1.90 \mathrm{e}-158$ and ERO1-l at positions $66^{\text {th }}-462^{\text {nd }}$, E-value $=8.20 \mathrm{e}-160$). Amino acid and neucleotide sequences of these two isoform of ERO1 were aligned (Fig. 3.59-3.60). Two isoforms of ERO1 were different due to the presence/absence of a CCAATGATTTTCTGAAAG motif encoding a ANDFLK hexapeptide. The expected MW and $\mathrm{p} I$ of these gene products were 53.81 kDa and 6.34 and 54.5 kDa and 6.34 , respectively.
5^{\prime} and 3^{\prime} RACE-PCR of dihydrolipoamide dehydrogenase (DLADH) homologue were carried out. 5' RACE product (650 bp, Fig. 3.55) and 3' RACE products (1100 and 800 bp , Fig. 3.52) were cloned and sequenced. Nucleotide sequences were assembled, 2 different isoforms of DLADH were successfully characterized. They were 1770 and 2050 bp in length with an identical ORF of 1521 bp, 506 amino acids but different 3^{\prime} UTR regions (Fig. 3.61 and 3.62). Nucleotide sequences of two isoforms of DLADH were aligned and length polymorphism rather than sequence variation at the 3^{\prime} UTRs (Fig. 3.63).

The closest similarity of these transcripts were dihydrolipoamide dehydrogenase of Mus musculus (E -value $=0.0$). A deduced DLADH protein contained a pyridine nucleotide-disulphide oxidoreductase domain (Pyr_redox domain; positions $213^{\text {th }}-311^{\text {th }}$, E -value $=1.30 \mathrm{e}-25$), a pyridine nucleotide-disulphide oxidoreductase 2 domain (Pyr_redox 2 domain; positions $41^{\text {st }}-358^{\text {th }}$, E-value $=$ $8.90 \mathrm{e}-69$), and a pyridine nucleotide-disulphide oxidoreductase dimerization domain (Pyr_redox_dim domain; positions $386^{\text {th }}-495^{\text {th }}$, E-value $=3.10 \mathrm{e}-63$). The expected MW and $\mathrm{p} I$ of this gene product were 53.82 kDa and 6.96 , respectively.

Figure 3.55 3'RACE-PCR of troponin T (A), 5'RACE-PCR of dihydrolipoamide dehydrogenase (B) and ERO1 (C) and 3'RACE-PCR of ERO1 (D) of P. monodon. A 100 bp marker (lane M2) and λ-Hind III (lane M1) was used as the marker.

[^3]GAGGAAGAGGGCGGTGAGGAAGACGAGATGCCACCCGAGCCTGTGTACGAGGAGGAAGAA 1080
$\begin{array}{lllllllllllllllllllll}\mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{G} & \mathbf{G} & \mathbf{E} & \mathbf{E} & \mathbf{D} & \mathbf{E} & \mathbf{M} & \mathbf{P} & \mathbf{P} & \mathbf{E} & \mathbf{P} & \mathbf{V} & \mathbf{Y} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{E} & 338\end{array}$
GAAGAAGAAGAGGAGGAGGAAGAAGAGGAGGAAGAGGAAGAGGAAGAGGAGGAGGAAGAG 1140
$\begin{array}{lllllllllllllllllllll} & E & E & E & E & E & E & E & E & E & E & E & E & E & E & E & E & E & E & & E\end{array}$
GAAGAGGAGGAGGAGGAAGAGGAAGAGGAGTGATGAGTAAGTCTACCGTATAACTGTCCT 1200
E E E E E E E E E E \quad *
AGAAATAGCCGAATCGATGTGAGAAACTGGATCCCGTTTGAGGACTTCATGGTGTCTGAT 1260 TGTGATATGATGATAAAAGATGTCTTTGGATGTCGTCGCGTTATTTTGATTGCGTCATAG 1320 CATGTGAGCATACTCCGTGGGGTGCATCGTGTCATGTGCACCTCGTGACTGTACATCAGC 1380 GAGCAATAAAAGAGATCCAACTTAAAAAAAAAAAAAAAAAAAAAAAAAAA 1430

Figure3.56 The full length cDNA and deduced protein sequences of troponin T isoform 3 (1430 bp ; ORF $1107 \mathrm{bp}, 368 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined.

CTAATTACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGAGTCAT 60 GACAGTTACGTCAGAGTAGTAGTATATATCGTCTACACTCCAGTCCCGGGATTCAGTATC 120 TGTTCTCTCGAGTGTCGCGAGTGTTTAAGAGCGAGTCATGATGTGGTCGAGGACTTCCGC 180 $\begin{array}{lllllllll}\bar{M} & M & W & S & R & \text { T } & \text { S } & \text { A } & 8\end{array}$
GTGGGTGTTTGTCATTTTGGCAATTTCCTTTCACACTTGCACGGCGATTTGGTATGGGAT 240
$\begin{array}{llllllllllllllllllll}\text { W V } & \text { V } & \text { V } & \text { I } & \text { L } & \text { I } & \text { S } & \text { F } & \text { H } & \text { T } & \text { C } & \text { T } & \text { A } & \text { I } & \text { W } & \text { Y } & \text { G } & \text { I } & 28\end{array}$
TAAGAAGACCCCAAACGGAGACACAACTGCTGGTGAGAGGTGCTTCTGTCAGTTAAAAGG 300

AGTAATAGATGACTGTTCCTGTTCTGTGGAGACTTTAGACAGCTTCAACAACCTGAAGCT 360

GTATCCACGCCTGAATAGCCTCCTGCAGTATGACTACTTCAGGTACTGGAAGGTGAACTT 420
$\begin{array}{lllllllllllllllllll}\mathbf{Y} & \mathbf{P} & \mathbf{R} & \mathbf{L} & \mathbf{N} & \mathbf{S} & \mathbf{L} & \mathbf{L} & \mathbf{Q} & \mathbf{Y} & \mathbf{D} & \mathbf{Y} & \mathbf{F} & \mathbf{R} & \mathbf{Y} & \mathbf{W} & \mathbf{K} & \mathbf{V} & \mathbf{N} \\ \mathbf{L} & \mathbf{8 8}\end{array}$
GAAAAAAGAATGTCCTTTTTGGGAAGATGACAGCAAGTGTGCCATTCGTTACTGCAGTGT 480
$\begin{array}{lllllllllllllllllllll}\text { K } & \text { K } & \text { E } & \text { C } & \text { P } & \text { F } & \text { W } & \text { E } & \text { D } & \mathbf{D} & \mathbf{S} & \text { K } & \text { C } & \text { A } & \text { I } & \text { R } & \text { Y } & \text { C } & \mathbf{S} & \mathbf{V} & 108\end{array}$
GAAGCCATGTACTGATGTCCCAGAGGGTATAAAGGGAGCTTCCATAGACAAAATTGAGAA 540
$\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{P} & \mathbf{C} & \mathbf{T} & \mathbf{D} & \mathbf{V} & \mathbf{P} & \mathbf{E} & \mathbf{G} & \mathbf{I} & \mathbf{K} & \mathbf{G} & \mathbf{A} & \mathbf{S} & \mathbf{I} & \mathbf{D} & \mathbf{K} & \mathbf{I} & \mathbf{E} & \mathbf{K} & \mathbf{1 2 8}\end{array}$
GGAAAAGAAGGAAAAGTCCCACATGGTGACTGGACATTGTGATGGAGAGAATGACCTTGG 600
$\begin{array}{lllllllllllllllllllll}\mathbf{E} & \mathbf{K} & \mathbf{K} & \mathbf{E} & \mathbf{K} & \mathbf{S} & \mathbf{H} & \mathbf{M} & \mathbf{V} & \mathbf{T} & \mathbf{G} & \mathbf{H} & \mathbf{C} & \mathbf{D} & \mathbf{G} & \mathbf{E} & \mathbf{N} & \mathbf{D} & \mathbf{L} & \mathbf{G} & 148\end{array}$
ATACTTGAATACTACTCTCAGCAAGGAATCCAAAGTTGGTTTTAAGCGCTGGGCAGCCCA 660
$\begin{array}{lllllllllllllllllll}\mathbf{Y} & \mathbf{L} & \mathbf{N} & \mathbf{T} & \mathbf{T} & \mathbf{L} & \mathbf{S} & \mathbf{K} & \mathbf{E} & \mathbf{S} & \mathbf{K} & \mathbf{V} & \mathbf{G} & \mathbf{F} & \mathbf{K} & \mathbf{R} & \mathbf{W} & \mathbf{A} & \mathbf{A} \\ \mathbf{H} & \mathbf{1} 68\end{array}$
TGATGATGCACAGCTGAACTTTTGCAAAATTGATGACGACAGTTCTGAGGATAGTGAATA 720

TGTTGATCTATTGCTGAATCCTGAGCGGTACACAGGTTATGCAGGACCTTCAGCACATAG 780
$\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{D} & \mathbf{L} & \mathbf{L} & \mathbf{L} & \mathbf{N} & \mathbf{P} & \mathbf{E} & \mathbf{R} & \mathbf{Y} & \mathbf{T} & \mathbf{G} & \mathbf{Y} & \mathbf{A} & \mathbf{G} & \mathbf{P} & \mathbf{S} & \mathbf{A} & \mathbf{H} & \mathbf{R} & \mathbf{2 0 8}\end{array}$
AATATGGAGAACAATATACCAAGAAAATTGCTTTAAGCCATCTAGGGCAATTGGCCGTTA 840
$\begin{array}{lllllllllllllllllll}\mathbf{I} & \mathbf{W} & \mathbf{R} & \mathbf{T} & \mathbf{I} & \mathbf{Y} & \mathbf{Q} & \mathbf{E} & \mathbf{N} & \mathbf{C} & \mathbf{F} & \mathbf{K} & \mathbf{P} & \mathbf{S} & \mathbf{R} & \mathbf{A} & \mathbf{I} & \mathbf{G} & \mathbf{R}\end{array} \mathbf{Y} \mathbf{2 2 8}$
CACAGACTTCAGTAGTATTGGAGAAATGTGCTTGGAAAAAAGAACATTTTACAGAGCTAT 900
$\begin{array}{llllllllllllllllllllll}\mathbf{T} & \mathbf{D} & \mathbf{F} & \mathbf{S} & \mathbf{S} & \mathbf{I} & \mathbf{G} & \mathbf{E} & \mathbf{M} & \mathbf{C} & \mathbf{L} & \mathbf{E} & \mathbf{K} & \mathbf{R} & \mathbf{T} & \mathbf{F} & \mathbf{Y} & \mathbf{R} & \mathbf{A} & \mathbf{I} & \mathbf{2 4 8}\end{array}$
TTCCGGTCTCCATACCAGTATCAACATTCACCTGAGTGCTAACTACCTCCTGTCAGACCA 960
$\begin{array}{lllllllllllllllllllll}\mathbf{S} & \mathbf{G} & \mathbf{L} & \mathbf{H} & \mathbf{T} & \mathbf{S} & \mathbf{I} & \mathbf{N} & \mathbf{I} & \mathbf{H} & \mathbf{L} & \mathbf{S} & \mathbf{A} & \mathbf{N} & \mathbf{Y} & \mathbf{L} & \mathbf{L} & \mathbf{S} & \mathbf{D} & \mathbf{Q} & 268\end{array}$
GAATGGCTTTGAAATGTCAAAGGATGGCCAGTGGGGTCCGAATGTACAGGAATTCCAGAC 1020
$\begin{array}{lllllllllllllllllllll}\mathbf{N} & \mathbf{G} & \mathrm{F} & \mathbf{E} & \text { M } & \text { S } & \text { K } & \mathbf{D} & \mathbf{G} & \mathbf{Q} & \mathbf{W} & \mathbf{G} & \mathbf{P} & \mathbf{N} & \mathbf{V} & \mathbf{Q} & \mathbf{E} & F & \mathbf{Q} & \mathbf{T} & 288\end{array}$
GAGGTTTGACCCAGAACTAACTGGCGGAGAGGGAACCCACCGCCTGAAGAACCTCTACTT 1080 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{F} & \mathbf{D} & \mathbf{P} & \mathbf{E} & \mathbf{L} & \mathbf{T} & \mathbf{G} & \mathbf{G} & \mathbf{E} & \mathbf{G} & \mathbf{T} & \mathbf{H} & \mathbf{R} & \mathbf{L} & \mathbf{K} & \mathbf{N} & \mathbf{L} & \mathbf{Y} & \mathbf{F} & \mathbf{3}\end{array}$ TGTATACCTTCTTGAACTAAGAGCTTTAGCTAAAGCTGCACCATACCTTGAAAGCTTAGA 1140 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{Y} & \mathbf{L} & \mathbf{L} & \mathbf{E} & \mathbf{L} & \mathbf{R} & \mathbf{A} & \mathbf{L} & \mathbf{A} & \mathbf{K} & \mathbf{A} & \mathbf{A} & \mathbf{P} & \mathbf{Y} & \mathbf{L} & \mathbf{E} & \mathbf{S} & \mathbf{L} & \mathbf{E} & \mathbf{3 2 8}\end{array}$ ATACTACACAGGAAATGAAAATGAAGATAATGATGTATCAAAGGCAGTTAAAGACTTATT 1200 $\begin{array}{llllllllllllllllllllll}\mathbf{Y} & \mathbf{Y} & \mathbf{T} & \mathbf{G} & \mathbf{N} & \mathbf{E} & \mathbf{N} & \mathbf{E} & \mathbf{D} & \mathbf{N} & \mathbf{D} & \mathbf{V} & \mathbf{S} & \mathbf{K} & \mathbf{A} & \mathbf{V} & \mathbf{K} & \mathbf{D} & \mathbf{L} & \mathbf{L} & 348\end{array}$ AACTGTTGTTAAGAGTTTTCCAGAGCACTTTGATGAAAGCTCCATGTTCTCTGGCGGCCA 1260 $\begin{array}{lllllllllllllllllllll}\mathbf{T} & \mathbf{V} & \mathbf{V} & \mathbf{K} & \mathbf{S} & \mathbf{F} & \mathbf{P} & \mathbf{E} & \mathbf{H} & \mathbf{F} & \mathbf{D} & \mathbf{E} & \mathbf{S} & \mathbf{S} & \mathbf{M} & \mathbf{F} & \mathbf{S} & \mathbf{G} & \mathbf{G} & \mathbf{Q} & \mathbf{3 6 8}\end{array}$ GCATGCAGCTAAGTTGAAAGAGGAATTTCGGCAACATTTTTGGAATGTGTCTCGTATTAT 1320
$\begin{array}{llllllllllllllllllllll}\mathbf{H} & \mathbf{A} & \mathbf{A} & \mathbf{K} & \mathbf{L} & \mathbf{K} & \mathbf{E} & \mathbf{E} & \mathbf{F} & \mathbf{R} & \mathbf{Q} & \mathbf{H} & \mathbf{F} & \mathbf{W} & \mathbf{N} & \mathbf{V} & \mathbf{S} & \mathbf{R} & \mathbf{I} & \mathbf{M} & \mathbf{3 8 8}\end{array}$
GGACTGCGTTGGATGTGACAAGTGTCGTCTTTGGGGCAAGCTGCAGGTAACTGGCCTTGG 1380
$\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{C} & \mathbf{V} & \mathbf{G} & \mathbf{C} & \mathbf{D} & \mathbf{K} & \mathbf{C} & \mathbf{R} & \mathbf{L} & \mathbf{W} & \mathbf{G} & \mathbf{K} & \mathbf{L} & \mathbf{Q} & \mathbf{V} & \mathbf{T} & \mathbf{G} & \mathbf{L} & \mathbf{G} & 408\end{array}$
TACAGCACTCAAGATTCTGTTTTCAGGCAATCTAGACCCAGAAGGTAACCAAAACTTAGA 1440
$\begin{array}{lllllllllllllllllllll}\mathbf{T} & \mathbf{A} & \mathbf{L} & \mathbf{K} & \mathbf{I} & \mathbf{L} & \mathbf{F} & \mathbf{S} & \mathbf{G} & \mathbf{N} & \mathbf{L} & \mathbf{D} & \mathbf{P} & \mathbf{E} & \mathbf{G} & \mathbf{N} & \mathbf{Q} & \mathbf{N} & \mathbf{L} & \mathbf{D} & \mathbf{4 2 8}\end{array}$
TCTTCCAGCCGTAAGACACACAAAGTTCCAGCTGTCTCGTATTGAGATTGTTGCTCTTAT 1500

| \mathbf{L} | \mathbf{P} | \mathbf{A} | \mathbf{V} | \mathbf{R} | \mathbf{H} | \mathbf{T} | \mathbf{K} | \mathbf{F} | \mathbf{Q} | \mathbf{L} | \mathbf{S} | \mathbf{R} | \mathbf{I} | \mathbf{E} | \mathbf{I} | \mathbf{V} | \mathbf{A} | \mathbf{L} | \mathbf{I} | 448 |
| :--- |

Figure 3.57 The full length cDNA and deduced protein sequences of the short form of Ero1L, isoform B (ERO1-s, 1756 bp; ORF 1413 bp, 470 aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An ERO1 domain (ERO1-s, positions $66^{\text {th }}-468^{\text {th }}$ of the deduced protein) is highlighted.

CTAATTACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGAGTCAT 60 GACAGTTACGTCAGAGTAGTAGTATATATCGTCTACACTCCAGTCCCGGGATTCAGTATC 120 TGTTCTCTCGAGTGTCGCGAGTGTTTAAGAGCGAGTCATGATGTGGTCGAGGACTTCCGC 180 $\begin{array}{llllllll}M & M & W & \mathbf{S} & \mathbf{R} & \mathbf{T} & \mathbf{S} & \mathbf{A} \\ 8\end{array}$ GTGGGTGTTTGTCATTTTGGCAATTTCCTTTCACACTTGCACGGCGATTTGGTATGGGAT 240 $\begin{array}{lllllllllllllllllllll}\mathbf{W} & \mathbf{V} & \mathbf{F} & \mathbf{V} & \mathbf{I} & \mathbf{L} & \mathbf{A} & \mathbf{I} & \mathbf{S} & \mathbf{F} & \mathbf{H} & \mathbf{T} & \mathbf{C} & \mathbf{T} & \mathbf{A} & \mathbf{I} & \mathbf{W} & \mathbf{Y} & \mathbf{G} & \mathbf{I} & \mathbf{2 8}\end{array}$ TAAGAAGACCCCAAACGGAGACACAACTGCTGGTGAGAGGTGCTTCTGTCAGTTAAAAGG 300 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{K} & \mathbf{T} & \mathbf{P} & \mathbf{N} & \mathbf{G} & \mathbf{D} & \mathbf{T} & \mathbf{T} & \mathbf{A} & \mathbf{G} & \mathbf{E} & \mathbf{R} & \mathbf{C} & \mathbf{F} & \mathbf{C} & \mathbf{Q} & \mathbf{L} & \mathbf{K} & \mathbf{G} & \mathbf{4 8}\end{array}$ AGTAATAGATGACTGTTCCTGTTCTGTGGAGACTTTAGACAGCTTCAACAACCTGAAGCT 360 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{I} & \mathbf{D} & \mathbf{D} & \mathbf{C} & \mathbf{S} & \mathbf{C} & \mathbf{S} & \mathbf{V} & \mathbf{E} & \mathbf{T} & \mathbf{L} & \mathbf{D} & \mathbf{S} & \mathbf{F} & \mathbf{N} & \mathbf{N} & \mathbf{L} & \mathbf{K} & \mathbf{L} & \mathbf{6 8}\end{array}$ GTATCCACGCCTGAATAGCCTCCTGCAGTATGACTACTTCAGGTACTGGAAGGTGAACTT 420 $\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{P} & \mathbf{R} & \mathbf{L} & \mathbf{N} & \mathbf{S} & \mathbf{L} & \mathbf{L} & \mathbf{Q} & \mathbf{Y} & \mathbf{D} & \mathbf{Y} & \mathbf{F} & \mathbf{R} & \mathbf{Y} & \mathbf{W} & \mathbf{K} & \mathbf{V} & \mathbf{N} & \mathbf{L} & \mathbf{8 8}\end{array}$ GAAAAAAGAATGTCCTTTTTGGGAAGATGACAGCAAGTGTGCCATTCGTTACTGCAGTGT 480 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{K} & \mathbf{E} & \mathbf{C} & \mathbf{P} & \mathbf{F} & \mathbf{W} & \mathbf{E} & \mathbf{D} & \mathbf{D} & \mathbf{S} & \mathrm{K} & \mathbf{C} & \text { A } & \mathbf{I} & \mathbf{R} & \mathbf{Y} & \mathbf{C} & \mathbf{S} & \mathbf{V} & \mathbf{1 0 8}\end{array}$ GAAGCCATGTACTGATGTCCCAGAGGGTATAAAGGGAGCTTCCATAGACAAAATTGAGAA 540 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{P} & \mathbf{C} & \mathbf{T} & \mathbf{D} & \mathbf{V} & \mathbf{P} & \mathbf{E} & \mathbf{G} & \mathbf{I} & \mathbf{K} & \mathbf{G} & \mathbf{A} & \mathbf{S} & \mathbf{I} & \mathbf{D} & \mathbf{K} & \mathbf{I} & \mathbf{E} & \mathbf{K} & \mathbf{1 2 8}\end{array}$ GGAAAAGAAGGAAAAGTCCCACATGGTGACTGGACATTGTGATGGAGAGAATGACCTTGG 600
 ATACTTGAATACTACTCTCAGCAAGGAATCCAAAGTTGGTTTTAAGCGCTGGGCAGCCCA 660 $\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{L} & \mathbf{N} & \mathbf{T} & \mathbf{T} & \mathbf{L} & \mathbf{S} & \mathbf{K} & \mathbf{E} & \mathbf{S} & \mathbf{K} & \mathbf{V} & \mathbf{G} & \mathbf{F} & \mathbf{K} & \mathbf{R} & \mathbf{W} & \text { A } & \text { A } & \mathbf{H} & \mathbf{1 6 8}\end{array}$ TGATGATGCACAGCTGAACTTTTGCAAAATTGATGACGACAGTTCTGAGGATAGTGAATA 720
 TGTTGATCTATTGCTGAATCCTGAGCGGTACACAGGTTATGCAGGACCTTCAGCACATAG 780 $\begin{array}{lllllllllllllllllllll}\mathbf{V} & \mathbf{D} & \mathbf{L} & \mathbf{L} & \mathbf{L} & \mathbf{N} & \mathbf{P} & \mathbf{E} & \mathbf{R} & \mathbf{Y} & \mathbf{T} & \mathbf{G} & \mathbf{Y} & \mathbf{A} & \mathbf{G} & \mathbf{P} & \mathbf{S} & \mathbf{A} & \mathbf{H} & \mathbf{R} & \mathbf{2} 28\end{array}$ AATATGGAGAACAATATACCAAGAAAATTGCTTTAAGCCATCTAGGGCAATTGGCCGTTA 840 $\begin{array}{lllllllllllllllllllll}\mathbf{I} & \mathbf{W} & \mathbf{R} & \mathbf{T} & \mathbf{I} & \mathbf{Y} & \mathbf{Q} & \mathbf{E} & \mathbf{N} & \mathbf{C} & \mathbf{F} & \mathbf{K} & \mathbf{P} & \mathbf{S} & \mathbf{R} & \mathbf{A} & \mathbf{I} & \mathbf{G} & \mathbf{R} & \mathbf{Y} & \mathbf{2} 28\end{array}$ CACAGACTTCAGTAGTATTGGAGCCAATGATTTTCTGAAAGAAATGTGCTTGGAAAAAAG 900
 AACATTTTACAGAGCTATTTCCGGTCTCCATACCAGTATCAACATTCACCTGAGTGCTAA 960
 CTACCTCCTGTCAGACCAGAATGGCTTTGAAATGTCAAAGGATGGCCAGTGGGGTCCGAA 1020 $\begin{array}{lllllllllllllllllllll}\mathbf{Y} & \mathbf{L} & \mathbf{L} & \mathbf{S} & \mathbf{D} & \mathbf{Q} & \mathbf{N} & \mathbf{G} & \mathbf{F} & \mathbf{E} & \mathbf{M} & \mathbf{S} & \mathbf{K} & \mathbf{D} & \mathbf{G} & \mathbf{Q} & \mathbf{W} & \mathbf{G} & \mathbf{P} & \mathbf{N} & 288\end{array}$ TGTACAGGAATTCCAGACGAGGTTTGACCCAGAACTAACTGGCGGAGAGGGAACCCACCG 1080
 CCTGAAGAACCTCTACTTTGTATACCTTCTTGAACTAAGAGCTTTAGCTAAAGCTGCACC 1140 $\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{K} & \mathbf{N} & \mathbf{L} & \mathbf{Y} & \mathbf{F} & \mathbf{V} & \mathbf{Y} & \mathbf{L} & \mathbf{L} & \mathbf{E} & \mathbf{L} & \mathbf{R} & \mathbf{A} & \mathbf{L} & \mathbf{A} & \mathbf{K} & \mathbf{A} & \mathbf{A} & \mathbf{P} & 328\end{array}$ ATACCTTGAAAGCTTAGAATACTACACAGGAAATGAAAATGAAGATAATGATGTATCAAA 1200 $\begin{array}{llllllllllllllllllll}\mathbf{Y} & \mathbf{L} & \mathbf{E} & \mathbf{S} & \mathbf{L} & \mathbf{E} & \mathbf{Y} & \mathbf{Y} & \mathbf{T} & \mathbf{G} & \mathbf{N} & \mathbf{E} & \mathbf{N} & \mathbf{E} & \mathbf{D} & \mathbf{N} & \mathbf{D} & \mathbf{V} & \mathbf{S} & \mathbf{K} \\ \mathbf{3 4 8}\end{array}$ GGCAGTTAAAGACTTATTAACTGTTGTTAAGAGTTTTCCAGAGCACTTTGATGAAAGCTC 1260 $\begin{array}{llllllllllllllllllllll}\mathbf{A} & \mathbf{V} & \mathbf{K} & \mathbf{D} & \mathbf{L} & \mathbf{L} & \mathbf{T} & \mathbf{V} & \mathbf{V} & \mathbf{K} & \mathbf{S} & \mathbf{F} & \mathbf{P} & \mathbf{E} & \mathbf{H} & \mathbf{F} & \mathbf{D} & \mathbf{E} & \mathbf{S} & \mathbf{S} & \mathbf{3 6 8}\end{array}$ CATGTTCTCTGGCGGCCAGCATGCAGCTAAGTTGAAAGAGGAATTTCGGCAACATTTTTG 1320 $\begin{array}{llllllllllllllllll}\mathbf{M} & \mathbf{F} & \mathbf{S} & \mathbf{G} & \mathbf{G} & \mathbf{Q} & \mathbf{H} & \mathbf{A} & \mathbf{A} & \mathbf{K} & \mathbf{L} & \mathbf{K} & \mathbf{E} & \mathbf{E} & \mathbf{F} & \mathbf{R} & \mathbf{Q} & \mathbf{H}\end{array} \mathbf{F} \quad \mathbf{W} \mathbf{3 8 8}$ GAATGTGTCTCGTATTATGGACTGCGTTGGATGTGACAAGTGTCGTCTTTGGGGCAAGCT 1380 $\begin{array}{lllllllllllllllllllll}\mathbf{N} & \mathbf{V} & \mathbf{S} & \mathbf{R} & \mathbf{I} & \mathbf{M} & \mathbf{D} & \mathbf{C} & \mathbf{V} & \mathbf{G} & \mathbf{C} & \mathbf{D} & \mathbf{K} & \mathbf{C} & \mathbf{R} & \mathbf{L} & \mathbf{W} & \mathbf{G} & \mathbf{K} & \mathbf{L} & 408\end{array}$ GCAGGTAACTGGCCTTGGTACAGCACTCAAGATTCTGTTCTCAGGCAATCTAGACCCAGA 1440 $\begin{array}{llllllllllllllllllll}\mathbf{Q} & \mathbf{V} & \mathbf{T} & \mathbf{G} & \mathbf{L} & \mathbf{G} & \mathbf{T} & \mathbf{A} & \mathbf{L} & \mathbf{K} & \mathbf{I} & \mathbf{L} & \mathbf{F} & \mathbf{S} & \mathbf{G} & \mathbf{N} & \mathbf{L} & \mathbf{D} & \mathbf{P} & \mathbf{E}\end{array} \mathbf{4 2 8}$ AGGTAACCAAAACTTAGATCTTCCAGCCGTGAGACACACAAAGTTCCAGCTGTCTCGTAT 1500

 EAACTTCG L I N A FAG I GAACTTTCGGCAGAGCATAACCAGAAGATAATGACAAGATTGGCTACTTTGAGCTGAACT 1620 $\begin{array}{lllllllllll}\mathbf{N} & \mathbf{F} & \mathbf{R} & \mathbf{Q} & \mathbf{S} & \mathbf{I} & \mathbf{T} & \mathbf{R} & \mathbf{R} & \boldsymbol{*} & \mathbf{4 7 7}\end{array}$ TCTGTGATATTTGTTATATGTTACCCAAATACATAGTTGTATGCTAGATTATGACAGGTG 1680 GGCTGCCAACTGCCAGTGGTAGCATCATATATTCAAAGAAGGAACATGACAGATGTAAGA 1740 CAAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1774

Figure3.58 The full length cDNA and deduced protein sequences of the long form of Ero1L, isoform B (ERO1-l; $1774 \mathrm{bp} ; 1434 \mathrm{bp}, 477 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. An ERO1 domain (positions $66^{\text {th }}$ $462^{\text {th }}$ of the deduced protein) is highlighted.

ERO1-s	MMWSRTSAWVFVILAISFHTCTAIWYGIKKTPNGDTTAGERCFCQLKGVIDDCSCSVETL 60
ER01-1	MMWSRTSAWVFVILAISFHTCTAIWYGIKKTPNGDTTAGERCFCQLKGVIDDCSCSVETL 60
ER01-s	DSFNNLKLYPRLNSLLQYDYFRYWKVNLKKECPFWEDDSKCAIRYCSVKPCTDVPEGIKG 120
ER01-1	DSFNNLKLYPRLNSLLQYDYFRYWKVNLKKECPFWEDDSKCAIRYCSVKPCTDVPEGIKG 120 **
ERO1-s	ASIDKIEKEKKEKSHMVTGHCDGENDLGYLNTTLSKESKVGFKRWAAHDDAQLNFCKIDD 180
ER01-1	ASIDKIEKEKKEKSHMVTGHCDGENDLGYLNTTLSKESKVGFKRWAAHDDAQLNFCKIDD 180
ERO1-s	DSSEDSEYVDLLLNPERYTGYAGPSAHRIWRTIYQENCFKPSRAIGRYTDFSSIG---- 235
ER01-1	DSSEDSEYVDLLLNPERYTGYAGPSAHRIWRTIYQENCFKPSRAIGRYTDFSSIGANDFL 240 **
ERO1-s	-EMCLEKRTFYRAISGLHTSINIHLSANYLLSDQNGFEMSKDGQWGPNVQEFQTRFDPEL 294
ER01-1	KEMCLEKRTFYRAISGLHTSINIHLSANYLLSDQNGFEMSKDGQWGPNVQEFQTRFDPEL 300
ERO1-s	TGGEGTHRLKNLYFVYLLELRALAKAAPYLESLEYYTGNENEDNDVSKAVKDLLTVVKSF 354
ER01-1	TGGEGTHRLKNLYFVYLLELRALAKAAPYLESLEYYTGNENEDNDVSKAVKDLLTVVKSF 360
ERO1-s	PEHFDESSMFSGGQHAAKLKEEFRQHFWNVSRIMDCVGCDKCRLWGKLQVTGLGTALKIL 414
ER01-1	PEHFDESSMFSGGQHAAKLKEEFRQHFWNVSRIMDCVGCDKCRLWGKLQVTGLGTALKIL 420 ***
ER01-s	FSGNLDPEGNQNLDLPAVRHTKFQLSRIEIVALINAFGRLSSSIMALENFRQSITRR 471
ER01-1	FSGNLDPEGNQNLDLPAVRHTKFQLSRIEIVALINAFGRLSSSIMALENFRQSITRR 477

Figure 3.59 Pairwise alignments of deduced amino acid sequences of the short and long forms of P. monodon Ero1 isoform B.

ER01-s	AATTACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGAGTCAT	60
ER01-1	CTAATTACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGAGTCAT	60
ER01	GACAGTTACGTCAGAGTAGTAGTATATATCGTCTACACTCCAGTCCCGGGATTCAGTATC	120
ER01-1	GACAGTTACGTCAGAGTAGTAGTATATATCGTCTACACTCCAGTCCCGGGATTCAGTATC **	120
ER01-s	TGTTCTCTCGAGTGTCGCGAGTGTTTAAGAGCGAGTCATGATGTGGTCGAGGACTTCCGC	180
ER01-1	TGTTCTCTCGAGTGTCGCGAGTGTTTAAGAGCGAGTCATGATGTGGTCGAGGACTTCCGC	180
ER01-s	GTGGGTGTTTGTCATTTTGGCAATTTCCTTTCACACTTGCACGGCGATTTGGTATGGGAT	240
ER01-1	GTGGGTGTTTGTCATTTTGGCAATTTCCTTTCACACTTGCACGGCGATTTGGTATGGGAT ***	240
ER01-s	TAAGAAGACCCCAAACGGAGACACAACTGCTGGTGAGAGGTGCTTCTGTCAGTTAAAAGG	300
ER01-1	TAAGAAGACCCCAAACGGAGACACAACTGCTGGTGAGAGGTGCTTCTGTCAGTTAAAAGG **	300
ER01-s	AGTAATAGATGACTGTTCCTGTTCTGTGGAGACTTTAGACAGCTTCAACAACCTGAAGCT	360
ER01-1	AGTAATAGATGACTGTTCCTGTTCTGTGGAGACTTTAGACAGCTTCAACAACCTGAAGCT	360
$\begin{aligned} & E R 01-s \\ & E R O 1-1 \end{aligned}$	GTATCCACGCCTGAATAGCCTCCTGCAGTATGACTACTTCAGGTACTGGAAGGTGAACTT GTATCCACGCCTGAATAGCCTCCTGCAGTATGACTACTTCAGGTACTGGAAGGTGAACTT	

ER01-s	GAAAAAAGAATGTCCTTTTTGGGAAGATGACAGCAAGTGTGCCATTCGTTACTGCAGTGT	80
ER01-1	GAAAAAAGAATGTCCTTTTTGGGAAGATGACAGCAAGTGTGCCATTCGTTACTGCAGTGT	480
ER01-s	GAAGCCATGTACTGATGTCCCAGAGGGTATAAAGGGAGCTTCCATAGACAAAATTGAGAA	540
ER01-1	GAAGCCATGTACTGATGTCCCAGAGGGTATAAAGGGAGCTTCCATAGACAAAATTGAGAA **	540
ER01-s	GGAAAAGAAGGAAAAGTCCCACATGGTGACTGGACATTGTGATGGAGAGAATGACCTTGG	600
ER01-1	GGAAAAGAAGGAAAAGTCCCACATGGTGACTGGACATTGTGATGGAGAGAATGACCTTGG **	600
ER01-s	ATACTTGAATACTACTCTCAGCAAGGAATCCAAAGTTGGTTTTAAGCGCTGGGCAGCCCA	660
ER01-1	ATACTTGAATACTACTCTCAGCAAGGAATCCAAAGTTGGTTTTAAGCGCTGGGCAGCCCA **	660
ER01-s	TGATGATGCACAGCTGAACTTTTGCAAAATTGATGACGACAGTTCTGAGGATAGTGAATA	720
ER01-1	TGATGATGCACAGCTGAACTTTTGCAAAATTGATGACGACAGTTCTGAGGATAGTGAATA **	720
ER01-s	TGTTGATCTATTGCTGAATCCTGAGCGGTACACAGGTTATGCAGGACCTTCAGCACATAG	780
ER01-1	TGTTGATCTATTGCTGAATCCTGAGCGGTACACAGGTTATGCAGGACCTTCAGCACATAG **	780
ER01-s	AATATGGAGAACAATATACCAAGAAAATTGCTTTAAGCCATCTAGGGCAATTGGCCGTTA	840
ER01-1	AATATGGAGAACAATATACCAAGAAAATTGCTTTAAGCCATCTAGGGCAATTGGCCGTTA 	840
ER01-s	CACAGACTTCAGTAGTATTGGAG---------------AAATGTGCTTGGAAAAAAG	882
ER01-1	CACAGACTTCAGTAGTATTGGAGCCAATGATTTTCTGAAAGAAATGTGCTTGGAAAAAAG ************************ ******************	900
ER01-s	AACATTTTACAGAGCTATTTCCGGTCTCCATACCAGTATCAACATTCACCTGAGTGCTAA	942
ER01-1	AACATTTTACAGAGCTATTTCCGGTCTCCATACCAGTATCAACATTCACCTGAGTGCTAA	960
ER01-s	CTACCTCCTGTCAGACCAGAATGGCTTTGAAATGTCAAAGGATGGCCAGTGGGGTCCGAA	1002
ER01-1	CTACCTCCTGTCAGACCAGAATGGCTTTGAAATGTCAAAGGATGGCCAGTGGGGTCCGAA **	1020
ER01-s	TGTACAGGAATTCCAGACGAGGTTTGACCCAGAACTAACTGGCGGAGAGGGAACCCACCG	1062
ER01-1	TGTACAGGAATTCCAGACGAGGTTTGACCCAGAACTAACTGGCGGAGAGGGAACCCACCG **	1080
ER01-s	CCTGAAGAACCTCTACTTTGTATACCTTCTTGAACTAAGAGCTTTAGCTAAAGCTGCACC	1122
ER01-1	CCTGAAGAACCTCTACTTTGTATACCTTCTTGAACTAAGAGCTTTAGCTAAAGCTGCACC **	1140
ER01-s	ATACCTTGAAAGCTTAGAATACTACACAGGAAATGAAAATGAAGATAATGATGTATCAAA	1182
ER01-1	ATACCTTGAAAGCTTAGAATACTACACAGGAAATGAAAATGAAGATAATGATGTATCAAA	1200
ER01-s	GGCAGTTAAAGACTTATTAACTGTTGTTAAGAGTTTTCCAGAGCACTTTGATGAAAGCTC	1242
ER01-1	GGCAGTTAAAGACTTATTAACTGTTGTTAAGAGTTTTCCAGAGCACTTTGATGAAAGCTC ***	1260
ER01-s	CATGTTCTCTGGCGGCCAGCATGCAGCTAAGTTGAAAGAGGAATTTCGGCAACATTTTTG	1302
ER01-1	CATGTTCTCTGGCGGCCAGCATGCAGCTAAGTTGAAAGAGGAATTTTCGGCAACATTTTTG ***	1320
ER01-s	GAATGTGTCTCGTATTATGGACTGCGTTGGATGTGACAAGTGTCGTCTTTGGGGCAAGCT	1362
ER01-1	GAATGTGTCTCGTATTATGGACTGCGTTGGATGTGACAAGTGTCGTCTTTGGGGCAAGCT **	1380
ER01-s	GCAGGTAACTGGCCTTGGTACAGCACTCAAGATTCTGTTTTCAGGCAATCTAGACCCAGA	1422
ER01-1	GCAGGTAACTGGCCTTGGTACAGCACTCAAGATTCTGTTCTCAGGCAATCTAGACCCAGA *************************************** ***********************	1440
ER01-s	AGGTAACCAAAACTTAGATCTTCCAGCCGTAAGACACACAAAGTTCCAGCTGTCTCGTAT	1482
ER01-1	AGGTAACCAAAACTTAGATCTTCCAGCCGTGAGACACACAAAGTTCCAGCTGTCTCGTAT	1500
ER01-s	TGAGATTGTTGCTCTTATCAATGCCTTTGGTCGGTTGTCCAGCAGCATCATGGCGCTAGA	1542
ER01-1	TGAGATTGTTGCTCTTATCAATGCCTTTGGTCGGTTGTCCAGCAGCATCATGGCGCTAGA 	1560
ER01-s	GAACTTTCGGCAGAGCATAACCAGAAGATAATGACAAGATTGGCTACTTTGAGCTGAACT	1602
ER01-	GAACTTTCGGCAGAGCATAACCAGAAGATAATGACAAGATTGGCTACTTTGAGCTGAACT 	1620
ER01-s	TCTGTGATATTTGTTATATGTTACCCAAATACATAGTTGTATGCTAGATTATGACAGGTG	1662
ER01-1	TCTGTGATATTTGTTATATGTTACCCAAATACATAGTTGTATGCTAGATTATGACAGGTG	1680
ER01-s	GGCTGCCAACTGCCAGTGGTAGCATCATATATTCAAAGAAGGAACATGACAGATGTAAGA	1722
ER01-1	GGCTGCCAACTGCCAGTGGTAGCATCATATATTCAAAGAAGGAACATGACAGATGTAAGA $\star *$	1740
ER01-s	CAAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1756	
ER01-1	CAAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1774	

Figure 3.60 Pairwise alignments of different isoforms of Ero1, isoform B of P. monodon.

Figure3.61 The full length cDNA sequences of the short form of dihydrolipoamide dehydrogenase (DLADH-s, 1770 bp ; ORF $1521 \mathrm{bp}, 506$ aa) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A pyridine nucleotidedisulphide oxidoreductase domain (Pyr_redox domain; positions $213^{\text {th }}-311^{\text {th }}$), a pyridine nucleotide-disulphide oxidoreductase 2 domain (Pyr_redox 2 domain;
positions $41^{\text {th }}-358^{\text {th }}$), and a pyridine nucleotide-disulphide oxidoreductase, dimerisation domain (Pyr_redox_dim domain; positions $386^{\text {th }}-495^{\text {th }}$ of the deduced protein) are highlighted.

TTCCTCTGAGGAGTAAGAGCCGCCAGCTGATCGAGAAAATGCAAGCGAACATTTGGACTC 60 $\begin{array}{llllllll}\mathbf{M} & \mathbf{Q} & \mathbf{A} & \mathbf{N} & \mathbf{I} & \mathbf{W} & \mathbf{T} & \mathbf{R} \\ 8\end{array}$ GAATTTCTCACATTTCGAAGGTGCCCTTGGCCAGGTGTCCAGGTGCATCTGTGGGCCTCT 120 $\begin{array}{lllllllllllllllllllll}\mathbf{I} & \mathbf{S} & \mathbf{H} & \mathbf{I} & \mathbf{S} & \mathbf{K} & \mathbf{V} & \mathbf{P} & \mathbf{L} & \mathbf{A} & \mathbf{R} & \mathbf{C} & \mathbf{P} & \mathbf{G} & \mathbf{A} & \mathbf{S} & \mathbf{V} & \mathbf{G} & \mathbf{L} & \mathbf{S} & 28\end{array}$ CCTCTGTGGGACAACGTCGCCATGCATCCCATGAAGCCGACCTTGTGGTCATTGGATCAG 180
 GACCAGGGGGCTACGTAGCTGCCATCAAGGCTGCCCAGCTGGGAATGAAGACTGTATGCG 240 $\begin{array}{lllllllllllllllllllll}\mathbf{P} & \mathbf{G} & \mathbf{G} & \mathbf{Y} & \mathbf{V} & \mathbf{A} & \mathbf{A} & \mathbf{I} & \mathbf{K} & \mathbf{A} & \mathbf{A} & \mathbf{Q} & \mathbf{L} & \mathbf{G} & \mathbf{M} & \mathbf{K} & \mathbf{T} & \mathbf{V} & \mathbf{C} & \mathbf{V} & 68\end{array}$
TGGAGAAGAATGCAACATATGGTGGCACCTGCCTAAATGTGGGCTGTATCCCCTCCAAGT 300

CGCTGCTCAACAATTCCCATTACTATCATATGGCCAAAGGAAAGGAGTTTGCTGACCGAG 360
$\begin{array}{llllllllllllllllllll}\mathbf{L} & \mathbf{L} & \mathbf{N} & \mathbf{N} & \mathbf{S} & \mathbf{H} & \mathbf{Y} & \mathbf{Y} & \mathbf{H} & \mathbf{M} & \mathbf{A} & \mathbf{K} & \mathbf{G} & \mathbf{K} & \mathbf{E} & \mathbf{F} & \mathbf{A} & \mathbf{D} & \mathbf{R} & \mathbf{G} \\ \mathbf{1} & \mathbf{1} & 08\end{array}$
GCATTGAGGTTGACAATGTGAGGCTTAACTTGGACAAGCTGATGGGAGCCAAAGAGAAGG 420

CAGTGAAGGCACTCACTGGTGGCATTGCTCATCTCTTTAAGAACAACAAGATTGTTGGGC 480

TCAGTGGCCATGGCAAGATCACAGGGCCCAATGAAGTGACCGTCCTCAAAGAAGACGGCT 540

CTAATGACACTGTCAAGACCAAGAACATTCTGATTGCCACTGGCTCTGAGGTTACTCCCT 600
 TCCCAGGCATCCCTGTAGATGAGGAGCAGATTGTATCCTCCACTGGTGCGCTGAAGCTCA 660 $\begin{array}{lllllllllllllllllllll}\mathbf{P} & \mathbf{G} & \mathbf{I} & \mathbf{P} & \mathbf{V} & \mathbf{D} & \mathbf{E} & \mathbf{E} & \mathbf{Q} & \mathbf{I} & \mathbf{V} & \mathbf{S} & \mathbf{S} & \mathbf{T} & \mathbf{G} & \mathbf{A} & \mathbf{L} & K & \mathbf{L} & K & 208\end{array}$
AGAGTGTTCCTGAGAAGTTGATTCTCATTGGGGCTGGTGTCATTGGCCTTGAGCTTGGAT 720

CTGTGTGGTCACGTCTTGGAGCCCATGTGACAGCGGTAGAGTTTCTGGGCTCCATTGGTG 780

GCTTGGGGATTGATGCAGAGATCTCAAAGAACTTCCAGCGAATCCTAACCAAGCAGGGAC 840
L G I D A E I
TCAGGTTCAAGCTGAGCACAAAGGTGATGAGTGCCAGCAAGCAAGGCGACAAGATCATGG 900

TCTCTGTTGAGGGAGTCAAAAATGGAAAGAAAGAGGAGCTTGAATGTGACACCCTCCTTG 960
S V E G V K N G K K E E L E C D T L L V 308
TCTGTGTGGGACGACGACCCTACACCACCAACCTTGGCCTGGAGGAGCTTGGGATTGAGA 1020
$\mathbf{C} \quad \mathbf{V} \quad \mathbf{G} \quad \mathbf{R} \quad \mathbf{R} \quad \mathbf{P} \quad \mathbf{Y}$
AAGACGAGAAAGGTCGCATTCCTGTCAACTCTCGCTTCCAGACCATCATCCCCAATATCT 1080
$\begin{array}{lllllllllllllllllllll}\mathbf{D} & \mathbf{E} & \mathbf{K} & \mathbf{G} & \mathbf{R} & \mathbf{I} & \mathbf{P} & \mathbf{V} & \mathbf{N} & \mathbf{S} & \mathbf{R} & \mathbf{F} & \mathbf{Q} & \mathbf{T} & \mathbf{I} & \mathbf{I} & \mathbf{P} & \mathbf{N} & \mathbf{I} & \mathbf{F} & 348\end{array}$
TTGCCATTGGGGACTGCATTCATGGCCCCATGCTGGCCCACAAGGCAGAAGATGAGGGCA 1140
 TTGTGTGTGTAGAGGGCATTGCTGGTGGCCCTGTCCACATCGACTACAACTGTGTACCAT 1200
 CTGTTATCTACACTCATCCTGAGGTGGCCTGGGTTGGCAAGACAGAGGAAGACCTGAAGG 1260
 CTGAGGGTGTGGAGTATGCAGTTGGCAAGTTCCCATTTGCAGCCAATTCTCGTGCTAAGT 1320 E G V E Y A V G K F
GTAATGACGACACTGATGGCCTGGTCAAGATCTTGGCAGACAAGCACACAGATCGGCTGT 1380 $\begin{array}{lllllllllllllllllllll}\mathbf{N} & \mathbf{D} & \mathbf{D} & \mathbf{T} & \mathbf{D} & \mathbf{G} & \mathbf{L} & \mathbf{V} & \mathbf{K} & \mathbf{I} & \mathbf{L} & \mathbf{A} & \mathbf{D} & \mathbf{K} & \mathbf{H} & \mathbf{T} & \mathbf{D} & \mathbf{R} & \mathbf{L} & \mathbf{L} 488\end{array}$
TGGGCGCACACATCATTGGTCCAGGTGCAGGCGAGATGATCAATGAAGCAGCATTGGCCA 1440

TGGAGTACGGTGCTAGTTGTGAGGATGTAGCGCGTGTATGCCATGCCCACCCCACCTGCT 1500 $\begin{array}{lllllllllllllllllllll}\mathbf{E} & \mathbf{Y} & \mathbf{G} & \mathbf{A} & \mathbf{S} & \mathbf{C} & \mathbf{E} & \mathbf{D} & \mathbf{V} & \mathbf{A} & \mathbf{R} & \mathbf{V} & \mathbf{C} & \mathbf{H} & \mathbf{A} & \mathbf{H} & \mathbf{P} & \mathbf{T} & \mathbf{C} & \mathbf{S} & 488\end{array}$
CAGAGGCCTTCCGTGAGGCTAACCTGGCTGCATACTTCGGAAAGCCCATCAACTTCTAAT 1560

GAATAGGCCGTTATTTATAAAAGAAACGATAAAAAATAACAAGATATATGTATTGTCTAT 1620 ATTTTTTCCGTGCTTTTAGTCTTGTTTAGGGATGAGGATCTTTGATGCATTTCATGAGCT 1680 ATTTGAACCCATTCCTTCTTTCTCTTTTCTTTCTTTTACACACCTAGGTAGCACAATCCT 1740 GAAAAAAAAGAGATAAAAATTTTGGCGGGGGATTTACTGTTCAGTTCTTTTCAGAGTAAA 1800 ATTTATTTTTATTTATCTTGCAATGAAGTTTGTTGACATTTAATAAATTATTTCTCTGTC 1860 ACTTTTTCTTGCGGTCTTTTCTAACCCAAAGATGTAATGCATCATATCTGTACATAGTTG 1920 GGCATATGAAACTTGTCGTATGTGGAAGATGCAATGTAAGTATATTATACTGGGGGAGAA 1980

TTTCTCAATTTGTAAGTAAAACCCACTGTCTAAAAAAACCAAAAAAAAAAAAAAAAAAAA 2040
 AAAAAAAAAA
 2050

Figure3.62 The full length cDNA sequences of the long form of dihydrolipoamide dehydrogenase (DLADH-l, 2050 bp ; ORF $1521 \mathrm{bp}, 506 \mathrm{aa}$) of P. monodon. Start and stop codons were illustrated in boldface and underlined. A pyridine nucleotidedisulphide oxidoreductase domain (Pyr_redox domain; positions $213^{\text {th }}-311^{\text {th }}$), a pyridine nucleotide-disulphide oxidoreductase 2 domain (Pyr_redox 2 domain; positions $41^{\text {th }}-358^{\text {th }}$), and a pyridine nucleotide-disulphide oxidoreductase, dimerisation domain (Pyr_redox_dim domain; positions $386^{\text {th }}-495^{\text {th }}$ of the deduced protein) are highlighted.

Figure 3.63 Pairwise alignments of different isoforms of Dihydrolipoamide
dehydrogenase of P. monodon

Table 3.9 Summary of the full lengths of gene homologues from testis of P. monodon using RACE-PCR

* Full length cDNA not including poly A

Phylogenetic analysis indicated that the newly identified PMTra-2 was allocated in an invertebrate Tra2 group but it is distantly diverse from other invertebrate Tra2. Therefore, PMTra-2 should be regarded as a new subgroup of invertebrate Tra-2 (Fig. 3.64).

Phylogenetic analysis also indicated that vertebrate Dmc1 is conserved and can be allocated to 2 different groups. Nevertheless, Dmc1 is more diverse in invertebrate species and Dmc1 of P. monodon should be regarded as a new member of invertebrate Dmc1 proteins (Fig. 3.65).

On the basis of phylogenetic analysis, different subtypes of PGMRC (PGMRC1 and PGMRC2) should have arisen from the gene duplication process. P. monodon PGMRC1 was clustered with PGMRC1 of the sea urchin, Strongylocentrotus purpuratus but distantly related with PGMRC1 of vertebrates and fish. Accordingly, it should be regarded as a new member of the invertebrate group (Fig. 3.66). It is also interesting to identify whether different isoforms of P. monodon PGMRC1 are transcribed from a single locus through the alternative splicing process or encoded from different loci.

For cyclophillin A, a bootstraspped neighbor-joining tree revealed 3 different groups of cyclophilin (Fig 3.67). Cyclophilin A of P. monodon clustered to that of Artemia franciscana and allocated to be the same group as that of fish species like Ictalurus punctatus and Danio rerio. Other invertebrate cyclophilin A were phylogenetically allocated in different groups. Topology of the phylogenetic tree suggested that different groups of cyclophilin A should be arisen from the gene duplication process.

SUMO-1 (also called suppressor of mif two) plays an important role in diverse reproductive functions such as spermatogenesis and modulation of steroid receptor activity. Phylogenetic analysis indicated evolutionarily separate lineages of SUMO-1 in vertebrates and invertebrates. Members of the former group were more closely related than those of the latter. SUMO-1 of P. monodon clustered to that of Artemia franciscana and should be regarded as a new member of invertebrate SUMO-1 (Fig. 3.68).

3.5 Examination of expression patterns and tissue distribution analysis of genes related to testicular development by RT-PCR

Expression patterns of 59 gene homologues were non-quantitatively examined using the cDNA template from gonads of juvenile and broodstock of male and female P. monodon ($N=4$ for each group) using RT-PCR analysis.

An EST that marginally matched low molecular weight neurofilament protein XNF-L (E-value $=8 \mathrm{e}-04$, called PMTST1 after further characterization by RACEPCR) was only expressed in testes $(N=8)$ but not ovaries $(N=8)$ of P. monodon when analyzed by RT-PCR for 25, 30, and 35 cycles (Fig. 3.69 and Table 3.11).

Four ESTs representing multiple inositol polyphosphate phosphatase (MIPP) homologues were found in the conventional testis cDNA library, and can be divided to isoform 1 (TT-N-S01-0004-W and TT-N-S01-0459-W) and isoform 2 (TT-N-S01-$0678-\mathrm{W}$ and TT-N-S01-0730-W) owing similarity analysis of the original EST clones. Primers were designed from a representative of each isoform (TT-N-S01-$0004-\mathrm{W}$ and TT-N-S01-0678-W). RT-PCR was carried out and revealed that both MIPP showed a trend of more abundant expression in testes than ovaries of P. monodon (Fig. 3.70 and Table 3.11). Likewise, HSP70-2 and Dmc1 also exhibited more preferential expression in testes than ovaries of P. monodon broodstock (Fig. 3.71 and Table 3.11).

Table 3.10 Summary of expression patterns of various gene homologues analyzed by RT-PCR

	Number of genes
Testis-specific expression 016 N ?	$01 \square 1$
Trands of preferential expression	40
-Testis	4
-Ovary	36
Comparable expression levels in testes and ovaries	14
No products or nonspecific amplification products	4
Total	59

Figure 3.69 RT-PCR of PMTST1 (374 bp) using the first strand cDNA of testes of broodstock (lanes 2-5) and juveniles (lanes 6-9) and ovaries of broodstock (lanes 1013) and juveniles (lanes 14-17) of P. monodon for 25 (A), 30 (B) and 35 (C) cycles. EF 1- α (500 bp) was used as the positive control. Lanes 1 were the negative control (without the cDNA template).

Tissue distribution analysis (D) was carried out using the template from testes (T), ovaries (O), eyestalks (E), gills (G), heart (H), hepatopancreas (HP), hemocytes (HC), lymphoid organs (LO), intestine (IT), stomach (ST), pleopods (PL), and thoracic ganglion (TG)

In contrast, thirty-six genes exhibited a trend of more abundantly expression patterns in ovaries than testes (Table 3.12). These included SUMO-1, cyclophilin A (CYA), transformer-2 protein B (Tra-2), B-cell receptor-associated protein 37 (prohibitin-2), thyroid hormone receptor-associated protein complex 240 kDa component (Trap240), growth factor receptor-bound protein, and dynein light intermediate chain (D2LIC) (Fig. 3.72).

Table 3.11 Gene homologues that specifically expressed in testes but not ovaries and those showing a trend of preferentially expressed in testes to ovaries of P. monodon

Gene Homologues	Expected size (bp)	Tissue distribution
1. Low molecular weight neurofilament protein (PMTST1)	374	T and IT
2. Multiple inositol polyphosphate phosphatase ; MIPP	174	T and O
3. Multiple inositol polyphosphate phosphatase 2; MIPP2	396	T and O
4. Meiotic recombination protein DMC1/LIM15 homolog isoform 1 (Dmc1)	425	T, O, E, G, H, HP, HC, LO, IT,
5. Testis-specific heat shock-related protein 22 (HST70-2)	321	T, O, E, G, H, HP, HC, LO, IT,

In addition, carbonyl reductase 1, cyclin dependent kinase 2 (Cdk2), ubiquitin carboxyl-terminal hydrolase 14, ubiquitin carboxyl-terminal hydrolase 5, cell division cycle 2 (cdc2), E1B-55kDa-associated protein 5 isoform 5, and oncoprotein nm23 also showed a treand of preferential expressed in ovaries to testes of P. monodon (Fig. 3.73).

Fourteen gene homologues did not revealed differential expression levels in testes and ovaries of P. monodon (Table 3.13). Although PGMRC1 and Inx2 did not revealed differential expression between ovaries and testes of P. monodon when their expression patterns in juvenile and broodstock of each sex were considered together, PGRMC1 showed a trend of more abundantly expressed in testes of juveniles than broodstock of P. monodon (Fig. 3.74). In contrast, Inx2 exhibited a trend of preferentially expressed in ovaries of juveniles to broodstock of P. monodon (Fig. 3.74).

Figure 3.70 RT-PCR of MIPP (A) and MIPP2 (B), using the first strand cDNA of testes of broodstock (lanes 2-5) and juveniles (lanes 6-9) and ovaries of broodstock (lanes 10-13) and juveniles (lanes 14-17) of P. monodon for 25 cycles. EF 1- α (500 bp) was used as the positive control. Lanes 1 were the negative control (without the cDNA template).

Tissue distribution analysis (D) was carried out using the template from testes (T), ovaries (O), eyestalks (E), gills (G), heart (H), hepatopancreas (HP), hemocytes (HC), lymphoid organs (LO), intestine (IT), stomach (ST), pleopods (PL), and thoracic ganglion (TG).

A

Figure 3.71 RT-PCR of Dmc1 (A) and HSP70-2 (B) using the first strand cDNA of testes of broodstock (lanes 2-5) and juveniles (lanes 6-9) and ovaries of broodstock (lanes 10-13) and juveniles (lanes 14-17) of P. monodon for 25 cycles. EF 1- α (500 bp) was used as the positive control. Lanes 1 were negative control (without the cDNA template).

Tissue distribution analysis (D) was carried out using the template from testes (T), ovaries (O), eyestalks (E), gills (G), heart (H), hepatopancreas (HP), hemocytes (HC), lymphoid organs (LO), intestine (IT), stomach (ST), pleopods (PL), and thoracic ganglion (TG).

Table 3.12 Gene homologues showing a trend of more abundant expression patterns in ovaries than testes of P. monodon

Gene Homologues	size (bp)	Tissue distribution
1. B-cell receptor-associated protein 37 (Prohibitin 2)	563	T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG
2. 26S Proteasome non-ATPase regulatory subunit 3 (Diphenol oxidase A2 component)	140	Not determined
3. Actin-binding protein anillin	199	Not determined
4. Acyl-CoA oxidase (ACX3)	250	Not determined
5. Arginyl-tRNA--protein transferase 1	292	Not determined
6. Budding uninhibited by benzimidazoles 3 homolog (Mitotic checkpoint)	257	Not determined
7. Carbonyl reductase 1	457	Not determined
8. Cell division cycle 2 (cdc2)	510	Not determined
9. COP9 constitutive photomorphogenic homolog subunit 5 isoform 1	190	Not determined
10. Cyclin dependent kinase 2	348	Not determined
11. Cyclophilin A	495	T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG
12. Dynactin 5	300	Not determined
13. Dynein light intermedi	324	T, O, G, H, HC, LO, IT, PL, and TG
14. E1B-55kDa-associated protein 5 isoform	196	Not determined
15. Eukaryotic translation initiation factor 4 gam	337	Not determined
16. Growth factor receptor-bound protein	299	T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG
17. Histone H2AV (H2A.F/Z)	329	Not determined
18. Karyopherin (importin) alpha 2 晹	295	Not determined
19. Laminin beta chain	363	Not determined
20. Metaxin 2	212	Not determined
21. Multiprotein bridging factor 1	235	Not determined
22. Nucleoside diphosphate linked moiety X-type motif 9	341	Not determined
23. Oncoprotein nm23	229	Not determined
24. PCTAIRE protein kinase 2 (PCTK2) 25. Profilin	$\begin{aligned} & 250 \\ & 259 \end{aligned}$	Not determined Not determined
26. Proteasome alpha 3 subunit	250	Not determined
27. Rac GTPase activating protein 1 isoform 1 28. Serine/threonine-protein kinase 23 (Muscle-specific serine kinase 1, MSSK-1)	$\begin{array}{r} 248 \\ 272 \end{array}$	Not determined Not determined
29. Small ubiquitin-like modifier(SUMO-1)	362	T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG
30. Spermidine synthase	223	Not determined
31. Thyroid hormone receptor-associated protein complex 240 kDa component (Trap240)	335	T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG
32. Transformer-2 protein B	229	T, O, G, H, HC, LO, IT, and ST
33. Ubiquitin carboxyl-terminal hydrolase 14	240	Not determined
34. Ubiquitin carboxyl-terminal hydrolase 5	528	Not determined
35. Ubiquitin-conjugating enzyme E2	232	Not determined
36. USO-1	314	Not determined

Figure 3.72 RT-PCR of SUMO-1 (A), CYA (B), Tra-2 (C), prohibitin-2 (D), Trap240 (E), growth factor receptor-bound protein (F), and D2LIC (G) using the first strand cDNA of testes of broodstock (lanes 2-5) and juveniles (lanes 6-9) and ovaries of broodstock (lanes 10-13) and juveniles (lanes 14-17) of P. monodon for 25 cycles. EF $1-\alpha(\mathrm{H})$ was used as the positive control. Lane 1 was the negative control (without the cDNA template).
จุหาลงกรถ์มหาวิทยาลัย
Tissue distribution analysis of 15 gene homologues of P. monodon was carried out. PMTST1 was abundantly expressed in testis and expressed at a low level in intestine but was not expressed in other tissues of P. monodon broodstock (Fig. 3.69). This suggested that PMTST1 may play an important role for testicular development of P. monodon.

Figure 3.73 RT-PCR of carbonyl reductase 1 (A), Cdk2 (B), ubiquitin carboxylterminal hydrolase 14 (C), ubiquitin carboxyl-terminal hydrolase 5 (D), cdc2 (E), E1B-55kDa-associated protein isoform 5 (F), and oncoprotein nm23 (G) using the first strand cDNA of testes of broodstock (lanes 2-5) and juveniles (lanes 6-9) and ovaries of broodstock (lanes 10-13) and juveniles (lanes 14-17) of P. monodon for 25 cycles. $E F 1-\alpha(H)$ was used as the positive control. Lanes 1 were the negative control (without the cDNA template).

Tissue distribution analysis revealed that both MIPP (TT-N-S01-0004-W) and MIPP2 (TT-N-S01-0678-W) were more abundantly expressed in testis than ovaries and these transcripts were not expressed in other tissues of P. monodon broodstock (Fig. 3.70). In contrast, HSP70-2 and Dmc1 were constitutively expressed in all tissues of P. monodon broodstock. HSP70-2 and Dmc1 was more abundantly expressed in testis than other tissues. Nevertheless, the former was low abundantly
expressed in hemocyte whereas low expression of the latter was observed in eyestalk and lymphoid organs (Fig. 3.71).

On the other hand, prohibitin-2, Trap240, innexin 2, PGRMC1, SUMO-1, CYA, growth factor receptor-bound protein, and saposin were expressed in all examined tissues whereas $\operatorname{Tra}-2$ was expressed in all tissues except eyestalks, hepatopancreas, pleopods and thoracic ganglion. D2LIC was not expressed in eyestalks, hepatopancreas, and stomach (Fig. 3.74-3.75).

Table 3.13 Gene homologues that did not exhibit differential expression in testes and ovaries of P. monodon

Gene Homologues	Expected size (bp) Tissue distribution		
1. Cell division protein kinase 7 (Cdk7)	381	Not determined	
2. Cystathionine- γ-ly	145	Not determined	
3. Degradation in endoplasmic reticulum protein 1 (DER1)	206	Not determined	
4. Flotillin 2	854	Not determined	
5. Importin 7	297	Not determine	
6. Innexin 1	422	Not determine	
7. Innexin2	391	T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG	
8. Polyadenylate binding protein II	187	Not determined	
9. Progestin receptor membrane component 1 (PGRMC1)		T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG	
10. Programmed cell death protein 7	181	Not determined T, O, E, G, H, HP, HC, LO, IT, ST, PL, and TG	
11. Prosaposin isoform 3	614		
12. Proteasome (prosome, macropain) 26 S subunit, ATPase, 2, isoform CRA_a 13. Synaptobrevin-like protein 1			
14. Thyroid hormone receptor coactivating protein 120 kDa (TrCP120)		Not determined	
Table 3.14 Gene homologues that exhibit non-specific amplification from RT-PCR analysis			
Gene Homologues		Expected size (bp)	Remarks
1. Adaptor-related protein complex 1, beta	1 subunit	290	Non-specific product
2. BCS-2		372	Non-specific product
3. Inhibitor of apoptosis protein (IAP)		238	Non-specific product
4. Serine palmitoyl transferase LCB2 subu		178	Non-specific product

Figure 3.74 RT-PCR of innexin 2 (A), PGRMC1 (B) using the first strand cDNA of testes of broodstock (lanes 2-5) and juveniles (lanes 6-9) and ovaries of broodstock (lanes 10-13) and juveniles (lanes 14-17) of P. monodon for 25 cycles. EF 1- α (H) was used as the positive control. Lanes 1 were the negative control (without the cDNA template.

Tissue distribution analysis (D) was carried out using the template from testes (T), ovaries (O), eyestalks (E), gills (G), heart (H), hepatopancreas (HP), hemocytes (HC), lymphoid organs (LO), intestine (IT), stomach (ST), pleopods (PL), and thoracic ganglion (TG).

Figure 3.75 Tissue distribution analysis of prohibitin-2 (A), Trap240 (B), $\operatorname{Tra}-2$ (C), SUMO-1 (D), CYA (E), growth factor receptor-bound protein (F), D2LIC (G) and saposin (H) using the first strand cDNA of testes (T), ovaries (O), eyestalks (E), gills (G), heart (H), hepatopancreas (HP), hemocytes (HC), lymphoid organs (LO), intestine (IT), stomach (ST), pleopods (PL), and thoracic ganglion (TG) of P. monodon broodstock for 25 cycles. EF 1- α was used as the positive control (I). Lane N was the negative control (without the cDNA template).

Non-specific amplification products were obtained from amplification of adaptor-related protein complex 1, beta 1 subunit, BCS-2, inhibitor of apoptosis protein (IAP), and serine palmitoyl transferase LCB2 subunit; Table 3.14).

3.6 Semiquantitative RT-PCR of functionally important gene homologues in testes and ovaries of broodstock and juvenile P. monodon

Expression levels of 6 gene homologues, low molecular weight neurofilament protein XNF-L (PMTST1), multiple inositol polyphosphate phosphatase (MIPP), transformer-2 (Tra-2), prohibitin-2, thyroid hormone receptor-associated protein complex 240 kDa component (Trap240), and heat shock-related protein 2 (HSP70-2), were determined by semiquantitative RT-PCR. EF-1 α was used as an internal control.

The first strand cDNA of testes or ovaries from juvenile males and females (4 months old with a body weight of approximately 25-30 g), broodstock-sized domesticated shrimp (F 1 generation, an average body weight, $\mathrm{ABW}=88.66 \pm 9.02 \mathrm{~g}$; the gonadosomatic index, GSI $=0.34 \pm 0.15 \%, N=9$), wild male ($\mathrm{ABW}=81.69 \pm$ $15.63 \mathrm{~g}, \mathrm{GSI}=0.84 \pm 0.32 \%, N=8)$, wild female $(\mathrm{ABW}=142.98 \pm 28.37 \mathrm{~g}, \mathrm{GSI}=$ $2.98 \pm 2.02 \%, N=4)$ broodstock and wild shrimp at $1-5(\mathrm{ABW}=104.79 \pm 12.40 \mathrm{~g}$, GSI $=0.40 \pm 0.13 \%, N=6), 6-9(\mathrm{ABW}=99.19 \pm 14.94 \mathrm{~g}, \mathrm{GSI}=0.41 \pm 0.29 \%, N=$ 4) and $10-16$ days $(\mathrm{ABW}=102.73 \pm 19.23 \mathrm{~g}, \mathrm{GSI}=0.48 \pm 0.16 \%, N=8)$ after molting were used as the template for semiquantitative RT-PCR analysis. This technique requires optimization of several parameters including concentration of primers, MgCl_{2}, and the number of PCR cycles.

3.6.1 Optimization of the primer concentration, MgCl_{2} concentration, and cycle numbers

RT-PCR of each gene was carried out with fixed components except primer concentration. Lower concentrations may result in non-quantitative amplification whereas higher concentrations of primer may leave a large amount of unused primers which could give rise to non-specific amplification products. The suitable concentration of primers for each gene is shown by Table 3.15.

The optimal concentration of MgCl_{2} for each primer pair was carefully examined using the amplification conditions with the optimized primer concentration. The concentration of MgCl_{2} that gave the highest yields and specificity for each PCR product was chosen (Table 3.15)

The number of amplification cycles was important because the product reflecting the expression level should be measured quantitatively before reaching a plateau amplification phase. At the plateau stage, transcripts initially present at different levels may give equal intensity of the amplification products.

In this experiment, the cycler numbers of RT-PCR of each gene was performed using the conditions that primer and MgCl_{2} concentrations were optimized. The number of cycles that gave the highest yield before the product reached a plateau phase of amplification was chosen (Table 3.15).

Table 3.15 Optimal primer and MgCl_{2} concentrations and the number of PCR cycles for semiquantitative RT-PCR analysis of gene homologues in P. monodon

3.6.2 Semiquantitative RT-PCR analysis

Result of semiquantitative RT-PCR further confirmed that PMTST1 was only expressed in testes but not ovaries of P. monodon. The expression level of PMTST1 in testes P. monodon was not different in all three groups including CJ-TT ($0.8644 \pm$ 0.0612), DB-TT (0.7729 ± 0.0784), and WB-TT $(0.8240 \pm 0.0559)(P>0.05)$ whereas the expression level of this gene in males at 10-16 DAM (1.1262 $\pm 0.0448)$ were greater than that at 1-5 DAM (0.9377 ± 0.1128) and 6-9 DAM ($0.9586 \pm$ 0.0589) ($P<0.05$). Nevertheless, the expression levels of PMTST1 in males at 1-5 DAM and 6-9 DAM were not different $(P>0.05)$ (Fig.3.76-3.77). In addition, the expression levels of this gene at 6-9 DAM and 10-16 DAM were higher than that of WB-TT ($P<0.05$).

Expression levels of MIPP in ovaries of P. monodon (CJ-OV and WB-OV) were extremely low. In the testis groups, the expression level of MIPP in CJ-TT (0.9972 ± 0.0532) was higher than in that in DB-TT and WB-TT $(0.8575 \pm 0.07323$ and 0.8876 ± 0.0740, respectively; $P<0.05$). In addition, the expression level of this gene in males at $10-16$ DAM (0.7702 ± 0.0792) was also higher than that at $6-9$ DAM ($0.5838 \pm 0.0273, P<0.05$). However, the expression levels of MIPP at 1-5 DAM (0.6560 ± 0.0923) and 6-9 DAM were not different ($P>0.05$) (Fig.3.78-3.79). In addition, MIPP was more abundantly expressed in WB-TT than 1-5 DAM ($0.6560 \pm$ $0.0923)$ and 6-9 DAM $(P<0.05)$.

The expression levels of Tra-2 in testes and ovaries P. monodon were not different in all examined groups; CJ-TT (0.0687 ± 0.0046), DB-TT (0.0589 ± 0.0118), WB-TT (0.0647 ± 0.0056), CJ-OV (0.0663 ± 0.0061), and WB-OV (0.0625 ± 0.0067) ($P>0.05$). However, the expression level of this gene in males at 10-16 DAM (0.0585 ± 0.0053) was higher than that of 1-5 DAM (0.0472 ± 0.0053) and 6-9 DAM (0.0468 ± 0.0033) ($P<0.05$) but the expression levels of Tra-2 at 1-5 DAM and 6-9 DAM were not different $(P>0.05)$ (Fig.3.80-3.81). In addition, the expression level of this gene in WB-TT was greater than that of 1-5 DAM and 6-9 DAM $(P<0.05)$.

The expression level of prohibitin2 in WB-TT (1.0563 ± 0.1105) was less than that in CJ-TT, DB-TT, CJ-OV, and WB-OV ($1.3046 \pm 0.0711,1.2368 \pm 0.0719$, 1.2868 ± 0.0516 and 1.2879 ± 0.0506, respectively; $P<0.05$). In contrast, expression
levels of this gene in males at 1-5 DAM (0.9185 ± 0.1406), 6-9 DAM ($0.8609 \pm$ 0.0937) and $10-16$ DAM (0.9939 ± 0.0834) were not different ($P>0.05$) (Fig.3.823.83). In addition, the expression level of prohibitin2 in WB-TT was greater than that of 6-9 DAM ($P<0.05$).

The expression levels of Trap240 in CJ-TT (0.0643 ± 0.0030), CJ-OV (0.0705 ± 0.0022) and WB-OV (0.0678 ± 0.0054) were more abundant than those in WB-TT and DB-TT (0.0557 ± 0.0028 and 0.0550 ± 0.0072, respectively; $P>0.05$). Therefore, Trap240 was preferentially expressed in ovaries of P. monodon ($P<0.05$). In addition, the expression level of this gene in males at $10-16$ DAM (0.0596 ± 0.0057) was more abundant than at $1-5$ DAM $(0.0503 \pm 0.0060)(P<0.05)$. Expressions of Trap240 at 6-9 DAM and 10-16 DAM were not different ($P>0.05$) (Fig.3.84-3.85). The expression levels of this gene in WB-TT and molting groups were not different ($P>0.05$).

The expression levels of HSP70-2 in testes were more abundant than those in ovaries of P. monodon ($P<0.05$). Expression levels of HSP70-2 in the testes groups were not different in all examined groups; CJ-TT (0.9705 ± 0.0737), DB-TT $0.8143 \pm$ 0.1582) and WB-TT $(0.8216 \pm 0.0951)(P>0.05)$. Likewise, expression of HSP70-2 in CJ-OV (0.6996 ± 0.0718) and WB-OV (0.5891 ± 0.0356) was not different $(P>$ $0.05)$. The expression level of this gene in males at $10-16$ DAM (0.8779 ± 0.1260) was higher than that at 6-9 DAM $(0.6528 \pm 0.0595)(P<0.05)$ (Fig.3.86-3.87). In addition, the expression levels of this gene in WB-TT and molting groups were not different $(P>0.05)$.

คนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

Figure 3.76 A 1.6% ethidium bromide-strained agarose gel showing the expression levels of PMTST1 (panel I: A-D and panel II: A and C) and EF-1 (panel I: E-H and panel II: B and D) of testis from wild broodstock (WB-TT, I-A and I-E, lanes 1-8), domesticated broodstock (DB-TT, I-B and I-F, lanes 1-9), cultured juveniles (CJ-TT, I-C and I-G, lanes 1-5), and ovaries from wild broodstock (WB-OV, I-D and I-H; lanes 1-4), and cultured juveniles (CJ-OV, I-D and I-H; lanes 5-8) and testes from broodstock after molting for Day 1-5 (II-A and II-C; lanes 1-6), Day 6-9 (II-A and IIC; lanes 1-6 and II-B and II-D; lane 1), and Day 10-16 (II-B and II-D; lanes 2-9). Lanes M = 100 bp DNA ladder.

Figure 3.77 Histograms showing the expression levels of PMTST1 in gonads of P. monodon. The same letters indicate that the expression levels were not significantly different $(P>0.05)$.

Figure 3.78 A 1.6% ethidium bromide-strained agarose gel showing the expression levels of MIPP (panel I: A-D and panel II: A and C) and EF-1 α (panel I: E-H and panel II: B and D) of testis from wild broodstock (WB-TT, I-A and I-E, lanes 1-8), domesticated broodstock (DB-TT, I-B and I-F, lanes 1-9), cultured juveniles (CJ-TT, I-C and I-G, lanes 1-5), and ovaries from wild broodstock (WB-OV, I-D and I-H; lanes 1-4), and cultured juveniles (CJ-OV, I-D and I-H; lanes 5-8) and testes from broodstock after molting for Day 1-5 (II-A and II-C; lanes 1-6), Day 6-9 (II-A and IIC; lanes 1-6 and II-B and II-D; lane 1), and Day 10-16 (II-B and II-D; lanes 2-9). Lanes $\mathrm{M}=100 \mathrm{bp}$ DNA ladder.

A

Figure 3.79 Histograms showing the expression levels of MIPP in gonads of P. monodon. The same letters indicate that the expression levels were not significantly different $(P>0.05)$

Figure 3.80 A 1.6% ethidium bromide-strained agarose gel showing the expression levels of Tra-2 (panel I: A-D and panel II: A and C) and EF-1 α (panel I: E-H and panel II: B and D) of testis from wild broodstock (WB-TT, I-A and I-E, lanes 1-8), domesticated broodstock (DB-TT, I-B and I-F, lanes 1-9), cultured juveniles (CJ-TT, I-C and I-G, lanes 1-5), and ovaries from wild broodstock (WB-OV, I-D and I-H; lanes 1-4), and cultured juveniles (CJ-OV, I-D and I-H; lanes 5-8) and testes from broodstock after molting for Day 1-5 (II-A and II-C; lanes 1-6), Day 6-9 (II-A and IIC; lanes 1-6 and II-B and II-D; lane 1), and Day 10-16 (II-B and II-D; lanes 2-9). Lanes M = 100 bp DNA ladder.

Figure 3.81 Histograms showing the expression levels of Tra-2 in gonads of P. monodon. The same letters indicate that the expression levels were not significantly different $(P>0.05)$.

I

Figure 3.82 A 1.6\% ethidium bromide-strained agarose gel showing the expression levels of prohibitin 2 (panel I: A-D and panel II: A and C) and EF-1 α (panel I: E-H and panel II: B and D) of testis from wild broodstock (WB-TT, I-A and I-E, lanes 18), domesticated broodstock (DB-TT, I-B and I-F, lanes 1-9), cultured juveniles (CJTT, I-C and I-G, lanes 1-5), and ovaries from wild broodstock (WB-OV, I-D and I-H; lanes 1-4), and cultured juveniles (CJ-OV, I-D and I-H; lanes 5-8) and testes from broodstock after molting for Day 1-5 (II-A and II-C; lanes 1-6), Day 6-9 (II-A and IIC; lanes 1-6 and II-B and II-D; lane 1), and Day 10-16 (II-B and II-D; lanes 2-9). Lanes $\mathrm{M}=100 \mathrm{bp}$ DNA ladder.

Figure 3.83 Histograms showing the expression levels of prohibitin 2 in gonads of P. monodon. The same letters indicate that the expression levels were not significantly different ($P>0.05$).

Figure 3.84 A 1.6% ethidium bromide-strained agarose gel showing the expression levels of Trap240 (panel I: A-D and panel II: A and C) and EF-1 (panel I: E-H and panel II: B and D) of testis from wild broodstock (WB-TT, I-A and I-E, lanes 1-8), domesticated broodstock (DB-TT, I-B and I-F, lanes 1-9), cultured juveniles (CJ-TT, I-C and I-G, lanes 1-5), and ovaries from wild broodstock (WB-OV, I-D and I-H; lanes 1-4), and cultured juveniles (CJ-OV, I-D and I-H; lanes 5-8) and testes from broodstock after molting for Day 1-5 (II-A and II-C; lanes 1-6), Day 6-9 (II-A and IIC; lanes 1-6 and II-B and II-D; lane 1), and Day 10-16 (II-B and II-D; lanes 2-9). Lanes M = 100 bp DNA ladder.

Figure 3.85 Histograms showing the expression levels of Trap240 in gonads of P. monodon. The same letters indicate that the expression levels were not significantly different ($P>0.05$).

Figure 3.86 A 1.6% ethidium bromide-strained agarose gel showing the expression levels of HSP70-2 (panel I: A-D and panel II: A and C) and EF-1 α (panel I: E-H and panel II: B and D) of testis from wild broodstock (WB-TT, I-A and I-E, lanes 1-8), domesticated broodstock (DB-TT, I-B and I-F, lanes 1-9), cultured juveniles (CJ-TT, I-C and I-G, lanes 1-5), and ovaries from wild broodstock (WB-OV, I-D and I-H; lanes 1-4), and cultured juveniles (CJ-OV, I-D and I-H; lanes 5-8) and testes from broodstock after molting for Day 1-5 (II-A and II-C; lanes 1-6), Day 6-9 (II-A and IIC; lanes 1-6 and II-B and II-D; lane 1), and Day 10-16 (II-B and II-D; lanes 2-9). Lanes M = 100 bp DNA ladder.

Figure 3.87 Histograms showing the expression levels of HSP70-2 in gonads of P. monodon. The same letters indicate that the expression levels were not significantly different $(P>0.05)$.

3.7 Quantitative analysis of interesting genes in testes by real-time PCR

3.7.1 Expression level of Dmc1 and progestin receptor membrane component 1

 (PGRMC1) in testes of juvenile P. monodon in response to dopamine administrationThe expression levels of Dmc1 and PGRMC1 in juvenile P. monodon in response to dopamine (DA) administration ($10^{-6} \mathrm{~mol} /$ shrimp) at different time points ($3,6,12$, and 24 hours) were examined using quantitative real-time PCR analysis.

Standard curves of Dmc1, PGRMC1, and EF-1 α of were constructed (Fig. 3.88-3.89). For quantitative analysis of specimens, 50 ng of first-strand cDNA was used as the template. Results from real-time PCR revealed that expression levels of Dmc1 in testes were not significantly altered after dopamine treatment ($P>0.05$) whereas PGMRC1 was up-regulated at 3 hr post treatment ($P<0.05$) (Fig. 3.90). These preliminary results suggested that dopamine might not inhibit spermatogenesis in P. monodon. However, further confirmative studies need to be conducted in P. monodon broodstock at both mRNA and protein levels. Raw data on relative expression level of these genes are shown in Appendix C.

Figure 3.88 Standard curve of $\operatorname{Dmc1}\left(\mathrm{A} ; \mathrm{r}^{2}\right.$ for the standard curve $\left.=0.996820\right)$ and $E F-1 \alpha\left(B ; r^{2}\right.$ for the standard curve $\left.=0.99327\right)$ in testes of juvenile P. monodon. EF1α was used as an internal control for $D m c 1$.

Figure 3.89 Standard curve of PGRMC1 ($\mathrm{A} ; \mathrm{r}^{2}$ for the standard curve $=0.99820$) and $E F-1 \alpha\left(B ; r^{2}\right.$ for the standard curve $\left.=0.99520\right)$ in testes of juvenile P. monodon. $E F-$ 1α was used as an internal control for PGRMC1.

Figure 3.90 Real-time PCR analysis illustrating relative expression levels of Dmc1 in testes of juvenile P. monodon after injected with normal saline or dopamine (10^{-6} $\mathrm{mol} / \mathrm{shrimp}$) for $3,6,12$ and 24 hr . The normal shrimp was also included as the control. An asterisk indicates significant up-regulation of the relative expression level of PGMRC1 in dopamine-treated juvenile P. monodon. Numbers above the histograms reveal standard deviation of the treatment.

3.7.2 Expression levels of SUMO-1, cyclophilinA (CYA), Dmc1, saposin and spermatogonial stemcell renewal factor at different stage of testes and ovaries of P. monodon

The expression levels of transcripts related to testicular development including SUMO-1, cyclophilin A (CYA), Dmc1, saposin and spermatogonial stemcell renewal factor in testes of wild P. monodon broodstock after molting, wild broodstock (WBTT), domesticated broodstock (DB-TT), cultured juvenile (CJ-TT) and ovaries from wild broodstock (WB-OV) and cultured juveniles (CJ-OV) were examined using realtime PCR analysis.

The standard curve of each gene was constructed (Fig. 3.91-3.93) using 50 ng of the first strand cDNA template for SUMO-1, CYA, saposin, spermatogonial stem cell renewal factor and EF-1 α and 75 ng for Dmc1.

Quantitative real-time PCR clearly illustrated that CYA was more abundantly expressed in ovaries than testes ($P<0.05$, Fig. 3.94). The expression level of CJ-OV preferentially expressed to WB-OV $(P<0.05)$. In addition, the expression level of this gene in testes at 10-16 DAM was more abundant than that of 6-9 DAM ($P<$ 0.05). The expression level of CYA in WB-TT was greater than that of 6-9 DAM ($P<$ $0.05)$.

SUMO-1 was significantly expressed lower in domesticated broodstock than in wild and cultivated P. monodon males ($P<0.05$, Fig. 3.94) but not in wild and cultured juvenile females ($P>0.05$). The expression levels of SUMO-1 in testes and ovaries were not significantly different $(P>0.05)$. In addition, the expression level of this gene in testes at 10-16 DAM was higher than that at 1-5 and 6-9 DAM $(P<0.05)$. The expression level of SUMO-1 in WB-TT was higher than that at 1-5 and 6-9 DAM ($P<0.05$).

Saposin was more abundantly expressed in testes than ovaries of P. monodon ($P<0.05$, Fig. 3.95). The expression levels of this transcript were not significantly different in different stages of testes (WB-TT, DB- TT and CJ-TT) and ovaries (WBTT and CJ-TT). Moreover, the expression levels of saposin in the molting groups

Figure 3.91 Standard curve of SUMO-1 (efficiency of the amplification $=1.993$) and $C Y A$ (efficiency of the amnplificaqtion $=1.980$)

Figure 3.92 Standard curve of Dmc1 (efficiency for the amplification $=1.971$) and saposin (efficiency of the amplification $=1.984$)

Figure 3.93 Standard curve of spermatogonial stem-cell renewal factor (efficiency of the amplification $=2.027) . E F-1 \alpha($ efficiency for the standard curve $=1.945)$

Figure 3.94 Real-time PCR analysis illustrating the relative expression levels of CYA (A) and SUMO-1 (B) in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting. The same letters indicate that the expression levels were not significantly different ($P>0.05$).

CJ-TT $=$ testes of cultured juvenile, WB-TT = testes of wild broodstock, DB-TT = testes of domesticated broodstock, CJ-OV = ovaries of cultured juvenile and WB-OV = ovaries of wild broodstock.
were not different. However, the saposin level of WB-TT was greater than that of 1-5 and 6-9 DAM ($P<0.05$).

Relative expression levels (normalized by EF-1 α) of spermatogonial stem-cell renewal factor was quite low compared to the control. Accordingly, the absolute expression levels (without normalization) were also illustrated and both parameters were considered together. The expression level of spermatogonial stem-cell renewal factor in domesticated broodstock was significantly lower than that in wild and cultivated P. monodon males, $P<0.05$, Fig. 3.96) but not in cultured P. monodon juveniles $(P>0.05)$.

Figure 3.95 Real-time PCR analysis illustrating the relative expression levels of saposin in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting. The same letters indicate that the expression levels were not significantly different ($P>0.05$).

CJ-TT $=$ testes of cultured juvenile, WB-TT $=$ testes of wild broodstock, DB-TT = testes of domesticated broodstock, CJ-OV = ovaries of cultured juvenile and WB-OV = ovaries of wild broodstock.

The relative expression level of spermatogonial stem-cell renewal factor was preferentially expressed in testes to ovaries of P. monodon ($P<0.05$). In addition, both relative and absolute expression levels of this gene in testes of 10-16 DAM was more abundant than those at 1-5 and 6-9 DAM ($P<0.05$) and the expression level of this gene in WB-TT was significantly greater than that of the molting groups ($P<0.05$). When absolute expression levels of spermatogonial stem-cell renewal factor were considered the highest level was found in WB-OV resulting in a preferential expression pattern of this gene in ovaries ($P<0.05$). which is contradictory to results inferred from the relative expression levels.

Dmc1 was less abundantly expressed in testes of domesticated broodstock than in wild and cultivated P. monodon males ($P<0.05$, Fig. 3.97) but not significantly different from ovaries of both cultured juveniles and wild broodstock ($P>0.05$). The expression level of this gene was more preferential in testes to ovaries ($P<0.05$). In addition, both relative and absolute expression level of this gene in testes of 10-16 DAM was greater than those at 1-5 and 6-9 DAM ($P<0.05$). However, the levels of Dmc1 were not different when absolute expression levels rather than relative expression levels were considered.

ศูนย์วิทยทรัพยากร
 จุหาลงกรณ์มหาวิทยาลัย

A

B

Figure 3.96 Real-time PCR analysis illustrating the relative (A) and absolute (B) expression levels of spermatogonial stem cell renewal factor in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting. The same letters indicate that the expression levels were not significantly different $(P>0.05)$.

CJ-TT = testes of cultured juvenile, WB-TT = testes of wild broodstock, DB-TT = testes of domesticated broodstock, $\mathrm{CJ}-\mathrm{OV}=$ ovaries of cultured juvenile and WB-OV = ovaries of wild broodstock.

A

B

Figure 3.97 Real-time PCR analysis illustrating the relative (A) and absolute (B) expression levels of Dmc1 in testes and ovaries of P. monodon and in testes of P. monodon broodstock after molting. The same letters indicate that the expression levels were not significantly different $(P>0.05)$.
$\mathrm{CJ}-\mathrm{TT}=$ testes of cultured juvenile, $\mathrm{WB}-\mathrm{TT}=$ testes of wild broodstock, $\mathrm{DB}-\mathrm{TT}=$ testes of domesticated broodstock, CJ-OV = ovaries of cultured juvenile and WB-OV = ovaries of wild broodstock.

3.8 Large scale examining expression patterns of genes in testes of \boldsymbol{P}. monodon by microarray analysis

Microarray slides fabricated with transcripts from V. harveyi infected hemocyte and non-infected hemocyte cDNA libraries of P. monodon and WSSV infected hemocyte and non-infected hemocyte cDNA libraries of M. japonicus were used for microarray analysis. A total of spotted cDNA was 2,036 ESTs composing of 1282 and 754 ESTs from cDNA libraries of P. monodon and M. japonicus, respectively. The former consisted of 408 EST representing known genes and 874 ESTs representing unknown genes. The latter contained 254 and 469 ESTs representing known and unknown genes, respectively.

3.8.1 Gene differentially expressed in testes of juvenile and broodstock P. monodon

Testis cDNA of juvenile and broodstock P. monodon and vice versa were labeled with Cy3 and Cy5 and used as the probes for microarray analysis. Only transcripts exhibiting ≥ 2 folds or ≤ 0.5 fold between the target and the control specimens were considered as up-or down-regulation.

The number of up- or down-regulated genes in testes of broodstock (cDNAs in testes of juvenile shrimp were used as the control, Fig. 3.98) and in testes of juvenile shrimp (cDNAs in testes of broodstock were used as control, Fig. 3.99) are showed in Table 3.16.

In P. monodon broodstock (WB-TT), 350 of 1891 positively detected transcripts (18.5\%) revealed differential expression patterns. Of these, 138 (39.4\% of differentially expressed transcripts) and 212 (60.6\%) transcripts were up- and downregulated, respectively.

In juvenile P. monodon (CJ-TT), 105 of 1792 positively detected transcripts (5.9\%) revealed differential expression patterns. Of these, 54 (51.4\% of differentially expressed transcripts) and 51 (48.6\%) transcripts were up- and down-regulated, respectively.

Table 3.16 A summary on the number of up- or down-regulated genes in testes of broodstock and juvenile P. monodon analyzed by microarrays

	Broodstock	Juvenile
Total number of signally detected genes	$\mathbf{1 8 9 1}$	$\mathbf{1 7 9 2}$
Up-regulated genes	$\mathbf{1 3 8}$	$\mathbf{5 4}$
-Up-regulated known genes	44	34
-Up-regulated unknown genes	94	20
Down-regulated genes	$\mathbf{2 1 2}$	$\mathbf{5 1}$
-Down-regulated known genes	63	9
-Down-regulated unknown genes	$\mathbf{1 4 9}$	42
Total number of up-/down-regulated genes	$\mathbf{3 5 0}$	$\mathbf{1 0 5}$

จุหาลงกรณมหาวิทยาถล้ย

Figure 3.98 Microarray analysis using cDNA of testes of juveniles and broodstock of P. monodon labeled with Cy 3 and Cy 5 as the probes, respectively.

Figure 3.99 Microarray analysis using cDNA of broodstock and juvenile testes of P. monodon labeled with Cy 3 and Cy 5 as the probes, respectively.

Table 3.17 Examples of up- or down-regulated genes in testes of broodstock in comparison with those in testes of juvenile P. monodon

No.	Name	ID	Species of the original transcript	Tested samples	Ratio of Medians (635/532)	Up- or downregulation
Up-regulated in WB-TT but down-regulated in CJ-TT						
$\begin{aligned} & \text { I-A } \\ & \text { I-B } \end{aligned}$	unknown	LPV0054	P. monodon	$\begin{aligned} & \text { CJ-TT } \\ & \text { WB-TT } \end{aligned}$	$\int \begin{gathered} 0.19 \\ 5.427 \end{gathered}$	Down Up
$\begin{aligned} & \text { II-A } \\ & \text { II-B } \end{aligned}$	unknown	IF174	P. monodon	$\begin{aligned} & \mathrm{CJ}-\mathrm{TT}_{9} \\ & \mathrm{WB}-\mathrm{TT} \end{aligned}$	${ }^{2} \quad \begin{aligned} & 0.182 \\ & 6.124 \end{aligned}$	Down Up
III-A	unknown	IF361	P. monodon	CJ-TT	0.492	Down
III-B				WB-TT	2.276	Up
Up-regulated in CJ-TT but down-regulated in WB-TT						
IV-A	unknown	HpaN0480	P. monodon	CJ-TT	2.482	Up
IV-B				WB-TT	0.446	Down
V -A	unknown	LPV0175	P. monodon	CJ-TT	2.01	Up
V-B				WB-TT	0.383	Down

Three unknown genes were up-regulated in testes of P. monodon broodstock but down-regulated in those of P. monodon juvenile. There were LPV0054, IF174, and IF361 from cDNA libraries of P. monodon (Table 3.17 and Fig.3.100). In contrast, two unknown genes (HpaN0480 and LPV0175) were down-regulated in P. monodon broodstock but up-regulated in juvenile P. monodon (Table 3.17 and Fig.3.100).

Figure 3.100 Microarray analysis showing up- and/or down-regulation of examined genes in testes of juvenile (A) and broodstock (B) P. monodon.

จุหาลงกรณ์มหาวิทยาลัย

3.8.2 Gene expression of dopamine-treated testes at 3 and 6 hours post injection of juvenile P. monodon

Genes differentially expressed in testes of normal and dopamine-treated juvenile shrimps ($10^{-6} \mathrm{~mol} /$ shrimp) at 3 and 6 hours post injection were examined. Testis cDNA of normal and dopamine-treated juvenile shrimps at 3 and 6 hours were used as probes by labeling with Cy 3 and Cy 5 , respectively.

The numbers of up- or down-regulated genes of dopamine-treated testes at 3 hours and 6 hours post injection (testis cDNA of normal shrimp were used as the control) were shown in Table 3.18 and Fig. 3.101-3.102, respectively.

In comparison between dopamine-treated shrimp at 3 hr post injection and normal shrimp, 1924 ESTs gave the positive signal and 274 of these (14.2\%) displayed differential expression patterns. A total of 186 (67.9\% of differentially expressed transcripts) and 88 (32.1\%) transcripts were up- and down-regulated, respectively.

Likewise, 1889 positively hybridized signals were observed when cDNAs of dopamine-treated shrimp at 6 hr post injection were compared with those of the normal shrimp. A total of 229 (12.1\%) exhibited differential expression and 113 (49.3\%) and 116 (50.7\%) transcripts were up- and down-regulated, respectively.

Four unknown transcripts were up-regulated at 3hr but returned to the normal state at 6 hr post dopamine injection. They were PJH145r, PJA128r, HpaN0140, and LPV0054 (Table 3.19 and Fig.3.103). In contrast, an unknown N331 transcript did not revealed differential expression at 3 hr but was up-regulated at 6 hr post dopamine injection. In addition, two unknown genes (IF174 and PJA108f) were up-regulated at both 3 hr and 6 hr post dopamine injection.

Table 3.18 A summary on the number of up- or down-regulated genes of testes of dopamine-treated P. monodon at 3 hours and 6 hours post injection

Hours post injection		
Total number of signally detected genes	\mathbf{c} (924	$\mathbf{6} \mathbf{~ h r}$
Up-regulated genes	$\mathbf{1 8 6}$	$\mathbf{1 1 3}$
- Up-regulated known genes	65	49
- Up-regulated unknown genes	121	64
Down-regulated genes	$\mathbf{8 8}$	$\mathbf{1 1 6}$
- Down-regulated known genes	16	23
- Down-regulated unknown genes	72	93
Total number of up- or down-regulated genes	$\mathbf{2 7 4}$	$\mathbf{2 2 9}$

Figure 3.101 Microarray analysis using cDNA of normal testes and dopamine-treated testes of juvenile shrimps ($10^{-6} \mathrm{~mol} /$ shrimp) at 3 hours post injection labeled with Cy 3 and Cy 5 as the probes, respectively.

Figure 3.102 Microarray analysis using cDNA of normal testes and dopamine-treated testes of juvenile shrimps ($10^{-6} \mathrm{~mol} /$ shrimp) at 6 hours post injection labeled with Cy 3 and Cy 5 as the probes, respectively.

Table 3.19 Examples of up- or down-regulated genes in testes of normal and dopamine-treated juveniles of P. monodon

No.	Name	ID	Species		Ratio of Medians (635/532)	Up- or downreguration
Up- regulated at $\mathbf{3} \mathrm{hr}$ but not at at 6 hr post dopamine injection						
I-A	unknown	PJH145r	M. japonicus	3 hr	3.165	Up
I-B				6 hr	1.238	Normal
I-A	unknown	PJA128r	M. japonicus	3 hr	3.368	Up
I-B				6 hr	1.362	Normal
II-A	unknown	HpaN0140	P. monodon	3 hr	3.251	Up
II-B			-	6 hr	1.743	Normal
III-A	unknown	LPV0054	. monodon	3 hr	3.093	Up
III-B				6 hr	1.834	Normal
Up- regulated at both 3 hr and 6 hr post dopamine injection						
IV-A	unknown	IF174	P. monodon	3 hr	3.459	Up
IV-B				6 hr	2.400	Up
V-A	unknown	PJA108	M. japonicus	3 h	3.255	Up
V-B				6 hr	2.579	Up
Up-regulated at 6 hr but not at 3 hr post dopamine injection						
VI-A	unknown	N331	P. monodon	3 hr	1.692	Normal
VI-B					3.316	Up

Figure 3.103 Microarray analysis showing up- and/or down-regulation of examined genes in testes of dopamine-treated juveniles of P. monodon at $3 \mathrm{hr}(\mathrm{A})$ and 6 hr (B) post injection.

3.9 In vitro expression of interesting genes using the bacterial expression system

3.9.1 Construction of recombinant plasmid in cloning and expression vector

Five recombinant plasmids carrying the full length cDNA of spermatogonial stem cell renewal factor, Dmc1, PGRMC1, cyclophilin A, and SUMO-1 were successfully constructed for in vitro expression of the corresponding recombinant protein.

Spermatogonial stem cell renewal factor was initially found from the ovary cDNA library and the full length cDNA of this gene in ovaries was characterized by RACE-PCR. The full length cDNA of ovarian spermatogonial stem cell renewal factor was 2759 bp in length with an ORF of 1353 bp corresponding to 450 amino acids. This transcript significantly matched that of Danio rerio (E-value $=6 \mathrm{e}-109$) (Sittikankeaw, 2006). The ORF of the testis form was successfully amplified using primers designed from the full length cDNA from ovaries. The ORF sequence of testis form significantly matched that of Danio rerio (E-value $=3 \mathrm{e}-103$). Nucleotide sequence and deduced amino acid of both ORF were aligned (Fig. 3.104-3.105). Eleven polymorphic nucleotides causing 6 nonsynonymous mutations between these isoforms were observed.

A primer pair was designed to amplify cDNA representing the mature peptide of spermatogonial stem cell renewal factor, Dmc1 and PGRMC1. The amplified full length cDNA was ligated, cloned into pGEM-T easy vector and transformed into E. coli JM109.

ศนย์วิทยทรัพยากร

In constrast, recombinant plasmid containing the full length cDNA of SUMO1 and cyclophilin A were already existent in testis cDNA library. Plasmid DNA of the positive clone was re-sequenced to confirm the orientation and nucleotide sequence of a particular recombinant clone. Recombinant plasmid in the cloning vector was used as the template for amplification of the fragment containing a mature peptide of SUMO-1 and cyclophilin A. The amplification product was digested with Nde I and Eco RI, eluted, and ligated into pET32a expression vector and transformed into E. coli BL21(DE3) codon+ RIPL.

ORF-TT ATGAGCGCTGCACAGACCTCTCAAGGCAGCTGGAGGATTCCGGACCTTCTTGCCATGAAG 60 ORF-OV ATGAGCGCTGCACAGACCTCTCAAGGCAGGTGGAGGATCCCGGACCTTCTGTCCATGAAG 60 ORF-TT CGCGATGGCCTGGCCTATTCGGAGGACCAGATCGCCTTCTTGGTCCGGTCGGTCTCGGAT 120 ORF-OV CGCGATGGCCTGGCCTATTCGGAGGACCAGATCGCCTTCTTGGTCCGGTCGGTCTCGGAT 120 ORF-TT CGGTCCATGGACGACTGTCAGCTGGGGGCGCTCCTGATGGCCATCAAGCTGCAGGATATG 180 ORF-OV CGGTCCATGGACGACTGTCAGCTGGGGGCGCTCCTGATGGCCATCAAGCTGCAGGATATG 180
ORF-TT ACGGACGCAGAGACGATCGCCCTCACTAAGGGCATGAGGGACTCAGGAAGCGTGTTCTCG 240 ORF-OV ACGGACGTAGAGACGATCGCCCTCACTAAGGGCATGAGGGACTCAGGAAGTGTGTTCTCG 240

ORF-TT TGGCCGAAGGACTGGCGCGTCGTGGACAAGCACAGCACGGGCGGCGTGGGTGACAAGGTG 300 ORF-OV TGGCCGAAGGACTGGCGCGTCGTGGACAAGCACAGCACGGGCGGCGTGGGTGACAAGGTG 300

ORF-TT TCCCTGGCGCTGGCCCCCGCCCTCGCCGCCTGCGGCTTCAAGGTGCCCATGATCAGCGGG 360 ORF-OV TCCCTGGCGCTGGCCCCCGCCCTCGCCGCCTGCGGCTTCAAGGTGCCCATGATCAGCGGG 360

ORF-TT CGCGGCCTCGAGCACACGGGGGGCACGCTCGACAAGCTGGAGAGCATCCCAGGCTTCAAG 420 ORF-OV CGCGGCCTCGAGCACACGGGGGGCACGCTCGACAAGCTGGAGAGCATCCCAGGCTTCAAG 420

ORF-TT GTGTCTCTGACGGAGGCCGAGATGAAGACGGCGCTGGAGGAGGTCGGCTGCTGTATCGTA 480 ORF-OV GTGTCTCTGACGGAGGCCGAGATGAAGACGGCGCTGGAGGAGGTCGGCTGCTGTATCGTA 480 ORF-TT GGCCAGACCGCCGACATCGTACCTGCTGACAGACGCATGTACGCCGCAAGAGACGTCACT 540 ORF-OV GGCCAGACCGCCGACATCGTACCTGCTGACAGACGCATGTACGCCGCAAGAGACGTCGCT 540 ORF-TT TCAACCGTCAAATCTGTGCCGCTCATCGTCTCGTCCATCATCAGCAAGAAGGCTGCGGAG 600 ORF-OV TCAACCGTCAAATCTGTGCCGCTCATCGTCTCGTCCATCATCAGCAAGAAGGCTGCGGAA 600
ORF-TT ACCGTGAGCGGGCTGGTGCTCGACGTCAAGTTCGGCGGAGGAGCCTTCATGAAGACCCAG 660 ORF-OV ACCGTGAGCGGGCTGGTGCTCGACGTCAAGTTCGGCGGAGGAGCCTTCATGAAGACCCAG 660 ORF-TT GAGGAGGCAGGGGCGCTGGCCAAGAAAATGGTGGATGTGGCCAACGGCGTGGGCATGGCC 720 ORF-OV GAGGAGGCAGGGGCGCTGGCCAAGAAAATGGTGGATGTGGCCAACGGCGTGGGCATGGCC 720

ORF-TT ACGACGGCCCTCCTGACCACGATGGATATCCCGCTCGGCAGGGCCATCGGCAACGCCCTC 780 ORF-OV ACGACGGCCCTCCTGACCACGATGGATATCCCGCTCGGCAGGGCCATCGGCAACGCCCTC 780 ORF-TT GAGGTGCGGGAGTCGCTGGAGTGTCTTCGGGGCAACGGACCGGAGGACCTTGAGGAGCTC 840 ORF-OV GAGGTGCGGGAGTCGCTGGAGTGTCTTCGGGGCAACGGACCGGAGGACCTTGAGGAGCTC 840

ORF-TT GTAACGCACCTGGGCGGAGAATTACTGCTGGGTGCGGGAGCGGCCTCTACGCTGGATGAA 900 ORF-OV GTAACGCACCTGGGCGGAGAATTACTGCTGGGTGCGGGAGCGGCCTCTACGCTGGATGAA 900 ORF-TT GCTCGCCAGAAGCTGGCCAAGGCTCTGAGGGATGGCAGTGCCAGAACGGCTTTCTGCAAT 960 ORF-OV GCTCGCCAGAAGCTGGCCAAGGCTCTGAGGGATGGCAGTGCCAGAACGGCTTTCTGCAAT 960 ORF-TT ATGATACAGAAGCAGGGTGTCACCAAGAGTGTAGCAGAGGCACTGTGCGGCAATGTTCCC 1020 ORF-OV ATGATACAGAAGCAGGGTGTCACCAAGAGTGTAGCAGAGGCACTGTGCGGCAATGTTCCC 1020 ORF-TT GACTACTCCCATCTACCTTCCTCGGCTCATGTCACTGCCGTCAAAGCTGCTTCCCCAGGA 1080 ORF-OV GACTACTCCCATCTACCTTCCTCGGCTCATGTCACTGCCGTCAAAGCTGCTTCCTCAGGA 1080 ORF-TT GTGCTAGTTGGTATGGATGCCATGACTATGGCGAAGATCAGTTTAGAACTCGGGGCTGGC 1140 ORF-OV GTGCTAGTTGGTATGGATGCCATGACTATGGCGAAGATCAGTTTAGAACTCGGGGCTGGC 1140
ORF-TT AGGAACAAGGTCGGCGACCCGATCAACTACAGCGTGGGCATAATGCTCGTTAAGGTGGTC 1200 ORF-OV AGGAACAAGGTCGGCGACCCGATCAACTACAGCGTGGGCATAATGCTCATTAAGGTGGTC 1200 **)
ORF-T
GGCGAGAGCGTGAAGGAAGGCGAGACGTGGGCAGAGCTGCATCACGATTCCTCACTGCCA 1260 ORF-OV GGCGAGAGCGTGAAGGAAGGCGAGACGTGGGCAGAGCTGCACCACGATTCCTCACTGCCA 1260

ORF-TT CCCACCCTCCTACAGAGGATGCAGGGAGCCGTCACCATCAAGGCGTCGGCGGAAGCATGC 1320 ORF-OV CCCACCCTCCTACAGAGGATGCAGGGAGCCGTCACCATCAAGGCGTCGGCGGAAGCATGC 1320

ORF-TT AAGCCCTCGCGCGTTGCCGCTCGCGTTGTCTAG 1353
ORF-OV AAGCCCTCGCGCGTTGCCGCTCGCGTTGTCTAG 1353

Figure 3.104 Alignments between the full length cDNA of spermatogonial stem-cell renewal factor initially characterized from testes (ORF-TT) and ovaries (ORF-OV) of

P. monodon

F-TT	MSAAQTSQGSWRIPDLLAMKRDGLAYSEDQIAFLVRSVSDRSMDDCQLGALLMAIKLQDM	60
ORF-OV	MSAAQTSQGRWRIPDLLSMKRDGLAYSEDQIAFLVRSVSDRSMDDCQLGALLMAIKLQDM	60
ORF-TT	TDAETIALTKGMRDSGSVFSWPKDWRVVDKHSTGGVGDKVSLALAPALAACGFKVPMISG	120
ORF-OV	TDVETIALTKGMRDSGSVFSWPKDWRVVDKHSTGGVGDKVSLALAPALAACGFKVPMISG	0
ORF-TT	RGLEHTGGTLDKLESIPGFKVSLTEAEMKTALEEVGCCIVGQTADIVPADRRMYAARDVT	80
ORF-OV	RGLEHTGGTLDKLESIPGFKVSLTEAEMKTALEEVGCCIVGQTADIVPADRRMYAARDVA	180
ORF-TT	STVKSVPLIVSSIISKKAAETVSGLVLDVKFGGGAFMKTQEEAGALAKKMVDVANGVGMA	240
ORF-OV	STVKSVPLIVSSIISKKAAETVSGLVLDVKFGGGAFMKTQEEAGALAKKMVDVANGVGMA	240
ORF-TT	TTALLTTMDIPLGRAIGNALEVRESLECLRGNGPEDLEELVTHLGGELLLGAGAASTLDE	300
ORF-OV	TTALLTTMDIPLGRAIGNALEVRESLECLRGNGPEDLEELVTHLGGELLLGAGAASTLDE	300
ORF-TT	ARQKLAKALRDGSARTAFCNMIQKQGVTKSVAEALCGNVPDYSHLPSSAHVTAVKAASPG	360
ORF-OV	ARQKLAKALRDGSARTAFCNMIQKQGVTKSVAEALCGNVPDYSHLPSSAHVTAVKAASSG	360
ORF-TT	VLVGMDAMTMAKISLELGAGRNKVGDPINYSVGIMLVKVVGESVKEGETWAELHHDSSLP	420
ORF-OV	VLVGMDAMTMAKISLELGAGRNKVGDPINYSVGIMLIKVVGESVKEGETWAELHHDSSLP	420
ORF-TT	PTLLQRMQGAVTIKASAEACKPSRVAARVV 450	
ORF-OV	$\underset{* ~}{\text { PTL }}$	

Figure 3.105 Alignments of deduced amino acid sequences of spermatogonial stemcell renewal factor from testes (ORF-TT) and ovaries (ORF-OV) of P. monodon

3.9.2 In vitro expression of recombinant protein

Expression of 4 recombinant clones of spermatogonial stem-cell renewal factor (47.21 kDa), Dmc1 (37.54 kDa), SUMO-1 (10.58 kDa), and cyclophilin A (18.86 kDa) and 8 clones of PGMRC1 (20.98 kDa) after induced by IPTG at $37^{\circ} \mathrm{C}$ were examined. Four respective proteins were found at the expected sizes after induced by IPTG for 3 hr . The recombinant proteins were stably expressed at 6 hr post IPTG induction (Fig. 3.106-107). Although recombinant PGRMC1 was also induced by IPTG, the levels of expressed PGMRC1 was very low. The extension of culture period from 6 hr to overnight at $37^{\circ} \mathrm{C}$ did not resolve a problem from low expression of this recombinant protein (Fig. 3.108). As a result, in vitro expression of PGMRC1 was not carried out further.

One of four examined recombinant clones of each protein was selected and the expression of the corresponding recombinant protein was examined at $0,1,2,3,6,12$ and 24 hr after IPTG induction at $37^{\circ} \mathrm{C}$. Recombinant spermatogonial stem-cell renewal factor, Dmc1, SUMO-1 and cyclophilin A proteins were overexpressed since 1 hr after induced by IPTG and (Fig 3.109-3.112). The expression levels of recombinant spermatogonial stem cell renewal factor were comparable between 1-12 hr after IPTG induction. However, the overnight culture resulted in a slightly lower level of this expressed protein.

Figure 3.106 SDS-PAGE showing in vitro expression of four recombinant clones of spermatogonial stem-cell renewal factor (A) and Dmc1 (B) of P. monodon at 0 hr (lane 1), 3 hr (lanes 2-5) and 6 hr (lanes 6-9) after induced by 1.0 mM IPTG.

Figure 3.107 SDS-PAGE showing in vitro expression of four recombinant clones of SUMO-1 (A) and cyclophilin $A(B)$ of P. monodon at 0 hr (lane 1), 3 hr (lanes 2-5), and 6 hr (lanes 6-9) after induced by 1.0 mM IPTG.

In contrast, lower expression levels of recombinant Dmc1 was found at 1 hr after IPTG induction. A greater level of expressed Dmc1 was observed when the culture period was extended between 2-12 hr after induction. The overnight culture of recombinant clones yielded the highest amount of recombinant Dmc1.

The expected protein band and that exhibiting a lower molecular weight were observed when total proteins from the recombinant clone of SUMO-1 were hybridized with Anti-His tag. Lower expression levels of recombinant SUMO-1 was found at 1 hr after IPTG induction. A greater level of expressed this recombinant protein was observed when the culture period was extended between 2 hr to overnight after IPTG induction. Nevertheless, the intensity of the interfering band was approximately identical to that of the expected target band throughout all culture period. The protein sequence of the expected SUMO-1 protein was further analyzed by LC-MS/MS.

Likewise, lower expression levels of recombinant cyclophilin A was found at 1 hr after IPTG induction. After 2 hr of induction, a greater level of expressed cyclophilin A was observed. This recombinant protein was stably expressed throughout the cultured period.

In addition, aliquots of the IPTG induced-culture ($\mathrm{OD}=1$) were collected. The soluble and insoluble protein fractions of each gene were analyzed by SDSPAGE and western blot analysis. Recombinant spermatogonial stem cell renewal

Figure 3.108 In vitro expression of eight recombinant clones of PGRMC1 of P. monodon after induced by 1 mM IPTG overnight (lanes 1-8) using SDS-PAGE (A) and western blot analysis (B). E. coli BL21C+(DE3)RIPL cells (lane 8), and pET32a vector in E. coli BL21C+(DE3)RIPL cell (lane 9) were included as the control.

A

B

$\begin{array}{lllllllllll}\text { kD } & \mathrm{M} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

250 -
$75-$
25 .

Figure 3.109 In vitro expression of recombinant spermatogonial stem cell renewal factor of P. monodon at $0,1,2,3,6,12$, and 24 hr after induced by 1 mM IPTG (lanes $1-7$) using SDSPAGE (A) and western blot analysis (B). E. coli BL21C+(DE3)RIPL cells (lane 8), and pET32a vector in E. coli BL21C+(DE3)RIPL cells (lane 9) were included as the control.

Figure 3.110 In vitro expression of recombinant Dmc1 of P. monodon at $0,1,2,3,6,12$, and 24 hr after induced by 1 mM IPTG (lanes 1-7) using SDS-PAGE (A) and western blot analysis (B). E. coli BL21C+(DE3)RIPL cells (lane 8), and pET32a vector in E. coli BL21C+(DE3)RIPL cells (lane 9) were included as the control.
factor and Dmc1 cultured at $37^{\circ} \mathrm{C}$ were expressed as the insoluble protein (Fig. 3.113 and 3.115), whereas recombinant cyclophilin A and SUMO-1 cultured at $37^{\circ} \mathrm{C}$ were found in both soluble and insoluble fraction at 6 hr after IPTG induction (Fig. 3.117 and 3.119).

The cultured temperature for recombinant clones of spermatogonial stem cell renewal factor, Dmc1, and cyclophilin A was then decreased from $37^{\circ} \mathrm{C}$ for 3 or 6 hr to $15^{\circ} \mathrm{C}$ overnight after the culture was induced by IPTG. Results showed that larger amounts of recombinant spermatogonial stem-cell renewal factor and cyclophilin A were expressed in the soluble fraction (Fig 3.114 and 3.118) whereas recombinant Dmc1 still was expressed in the insoluble fraction (Fig. 3.116).

Therefore the cultured temperature for further purification of recombinant spermatogonial stem-cell renewal factor and cyclophilin A were carried out at $15^{\circ} \mathrm{C}$, overnight whereas recombinant Dmc1 was cultured at $37^{\circ} \mathrm{C}$ for 6 hr .

Figure 3.111 In vitro expression of recombinant SUMO-1 of P. monodon at 0, 1, 2, 3, 6,12 , and 24 hr after induced by 1 mM IPTG (lanes 1-7) using SDS-PAGE (A) and western blot analysis (B). E. coli BL21C+(DE3)RIPL cells (lane 8), and pET32a vector in E. coli BL21C+(DE3)RIPL cells (lane 9) were included as the control.

Figure 3.112 In vitro expression of recombinant cyclophilin A of P. monodon at 0,1 , $2,3,6,12$, and 24 hr after induced by 1 mM IPTG (lanes 1-7) using SDS-PAGE (A) and western blot analysis (B). E. coli BL21C+(DE3)RIPL cells (lane 8), and pET32a vector in E. coli BL21C+(DE3)RIPL cells (lane 9) were included as the control.

Figure 3.113 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant spermatogonial stem cell renewal factor after IPTG induction for 6 hr at $37^{\circ} \mathrm{C}$ as the insoluble protein. Lane $1=$ whole cells, Lane $2=$ a soluble protein fraction ($25 \mu \mathrm{~g}$ protein), and Lane 3: an insoluble protein fraction ($25 \mu \mathrm{~g}$ protein).

Figure 3.114 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant spermatogonial stem cell renewal factor after IPTG induction overnight at $15^{\circ} \mathrm{C}$ as both soluble and insoluble proteins. Lane $1=$ whole cells, Lane $2=\mathrm{a}$ soluble protein fraction (25 $\mu \mathrm{g}$ protein), and Lane 3: an insoluble protein fraction (25 $\mu \mathrm{g}$ protein).

Figure 3.115 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant Dmc1 after IPTG induction for 6 hr at $37^{\circ} \mathrm{C}$ as the insoluble protein. Lane 1 = whole cells, Lane 2 = a soluble protein fraction ($25 \mu \mathrm{~g}$ protein), and Lane 3: an insoluble protein fraction ($25 \mu \mathrm{~g}$ protein).

Figure 3.116 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant Dmc1 after IPTG overnight at $15^{\circ} \mathrm{C}$ as the insoluble protein. Lane $1=$ whole cells, Lane 2 = a soluble protein fraction ($25 \mu \mathrm{~g}$ protein), and Lane 3: an insoluble protein fraction ($25 \mu \mathrm{~g}$ protein).

Figure 3.117 SDS-PAGE (A) and western blot analysis (B) showing more expression of recombinant cyclophilin A after IPTG induction for 3 hr at $37^{\circ} \mathrm{C}$ as the insoluble protein than the soluble protein. Lane $1=$ whole cells, Lane $2=$ a soluble protein fraction (25μ g protein), and Lane 3: an insoluble protein fraction ($25 \mu \mathrm{~g}$ protein).

Figure 3.118 SDS-PAGE (A) and western blot analysis (B) showing expression of recombinant cyclophilin A after IPTG induction overnight at $15^{\circ} \mathrm{C}$ as both soluble and insoluble proteins. Lane $1=$ whole cells, Lane 2 = a soluble protein fraction (25 $\mu \mathrm{g}$ protein), and Lane 3: an insoluble protein fraction ($25 \mu \mathrm{~g}$ protein).

Figure 3.119 SDS-PAGE (A) and western blot analysis (B) showing equal expression of recombinant SUMO-1 after IPTG induction for 6 hr at $37^{\circ} \mathrm{C}$ as the soluble and insoluble proteins. Lane $1=$ whole cells, Lane $2=$ a soluble protein fraction ($25 \mu \mathrm{~g}$ protein), and Lane 3: an insoluble protein fraction ($25 \mu \mathrm{~g}$ protein).

3.9.3 Peptide sequencing of recombinant cyclophilin A and SUMO-1

Surprisingly, western blot analysis indicated 2 positively discrete protein bands of recombinant SUMO-1. Accordingly, The expected SUMO (upper band) and cyclophilin A were further analyzed by ESI-LC-MS/MS. Internal peptide sequence of recombinant SUMO-1 was K-I-K-V-V-G-Q-D-S-N-E-I-H-F-R-V which was significantly matched SUMO-1 like protein of Artemia salina $(\mathrm{E}$ value $=6.7 \mathrm{E}-09)$ and perfectly matched the deduced amino acid sequence obtained from EST. Likewise, that of cyclophilin A possessed R-I-V-M-E-L-R-A-D-V-V-P-K-T-A-E-N-F-R-A K-H-T-G-P-G-T-L-S-M-A-N-A-G-P-N-T-N-G-S-Q-F-F-L-C-T-V-K-T which was significantly matched cyclophilin A of Scophthalmus maximus (1.8E-06) and nearly identical to R-I-V-M-E-L-R-A-D-V-V-P-K-T-A-E-N-F-R-S S-M-A-N-A-G-P-N-T-N-G-S-Q-F-F-I-C-T-V-K-T deduced from the full length cDNA of P. monodon cyclophilin A. This confirmed that recombinant proteins obtained were actually SUMO-1 and cyclophilin A, respectively.

3.9.4 Purification of recombinant protein

3.9.4.1 The first trial

The soluble fractions of recombinant spermatogonial stem-cell renewal factor, SUMO-1 and cyclophilin A were purified as native proteins whereas the insoluble fraction of recombinant Dmc1 was purified under denaturing conditions.

Recombinant proteins were run through the column three times and washed twice. The first wash used 10 ml of the binding buffer (20 mM sodium phosphate and 500 mM NaCl) including 20 mM imidazole, pH 7.4 and the second was used $5-10 \mathrm{ml}$ of the binding buffer including 80 mM imidazole, pH 7.4). After that recombinant proteins were eluted from column with 6 ml of the elution buffer (20 mM sodium phosphate, 500 mM NaCl and 500 mM imidazole, pH 7.4). Washed and eluted fractions were analyzed by SDS-PAGE and western blot (Fig 3.120-3.123). After purification, eluted proteins were keeping at $-20^{\circ} \mathrm{C}$ overnight.

When purified protein solutions of these recombinant proteins were thawed, white precipitated protein pellets were clearly seen in the eluted fraction 1-3. All

Figure 3.120 Purification of recombinant spermatogonial stem cell renewal factor of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDSPAGE (A-B) and western blot analysis (C-D).

A and C: lane $1=$ the soluble fraction after pass through the column, lanes 2-6 $=$ the first wash fractions $1,2,3,6$, and 9 and lanes $7-9=$ the second wash fractions 1,2 , and 3 , respectively. B and D : lanes $1-3=$ the second wash fractions 5,7 , and 9 and lanes $4-9=$ eluted protein fractions 1-6, respectively.

Figure 3.121 Purification of recombinant Dmc1 of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).
A and C: lane $1=$ the soluble fraction after pass through the column, lanes 2-7 $=$ the first wash fractions $1,2,3,5,7$ and 9 and lanes $8-9=$ the second wash fractions 1 and 2 , respectively. B and D: lanes $1-3=$ the second wash fractions 3,4 , and 5 and lanes $4-9=$ eluted protein fractions 1-6, respectively.

Figure 3.122 Purification of recombinant SUMO-1 of P. monodon (cultured at $37^{\circ} \mathrm{C}$, for 6 hr). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).
A and C: lane $1=$ the soluble fraction after pass through the column, lanes 2-7 $=$ the first wash fractions $1,2,3,5,7$ and 9 and lanes $8-9=$ the second wash fractions 1 and 2 , respectively. B and D: lanes $1-3=$ the second wash fractions 3,5 , and 7 and lanes $4-9=$ eluted protein fractions 1-6, respectively.

Figure 3.123 Purification of recombinant cyclophilin of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).

A and C: lane $1=$ the soluble fraction after pass through the column, lanes 2-7 $=$ the first wash fractions $1,2,3,5,7$ and 9 and lanes $8-9=$ the second wash fractions 1 and 2, respectively. B and D: lanes 1-3 $=$ the second wash fractions 3,4 , and 5 and lanes $4-9=$ eluted protein fractions 1-6, respectively.
eluted fractions of each recombinant protein were then pooled and dialyzed with the PBS buffer to eliminate imidazole in the elution buffer. The dialyzed proteins were concentrated in vacuo. Non-purified and purified recombinant proteins were sent to Faculty of Medical Technology for production of polyclonal antibodies. Notably, the purified proteins from the first trial were not suitable for production of polyclonal antibody.

9.4.1.2 The second trial

The first trial for purification of recombinant proteins was unsuccessful. Accordingly, the second trial was performed. Recombinant SUMO-1 was excluded from the experiment because the upper target protein bands co-purified with the nonrecombinant protein of E. coli after purification.

Recombinant spermatogonial stem cell renewal factor cyclophilin A and Dmc1 proteins were purified using the same methods used for the first trial excepted an additional washing step was included (5 ml of the binding buffer containing 50 mM imidazole, pH 7.4) (Fig 3.124-3.126). After purification, eluted recombinant proteins were kept at $4^{\circ} \mathrm{C}$ overnight. The precipitated proteins (white pellet) were slightly found in the eluted protein fraction 3 . All except this fraction of recombinant spermatogonial stem-cell renewal factor and cyclophilin A were pooled and dialyzed with the PBS buffer. White precipitated proteins were still found in recombinant cyclophilin A. Purified proteins were concentrated by ultrafiltration.

All eluted fractions of/recombinant Dmc1 was pooled, concentrated with ultrafiltration and size-fractionated by SDS-PAGE. The protein band was eluted with the protein elution buffer (25 mM Tris, 192 mM Glycine, and 0.1% SDS) using an Electro-Eluter (model 422, Bio-Rad). Non-purified and purified recombinant proteins were sent to Faculty of Medical Technology for further immunization of rabbit and determination of the titers of produced antibodies.

For production of the polyclonal antibody, degraded spermatogonial stem-cell renewal factor, cyclophilin A and Dmc1 from the first trial were boosted four times in separate rabbits. Serum of the immunized rabbit was collected and the titer was estimated by ELISA using the degraded protein as the antigen. However, ELISA

Figure 3.124 Purification of recombinant spermatogonial stem cell renewal factor of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDSPAGE (A-B) and western blot analysis (C-D).

A and C : lane $1=$ the soluble fraction after pass through the column, lanes 2-6 $=$ the first wash fractions $1,3,5,7$ and 9 and lanes $7-9=$ the second wash fractions 1,3 and 5 , respectively. B and D : lanes $1-3=$ the third wash fractions 1,3 , and 5 and lanes $4-9=$ eluted protein fractions 1-6, respectively.

Figure 3.125 Purification of recombinant Dmc1 of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).
A and C: lane $1=$ the soluble fraction after pass through the column, lanes 2-6 $=$ the first wash fractions $1,3,5,7$ and 9 and lanes $7-9=$ the second wash fractions 1,3 and 5 , respectively. B and D : lanes $1-3=$ the third wash fractions 1,3 , and 5 and lanes 4-9 = eluted protein fractions 1-6, respectively.

Figure 3.126 Purification of recombinant cyclophilin A of P. monodon (cultured at $15^{\circ} \mathrm{C}$, overnight). Recombinant proteins were examined by using SDS-PAGE (A-B) and western blot analysis (C-D).

A and C: lane $1=$ the soluble fraction after pass through the column, lanes 2-6 $=$ the first wash fractions $1,3,5,7$ and 9 and lanes $7-9=$ the second wash fractions 1,3 and 5 , respectively. B and D: lanes $1-3=$ the third wash fractions 1,3 , and 5 and lanes $4-9=$ eluted protein fractions 1-6, respectively.
did not give the positive results possibly owing to problems from precipitated proteins (antigen). Afterwards, the purified recombinant protein solutions from the second trial were used to boost the same rabbit. Titers of rabbit serum after the $4^{\text {th }}$ and $5^{\text {th }}$ immunization were examined using antigen from recombinant protein solutions ($2^{\text {nd }}$ trial).

ศนย์วิทยทรัพยากร

Results from ELISA showed that polyclonal antibodies of all recombinant proteins were successfully produced. The positive titers were observed since the $4^{\text {th }}$ immunization and the titers of polyclonal antibodies were greater after the $5^{\text {th }}$ immunization. Nevertheless, the titer of polyclonal antibody for recombinant cyclophilin A could not be detected. This should be resulted from degradation of the antigen (purified cyclophilin A) (Table 3.20-3.21). Although polyclonal antibody of recombinant spermatogonial stem-cell renewal factor, cyclophilin A, and Dmc1 were successfully produced, the titers of these polyclonal antibodies were quite low.

Table 3.20 Summary of conditions used for purification of recombinant proteins in this study

	Recombinant protein				
	SUMO*	Spermatogonial stem cell renewal factor**		Dmc1**	Cyclophilin $\mathrm{A}^{* *}$
Size of protein (kDa)	10.58	- 47.21		37.54	18.86
Kind of protein	Soluble protein	Soluble protein		Insoluble protein	Soluble protein
Culture cells	1 Liter (Purify 25\%)	500 ml (Purify 80\%)		500 ml (Purify 50\%)	500 ml (Purify 80\%)
Conditions (temp and time after induction)	$37^{\circ} \mathrm{C}, 6 \mathrm{hr}$	${ }^{\circ} \mathrm{C}$, overnight		$37^{\circ} \mathrm{C}, 6 \mathrm{hr}$	$15^{\circ} \mathrm{C}$, overnight
Weight of wet cells (g/L)	5.03	0.95		2.74	0.97
Weight of inclusion body fraction (g / L)	0.58	0.27		0.48	0.18
Protein concentration (mg protein/L of cultured cells)	51.86	89.01		55.05	129.83
Protein concentration of each elution (E1-E6)	$\mathrm{E} 1=4.728 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 2=$ $3.945 \mathrm{mg} / \mathrm{ml}$, E3 = 1.798 $\mathrm{mg} / \mathrm{ml}, \mathrm{E} 4=0.487 \mathrm{mg} / \mathrm{ml}$, E $=1.314 \mathrm{mg} / \mathrm{ml}$, and E6 = $0.694 \mathrm{mg} / \mathrm{ml}$	$\mathrm{E} 1=9.78 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 2=22.62$ $\mathrm{mg} / \mathrm{ml}, \mathrm{E} 3=3.88 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 4$ $=0.45 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 5=0.28$ $\mathrm{mg} / \mathrm{ml}$, and $\mathrm{E} 6=0.08 \mathrm{mg} / \mathrm{ml}$		$=1.03 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 2=2.05$ $\mathrm{ml}, \mathrm{E} 3=1.61 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 4$ $1.33 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 5=6.26$ ml , and E6 $=1.48 \mathrm{mg} / \mathrm{ml}$	$\mathrm{E} 1=5.56 \mathrm{mg} / \mathrm{ml}, \mathrm{E} 2=$ $42.54 \mathrm{mg} / \mathrm{ml}$, E3 $=5.06$ $\mathrm{mg} / \mathrm{ml}$, E4 $=0.39 \mathrm{mg} / \mathrm{ml}$, $\mathrm{E} 5=0.41 \mathrm{mg} / \mathrm{ml}$, and $\mathrm{E} 6=$ $0.13 \mathrm{mg} / \mathrm{ml}$
*First purification trial	\uparrow			$\%$	
**Second purification trial		1กรณ์มหา		$2 \cap \text { ค }$	

Table 3.21 ELISA results illustrating the titers of polyclonal antibodies after rabbits were boosted by recombinant spermatogonial stem cell renewal factor, Dmc1 and cyclophilin A after rabbits were boosted 4 times

Dilution of serum	Polyclonal antibody					
	Spermatogonial stem-cell renewal factor		Dmc1		Cyclophilin A	
	Pre-immunized serum	Immunized serum	Pre-immunized serum	Immunized serum	Pre-immunized serum	Immunized serum
Antigen dilution: before the second purification						
1:500	0.785	1.222	0.922	2.247	1.150	2.868
1:2000	0.221	0.524	0.364	1.281	0.449	1.776
1:8000	0.049	0.162	0.072	0.475	0.116	0.686
1:32000	0.002	0.032	0.005	0.132	0.029	0.181
Antigen dilution: after the second purification						
1:500	0.273	0.688	0.018	0.387	0.058	0.795
1:2000	0.104	0.271	0.004	0.119	0.004	0.242
1:8000	0.027	0.079	0.001	0.040	-0.007	0.080
1:32000	0.008	0.023	-0.004	0.010	-0.013	0.018

Pre-immunized serum = serum from normal rabbit
Immunized serum $=$ serum from rabbit injected with the recombinant protein 4 times \square ?

Table 3.22 ELISA results illustrating the titers of polyclonal antibodies after rabbits were boosted by recombinant spermatogonial stem cell renewal factor, Dmc1 and cyclophilin A after rabbits were boosted 5 times

Dilution of serum	\square Polyclonal antibody					
	Spermatogonial stem-cell renewal factor			\square	Cyclophilin A	
	Pre-immunized serum	Immunized serum	Pre-immunized serum	Immunized serum	Pre-immunized serum	Immunized serum
Antigen dilution: before the second trial purification						
1:500	0.352	1.486	0.534	1.681	0.481	1.503
1:2000	0.072	1.057	0.214	1.009	0.194	0.869
1:8000	0.041	0.663	0.094	0.481	0.092	0.392
1:32000	0.042	0.249	350.057	0.181	0.062	0.149
Antigen dilution: after the second trial purification						
1:500	0.217	1.873	0.075	0.936	0.072	0.151
1:2000	0.074	1.394	0.064	0.438	0.061	0.084
1:8000	0.059	0.866	0.061	0.194	0.054	0.066
1:32000	0.061	0.363	ค9n $0.057 \sim$	- $0.095 \sim$	0.051	0.063

Pre-immunized serum $=$ serum from normal rabbit
Immunized serum $=$ serum from rabbit injected with the recombinant protein 5 times

CHAPTER IV

DISCUSSION

Spermatogenesis consists of a series of complex cellular events, in which different genes express to ensure the proper development of spermatozoa (Abe, 1987 and 2004).). An initial step toward understanding molecular mechanisms of testicular and sperm development as well as sex differentiation cascades in P. monodon is the identification and characterization of sex-related genes expressed in testes of an economically important species like P. monodon. The basic information would provide an insight into molecular aspects governing reproductive processes for future functional studies in this species. In addition, the fundamental controls of growth in penaeid shrimp are largely unstudied. Genes encoding vertebrate-like growth factors and cell cycle regulating proteins should also be characterized. Integration of the knowledge from various molecular disciplines would provide markers that can be used to assist selective breeding programs of P. monodon.

Isolation and characterization of functionally important gene homologues in the conventional heart cDNA library of P. monodon

To characterize genes encoding vertebrate-like growth factors and cell cycle regulating proteins, a conventional heart cDNA library of P. monodon was established from mRNA of heart (4-month-old) of P. monodon. A total of 412 recombinant clones of the heart cDNA library having inserts greater than 500 bp in size were unidirectionally sequenced from the 5^{\prime} terminus. Sequences were blasted against data in the GenBank using Blast N and Blast X and 54.5% of the heart EST significantly matched with known sequences in the GenBank $\left(P<10^{-4}\right)$ whereas the remaining sequences were newly genes identified regarded as unknown transcripts (45.4 \%).

A large number of unknown transcripts were found from the library. Among known transcripts in the heart library, those categorized to unknown transcripts (45.4\%) were the most abundantly expressed group followed by those classified into a mitochondrial protein group (26.5\%), an unidentified (hypothetical cDNA/DNA) group (17.0\%). The remaining transcripts including those classified as members of miscellaneous functions (2.6\%), ribosomal proteins (2.2\%), gene expression
regulation and protein synthesis (2.2\%), metabolism (1.9\%), defense and homeostasis (1.2\%), signal and communication (0.5\%), cell division and DNA synthesis (0.5\%), internal/external structure and mobility (0.25%) were rare abundant transcripts in this library.

It is not surprised to identify a large number of mitochondrial protein genes in the heart cDNA library because the high proportion of mitochondrial DNA/genomic DNA is usually found in active tissues (Imjongjairak et al., 2004). As a result, abundantly expression levels of mitochondrial protein transcripts should be typical for the heart tissue. This reflects a large proportion of EST representing mitochoindrial proteins in this library.

Several functional important transcripts including troponin-T, high mobility protein 20A, neuroparin A, lipoamide dehydrogenase) were identified. These transcripts which have previously reported to be related with growth of other organisms will be further characterized. In addition, the full length cDNA of a homologue of myosin 1 light chain (MLC1, ORF of 465 bp encoding a protein of 154 amino acid) which is significantly matched that of Apis mellifera (E-value $=7 \mathrm{e}-49$) was also identified in this libraries.

Neurotransmitters and neuropeptides (e.g MCL1 and neuroparsin) that are found in heart are important for cardiac regulation, brain development, growth and reproduction in several species. The roles of neuropeptides for growth and reproductive regulation have been reported in gastropods (i.e. abalone) for examples; mutation of the MCL1 protein causes brain disorders (Schmitt, et al, 2003). Neuroparsin A and B involved with brain development and reproductive physiology in gonads (Janssen, et al, 2001).

Transcripts involved with metabolisms were also found in the conventional heart cDNA library. Therefore, this library should be normalized for decreasing mitochondrial transcripts before ESTs are further sequenced of a larger number of recombinant clones.

Isolation and characterization of functionally important gene homologues in the conventional testis cDNA library of P. monodon

Due to difficulties in sexual maturation of captive P. monodon, molecular mechanisms of this process have long been of interest by aquaculture industries (Preechaphol et al., 2007). Eight hundred and ninety-six recombinant clones from a testis cDNA library (the primary titer of $5.66 \times 10^{6} \mathrm{pfu} / \mathrm{ml}$) were sequenced and analyzed. A total of 699 (67.4\%) of sequenced clones significant match previously deposited genes in the GenBank whereas 290 sequences (32.6\%) were regarded as unknown transcripts. Accordingly, unknown transcripts and functionally unidentified (hypothetical) protein-coding genes (114, 12.8\%) predominated in this library.

The percentage of unknown transcripts found in the present study was lower than that previously reported in the normal (39.1\%) and SSH (65.0\%) cDNA libraries of testes of H. asinina (Amparyup et al., 2004) and a testis SSH library of P. monodon (96.7%, Leelatanawit et al., 2004). A large number of unknown transcripts found in testes of P. monodon indicated that further characterization (e.g. by RACE-PCR) is required to cover a larger part of their coding region.

The relationship between the number of clones sequenced and the accumulative numbers of unique transcripts indicated that the discovery rate of new transcripts still does not reach saturation after 896 recombinant clones were sequenced. Therefore, additional unique transcripts can still be identified by sequencing a larger number of recombinant clones.

In contrast to redundant transcripts identified in ovaries of P. monodon (7.5\% of TSP and 8.3% of peritrophin; Preechaphol et al, 2007) and testes of H. asinina (7.6\% of sperm lysin; Amparyup et al., 2004), highly redundant ESTs were not observed in the present library. This further suggested that the established library was reasonably diverse.

The full length cDNA of several functionally important genes (e.g. TCTP, dynactin subunit 5, small nuclear ribonucleoprotein polypeptide G, ubiquitin conjugating enzyme E2 and mitotic checkpoint BUB3) were identified implying relative large insert sizes of this cDNA library. All except TCTP (AY186580),
ubiquitin conjugating enzyme E2 (DV738178 and CO777380) and cyclophilin A (EU164775 and DT624276) were reported for the first time in P. monodon.

Dynein is functionally related to the transport of various cytoplasmic organelles (Aniento et al., 1993). In Drosophila, cytoplasmic dynein and dynactin complex is required for the spermatid growth but not for axoneme assembly (GhoshRoy et al., 2004).

In addition, the full length cDNA of cdc2, SUMO-1 and cyclophilin A were also found. During the meiotic development examined so far, the G2/M phase transition is controlled by the maturation promoting factor (MPF), a complex of cdc2 (cdk1) and cyclin B1. In rat, inhibition of cdk1 and cdk2 affected the spontaneous processing of the first and second meiotic division of male germ cells (Godet et al., 2004).

SUMO-1 plays an important role in diverse reproductive functions such as spermatogenesis and modulation of steroid receptor activity. A SUMO-binding motif has been identified in the androgen receptor (AR), progesterone receptor (PR) and glucocorticoid receptor (GR) suggesting distinct roles for sumoylation in steroid receptor activity for growth and reproduction (Koshiyama, et al., 2006). In the sumoylation pathway, SUMO is transferred to substrate lysine residues through the thioester cascade of ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2 (UBE2), and SUMO ligase E3 functions as an adaptor between E2 and each substrate (Takahashi. and Kikuchi, 2005).

In Marsupenaeus japonicus, UBE2 was expressed at a higher level in testes than in ovaries. The expression at the stage I (GSI $=0.33 \pm 0.004, N=5$) was significantly lower than that of the stage $I I(G S I=0.45 \pm 0.12, N=5)$ but comparable to that of the stage III (GSI $=0.57 \pm 0.006, N=5$) of testes. UBE2 in ovaries was upregulated since the stage III of ovaries. This suggested that UBE2 has an important role in spermatogenesis and oogenesis of M. japonicus (Shen et al., 2008).

Cyclophilins are small proteins that bind Cyclosporin A (CsA) and catalyze protein folding (Lang et al., 1987). Cyclophilins are characterized by a conserved CBD that is required for both CsA-binding and protein-folding activities (Page et al., 1996). Recently, a diverse cyclophilin, mog 1 was isolated and functionally
characterized. Binding of mog 1 to MEP-1 is essential for germline sex determination in Caenorhabditis elegans (Belfiore et al., 2004).

Isolation and characterization of functionally important gene homologues

 in the SSH libraries of testes of \boldsymbol{P}. monodonA total of 367 ESTs of testes (178 and 189 clones from the forward and reverse SSH libraries, respectively) of P. monodon were unidirectionally sequenced. The positive recombinant clones of both libraries was 95.1 and 96.4% where 82.4 and 86.2 of which having insert sizes > 250 bp in length. The percentage of ESTs significantly matched known genes in respective libraries was 37.1 (66 ESTs) and 53.5\% (100 ESTs).

Peritrophin and thrombospondin which are abundantly expressed in ovaries of P. monodon were not found in the subtractive testis cDNA libraries. Relatively large numbers of genes encoding ribosomal proteins were found in both libraries (16 and 11 accounting for 8.9 and 5.6%, respectively).

Unlike a SSH library of H. asinina where ESTs representing sperm lysin (7.6\%) were abundantly expressed, highly redundant ESTs were not observed and a relatively large number of known gene homologues were found in these libraries. This suggested that the established SSH libraries were reasonably diverse.

Seven known transcripts: allergen Pen m 2, COI, EF-1 α, GTP-binding protein, 26 S proteasome non-ATPase subunit 12, receptor for activated protein kinase C (RACK) and myelodysplasia/myeloid leukemid factor were found with low frequencies in both libraries suggesting that the cDNA subtraction was successful.

Unknown transcripts predominated in both libraries 112 and 87 clones accounting for 62.9 and 46.5%, E-value $>1 \mathrm{e}-04$). The percentage of unknown transcripts in SSH libraries was much grater than that of the conventional library established from testis of P. monodon broodstock (290/889 clones, 32.6\%) but lower than those found in the SSH library of testes of the tropical abalone, Haliotis asinina (125/160, 65\%).

Full length cDNAs identified by EST analysis and RACE-PCR

Eleven full length cDNAs of functionally important genes were discovered from EST analysis of testis (10 transcripts) and heart (1 transcript) cDNA libraries. They were SUMO-1, cyclophilin A, TCTP, small nuclear ribonucleoprotein polypeptide G, dynactin subunit 5, ubiquitin conjugating enzyme 2, mitotic checkpoint, Cdc2, thioredoxin , multiprotein bridging factor 1 and MLC1.

In addition, the full length cDNA of 16 functionally important genes for example, transformer-2, meiotic recombination protein DMC1/LIM15 homolog isoform 1, progestin receptor membrane component 1, prohibitin-2 (a repressor of estrogen receptor activity), multiple inositol polyphosphate phosphatase 2, prohibitin2 (a repressor of estrogen receptor activity), and growth factor receptor-bound protein were successfully characterized by RACE-PCR

Progestins are sex steroid hormones that play important roles in gametogenesis. In fish, progestin also plays an important role in spermiation and sperm maturation (Miura et al., 2006). Recently, effects of 17a, 20ß-dihydroxy-4-pregnen-3-one (DHP) on the initiation of meiosis in the male Japanese eel were examined. DHP induced DNA replication in spermatogonia but prevented DNA replication during the period in which meiosis was initiated (Miura et al., 2006).

Two totally distinct classes of putative membrane-bound progestin receptors have been reported in vertebrates. They are progestin membrane receptor component (PGMRC; subtypes 1 and 2) and membrane progestin receptors (mPR; subtypes α, β, γ) which have never studied in any crustacean (Mourot et al., 2006). The full length cDNA of PGMRC1, initially identified in the reverse SSH libraries, was successfully identified by RACE-PCR and reported for the first time in crustaceans.

Sex determination mechanisms have long been of major interest from both developmental and evolutionary points of view (Delvin and Nagahama, 2002). In Drosophila, sex determination is under the control of the sex lethal (Sxl) gene (Burtis et al., 1991). Sxl participates in the female-specific splicing of its own pre-mRNA. The downstream target of Sxl is the transformer (Tra) which encodes a nonfunctional truncated Tra protein in males (Inoue et al., 1990). The female Tra protein induces female-specific splicing of the doublesex ($d s x$) pre-mRNA in cooperation
with the Tra-2 gene product promoting female sexual development (Burtis et al., 1991; Jursnich and Burtis, 1993; An and Wensink, 1995).

The diploid chromosome numbers of penaeid shrimp are $2 N=88-92$ where P. monodon possesses $2 N=88$ (Benzie, 1998). Neither sex chromosomes nor environmental sex determination has been reported in penaeid shrimp. The partial sequence of Sxl transcripts were previously found in hemocytes EST libraries of P. monodon (Tassanakajon et al., 2006) and Marsupenaeus japonicus (T. Aoki, personal communication). In this study, RACE-PCR was applied and successfully identified the full length cDNA of sex-related Tra-2 in P. monodon. The deduced PMTra-2 contained the RRM domain which is found in a variety of RNA binding proteins, including heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs) (Liu et al., 2008). The discovery of PMTra-2 indirectly suggested that sex determination of this species may have influenced by the Sxl-dsxTra pathway.

Sex-specific/differential expression markers in P. monodon

Transcripts in this study were identified from cDNAs expressed in the conventional and SSH cDNA libraries. Thirty-six of 59 examined gene homologues (e.g. SUMO-1, CYA, dynactin subunit 5 and Trap240) revealed a trend of preferential expression in ovaries to testes of P. monodon. PMTST1 was restrictively expressed in testes but not ovaries whereas HSP70-2 exhibited a trend of preferential expression in testes of P. monodon. As a result, a SSH library between CDNA from testes and ovaries should be established to obtain additional transcripts that exhibit preferential expression levels in testes of P. monodon.

Inx2 and PGMRC1 did not revealed differential expression between ovaries and testes of P. monodon ($P>0.05$). In contrast, $D m c 1$ was expressed differentially in gonads (testes > ovaries) of P. monodon broodstock ($P<0.05$). More importantly, PGMRC1 was more abundantly expressed in testes of juveniles than broodstock of P. monodon ($P<0.05$). Inx2 and Dmc1 were preferentially expressed in ovaries of juveniles to broodstock of P. monodon ($P<0.05$).

Recently, Khamnamtong et al., (2006) identified sex-specific (or differential) expression markers in ovaries and testes of P. monodon by RNA-arbritary-primedpolymerase chain reaction (RAP-PCR). Expression patterns of 25 transcripts were tested against the first stranded cDNA of ovaries and testes of 3-month-old and broodstock-sized P. monodon ($N=5$ and $N=7-10$ for females and $N=4$ and $N=5$ 7 for males, respectively). Five (FI-4, FI-44, FIII-4, FIII-39 and FIII-58) and two (M457-A01 and MII-51) RAP-PCR derived unknown transcripts revealed female- and male-specific expression patterns implying that these unknown genes may contribute gonadal development and/or sex differentiation of P. monodon.

In the giant freshwater prawn (Macrobrachium rosenbergii), a suppression subtractive hybridization (SSH) male reproductive tract library was constructed to identify male-specific genes that could be involved in male development. A novel Mar-Mrr (M. rosenbergii male reproduction-related gene, 683 bp in length with an ORF of 333 bp) and the Kazal-type peptidase inhibitor (KPI, 736 bp , ORF of 405 bp) transcripts were identified and these genes were only expressed in the male reproductive tract of M. rosenbergii (Cao et al., 2006 and 2007).

The transcripts restrictively (or preferentially) expressed in ovaries but not testes of P. monodon found in this study can be additionally used as the responsive indicators for reproductive maturation at the present stages but their involvement for ovarian and oocyte maturation of P. monodon and/or differentiation of sexes in P. monodon need to be further examined.

In addition, a large scale expression analysis of genes indifferent stages of testicular development and those under the normal and dopamine-treated conditions were also examined by microarray analysis. Many transcripts exhibiting differential expression patterns were found. Based on the fact that genes fabricated on the examined microarray slides were from the hemocyte cDNA libraries of P. monodon and M. japonicus., microarrays containing genes expressed in gonads of shrimp are more appropriate for screening of reproductively related genes in P. monodon.

More recently, the first reproduction cDNA microarray (ReproArray ${ }^{\text {GST }}$) containing 4,992 features amplified from cDNAs of ovary $(1,920)$ and testis $(3,072)$ EST libraries of P. monodon was constructed and subjected to a high-throughput gene
expression analysis in four different stages of ovarian development (previtellogenic, vitellogenic, early cortical rod and late cortical rod stages). This allows rapid examination of expression profiles of a large number of reproduction-related genes in both ovaries and testes to provide an insight into molecular aspects governing reproductive processes of P. monodon (N. Karoonuthaisiri, personal communication).

Gene expression and tissue distribution analysis are important and provide the basic information to set up the priority for further analysis of functional genes. Based on the fact that a particular gene may express in several tissues and possesses a different function in different tissues, tissue distribution analysis was carried out

Tissue distribution analysis revealed that PMTST1 was more abundantly expressed in testes, less abundantly expressed in intestine but was not expressed in other tissues. In contrast, MIPP2 was only expressed in gonads of P. monodon broodstock. CYA, SUMO-1, prohibitin2, and Trap240 were constitutively expressed in all examined tissues while HSP70-2 was more abundantly expressed in testes than other tissues. PMTra-2 was expressed at high levels in testes and ovaries but less abundantly expressed in gills, heart, hemocytes, lymphoid organs, intestine and stomach.

MIPP functionally dephosphorylates a number of inositol phosphates, including $\operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}, \operatorname{InsP}_{5}$ and InsP $_{6}$ which is recognized to have important cellular actions as receptor-mobilized precursor pools for intracellular signals (Craxton et al., 1997). HSP70-2 is a testis-specific member of the HSP70 protein family known to play a critical role in the completion of meiosis during male germ cell differentiation (Govin et al., 2006).

Tissue distribution analysis also indicated that Inx2 and Dmc1 were more abundantly expressed in testes than ovaries while PGMRC1 which was constitutively expressed in all examined tissues showed comparable expression levels in testes and ovaries of P. monodon broodstock. Therefore, Inx2 and Dmc1 may play the important role in spermatogenesis but not oogenesis whereas PGMRC1 is functionally important for both spermatogenesis and oogenesis of P. monodon.

Invertebrate gap-junction proteins, Inxs, were originally identified in Drosophila and Caenorhabditis (Phelan et al., 1998). In Bombyx mori, northern
blotting and in situ hybridization revealed that Bm-Inx2 was expressed across all developmental stages and in various tissues with high expression observed in the nervous system during embryogenesis. In contrast, Bm-Inx4 was transiently expressed at the germ-band formation stage of embryogenesis, and was specifically expressed in ovaries and testes during the larval and pupal stages (Hong et al., 2008).

Spermatogenesis is an essential process for production of haploid gametes. During meiosis, a single round of DNA replication is followed by two successive rounds of nuclear divisions (Abe, 1987). Dmc1 is involved in meiotic recombination occurred during the meiotic prophase (Ozaki et al., 2006). RNA interference (RNAi) against endogenous Dmc1 defects spermatogenesis in mice indicating its important roles in spermatogenesis (Shoji et al., 2005). Recently, the full length Dmc1 cDNA was cloned from the testis of the Japanese eel (Anguilla japonica). Dmc1 mRNA of A. japonica was abundantly expressed in the testes and ovaries and lower expressed in the brain. In situ hybridization revealed that A. japonica Dmc1 was localized only in the primary spermatocytes implying its important role during the initial stages of spermatogenesis (Kajiura-Kobayashi et al., 2005).

Molecular mechanisms and expression patterns of genes controlling different steps of sperm maturation and testicular development should be examined for better understanding the reproductive maturation of P. monodon in captivity. The ability to identify sex-specific and sex-differential expression markers of P. monodon opens a possibility to study the initial expression and localization of these gene products in undifferentiated gonads of P. monodon by in situ hybridization. Typically, the study of the effectors involving shrimp reproduction has been limited to the determination of one effector at a time (Ibara, et al., 2007). Therefore integrated interactions among genes in gonads of P. monodon need to be examined, for example, by microarray analysis.

In vitro expression of recombinant proteins

Recombinant spermatogonial stem cell renewal factor, Dmc1, PGRMC1, cyclophilin A, and SUMO-1 protein were successfully expressed in vitro for further examination on expression of these genes at both the translational levels. Recombinant spermatogonial stem cell renewal factor cyclophilin A and Dmc1
proteins were purified. The polyclonal antibodies of these recombinant proteins were successfully produced. Localization of these proteins at different stages of testicular development can be subsequently carried out using immunohistochemistry.

Expression of functionally important gene homologues and the potential to be applied as biomarkers for reduced maturation of \boldsymbol{P}. monodon

In the red swamp crayfish (Procambarus clarkia) dopamine inhibited testicular maturation dose-dependently whereas its antagonist, spiperone induced testicular maturation (Sarojini et al., 1995) but effects of dopamine on spermatogenesis of P. monodon have not been reported. Real-time quantitative PCR revealed that expression levels of Dmc1 in testes were not significantly altered after dopamine treatment $(P>0.05)$ whereas $P M-P G M R C 1$ was up-regulated at 3 hr post treatment $(P<0.05)$. This suggested that dopamine may not inhibit spermatogenesis of P. monodon. However, the preliminary results in this study should be further confirmed in P. monodon broodstock at both the mRNA and protein levels.

Domesticated male P. monodon yielded lower fertilization rates of zygotes and low survival rates of larvae than did wild male P. monodon (B . Withyachumnarnkul personal communication). In this study, the GSI values of wild shrimp were greater than those of domesticated broodstock even though their body weights were comparable implying a possible reduction of the maturation potential in domesticated shrimp. It has been reported that overexpression of prohibitin (also called a repressor of estrogen receptor activity, REA) inhibits estrogen receptor alpha (ER α) transcriptional activity in MCF-7 breast cancer cells (He et al., 2008). Lower expression levels of SUMO-1 Dmc1, and spermatogonial stem-cell renewal factor and greater levels of prohibitin2 in domesticated than wild broodstock ($P<0.05$) suggested that transcriptional levels of these genes may be used to indicate possible reduced degrees of reproductive maturation of different full-sib families in the ongoing domestication program of P. monodon in Thailand.

Recently, Parnes et al. (2006) indicated that sexually mature males of Litopenaeus vannamei are strictly associated with molt cycles and are hormonally regulated periodically. A decline in quality of spermatophore as the molt cycle progressed was also reported in P. indicus (Muthuraman, 1997). Expression levels of

SUMO-1, CYA, Tra-2, HSP70-2, MIPP2, prohibitin2, Trap240, Dmc1, saposin and spermatogonial stem-cell renewal factor in testes of P. monodon were reduced whereas PMTST1 was up-regulated after molting. Accordingly, expression levels of these transcripts during the molt cycles of male P. monodon should be examined and applied to explore the possible association between their expression levels and testicular development of P. monodon.

In the present study, a large number of cDNA including sex-related transcripts in testes of P. monodon were identified. The expression profiles of genes specifically expressed or those preferentially expressed in testes of P. monodon illustrated in this study implied that these genes may have contributed testicular development in P. monodon. Functionally analysis of genes involving testicular and sperm development can be further carried out for better understanding of the reproductive maturation of male P. monodon in captivity.

CHAPTER V

CONCLUSIONS

1. Conventional cDNA libraries of testis and heart of P. monodon were constructed. A total of 896 and 413 ESTs were sequenced, respectively and 606 ESTs (67.6\%) and 283 ESTs (68.5\%) significantly matched sequences in the GenBank whereas 290 ESTs (32.4\%) and 130 ESTs (31.5\%) were unknown transcripts, respectively. Genes functionally involved in cell growth and development, sex determination cascades, and testicular development were found.
2. Forward and reverse SSH cDNA libraries between cDNA in testes of broodstock and juvenile P. monodon were established to promote the identification of differentially expressed genes in testes of P. monodon juveniles and broodstock. In total, 178 and 187 ESTs from respective libraries were sequenced and 67 ESTs (37.1\%) and 104 ESTs (54.0\%) of which were known genes whereas 112 and 87 ESTs accounting for 62.9 and 46.0% were unknown genes, respectively.
3. The full length cDNA of 16 functionally important gene homologues were successfully characterized by RACE-PCR. These included PMTST1, multiple inositol polyphosphate phosphatase 2 (MIPP2), prohibitin-2, cell division kinase 7 (cdk7), flotillin 2, growth factor receptor-bound protein, innexin 1, innexin 2, Rac-GTPase activating protein 1, transformer 2 (Tra-2), Dmc1, progestin membrane receptor component 1 (PGMRC1), saposin, troponin T isoform 3, Ero1L CG1333-PB isoform B, and dihydrolipoamide dehydrogenase, respectively? \mathcal{F}
4. Expression patterns of 59 gene homologues were non-quantitatively examined using RT-PCR analysis. PMTST1 was only expressed in testes but not ovaries. MIPP and MIPP2 HSP70-2 exhibited a trend of preferential expression in testes of P. monodon. However, thirty-six transcripts showed a trend of greater expression levels in ovaries than testes.
5. Tissue distribution analysis of 15 gene homologues revealed that PMTST1 was expressed in testes and intestine but was not expressed in other tissues. MIPP and MIPP2 were only expressed in gonads of P. monodon broodstock. Tra-2 was
expressed at high levels in testes and ovaries but less abundantly expressed in other tissues. Other transcripts did not reveal more abundantly expression in gonads compared to other tissues.
6. Expression levels of 12 gene homologues were examined using semiquantitative RT-PCR or quantitative real-time PCR. Testis-specific expression of PMTST1 was confirmed by semiquantitative RT-PCR. Dmc1, saposin, spermatogonial stem-cell renewal factor, MIPP2 and HSP70-2 were preferentially expressed in testes to ovaries ($P<0.05$) but CYA and Trap240 were differentially expressed in the opposite direction. Expression levels of SUMO-1, Tra-2 and prohibitin2 in ovaries and testes of P. monodon were not significantly different $(P>0.05)$.
7. Significant reduction of SUMO-1, Dmc1, and spermatogonial stem-cell renewal factor and increment of prohibitin2 transcripts in domesticated broodstock (P <0.05) suggested that these reproductively related genes may be used as biomarkers to evaluate reduced degrees of reproductive maturation in domesticated P. monodon.
8. Relative expression levels of PGMRC1 but not Dmc1 in testes of juvenile P. monodon were induced upon DA administration ($10^{-6} \mathrm{~mol} / \mathrm{shrimp}$) at 3 h post treatment ($\mathrm{P}<0.05$).
9. Recombinant proteins of Dmc1, spermatogonial stem-cell renewal factor, SUMO1, and CYA were successfully expressed in vitro. Polyclonal antibodies against Dmc1, spermatogonial stem-cell renewal factor and CYA were successfully

จุหาลงกรณ์มหาวิทยาลัย

REFERENCES

Abe, S-I. 1987. Differentiation of spermatogenic cells from vertebrates in vitro. Int. Rev. Cytol. 109: 159-209.

Abe, S.-I. 2004. Hormonal control of meiosis initiation in the testis from Japanese newt, Cynops pyrrhogaster. Zool. Sci. 21: 691-704.

Alfaro, J., Zúñiga, G., and Komen, J. 2004. Induction of ovarian maturation and spawning by combined treatment of serotonin and a dopamine antagonist, spiperone in Litopenaeus stylirostris and Litopenaeus vannamei. Aquaculture 236: 511-522.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.

Amparyup, P., Klinbunga, S., Tassanakajon, A., Hirono, I., Aoki, T., and Jarayabhand, P. 2004. Expressed sequence tag (EST) analysis of ovaries and testes from the tropical abalone (Haliotis asinina). Mar. Biotechnol. 6: S365-S370.

Avise, J. C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, New York.

An, W., and Wensink, P. C. 1995a. Integrating sex- and tissue-specific regulation within a single Drosophila enhancer. Genes Dev. 9: 256-266.

An, W., and Wensink, P. C. 1995b. Three protein binding sites from an enhancer that regulates sex- and fat body-specific transcription of Drosophila yolk protein genes. EMBO J. 14: 1221-1230.

Anderson, I., and Brass, A. 1998. Searching DNA databases for similarities to DNA sequences: when is a match significant? Bioinformatics 14(4): 349-356.

Aniento, F., Emans, N., Griffiths, G., and Gruenberg, J. 1993. Cytoplasmic dyneindependent vesicular transport from early to late endosomes. J. Cell. Biol. 123: 1373-1387.

Bailey-Brock, J. H., and Moss, S. M. 1992. Penaeid taxonomy, biology and zoogeography. In Fast, A. W. and Lester, L. J. (eds.), Marine Shrimp Culture: Principles and Practices, pp. 9-23. Netherlands: Elsevier Science Publishers.

Baker, R. H., and Sakai, R. K. 1976. Male determining factor on chromosome 3 in the mosquito, Culex tritaeniorhynchus. J. Hered. 67: 289-294.

Belfiore, M., Pugnale, P., Saudan, Z., and Puoti, A. 2004. Roles of the C. elegans cyclophilin-like protein MOG-6 in MEP-1 binding and germline fates. Development 131: 2935-2945.

Bell, T.A., and Lightner, D.V. 1988. A Handbook of Normal Penaeid Shrimp Histology. World Aquaculture Society, USA: Allen Press, Inc.

Benzie, J. A. H. 1998. Penaeid genetics and biotechnology. Aquaculture 164: 23-47.

Braydich-Stolle, L., Kostereva, N., Dym, M., and Hofmann, M. C. 2007. Role of Src family kinases and N -Myc in spermatogonial stem cell proliferation. Developmental Biology 304: 34-45.

Browdy, C. 1998. Recent developments in penaeid broodstock and seed production technologies : improving the outlook for superior captive stocks. Aquaculture 164 : 3-21.

Burtis, K. C., Coschigano, K. T., Baker, B. S., and Wensink, P. C. 1991. The doublesex proteins of Drosophila melanogaster bind directly to a sex-specific yolk protein gene enhancer. EMBO J. 10: 2577-2582.

Callard, G. V., 1991. Spermatogenesis. In: Pang, K.T., Schreibman, M.P. (Eds.) Vertebrate endrocrinology; fundamentals and biochemical implication, Vol 4 Part A. San Diego: Academic Press. pp. 303-341.

Cao, J. X., Yin, G. L., and Yang, W. L. 2006. Identification of a novel male reproduction-related gene and its regulated expression patterns in the prawn, Macrobrachium rosenbergii. Peptides. 27: 728-735.

Cao, J. X., Dai, J. Q., Dai, Z. M., Yin, G. L., and Yang, W. J. 2007. A male reproduction-related Kazal-type peptidase inhibitor gene in the prawn,

Macrobrachium rosenbergii: molecular characterization and expression patterns. Mar. Biotechnol. 9: 45-55.

Craxton, A., Caffrey, J.J., Burkhart, W., Safrany, S.T., and Shears, S.B. 1997. Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochem. J. 328: 75-81.

Chiu, HT., et al. 2006. Dopamine induces transient modulation of the physiological responses of white leg shrimp, Litopenaeus vannamei. Aquaculture 251: 558566.

De Grandi, A., Calvari, V., Bertini, V., Bulfone, A., Peverali, G., Camerino, G., Borsani, G., and Guioli, S. 2000. The expression pattern of a mouse doublesexrelated gene is consistant with a role in gonadal differentiation. Mech. Dev. 90: 323-326.

Devlin R. H, and Nagahama Y. 2002. Sex determination and sex differentiation in fish. Aquaculture 208: 191-364.

Diatchenko, L., Lau, Y. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D., and Siebert, P. D. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025-6030.

Eddy, E. M. 1999. Role of heat shock protein HSP70-2 in spermatogenesis. Rev. Reprod. 4: 23-30.

Erdman, S. E., Chen, H. J., and Burtis, K. C. 91996 . Functional and genetic characterization of the oligomerization and DNA binding properties of the Drosophila Doublesex proteins. Genetics 144: 1639-1652.

Felsenstein, J. 1993. Phylip (Phylogenetic Inference Package) Version 3.5c. Department of Genetics, University of Washington, Seattle, USA.

Ghosh-Roy, A., Kulkarni, M., Kumar, V., Shirolikar, S., and Ray, K. 2004. Cytoplasmic dynein-dynactin complex is required for spermatid growth but not axoneme assembly in Drosophila. Mol. Biol. Cell 15: 2470-2483.

Godet, M., Damestoy, A., Mouradian, S., Rudkin, B.B., and Durand, P. 2004. Key role for cyclin-dependent kinases in the first and second meiotic divisions of rat spermatocytes. Biol. Reprod. 70: 1147-1152.

Govin, J., Caron, C., Escoffier, E., Ferro, M., Kuhn, L., Rousseaux, S., Eddy, E.M., Garin, J., and Khochbin, S. 2006. Post-meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. J. Biol. Chem. 281: 3788837892.

Grimes, S. R. 2004. Testis-specific transcriptional control. Gene 343: 11-22.

He, B., Feng, Q., Mukherjee, A., Lonard, D.M., DeMayo, F.J., Katzenellenbogen, B.S., Lydon, J.P., and O’Malley, B.W. 2008. A repressive role for prohibitin in estrogen signaling. Mol. Endocrinol. 22: 344-360.

Hong, S-M, Kang, S-W, Goo, T-W., Kim, N-S., Lee, J-H., Kim, K-A., and Nho, S-K. 2008. Two gap junction channel (innexin) genes of the Bombyx mori and their expression. J. Insect Physiol. 54: 180-191.

Huang, X., and Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877.

Ibara, A. M., Racotta,-I. S., Arcos, F. G., and Palacios, E. 2007. Progress on the genetics of reproductive performance in penaeid shrimp. Aquaculture 268: 23ฉจาลงกรณมหาวทยาลย
Imjongjirak, C., Ngewsra, L., Pramual, C., Insuan, S., Pala-or, K., Klinbunga, S., and Sittipraneed,S. 2004. Development of a simple and rapid method for typing population origins of the honey bee (Apis cerana) in Thailand. J. Apicul. Res. 43: 17-20.

Inoue, K., Hoshijima, K., Sakamoto, H., and Shimura, Y. 1990. Binding of the Drosophila sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature 344: 461-463.

Janssen, T., Claeys, I., Simonet, G., Loof, A.D., Girardie, J., and Broeck, J.V. 2001. cDNA cloning and transcript distribution of two different neuroparsin precursors in the desert locust, Schistocerca gregaria. Insect Mol Biol 10: 183-189.

Jursnich, V. A., and Burtis, K. C. 1993. A positive role in differentiation for the male doublesex protein of Drosophila. Dev. Biol. 155: 235-249.

Kajiura-Kobayashi, H., Kobayashi, T., and Nagahama, Y. 2005. Cloning of cDNAs and the differential expression of A-type cyclins and Dmc1 during spermatogenesis in the Japanese eel, a teleost fish. Dev. Dynamics 232: 11151123.

Khamnamtong, B., Thumrungtanakit, S., Klinbunga, S., Hirono, T. Aoki, T., and Menasvetas, P., 2006. Identification of sex-specific expression markers of the giant tiger shrimp (Penaeus monodon). J. Biochem. Mol. Biol. 39: 37-45.

Kim, H., Moon, C., and Shin, T. 2008. Immunohistochemical study of flotillin-1 in the rat testis during postnatal development. Acta Histochemica 110(3): 224231.

Klinbunga, S., Penman, D. J., McAndrew, B. J. and Tassanakajon, A. 1999. Mitochondrial DNA diversity in three populations of the giant tiger shrimp, P. monodon. Mar. Biotechnol 1(2): 113-121.

Kobayashi, H., Minshull, J., Ford, C., Golsteyn, R., Poon, R., and Hunt, T. 1991. On the synthesis and destruction of A- and B-type cyclins during oogenesis and meiotic maturation in Xenopus laevis. J Cell Biol. 114: 755-765.

Koshiyama, A., Hamada, F. N., Namekawa, S. H., Iwabata, K., Sugawara, H., Sakamoto, A., Ishizaki, T., and Sakaguchi, K. 2006. Sumoylation of a meiosis-specific RecA homolog, Lim15/Dmc1, via interaction with the
small ubiquitin-related modifier (SUMO)-conjugating enzyme Ubc9. FEBS J. 273: 4003-4012.

Kuo, C.M. Hsu, C.R., and Lin, C.Y. 1995. Hyperglycemic effects of dopamine in tiger shrimp, Penaeus monodon. Aquaculture 135: 161-172.

Lang, K., Schmid, F. X., and Fischer, G. 1987. Catalysis of protein folding by prolyl isomerase. Nature 329: 268-270.

Leelatanawit, R., Klinbunga, S., Puanglarp, N., Tassanakajon, A., Jarayabhand, P., Hirono, I., Aoki, T., and Menasveta, P. 2004. Isolation and Characterization of Differentially Expressed Genes in Ovaries and Testes of the Giant Tiger Shrimp (Penaeus monodon). Mar. Biotechnol. 6: S506-S510.

Li, F., Xiang, J., Zhang, X., Zhou, L., Zhang, C., and Wu, C. 2003. Gonad development characteristics and sex ratio in triploid Chinese shrimp (Fenneropenaeus chinensis). Mar. Biotechnol. 5: 528-535.

Li, Y., Byrne, K., Miggiano, E., Whan, V., Moore, S., Keys, S., Crocos, P., Preston, N., and Lehnert, S. 2003. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture 219: 143-156.

Limsuwan, C. 2004. Diseases of Pacific white shrimp (Litopenaeus vannamei) cultured in Thailand. Proceeding of the JSPS-NRCT International Symposium Joint Seminar 2004: Management of Food Safety in Aquaculture and HACCP. pp. 36-41. Thailand: Kasetsart University.

Liu, Z. J., and Cordes, J. F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238: 1-37.

Liu, G. Y., Zhao, S. M., Song, X. L., Wang, J., and Gao, S. Z. 2008. Isolation, sequence identification and tissue expression distribution of three novel porcine genes-UBC1, TRA2A and SH21A. J. Appl. Animal Res. 33: 33-38.

Lyons, R.E., and Li, Y. 2002. Crustacean genomics: implications for future in aquaculture. AgBiotechNet 4: 1-6.

Menasveta, P., Piyatiratitivorakul, S., Rungsupa, S., Moree, N., and Fast, A.W. 1993. Gonadal maturation and reproductive performance of giant tiger prawn (Penaeus monodon Fabricius) from the Andaman Sea and pond-reared in Thailand. Aquaculture 116: 191-198.

Meyer C., Schmid R., Scriba P. C., and Wehling M. 1996. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur. J. Biochem. 239: 726-731.

Miura, T., Higuchi, M., Ozaki, Y., Ohta, T., and Miura, C. 2006. Progestin is an essential factor for the initiation of the meiosis in spermatogenetic cells of the eel. Proc. Nati. Acad. Sci. USA 103: 7333-7338.

Miura, T., Ohta, T., Miura, C. I., and Yamauchi, K. 2007. Complementary deoxyribonucleic acid cloning of spermatogonial stem cell renewal factor. Endocrinology 144(12): 5504-5510.

Moniot, B., Berta, P., Scherer, G., Sudbeck, P., and Poulat, F. 2000. Male specific expression suggests role of DMRT1 in human sex determination. Mech. Dev. 91: 323-325.

Morales, C. R., Zhao, Q., Lefrancois, S., and Ham, D. 2000. Role of prosaposin in the male reproductive system: effect of prosaposin inactivation on the testes, epididymis, prostate, and seminal vesicles. Archives of Andrology 44(3): 173186.

Mourot, B., Nguyen, T., Fostier, A., and Bobe,J. 2006. Two unrelated putative membrane-bound progestin receptors, progesterone membrane receptor component 1 (PGMRC1) and membrane progestin receptor (mPR) beta, are expressed in the rainbow trout oocyte and exhibit similar ovarian expression patterns Reprod. Biol. Endocrinol. 4, 6 (doi:10.1186/1477-7827-4-6).

Mullis, K.B., and Faloona, F.A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol. 155: 335-350.

Muthuraman, A. L. 1997. Effect of ecdysial cycle on the semen and spermatophore production of the Indian white shrimp (Penaeus indicus H.M. Edwards). Fish. Technol. 34: 11-14.

Page, A. P., MacNiven, K., and Hengartner, M. O. 1996. Cloning and biochemical characterization of the cyclophilin homlogues from the freeliving nematode Caenorhabditis elegans. Biochem. J. 317: 179-185.

Parnes, S., Raviv, R., Shechter, A., and Sagi, A. 2006. Males also have their time of the month! Cyclic disposal of old spermatophores, timed by the molt cycle, in a marine shrimp. J. Exp. Biol. 209: 4974-4983.

Phelan, P., Bacon, J. P., Davies, J. A., Stebbings, L. A., Todman, M. G., Avery, L., Baines, R. A., Barnes, T. M., Ford, C., Hekimi, S., Lee, R., Shaw, J. E., Starich, T. A., Curtin, K. D., Sun, Y. A., and Wyman, R. J. 1998. Innexins: a family of invertebrate gap-junction proteins. Trends Genet. 14: 348-349.

Preston, N. P., Sellars, M. J., and Coman, F. E. 2004. Ploidy manipulation induces sterility in Kuruma Prawns. Global Aquaculture Advocate 7: 70-71.

Preechaphol, R., Leelatanawit, R., Sittikhankaew, K., Klinbunga, S., Khamnamtong, B., Puanglarp, N., and Menasveta, P. 2007. Expressed sequence tag analysis for isolation of sex-related transcripts in the giant tiger shrimp (Penaeus monodon). J. Biochem. Mol. Biol. 40: 501-510.

Raymond, C. S., Shamu, C. E., Shen, M. M., Seifert, K. J., Hirsch, B., Hodgkin, J., and Zarkower, D. 1998. Evidence for evolutionary conservation of sexdetermining genes. Nature 391: 391-695.

Raymond, C. S., Kettlewel, J. R., Hirsch, B., Bardwell, V. J., and Zarkower, D. 1999. Expression of DMRT1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev. Biol. 215: 208-220.

Rungnapa Leelatanawit, "Cloning and characterization of cDNA involved in sex determination of the Giant Tiger Shrimp Penaeus monodon," Master's thesis, Faculty of Science, Chulalongkorn University, 2003.

Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

Sambrook, J., and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual, $3{ }^{\text {rd }}$ edition. Cold Spring Harbor, NY : Cold Spring Habor Laboratory Press.

Sarojini, R., Nagabhushanam, R., and Fingerman, M. 1995. In vivo effects of dopamine and dopaminergic antagonists on testicular maturation in the red swamp crayfish, Procambarus clarkii. Biol. Bull. 189: 340-346.

Sassone-Corsi, P. 1998. CREM: a master-switch governing male germ cells differentiation and apoptosis. Semin. Cell Dev. Biol. 9: 475-482.

Sassone-Corsi, P. 2002. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296: 2176-2178.

Schmitt, A., Gofferje, V., Weber, M., Meyer, J., Mossner, R., and Lesch, K.P. 2003. The brain-specific protein MLC-1 implicated in megalencephalic leukoencephalopathy with subcortical cysts is expressed in glial cells in the murine brain. Glia 44(3): 283-295.

Shen, M. M., and Hodgkin, J. 1988. mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell 54: 1019-1031.

Shen, B., Zhang, Z., Wang, Y., Wang, G., Chen, Y., Lin, P., Wang, S., and Zou, Z. 2008. Differential expression of ubiquitin-conjugating enzyme E2r in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus. Mol. Biol. Rep. (in press).

Shoji M., Chuma, S., Yoshida, K., Morita, T., and Nakatsuji, N. 2005. RNA interference during spermatogenesis in mice. Dev. Biol. 282: 524-534.

Staelens, J., Rombaut, D., Vercauteren, I., Argue, B., Benzie, J., and Vuylsteke, M. 2008. High-density linkage maps and sex-linked markers for the black tiger shrimp (Penaeus monodon). Genetics 179(2): 917-925.

Takahashi, Y., and Kikuchi, Y. 2005. Yeast PIAS-type Ull1/Siz1 is composed of SUMO ligase and regulatory domains. J. Biol. Chem. 280: 35822-35828.

Tassanakajon, A., Klinbunga, S., Paunglarp, N., Rimphanitchayakit, V., Udomkit, A., Jitrapakdee, S., Sritunyalucksana, K., Phongdara, A., Pongsomboon, S., Supungul, P., Tang, S., Kuphanumart, K., Pichyangkura, R., and Lursinsap, C. 2006. Penaeus monodon gene discovery project: The generation of an EST collection and establishment of a database. Gene 384: 104-112.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight metrix choice. Nucleic Acids Res. 22: 4673-4680.

Wilson, K. et al. 2002. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 204: 297-309.

Withyachumnarnkul, B., Boonsaeng, V., Flegel, T.W., Panyim, S., and Wongteerasupaya C. 1998. Domestication and selective breeding of Penaeus monodon in Thailand. In Felgel, T. (Ed.), Proceedings to the Special Session on Advances in Shrimp Biotechnology, The Fifth Asian Fisheries Forum: International Conference on Fisheries and Food Security Beyond the Year 2000, pp. 73-77. 11-14 November 1998. Thailand: Chiangmai.

Zhu, D., Dix, D. J., and Eddy, E. M. 1997. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development 124: 3007-3014.

Zirkin, B. R. 1993. Regulation of spermatogenesis in the adult mammals: gonadotropin and androgens. In: Desjardins, C., Ewing, L.L. (Eds.), Cell and Molecular Biology of the Testis. New York: Oxford University Press. pp. 166188.

Appendix A

Table A1 Examples of transcripts from a testis cDNA library categorized as members of cell division/DNA synthesis, repair and replication (29 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0077-W	14-3-3-like protein	Penaeus monodon	0
TT-N-S01-1039-W			1e-112
TT-N-S01-0891-W	AAA ATPase domain-containing protein	Strongylocentrotus purpuratus	Зe-13
TT-N-S01-0076-W	Actin-binding protein anillin, contractile ring component anillin	Xenopus laevis	3e-56
TT-N-S01-0241-W	Anti-silencing factor 1 CG9383	Drosophila melanogaster	5e-61
TT-N-S01-0153-W	BUB3 budding uninhibited by benzimidazoles 3 homolog (yeast)	Xenopus tropicalis	$2 \mathrm{e}-72$
TT-N-S01-0190-W	Cell division cycle 2	Danio rerio	$2 \mathrm{e}-31$
TT-N-S01-0169-W	Cell division protein kinase 7 (CDKactivating kinase) (CAK)	Mus musculus	$8 \mathrm{e}-85$
TT-N-S01-0752-W	checkpoint kinase 1 (Serine/threonineprotein kinase)	Strongylocentrotus purpuratus	$9 \mathrm{e}-76$
TT-N-S01-0525-W	CHK1 checkpoint homolog (Serine/threonine-protein kinase)	Xenopus tropicalis	3e-06
TT-N-S01-0695-W	Cyclin dependent kinase 2	Sphaerechinus granularis	$8 \mathrm{e}-82$
TT-N-S01-1020-W	DEAD (Asp-Glu-Ala-Asp) box polypeptide 31 isoform 2	Pan troglodytes	$4 \mathrm{e}-26$
TT-N-S01-0187-W	DNA polymerase beta	Xenopus laevis	3e-59
TT-N-S01-0412-W	DNA replication licensing factor MCM6 (Mis5 homolog)	Strongylocentrotus purpuratus	5e-71
TT-N-S01-0042-W	Methyl-CpG binding domain protein 4	Xenopus tropicalis	$5 \mathrm{e}-14$
TT-N-S01-0371-W	novel protein similar to vertebrate PCTAIRE protein kinase 2 (PCTK2)	Danio rerio	$2 \mathrm{e}-95$
TT-N-S01-0198-W	Nucleic acid-associated protein 36	Asterina pectinifera	$1 \mathrm{e}-08$
TT-N-S01-0895-W	Ornithine decarboxylase (ODC)	Apis mellifera	$6 \mathrm{e}-15$
TT-N-S01-0129-W	Oncoprotein nm23	Litopenaeus vannamei	1e-66
TT-N-S01-0192-W	Origin recognition complex, subunit 1-like	Xenopus tropicalis	$5 \mathrm{e}-04$
TT-N-S01-0733-W	peptidyl-prolyl cis-trans isomerase (Cyclophilin 1)	Bombyx mori	$6 \mathrm{e}-72$
TT-N-S01-0556-W	RAD1 homolog isoform 1	Rattus norvegicus	$5 \mathrm{e}-13$
TT-N-S01-0220-W	RAS protein	Bombyx mori	1e-56
TT-N-S01-0203-W	RAS-related GTP binding protein	Bombyx mori	$4 \mathrm{e}-62$
$\begin{aligned} & \text { TT-N-S01-0899-W } \\ & \text { TT-N-S01-0912-W } \end{aligned}$	Replication protein A1 Replication protein A2	Mus musculus Mus musculus	$5 e-79$ $3 \mathrm{e}-16$
TT-N-S01-0425-W	SMC1 structural maintenance of chromosomes 1-like 1	Macaca mulatta	$2 \mathrm{e}-08$
TT-N-S01-0216-W	Split hand/foot malformation (ectrodactyly) type 1	Xenopus tropicalis	$5 \mathrm{e}-21$
TT-N-S01-0657-W	WD repeat domain 61 (Meiotic recombination REC14 protein homolog)(WDR61)	Bombyx mori	$3 \mathrm{e}-64$

Table A2 Examples of transcripts from a testis cDNA library categorized as members of defense and homeostasis (30 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0295-W	70 kD heat shock protein	Mirocaris fortunata	$1 \mathrm{e}-92$
TT-N-S01-0588-W			1e-122
TT-N-S01-0894-W			5e-68
TT-N-S01-0066-W	Antimicrobial peptide	Fenneropenaeus chinensis	3e-60
TT-N-S01-0284-W	Antimicrobial peptide	Litopenaeus setiferus	$1 \mathrm{e}-43$
TT-N-S01-0285-W			$8 \mathrm{e}-44$
TT-N-S01-0020-W	Cyclophilin A	Chlamys farreri	$7 \mathrm{e}-74$
TT-N-S01-0815-W	Defender against apopototic cell death 1	Argopecten irradians	$2 \mathrm{e}-07$
TT-N-S01-0882-W	Ferritin light chain-like	Culicoides sonorensis	$6 \mathrm{e}-05$
TT-N-S01-0351-W	Heat shock cognate 70 protein	Trichoplusia ni	$4 \mathrm{e}-32$
TT-N-S01-0846-W	Heat shock protein 60	Liriomyza sativae	1e-109
TT-N-S01-0278-W	Heat shock protein 70	Marsupenaeus japonicus	3e-52
TT-N-S01-0333-W			2e-62
TT-N-S01-0339-W			1e-114
TT-N-S01-0959-W			1e-115
TT-N-S01-0679-W	Heat shock 70 kDa protein 8 isoform 2	Homo sapiens	$6 \mathrm{e}-66$
TT-N-S01-0003-W	Hemomucin	Aedes aegypti	$2 \mathrm{e}-07$
TT-N-S01-0082-W	Influenza virus NS1A binding protein isoform a	Tribolium castaneum	$4 \mathrm{e}-43$
TT-N-S01-0586-W	Inhibitor of apoptosis protein	Bombyx mori	Зe-19
TT-N-S01-0436-W	Latent nuclear antigen	Aedes aegypti	3e-41
TT-N-S01-1016-W	Lymphoid organ expressed yellow head virus receptor protein	Penaeus monodon	3e-93
TT-N-S01-0163-W	Myeloid leukemia factor (Myelodysplasiamyeloid leukemia factor) (dMLF)	Tribolium castaneum	$6 \mathrm{e}-06$
TT-N-S01-0786-W	nucleolysin tia-1	Aedes aegypti	2e-22
TT-N-S01-0030-W	Programmed cell death protein	Aedes aegypti	$7 \mathrm{e}-63$
TT-N-S01-1025-W	Retinaldehyde binding protein	Aedes aegypti	$4 \mathrm{e}-26$
TT-N-S01-0779-W	small glutamine-rich tetratricopeptide	Gallus gallus	$6 \mathrm{e}-19$
TT-N-S01-0971-W	transcript expressed during hematopoiesis 2	Bos taurus	3e-15
TT-N-S01-0674-W	Programmed cell death protein 7 (ES18)	Rattus norvegicus	$1 \mathrm{e}-09$
TT-N-S01-0684-W	Stimulated by retinoic acid 13	Danio rerio	$1 \mathrm{e}-10$
TT-N-S01-0683-W	Vpr (HIV-1) binding protein, isoform	Homo sapiens	$4 \mathrm{e}-22$
	$C R A _b 1 \cap \cap \cap \square$	$\square \square$	

Table A3 Examples of transcripts from a testis cDNA library categorized as members of gene expression, regulation and protein synthesis (86 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-1014-W	4Fe-4S ferredoxin, iron-sulfur binding:Protein of unknown function DUF224:FAD linked oxidase, C- terminal:FAD linked oxidase, N-terminal actin depolymerizing factor (Cofilin/actin- depolymerizing factor homolog) (Protein	Aedes aegypti	SRS30216

Table A3 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0917-W	Arginyl-tRNA--protein transferase 1 (Arginyltransferase 1) (Arginine-tRNA-protein transferase 1)	Apis mellifera	$5 \mathrm{e}-43$
TT-N-S01-0075-W	Argonaute (plant)-Like Gene family member (alg-1)	Caenorhabditis elegans	$2 \mathrm{e}-38$
TT-N-S01-0090-W	B-cell receptor-associated protein 37	Tribolium castaneum	3e-84
TT-N-S01-0031-W	BCS-2	Balanus amphitrite	$4 \mathrm{e}-11$
TT-N-S01-0961-W	cleavage and polyadenylation specificity	Aedes aegypti	$6 \mathrm{e}-87$
TT-N-S01-1093-W	factor		Зe-86
TT-N-S01-0415-W	Cleavage stimulation factor 64-kDa subunit	Bombyx mori	1e-82
TT-N-S01-0475-W	COP9 constitutive photomorphogenic homolog subunit 5 isoform 1	Apis mellifera	$5 \mathrm{e}-73$
TT-N-S01-0413-W	Cre (cAMP responsive element) binding protein-like 2 isoform 2	Gallus gallus	$1 \mathrm{e}-24$
TT-N-S01-0990-W	DNA-directed RNA polymerase III subunit 127.6 kDa polypeptide (RNA polymerase III subunit 2) (RPC2) isoform 1	Apis mellifera	$5 \mathrm{e}-97$
TT-N-S01-0290-W	Doublecortin and CaM kinase-like 2	Gallus gallus	3e-64
TT-N-S01-0045-W	eif3s12-prov protein (eukaryotic translation initiation factor 3, subunit 12)	Xenopus tropicalis	$1 \mathrm{e}-30$
TT-N-S01-0055-W	Elongation factor 1 alpha	Litopenaeus stylirostris	$4 \mathrm{e}-48$
TT-N-S01-0058-W		Pocillopora damicornis	$6 \mathrm{e}-81$
TT-N-S01-0154-W		Penaeus monodon	$5 \mathrm{e}-72$
TT-N-S01-0159-W		Locusta migratoria	$1 \mathrm{e}-71$
TT-N-S01-0360-W		Pocillopora damicornis	2e-98
TT-N-S01-0416-W		Armadillidium vulgare	$2 \mathrm{e}-85$
TT-N-S01-0569-W		Schizophyllum commune	$2 \mathrm{e}-47$
TT-N-S01-0648-W		Schizophyllum commune	$1 \mathrm{e}-70$
TT-N-S01-0947-W	$\rightarrow \times 2$	Litopenaeus stylirostris	1e-94
TT-N-S01-1030-W			$2 \mathrm{e}-24$
TT-N-S01-0746-W	Elongation factor 1 beta'	Bombyx mori	$2 \mathrm{e}-51$
TT-N-S01-0167-W	Elongation factor-2	Libinia emarginata	$1 \mathrm{e}-80$
TT-N-S01-0704-W			1e-114
TT-N-S01-0221-W	Negative elongation factor B (NELF-B)	Rattus norvegicus	$4 \mathrm{e}-35$
TT-N-S01-0838-W	Negative elongation factor B homolog	Drosophila melanogaster	$1 \mathrm{e}-25$
$\begin{aligned} & \text { TT-N-S01-0272-W } \\ & \text { TT-N-S01-1031-W } \end{aligned}$	Tail muscle elongation factor 1 gamma	Procambarus clarkii	$\begin{gathered} 1 \mathrm{e}-85 \\ 1 \mathrm{e}-114 \end{gathered}$
TT-N-S01-0907-W	Transcription elongation factor 1 homolog	Drosophila melanogaster	$8 \mathrm{e}-37$
TT-N-S01-0587-W	Transcription factor $2 B$	Bombyx mori	$1 \mathrm{e}-68$
TT-N-S01-0342-W	Translation elongation factor 2	Spodoptera exigua	$5 \mathrm{e}-53$
TT-N-S01-0269-W	Translation initiation factor 4C (1A)	Anopheles gambiae \square	3e-63
TT-N-S01-0294-W	Translation initiation factor 4C (1A)	Anopheles gambiae	$7 \mathrm{e}-65$
TT-N-S01-0084-W	Eukaryotic initiation factor 4A	Callinectes sapidus	1e-118
TT-N-S01-0663-W	Eukaryotic translation initiation factor 1A	Drosophila melanogaster	$4 \mathrm{e}-11$
TT-N-S01-0260-W	Eukaryotic translation initiation factor $2 c$	Aedes aegypti	$2 \mathrm{e}-30$
TT-N-S01-0122-W	Eukaryotic translation initiation factor 3	Bombyx mori	3e-58
TT-N-S01-0139-W	subunit 2 beta		2e-69
TT-N-S01-0418-W			$1 \mathrm{e}-42$
TT-N-S01-0701-W	Eukaryotic translation initiation factor 3, subunit 9 (eta)	Rattus norvegicus	$6 \mathrm{e}-18$
TT-N-S01-0386-W	Eukaryotic translation initiation factor 4 gamma, 2	Nasonia vitripennis	$9 \mathrm{e}-30$
TT-N-S01-0707-W	Glutaminyl-tRNA synthetase	Trypanosoma cruzi	$1 \mathrm{e}-47$

Table A3 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0966-W	Glycyl-tRNA synthetase	Aedes aegypti	1e-67
TT-N-S01-0189-W	Growth factor receptor-bound protein	Aedes aegypti	$7 \mathrm{e}-55$
TT-N-S01-0230-W	heterogeneous nuclear ribonucleoprotein	Aedes aegypti	$1 \mathrm{e}-66$
TT-N-S01-0430-W	IMP4, U3 small nucleolar ribonucleoprotein, homolog	Apis mellifera	2e-48
TT-N-S01-0071-W	Low molecular weight neurofilament protein	Xenopus laevis	$8 \mathrm{e}-04$
TT-N-S01-0206-W	LSM4 homolog, U6 small nuclear RNA associated	Danio rerio	7e-46
TT-N-S01-0009-W	Microsomal signal peptidase 12 kDa subunit-like	Ixodes scapularis	3e-23
TT-N-S01-1007-W	Multiprotein bridging factor 1	Bombyx mori	3e-50
TT-N-S01-1026-W			$3 \mathrm{e}-50$
TT-N-S01-0306-W	Nascent polypeptide associated complex protein alpha subunit CG8759-PB, isoform B isoform 1	Apis mellifera	6e-65
TT-N-S01-0052-W	Polyadenylate binding protein II	Apis mellifera	$6 \mathrm{e}-74$
TT-N-S01-0916-W	Proteasome subunit beta type 2 (Proteasome component C7-I) (Multicatalytic endopeptidase complex subunit C7-I)	Tribolium castaneum	6e-64
TT-N-S01-0785-W	Protein disulfide isomerase family A , member 6	Xenopus tropicalis	$2 \mathrm{e}-08$
TT-N-S01-0087-W	Protein mago nashi	Apis mellifera	Зe-76
TT-N-S01-0974-W	Protein mago nashi (mago-nashi homolog, proliferation-associated) MAGOH	Apis mellifera	$4 \mathrm{e}-60$
TT-N-S01-0257-W	Receptor expression-enhancing protein 5	Pongo pygmaeus	4e-54
TT-N-S01-0340-W	(Polyposis locus protein 1 homolog)		2e-54
TT-N-S01-0027-W	Riboflavin kinase	Bos taurus	$1 \mathrm{e}-49$
TT-N-S01-0199-W	Ribonuclease H1 CG8729-PB, isoform B	Drosophila melanogaster	5e-29
TT-N-S01-0039-W	Ring finger protein 20	Gallus gallus	$8 \mathrm{e}-06$
TT-N-S01-0847-W	Ruvbl2-prov protein (RuvB-like DNA helicase reptin)	Xenopus laevis	1e-115
TT-N-S01-0427-W	Serine/arginine repetitive matrix 1	Gallus gallus	$4 \mathrm{e}-05$
TT-N-S01-0667-W	Serine/threonine protein kinase Pto (Ptolike serine/threonine kinase)	Lycopersicon esculentum	$3 \mathrm{e}-07$
TT-N-S01-0098-W	Small nuclear ribonucleoprotein D2,	Macaca mulatta	8e-29
TT-N-S01-0967-W TT-N-S01-0673-W	Small nuclear ribonucleoprotein D2-like protein small nuclear ribonucleoprotein E	Toxoptera citricida Bombyx mori	$5 \mathrm{e}-41$ $1 \mathrm{e}-31$
TT-N-S01-0915-W			1e-15
TT-N-S01-0873-W TT-N-S01-0259-W	Small nuclear ribonucleoprotein polypeptide G Spermidine synthase		$2 \mathrm{e}-23$ $2 \mathrm{e}-39$
TT-N-S01-0941-W	Transformer-2 protein A	Bombyx mori	3e-34
TT-N-S01-0985-W	Transformer-2 protein B	Bombyx mori	$6 \mathrm{e}-57$
TT-N-S01-0757-W	tRNA-dihydrouridine synthase	Aedes aegypti	3e-36
TT-N-S01-0205-W	U2 small nuclear ribonucleoprotein auxiliary factor 2 isoform 1	Bombyx mori	2e-62
TT-N-S01-0565-W	winged helix nude	Branchiostoma lanceolatum	1e-32
TT-N-S01-0644-W			3e-11
TT-N-S01-0883-W	Zinc finger protein 420	Danio rerio	$8 \mathrm{e}-44$
TT-N-S01-0874-W	zinc finger protein 420 isoform 1	Mus musculus	$2 \mathrm{e}-33$
TT-N-S01-0573-W	Zinc finger protein 501	Pongo pygmaeus	4e-45
TT-N-S01-0578-W	Zinc finger, ZZ domain containing 3	Apis mellifera	$3 \mathrm{e}-48$

Table A4 Examples of transcripts from a testis cDNA library categorized as members of internal/external structure and motility (40 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0315-W	Acid cluster protein 33, spastic paraplegia 21 (autosomal recessive, Mast syndrome)	Apis mellifera	$1 \mathrm{e}-81$
TT-N-S01-0222-W	Alpha tubulin	Apis mellifera	$1 \mathrm{e}-70$
TT-N-S01-0338-W	ARP1 actin-related protein 1 homolog A, centractin alpha	Gallus gallus	$9 \mathrm{e}-36$
TT-N-S01-0557-W	cdp-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase	Aedes aegypti	$3 \mathrm{e}-24$
TT-N-S01-0072-W	Cell wall-plasma membrane linker protein homolog	Arabidopsis thaliana	$3 \mathrm{e}-07$
TT-N-S01-0567-W	Chromobox protein homolog 1 (Heterochromatin protein 1 homolog beta) (HP1 beta) (Modifier 1 protein)	Apis mellifera	$1 \mathrm{e}-58$
TT-N-S01-0067-W	Dynactin 5 (p25)	Strongylocentrotus purpuratus	2e-63
TT-N-S01-1055-W	Flotillin 2 CG32593-PB, isoform B	Drosophila melanogaster	$4 \mathrm{e}-48$
TT-N-S01-0130-W	Histone H2AV (H2A.F/Z)	Nasonia vitripennis	$2 \mathrm{e}-50$
TT-N-S01-0309-W	H2A histone family, member V isoform 1	Apis mellifera	$4 \mathrm{e}-64$
TT-N-S01-0148-W	H3 histone, family 3B	Mus musculus	1e-69
TT-N-S01-0725-W			2e-68
TT-N-S01-0982-W			2e-69
TT-N-S01-0101-W	Histone	Mytilus galloprovincialis	$2 \mathrm{e}-11$
TT-N-S01-0376-W	Histone h1.1	Oikopleura dioica	$2 \mathrm{e}-05$
TT-N-S01-1015-W			$6 \mathrm{e}-41$
TT-N-S01-0108-W	Histone H1-delta	Strongylocentrotus purpuratus	$7 \mathrm{e}-45$
TT-N-S01-0911-W			$1 \mathrm{e}-45$
TT-N-S01-0319-W	Histone H3	Arabidopsis thaliana	$9 \mathrm{e}-21$
TT-N-S01-0471-W		Entamoeba histolytica HM1:IMSS	$9 \mathrm{e}-16$
TT-N-S01-0506-W	ICP4 protein	Gallid herpesvirus 3	7e-06
TT-N-S01-0121-W	Innexin inx1	Schistocerca americana	3e-72
TT-N-S01-0246-W			Зe-17
TT-N-S01-1038-W			$5 \mathrm{e}-11$
TT-N-S01-0264-W	Integrin, beta-like 1	Danio rerio	$8 \mathrm{e}-13$
TT-N-S01-1006-W	Leucine-rich repeat family protein / extensin family protein	Arabidopsis thaliana	$9 \mathrm{e}-15$
TT-N-S01-0773-W	Microtubule-associated protein 1 light chain 3 alpha	Xenopus tropicalis	$1 \mathrm{e}-20$
TT-N-S01-0119-W	Profilin (Chickadee protein)	Tribolium castaneum	$1 \mathrm{e}-37$
TT-N-S01-0710-W		0.	$1 \mathrm{e}-37$
TT-N-S01-0476-W	Putative membrane protein	Emiliania huxleyi virus 86	$2 \mathrm{e}-09$
TT-N-S01-0976-W	Rhodopsin-like receptor/ structural constituent of cell wall	Arabidopsis thaliana	3e-07
TT-N-S01-0312-W	Stromal cell derived factor 2	Mus musculus	$1 \mathrm{e}-60$
TT-N-S01-0855-W	Structural constituent of cell wall	Arabidopsis thaliana	$2 \mathrm{e}-14$
TT-N-S01-0032-W	Transmembrane protein 93 isoform 1	Pan troglodytes	2e-33
TT-N-S01-0893-W	Tubulin alpha-1 chain (Alpha-I tubulin)	Homarus americanus	$1 \mathrm{e}-86$
TT-N-S01-0107-W	Tubulin alpha-3 chain	Homarus americanus	$5 \mathrm{e}-29$
TT-N-S01-0051-W	Tubulin beta-1 chain	Homarus americanus	1e-108
TT-N-S01-0647-W			1e-103
TT-N-S01-0328-W	Tubulin gamma chain - African clawed frog	Gallus gallus	$6 \mathrm{e}-43$
TT-N-S01-0112-W	Tubulin-specific chaperone e	Aedes aegypti	$1 \mathrm{e}-44$

Table A5 Examples of transcripts from a testis cDNA library categorized as members of metabolism (60 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0483-W	26S protease regulatory subunit	Aedes aegypti	1e-119
TT-N-S01-0283-W	26S proteasome regulatory complex subunit p48B	Drosophila melanogaster	$2 \mathrm{e}-50$
TT-N-S01-0638-W	$26 S$ proteasome subunit P45 family protein	Tetrahymena thermophila SB210	$5 \mathrm{e}-67$
TT-N-S01-0447-W	Acyl-CoA oxidase (ACX3)	Tetrahymena thermophila SB210	$7 \mathrm{e}-66$
TT-N-S01-0247-W	Alpha-amylase	Corbicula fluminea	$4 \mathrm{e}-43$
TT-N-S01-0696-W	Ancient ubiquitous protein 1	Tribolium castaneum	$2 \mathrm{e}-13$
TT-N-S01-0322-W	ATP lipid-binding protein like protein	Marsupenaeus japonicus	$6 \mathrm{e}-59$
TT-N-S01-0632-W			$9 \mathrm{e}-58$
TT-N-S01-0213-W	ATP synthase F0 subunit 6	Penaeus monodon	$1 \mathrm{e}-72$
TT-N-S01-0238-W			$8 \mathrm{e}-86$
TT-N-S01-0261-W			1e-89
TT-N-S01-0603-W			3e-97
TT-N-S01-0986-W	ATPase inhibitor-like protein	Bombyx mori	$5 \mathrm{e}-22$
TT-N-S01-0008-W	Carbonyl reductase 1-like	Tribolium castaneum	$2 \mathrm{e}-68$
TT-N-S01-0676-W	Casein kinase II beta subunit	Apis mellifera	1e-116
TT-N-S01-0188-W	Casein kinase II, alpha 1 polypeptide	Tribolium castaneum	$5 \mathrm{e}-67$
TT-N-S01-0534-W	Coproporphirynogen oxidase	Aplysia californica	3e-05
TT-N-S01-0217-W	Cystathionine gamma-lyase	Rattus norvegicus	1e-52
TT-N-S01-0933-W	Der1-like domain family member 1 (Degradation in endoplasmic reticulum protein 1, DER1)	Bombyx mori	1e-59
TT-N-S01-0589-W	Endoplasmic reticulum resident protein (ERp44) (Thioredoxin domain-containing protein 4)	Aedes aegypti	1e-49
TT-N-S01-0231-W	GTP binding protein	Aedes aegypti	$8 \mathrm{e}-72$
TT-N-S01-0572-W	Long chain acyl-CoA synthetase	Oryza sativa (japonica cultivar-group)	$1 \mathrm{e}-33$
TT-N-S01-0709-W	Lysyl oxidase-like 2 CG4402-PA	Apis mellifera	$8 \mathrm{e}-57$
TT-N-S01-0094-W	Mitochondrial ATP synthase gammasubunit	Graphocephala atropunctata	$6 \mathrm{e}-62$
TT-N-S01-0730-W	Multiple inositol polyphosphate phosphatase	Aedes aegypti	$8 \mathrm{e}-22$
TT-N-S01-0004-W	Multiple inositol polyphosphate	Apis mellifera	$2 \mathrm{e}-09$
TT-N-S01-0495-W	phosphatase 2 \|	Drosophila melanogaster	$8 \mathrm{e}-09$
TT-N-S01-0678-W		Drosophila melanogaster	$1 \mathrm{e}-07$
$\begin{aligned} & \text { TT-N-S01-0248-W } \\ & \text { TT-N-S01-0791-W } \end{aligned}$	NADH:ubiquinone oxidoreductase NDUFS6 13 kDa subunit Nucleoside diphosphate kinase	Aedes aegypti Graphocephala atropunctata	$1 \mathrm{e}-23$ $2 e-09$
TT-N-S01-0140-W	Phenylalanine ammonia lyase	Rhodotorula glutinis	2e-06
TT-N-S01-0178-W	Phosphoserine aminotransferase 1 isoform 2	Strongylocentrotus purpuratus	$8 \mathrm{e}-48$
TT-N-S01-1067-W	Proteasome (prosome, macropain) $26 S$ subunit, non-ATPase, 13	Apis mellifera	$6 \mathrm{e}-34$
TT-N-S01-0554-W	Proteasome (prosome, macropain) subunit, alpha type, 1, isoform CRA_a	Homo sapiens	$3 \mathrm{e}-07$
TT-N-S01-0287-W	Proteasome alpha 3 subunit	Bombyx mori	$2 \mathrm{e}-73$
TT-N-S01-0385-W	26S Proteasome non-ATPase regulatory subunit 3 (Diphenol oxidase A2 component)	Apis mellifera	6e-69

Table A5 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0405-W	Proteasome subunit alpha type	Aedes aegypti	8e-99
TT-N-S01-0812-W			3e-65
TT-N-S01-0949-W			$2 \mathrm{e}-80$
TT-N-S01-0063-W	Proteasome subunit alpha type 1 (Proteasome component C2) (Macropain subunit C2) (Multicatalytic endopeptidase complex subunit C2)	Canis familiaris	$6 \mathrm{e}-06$
TT-N-S01-0369-W	Proteasome subunit beta type 1 (Proteasome 26 kDa subunit)	Tribolium castaneum	$5 \mathrm{e}-26$
TT-N-S01-0879-W	Proteasome subunit, alpha type, 5	Apis mellifera	1e-20
TT-N-S01-0863-W	Protein serine/threonine kinase	Dictyostelium discoideum AX4	3e-22
TT-N-S01-0118-W	Receptor for activated protein kinase C-like	Blattella germanica	1e-122
TT-N-S01-1021-W	Rieske iron-sulfur protein 1	Graphocephala atropunctata	3e-51
TT-N-S01-1009-W	ring finger protein 20 isoform 3	Macaca mulatta	$1 \mathrm{e}-26$
TT-N-S01-0905-W	ring finger protein 44 isoform 3	Pan troglodytes	$7 \mathrm{e}-44$
TT-N-S01-0755-W	RNA binding motif protein 25 isoform 11	Bos taurus	5e-08
TT-N-S01-0756-W	RNA binding motif protein 25 isoform 11	Bos taurus	$4 \mathrm{e}-08$
TT-N-S01-0065-W	Selenoprotein M precursor	Danio rerio	$2 \mathrm{e}-16$
TT-N-S01-0988-W	Serine dehydratase-like	Xenopus tropicalis	$9 \mathrm{e}-20$
TT-N-S01-0150-W	Serine palmitoyl transferase LCB2 subunit	Drosophila melanogaster	$4 \mathrm{e}-34$
TT-N-S01-0903-W	Serine/threonine-protein kinase 23 (Musclespecific serine kinase 1) (MSSK-1)	Apis mellifera	$4 \mathrm{e}-90$
TT-N-S01-0281-W	Succinate dehydrogenase complex, subunit C precursor	Danio rerio	$2 \mathrm{e}-28$
TT-N-S01-0720-W	THO complex 3	Danio rerio	1e-36
TT-N-S01-0485-W	Tudor domain containing 9	Bos taurus	$4 \mathrm{e}-07$
TT-N-S01-0724-W	Tyrosine protein kinase	Aedes aegypti	2e-12
TT-N-S01-0492-W	Ubiquinol-cytochrome c reductase core protein II	Strongylocentrotus purpuratus	$2 \mathrm{e}-36$
TT-N-S01-0972-W	Ubiquitin carboxyl-terminal hydrolase 5 (Ubiquitin thiolesterase 5) (Ubiquitin-specific-processing protease 5) (Deubiquitinating enzyme 5) (Isopeptidase T) isoform 2	Rattus norvegicus	$4 \mathrm{e}-65$
TT-N-S01-0872-W	Ubiquitin-conjugating enzyme E2	Aedes aegypti	1e-58

ศนย์วิทยทรัพยากร

Table A6 Examples of transcripts from a testis cDNA library categorized as members

Table A6 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0332-W	Alpha-endosulfine	Aedes aegypti	$1 \mathrm{e}-21$
TT-N-S01-0162-W	Alveolar soft part sarcoma chromosome region, candidate 1 long isoform isoform 4	Rattus norvegicus	$4 \mathrm{e}-29$
TT-N-S01-0900-W	Bromodomain containing 8 (Skeletal muscle abundant protein, SMAP, SMAP2, Thyroid hormone receptor coactivating protein 120kDa, TrCP120)	Apis mellifera	$3 \mathrm{e}-36$
TT-N-S01-0849-W	Calcitonin gene-related peptide-receptor component protein isoform a	Homo sapiens	$9 \mathrm{e}-27$
TT-N-S01-0715-W	calmodulin regulated spectrin-associated protein 1	Rattus norvegicus	$1 \mathrm{e}-21$
TT-N-S01-0464-W	Cement precursor protein 3B variant 2	Phragmatopoma californica	$9 \mathrm{e}-10$
TT-N-S01-0975-W			$2 \mathrm{e}-05$
TT-N-S01-1056-W	Chromosome 20 open reading frame 11	Homo sapiens	3e-34
TT-N-S01-1058-W			3e-34
TT-N-S01-0880-W	dynein light intermediate chain	Aedes aegypti	$6 \mathrm{e}-80$
TT-N-S01-0182-W	Endoplasmin (Heat shock protein 90 kDa beta member 1) (94 kDa glucose-regulated protein) (GRP94)	Mesocricetus auratus	$1 \mathrm{e}-60$
TT-N-S01-0694-W	GRN prot	Xenopus tropicalis	$4 \mathrm{e}-41$
TT-N-S01-0320-W	pregnancy-related serine protease HTRA3	Homo sapiens	$9 \mathrm{e}-10$
TT-N-S01-0489-W			$4 \mathrm{e}-08$
TT-N-S01-0782-W			$8 \mathrm{e}-10$
TT-N-S01-0953-W			$1 \mathrm{e}-07$
TT-N-S01-0498-W	Huntingtin interacting protein K, partial	Apis mellifera	$4 \mathrm{e}-27$
TT-N-S01-0060-W	Importin 7	Aedes aegypti	$1 \mathrm{e}-67$
TT-N-S01-0074-W	Leucine-rich repeat flightless-interacting protein 2	Xenopus laevis	$2 \mathrm{e}-13$
TT-N-S01-0991-W	metallothionein	Homarus americanus	3e-29
TT-N-S01-0026-W	Methyltransferase WBSCR22 (WilliamsBeuren syndrome chromosome region 22 protein homolog)	Mus musculus	2e-61
TT-N-S01-0214-W	Mucin-like protein	Trypanosoma cruzi	$1 \mathrm{e}-18$
TT-N-S01-0025-W	Myosin 61F CG9155-PB, isoform B isoform 1	Apis mellifera	$6 \mathrm{e}-47$
$\begin{aligned} & \text { TT-N-S01-0637-W } \\ & \text { TT-N-S01-0682-W } \end{aligned}$	Nascent polypeptide associated complex protein alpha subunit CG8759-PB, isoform B isoform 1 oligonucleotide/oligosaccharide-binding fold containing 1(OBFC1)	Apis mellifera Mus musculus	$2 e-42$ $1 e-08$
$\begin{aligned} & \text { TT-N-S01-0901-W } \\ & \text { TT-N-S01-0460-W } \end{aligned}$	P. falciparum RESA-like protein with DnaJ domain Penaeus monodon clone TUZX4-6:86 microsatellite sequence	Plasmodium falciparum 3D7 Penaeus monodon	$2 e-18$ $2 e-71$
TT-N-S01-0115-W	Protein-glutamine gammaglutamyltransferase K (Transglutaminase K) (TGase K)	Tribolium castaneum	$1 \mathrm{e}-68$
TT-N-S01-0996-W	Putative accessory gland protein	Gryllus bimaculatus	$7 \mathrm{e}-33$
TT-N-S01-0957-W	$R A B$, member of RAS oncogene family-like 3	Apis mellifera	$7 \mathrm{e}-64$
TT-N-S01-1036-W	Rac GTPase activating protein 1 isoform 1	Canis familiaris	2e-27
TT-N-S01-1040-W			$4 \mathrm{e}-28$
TT-N-S01-1048-W			$2 \mathrm{e}-23$
TT-N-S01-0700-W	RWD domain containing 4A	Macaca mulatta	$4 \mathrm{e}-42$
TT-N-S01-0018-W	Salivary gland secretion 1 CG3047-PA	Drosophila melanogaster	$5 \mathrm{e}-12$
TT-N-S01-0956-W			$7 \mathrm{e}-14$

Table A6 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0843-W	Serine/threonine-protein phosphatase $2 A$ catalytic subunit beta isoform (PP2A-beta)	Tribolium castaneum	1e-109
TT-N-S01-0636-W	source of immunodominant MHC-associated peptides (Oligosaccharyl transferase subunit STT3B)	Ctenopharyngodon idella	$4 \mathrm{e}-75$
TT-N-S01-0144-W	SUMO, small ubiquitin-like modifier, SUMO,	Apis mellifera	$5 \mathrm{e}-38$
TT-N-S01-0175-W	small ubiquitin-like modifier SMO-1 (10.2 kD)		$8 \mathrm{e}-38$
TT-N-S01-0426-W	(smo-1)		$5 \mathrm{e}-38$
TT-N-S01-0626-W	Synaptobrevin-like protein 1	Canis familiaris	1e-48
TT-N-S01-0414-W	T-complex protein 1, alpha subunit(TCP-1-alpha)(CCT-alpha)	Delia antiqua	$5 \mathrm{e}-73$
TT-N-S01-0224-W	Tetraspanin 96F CG6120-PA	Drosophila melanogaster	$8 \mathrm{e}-41$
TT-N-S01-0702-W	Tetratricopeptide repeat domain 9C (TTC9)	Rattus norvegicus	3e-23
TT-N-S01-0897-W	Thioredoxin-2 CG31884-PA, isoform A	Apis mellifera	2e-34
TT-N-S01-0232-W	Thyroid hormone receptor-associated protein complex 240 kDa component (Trap240) (Thyroid hormone receptor associated protein 1)	Canis familiaris	$2 \mathrm{e}-57$
TT-N-S01-0407-W	TPA_inf: troponin I isoform a2	Drosophila pseudoobscura	1e-26
TT-N-S01-0223-W	Ubiquitin carboxyl-terminal hydrolase 14 (Ubiquitin thiolesterase 14) (Ubiquitinspecific processing protease 14) (Deubiquitinating enzyme 14)	Apis mellifera	$2 \mathrm{e}-51$
TT-N-S01-0120-W	WD-repeat protein 43	Canis familiaris	$5 \mathrm{e}-15$
TT-N-S01-0902-W	Zinc binding dehydrogenase	Aedes aegypti	$2 \mathrm{e}-27$

Table A7 Examples of transcripts from a testis cDNA library categorized as members of mitochondrial protein (25 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0061-W	Cytochrome b	Penaeus monodon	1e-101
TT-N-S01-0473-W			1e-102
TT-N-S01-0983-W			1e-117
TT-N-S01-0211-W	Cytochrome oxidase subunit I Cytochrome c oxidase subunit I	Heterocarpus laevigatus	1e-112
TT-N-S01-0466-W		Marsupenaeus japonicus	$9 \mathrm{e}-44$
TT-N-S01-0627-W		Fenneropenaeus merguiensis	2e-84
TT-N-S01-0797-W		Marsupenaeus japonicus	8e-76
TT-N-S01-0833-W		Marsupenaeus japonicus Fenneropenaeus merguiensis	$1 \mathrm{e}-17$
TT-N-S01-0877-W		Marsupenaeus japonicus	1e-113
TT-N-S01-1013-W		Marsupenaeus japonicus	1e-119
TT-N-S01-1018-W			1e-116
TT-N-S01-0316-W	Cytochrome c oxidase subunit II	Penaeus monodon	2e-89
TT-N-S01-0592-W			1e-113
TT-N-S01-0769-W	Cytochrome c oxidase subunit III	Scutigerella causeyae	$1 \mathrm{e}-28$
TT-N-S01-0770-W		Tricholepidion gertschi	$6 \mathrm{e}-21$
TT-N-S01-1043-W		Penaeus monodon	1e-75
TT-N-S01-1050-W		Priapulus caudatus	$6 \mathrm{e}-05$
TT-N-S01-0243-W	Histidine triad family zinc-binding protein, protein kinase C inhibitor	Aedes aegypti	3e-42
TT-N-S01-0040-W	Mitochondrial NADH dehydrogenase (ubiquinone) 1 alpha subcomplex	Aedes aegypti	$7 \mathrm{e}-28$

Table A7 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0954-W	Mitochondrial tumor suppressor 1 isoform 5 (MTUS1)	Apis mellifera	$1 \mathrm{e}-09$
TT-N-S01-0323-W	NADH dehydrogenase subunit 5	Penaeus monodon	$1 \mathrm{e}-102$
TT-N-S01-0823-W			$1 \mathrm{e}-62$
TT-N-S01-0201-W	NADH dehydrogenase subunit 6	$1 \mathrm{e}-52$	
TT-N-S01-0048-W	NADH-ubiquinone oxidoreductase fe-s protein	Aedes aegypti	$2 \mathrm{e}-92$
TT-N-S01-0062-W	ND3 (NADH $)$	2e-07	

Table A8 Examples of transcripts from a testis cDNA library categorized as members of transport (28 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0177-W	Adaptor-related protein complex 1, beta 1 subunit, isoform CRA_c	Homo sapiens	2e-38
TT-N-S01-0735-W	ADP ribosylation factor $79 F$	Argas monolakensis	7e-86
TT-N-S01-0458-W	ADP-ribosylation-like factor 6 interacting protein 5	Tribolium castaneum	$4 \mathrm{e}-57$
TT-N-S01-0926-W	Cation efflux protein/zinc transporter	Aedes aegypti	2e-61
TT-N-S01-0467-W	Cytochrome B561	Aedes aegypti	$7 \mathrm{e}-41$
TT-N-S01-0444-W	E1B-55kDa-associated protein 5 isoform 5	Pan troglodytes	$1 \mathrm{e}-51$
TT-N-S01-0499-W	Homo sapiens nudix (nucleoside diphosphate linked moiety X)-type motif 9	synthetic construct	3e-55
TT-N-S01-1001-W	karyopherin (importin) alpha 2	Ictalurus punctatus	3e-65
TT-N-S01-0396-W	Kinesin light chain 1 and	Aedes aegypti	$5 \mathrm{e}-17$
TT-N-S01-0134-W	Laminin beta chain	Schistocerca gregaria	$1 \mathrm{e}-43$
TT-N-S01-0011-W	Lipocalin-1 interacting membrane receptor (limr)	Aedes aegypti	$2 \mathrm{e}-24$
TT-N-S01-0437-W	Metaxin 2	Tribolium castaneum	$1 \mathrm{e}-79$
TT-N-S01-0862-W	NADH dehydrogenase subunit 1	Penaeus monodon	$1 \mathrm{e}-117$
TT-N-S01-0325-W	Protein transport protein SEC61 gamma subunit	Rattus norvegicus	$8 \mathrm{e}-26$
TT-N-S01-0850-W			3e-26
TT-N-S01-0711-W	Putative Na+/K+-ATPase alpha subunit	Homarus americanus	1e-112
TT-N-S01-0698-W	Serologically defined breast cancer antigen 84	Danio rerio	$5 \mathrm{e}-66$
TT-N-S01-0699-W	6 -	¢	5e-66
TT-N-S01-0390-W	Solute carrier family 2 (facilitated glucose transporter), member 13	Strongylocentrotus purpuratus	$1 \mathrm{e}-50$
TT-N-S01-0449-W	Translationally controlled tumor protein	Penaeus monodon	3e-91
TT-N-S01-0748-W			$1 \mathrm{e}-81$
TT-N-S01-1062-W			2e-91
TT-N-S01-0324-W	Translocase of inner mitochondrial membrane	Artemia franciscana	2e-44
TT-N-S01-0860-W			1e-51
TT-N-S01-0147-W	Transposase	Escherichia coli	1e-125
TT-N-S01-1004-W	transposon protein, putative, CACTA, En/Spm sub-class	Oryza sativa (japonica cultivar-group)	$5 \mathrm{e}-07$
TT-N-S01-0968-W	Vacuolar ATP synthase 21 kDa proteolipid subunit	Bombyx mori	$2 \mathrm{e}-66$
TT-N-S01-0233-W	Vacuolar ATPase G subunit-like protein	Graphocephala atropunctata	3e-36

Table A9 Examples of transcripts from a testis cDNA library categorized as members of ribosomal and rRNA (150 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0876-W	18S ribosomal RNA	Litopenaeus vannamei	1e-166
TT-N-S01-0980-W			1e-173
TT-N-S01-1086-W			1e-175
TT-N-S01-0017-W	$28 S$ ribosomal protein S16, mitochondrial	Aedes aegypti	$7 \mathrm{e}-08$
TT-N-S01-0898-W	40S ribosomal protein	Perinereis aibuhitensis	$2 \mathrm{e}-54$
TT-N-S01-0348-W	40S ribosomal protein S13	Ictalurus punctatus	2e-70
TT-N-S01-0886-W	40S ribosomal protein S15 (RIG protein)	Macaca mulatta	3e-65
TT-N-S01-0999-W	isoform 1		2e-65
TT-N-S01-0559-W	40S ribosomal protein S16	Rattus norvegicus	1e-66
TT-N-S01-0267-W	40S ribosomal protein S18	Spodoptera frugiperda	$9 \mathrm{e}-27$
TT-N-S01-0110-W	$40 S$ ribosomal protein S2	Urechis caupo	$8 \mathrm{e}-96$
TT-N-S01-0708-W	$40 S$ ribosomal protein S23	Argas monolakensis	$1 \mathrm{e}-75$
TT-N-S01-0811-W			3e-74
TT-N-S01-0931-W			$4 \mathrm{e}-76$
TT-N-S01-0951-W			$4 \mathrm{e}-76$
TT-N-S01-0564-W	40S ribosomal protein S25	Aedes aegypti	$4 \mathrm{e}-36$
TT-N-S01-0091-W	40S ribosomal protein S27	Homarus americanus	$1 \mathrm{e}-43$
TT-N-S01-0516-W			1e-43
TT-N-S01-0732-W	$40 S$ ribosomal protein S3a (C3 protein)	Aedes aegypti	2e-89
TT-N-S01-0321-W		Tribolium castaneum	3e-96
TT-N-S01-0668-W		Tribolium castaneum	$7 \mathrm{e}-99$
TT-N-S01-0837-W		Apis mellifera	$4 \mathrm{e}-66$
TT-N-S01-0432-W	$40 S$ ribosomal protein S5	Ornithodoros moubata	$9 \mathrm{e}-49$
TT-N-S01-0921-W	40S ribosomal protein S6	Spodoptera frugiperda	$1 \mathrm{e}-48$
TT-N-S01-0314-W	$40 S$ ribosomal protein S7	Ictalurus punctatus	$4 \mathrm{e}-71$
TT-N-S01-0398-W			$4 \mathrm{e}-71$
TT-N-S01-0487-W	Sor		$1 \mathrm{e}-70$
TT-N-S01-0195-W	$40 S$ ribosomal protein Sa	Ictalurus punctatus	$6 \mathrm{e}-83$
TT-N-S01-0989-W			$8 \mathrm{e}-49$
TT-N-S01-0650-W	60S acidic ribosomal protein P2	Strongylocentrotus	2e-31
TT-N-S01-1029-W		purpuratus	1e-31
TT-N-S01-0161-W	$60 S$ ribosomal protein L13	Apis mellifera	$1 \mathrm{e}-40$
TT-N-S01-0852-W			3e-61
TT-N-S01-0174-W	60 r ribosomal protein L28	Spodoptera frugiperda	1e-31
TT-N-S01-0355-W			3e-32
TT-N-S01-0793-W		-	3e-31
TT-N-S01-1002-W	60S ribosomal protein L7A	Ixodes pacificus	1e-74
TT-N-S01-0777-W	Acidic p0 ribosomal protein	Dascillus cervinus	$2 \mathrm{e}-60$
TT-N-S01-0807-W	Acidic ribosomal protein P1	Aedes aegypti	3e-10
TT-N-S01-0302-W	Ribosomal protein 31	Lonomia obliqua	2e-69
TT-N-S01-0482-W			$2 \mathrm{e}-61$
TT-N-S01-0517-W			$2 \mathrm{e}-66$
TT-N-S01-0022-W	Ribosomal protein L10	Callinectes sapidus	1e-106
TT-N-S01-0335-W	Ribosomal protein L13a	Lysiphlebus testaceipes	$1 \mathrm{e}-45$
TT-N-S01-0561-W	Ribosomal protein L14	Lysiphlebus testaceipes	1e-33
TT-N-S01-0493-W	Ribosomal protein L15e	Timarcha balearica	$2 \mathrm{e}-91$
TT-N-S01-0560-W	Ribosomal protein L17e	Agriotes lineatus	1e-44
TT-N-S01-0946-W	Ribosomal protein L18a variant	Homo sapiens	1e-64
TT-N-S01-0406-W	Ribosomal protein L21	Danio rerio	8e-56
TT-N-S01-0446-W		Drosophila melanogaster	$1 \mathrm{e}-14$
TT-N-S01-0584-W	Ribosomal protein L22	Drosophila melanogaster	3e-38

Table A9 (cont.)

Table A9 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0541-W	Ribosomal protein S26	Acyrthosiphon pisum	$7 \mathrm{e}-44$
TT-N-S01-0687-W		Branchiostoma belcheri	$9 \mathrm{e}-46$
TT-N-S01-0583-W	Ribosomal protein S30	Crassostrea gigas	$1 \mathrm{e}-16$
TT-N-S01-0155-W	Ribosomal protein S4	Gallus gallus	5e-78
TT-N-S01-0562-W	Ribosomal protein S5	Strongylocentrotus purpuratus	$2 \mathrm{e}-77$
TT-N-S01-0350-W	Ribosomal protein S8e	Georissus sp. APV-2005	$4 \mathrm{e}-95$
TT-N-S01-0377-W			2e-96
TT-N-S01-0826-W			$1 \mathrm{e}-33$
TT-N-S01-0176-W	Ribosomal protein S9 CG3395-PA, isoform A	Apis mellifera	2e-52
TT-N-S01-0411-W			$2 \mathrm{e}-84$
TT-N-S01-0806-W	S10e ribosomal protein	Carabus granulatus	2e-25
TT-N-S01-0016-W	S5e ribosomal protein	Dascillus cervinus	$6 \mathrm{e}-89$
TT-N-S01-0037-W			1e-62
TT-N-S01-0173-W			8e-91
TT-N-S01-0354-W			3e-97
TT-N-S01-0768-W			$1 \mathrm{e}-47$
TT-N-S01-0854-W			3e-97
TT-N-S01-0925-W			3e-97
TT-N-S01-0157-W	tRNA-Ile (16S ribosomal RNA gene)	Penaeus monodon	0
TT-N-S01-0227-W			0
TT-N-S01-0265-W			0
TT-N-S01-0366-W			0
TT-N-S01-0388-W			0
TT-N-S01-0393-W			0
TT-N-S01-0394-W	N-3/4		0
TT-N-S01-0399-W			0
TT-N-S01-0486-W	4		0
TT-N-S01-0532-W	3×2		0
TT-N-S01-0590-W			0
TT-N-S01-0631-W		3	1e-92
TT-N-S01-0635-W			0
TT-N-S01-0660-W			0
TT-N-S01-0661-W	\checkmark	-	0
TT-N-S01-0681-W			0
TT-N-S01-0689-W			0
TT-N-S01-0802-W			1e-114
TT-N-S01-0808-W			1e-160
TT-N-S01-0839-W			0
TT-N-S01-0955-W			0
TT-N-S01-0978-W			0
TT-N-S01-0984-W			0
TT-N-S01-0015-W			0
TT-N-S01-0341-W	Ubiquitin/ribosomal protein S27a fusion protein	Branchiostoma belcheri tsingtaunese	$5 \mathrm{e}-79$
TT-N-S01-0041-W	Ubiquitin/ribosomal protein S30e fusion	Carabus granulatus	1e-33
TT-N-S01-0402-W	protein	Hister sp. APV-2005	3e-35
TT-N-S01-0470-W		Sphaerius sp. APV-2005	$2 \mathrm{e}-29$
TT-N-S01-0995-W		Hister sp. APV-2005 Hister	$9 \mathrm{e}-36$
TT-N-S01-1037-W		sp. APV-2005	$2 \mathrm{e}-35$
TT-N-S01-0727-W	Ubuiquitin/ribosomal L40 fusion protein	Scleronephthya gracillimum	$4 \mathrm{e}-64$

Table A10 Examples of transcripts from a testis cDNA library categorized as members of unidentified (hypothetical)-similar to other cDNA/DNA) (101 clones)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0372-W	Predicted protein	Phaeosphaeria nodorum SN15	3e-10
TT-N-S01-0249-W	CG10109-PA	Tribolium castaneum	5e-06
TT-N-S01-0881-W	CG10600-PA	Tribolium castaneum	3e-21
TT-N-S01-0666-W	CG12279-PA	Rattus norvegicus	$6 \mathrm{e}-16$
TT-N-S01-0810-W	CG12301-PA	Tribolium castaneum	5e-05
TT-N-S01-0913-W	CG12659-PB	Tribolium castaneum	$7 \mathrm{e}-30$
TT-N-S01-0109-W	CG12859	Drosophila yakuba	$9 \mathrm{e}-22$
TT-N-S01-0677-W	CG13220-PA	Tribolium castaneum	$2 \mathrm{e}-20$
TT-N-S01-0456-W	CG13363-PA	Tribolium castaneum	$7 \mathrm{e}-14$
TT-N-S01-0488-W	CG13623-PA	Apis mellifera	$2 \mathrm{e}-38$
TT-N-S01-0046-W	CG14073-PA, isoform A	Apis mellifera	$4 \mathrm{e}-10$
TT-N-S01-0717-W	CG14865-PA	Tribolium castaneum	$6 \mathrm{e}-25$
TT-N-S01-0743-W	CG15432-PA	Tribolium castaneum	3e-16
TT-N-S01-0268-W	CG15626-PA, isoform A	Apis mellifera	2e-42
TT-N-S01-0244-W	CG17068-PA	Apis mellifera	$6 \mathrm{e}-07$
TT-N-S01-0102-W	CG18542-PA	Apis mellifera	$7 \mathrm{e}-27$
TT-N-S01-1032-W	CG33691-PB, isoform B	Apis mellifera	$9 \mathrm{e}-12$
TT-N-S01-0542-W	CG3654-PD	Apis mellifera	$4 \mathrm{e}-27$
TT-N-S01-0906-W	CG3773-PA	Apis mellifera	$8 \mathrm{e}-15$
TT-N-S01-0598-W	CG8677-PA	Apis mellifera	$6 \mathrm{e}-18$
TT-N-S01-0958-W	ENSANGP00000014082	Anopheles gambiae str. PEST	$5 \mathrm{e}-14$
TT-N-S01-0100-W	ENSANGP00000015829	Anopheles gambiae str. PEST	$6 \mathrm{e}-09$
TT-N-S01-0462-W	ENSANGP00000020130	Anopheles gambiae str. PEST	3e-09
TT-N-S01-0165-W	ENSANGP00000020267	Apis mellifera	Зe-11
TT-N-S01-0597-W	ENSANGP00000030087	Anopheles gambiae str. PEST	$8 \mathrm{e}-05$
TT-N-S01-0547-W	Epa4p	Candida glabrata	3e-10
TT-N-S01-0421-W	Es2 CG1474-PA	Apis mellifera	3e-23
TT-N-S01-1077-W	hCG1793893	Homo sapiens	$8 \mathrm{e}-07$
TT-N-S01-0006-W	Hypothetical protein	Dictyostelium discoideum AX4	$2 \mathrm{e}-05$
TT-N-S01-0050-W	Hypothetical protein	Rattus norvegicus	$2 \mathrm{e}-07$
TT-N-S01-0064-W	Hypothetical protein	Plasmodium falciparum 3D7	$6 \mathrm{e}-06$
TT-N-S01-0078-W	Hypothetical protein	Plasmodium yoelii yoelii str. 17XNL	$6 \mathrm{e}-21$
TT-N-S01-0088-W	Hypothetical protein	Chaetomium globosum CBS 148.51	$2 \mathrm{e}-14$
TT-N-S01-0095-W	Hypothetical protein	Strongylocentrotus purpuratus	$2 \mathrm{e}-40$
TT-N-S01-0099-W	Hypothetical protein	Delftia acidovorans SPH-1	2e-09
$\begin{aligned} & \text { TT-N-S01-0104-W } \\ & \text { TT-N-S01-0141-W } \end{aligned}$	Hypothetical protein Hypothetical protein	Aedes aegypti Tribolium castaneum	$\begin{aligned} & 4 \mathrm{e}-11 \\ & 5 \mathrm{e}-05 \end{aligned}$
TT-N-S01-0156-W	Hypothetical protein	Rattus norvegicus	$4 \mathrm{e}-05$
TT-N-S01-0218-W	Hypothetical protein	Gallus gallus	$1 \mathrm{e}-06$
TT-N-S01-0256-W	Hypothetical protein	Tetrahymena thermophila SB210	$1 \mathrm{e}-12$
TT-N-S01-0343-W	Hypothetical protein	Gallus gallus	$8 \mathrm{e}-07$
TT-N-S01-0345-W	Hypothetical protein	Tetrahymena thermophila SB210	$1 \mathrm{e}-13$
TT-N-S01-0454-W	Hypothetical protein	Cryptococcus neoformans var. neoformans JEC21	$8 \mathrm{e}-05$
TT-N-S01-0465-W	Hypothetical protein	Dictyostelium discoideum AX4	$2 \mathrm{e}-15$
TT-N-S01-0511-W	Hypothetical protein	Dictyostelium discoideum AX4	$6 \mathrm{e}-09$
TT-N-S01-0521-W	Hypothetical protein	Dictyostelium discoideum AX4	6e-06
TT-N-S01-0654-W	Hypothetical protein	Geobacter uraniumreducens Rf4	$5 \mathrm{e}-21$

Table A10 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0686-W	Hypothetical protein	Rattus norvegicus	3e-12
TT-N-S01-0692-W	Hypothetical protein	Aedes aegypti	$5 \mathrm{e}-05$
TT-N-S01-0706-W	Hypothetical protein	Tetrahymena thermophila SB210	$2 \mathrm{e}-07$
TT-N-S01-0713-W	Hypothetical protein	Bacteroides fragilis YCH46	$2 \mathrm{e}-08$
TT-N-S01-0747-W	Hypothetical protein	Strongylocentrotus purpuratus	$9 \mathrm{e}-06$
TT-N-S01-0751-W	Hypothetical protein	Rattus norvegicus	$1 \mathrm{e}-21$
TT-N-S01-0834-W	Hypothetical protein	Gallus gallus	2e-05
TT-N-S01-0878-W	Hypothetical protein	Plasmodium yoelii yoelii str. 17XNL	3e-12
TT-N-S01-0884-W	Hypothetical protein	Rattus norvegicus	3e-12
TT-N-S01-0889-W	Hypothetical protein	Oryza sativa (japonica cultivargroup)	$8 \mathrm{e}-07$
TT-N-S01-0908-W	Hypothetical protein	Plasmodium falciparum 3D7	$8 \mathrm{e}-07$
TT-N-S01-0928-W	Hypothetical protein	Plasmodium berghei strain ANKA	$7 \mathrm{e}-22$
TT-N-S01-0935-W	Hypothetical protein	Rattus norvegicus	3e-18
TT-N-S01-0945-W	Hypothetical protein	Rattus norvegicus	$8 \mathrm{e}-11$
TT-N-S01-0952-W	Hypothetical protein	Plasmodium yoelii yoelii str. 17XNL	3e-12
TT-N-S01-0964-W	Hypothetical	Rattus norvegicus	$8 \mathrm{e}-11$
TT-N-S01-0973-W	Hypothetical protein	Homo sapiens	$1 \mathrm{e}-17$
TT-N-S01-0997-W	Hypothetical protein	Tetrahymena thermophila SB210	2e-12
TT-N-S01-1041-W	Hypothetical protein	Eimeria tenella str. Houghton	$1 \mathrm{e}-07$
TT-N-S01-1046-W	Hypothetical protein	Apis mellifera	3e-10
TT-N-S01-1052-W	Hypothetical protein	Apis mellifera	2e-10
TT-N-S01-1076-W	Hypothetical protein	Dictyostelium discoideum AX4	$9 \mathrm{e}-20$
TT-N-S01-1078-W	Hypothetical protein	Tetrahymena thermophila SB210	5e-12
TT-N-S01-0296-W	Hypothetical protein CBG02739	Caenorhabditis briggsae	$3 \mathrm{e}-06$
TT-N-S01-0024-W	Hypothetical protein FLJ20580	Gallus gallus	$7 \mathrm{e}-34$
TT-N-S01-0305-W	Hypothetical protein XP_584232 isoform 1	Bos taurus	$1 \mathrm{e}-10$
TT-N-S01-0662-W	Hypothetical protein Y50E8A.i	Caenorhabditis elegans	4e-06
TT-N-S01-0864-W	Hypothetical protein, conserved	Eimeria tenella str. Houghton	$8 \mathrm{e}-06$
TT-N-S01-0890-W	IP06461p	Drosophila melanogaster	$2 \mathrm{e}-22$
TT-N-S01-0146-W	LCI5	Chlamydomonas reinhardtii	$2 \mathrm{e}-07$
TT-N-S01-0728-W	MGC53864 protein	Xenopus laevis	$1 \mathrm{e}-06$
TT-N-S01-0258-W	MGC83791 protein $\mathrm{P}^{1} 9 \sim$	Xenopus Taevis	$1 \mathrm{e}-07$
TT-N-S01-1042-W	putative ORF2	Drosophila melanogaster	3e-07
TT-N-S01-0845-W	RIKEN cDNA 2310061C15 gene isoform 1	Gallus gallus	$5 \mathrm{e}-18$
TT-N-S01-0210-W	SJCHGC01974 protein $9198 \cap$	Schistosoma japonicum	1e-12
TT-N-S01-1024-W	SJCHGC09076 protein	Schistosoma japonicum	3e-18
TT-N-S01-0010-W	Unnamed protein product	Homo sapiens	2e-39
TT-N-S01-0888-W	Unknown	Schistosoma japonicum	5e-08
TT-N-S01-0979-W	Unknown	Frog virus 3	8e-10
TT-N-S01-1068-W	Unknown	Schistosoma japonicum	$1 \mathrm{e}-15$
TT-N-S01-0858-W	Unknown (protein for IMAGE:2639329)	Danio rerio	$2 \mathrm{e}-07$
TT-N-S01-0645-W	Unknown protein	Arabidopsis thaliana	$4 \mathrm{e}-05$
TT-N-S01-0116-W	Unnamed protein product	Homo sapiens	2e-05
TT-N-S01-0194-W	Unnamed protein product	Saimiriine herpesvirus 2	2e-12
TT-N-S01-0251-W	Unnamed protein product	Tetraodon nigroviridis	$2 \mathrm{e}-06$
TT-N-S01-0297-W	Unnamed protein product	Kluyveromyces lactis	$6 \mathrm{e}-20$
TT-N-S01-0379-W	Unnamed protein product	Tetraodon nigroviridis	2e-09

Table A10 (cont.)

Clone No.	Transcripts	Closest Species	E-value
TT-N-S01-0392-W	Unnamed protein product	Kluyveromyces lactis	$1 \mathrm{e}-15$
TT-N-S01-0665-W	Unnamed protein product	Saimiriine herpesvirus 2	$2 \mathrm{e}-12$
TT-N-S01-0788-W	Unnamed protein product	Tetraodon nigroviridis	$1 \mathrm{e}-10$
TT-N-S01-0804-W	Unnamed protein product	Kluyveromyces lactis	$3 \mathrm{e}-06$
TT-N-S01-0936-W	Unnamed protein product	Tetraodon nigroviridis	$9 \mathrm{e}-21$
TT-N-S01-1000-W	Unnamed protein product	Tetraodon nigroviridis	$6 \mathrm{e}-17$
TT-N-S01-0691-W	Y43E12A.2	Tribolium castaneum	$5 \mathrm{e}-21$

Table A11 Unknown transcripts from a testis cDNA library (290 clones)

GENE IDENTITY	No. of Clones
Unknown genes	290
)	

Table A12 Examples of transcripts from a heart cDNA library categorized as members of cell division/DNA synthesis, repair and replication (1 clone)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0221-LF	High mobility group protein DSP1 (Dorsal switch protein 1)	Tribolium castaneum	$4 \mathrm{e}-56$

Table A13 Examples of transcripts from a heart cDNA library categorized as members of defense and homeostasis (6 clones)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0185-LF	Latency associated nuclear antigen	Saimiriine herpesvirus 2	$9 \mathrm{e}-12$
HT-N-S01-0382-LF	Lipoamide dehydrogenase	Sus scrofa	3e-51
HT-N-S01-0140-LF	Lysozyme	Penaeus monodon	5e-85
HT-N-S01-0279-LF			1 Sus scrofa
HT-N-S01-0219-LF	Plasminogen	Pacifastacus leniusculus	4e-13
HT-N-S01-0144-LF	Serine proteinase inhibitor		

Table A14 Examples of transcripts from a heart cDNA library categorized as members of gene expression, regulation and protein synthesis (13 clones)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0452-LF	Arginine kinase	Fenneropenaeus chinensis	2e-40
HT-N-S01-0093-LF	Calponin	Aedes aegypti	4e-34
HT-N-S01-0055-LF	COG3321: Polyketide synthase modules and related proteins	Burkholderia mallei GB8 horse 4	$6 \mathrm{e}-05$
HT-N-S01-0189-LF	Elongation factor 2b CG2238-PB, isoform	Drosophila melanogaster	3e-61
HT-N-S01-0442-LF	Elongation factor-1 alpha	Penaeus monodon	1e-104
HT-N-S01-0143-LF	Elongation factor-2	Libinia emarginata	1e-118
HT-N-S01-0032-LF	Fast tropomyosin isoform	Homarus americanus	3e-44
HT-N-S01-0089-LF	High mobility group 20A	Micrococcus sp. 28	1e-43
HT-N-S01-0012-LF	Hydroxyproline-rich protein	Aedes aegypti	4e-05
HT-N-S01-0419-LF	Muscle lim protein	Lonomia obliqua	2e-34
HT-N-S01-0243-LF	Myosin 1 light chain	Aedes aegypti	1e-48
HT-N-S01-0023-LF	Myosin light chain 1	Takifugu rubripes	2e-38
HT-N-S01-0417-LF	Reticulon 4-L2		$6 \mathrm{e}-42$

Table A15 Examples of transcripts from a heart cDNA library categorized as members of internal/external structure and motility (5 clones)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0407-LF	Fasciclin-like protein	Aplysia californica	3e-27
HT-N-S01-0240-LF	H3 histone, family 3B	Mus musculus	$2 \mathrm{e}-69$
HT-N-S01-0158-LF	Profilin (Chickadee protein)	Tribolium castaneum	$7 \mathrm{e}-38$
HT-N-S01-0035-LF	Tubulin beta-1 chain	Homarus americanus	$6 \mathrm{e}-89$
HT-N-S01-0421-LF	Tyrosine-protein phosphatase non-receptor type 13 (PTP-E1) (hPTPE1) (PTP-BAS) (Protein- tyrosine phosphatase PTPL1)	Tribolium castaneum	$8 \mathrm{e}-50$

Table A16 Examples of transcripts from a heart cDNA library categorized as members of metabolism (27 clones)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0441-LF	Acyl-Coenzyme A dehydrogenase, C-4 to C12 straight chain	Danio rerio	$4 \mathrm{e}-73$
HT-N-S01-0119-LF	ADP/ATP translocase	Bombyx mori	$7 \mathrm{e}-73$
HT-N-S01-0350-LF	ATP lipid-binding protein like protein	Marsupenaeus japonicus	$1 \mathrm{e}-30$
HT-N-S01-0247-LF	ATP synthase	Penaeus monodon	$6 \mathrm{e}-74$
HT-N-S01-0296-LF			$9 \mathrm{e}-93$
HT-N-S01-0013-LF	ATP synthase F0 subunit 6	Penaeus monodon	$1 \mathrm{e}-10$
HT-N-S01-0078-LF			$4 \mathrm{e}-83$
HT-N-S01-0173-LF			2e-36
HT-N-S01-0193-LF			$5 \mathrm{e}-95$
HT-N-S01-0195-LF			$1 \mathrm{e}-40$
HT-N-S01-0329-LF	ATP synthase F0 subunit 6	Penaeus monodon	3e-31
HT-N-S01-0332-LF			2e-89
HT-N-S01-0372-LF			1e-102
HT-N-S01-0385-LF			$8 \mathrm{e}-42$
HT-N-S01-0414-LF			$5 \mathrm{e}-71$
HT-N-S01-0176-LF	COG2804: Type II secretory pathway, ATPase PulE/Tfp pilus assembly pathway,	Pseudomonas aeruginosa UCBPP-PA14	3e-05
HT-N-S01-0244-LF	ERO1-like	Gallus gallus	$2 \mathrm{e}-41$
HT-N-S01-0154-LF	Fructose 1,6-bisphosphate aldolase	Oncometopia nigricans	$1 \mathrm{e}-16$
HT-N-S01-0297-LF	*		$1 \mathrm{e}-37$
HT-N-S01-0231-LF	gcdh protein (Glutaryl-Coenzyme A dehydrogenase)	Danio rerio	$4 \mathrm{e}-70$
HT-N-S01-0291-LF	Glutathione S-transferase	Anopheles gambiae	7e-35
HT-N-S01-0317-LF	Glyceraldehyde-3-phosphate dehydrogenase	Procambarus clarkii	$6 \mathrm{e}-76$
HT-N-S01-0162-LF	NADH-ubiquinone oxidoreductase $\mathrm{Fe}-\mathrm{S}$ protein 7	Bombyx mori	3e-62
HT-N-S01-0218-LF	Peroxisomal 3,2-trans-enoyl-CoA isomerase (Dodecenoyl-CoA deltaisomerase) isoform 1	Strongylocentrotus purpuratus	$5 \mathrm{e}-53$
HT-N-S01-0397-LF	Phosphoglycerate kinase	Aedes aegypti	1e-14
HT-N-S01-0427-LF	Receptor for activated protein kinase C RACK 1 isoform 1	Bombyx mori	$1 \mathrm{e}-90$
HT-N-S01-0294-LF	Trifunctional enzyme beta subunit (tp-beta)	Aedes aegypti	3e-48

Table A17 Examples of transcripts from a heart cDNA library categorized as members of miscellaneous function (16 clones)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0450-LF	Cathepsin D	Aedes aegypti	$7 \mathrm{e}-86$
HT-N-S01-0165-LF	C-type lectin	Penaeus monodon	$7 \mathrm{e}-06$
HT-N-S01-0178-LF	Dehydrogenase/3-ketoacyl-Coenzyme A thiolase	Danio rerio	5e-09
HT-N-S01-0198-LF	GRN protein (granulin)	Xenopus tropicalis	1e-33
HT-N-S01-0433-LF	Macrophage migration inhibitory factor	Bombyx mori	$5 \mathrm{e}-25$
HT-N-S01-0241-LF	Neuroparsin A precursor	Locusta migratoria	$9 \mathrm{e}-11$
HT-N-S01-0289-LF			$5 \mathrm{e}-06$
HT-N-S01-0222-LF	Papilin	Aedes aegypti	3e-36
HT-N-S01-0306-LF	pxSerpin 3	Plutella xylostella	$9 \mathrm{e}-09$
HT-N-S01-0384-LF	Supervillin, isoform CRA_a	Homo sapiens	$8 \mathrm{e}-16$
HT-N-S01-0204-LF	Tetratricopeptide repeat domain 35	Danio rerio	$2 \mathrm{e}-47$
HT-N-S01-0358-LF	Thyroid hormone receptor interactor 12 isoform 7	Canis familiaris	$7 \mathrm{e}-35$
HT-N-S01-0128-LF	Troponin T	Libellula pulchella	2e-12
HT-N-S01-0200-LF	Troponin	Drosophila melanogaster	1E-12
HT-N-S01-0183-LF	Trypsin 10	Xenopus tropicalis	$7 \mathrm{e}-17$
HT-N-S01-0039-LF			3e-19

Table A18 Examples of transcripts from a heart cDNA library categorized as members of mitochondrial protein (104 clones)

Clone No.	Transcripts Closest Species	E-value
HT-N-S01-0014-LF	Cytochrome b Penaeus monodon	2e-46
HT-N-S01-0082-LF		5e-72
HT-N-S01-0216-LF		$4 \mathrm{e}-79$
HT-N-S01-0237-LF		1e-117
HT-N-S01-0272-LF		8e-95
HT-N-S01-0322-LF	\sim	$7 \mathrm{e}-44$
HT-N-S01-0428-LF	A 0	3e-41
HT-N-S01-0435-LF	-	$1 \mathrm{e}-117$
HT-N-S01-0022-LF	Portunus trituberculatus Triops cancriformis	1e-43
HT-N-S01-0069-LF	6 -	$8 \mathrm{e}-49$
HT-N-S01-0006-LF	Cytochrome c oxidase subunit I Fenneropenaeus merguiensis	$1 \mathrm{e}-76$
HT-N-S01-0028-LF		2e-36
HT-N-S01-0061-LF		2e-65
HT-N-S01-0074-LF		1e-84
HT-N-S01-0097-LF		5e-52
HT-N-S01-0130-LF		$4 \mathrm{e}-94$
HT-N-S01-0135-LF		5e-87
HT-N-S01-0163-LF		$2 \mathrm{e}-88$
HT-N-S01-0238-LF		3e-73
HT-N-S01-0307-LF		3e-80
HT-N-S01-0308-LF		$1 \mathrm{e}-91$
HT-N-S01-0309-LF		$1 \mathrm{e}-38$
HT-N-S01-0327-LF		2e-39
HT-N-S01-0333-LF		8e-37

Table A18 (cont.)

Table A18 (cont.)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0094-LF	Cytochrome oxidase subunit I	Euphausia superba	$9 \mathrm{e}-25$
HT-N-S01-0312-LF		Fenneropenaeus penicillatus	$2 \mathrm{e}-93$
HT-N-S01-0357-LF		Fenneropenaeus sp. НССР2002	$1 \mathrm{e}-30$
HT-N-S01-0313-LF	Cytochrome oxidase subunit II	Euphausia superba	1e-95
HT-N-S01-0142-LF	Mitochondrial cytochrome c oxidase polypeptide VIIc	Graphocephala atropunctata	$2 \mathrm{e}-13$
HT-N-S01-0285-LF	Mitochondrial NADH dehydrogenase (ubiquinone) 1 alpha subcomplex	Aedes aegypti	$6 \mathrm{e}-06$
HT-N-S01-0319-LF	NADH dehydrogenase	Aedes aegypti	$4 \mathrm{e}-17$
HT-N-S01-0430-LF			2e-62
HT-N-S01-0155-LF	NADH dehydrogenase subunit	Penaeus monodon	$2 \mathrm{e}-78$
HT-N-S01-0179-LF			3e-53
HT-N-S01-0246-LF			2e-96
HT-N-S01-0278-LF	- =		$1 \mathrm{e}-100$
HT-N-S01-0059-LF	NADH dehydrogenase subunit 2	Penaeus monodon	$4 \mathrm{e}-15$
HT-N-S01-0054-LF	NADH dehydrogenase subunit 4	Penaeus monodon	2e-36
HT-N-S01-0335-LF			$7 \mathrm{e}-20$
HT-N-S01-0371-LF			$4 \mathrm{e}-36$
HT-N-S01-0174-LF	NADH dehydrogenase subunit 4L	Penaeus monodon	$6 \mathrm{e}-35$
HT-N-S01-0362-LF			$2 \mathrm{e}-29$
HT-N-S01-0394-LF			5e-26
HT-N-S01-0080-LF	NADH dehydrogenase subunit 5	Penaeus monodon	$5 \mathrm{e}-22$
HT-N-S01-0125-LF			1e-101
HT-N-S01-0145-LF	J		2e-95
HT-N-S01-0151-LF			$2 \mathrm{e}-85$
HT-N-S01-0311-LF			$2 \mathrm{e}-23$
HT-N-S01-0416-LF			$5 \mathrm{e}-85$
HT-N-S01-0299-LF	NADH dehydrogenase subunit $6 \times \begin{aligned} & \text { d }\end{aligned}$	Penaeus monodon	$5 \mathrm{e}-72$
HT-N-S01-0448-LF			3e-71
HT-N-S01-0063-LF	Ubiquinol cytochrome C oxidoreductasesubunit 6.4kD-subunit	Aedes aegypti	$1 \mathrm{e}-08$
HT-N-S01-0399-LF	Voltage-dependent anion-selective channel protein 2 (Outer mitochondrial membrane protein porin)	Xenopus laevis	$4 \mathrm{e}-33$

ศนยวทยทรพยากร

Table A19 Examples of transcripts from a heart cDNA library categorized as members of transport (1 clone) $6 \leqslant 9 / 98 \cap \cap 9$ g ?

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0016-LF	Electron-transfer-flavoprotein beta polypeptide	Bombyx mori	$6 \mathrm{e}-50$

Table A20 Examples of transcripts from a heart cDNA library categorized as members of ribosomal and rRNA (70 clones)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0043-LF	40S ribosomal protein S10	Rattus norvegicus	5e-19
HT-N-S01-0141-LF		Canis familiaris	5e-45
HT-N-S01-0062-LF	60S ribosomal protein L31	Spodoptera frugiperda	3e-32
HT-N-S01-0064-LF	60S ribosomal protein L37a	Ostertagia ostertagi	$1 \mathrm{e}-34$
HT-N-S01-0206-LF	Ribosomal protein L13a	Lysiphlebus testaceipes	$1 \mathrm{e}-64$
HT-N-S01-0320-LF	Ribosomal protein L21	Ixodes scapularis	$5 \mathrm{e}-47$
HT-N-S01-0042-LF	Ribosomal protein L24	Marsupenaeus japonicus	$2 \mathrm{e}-52$
HT-N-S01-0177-LF	Ribosomal protein S15	Branchiostoma belcheri tsingtaunese	$9 \mathrm{e}-65$
HT-N-S01-0408-LF	Ribosomal protein S17	Homo sapiens	$4 \mathrm{e}-56$
HT-N-S01-0273-LF	Ribosomal protein S9 CG339 isoform A	Apis mellifera	$1 \mathrm{e}-82$
HT-N-S01-0212-LF	S5e ribosomal protein	Dascillus cervinus	2e-96
HT-N-S01-0075-LF	tRNA-Ile	Penaeus monodon	0
HT-N-S01-0076-LF			0
HT-N-S01-0081-LF			0
HT-N-S01-0088-LF			0
HT-N-S01-0092-LF			0
HT-N-S01-0100-LF			0
HT-N-S01-0106-LF			1e-148
HT-N-S01-0107-LF			0
HT-N-S01-0108-LF	.		1e-163
HT-N-S01-0139-LF			0
HT-N-S01-0147-LF	er		0
HT-N-S01-0148-LF			0
HT-N-S01-0149-LF			0
HT-N-S01-0150-LF			3e-86
HT-N-S01-0152-LF	-2		0
HT-N-S01-0159-LF			1e-104
HT-N-S01-0180-LF			0
HT-N-S01-0182-LF			1e-150
HT-N-S01-0188-LF			1e-138
HT-N-S01-0192-LF	\sim		0
HT-N-S01-0194-LF			0
HT-N-S01-0202-LF	9 -19	2	0
HT-N-S01-0205-LF	-11	1	0
HT-N-S01-0207-LF			0
HT-N-S01-0208-LF			1e-146
HT-N-S01-0210-LF			0
HT-N-S01-0220-LF	110	11.	0
HT-N-S01-0223-LF			0
HT-N-S01-0229-LF			0
HT-N-S01-0242-LF			0
HT-N-S01-0249-LF			0
HT-N-S01-0253-LF			0
HT-N-S01-0258-LF			0
HT-N-S01-0259-LF			0
HT-N-S01-0260-LF			0
HT-N-S01-0263-LF			0
HT-N-S01-0266-LF			0
HT-N-S01-0270-LF			0
HT-N-S01-0283-LF			0

Table A20 (cont.)

Clone No.	Transcripts	Closest Species
HT-N-S01-0288-LF	tRNA-Ile	Penaeus monodon
HT-N-S01-0290-LF		$2 \mathrm{e}-78$
HT-N-S01-0314-LF	3e-77	
HT-N-S01-0316-LF	0	
HT-N-S01-0323-LF	0	
HT-N-S01-0331-LF	$1 \mathrm{e}-103$	
HT-N-S01-0342-LF	$1 \mathrm{e}-159$	
HT-N-S01-0347-LF	$1 \mathrm{e}-141$	
HT-N-S01-0392-LF	$2 \mathrm{e}-80$	
HT-N-S01-0406-LF	0	
HT-N-S01-0412-LF	0	
HT-N-S01-0413-LF	0	
HT-N-S01-0418-LF	0	
HT-N-S01-0422-LF	0	0
HT-N-S01-0429-LF	0	0
HT-N-S01-0437-LF	0	
HT-N-S01-0444-LF		0
HT-N-S01-0445-LF	0	
HT-N-S01-0446-LF		0
HT-N-S01-0451-LF		0

Table A21 Examples of transcripts from a heart cDNA library categorized as members of unidentified (hypothetical)-similar to other cDNA/DNA (40 clones)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0138-LF	CG1102-PA	Drosophila melanogaster	$7 \mathrm{e}-23$
HT-N-S01-0369-LF	CG14996-PB	Drosophila melanogaster	3e-41
HT-N-S01-0424-LF	CG1572-PA, isoform A isoform 1	Tribolium castaneum	$2 \mathrm{e}-33$
HT-N-S01-0282-LF	CG40410-PA	Apis mellifera	$1 \mathrm{e}-50$
HT-N-S01-0053-LF	CG5028-PA	Drosophila melanogaster	$1 \mathrm{e}-17$
HT-N-S01-0257-LF	CG5451-PA	Drosophila melanogaster	$4 \mathrm{e}-13$
HT-N-S01-0404-LF	CG7630-PA	Drosophila melanogaster	$7 \mathrm{e}-07$
HT-N-S01-0038-LF	Conserved hypothetical protein	Neosartorya fischeri NRRL 181	$8 \mathrm{e}-08$
HT-N-S01-0121-LF	DNA segment, Chr 10, Johns Hopkins University 81 expressed	Mus musculus	5e-48
HT-N-S01-0365-LF	ENSANGP00000009996	Anopheles gambiae	$6 \mathrm{e}-59$
HT-N-S01-0073-LF	ENSANGP00000010943	Apis mellifera	$9 \mathrm{e}-15$
HT-N-S01-0171-LF	ENSANGP00000011689	Anopheles gambiae \square	$2 \mathrm{e}-08$
HT-N-S01-0364-LF	ENSANGP00000011882	Anopheles gambiae	$5 \mathrm{e}-40$
HT-N-S01-0045-LF	ENSANGP00000013096	Anopheles gambiae	$2 \mathrm{e}-31$
HT-N-S01-0380-LF	ENSANGP00000013298	Anopheles gambiae str. PEST	$4 \mathrm{e}-06$
HT-N-S01-0126-LF	ENSANGP00000014057	Apis mellifera	$8 \mathrm{e}-13$
HT-N-S01-0122-LF	ENSANGP00000018202	Anopheles gambiae	$1 \mathrm{e}-30$
HT-N-S01-0196-LF	ENSANGP00000020213	Anopheles gambiae	$4 \mathrm{e}-06$
HT-N-S01-0248-LF	ENSANGP00000025500	Anopheles gambiae str. PEST	$1 \mathrm{e}-15$
HT-N-S01-0250-LF	ENSANGP00000030087	Anopheles gambiae str. PEST	3e-07
HT-N-S01-0157-LF	GA13958-PA	Drosophila pseudoobscura	$5 \mathrm{e}-07$
HT-N-S01-0255-LF	GA15266-PA	Drosophila pseudoobscura	$6 \mathrm{e}-18$

Table A21 (cont.)

Clone No.	Transcripts	Closest Species	E-value
HT-N-S01-0137-LF	Hypothetical 18K protein	Carassius auratus	5e-05
HT-N-S01-0156-LF			$9 \mathrm{e}-05$
HT-N-S01-0166-LF			$8 \mathrm{e}-05$
HT-N-S01-0265-LF			$5 \mathrm{e}-05$
HT-N-S01-0286-LF		Trypanosoma brucei TREU927	Ae-05
HT-N-S01-0338-LF		Eimeria tenella str. Houghton	1e-14
HT-N-S01-0440-LF		Enterococcus faecium	2e-19
HT-N-S01-0086-LF	Hypothetical protein	Xenopus tropicalis	
HT-N-S01-0186-LF	Hypothetical protein	Unknown	1e-13
HT-N-S01-0467-LF	Hypothetical protein	Danio rerio	1e-06
HT-N-S01-0368-LF	Hypothetical protein Efae03002652	Xenopus laevis	2e-09
HT-N-S01-0262-LF	LOC496680 protein		$6 \mathrm{e}-20$
HT-N-S01-0432-LF	Unknown	Tetraodon nigroviridis	8e-17
HT-N-S01-0021-LF	Unknown (protein for MGC:101057)	2e-37	
HT-N-S01-0116-LF	Unknown (protein for MGC:82165)	Tetraodon nigroviridis	2e-08
HT-N-S01-0301-LF			
HT-N-S01-0008-LF	unnamed protein product		
HT-N-S01-0031-LF	unnamed protein product		

Table A22 Unknown transcripts from a heart cDNA library (130 clones)

Gene Identity	No. of Clones Clone
Unknown genes	

Table A23 Examples of transcripts from the forward SSH library of testes of P. monosdon categorized as members of sex-related gene (1 clone)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST01-0019-W	Meiotic recombination protein DMC1/LIM15 homolog isoform 1	Canis familiaris	506	$1 \mathrm{e}-24$

Table A24 Examples of transcripts from the forward SSH library of testes of P. monosdon categorized as members of stress response and cell defense protein (4 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST01-0148-W	Allergen Pen m 2	Penaeus monodon	309	$5 \mathrm{e}-22$
TT-N-ST01-0150-W	Antimicrobial peptide	Fenneropenaeus chinensis	389	$2 \mathrm{e}-22$
TT-N-ST01-0147-W	C2 domain containing protein	Tetrahymena thermophila SB210	592	$2 \mathrm{e}-19$
TT-N-ST01-0069-W	Myelodysplasia/myeloid leukemia factor CG8295-PD, isoform D	Drosophila melanogaster	709	$1 \mathrm{e}-33$

Table A25 Examples of transcripts from the forward SSH library of testes of P. monosdon categorized as members of protein synthesis and DNA replication (14 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST01-0059-W	Elongation factor-1 alpha	Penaeus monodon Armadillidium vulgare	353	7e-62
TT-N-ST01-0099-W			557	$2 \mathrm{e}-95$
TT-N-ST01-0039-W	Eukaryotic translation initiation factor 2 subunit 2	Bombyx mori	600	7e-36
TT-N-ST01-0088-W	Oncoprotein nm23 ATP-dependent RNA helicase	Ictalurus punctatus	436	$6 \mathrm{e}-34$
TT-N-ST01-0156-W		Aedes aegypti	472	Зе-76
TT-N-ST01-0085-W	Basic leucine zipper and W2 domain-		466	$2 \mathrm{e}-09$
TT-N-ST01-0149-W	C-1-tetrahydrofolate synthase, Pongo pygmaeus cytoplasmic (C1-THF synthase)		714	$7 \mathrm{e}-85$
TT-N-ST01-0143-W	Ras-related nuclear protein	Marsupenaeus japonicus	602	$4 \mathrm{e}-50$
TT-N-ST01-0178-W	Sensitized chromosome inheritance modifier 19 CG9241-PA	Drosophila melanogaster	368	$3 \mathrm{e}-15$
TT-N-ST01-0103-W	Signal peptidase complex subunit 2 homolog	Tribolium castaneum	352	$3 \mathrm{e}-28$
TT-N-ST01-0138-W	Signal sequence receptor	Bombyx mori	279	$9 \mathrm{e}-14$
TT-N-ST01-0077-W	Actin-depolymerizing factor 1	Bombyx mori	316	$8 \mathrm{e}-21$
TT-N-ST01-0109-W	Bmsqd-2	Apis mellifera	713	$1 \mathrm{e}-102$
TT-N-ST01-0131-W	DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 isoform 3	Pan troglodytes	562	1e-19

Table A26 Examples of transcripts from the forward SSH library of testes of P. monosdon categorized as members of internal/external structure, motility, and transport (2 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST01-0162-W	Transmembrane protein	Pan troglodytes	540	2e-64
TT-N-ST01-0093-W	NTF2-related export protein (p15)	Tribolium castaneum	420	$4 \mathrm{e}-19$

Table A27 Examples of transcripts from the forward SSH library of testes of P. monosdon categorized as members of metabolism (18 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST01-0053-W	Cytochrome c oxidase subunit $6 a$ polypeptide 1	Xenopus tropicalis	345	$2 \mathrm{e}-08$
TT-N-ST01-0007-W	Cytochrome c oxidase subunit I	Fenneropenaeus chinensis	467	$4 \mathrm{e}-76$
TT-N-ST01-0137-W		Marsupenaeus japonicus	712	1e-112
TT-N-ST01-0030-W	Cytochrome c oxidase subunit III	Penaeus monodon	439	$1 \mathrm{e}-70$
TT-N-ST01-0155-W	26S proteasome regulatory complex ATPase RPT4	Aedes aegypti	490	$2 \mathrm{e}-81$
TT-N-ST01-0108-W	Proteasome (prosome, macropain) 26 S subunit, ATPase, 5, isoform CRA_a	Homo sapiens	199	$3 \mathrm{e}-12$
TT-N-ST01-0161-W	Proteasome 26S non-ATPase subunit 12	Tribolium castaneum	209	$4 \mathrm{e}-18$
TT-N-ST01-0074-W	Proteasome subunit alpha type 2 (Proteasome component C3) (Macropain subunit C3) (Multicatalytic endopeptidase complex subunit C3)	Strongylocentrotus purpuratus	401	$4 \mathrm{e}-40$
TT-N-ST01-0056-W	Proteasome subunit, alpha type, 5	Apis mellifera	707	$4 \mathrm{e}-23$
TT-N-ST01-0182-W	GTP-binding protein	Bombyx mori	373	$5 \mathrm{e}-49$
TT-N-ST01-0119-W	Cytosolic manganese superoxide	Penaeus monodon	343	$2 \mathrm{e}-12$
TT-N-ST01-0141-W	dismutase		346	$6 \mathrm{e}-13$
TT-N-ST01-0125-W	Dolichyl-diphosphooligosaccharide-proteinglycotransferase	Branchiostoma belcheri tsingtaunese	427	$4 \mathrm{e}-19$
TT-N-ST01-0116-W	Activated protein kinase C receptor	Toxoptera citricida	410	$4 \mathrm{e}-70$
$\begin{aligned} & \text { TT-N-ST01-0035-W } \\ & \text { TT-N-ST01-0058-W } \end{aligned}$	Receptor for activated protein kinase C RACK 1 isoform 1	Bombyx mori	$\begin{aligned} & 644 \\ & 702 \end{aligned}$	$\begin{gathered} 1 \mathrm{e}-113 \\ 7 \mathrm{e}-17 \end{gathered}$
TT-N-ST01-0034-W	myosin	Dictyostelium discoideum AX4	596	$6 \mathrm{e}-23$
TT-N-ST01-0010-W	Malate dehydrogenase 1, NAD (soluble), isoform CRA_d	Homo sapiens	374	$4 \mathrm{e}-43$

Table A28 Known transcripts from the forward SSH library of testes of P. monosdon categorized as members of ribosomal and rRNA (18 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST01-0037-W	40S ribosomal protein	Perinereis aibuhitensis	430	$6 \mathrm{e}-51$
TT-N-ST01-0024-W	40S ribosomal protein S15 (RIG protein) isoform 1	Macaca mulatta	425	$3 \mathrm{e}-60$
TT-N-ST01-0107-W	40S ribosomal protein S2	Ornithodoros parkeri	496	$3 \mathrm{e}-56$
TT-N-ST01-0044-W	40S ribosomal protein S23	Argas monolakensis	366	$1 \mathrm{e}-62$
TT-N-ST01-0072-W	40S ribosomal protein S4	Spodoptera frugiperda	422	$4 \mathrm{e}-46$
TT-N-ST01-0152-W	Ribosomal protein L10	Callinectes sapidus	480	$1 \mathrm{e}-85$
TT-N-ST01-0002-W	Ribosomal protein L10Ae	Biphyllus lunatus	618	8e-78
TT-N-ST01-0028-W	Ribosomal protein L11e	Scarabaeus laticollis	174	$1 \mathrm{e}-16$
TT-N-ST01-0062-W	Ribosomal protein L12	Ixodes scapularis	477	$1 \mathrm{e}-54$
TT-N-ST01-0167-W	Ribosomal protein L3	Bombyx mori	350	$3 \mathrm{e}-51$
TT-N-ST01-0081-W	Ribosomal protein LP1	Argas monolakensis	477	$3 \mathrm{e}-38$
TT-N-ST01-0095-W	Ribosomal protein S2	Lysiphlebus testaceipes	439	$4 \mathrm{e}-74$
TT-N-ST01-0021-W	Ribosomal protein S20	Chlamys farreri	402	$1 \mathrm{e}-43$
TT-N-ST01-0017-W	Ribosomal protein S3	Gallus gallus	467	$3 \mathrm{e}-72$
TT-N-ST01-0070-W	Ribosomal protein S3	Danio rerio	535	$3 \mathrm{e}-81$
TT-N-ST01-0071-W	Ribosomal protein S3A	Spodoptera frugiperda	545	$2 \mathrm{e}-74$
TT-N-ST01-0169-W	tRNA-Ile (16S ribosomal RNA gene)	Penaeus monodon	714	0
TT-N-ST01-0049-W			296	$1 \mathrm{e}-153$

Table A29 Examples of transcripts the forward SSH library of testes of P. monosdon categorized as members of unidentified (hypothetical)-similar to other cDNA/DNA) from (9 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST01-0055-W	mFLJ00348 protein Hypothetical protein Mus musculus Geobacter uraniumreducens Rf4		212	$3 \mathrm{e}-11$
TT-N-ST01-0041-W			356	3e-11
TT-N-ST01-0151-W			281	$4 \mathrm{e}-12$
TT-N-ST01-0145-W	Hypothetical protein	Dictyostelium	258	3e-05
TT-N-ST01-0157-W	Hypothetical protein	discoideum AX4 Rattus norvegicus	528	3e-11
TT-N-ST01-0173-W	Hypothetical protein	Plasmodium falciparum $3 D 7$	545	$2 \mathrm{e}-17$
TT-N-ST01-0047-W	Unknown	Schistosoma japonicum	273	$4 \mathrm{e}-08$
TT-N-ST01-0073-W	Unknown	Schistosoma japonicum	503	$5 \mathrm{e}-14$
TT-N-ST01-0181-W			309	$1 \mathrm{e}-15$

Table A30 Clustering of unknown transcripts of the forward SSH library of testes of P. monosdon (112 clones)

Gene	Clustering	Clone
Unknown genes	CL1Contig1 (13 clones)	ST01-0180 (305) [ST01-0006 (351), ST01-0029 (537), ST01-0054 (188), ST01-0094 (285), ST01-0114 (291), ST01-0124 (244), ST01-0126 (299), ST01-0128 (291), ST01-0139 (256), ST01-0164 (296), ST01-0170 (289), ST01-0174 (244*)]
	CL1Contig2 (16 clones)	ST01-0052 (176) [ST01-0031 (230), ST01-0042 (219), ST01-0068 (236), ST01-0075 (223), ST01-0090 (243), ST01-0096 (225), ST01-0098 (236), ST01-0117 (224), ST01-0132 (207), ST01-0133 (226), ST01-0134 (213), ST01-0159 (252), ST01-0166 (243), ST01-0168 (343), ST01-0179 (218)]
	CL2Contig1 (4 clones)	$\begin{aligned} & \text { ST01-0076 (644) [ST01-0022 (537), ST01-0038 (453), } \\ & \text { ST01-0171 (453)] } \end{aligned}$
	CL3Contig1 (4 clones)	$\begin{aligned} & \text { ST01-0012 (333) [ST01-0015 (265), ST01-0091 (318), } \\ & \text { ST01-0177 (308)] } \end{aligned}$
	CL4Contig1 (4 clones)	```ST01-0016 (370) [ST01-0040 (267), ST01-0102 (355), ST01-0130 (278)]```
	CL5Contig1 (4 clones)	```ST01-0111 (269) [ST01-0011 (281), ST01-0025 (125), ST01-0036 (304)]```
	CL8Contig1 (2 clones)	ST01-0110 (568) [ST01-0018 (296)]
	CL10Contig1 (2 clones)	ST01-0023 (684) [ST01-0176 (684)]
	CL11Contig1 (2 clones)	ST01-0165 (359) [ST01-0008 (358)]
	CL12Contig1 (2 clones)	ST01-0020 (393) [ST01-0144 (393)]
	CL13Contig1 (2 clones)	ST01-0032 (608) [ST01-0142 (611)]
	CL16Contig1 (2 clones)	ST01-0118 (425) [ST01-0175 (424)]
	Singleton (55 clones)	ST01-0001 (350), ST01-0003 (522), ST01-0004 (413),
		ST01-0005 (518), ST01-0009 (266), ST01-0013 (258),
		ST01-0014 (440), ST01-0026 (415), ST01-0027 (243),
		ST01-0033 (650), ST01-0043 (398), ST01-0045 (456), ST01-0046 (353), ST01-0048 (369), ST01-0050 (382),
	71	ST01-0051 (330), ST01-0057 (475), ST01-0060 (695), ST01-0061 (245), ST01-0063 (272), ST01-0064 (311), ST01-0065 (319), ST01-0066 (519), ST01-0067 (466),
	ลงกรณม	$\begin{aligned} & \text { ST01-0078 (248), ST01-0079 (432), ST01-0080 (271), } \\ & \text { ST01-0082 (468), ST01-0083 (229), ST01-0084 (429), } \\ & \text { ST01-0086 (375), ST01-0087 (351), ST01-0089 (237), } \end{aligned}$
		ST01-0092 (424), ST01-0097 (310), ST01-0100 (380), ST01-0101 (354), ST01-0104 (510), ST01-0105 (229),
		ST01-0112 (340), ST01-0113 (283), ST01-0115 (284),
		ST01-0120 (229), ST01-0121 (435), ST01-0122 (708),
		ST01-0123 (427), ST01-0127 (373), ST01-0129 (558), ST01-0136 (209), ST01-0140 (228), ST01-0146 (353),
		$\begin{aligned} & \text { ST01-0158 (283), ST01-0160 (416), ST01-0163 (273), } \\ & \text { ST01-0172 (648) } \end{aligned}$

Table A31 Examples of transcripts the reverse SSH library of testes of P. monosdon categorized as members of sex-related gene) from (1 clone)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST02-0022-LF	Progestin receptor membrane component 1	Oryzias latipes	574	$1 \mathrm{e}-47$

Table A32 Examples of transcripts from the reverse SSH library of testes of P. monosdon categorized as members of stress response and cell defense protein (13 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST02-0024-LF	Allergen Pen m 2	Penaeus monodon	309	2e-21
TT-N-ST02-0188-LF			309	5e-22
TT-N-ST02-0054-LF	Heat shock protein gp96	Strongylocentrotus purpuratus	498	$1 \mathrm{e}-21$
TT-N-ST02-0078-LF	Niemann-Pick disease type C2	Oreochromis	456	5e-06
TT-N-ST02-0108-LF		mossambicus	456	5e-06
TT-N-ST02-0097-LF	Calcitonin gene-related peptidereceptor component protein isoform a	Homo sapiens	510	$8 \mathrm{e}-21$
TT-N-ST02-0010-LF	Cathepsin B	Hippoglossus hippoglossus	238	$1 \mathrm{e}-26$
TT-N-ST02-0065-LF	Small optic lobes CG1391-PB, isoform	Apis mellifera	580	$7 \mathrm{e}-81$
TT-N-ST02-0070-LF	B (Calpain)		580	$7 \mathrm{e}-81$
TT-N-ST02-0185-LF	Tetraspanin 3, isoform CRA_a	Homo sapiens	590	$4 \mathrm{e}-10$
TT-N-ST02-0056-LF	Tetraspanin 96F CG6120-PA	Drosophila melanogaster	438	$5 \mathrm{e}-14$
TT-N-ST02-0016-LF		Mycoplasma bovis	507	$1 \mathrm{e}-08$

Table A33 Examples of transcripts from the reverse SSH library of testes of P. monosdon categorized as members of metabolism (13 clones)

Clone No.	\square Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST02-0029-LF	Alcohol dehydrogenase	Bombyx mori	323	3e-35
TT-N-ST02-0156-LF			680	2e-90
TT-N-ST02-0176-LF	0100	?	680	2e-90
TT-N-ST02-0141-LF	Cytochrome b d	Penaeus monodon	494	3e-80
TT-N-ST02-0007-LF	Cytochrome c oxidase subunit I	Fenneropenaeus	403	5e-68
TT-N-ST02-0020-LF		chinensis	405	$1 \mathrm{e}-66$
TT-N-ST02-0117-LF			405	$7 \mathrm{e}-68$
TT-N-ST02-0075-LF	GTP binding protein	Bombyx mori	503	$2 \mathrm{e}-70$
TT-N-ST02-0040-LF	Proteasome (prosome, macropain) 26S subunit, non-ATPase, 13	Tribolium castaneum	706	2e-78
TT-N-ST02-0101-LF	Proteasome 26S non-ATPase subunit	Tribolium castaneum	560	$1 \mathrm{e}-71$
TT-N-ST02-0130-LF	12		560	$1 \mathrm{e}-71$
TT-N-ST02-0049-LF	Proteasome 26S subunit subunit 4 ATPase CG5289-PA	Drosophila melanogaster	647	$1 \mathrm{e}-89$
TT-N-ST02-0165-LF	Receptor for activated protein kinase C RACK 1 isoform 1	Bombyx mori	628	1e-107

Table A34 Examples of transcripts from the reverse SSH library of testes of P. monosdon categorized as members of protein synthesis and DNA replication (22 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST02-0063-LF	Cement precursor protein 3B variant 2	Phragmatopoma californica	437	3e-08
TT-N-ST02-0106-LF	Cement precursor protein 3B variant 3	Phragmatopoma	620	$2 \mathrm{e}-11$
TT-N-ST02-0136-LF		californica	270	3e-07
TT-N-ST02-0038-LF	Centromere/kinetochore protein zw10 homolog	Apis mellifera	423	$1 \mathrm{e}-20$
TT-N-ST02-0131-LF	Drosophila melanogaster eEF1delta	Drosophila yakuba	146	$8 \mathrm{e}-16$
TT-N-ST02-0004-LF	Elongation factor-1 alpha	Armadillidium	660	1e-113
TT-N-ST02-0033-LF		vulgare	660	1e-113
TT-N-ST02-0008-LF	Eukaryotic translation initiation factor	Danio rerio	521	1e-55
TT-N-ST02-0133-LF	3 subunit 4		521	1e-55
TT-N-ST02-0092-LF	F-box only protein 22	Gallus gallus	329	$6 \mathrm{e}-08$
TT-N-ST02-0138-LF	Gelsolin, cytoplasmic (Actin-	Homarus americanus	396	Зe-05
TT-N-ST02-0166-LF	depolymerizing factor) (ADF)		396	3e-05
TT-N-ST02-0087-LF	Helicase, lymphoid-specific isoform 2	Danio rerio	408	1e-43
TT-N-ST02-0053-LF	Mcm3-prov protein (minichromosome maintenance protein 3)	Xenopus laevis	240	3e-09
TT-N-ST02-0013-LF	Nop56 CG13849-PA, isoform A (nucleolar KKE/D repeat protein; DmNOP56)	Drosophila melanogaster	348	$2 \mathrm{e}-49$
TT-N-ST02-0017-LF	Nucleolin	Xenopus laevis	518	3e-04
TT-N-ST02-0047-LF	Peptidylprolyl isomerase A	Ictalurus punctatus	309	$8 \mathrm{e}-15$
TT-N-ST02-0084-LF	Ribosomal RNA methyltransferase	Aedes aegypti	505	$6 \mathrm{e}-10$
TT-N-ST02-0015-LF	RNA polymerase 1-1	Mus musculus	326	2e-25
TT-N-ST02-0028-LF	Small nuclear ribonucleoprotein D2 polypeptide 16.5 kD a, isoform $C R A _b$	Homo sapiens	313	$2 \mathrm{e}-34$
TT-N-ST02-0170-LF	Small nuclear ribonucleoprotein E (snRNP-E) (Sm protein E) (Sm-E) (SmE)	Drosophila melanogaster	227	$2 \mathrm{e}-14$
TT-N-ST02-0151-LF	Transcription initiation factor TFIID subunit 12 (Transcription initiation factor TFIID 20/15 kDa subunits) (TAFII-20/TAFII-15)	Xenopus laevis	519	$1 \mathrm{e}-21$

ศูนยวทยทรพยากร

Table A35 Examples of transcripts from the reverse SSH library of testes of P. monosdon categorized as members of internal/external structure, motility, and transport (7 clones)

| Clone No. | Transcripts | Closest Species | Size (bp) | E-value |
| :---: | :--- | :--- | :---: | :---: | :---: |
| TT-N-ST02-0155-LF | ABC transporter ATP-binding protein | Flavobacteriales
 bacterium | 711 | $5 \mathrm{e}-73$ |
| | | HTCC2170 | | |
| TT-N-ST02-0001-LF | Calcium-dependent chloride channel-1 | Homo sapiens | 443 | $4 \mathrm{e}-11$ |
| TT-N-ST02-0009-LF | Innexin 2 | Penaeus monodon | 360 | $1 \mathrm{e}-62$ |
| TT-N-ST02-0177-LF | Intracellular fatty acid binding protein | Penaeus monodon | 303 | $1 \mathrm{e}-156$ |
| TT-N-ST02-0071-LF | Karyopherin (importin) alpha 4 | Rattus norvegicus | 383 | $8 \mathrm{e}-08$ |
| TT-N-ST02-0193-LF | Kinesin heavy chain | Loligo pealei | 570 | $1 \mathrm{e}-20$ |
| TT-N-ST02-0142-LF | Ferric reductase-like protein | Aedes aegypti | 452 | $1 \mathrm{e}-28$ |

Table A36 Examples of transcripts from the reverse SSH library of testes of P. monosdon categorized as members of metabolism (13 clones)

Clone No.	Transcripts	Closest Species	Size (bp)	E-value
TT-N-ST02-0029-LF	Alcohol dehydrogenase	Bombyx mori	323	3e-35
TT-N-ST02-0156-LF			680	$2 \mathrm{e}-90$
TT-N-ST02-0176-LF			680	2e-90
TT-N-ST02-0141-LF	Cytochrome b	Penaeus monodon	494	$3 \mathrm{e}-80$
TT-N-ST02-0007-LF	Cytochrome c oxidase subunit I	Fenneropenaeus	403	$5 \mathrm{e}-68$
TT-N-ST02-0020-LF		chinensis	405	$1 \mathrm{e}-66$
TT-N-ST02-0117-LF			405	$7 \mathrm{e}-68$
TT-N-ST02-0075-LF	GTP binding protein	503	2e-70	
TT-N-ST02-0040-LF	Proteasome (prosome, macropain)	Tribolium castaneum	706	2e-78
	26S subunit, non-ATPase, 13		560	$1 \mathrm{e}-71$
TT-N-ST02-0101-LF	Proteasome 26S non-ATPase subunit	Tribolium castaneum	560	$1 \mathrm{e}-71$
TT-N-ST02-0130-LF	12		647	$1 \mathrm{e}-89$
TT-N-ST02-0049-LF	Proteasome 26S subunit subunit 4	Drosophila		
TT-N-ST02-0165-LF	Receptor for activated protein kinase	Bombyx mori	628	$1 \mathrm{e}-107$
	C RACK 1 isoform 1			

Table A37 Known transcripts from the reverse SSH library of testes of P. monosdon categorized as members of ribosomal and rRNA (36 clones)

Table A37 (cont.)

Clone No.	Homologue	Species	Size (bp)
E-value			
TT-N-ST02-0080-LF	tRNA-Ile	Penaeus monodon	295
TT-N-ST02-0093-LF		560	$1 \mathrm{e}-159$
TT-N-ST02-0109-LF		550	0
TT-N-ST02-0120-LF		571	0
TT-N-ST02-0121-LF		360	0
TT-N-ST02-0145-LF		470	0
TT-N-ST02-0146-LF		297	$1 \mathrm{e}-163$
TT-N-ST02-0149-LF		523	0
TT-N-ST02-0150-LF		558	0
TT-N-ST02-0169-LF		502	0
TT-N-ST02-0173-LF		297	$1 \mathrm{e}-160$
TT-N-ST02-0179-LF		364	0

Table A38 Examples of transcripts from the reverse SSH library of testes of P. monosdon categorized as members of unidentified (hypothetical)-similar to other cDNA/DNA) (10 clones)

Table A39 Clustering of unknown transcripts of the reverse SSH library of testes of P. monosdon (87 clones)

Gene	Clustering	Clone
Unknown genes	CL3Contig1 (3 clones)	ST02-0116 (273) [ST02-0079 (265), ST02-0144 $(191)]$
	CL5Contig1 (3 clones)	ST02-0162 (375) [ST02-0050 (375), ST02-0181 $(375)]$
	CL7Contig1 (3 clones)	ST02-0161 (260) [ST02-0103 (203), ST02-0147 (143)]
	CL10Contig1 (2 clones)	ST02-0062 (304) [ST02-0143 (304)]

Appendix B

Table B1 Raw data and relative expression levels of PMTST1 in testes of different groups of male P. monodon based on semiquantitative RT-PCR analysis

Table B1 (cont.)

Sample Groups		Densities of bands		Ratio of gene $/ \boldsymbol{E F - 1} \boldsymbol{\alpha}$	Average	STD
		PMTST1	$\boldsymbol{E F - 1} \boldsymbol{\alpha}$			
10-16 DAM	BTT 10-1	$2.49 \mathrm{E}+07$	$2.11 \mathrm{E}+07$	1.17857	1.12618	0.04479
	BTT 13-1	$2.46 \mathrm{E}+07$	$2.22 \mathrm{E}+07$	1.10832		
	BTT 14-1	$2.40 \mathrm{E}+07$	$2.20 \mathrm{E}+07$	1.08735		
	BTT 14-3	$2.53 \mathrm{E}+07$	$2.22 \mathrm{E}+07$	1.13903		
	BTT 14-4	$2.24 \mathrm{E}+07$	$2.11 \mathrm{E}+07$	1.06103		
	BTT 15-1	$2.35 \mathrm{E}+07$	$2.09 \mathrm{E}+07$	1.12750		
	BTT 16-1	$2.37 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	1.18145		

Table B2 Raw data and relative expression levels of MIPP2 in testes of different groups of male P. monodon based on semiquantitative RT-PCR analysis

Table B2 (cont.)

Sample Groups		Densities of bands		Ratio of gene$/ E F-1 \alpha$	Average	STD
		MIPP2	EF-1 α			
1-5 DAM	BTT 2-1	$1.22 \mathrm{E}+07$	$2.07 \mathrm{E}+07$	0.58918	0.65603	0.09229
	BTT 3-1	$1.08 \mathrm{E}+07$	$2.09 \mathrm{E}+07$	0.51711		
	BTT 3-2	$1.39 \mathrm{E}+07$	$2.16 \mathrm{E}+07$	0.64143		
	BTT 5-1	$1.64 \mathrm{E}+07$	$2.13 \mathrm{E}+07$	0.76950		
	BTT 5-2	$1.50 \mathrm{E}+07$	$2.13 \mathrm{E}+07$	0.70705		
	BTT 5-3	$1.53 \mathrm{E}+07$	$2.15 \mathrm{E}+07$	0.71192		
6-9 DAM	BTT 6-1	$1.18 \mathrm{E}+07$	$2.08 \mathrm{E}+07$	0.56765	0.58386	0.02735
	BTT 6-2	$1.21 \mathrm{E}+07$	$2.05 \mathrm{E}+07$	0.58909		
	BTT 7-1	$1.15 \mathrm{E}+07$	$2.07 \mathrm{E}+07$	0.55858		
	BTT 8-1	$1.25 \mathrm{E}+07$	$2.02 \mathrm{E}+07$	0.62011		
10-16 DAM	BTT 10-1	$1.54 \mathrm{E}+07$	$2.03 \mathrm{E}+07$	0.75863	0.77022	0.07924
	BTT 13-1	$1.63 \mathrm{E}+07$	$2.09 \mathrm{E}+07$	0.77889		
	BTT 14-1	$1.44 \mathrm{E}+07$	$1.95 \mathrm{E}+07$	0.73790		
	BTT 14-3	$1.59 \mathrm{E}+07$	$1.99 \mathrm{E}+07$	0.79856		
	BTT 14-4	$1.17 \mathrm{E}+07$	$1.89 \mathrm{E}+07$	0.61847		
	BTT 15-1	$1.59 \mathrm{E}+07$	$1.86 \mathrm{E}+07$	0.85171		
	BTT 16-1	$1.48 \mathrm{E}+07$	$1.75 \mathrm{E}+07$	0.84737		

Table B3 Raw data and relative expression levels of Tra-2 in testes of different groups of male P. monodon based on semiquantitative RT-PCR analysis

Table B3 (cont.)

Table B4 Raw data and relative expression levels of prohibitin-2 in testes of different groups of male P. monodon based on semiquantitative RT-PCR analysis

Sample Groups		Densities of bands		Ratio of gene$/ E F-1 \alpha$	Average	STD
		Prohibitin-2	EF-1 α			
CJ-TT	JNTT 1	$2.36 \mathrm{E}+07$	$1.83 \mathrm{E}+07$	1.28736	1.30465	0.07110
	JNTT 2	$2.52 \mathrm{E}+07$	$1.80 \mathrm{E}+07$	1.40302		
	JNTT 3	$2.42 \mathrm{E}+07$	$1.80 \mathrm{E}+07$	1.34586		
	JNTT 4	$2.28 \mathrm{E}+07$	$1.87 \mathrm{E}+07$	1.22038		
	JNTT 6	$2.40 \mathrm{E}+07$	$1.89 \mathrm{E}+07$	1.26662		
DB-TT	BUMTT 1	$2.46 \mathrm{E}+07$	$2.00 \mathrm{E}+07$	1.23102	1.23681	0.07199
	BUMTT 2	$2.31 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	1.15243		
	BUMTT 3	$2.55 \mathrm{E}+07$	$2.02 \mathrm{E}+07$	1.26386		
	BUMTT 4	$2.36 \mathrm{E}+07$	$2.00 \mathrm{E}+07$	1.18079		
	BUMTT 5	$2.35 \mathrm{E}+07$	$2.03 \mathrm{E}+07$	1.15421		
	BUMTT	$2.52 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	1.25442		
	BUMTT 7	$2.50 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	1.24261		
	BUMTT 8	$2.47 \mathrm{E}+07$	$1.95 \mathrm{E}+07$	1.26531		
	BUMTT 9	$2.47 \mathrm{E}+07$	$1.78 \mathrm{E}+07$	1.38667		
WB-TT	RLTT 32	$2.10 \mathrm{E}+07$	$1.99 \mathrm{E}+07$	1.05407	1.05626	0.11050
	RLTT 33	$1.78 \mathrm{E}+07$	$2.08 \mathrm{E}+07$	0.85897		
	RLTT 34	$2.47 \mathrm{E}+07$	$2.14 \mathrm{E}+07$	1.15552		
	RLTT 35	$2.28 \mathrm{E}+07$	$2.12 \mathrm{E}+07$	1.07748		
	RLTT 21	$2.33 \mathrm{E}+07$	$2.11 \mathrm{E}+07$	1.10581		
	RLTT 12	$1.92 \mathrm{E}+07$	$2.03 \mathrm{E}+07$	0.94337		
	RLTT 25	$2.38 \mathrm{E}+07$	$1.90 \mathrm{E}+07$	1.24927		
	RLTT 29	$1.97 \mathrm{E}+07$	$1.95 \mathrm{E}+07$	1.00557		
CJ-OV	JOV 5 JOV 6	$\begin{gathered} 2.43 \mathrm{E}+07 \\ 2.43 \mathrm{E}+07 \end{gathered}$	$\begin{aligned} & 1.94 \mathrm{E}+07 \\ & 1.89 \mathrm{E}+07 \end{aligned}$	$\int_{1.28752}^{1.25446}$	1.28675	0.05157
	JOV 7	$2.28 \mathrm{E}+07$	$1.83 \mathrm{E}+07$	1.24577		
	$\begin{aligned} & \text { JOV } 8 \\ & \text { RLOV } 1 \end{aligned}$	$\left\{\begin{array}{l} 2.42 \mathrm{E}+07 \\ 2.42 \mathrm{E}+07 \end{array}\right.$	$\begin{aligned} & 1.78 \mathrm{E}+07 \\ & 1.78 \mathrm{E}+07 \end{aligned}$	$\begin{aligned} & 1.35925 \\ & 1.36030 \end{aligned}$	1.28794	0.05064
	RLOV 33	$2.37 \mathrm{E}+07$	$1.88 \mathrm{E}+07$	1.26160		
	RLOV 6	$2.44 \mathrm{E}+07$	$1.90 \mathrm{E}+07$	1.28367		
	RLOV 31	$2.37 \mathrm{E}+07$	$1.90 \mathrm{E}+07$	1.24618		

Table B4 (cont.)

Sample Groups		Densities of bands		Ratio of gene$/ E F-1 \alpha$	Average	STD
		Prohibitin-2	EF-1 α			
1-5 DAM	BTT 2-1	$1.70 \mathrm{E}+07$	$2.07 \mathrm{E}+07$	0.82317	0.91849	0.14062
	BTT 3-1	$1.48 \mathrm{E}+07$	$2.09 \mathrm{E}+07$	0.70726	0.96074	0.10646
	BTT 3-2	$2.18 \mathrm{E}+07$	$1.95 \mathrm{E}+07$	1.11886		
	BTT 5-1	$1.93 \mathrm{E}+07$	$2.07 \mathrm{E}+07$	0.93387		
	BTT 5-2	$1.93 \mathrm{E}+07$	$2.05 \mathrm{E}+07$	0.94575		
	BTT 5-3	$2.00 \mathrm{E}+07$	$2.03 \mathrm{E}+07$	0.98206		
6-9 DAM	BTT 6-1	$1.58 \mathrm{E}+07$	$2.09 \mathrm{E}+07$	0.75437	0.86087	0.09377
	BTT 6-2	$1.93 \mathrm{E}+07$	$1.99 \mathrm{E}+07$	0.97295		
	BTT 7-1	$1.68 \mathrm{E}+07$	$2.04 \mathrm{E}+07$	0.82304		
	BTT 8-1	$1.86 \mathrm{E}+07$	$2.08 \mathrm{E}+07$	0.89312		
10-16 DAM	BTT 10-1	$2.03 \mathrm{E}+07$	$1.99 \mathrm{E}+07$	1.02335	0.99387	0.08345
	BTT 13-1	$1.76 \mathrm{E}+07$	$2.03 \mathrm{E}+07$	0.86638		
	BTT 14-1	$1.93 \mathrm{E}+07$	$1.88 \mathrm{E}+07$	1.02594		
	BTT 14-3	$2.19 \mathrm{E}+07$	$2.09 \mathrm{E}+07$	1.04779		
	BTT 14-4	$1.65 \mathrm{E}+07$	$1.87 \mathrm{E}+07$	0.88231		
	BTT 15-1	$1.94 \mathrm{E}+07$	$1.87 \mathrm{E}+07$	1.03778		
	BTT 16-1	$1.84 \mathrm{E}+07$	$1.71 \mathrm{E}+07$	1.07357		

Table B5 Raw data and relative expression levels of Trap240 in testes of different groups of male P. monodon based on semiquantitative RT-PCR analysis

Sample Groups		Densities of bands		Ratio of gene / EF-1a	Average	STD
		Trap240	EF-1a			
CJ-TT	JNTT 1	1.15E+06	$1.83 \mathrm{E}+07$	0.06298	0.06428	0.00300
	JNTT 2	$1.22 \mathrm{E}+06$	$1.80 \mathrm{E}+07$	0.06817		
	JNTT 3 JNTT 4	$? \begin{aligned} & 1.19 \mathrm{E}+06 \\ & 1.12 \mathrm{E}+06 \end{aligned}$	$\begin{aligned} & 1.80 \mathrm{E}+07 \\ & 1.87 \mathrm{E}+07 \end{aligned}$	$\begin{aligned} & 0.06593 \\ & 0.06022 \end{aligned}$	8	
	JNTT 6	$1.21 \mathrm{E}+06$	$1.89 \mathrm{E}+07$	0.06412		
DB-TT	- BUMTT 1	$9.24 \mathrm{E}+05$	$2.00 \mathrm{E}+07$	0.04621	0.05502	0.00716
	BUMTT 2	$9.48 \mathrm{E}+05$	$2.01 \mathrm{E}+07$	0.04721		
	BUMTT 3	$1.22 \mathrm{E}+06$	$2.02 \mathrm{E}+07$	0.06065		
	BUMTT 4	$1.10 \mathrm{E}+06$	$2.00 \mathrm{E}+07$	0.05517		
	BUMTT 5	$1.14 \mathrm{E}+06$	$2.03 \mathrm{E}+07$	0.05623		
	BUMTT 6	$9.87 \mathrm{E}+05$	$2.01 \mathrm{E}+07$	0.04906		
	BUMTT 7	$1.25 \mathrm{E}+06$	$2.01 \mathrm{E}+07$	0.06217		

Table B5 (cont.)

Sample Groups		Densities of bands		Ratio of gene / EF-1a	Average	STD
		Trap240	EF-1 α			
DB-TT	BUMTT 8	$1.01 \mathrm{E}+06$	$1.95 \mathrm{E}+07$	0.05165		
	BUMTT 9	$1.19 \mathrm{E}+06$	$1.78 \mathrm{E}+07$	0.06685		
WB-TT	RLTT 32	$1.12 \mathrm{E}+06$	$1.99 \mathrm{E}+07$	0.05625	0.05569	0.00280
	RLTT 33	$1.20 \mathrm{E}+06$	$2.08 \mathrm{E}+07$	0.05768		
	RLTT 34	$1.24 \mathrm{E}+06$	$2.14 \mathrm{E}+07$	0.05776		
	RLTT 35	$1.08 \mathrm{E}+06$	$2.12 \mathrm{E}+07$	0.05101		
	RLTT 21	$1.14 \mathrm{E}+06$	$2.11 \mathrm{E}+07$	0.05392		
	RLTT 12	$1.18 \mathrm{E}+06$	$2.03 \mathrm{E}+07$	0.05806		
	RLTT 25	$1.09 \mathrm{E}+06$	$1.90 \mathrm{E}+07$	0.05704		
	RLTT 29	$1.05 \mathrm{E}+06$	$1.95 \mathrm{E}+07$	0.05379		
CJ-OV	JOV 5	$1.40 \mathrm{E}+06$	$1.94 \mathrm{E}+07$	0.07215	0.07053	0.00222
	JOV 6	$1.27 \mathrm{E}+06$	$1.89 \mathrm{E}+07$	0.06726		
	JOV 7	. $31 \mathrm{E}+06$	$1.83 \mathrm{E}+07$	0.07155		
	JOV 8	.26E+06	$1.78 \mathrm{E}+07$	0.07118		
WB-OV	RLOV 1	$1.12 \mathrm{E}+06$	$1.78 \mathrm{E}+07$	0.06323	0.06780	0.00541
	RLOV 33	$9 \mathrm{E}+06$	$1.88 \mathrm{E}+07$	0.06319		
	RLOV 6	$1.35 \mathrm{E}+06$	$1.90 \mathrm{E}+07$	0.07105		
	RLOV 31	$1.40 \mathrm{E}+06$	$1.90 \mathrm{E}+07$	0.07372		
1-5 DAM	BTT 2-1	$1.01 \mathrm{E}+06$	$1.93 \mathrm{E}+07$	0.05240	0.05029	0.00601
	BTT 3-1	$7.94 \mathrm{E}+05$	$1.99 \mathrm{E}+07$	0.03986		
	BTT 3-2	$9.85 \mathrm{E}+05$	$2.00 \mathrm{E}+07$	0.04914		
	BTT 5-1	$9.93 \mathrm{E}+05$	$1.99 \mathrm{E}+07$	0.04989		
	BTT 5-2 BTT 5-3	$\begin{array}{r} 1.15 \mathrm{E}+06 \\ 1.05 \mathrm{E}+06 \end{array}$	$\begin{aligned} & 1.98 \mathrm{E}+07 \\ & 2.01 \mathrm{E}+07 \end{aligned}$	$\begin{aligned} & 0.05812 \\ & 0.05235 \end{aligned}$		
6-9 DAM	BTT 6-1	$9.87 \mathrm{E}+05$	$2.00 \mathrm{E}+07$	0.04932	0.05208	0.00321
	BTT 8-1	$1.00 \mathrm{E}+06$	$1.92 \mathrm{E}+07$	0.05222		
10-16 DAM	BTT 10-1	$1.05 \mathrm{E}+06$	$1.89 \mathrm{E}+07$	0.05537	0.05957	0.00572
	BTT 13-1	$1.23 \mathrm{E}+06$	$1.96 \mathrm{E}+07$	0.06287		
	BTT 14-1	$1.05 \mathrm{E}+06$	$1.84 \mathrm{E}+07$	0.05706		
	BTT 14-3	$1.27 \mathrm{E}+06$	$1.89 \mathrm{E}+07$	0.06717		
	BTT 14-4	$9.13 \mathrm{E}+05$	$1.82 \mathrm{E}+07$	0.05011		
	BTT 15-1	$1.11 \mathrm{E}+06$	$1.78 \mathrm{E}+07$	0.06224		
	BTT 16-1	$1.04 \mathrm{E}+06$	$1.67 \mathrm{E}+07$	0.06219		

Table B6 Raw data and relative expression levels of HSP70-2 in testes of different groups of male P. monodon based on semiquantitative RT-PCR analysis

Sample Groups		Densities of bands		Ratio of gene$/ E F-1 \alpha$	Average	STD
		HSP70-2	EF-1 α			
CJ-TT	JNTT 1	$1.69 \mathrm{E}+07$	$1.83 \mathrm{E}+07$	0.92183	0.97048	0.07372
	JNTT 2	$1.84 \mathrm{E}+07$	$1.80 \mathrm{E}+07$	1.02663		
	JNTT 3	$1.90 \mathrm{E}+07$	$1.80 \mathrm{E}+07$	1.05876		
	JNTT 4	$1.64 \mathrm{E}+07$	$1.87 \mathrm{E}+07$	0.87879		
	JNTT 6	$1.83 \mathrm{E}+07$	$1.89 \mathrm{E}+07$	0.96637		
DB-TT	BUMTT 1	$1.55 \mathrm{E}+07$	$2.00 \mathrm{E}+07$	0.77412	0.81430	0.15826
	BUMTT 2	$1.24 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	0.61962		
	BUMTT 3	$1.84 \mathrm{E}+07$	$2.02 \mathrm{E}+07$	0.91263		
	BUMTT 4	$1.85 \mathrm{E}+07$	$2.00 \mathrm{E}+07$	0.92547		
	BUMTT 5	$1.35 \mathrm{E}+07$	$2.03 \mathrm{E}+07$	0.66317		
	BUMTT 6	$1.41 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	0.69933		
	BUMTT 7	$1.74 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	0.86573		
	BUMTT 8	$1.45 \mathrm{E}+07$	$1.95 \mathrm{E}+07$	0.74548		
	BUMTT 9	$2.00 \mathrm{E}+07$	$1.78 \mathrm{E}+07$	1.12314		
WB-TT	RLTT 32	$1.60 \mathrm{E}+07$	$1.99 \mathrm{E}+07$	0.80633	0.82161	0.09514
	RLTT 33	$1.61 \mathrm{E}+07$	$2.08 \mathrm{E}+07$	0.77621		
	RLTT 34	$1.78 \mathrm{E}+07$	$2.14 \mathrm{E}+07$	0.83030		
	RLTT 35	$1.27 \mathrm{E}+07$	$2.12 \mathrm{E}+07$	0.59796		
	RLTT 21	$1.75 \mathrm{E}+07$	$2.11 \mathrm{E}+07$	0.82933		
	RLTT 12	$1.75 \mathrm{E}+07$	$2.03 \mathrm{E}+07$	0.86077		
	RLTT 25	$1.89 \mathrm{E}+07$	$1.90 \mathrm{E}+07$	0.99461		
	RLTT 29	$1.71 \mathrm{E}+07$	$1.95 \mathrm{E}+07$	0.87736		
CJ-OV	JOV 5 JOV 6	$\begin{aligned} & 1.24 \mathrm{E}+07 \\ & 1.51 \mathrm{E}+07 \end{aligned}$	$\begin{aligned} & 1.94 \mathrm{E}+07 \\ & 1.89 \mathrm{E}+07 \end{aligned}$	$\int_{0.79722}^{0.63840}$	0.69957	0.07183
	JOV 7	$1.19 \mathrm{E}+07$	$1.83 \mathrm{E}+07$	0.65363		
	JOV 8 RLOV 1	$\begin{aligned} & 1.26 \mathrm{E}+07 \\ & 1.03 \mathrm{E}+07 \end{aligned}$	$\begin{aligned} & 1.78 \mathrm{E}+07 \\ & 1.78 \mathrm{E}+07 \end{aligned}$	$\begin{gathered} 0.70902 \\ 0.57864 \end{gathered}$	0.58909	0.03556
	RLOV 33	$1.05 \mathrm{E}+07$	$1.88 \mathrm{E}+07$	0.55827		
	RLOV 6	$1.10 \mathrm{E}+07$	$1.90 \mathrm{E}+07$	0.57904		
	RLOV 31	$1.22 \mathrm{E}+07$	$1.90 \mathrm{E}+07$	0.64041		

Table $B 6$ (cont.)

| Sample Groups | Densities of bands | | Ratio of gene | Average | STD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |$)$

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

Appendix C

Table C1 Data on expression levels of SUMO-1 in testes of different groups of male P. monodon based real-time PCR analysis

Sample Name	Target Name		Tgt Cp Mean	Ref. Cp Mean	Ratios (Tgt/Ref.)	Average	SD
	Targets	References					
BTT 2-1	SUMO-1	EF	24.98	19.54	0.0230	0.0237	0.0028
BTT 5-1	SUMO-1	EF	25.24	19.61	0.0202		
BTT 5-2	SUMO-1	EF	24.89	19.67	0.0268		
BTT 5-3	SUMO-1	EF	24.80	19.47	0.0248		
BTT 6-1	SUMO-1	EF	25.92	19.66	0.0131	0.0135	0.0010
BTT 7-1	SUMO-1	EF	25.54	19.45	0.0147		
BTT 8-1	SUMO-1	EF	25.91	19.63	0.0128		
BTT 10-1	SUMO-1		23.54	19.19	0.0489	0.0509	0.0128
BTT 13-1	SUMO-1		23.64	19.27	0.0484		
BTT 14-1	SUMO-1	EF	24.48	19.62	0.0343		
BTT 14-2	SUMO-1	EF	24.34	19.76	0.0417		
BTT 14-3	SUMO-1	EF	24.12	19.91	0.0539		
BTT 15-1	SUMO-1	EF	22.89	19.16	0.0754		
BTT 16-1	SUMO-1	E	23.66	19.44	0.0536		
JNTT 1	SUMO-1	EF	23.57	18.99	0.0418	0.0515	0.0105
JNTT 3	SUMO-1	EF	23.24	19.24	0.0627		
JNTT 4	SUMO-1	EF	24.34	20.02	0.0501		
BUMTT 1	SUMO-1	EF	24.46	19.55	0.0334	0.0263	0.0081
BUMTT 2	SUMO-1	EF	25.91	20.05	0.0172		
BUMTT 4	SUMO-1	EF	23.74	18.90	0.0348		
BUMTT 5	SUMO-1	EF	24.27	19.27	0.0312		
BUMTT 6	SUMO-1	EF	25.78	19.85	0.0164		
BUMTT 8	SUMO-1	EF	25.47	20.14	0.0248		
RLTT 32	SUMO-1	$d^{E F}$	23.70	20.11	0.0831	0.0618	0.0176
RLTT 33	SUMO-1	EF	24.19	20.64	0.0854		
RLTT 34 RLTT 12 RLTT 25	SUMO-1 SUMO-1 SUMO-1	$\begin{aligned} & \mathrm{EF} \\ & \mathrm{EF} 6 \\ & \mathrm{EF} \end{aligned}$	$\begin{aligned} & 23.41 \\ & 23.10 \\ & 23.69 \end{aligned}$	$\begin{aligned} & 19.19 \\ & 18.88 \\ & 19.28 \end{aligned}$	$\begin{aligned} & 0.0537 \\ & 0.0539 \\ & 0.0471 \end{aligned}$		
RLTT 29	SUMO-1	EF	23.55	19.16	0.0476		
JOV 5	SUMO-1	EF	19.98	15.28	0.0385	0.0380	0.0043
JOV 6	SUMO-1	EF	21.21	16.70	0.0439		
JOV 7	SUMO-1	EF	20.77	15.90	0.0343		
JOV 8	SUMO-1	EF	19.72	14.90	0.0354		
RLOV 33	SUMO-1	EF	20.56	16.30	0.0521	0.0456	0.0057
RLOV 6	SUMO-1	EF	19.53	15.00	0.0433		
RLOV 31	SUMO-1	EF	19.55	14.95	0.0414		

Table C2 Data on expression levels of cyclophilin A (CYA)in testes of different groups of male P. monodon based real-time PCR analysis

Sample Name	Target Name		Tgt Cp Mean	Ref. Cp Mean	Ratios (Tgt/Ref.)	Average	SD
	Targets	References					
BTT 2-1	CYA	EF	21.86	19.54	0.2006	0.1585	0.0457
BTT 3-2	CYA	EF	21.95	19.59	0.1954		
BTT 5-1	CYA	EF	22.70	19.61	0.1178		
BTT 5-2	CYA	EF	22.73	19.67	0.1201		
BTT 6-1	CYA	EF	23.96	19.66	0.0509	0.0618	0.0217
BTT 7-1	CYA	EF	22.97	19.45	0.0868		
BTT 8-1	CYA	EF	24.02	19.63	0.0477		
BTT 10-1	CYA	EF	21.64	19.19	0.1821	0.2170	0.0814
BTT 13-1	CYA	EF	21.17	19.27	0.2688		
BTT 14-1	CYA	EF	22.13	19.62	0.1755		
BTT 14-3	CYA		21.52	19.91	0.3283		
BTT 14-4	CYA		22.83	19.58	0.1048		
BTT 15-1	CYA		20.91	19.16	0.2962		
BTT 16-1	CYA		22.06	19.44	0.1630		
JNTT 1	CYA	EF	21.27	18.99	0.2058	0.2618	0.0424
JNTT 2	CYA	EF	21.19	19.49	0.3086		
JNTT 3	CYA	EF	21.17	19.24	0.2628		
JNTT 4	CYA	EF	21.91	20.02	0.2700		
BUMTT 2	CYA	EF	24.04	20.05	0.0626	0.0810	0.0250
BUMTT 4	CYA	EF	22.07	18.90	0.1113		
BUMTT 5	CYA	EF	22.52	19.27	0.1052		
BUMTT 6	CYA	EF	23.89	19.85	0.0606		
BUMTT 8	CYA	EF	23.56	20.14	0.0652		
RLTT 32	CYA	EF	22.00	20.11	0.2700	0.2202	0.0664
RLTT 33	CYA	EF	22.33	20.64	0.3101		
RLTT 12	СҮА	EF	21.57	18.88	0.1553		
RLTT 25	CYA	EF	21.78	19.28	0.1771		
RLTT 29	CYA	EF	21.57	19.16	0.1885		
$\begin{aligned} & \text { JOV } 5 \\ & \text { JOV } 6 \\ & \text { JOV } 7 \end{aligned}$	CYA CYA CYA	$\begin{aligned} & \mathrm{EF} \\ & \mathrm{EF} 6 \\ & \mathrm{EF} \end{aligned}$	$\begin{aligned} & 16.14 \\ & 18.39 \\ & 16.71 \end{aligned}$	$\begin{aligned} & 15.28 \\ & 16.70 \\ & 15.90 \end{aligned}$	$\begin{aligned} & 0.5500 \\ & 0.3103 \\ & 0.5723 \end{aligned}$	0.4363	0.1445
JOV 8	CYA	EF	16.58	14.90	0.3126		
RLOV 1	CYA	EF	17.59	17.52	0.9557	0.8062	0.1062
RLOV 33	CYA	EF	16.66	16.30	0.7781		
RLOV 6	CYA	EF	15.35	15.00	0.7861		
RLOV 31	CYA	EF	15.45	14.95	0.7047		

Table C3 Data on expression levels of sSaposin in testes of different groups of male P. monodon based real-time PCR analysis

Sample Name	Target Name		Tgt Cp Mean	Ref. Cp Mean	Ratios (Tgt/Ref.)	Average	SD
	Targets	References					
BTT 2-1	Saposin	EF	22.59	19.54	0.1205	0.0900	0.0287
BTT 3-1	Saposin	EF	23.41	19.72	0.0545		
BTT 5-1	Saposin	EF	23.00	19.61	0.0954		
BTT 5-2	Saposin	EF	23.58	19.67	0.0666		
BTT 5-3	Saposin	EF	22.11	19.47	0.1131		
BTT 6-2	Saposin	EF	22.66	19.11	0.0857	0.0898	0.0094
BTT 7-1	Saposin	EF	23.03	19.45	0.0832		
BTT 8-1	Saposin	EF	22.94	19.63	0.1005		
BTT 10-1	Saposin	EF	22.38	19.19	0.1091	0.1218	0.0318
BTT 13-1	Saposin	EF	22.27	19.27	0.1250		
BTT 14-1	Saposin		22.90	19.62	0.1024		
BTT 14-4	Saposin	EF	22.22	19.58	0.1134		
BTT 15-1	Saposin	F	21.60	19.16	0.1837		
BTT 16-1	Saposin	F	22.81	19.44	0.0970		
JNTT 1	Saposin	EF	21.93	18.99	0.1299	0.1502	0.0240
JNTT 3	Saposin	EF	22.00	19.24	0.1477		
JNTT 4	Saposin	EF	22.46	20.02	0.1845		
JNTT 6	Saposin	EF	22.29	19.44	0.1388		
BUMTT 2	Saposin	EF	22.69	20.05	0.1605	0.1837	0.0214
BUMTT 4	Saposin	EF	21.51	18.90	0.1633		
BUMTT 5	Saposin	EF	21.52	19.27	0.2100		
BUMTT 7	Saposin	EF	23.17	20.76	0.1882		
BUMTT 8	Saposin	EF	21.97	20.14	0.1965		
RLTT 34	Saposin	EF	21.98	19.19	0.1452	0.1626	0.0338
RLTT 35	Saposin	EF	21.69	19.44	0.2104		
RLTT 12	Saposin	- EF	21.88	18.88	0.1255		
RLTT 25	Saposin	EF	21.73	19.28	0.1830		
RLTT 29	Saposin	EF	21.91	19.16	0.1487		
$\begin{aligned} & \text { JOV } 5 \\ & \text { JOV } 6 \\ & \text { JOV } 7 \end{aligned}$	Saposin Saposin Saposin		$\begin{aligned} & 20.65 \\ & 21.39 \\ & 21.27 \end{aligned}$	$\begin{aligned} & 15.28 \\ & 16.70 \\ & 15.90 \end{aligned}$	$\begin{aligned} & 0.0242 \\ & 0.0387 \\ & 0.0242 \end{aligned}$	0.0288	0.0069
JOV 8	Saposin	EF	20.06	14.90	0.0279		
RLOV 1	Saposin	EF	22.04	17.52	0.0436	0.0396	0.0064
RLOV 33	Saposin	EF	20.74	16.30	0.0460		
RLOV 6	Saposin	EF	19.77	15.00	0.0367		
RLOV 31	Saposin	EF	19.91	14.95	0.0321		

Table C4 Data on expression levels of spermatogonial stem-cell renewal factor in testes of different groups of male P. monodon based real-time PCR analysis

Sample Name	Target Name		Tgt Cp Mean	Ref. Cp Mean	Ratios (Tgt/Ref.)	Average	SD
	Targets	References					
BTT 2-1	Sperm	EF	27.90	19.54	3.04E-03	0.0029	0.0006
BTT 3-1	Sperm	EF	28.13	19.72	$2.08 \mathrm{E}-03$		
BTT 3-2	Sperm	EF	27.53	19.59	$4.08 \mathrm{E}-03$		
BTT 5-1	Sperm	EF	28.22	19.61	$2.55 \mathrm{E}-03$		
BTT 5-2	Sperm	EF	27.75	19.67	$3.68 \mathrm{E}-03$		
BTT 5-3	Sperm	EF	27.39	19.47	$2.91 \mathrm{E}-03$		
BTT 6-2	Sperm	EF	27.76	19.11	$2.50 \mathrm{E}-03$	0.0026	0.0002
BTT 7-1	Sperm	EF	27.94	19.45	$2.77 \mathrm{E}-03$		
BTT 8-1	Sperm	EF	28.31	19.63	$2.44 \mathrm{E}-03$		
BTT 10-1	Sperm	EF	26.91	19.19	$4.74 \mathrm{E}-03$	0.0049	0.0010
BTT 13-1	Sperm		26.84	19.27	$5.28 \mathrm{E}-03$		
BTT 14-1	Sperm		27.79	19.62	3.46E-03		
BTT 14-3	Sperm		27.16	19.91	6.56E-03		
BTT 15-1	Sperm		27.01	19.16	$4.33 \mathrm{E}-03$		
BTT 16-1	Sperm	EF	27.11	19.44	$4.90 \mathrm{E}-03$		
JNTT 2	Sperm	EF	25.82	19.49	$1.24 \mathrm{E}-02$	0.0108	0.0015
JNTT 3	Sperm	EF	25.90	19.24	$9.87 \mathrm{E}-03$		
JNTT 4	Sperm	EF	26.45	20.02	$1.17 \mathrm{E}-02$		
JNTT 6	Sperm	EF	26.18	19.44	$9.34 \mathrm{E}-03$		
BUMTT 1	Sperm	EF	26.89	19.55	6.17E-03	0.0069	0.0018
BUMTT 2	Sperm	EF	27.70	20.05	$4.95 \mathrm{E}-03$		
BUMTT 4	Sperm	EF	25.94	18.90	7.61E-03		
BUMTT 5	Sperm	EF	26.69	19.27	$5.84 \mathrm{E}-03$		
BUMTT 7	Sperm	EF	27.38	20.76	$1.02 \mathrm{E}-02$		
BUMTT 8	Sperm	EF	26.90	20.14	$6.43 \mathrm{E}-03$		
RLTT 33	Sperm	$\text { E } \mathrm{EF}$	26.62	20.64	$1.58 \mathrm{E}-02$	0.0115	0.0027
RLTT 35	Sperm	EF	26.10	19.44	$9.90 \mathrm{E}-03$		
RLTT 12	Sperm	EF	25.21	18.88	$1.25 \mathrm{E}-02$		
RLTT 25	Sperm	EF	25.99	19.28	$9.56 \mathrm{E}-03$		
RLTT 29 JOV 5	Sperm Sperm	EF EF	$\begin{aligned} & 25.85 \\ & 27.89 \end{aligned}$	$\begin{aligned} & 19.16 \\ & 15.28 \end{aligned}$	$\begin{aligned} & 9.72 \mathrm{E}-03 \\ & 1.60 \mathrm{E}-04 \end{aligned}$	0.0003	0.0002
JOV 6	Sperm	EF	27.51	16.70	$5.55 \mathrm{E}-04$		
JOV 7	Sperm	EF	27.81	15.90	$2.61 \mathrm{E}-04$		
RLOV 33	Sperm	EF	27.20	16.30	$5.23 \mathrm{E}-04$	0.0008	0.0004
RLOV 6	Sperm	EF	25.61	15.00	$6.37 \mathrm{E}-04$		
RLOV 31	Sperm	EF	24.68	14.95	$1.18 \mathrm{E}-03$		

Table C5 Quantitative expression level data of spermatogonial stem-cell renewal factor in testes of different groups of male P. monodon based on real-time PCR analysis

Sample Name	Type	CP	Concentration	Average of each sample	Average of each group	SD
BTT 2-1	Sperm	27.9	$8.64 \mathrm{E}+02$	8.65E+02	958.33	276.96
BTT 2-1	Sperm	27.9	$8.65 \mathrm{E}+02$			
BTT 3-1	Sperm	28.17	$6.67 \mathrm{E}+02$	$6.97 \mathrm{E}+02$		
BTT 3-1	Sperm	28.09	$7.26 \mathrm{E}+02$			
BTT 3-2	Sperm	27.63	$1.11 \mathrm{E}+03$	$1.21 \mathrm{E}+03$		
BTT 3-2	Sperm	27.43	$1.31 \mathrm{E}+03$			
BTT 5-1	Sperm	28.14	$6.89 \mathrm{E}+02$	$6.37 \mathrm{E}+02$		
BTT 5-1	Sperm	- 28.31	$5.84 \mathrm{E}+02$			
BTT 5-2	Sperm	27.77	$9.75 \mathrm{E}+02$	$9.88 \mathrm{E}+02$		
BTT 5-2	Sperm	27.74	$1.00 \mathrm{E}+03$			
BTT 5-3	Sperm	27.33	$1.43 \mathrm{E}+03$	$1.36 \mathrm{E}+03$		
BTT 5-3	Sperm	27.46	$1.28 \mathrm{E}+03$			
BTT 6-2	Sperm	27.79	$9.56 \mathrm{E}+02$	$9.88 \mathrm{E}+02$	804.17	189.39
BTT 6-2	Sperm	27.72	$1.02 \mathrm{E}+03$			
BTT 7-1	Sperm	27.98	$7.99 \mathrm{E}+02$	$8.32 \mathrm{E}+02$		
BTT 7-1	Sperm	27.9	$8.65 \mathrm{E}+02$			
BTT 8-1	Sperm	28.15	$6.83 \mathrm{E}+02$	$5.93 \mathrm{E}+02$		
BTT 8-1	Sperm	28.46	$5.02 \mathrm{E}+02$			
BTT 10-1	Sperm	26.86	$2.09 \mathrm{E}+03$	$2.02 \mathrm{E}+03$	1717.33	402.87
BTT 10-1	Sperm	26.95	$1.94 \mathrm{E}+03$			
BTT 13-1	Sperm	26.81	$2.16 \mathrm{E}+03$	$2.12 \mathrm{E}+03$		
BTT 13-1	Sperm	26.87	$2.08 \mathrm{E}+03$			
BTT 14-1	Sperm	27.72	$1.02 \mathrm{E}+03$	$9.54 \mathrm{E}+02$		
BTT 14-1	Sperm	6 27.87	$8.88 \mathrm{E}+02$			
BTT 14-3 BTT 14-3	Sperm Sperm	$\begin{aligned} & 27.06 \\ & 27.27 \end{aligned}$	$\begin{aligned} & 1.79 \mathrm{E}+03 \\ & 1.50 \mathrm{E}+03 \end{aligned}$	$1.65 \mathrm{E}+03$		
BTT 15-1	Sperm	26.99	$1.89 \mathrm{E}+03$	$1.86 \mathrm{E}+03$		
BTT 15-1 BTT 16-1	Sperm Sperm	$\begin{gathered} 27.02 \\ 27.1 \end{gathered}$	$\begin{aligned} & 1.83 \mathrm{E}+03 \\ & 1.72 \mathrm{E}+03 \end{aligned}$	$1.71 \mathrm{E}+03$	8	
BTT 16-1	Sperm	27.12	$1.70 \mathrm{E}+03$			
RLTT 32	Sperm	25.72	$4.73 \mathrm{E}+03$	$4.59 \mathrm{E}+03$	3902.50	470.57
RLTT 32	Sperm	25.81	$4.45 \mathrm{E}+03$			
RLTT 33	Sperm	26.13	$3.54 \mathrm{E}+03$	$3.42 \mathrm{E}+03$		
RLTT 33	Sperm	26.23	$3.30 \mathrm{E}+03$			
RLTT 35	Sperm	26.03	$3.81 \mathrm{E}+03$	$3.63 \mathrm{E}+03$		
RLTT 35	Sperm	26.17	$3.45 \mathrm{E}+03$			
RLTT 21	Sperm	26.11	$3.59 \mathrm{E}+03$	$3.53 \mathrm{E}+03$		
RLTT 21	Sperm	26.16	$3.46 \mathrm{E}+03$			

Table C5 (cont.)

Sample Name	Type	CP	Concentration	Average of each sample	Average of each group	SD
RLTT 25	Sperm	25.93	$4.09 \mathrm{E}+03$	$3.92 \mathrm{E}+03$		
RLTT 25	Sperm	26.05	$3.74 \mathrm{E}+03$			
RLTT 29	Sperm	25.82	$4.42 \mathrm{E}+03$	$4.34 \mathrm{E}+03$		
RLTT 29	Sperm	25.87	$4.25 \mathrm{E}+03$			
BUMTT 1	Sperm	26.80	$2.19 \mathrm{E}+03$	$2.04 \mathrm{E}+03$	2126.36	683.00
BUMTT 1	Sperm	26.99	$1.89 \mathrm{E}+03$			
BUMTT 2	Sperm	27.76	$9.79 \mathrm{E}+02$	$1.03 \mathrm{E}+03$		
BUMTT 2	Sperm	27.65	$1.09 \mathrm{E}+03$			
BUMTT 3	Sperm	26.09	$2.91 \mathrm{E}+03$	$2.93 \mathrm{E}+03$		
BUMTT 3	Sperm	26.07	$2.94 \mathrm{E}+03$			
BUMTT 4	Sperm	26.03	$3.03 \mathrm{E}+03$	$2.97 \mathrm{E}+03$		
BUMTT 4	Sperm	26.09	$2.90 \mathrm{E}+03$			
BUMTT 5	Sperm	26.67	$2.41 \mathrm{E}+03$	$2.38 \mathrm{E}+03$		
BUMTT 5	Sperm	26.71	$2.34 \mathrm{E}+03$			
BUMTT 7	Sperm	27.17	$1.63 \mathrm{E}+03$	$1.53 \mathrm{E}+03$		
BUMTT 7	Sperm	27.33	$1.42 \mathrm{E}+03$			
BUMTT 8	Sperm	26.83	$2.14 \mathrm{E}+03$	$2.02 \mathrm{E}+03$		
BUMTT 8	Sperm	26.98	$1.90 \mathrm{E}+03$			
JNTT 1	Sperm	26.03	$3.79 \mathrm{E}+03$	$3.65 \mathrm{E}+03$	3693.00	592.36
JNTT 1	Sperm	26.14	$3.51 \mathrm{E}+03$			
JNTT 2	Sperm	25.80	$4.48 \mathrm{E}+03$	$4.40 \mathrm{E}+03$		
JNTT 2	Sperm	25.85	$4.32 \mathrm{E}+03$			
JNTT 3	Sperm	25.85	$4.31 \mathrm{E}+03$	4.16E+03		
JNTT 3	Sperm	25.95	$4.01 \mathrm{E}+03$			
JNTT 4	Sperm	26.43	$2.88 \mathrm{E}+03$	$2.84 \mathrm{E}+03$		
JNTT 4	Sperm	26.47	$2.80 \mathrm{E}+03$			
JNTT 6 JNTT 6	Sperm Sperm	$\begin{aligned} & 26.16 \\ & 26.21 \end{aligned}$	$\begin{aligned} & 3.48 \mathrm{E}+03 \\ & 3.35 \mathrm{E}+03 \end{aligned}$	$3.42 \mathrm{E}+03$		
JOV 5	Sperm	27.80	$9.48 \mathrm{E}+02$	$8.77 \mathrm{E}+02$	1014.50	177.12
$\begin{aligned} & \text { JOV } 5 \\ & \text { JOV } 6 \end{aligned}$	Sperm Sperm		$\begin{aligned} & 8.05 \mathrm{E}+02 \\ & 1.29 \mathrm{E}+03 \end{aligned}$	$1.23 \mathrm{E}+03$	8	
JOV 69	Sperm	27.57	$1.16 \mathrm{E}+03$			
JOV 7	Sperm	27.78	$9.64 \mathrm{E}+02$	$9.42 \mathrm{E}+02$		
JOV 7	Sperm	27.83	$9.20 \mathrm{E}+02$			
RLOV 1	Sperm	25.48	$5.15 \mathrm{E}+03$	$5.59 \mathrm{E}+03$	7023.33	1636.53
RLOV 1	Sperm	25.26	$6.02 \mathrm{E}+03$			
RLOV 6	Sperm	25.63	$6.35 \mathrm{E}+03$	$6.44 \mathrm{E}+03$		
RLOV 6	Sperm	25.60	$6.53 \mathrm{E}+03$			
RLOV 31	Sperm	24.69	$9.00 \mathrm{E}+03$	$9.05 \mathrm{E}+03$		
RLOV 31	Sperm	24.67	$9.09 \mathrm{E}+03$			

Table C6 Data on expression levels of Dmc1 in testes of different groups of male P. monodon based real-time PCR analysis

Sample Name	Target Name		Tgt Cp Mean	Ref. Cp Mean	Ratios (Tgt/Ref.)	Average	SD
	Targets	References					
BTT 2-1	Dmc1	EF	31.25	18.8	$1.78 \mathrm{E}-04$	0.000312	0.000126
BTT 5-1	Dmc1	EF	30.14	18.57	$3.29 \mathrm{E}-04$		
BTT 5-3	Dmc1	EF	28.88	18.16	$4.28 \mathrm{E}-04$		
BTT 6-1	Dmc1	EF	31.32	18.83	$1.73 \mathrm{E}-04$	0.000166	0.000061
BTT 6-2	Dmc1	EF	31.08	18.68	$1.33 \mathrm{E}-04$		
BTT 7-1	Dmc1	EF	30.47	18.49	$2.48 \mathrm{E}-04$		
BTT 8-1	Dmc1	EF	31.95	18.79	$1.09 \mathrm{E}-04$		
BTT 10-1	Dmc1	EF	29.01	18.81	$8.49 \mathrm{E}-04$	0.001039	0.000313
BTT 14-1	Dmc1	EF	29.39	19.01	$7.50 \mathrm{E}-04$		
BTT 14-3	Dmc1	EF	27.92	18.75	$1.24 \mathrm{E}-03$		
BTT 14-4	Dmc1		28.41	18.24	8.67E-04		
BTT 16-1	Dmc1		27.94	18.55	$1.49 \mathrm{E}-03$		
JNTT 1	Dmc1	EF	27.35	17.97	$1.51 \mathrm{E}-03$	0.001820	0.000320
JNTT 3	Dmc1	EF	27.3	18.43	$2.15 \mathrm{E}-03$		
JNTT 6	Dmc1	EF	27.84	18.72	$1.80 \mathrm{E}-03$		
BUMTT 1	Dmc1	EF	30.18	18.76	3.66E-04	0.000627	0.000299
BUMTT 4	Dmc1	EF	28.05	17.84	$8.44 \mathrm{E}-04$		
BUMTT 5	Dmc1	EF	30.02	18.57	3.60E-04		
BUMTT 7	Dmc1	EF	29.46	20.04	$1.03 \mathrm{E}-03$		
BUMTT 8	Dmc1	EF	29.08	18.69	$5.34 \mathrm{E}-04$		
RLTT 32	Dmc1	EF	27.14	19.15	$2.80 \mathrm{E}-03$	0.002123	0.000476
RLTT 33	Dmc1	EF	27.97	19.81	$2.47 \mathrm{E}-03$		
RLTT 34	Dmc1	EF	27.61	18.28	$1.56 \mathrm{E}-03$		
RLTT 21	Dmc1	EF	27.7	18.65	$1.89 \mathrm{E}-03$		
RLTT 12	Dmc1	EF	27.26	18.09	$1.73 \mathrm{E}-03$		
RLTT 29	Dmc1	EF	27.04	18.27	$2.29 \mathrm{E}-03$		
JOV 5	Dmc1	EF	31.3	14.39	8.13E-06	0.000013	0.000006
JOV 7	Dmc1	EF	30.53	14.88	$1.94 \mathrm{E}-05$		
JOV 8	Dmc1	EF	29.66	2 13.67	$1.20 \mathrm{E}-05$		
RLOV 1 RLOV 6	Dmc1 Dmc1 Dmc1		$\begin{gathered} 31.08 \\ 31.8 \end{gathered}$	$\begin{aligned} & 16.54 \\ & 14.18 \end{aligned}$	$\begin{aligned} & 8.08 \mathrm{E}-07 \\ & 4.98 \mathrm{E}-06 \end{aligned}$	0.000004	0.000003
RLOV 31			31.44	14.03	5.73E-06		

Table C7 Quantitative expression level of Dmc1 in testes of different groups of male P. monodon based on real-time PCR analysis

Sample Name	Type	CP	Concentration	Average of each sample	Average of each group	SD
BTT 2-1	Dmc1	31.44	$1.03 \mathrm{E}+02$	$1.18 \mathrm{E}+02$	282.50	171.31
BTT 2-1	Dmc1	31.06	$1.32 \mathrm{E}+02$			
BTT 5-1	Dmc1	30.12	$2.42 \mathrm{E}+02$	$2.39 \mathrm{E}+02$		
BTT 5-1	Dmc1	30.17	$2.35 \mathrm{E}+02$			
BTT 5-3	Dmc1	29.15	$4.74 \mathrm{E}+02$	$4.92 \mathrm{E}+02$		
BTT 5-3	Dmc1	29.05	$5.09 \mathrm{E}+02$			
BTT 6-1	Dmc1	31.21	$1.26 \mathrm{E}+02$	$1.18 \mathrm{E}+02$	128.60	46.79
BTT 6-1	Dmc1	31.44	$1.09 \mathrm{E}+02$			
BTT 6-2	Dmc1	31.18	$1.22 \mathrm{E}+02$	$1.26 \mathrm{E}+02$		
BTT 6-2	Dmc1	31.08	$1.30 \mathrm{E}+02$			
BTT 7-1	Dmc1	30.33	$2.11 \mathrm{E}+02$	$1.94 \mathrm{E}+02$		
BTT 7-1	Dmc1	0.61	$1.76 \mathrm{E}+02$			
BTT 8-1	Dmc1	31.58	$9.49 \mathrm{E}+01$	7.74E+01		
BTT 8-1	Dmc1	32.33	$5.99 \mathrm{E}+01$			
BTT 13-1	Dmc1	26.86	$2.20 \mathrm{E}+03$	$2.26 \mathrm{E}+03$	1461.17	617.65
BTT 13-1	Dmc1	26.79	$2.31 \mathrm{E}+03$			
BTT 14-3	Dmc1	27.98	$1.03 \mathrm{E}+03$	$1.07 \mathrm{E}+03$		
BTT 14-3	Dmc1	27.87	$1.11 \mathrm{E}+03$			
BTT 16-1	Dmc1	28.03	-9.97E+02	$1.06 \mathrm{E}+03$		
BTT 16-1	Dmc1	27.86	$1.12 \mathrm{E}+03$			
JNTT 1	Dmc1	27.45	$1.48 \mathrm{E}+03$	$1.59 \mathrm{E}+03$	1266.75	455.82
JNTT 1	Dmc1	27.24	$1.70 \mathrm{E}+03$			
JNTT 3	Dmc1	27.55	$1.38 \mathrm{E}+03$	$1.67 \mathrm{E}+03$		
JNTT 3	Dmc1	27.04	$1.95 \mathrm{E}+03$			
JNTT 4	Dmc1	28.71	$6.63 \mathrm{E}+02$	$6.72 \mathrm{E}+02$		
JNTT 4 JNTT 6	${ }_{\rho}^{\mathrm{Dmc}} \mathrm{Dmc1}$	$\begin{array}{r} 28.67 \\ 27.87 \end{array}$	$\begin{aligned} & 6.81 \mathrm{E}+02 \\ & 1.11 \mathrm{E}+03 \end{aligned}$	$1.14 \mathrm{E}+03$		
JNTT 6	Dmc1	27.80	$1.17 \mathrm{E}+03$			
BUMTT 1 BUMTT 1	Dmc1 Dmc1	$\left\{\begin{array}{l} 30.08 \\ 30.27 \end{array}\right.$	$\begin{array}{r} 2.49 \mathrm{E}+02 \\ 2.19 \mathrm{E}+02 \end{array}$	$9 / 2.34 \mathrm{E}+02$	352.13	121.98
BUMTT 5	Dmc1	29.54	$3.58 \mathrm{E}+02$	$2.74 \mathrm{E}+02$		
BUMTT 5	Dmc1	30.49	$1.90 \mathrm{E}+02$			
BUMTT 7	Dmc1	29.22	$4.47 \mathrm{E}+02$	4.10E+02		
BUMTT 7	Dmc1	29.48	$3.73 \mathrm{E}+02$			
BUMTT 8	Dmc1	28.99	$5.20 \mathrm{E}+02$	$4.91 \mathrm{E}+02$		
BUMTT 8	Dmc1	29.17	$4.61 \mathrm{E}+02$			
RLTT 32	Dmc1	27.10	$1.87 \mathrm{E}+03$	$1.83 \mathrm{E}+03$	1701.00	226.88
RLTT 32	Dmc1	27.18	$1.78 \mathrm{E}+03$			

Table C7 (cont.)

Sample Name	Type	CP	Concentration	Average of each sample	Average of each group	SD
RLTT 33	Dmc1	28.08	$1.68 \mathrm{E}+03$	$1.72 \mathrm{E}+03$		
RLTT 33	Dmc1	28.00	$1.76 \mathrm{E}+03$			
RLTT 34	Dmc1	27.53	$1.40 \mathrm{E}+03$	$1.33 \mathrm{E}+03$		
RLTT 34	Dmc1	27.69	$1.26 \mathrm{E}+03$			
RLTT 12	Dmc1	27.24	$1.71 \mathrm{E}+03$	$1.68 \mathrm{E}+03$		
RLTT 12	Dmc1	27.29	$1.65 \mathrm{E}+03$			
RLTT 29	Dmc1	27.10	$1.87 \mathrm{E}+03$	$1.95 \mathrm{E}+03$		
RLTT 29	Dmc1	26.98	$2.03 \mathrm{E}+03$			
JOV 5	Dmc1	31.38	$1.07 \mathrm{E}+02$	$1.14 \mathrm{E}+02$	211.17	
JOV 5	Dmc1	31.21	$1.20 \mathrm{E}+02$			
JOV 7	Dmc1	30.21	$2.29 \mathrm{E}+02$	$1.90 \mathrm{E}+02$		
JOV 7	Dmc1	30.85	$1.50 \mathrm{E}+02$			
JOV 8	Dmc1	29.64	$3.36 \mathrm{E}+02$	$3.31 \mathrm{E}+02$		
JOV 8	Dmc1	29.68	$3.25 \mathrm{E}+02$			
RLOV 1	Dmc1	30.90	$2.53 \mathrm{E}+02$	$2.27 \mathrm{E}+02$	205.33	
RLOV 1	Dmc1	31.26	$2.01 \mathrm{E}+02$			
RLOV 6	Dmc1	31.48	$1.75 \mathrm{E}+02$	$1.69 \mathrm{E}+02$		
RLOV 6	Dmc1	31.59	$1.63 \mathrm{E}+02$			
RLOV 31	Dmc1	31.03	$2.32 \mathrm{E}+02$	$2.20 \mathrm{E}+02$		
RLOV 31	Dmc1	31.21	$2.08 \mathrm{E}+02$			

Table C8 Data on expression levels of PGMRC1 in dopamine-treated testes of juvenile male P. monodon based real-time PCR analysis

Table C8 (cont.)

Sample Name	PGMRC1			EF			$\begin{aligned} & {[\log (\text { Qty of PGMRC1 }) / \log (\text { Qty }} \\ & \text { of EF) }] * \mathbf{1 0 0} \end{aligned}$	Average	SD
	Ct	Qty	\log (Qty)	Ct	Qty	\log (Qty)			
12 hr post injection									
NSM12-2	18.47	$1.76 \mathrm{E}+03$	3.2455	5.49	$4.24 \mathrm{E}+07$	7.6274	$4.26 \mathrm{E}+01$	42.71	2.29
NSM12-3	20.63	$6.61 \mathrm{E}+01$	1.8199		$3.11 \mathrm{E}+04$	4.4928	$4.05 \mathrm{E}+01$		
NSM12-5	19.23	$5.56 \mathrm{E}+02$	2.7451	8.39	$1.23 \mathrm{E}+06$	6.0899	$4.51 \mathrm{E}+01$		
DA10-6M12-2	19.24	$5.47 \mathrm{E}+02$	2.7378	17.52	$3.54 \mathrm{E}+06$	6.5490	$4.18 \mathrm{E}+01$	40.63	1.60
DA10-6M12-3	19.36	$4.57 \mathrm{E}+02$	2.6596	17.72	$2.77 \mathrm{E}+06$	6.4425	$4.13 \mathrm{E}+01$		
DA10-6M12-5	20.15	$1.36 \mathrm{E}+02$	2.1325	9.51	$3.12 \mathrm{E}+05$	5.4942	$3.88 \mathrm{E}+01$		
24 hr post injection									
NSM24-2	18.62	$1.42 \mathrm{E}+03$	3.1523	15.99	$2.28 \mathrm{E}+07$	7.3579	$4.28 \mathrm{E}+01$	30.02	11.99
NSM24-3	24.29	$2.48 \mathrm{E}-01$	-0.6051	33.92	$7.08 \mathrm{E}-03$	-2.1500	$2.81 \mathrm{E}+01$		
NSM24-4	24.16	$3.00 \mathrm{E}-01$	-0.5230	35.03	$1.82 \mathrm{E}-03$	-2.7399	$1.91 \mathrm{E}+01$		
DA10-6M24-1	21.23	$2.61 \mathrm{E}+01$	1.4161	22.06	$1.38 \mathrm{E}+04$	4.1399	$3.42 \mathrm{E}+01$	23.46	15.20
DA10-6M24-2	22.7	$2.78 \mathrm{E}+00$	0.4446	23.27	$3.15 \mathrm{E}+03$	3.4983	$1.27 \mathrm{E}+01$		

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table C9 Data on expression levels of Dmc1 in dopamine-treated testes of juvenile male P. monodon based real-time PCR analysis

Sample Name	Dmc1				EF		$\begin{aligned} & {[\log (\text { Qty of Dmc1)/log(Qty }} \\ & \text { of EF) }] * 100 \end{aligned}$	Average	SD
	Ct	Qty	\log (Qty)	Ct	Qty	\log (Qty)			
JM23	25.09	$3.96 \mathrm{E}+04$	4.5980	17.58	$2.05 \mathrm{E}+06$	6.3107	$7.29 \mathrm{E}+01$	72.63	0.69
JM25	25.28	$3.51 \mathrm{E}+04$	4.5450	17.90	$1.63 \mathrm{E}+06$	6.2109	$7.32 \mathrm{E}+01$		
JM26	24.50	$5.90 \mathrm{E}+04$	4.7709		$4.36 \mathrm{E}+06$	6.6390	7.19E+01		
3 hr post injection									
NSM3-2	26.74	$1.31 \mathrm{E}+04$	4.1182	18.62	$1.01 \mathrm{E}+06$	6.0063	$6.86 \mathrm{E}+01$	72.94	3.88
NSM3-3	25.48	$3.07 \mathrm{E}+04$	4.4865	18.51	$1.09 \mathrm{E}+06$	6.0374	$7.43 \mathrm{E}+01$		
NSM3-5	25.35	$3.36 \mathrm{E}+04$	4.5260	18.79	$9.10 \mathrm{E}+05$	5.9588	$7.60 \mathrm{E}+01$		
DA 10-6M3-2	30.71	$9.20 \mathrm{E}+02$	2.9638	19.07	$7.65 \mathrm{E}+05$	5.8834	$5.04 \mathrm{E}+01$	69.80	17.25
DA 10-6M3-3	24.92	$4.72 \mathrm{E}+04$	4.6743	18.04	$1.49 \mathrm{E}+06$	6.1732	$7.57 \mathrm{E}+01$		
DA 10-6M3-4	22.43	$2.99 \mathrm{E}+05$	5.4761	16.64	$3.74 \mathrm{E}+06$	6.5729	$8.33 \mathrm{E}+01$		
6 hr post injection									
NSM6-1	25.66	$2.71 \mathrm{E}+04$	4.4332	17.66	$1.91 \mathrm{E}+06$	6.2810	$7.06 \mathrm{E}+01$	72.07	3.93
NSM6-3	26.47	$1.57 \mathrm{E}+04$	4.1956	18.40	$1.18 \mathrm{E}+06$	6.0719	$6.91 \mathrm{E}+01$		
NSM6-4	24.52	$5.84 \mathrm{E}+04$	4.7663	17.85	$1.69 \mathrm{E}+06$	6.2279	$7.65 \mathrm{E}+01$		
DA 10-6M6-2	24.59	$5.56 \mathrm{E}+04$	4.7450	17.90	$1.65 \mathrm{E}+06$	6.2162	$7.63 \mathrm{E}+01$	68.51	8.78
DA 10-6M6-3	25.55	$2.93 \mathrm{E}+04$	4.4663		1E+06		$7.02 \mathrm{E}+01$		
DA 10-6M6-4	27.84	$6.26 \mathrm{E}+03$	3.7963	17.18	$2.71 \mathrm{E}+06$	6.4330	$5.90 \mathrm{E}+01$		

Table C9 (cont.)

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Biography

Miss Rungnapa Leelatanawit was born on November 7, 1978 in Bangkok. She graduated with the degree of Bachelor of Science from Department of Industrial Technology, Silapakorn University in 2000 and the degree of Master of Science from the program in Biotechnology, Chulalongkorn University in 2003. She has studied for the Degree of Doctor of Philosophy in Biotechnology, Chulalongkorn University since 2004.

Publications from this thesis

International publications

1. Leelatanawit, R., Sittikankaew, K., Yocawibun, P., Klinbunga, S., Roytrakul, S., Aoki, T., Hirono, I., and Menasveta, P. Identification, Characterization and Expression of Sex-Related Genes in Testes of the Giant Tiger Shrimp Penaeus monodon. Comp. Biochem. Physiol. (in press).
2. Leelatanawit, R., Klinbunga, S., Aoki, T., Hirono, I., Valyasevi, R., and Menasveta, P. Suppression Subtractive Hybridization (SSH) for Isolation and Characterization of Genes Related to Testicular Development of the Giant Tiger Shrimp Penaeus monodon. BMB Reports (accepted).

Proceeding

1. Klinbunga, S., Kamnamtong, B., Leelatanawit, R., Preechaphol, R. and Menasveta, P. (2006). Isolation of sex-related genes in ovaries and testes of the giant tiger shrimp (Penaeus monodon). In: Comparative Endocrinology and Biodiversity in Asia and Oceania. (Tangpraprutgul, T., Malaivijitnond, S., hanchao, C. and Kitana, N., eds). pp. 143-147.

Conferences

1. Leelatanawit, R., Sittikankeaw, K., Pasertluk, S., Thamniemdee, N., Klinbunga, S., Tassanakajon, A. and Menasveta, P. (2005). Expressed sequence tag (EST) analysis of genes expressed in ovaries of the giant tiger shrimp (Penaeus monodon). $31^{\text {st }}$

Congress on Science and Technology of Thailand, 18-20 October 2005, Nakornratchasrima, Thailand (Oral presentation).
2. Leelatanawit, R., Sittikankeaw, K., Pasertluk, S., Thamniemdee, N., Klinbunga, S., Tassanakajon, A.and Menasveta (2005). Expressed Sequence Tag (EST) Analysis of Genes Expressed in Ovaries, Testes and Heart of the Giant Tiger Shrimp (Penaeus monodon). International Shrimp Symposium, BIOTHAILAND 2005, 2-5 November 2005, Bangkok, Thailand (Oral presentation).
3. Leelatanawit, R., Sittikankeaw, K., Klinbunga, S. and Menasveta, P. (2007). Isolation of Genes Involving Testicular Development of the Giant Tiger Shrimp (Penaeus monodon) by EST and SSH Analyses. $6^{\text {th }}$ National Symposium on Marine Shrimps, 29-30 March 2007, National Center for Genetic Engineering and Biotechnology (BIOTEC), NSTDA, Thailand (Oral presentation).
4. Leelatanawit, R., Sittikankeaw, K., Klinbunga, S. and Menasveta, P. (2007). Isolation of genes involving testicular development of the Giant Tiger Shrimp (Penaeus monodon) by EST and SSH analyses. $33^{\text {st }}$ Congress on Science and Technology of Thailand, 18-19 October 2007, Walailak University, Nakhon Si Thammarat, Thailand (Oral presentation).
5. Leelatanawit, R., Klinbunga, S., Aoki, T., Hirono, I. and Menasveata, P. (2008). Identification, characterization and in vitro expression of genes functionally related to testicular development of the giant tiger shrimp Penaeus monodon WFC2008: $5^{\text {th }}$ World Fisheries Congress. 20-24 October 2008, Yokohama, Japan (Oral presentation).
จุหาลงกรณ์มหาวิทยาลัย

[^0]: * Tester 2-1 and 2-2 (testes) were identical

[^1]: CTTTTGCCCCGTTCACGTGGTGTGCTAGAGGCTAAAACAAAATGGCCGCGGATCTCAGTG 60

 ## M A A D L S A 7

 CTCGTGATGTTGAGAGGGTGAAATTCGCCTTCTCCATCTATGATTTCGAGGGTAATGGCA 120
 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{D} & \mathbf{V} & \mathbf{E} & \mathbf{R} & \mathbf{V} & \mathbf{K} & \mathbf{F} & \mathbf{A} & \mathbf{F} & \mathbf{S} & \mathbf{I} & \mathbf{Y} & \mathbf{D} & \mathbf{F} & \mathbf{E} & \mathbf{G} & \mathbf{N} & \mathbf{G} & \mathbf{T} & \mathbf{2 7}\end{array}$
 CCATGGATGCCTACTACATTGGCGACTGCCTGCGTGCCCTCAACCTGAACCCGACCCTGT 180 $\begin{array}{lllllllllllllllllll}\text { M } & \mathbf{D} & \text { A } & \mathbf{Y} & \mathbf{Y} & \mathbf{I} & \mathbf{G} & \mathbf{D} & \mathbf{C} & \mathbf{L} & \mathbf{R} & \mathbf{A} & \mathbf{L} & \mathbf{N} & \mathbf{L} & \mathbf{N} & \mathbf{P} & \mathbf{T} & \mathbf{L} \\ \mathbf{S} & 47\end{array}$
 CCGTGATCGAGAAGGTCGGTGGCAAGGAGAAGAGGAAAGAGAAGATGATTAAGCTCGACG 240
 V I E K V G G K E K R K
 AATTCATGCCCATCTTCGCCCAGGTCAAGAAGGACAAGGATGCCGGCTCCTTCGAAGATT 300
 $\begin{array}{lllllllllllllllllllll}\mathbf{F} & \mathbf{M} & \mathbf{P} & \mathbf{I} & \mathbf{F} & \mathbf{A} & \mathbf{Q} & \mathbf{V} & \mathbf{K} & \mathbf{K} & \mathbf{D} & \mathbf{K} & \mathbf{D} & \mathbf{A} & \mathbf{G} & \mathbf{S} & \mathbf{F} & \mathbf{E} & \mathbf{D} & \mathbf{F} & 87\end{array}$
 TCATGGAAGTCCTGAAGCTTTACGACAAAGCTGAGAACGGCACCATGATGTATGCTGAGC 360

 TTGAGCACATCCTTCTGTCCCTTGGTGAGCGTCTTGAGAAAGCTGAGTTGGAGCCCGTCC 420
 $\begin{array}{lllllllllllllllllll}\text { E } & \mathbf{H} & \mathbf{I} & \mathbf{L} & \mathbf{L} & \mathbf{S} & \mathbf{L} & \mathbf{G} & \mathbf{E} & \mathbf{R} & \mathbf{L} & \mathbf{E} & \mathrm{K} & \text { A } & \mathbf{E} & \mathbf{L} & \mathbf{E} & \mathbf{P} & \mathbf{V} \\ \mathbf{L} & 127\end{array}$
 TTAAGGAGTGCTGCCCCGAGGAAGACGAAGAAGGCTTCATTCCCTACGAACCGTTCCTTA 480
 $\begin{array}{llllllllllllllllllllll}\mathbf{K} & \mathbf{E} & \mathbf{C} & \mathbf{C} & \mathbf{P} & \mathbf{E} & \mathbf{E} & \mathbf{D} & \mathbf{E} & \mathbf{E} & \mathbf{G} & \mathbf{F} & \mathbf{I} & \mathbf{P} & \mathbf{Y} & \mathbf{E} & \mathbf{P} & \mathbf{F} & \mathbf{L} & \mathbf{K} & 147\end{array}$
 AGAGACTTTTGGCCTTCAAAATCTAGAGGAAGCGTTTACCTTCCTCAAGAAGATCACCCA 540
 $\begin{array}{llllllll}\mathbf{R} & \mathbf{L} & \mathbf{A} & \mathbf{F} & \mathbf{K} & \mathbf{~} & \\ & 154\end{array}$
 ACTGCTCTAAACGTCCACCATCTTCTTTTGTGACGTCATCACCAGGGAGTGCACATGCGT 600 ACAACACCACTACCATTCGGAGTGTCCGCGCGTGCAGTGTACAATCATTCTGGGGGAGTG 660 ACCAAACCACAGACAGTACATTAGTTCCAAAAAAAATATGTTAATATATATTGCCAAAAT 720 ATACGAAAATCATAGAAAGTGATTCCTACGAAAAAATGGGAAGCACAAGCTTAAACAAAA 780 AAAAAAATGTGAGGCACCCATTACATGCTCATTATGTCCTTCTTGTCCGTATGTGTGTGT 840 GTTCGTGCAGCGTCGGGTCCCATGGATCTGTTGAGCGTTTTTCTCTCATCCACACGGGGT 900 GTCAAAGGGCCGAGGCATCCGTGACCGCCTCATCATGTAGACCTGAAGTGACCACTGAAT 960 GATCCGCAGTTAGCCACCTGCTCGCTTTTACCACCTGTCTGAAGCGGGGACTAACAGCCA 1020 TTGACGACAAGAGCGGCCGTCTGCCCCACCCGGTTACCATCGTGAAGACCACCTCAATCT 1080 CGGCGGGTGCGGGCGGCGGCGCGAGGGAAAGGAGGGGGCGTTGGAACCCACCATCACTCT 1140 TCTTTCTCCCCCCCTCCTTCTCCCGACCCGGTCACGTGGTGCCTGATCCGGCCCCTTGTG 1200 CCCAATAGTGCCTCTGCGCCTCGCCCAACTCGTAGCGGCCAGGGGGAGGGCCACAGTCAG 1260 CCAGTGCGTCCATGGAGTGAACATACAAGGCCACACGTCAGTCAGTCAGTCAGTCCGAGA 1320 AGTCCGCTTAGCATGGCATCGTTACAAACTGCTGTCTGTTGGCACATTGGTTAAGTAATC 1380 TATGGTCTCAATAAAACAAAACATCTAAAAAAAA 1414

[^2]: TACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGACTCGACTATC 60 ATGGCGGACGAGGGAGCGGACGCCGTCTCCATCGAAGAGTCCTTCCTGGGCTCACTACTC 120 $\begin{array}{llllllllllllllllllll}\bar{M} & \text { A } & \text { D } & \text { E } & \text { G } & \text { A } & \mathbf{D} & \text { A } & \text { V } & \text { S } & \text { I } & \text { E } & \text { E } & \text { S } & \text { F } & \text { L } & \text { G } & \text { S } & \text { L } & \mathbf{L} \\ 20\end{array}$ AAAGAAATATTCACCTCCCCACTTAATGTGTTCCTCTTGGGTGTCTGTACCGTCCTCATC 180 $\begin{array}{llllllllllllllllllll}\mathbf{K} & \mathbf{E} & \mathbf{I} & \mathbf{F} & \mathbf{T} & \mathbf{S} & \mathbf{P} & \mathbf{L} & \mathbf{N} & \mathbf{V} & \mathbf{F} & \mathbf{L} & \mathbf{L} & \mathbf{G} & \mathbf{V} & \mathbf{C} & \mathbf{T} & \mathbf{V} & \mathbf{L} & \mathbf{I} \\ \mathbf{4}\end{array}$ TATAAGATATTCCGTTCGTCCGATGGCAGTGGAGGAGCAACAGGTCCAGTGGAACCTCCT 240 $\begin{array}{llllllllllllllllllll}\mathbf{Y} & \mathbf{K} & \mathbf{I} & \mathbf{F} & \mathbf{R} & \mathbf{S} & \mathbf{S} & \mathbf{D} & \mathbf{G} & \mathbf{S} & \mathbf{G} & \mathbf{G} & \mathbf{A} & \mathbf{T} & \mathbf{G} & \mathbf{P} & \mathbf{V} & \mathbf{E} & \mathbf{P} & \mathbf{P} \\ \mathbf{6 0}\end{array}$ GTGCCCAAGATGAAACGACAGGACATGACCTTGGAGCAGTTGAAGCAGTATGATGGCATG 300 $\begin{array}{llllllllllllllllllll}\mathbf{V} & \mathbf{P} & \mathbf{K} & \mathbf{M} & \mathbf{K} & \mathbf{R} & \mathbf{Q} & \mathbf{D} & \mathbf{M} & \mathbf{T} & \mathbf{L} & \mathbf{E} & \mathbf{Q} & \mathbf{L} & \mathbf{K} & \mathbf{Q} & \mathbf{Y} & \mathbf{D} & \mathbf{G} & \mathbf{M} \\ \mathbf{8 0}\end{array}$

[^3]: CACGAGGCTCTCTCTCCTGCTCGTACTCTCCATCTCTTCGAAGACAGTAAATAACACACC 60 AGCACCATGTCTGACGACGAATCAGCATATTCGGATGCCGAAAAGAGGAGGAAGAAGGGA 120 $\begin{array}{llllllllllllllllll}\bar{M} & \mathbf{S} & \mathbf{D} & \mathbf{D} & \mathbf{E} & \mathbf{S} & \text { A } & \mathbf{Y} & \mathbf{S} & \mathbf{D} & \text { A } & \mathbf{E} & \mathbf{K} & \mathbf{R} & \mathbf{R} & \mathbf{K} & \text { K } & \mathbf{G} \\ \mathbf{1 8}\end{array}$ GATGAGGGGGCCAACTTCCTTAAGAACCGCCAGCAGATGAAGATGTCCGAGCTGGACGAA 180
 CAGCTGGCGGAATACATCGCTGAGTGGAGGAAGCAGAGATCCAAGGAAGAGGATGAGCTC 240 Q L A E $\quad \mathbf{Y}$ I $\quad \mathbf{I}$ A AGGAAACTCAAGGAGAAGCAGGCCAAGAGGAAGATCCTCCGCGCCGAAGAGGAGAAGAAG 300 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{K} & \mathbf{L} & \mathrm{K} & \mathbf{E} & \mathrm{K} & \mathbf{Q} & \mathbf{A} & \mathbf{K} & \mathbf{R} & \mathbf{K} & \mathbf{I} & \mathbf{L} & \mathbf{R} & \mathbf{A} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{K} & \mathbf{K} \\ \mathbf{7 8}\end{array}$ CTGACCGAGCAGAAGAAGGCCGAGGAGGAGCGCAAGCTTCGCGAGGAATCCGAGAGGAAG 360 $\begin{array}{llllllllllllllllllll}\mathbf{L} & \mathbf{T} & \mathbf{E} & \mathbf{Q} & K & K & A & E & E & E & \mathbf{R} & \mathbf{K} & \mathbf{L} & \mathbf{R} & \mathbf{E} & \mathbf{E} & \mathbf{S} & \mathbf{E} & \mathbf{R} & \mathbf{K} \\ \mathbf{9 8}\end{array}$ CAGAAGGAACAGGAAGAGAAGAGGAAACGCCTCGAGGAAGCAGAGAAGAAGCGCCAGGCC 420
 ATGATGAAGGGATCCAGCGATGGCGTCAAGAAGTTCGGCGTTAAGAGCGGTGGTGACAAG 480 M M K G S S D G V K K F G V K S G G D K 138 TTCTCCAACATCCAGGCGGCCAAGGGCGAACTGGGCAAGACCCGCGAGCAGCTGGCCGAG 540
 GAGAAGAAGATTGCCCTGTCCATCCGCGTGAAGCCCCTCTGCGTTGACGGCGTTGGTGCG 600 E K K I I A L S I TCCGCCCTCCGCCAGAAGGCCGAGGAAATGTGGAACCTCATCATCAAGCTGGAGACCGAG 660
 AAATACGACATGGAGGAGAGGATGAAGCGACAGGACTACGATCTGAAGGAGCTTAGGGAA 720
 CGTCAGAAGCAACAGCTCAGGCAAAAGGCCTTGAAGAAGGGTCTTGATCCCGAGGCTCTC 780 $\begin{array}{lllllllllllllllllllll}\mathbf{R} & \mathbf{Q} & \mathbf{K} & \mathbf{Q} & \mathbf{Q} & \mathbf{L} & \mathbf{R} & \mathbf{Q} & \mathbf{K} & \mathbf{A} & \mathbf{L} & \mathbf{K} & \mathbf{K} & \mathbf{G} & \mathbf{L} & \mathbf{D} & \mathbf{P} & \mathbf{E} & \mathbf{A} & \mathbf{L} & 238\end{array}$ ACCGGAAAACACCCGCCCAAGATCCAGACTGCCTCCAAGTTCGAGCGACGCACAGACAGG 840 $\begin{array}{lllllllllllllllllllll}\mathbf{T} & \mathbf{G} & \mathbf{K} & \mathbf{H} & \mathbf{P} & \mathbf{P} & \mathbf{K} & \mathbf{I} & \mathbf{Q} & \mathbf{T} & \mathbf{A} & \mathbf{S} & \mathbf{K} & \mathbf{F} & \mathbf{E} & \mathbf{R} & \mathbf{R} & \mathbf{T} & \mathbf{D} & \mathbf{R} & 258\end{array}$ AGGACCTATGACGACAAGAAGAAACTTTTCGAGGGTGGCTGGGAAGTTGTACACAACGAG 900 $\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{T} & \mathbf{Y} & \mathbf{D} & \mathbf{D} & \mathbf{K} & \mathbf{K} & \mathbf{K} & \mathbf{L} & \mathbf{F} & \mathbf{E} & \mathbf{G} & \mathbf{G} & \mathbf{W} & \mathbf{E} & \mathbf{V} & \mathbf{V} & \mathbf{H} & \mathbf{N} & \mathbf{E} \\ \mathbf{2 7 8}\end{array}$ GAGCTGGAAAGGTACTGGAAGGACAAATACGAAGAGTTTGTCAACAGGACGAAGTCCAAG 960 $\begin{array}{lllllllllllllllllllll}\mathbf{E} & \mathbf{L} & \mathbf{E} & \mathbf{R} & \mathbf{Y} & \mathbf{W} & \mathbf{K} & \mathbf{D} & \mathbf{K} & \mathbf{Y} & \mathbf{E} & \mathbf{E} & \mathbf{F} & \mathbf{V} & \mathbf{N} & \mathbf{R} & \mathbf{T} & \mathbf{K} & \mathbf{S} & \text { K } & 298\end{array}$ CTTCCCAAGTGGTTCGGCGAGCGACCGGGCAAGAAGGCCGGCGACCCCGAATCCCCCGAA 1020 $\begin{array}{lllllllllllllllllllll}\mathbf{L} & \mathbf{P} & \mathbf{K} & \mathbf{W} & \mathbf{F} & \mathbf{G} & \mathbf{E} & \mathbf{R} & \mathbf{P} & \mathbf{G} & \mathbf{K} & \mathbf{K} & \mathbf{A} & \mathbf{G} & \mathbf{D} & \mathbf{P} & \mathbf{E} & \mathbf{S} & \mathbf{P} & \mathbf{E} & \mathbf{3 1 8}\end{array}$

