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CHAPTER I   
 

INTRODUCTION 
 

1.1 General Background 

 Combinatorial optimization plays an important role for application in real world 

problems including scheduling, balancing, timetabling and routing problems, where the 

domains of feasible solutions are discrete. Combinatorial problems are intriguing as they 

are easy to state but often very difficult to solve. There is no algorithm exists to find the 

optimal solution to these classes of problems within polynomial time. Moreover, these 

optimization problems can have both single or multiple solutions in both single or 

multiple objectives. Most of them find a natural mapping in permutation spaces where 

mathematical programming models are inappropriate as they rather produce infeasible 

solutions than produce feasible ones.  

 The algorithm approaches to combinatorial optimization problems can be 

classified as exact and approximate, or sometimes called stochastic and heuristics. Exact 

algorithms are guaranteed to find one or more optimal solutions in finite time by 

systematically searching the solution space. Unfortunately, due to the NP-completeness 

nature of the problems, the time needed to solve them may grow exponentially in the 

worst case, for a reasonable problem size, exact algorithms are no longer feasible. To 

practically solve these problems, one often has to satisfied with finding good 

approximately solutions within a given reasonable polynomial time. Therefore 

approximate algorithms or sometimes called metaheuristics are more preferable. 

Normally, approximate algorithms cannot guarantee optimality of the solutions, anyhow, 

in many cases, they are able to find optimal solutions in short computation time. 

Over the past few decades, many metaheuristics algorithms have been designed 

and applied to a wide variety of combinatorial problems. Unfortunately, the scalability of 

such algorithms has been very poorly investigated. Since many of them use ad hoc 
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techniques for both representations and operators, they do not scale up. While, typical 

industrial problems are often large and complex, traditional optimization methods are 

expected to fail or yield inacceptable solutions. 

 

1.2 Problem Difficulties for Combinatorial Optimizations  

This dissertation addresses the ineffectiveness’s of combinatorial optimization 

methods mainly based on representation of candidate solution and its consequences when 

constructive and improvement methods are applied. 

 

1.2.1 Cartesian and permutation spaces 

This section describes the differences between two types of problems [1] 

in the discrete domain. The problems where the domains of parameters to be optimized 

take on sets of independent values belong to Cartesian or vector spaces, while the 

problems with domains that are permutations of items belong to permutation spaces. In 

Cartesian space, the parameters are independent from each other and the optimization 

function can be represented geometrically in a multidimensional space, while the 

parameters in the permutation spaces at a given position in the n-tupla are dependent on 

all the others and constitutes the n-tupla of values differentiate one input from another. 

Moreover, the parameters of the problems in mapped in the Cartesian space are directly 

used as absolute numbers in order to evaluate a function, while the parameters of 

permutation problems are indirectly used. In order to evaluate a function, one or more 

properties of the items are used. In addition, the properties of an item can depend on an 

absolute position of the item or a position related to the other items. Example 1.1 and 1.2 

exemplify the different between the optimization function in discrete Cartesian space and 

the optimization function in the permutation space. Particularly, the example 1.2 show 

the indirectly use of the parameters in which the values of the input items depend on their 

absolute positions. 
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Example 1.1: A two variable function to optimize (Discrete Cartesian 

space) 

   𝐹 𝑥, 𝑦 =  𝑥 − 𝑦 4 −  𝑥 − 𝑦 2         (1.1) 

where 𝑥 ∈  0 . . 5 , 𝑦 ∈ [1 . . 4 ] 

Example 1.2: A three variables function described by a permutation 

(Discrete permutation space) 

 𝑄 𝑥, 𝑦, 𝑧 =  𝑥 ×  𝑃 𝑥 +  𝑦 × 𝑃 𝑦 +  𝑧 × 𝑃𝑧) (1.2) 

 where 𝑥 ∈  1 . . 3  and 𝑃 𝑥  is the position of 𝑥 in the permutation 

 

Figure 1.1 Value of 𝐹(𝑥, 𝑦) 

Table 1.1 Value of 𝑄 𝑥, 𝑦, 𝑧  ∶  𝑄(1,2,2), 𝑄(1,1,3), 𝑄(3,3,2) … etc. are non-valid 
permutations 

 Value 
𝑥, 𝑦, 𝑧 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1 

𝑄(𝑥, 𝑦, 𝑧) 1+4+9  
= 14 

1+6+6 
= 13 

2+2+9 
= 13 

2+6+3 
= 11 

3+2+6 
= 11 

3+4+3 
=10 
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Consequently, in combinatorial problems, the concept of distance between 

different coordinates seems to be senseless and cannot be applied in order to estimate or 

predict the goodness of a solution. In permutation spaces, most optimization methods rely 

on Proximate Optimality Principle (POP) [2] which consider the continuity of each 

candidate solution based on its neighborhoods.  

 

There are many approaches to classify metaheuristics, which will be precisely 

described later in Chapter II. In this dissertation, we focus on the ways a solution is 

generated, that are constructive and improvement. Constructive methods generate a 

solution by joining together “pieces” or “components” of a solution, while improvement 

methods generate a new solution from a pre-existent one and try to improve it by 

modifying some of its component. Constructive strategies are sometimes called 

recombination, while improvement strategies are usually known as local search. The 

constructive methods have an advantage over the improvement methods as they usually 

produce more diversity of solutions whereas the improvement methods have advantage 

on the quality of solutions.  

 

1.2.2 Neighborhoods and their similarities 

 As already mentioned in section 1.2.1, combinatorial problems cannot be 

represented geometrically in a multidimensional space. However, there are researches on 

geometric permutations [3][4][5], which try to represent models to traverse in the 

permutation spaces. Somehow, geometric permutations are not mature to be applied in 

metaheuristics. 
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In an improvement scheme, the continuity of each solution depends on its 

neighborhoods. The neighbors of a solution depend on one or more move operators 

defined by the dedicated algorithm. Example 1.3 illustrates two different ways to define 

move operators of an order-3 permutation problem that are neighborhood based on swap 

operator and neighborhood based on rotation operator. It is exemplified that using a 

rotation operator alone cannot traverse to some of the solution in the search space. 

However, the rotation operator preserves larger sequences of concatenated items than the 

swap operator. Consequently, many researches need to design such move operator to suit 

the problems. 

Example 1.3: neighborhood for a permutation based on different move 

operator 

Figure 1.2 shows the neighborhood of permutation 𝑠 of 𝑥  where 

𝑥 ∈  1 . . 3 , where figure (a) shows the neighborhood based on 

swap operator and (b) shows the neighborhood based on rotation 

operator. The neighbors of the solution (2,3,1) in (a) are (3,2,1), 

(2,1,3), and (1,3,2) while in (b) are only (1,2,3) and (3,1,2).  

 

Figure 1.2 Example of neighborhood for a permutation problem of size 3. 
(a) neighborhood based on swap operator. 

(b) neighborhood based on rotation operator. 

 Foundations of local search methods are based on a principle called 

Proximate Optimality Principle (POP) which assumes that good solutions share similar 

substructure. Therefore, move operators are designed in order to generate the solutions 

that are considered to share similarity in many ways which will be discussed more in the 

(2,3,1)   (1,2,3) 

(3,1,2) 

(2,1,3)   (1,3,2) 

 (3,2,1) 

(b) 

(2,3,1)  (3,2,1) 

(1,2,3)  (1,3,2) 

(2,1,3)     (3,1,2) 

(a) 
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next Chapter. Figure 1.3 illustrates two types of similarities. The highlighted blocks 

indicate the similarity the two sequences are sharing. (a) indicates the similarity of items 

align in the same column call absolute order while (b) indicates the similarity of the 

maximum sequence found in two candidate solutions. 

 

Figure 1.3. Absolute and relative positioning based similarity in permutation 
representation 

Clearly, the “neighborhood” concept emphasizes local search. In seeking 

ever better solutions, local search methods employ a sensible tenet: solutions that are 

similar in structure will generally be similar in fitness. With a little thought, especially 

given that suitably good solutions tend to make up only a tiny fraction of the search 

space, this implies that it is best to search locally in the region of the best solutions found 

so far. 

Local search methods therefore work via exploitation of the best candidate 

solutions attained so far. That is, the structures of such candidates are exploited 

constantly as a template for potentially better solutions. In contrast, there is usually little 

exploration in local search. Such emphasis on exploitation corresponds to a very high 

selection pressure strategy, with consequent well-known pitfalls. In particular, local 

search techniques are highly prone to become “trapped” at solutions that are locally 

optimal, with no means of escape toward better solutions that may exist elsewhere in the 

fitness landscape. 
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1.2.3 Recombination and disruption in permutation 

representation 

Constructive methods differ from improvement methods in that they 

balance effort between exploitation and exploration in a way that turns out to be more 

effective in many applications. In combinatorial optimization, constructive schemes 

usually refer to genetic algorithms. (not all evolutionary algorithms) The idea of crossing 

over aiding the search process by recombining short, high fitness sections of the genotype 

called building blocks. The aim of crossing over is to propagate these high fitness 

building blocks throughout the population, raising average fitness by steering the 

population towards promising areas of the search space. Difficulties quickly arise when a 

simple genetic algorithm is applied. In particular, the encoding of a solution as a bit string 

is not convenient as most sequences in the search space would not correspond to the 

feasible solutions. Thus the permutation representation rather preferred in this class of 

problem. However, directly applying classical recombination operators such as simple 

one-point or two-point crossover to permutations will generate solutions that are invalid 

and needed to be fixed. Accordingly, specialized permutation operators must be 

developed. A disruption caused by a simple crossover is exemplified in example 1.3 

Example 1.3: Application of the one-point crossover on the two 

permutation chromosomes. 

 Applying the one-point crossover operator at position 2 creates two 

infeasible offspring, as illustrated in figure 1.4, none of the two offspring 

is a valid permutation solution. The darker blocks indicate the redundant 

components in the offspring which are no longer considered being 

permutations. 
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Figure 1.4 Application of the one-point crossover on the two permutation chromosomes 

 

  Consequently, various approaches have been proposed to avoid the 

disruption problems in permutation representation which can be broadly grouped into two 

classes: (i) those that focus on improving the crossover operator by adjusting the overall 

crossover procedure in such a way that it is less likely to disrupt any distributed 

knowledge stored in the genetic representation, and (ii) those that focus on improving the 

genetic representation by implementing a one-to-one mapping between genotype and 

phenotype so that several genetic permutations of the same phenotypic solution cannot 

co-exist in the same solution. These approaches will be discussed more in detail in the 

Chapter II.  

1.2.4 Degree of freedom, exploitation and exploration 

According to the convergence argument proposed by [6], the 

characteristics of permutation encoding GA are (i) genetic convergence occurs during the 

initial generations after which most members of the population will have similar genetic 

representations, and therefore (ii) several significantly distinct permutations of the same 

solution are unlikely to co-exist. In this case using an absolute order preservation 

crossover operator is likely to produce offspring with similar fitness to their parents. 
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To see a better perspective, we illustrate the effect of order based 

crossovers for permutation encoding GA. With a comparable decision space, a solution 

encoded in permutation has much less degree of freedom than a solution encoded in 

binary. For instance, an ordering problem with search space equal to 16! or 2.09228 ×

1013  feasible solutions would need only 16 degrees of freedom for a permutation 

representation while it takes up to 64 degrees of freedom for a binary representation. Let 

the feasible spaces be equivalent and let the schema domination rate for a degree of 

freedom be equivalent, the trend of the search space reduction would be in the figure 1.5.  

 

Figure 1.5 A comparison of search space reduction by permutation vs. binary schema at a same 
schema domination rate 

 

  Allowing the candidate solutions to be encoded in permutation rather than 

binary representation would increase the convergence rate due to the higher significant 

number of the degree of freedom of each candidate position. The higher order of the 

permutation size indicates the higher degree of freedom. In addition, high fitness 

substructures of a genotype are likely to dominate the population faster due to the 

constraint of the permutation does not allow the redundancy of an item elsewhere in the 
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permutation solution. This property can either be advantage or disadvantage of the 

constructive method. If some absolute order substructures show more outstanding fitness 

than the other, they would cause high exploitation rate, yet lack of diverse solution. On 

the other hand, if the substructures show similar fitness’s at any position, the algorithm 

would not be able to converge to any single optima. For these reasons, the researchers 

need to take good care of the population size and the diversity of the initial population. If 

the initial population is not well diversified, for especially in an ordering problem with 

larger degrees of freedom, a premature convergence can occur for any population based 

method. If using an oversize population, the algorithm would waste too many function 

evaluations in exploring the search space.  

1.2.5 Building blocks and linkage learning 

Further, when crossover is employed as a variation operator, the GA 

increasingly samples combinations of building blocks, possibly discovering new ones as 

a result[7]. There is, however, much debate over this hypothesis. For example, in some 

problems there are verifiably no building blocks at the genotype level [8] and has been 

shown to be somewhat problem dependent. Despite the lack of building blocks in some 

problems, crossover may still be an effective search operator. Accordingly, this implies 

that crossover operators are able to have beneficial effects that do not involve the 

recombination of building blocks. It is shown that for many problems where crossover 

was believed to be recombining building blocks, it was in fact performing a 

macromutation [9][10].  

Additionally, other aspects of how genetic algorithms work have been 

questioned with the result that long-held principles have been shown to be false or 

incomplete. Jones [11] presents a means by which the possible existence of building 

blocks in a genotype can be ascertained in a less ambiguous manner than with previous 

methods. The problem is first attempted using a process of proportional selection and 

crossover, then compared to the same process using random crossover. The aim is to 

disrupt the building blocks (if any are indeed present) using the random crossover 

operator and see how performance is affected. Random crossover entails performing 
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crossover on one fit individual and a randomly generated individual. Given that the 

second parent has been generated randomly, its fitness will on average be very low. 

Combining a fit individual with a random individual effectively removes the implicit 

information sharing offered by a population which clearly violates the idea of crossover. 

If this approach is at least as effective as traditional crossover then it suggests that we do 

not require the idea of crossover, but that its mechanics may be effective. 

 

At first sight this lack of empirical evidence may seem odd, in particular 

because the permutation problem appears to encapsulate the reasonable claim that it usually 

makes little sense to recombine individuals who are genetically very dissimilar. As Watson 

and Pollack [12] point out that “parents selected from two different fitness peaks are likely to 

produce an offspring that lands in the valley in between”. For this reason, constructive 

methods for permutation problems are not receiving good attention by many researchers. 

 

  In addition to the building block hypothesis, Holland [13] has also 

suggested that operators learning linkage information to recombine alleles might be 

necessary for genetic algorithm success. Afterward, many methods have been developed 

to solve the linkage problem. The linkage model can be implicit [14] or explicit [15], 

probabilistic [16] (probabilistic model building genetic algorithms), or estimation of 

distribution algorithm [17]. Unfortunately, most of the works are based on binary and 

continuous representation. The outstanding algorithms used to solve the problem in 

permutation representation domains are Edge histogram based sampling Algorithms 

(EHBSAs) [18] and Node histogram based sampling Algorithms (NHBSAs) [19] 

proposed by Tsutsui. 
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1.3 Research Motivations 

 Over a few decades, many metaheuristics have been proposed in order to solve 

both single and multiple objective combinatorial optimization problems especially those 

which can be represented in permutation. However, many researches turn to be somewhat 

problems dependent. For example, local search methods need well designed move 

operators in order to produce effective neighborhoods or genetic algorithms need 

different appropriate crossover operators to many specific problems. Even though most 

metaheuristics rely on either Proximate Optimality Principle (POP) [2] or Building 

Blocks Hypothesis (BBH) [7], anyhow, due to the constraint of the representation, linkage 

learning models are rarely been applied. The only few metaheuristics considered to learn 

the linkage of the substructure contained in the solutions are Ant Colony Optimization 

algorithms (ACO)[20], Edge Histogram Based Sampling Algorithms (EHBSA)[18] and 

Node Histogram Based Sampling Algorithms (NHBSA)[19].  

 

 The motivation of this research mainly based on a question whether the below 

average solutions that population based metaheuristics usually discard contain useful 

information and can be used in optimization or not. As a result, we raise a model capable 

to learn the linkage of bad substructures in order to produce solutions not containing 

them. We propose a hypothesis called a Negative Building Block Hypothesis (NBBH) 

simply states that “An algorithm can seeks new-optimal performance by avoiding the 

juxtaposition of short, low-order, low-performance schemata, called the negative 

building blocks”. Further, we expect this hypothesis could fulfill as a counterpart of the 

BBH. 
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1.4 Doctoral Framework 

 According to Bassett’s observation [21] that the crossover operator works in the 

problems in which there is no building blocks exist in the genotype level, we suspect that 

there might be bad building blocks that the crossover operator might filter out in order to 

form the better solutions. From this observation, we propose the Negative Building Block 

Hypothesis (NBBH) and try to test this hypothesis using a simple scientific method. This 

doctoral framework is as follows: literature surveying, making hypothesis, design and 

perform experiments to test the hypothesis and conclude the results. 

1.5 Research Objectives 

The research objectives are to develop a new evolutionary algorithm for single 

and multiple objectives combinatorial optimization problems and to study the role of 

applying negative knowledge in evolutionary algorithm for combinatorial optimization 

problems. 

1.6 Scope of the Study 

This research proposed to utilize the negative knowledge in combinatorial 

optimization; however, limited to the design, implementation and testing of edge based 

EDAs. The benchmarks in this research include multimodal artificial combinatorial 

problems and some real world applications.  

Some broad issues are ignored in the scope of the study and can be developed 

further. 

1. The studies of negative knowledge in the absolute order such as the node 

based estimation of distribution algorithms. 

2. The studies of negative knowledge in the geometry based algorithm. 

3. The studies of parameter tuning of such algorithm. 

4. The studies of local search and hybridization with other metaheuristics. 
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1.7 Research Contributions 

 The outcomes derived from this research include: 

1. The first contribution of this research is a new estimation of distribution 

algorithm (EDA) based on permutation representation call Coincidence Algorithm 

(COIN) which is naturally more suitable with most combinatorial problems. This 

contribution is twofold. (i) a probabilistic model based on Markov chain matrix and (ii) 

an incremental learning method that allow negative correlation learning of the samples. 

 2. The second contribution is a negative building block hypothesis (NBBH) 

simply state that “An algorithm can seeks new-optimal performance by avoiding the 

juxtaposition of short, low-order, low-performance schemata, called the negative 

building blocks” 

 3. Thirdly, a set of benchmark to test the performance of algorithm in solving 

globally multimodal optimization problems including both permutation and selection 

problems. In addition, an alternative method to solve the fix-size combination problems 

which most metaheuristics are not able to solve is also proposed. The results indicate that 

negative correlation learning capability contributes in both quantity and quality of the 

solutions, however, depends mainly on the quantity of building blocks being shared and 

the quantity of building blocks being in conflict. The insight discussion can be seen in the 

Chapter V. 

 4. As a highlight, the roles of negative correlation learning specific in edge based 

EDA are extracted as followed: 

1) The negative knowledge forces the algorithm to explore out of the search 

space marked as forbidden areas.  

2) The negative knowledge helps the algorithm to produce more diverse 

solutions, however dissimilar to the solutions considered to be bad quality. 

3) In cooperating with the positive knowledge, the negative knowledge 

contributes in discrimination of good and bad substructure.  
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4) The negative knowledge should enhance a constructive algorithm to 

recognize better substructures and to compose better solutions.  

 

 5. Finally, the most important contribution is the extension of COIN in solving 

multi-objective problems by applying the non-dominated sorting and crowding distance 

adopted from NSGA-II. The new algorithm was test in several real world problems. The 

results state that multi-objective version of COIN can defeat NSGA-II for all 

performance indicators. 

 

 

1.8 Dissertation Structure 

The outline of this dissertation is organized as follows. Chapter I states the 

general background, objective, scope of study, and contributions. The state of the art 

algorithms are reviewed in Chapter II. The negative knowledge which is the inspiration 

of this research is presented in Chapter III. The proposed algorithm is presented in 

Chapter IV. In Chapter V, a set of empirical study are discussed. Then we show the 

application of the proposed algorithm in some real world applications in Chapter VI. 

Finally, the conclusions and discussions of this research are presented and the future 

directions are also suggested in Chapter VII. 



CHAPTER II 

METAHEURISTICS FOR 

COMBINATORIAL OPTIMIZATION 
 

2.1 Introduction 
 This chapter provides some necessary knowledge on solution methodologies 

for solving both single and multi-objective combinatorial problems. However, this 

dissertation focuses on the methods which apply to the permutation representation, 

which is naturally more suitable with combinatorial problems. The solution 

methodologies involving the transformation of representations are not in the scope of 

the review. 

 

 This chapter can be divided into two main parts. The first part is the review of 

the state of the art algorithms that are designed to solve combinatorial problems. The 

second part is the additional techniques needed to solve the problems with multi-

objectives. 

 

 

2.1.1 Combinatorial Optimization 
Combinatorial optimization problems (COPs) [22] are characterized by 

the consideration of a selection or permutation of a finite or a countable discrete set of 

structures. This class of problems arises in many areas of pure mathematics, notably 

in algebra, probability theory, topology and geometry.  

 

In order to prevent the ambiguous of the term “Combinatorial 

optimization problems” with any other literatures, we should first define this term 

[23]. A combinatorial optimization problem is either a minimization problem or a 

maximization problem with an associated set of instances.  
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Definition 2.1: Combinatorial Optimization Problem 

An instance of a combinatorial optimization problem is 

a pair (𝑆,𝑓) where 𝑆 is the finite set of candidate solutions and 

𝑓: 𝑆 → ℝ is a function which assign to every 𝑥 ∈ 𝑆 a value 𝑓 𝑥  where 

𝑥 =  (𝑥1,…  , 𝑥𝑘)  is a feasible solution belong to the discrete solution 

set 𝑆. 𝑓 𝑥  is also called an objective function. 

Combinatorial optimization considers the following problem: 

 

 

Definition 2.2: Combinatorial Optimization is defined by 

 

  𝑧 𝑆 =  min𝑥𝜖𝑆 𝑓 𝑥              (2.1) 

where 𝑥 =  (𝑥1,…  , 𝑥𝑘)  is a feasible solution belong to the 

discrete solution set 𝑆, usually called the decision space or solution 

space. The function 𝑓 maps 𝑆 to ℝ is called the objective function. 

Therefore  𝑓 𝑥  describes the objective function value of the solution 

𝑥. 

 

 

 

2.1.2 Solution Methods for Combinatorial Problems 
According to Talbi[24], combinatorial optimization is a special class of 

optimization distinct from the mathematical programming models. Nevertheless, 

many literatures consider this class of optimization as a subclass of integer 

programming. This class of problems is characterized by discrete decision variables 

and a finite search space, moreover, the objective function and constraints may take 

any form[25]. Figure 2.1 shows the classification of optimization models. 
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Figure 2.1 Classical optimization models [24] 

 

As mentioned in Chapter I, the COPs are different from the 

mathematical programming problems as the optimize variables are usually indirectly 

used in order to evaluate a function. Therefore, the solution methodologies are also 

different to those mathematical programming models. In addition, many state of the 

art algorithms applied to different representations such as evolution strategy, 

differential evolution and most estimation of distribution algorithms (EDA) are 

inappropriate to solve these kinds of problems.  

The algorithms to solve combinatorial problems can be divided into 

two classes called exact algorithms and approximate algorithms. 

 2.1.2.1 Exact algorithms 
The exact algorithms are designed to find the optimal solution 

to the combinatorial problems. They are usually computationally expensive because 

they must (implicitly) consider all solutions in order to identify the optimum. These 

exact algorithms are typically derived from the integer linear programming (ILP) [26]. 

Branch and X (refer to Branch and Bound, Branch and Cut and Branch and Price and 

more variation) algorithms are commonly used to find an optimal solution to many 

combinatorial problems, however in many cases, partial fitness cannot be determined, 

thereby, without a heuristic to guide a search, such methods are not applicable. 
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 2.1.2.2 Approximate algorithms 

Many COPs are belonging to the class of NP-hard optimization 

problems [27]. This means that there the algorithms that guarantee to find the optimal 

solution within bounded time or exact algorithms might require the exponential 

computational time. Therefore, running an exact algorithm for hours on a powerful 

computer may not be very cost-effective. Accordingly, heuristic or approximate 

algorithms are often preferred to exact algorithms for solving the COPs. Heuristic 

strategies are receiving more and more interest as they can find the reasonable good 

solution (but not necessarily an optimal one) compared to the given computational 

time.  

The term “heuristic” derives from the Greek verb “heuriskein” 

() which means “to find” or “to discover” it is in optimization not so much 

used to describe how to find as how to search for good solutions [28]. Generally, the 

exact algorithms can apply heuristic strategies, for example, to guide the search in a 

branch and bound procedure. However, the term heuristic is preferred to denote the 

approximate algorithm. There are mainly two types of heuristics, “Constructive 

Algorithms” and “Improvement Algorithms”. Constructive algorithms build a solution 

by joining together “pieces” or “components” of a solution, while Improvement 

algorithms start from a pre-existent solution and try to improve it by modifying some 

of its component. Some heuristics algorithm combines both constructive and 

improvement strategies altogether, we call these algorithms “Composite Algorithms”, 

“Hybrid Algorithms” or “Memetic Algorithms”. These composite algorithms are now 

the most powerful heuristics for solving COPs. Among the new generation of 

composite heuristics, the most outstanding ones are the CCAO heuristic [29], the 

iterated Lin-Kernighan heuristic [30][31], and the GENIUS heuristic [32]. 

Unfortunately, most of the algorithms are problem-specific and are not in the scope of 

review. Somehow, they usually combine the existing constructive and improvement 

strategies found in this chapter. 
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The Greek suffix “meta” used in the word metaheuristics 

means “beyond, in an upper level”. The term “metaheuristics” was first used by 

Glover [33] to describe a heuristic that is superimposed on another heuristic. 

Generally speaking, metaheuristics are algorithms that combine heuristics (that are 

usually problem specific solvers) in a more general framework.  

 

According to Blum and Roli [34], metaheuristics are high level 

concepts for exploring search spaces by using different strategies. These strategies 

should be chosen in such a way that a dynamic balance is given between the 

exploitation of the accumulated search experience and the exploration of the search 

space. This balance is necessary on one side to quickly identify regions in the search 

space with high quality solutions and on the other side not to waste too much time in 

regions of the search space which are either already explored or don’t provide high 

quality solutions. 

 

The different metaheuristics approaches can be characterized 

by different aspects concerning the search path they follow or how memory is 

exploited. In this section, we discuss these aspects according to some general criteria 

which may be used to classify the presented algorithms. For a more formal 

classification of local search algorithms based on an abstract algorithmic skeleton we 

refer to [34]. 

Trajectory methods vs. discontinuous methods: An 

important distinction between different metaheuristics is 

whether they follow one single search trajectory corresponding 

to a closed walk on the neighborhood graph or whether larger 

jumps in the neighborhood graph are allowed.  

 

Population-based vs. single-point search: Related to the 

distinction between trajectory methods and discontinuous walk 

methods is the use of a population of search points or the use of 

one single search point. In the latter case only one single 

solution is manipulated at each iteration of the algorithm.  
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Memory usage vs. memoryless methods: Another possible 

characteristic of metaheuristics is the use of the search 

experience (memory, in the widest sense) to influence the 

future search direction.  

 

 

One vs. various neighborhood structures: Most local search 

algorithms are based on one single neighborhood structure 

which defines the type of allowed moves. 

 

 

Nature-inspired vs. non-nature inspiration: A minor point 

for the classification of metaheuristics is to take into account 

their original source of inspiration. Many methods are actually 

inspired by naturally occurring phenomena. The algorithmic 

approaches try to take advantage of these phenomena for the 

efficient solution of combinatorial optimization problems.  
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2.2 Single-Solution Based Algorithms 
2.2.1 Neighborhood and local search 

Local search seems to be the oldest and simplest metaheuristics 

method [25,35]. It starts at a given initial solution. At each iteration, the heuristic 

replaces the current solution by a neighbor that improves the objective function. The 

search stops when all candidate neighbors are worse than the current solution, 

meaning that a local optimum is reached. For large neighborhoods, the candidate 

solutions may be a subset of the neighborhood. The main objective of this restricted 

neighborhood strategy is to speed up the search. Variants of LS may be distinguished 

according to the order in which the neighboring solutions are generated 

(deterministic/stochastic) and the selection strategy (selection of the neighboring 

solution).  

PROCEDURE BasicLocalSearch 

1. s <- GenerateInitialSolution() 

2. Repeat 

3.  s <- Improve(N(s)) 

4. Until no improvement is possible 

Algorithm 2.1: Basic Local Search 

 

 
Definition 2.4: The neighborhood of a permutation [35] 

The neighborhoods 𝑁(𝑠) of a permutation string 𝑠 is represented by 

the set {𝑠’/𝑑(𝑠’, 𝑠) ≤ 𝜖} where 𝑑 represents a given distance that is 

related to the move operator. 

 

Definition 2.5: A locally minimal solution (or local minimum) [35] 

with respect to a neighborhood structure 𝑁 is a solution 𝑠  such that 

∀ 𝑠 ∈  𝑁(𝑠 ) ∶  𝑓 (𝑠 )  ≤  𝑓 (𝑠). We call 𝑠  a strict locally minimal 

solution if  𝑓 (𝑠 ) <  𝑓 (𝑠)∀ 𝑠 ∈ 𝑁(𝑠 ). 
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 2.2.1.1 Move operators 

 For permutation-based representations, a usual neighborhood is 

based on the swap operator that consists in exchanging or swapping the position of 

two items 𝑆𝑖  and 𝑆𝑗  of the permutation. For a permutation of size 𝑛, the size of this 

neighborhood is 𝑛(𝑛 − 1)/2.  

 
Figure 2.2 Swap operator 

 However, a swap operator might not be able to produce the 

neighborhoods that share some similarity apart from the absolute positioning of items. 

For instance, the insertion operator shown in figure 2.3 preserves both absolute and 

relative similarities. Figure 2.4 shows a rotation operator which preserve relative 

similarity and Figure 2.5 shows inversion operator which is a generalization version 

of 1-Opt, 2-Opt, 3Opt and Double Bridge operators respectively. 

 

Figure 2.3 Insertion operator 

 

Figure 2.4 Rotation operator 

 
Figure 2.5 Inversion operator 
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 2.2.1.2 Selection of the Neighbor 

  There are many strategies to select a better neighbor [24][35] 

including best improvement, first improvement and random select. A compromise in 

terms of quality of solutions and search time may consist in using the first 

improvement strategy when the initial solution is randomly generated and the best 

improvement strategy when the initial solution is generated using a greedy procedure. 

In practice, on many applications, it has been observed that the first improvement 

strategy leads to the same quality of solutions as the best improving strategy while 

using a smaller computational time. Moreover, the probability of premature 

convergence to a local optima is less important in the first improvement strategy. 

 

 In general, local search is a very easy method to design and 

implement and gives fairly good solutions very quickly. This is why it is a widely 

used optimization method in practice. One of the main disadvantages of LS is that it 

converges toward local optima. Moreover, the algorithm can be very sensitive to the 

initial solution; that is, a large variability of the quality of solutions may be obtained 

for some problems. Additionally, there is no means to estimate the relative error from 

the global optimum and the number of iterations performed may not be known in 

advance. Even if the complexity is acceptable, the worst case complexity of LS is 

exponential. Local search works well if there are not too many local optima in the 

search space or the quality of the different local optima is more or less similar.  

 

As already mentioned in the Chapter I that the main disadvantage of 

local search algorithms is the convergence toward local optima, many alternatives 

algorithms have been proposed to avoid becoming stuck at local optima.  
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2.2.2 Simulated annealing 
Simulated annealing (SA) emerges from the work of Kirkpatrick et al. 

[36] and Cerny [37]. Previously, SA has been applied to graph partitioning [36] and 

VLSI design [37]. In the 1980s, SA had a major impact on the field of heuristic search 

because of its simplicity and efficiency in solving combinatorial optimization 

problems. Then, it has been extended to deal with continuous optimization problems 

[38][39]. 

SA is based on the principles of statistical mechanics whereby the 

annealing process requires heating and the slowly cooling a substance to obtain a 

strong crystalline structure. The strength of the structure depends on the rate of 

cooling metals. If the initial temperature is not sufficiently high or a fast cooling is 

applied, imperfections (metastable states) are obtained. In this case, the cooling solid 

will not attain thermal equilibrium at each temperature. Strong crystals are grown 

from careful and slow cooling. The SA algorithm simulates the energy changes in a 

system subjected to acooling process until it converges to an equilibrium state (steady 

frozen state).  

Table 2.1 Analogy between the physical system and the optimization problem [24] 

Physical System Optimization Problem 

System state Solution 

Molecular positions Decision variables 

Energy Objective function 

Ground state Global optimal solution 

Metastable state Local optimum 

Rapid quenching Local search 

Temperature Control parameter 𝑇 

Careful annealing Simulated annealing 

 

Table 2.1 illustrates the analogy between the physical system and the 

optimization problem. The objective function of the problem is analogous to the 

energy state of the system. A solution of the optimization problem corresponds to a 

system state. The decision variables associated with a solution of the problem are 

analogous to the molecular positions. The global optimum corresponds to the ground 

state of the system. Finding a local minimum implies that a metastable state has been 

reached.  
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SA is a stochastic algorithm that enables under some conditions the 

degradation of a solution. The objective is to escape from local optima and to delay 

the convergence. From an initial solution, SA proceeds in several iterations. At each 

iteration, a random neighbor is generated. Moves that improve the cost function are 

always accepted. Otherwise, the neighbor is selected with a given probability that 

depends on the current temperature and the amount of degradation ∆𝐸 of the objective 

function. ∆𝐸 represents the difference in the objective value (energy) between the 

current solution and the generated neighboring solution. As the algorithm progresses, 

the probability that such moves are accepted decreases. This probability follows, in 

general, the Boltzmann distribution: 

  𝑃 ∆𝐸 ,𝑇 = 𝑒
𝑓 𝑠′ −𝑓(𝑠)

𝑇               (2.2) 

 

It uses a control parameter, called temperature, to determine the 

probability of accepting nonimproving solutions. At a particular level of temperature, 

many trials are explored. Once an equilibrium state is reached, the temperature is 

gradually decreased According to a cooling schedule such that few nonimproving 

solutions are accepted at the end of the search. Algorithm 2.2 describes the template 

of the SA algorithm. 

PROCEDURE SimulatedAnnealing 

1. s <- GenerateInitialSolution() 

2. Initialize Temperature T 

3. Repeat 

4.   select a random solution y from Neighborhood(x) 

5.   if f(y) > f(x) then x <= y 

6.   else if exp((f(y)-f(x))/Temp) < random[0;1] then x <- y 

7.   if f(x) > BestFx then {BestX <- x and BestFx <- f(x)} 

8.   Update(Temp) 

9. Until Termination Condition is met 

Algorithm 2.2: Simulated Annealing 
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2.2.3 Iterated Local Search 
A major problem for local search algorithms is that they may get 

trapped in local optima in the search space. In such a situation, an action should take 

place that allows the local search to leave local minima and to continue the search for 

possibly better solutions. One straightforward possibility is to modify the current 

locally optimal solution 𝑠 using a modification larger than those used in the local 

search algorithm. The application of such a move yields some intermediate solution 

𝑠0 beyond the neighborhood searched by the local search algorithm and allows to 

leave local minima. The local search is then continued from 𝑠0. Iterated local search 

(ILS) [30][40] systematically uses this idea to solve combinatorial optimization 

problems. In ILS a local search algorithm is applied repeatedly from initial solutions 

obtained by modifications to one of the previously visited locally optimal solutions. 

 

ILS is a simple, yet powerful metaheuristic to improve the 

performance of local search algorithms. The simplicity stems from the underlying 

principle and the fact that only few lines of code have to be added to an already 

existing local search procedure to implement an ILS algorithm. ILS also can be 

expected to perform better than to restart local search from a new, randomly generated 

solution. This is emphasized by the fact that ILS algorithms are currently among the 

best performing approximation methods for many combinatorial optimization 

problems like the traveling salesman problem [40]. 

 

To apply an ILS algorithm to a given problem, three “ingredients” 

have to be defined. One is a procedure Modify, that perturbs the current solution s 

(usually a local optimum) leading to some intermediate solution s0. We will refer to 

the perturbation also as kick-move in the following. Next, LocalSearch is applied 

taking s0 to a local minimum s00. Finally, one has to decide which solution should be 

chosen for the next modification step. This decision is made according to an 

AcceptanceCriterion that takes into account the previous solution s, the new candidate 

solution s00 and possibly the search history. 
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PROCEDURE IterateLocalSearch 

1. generate initial solution s 

2. s <- LocalSearch(s) 

3. sBest <- s 

4. repeat 

5.   s’ <- Modify(s,history) 

6.   s” <- LocalSearch(s’) 

7.   if (f(s”)<f(sBest)) then sBest <- s” 

8. Until Termination Condition is met 

Algorithm 2.3: Iterated Local Search 

 

2.2.4 Tabu Search 
Tabu search (TS) is an iterative local search metaheuristic [33,2]. The 

most distinctive feature of TS compared to other metaheuristics is the systematic use 

of a memory to guide the search process. For the detail discussions of its features, we 

refer to the recently published book by Glover and Laguna [2].  

 

The most widely applied feature of Tabu search is the use of a short 

term memory to escape from local minima. TS typically uses an aggressive local 

search that in each step tries to make the best possible move from 𝑠 to a neighbor 𝑠0 

even if that move worsens the objective function value. To prevent the local search to 

immediately return to a previously visited solution and to avoid cycling, moves to 

recently visited solutions are forbidden. This can be implemented by explicitly 

memorizing previously visited solutions and forbidding moving to those. More 

commonly, reversing recent moves is forbidden by disallowing the introduction of 

move attributes to a solution. In particular, reverse moves are forbidden for 𝑡𝑙 

iterations; the parameter 𝑡𝑙 is called the tabu tenure. Forbidding possible moves has 

the same effect as restricting dynamically the neighborhood 𝑁(𝑠) of the current 

solution 𝑠 to a subset of admissible solutions. Thus, Tabu search can also be 

considered as a dynamic neighborhood search technique. Yet, the Tabu conditions 
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may be too restrictive and they may forbid moves to attractive, unvisited solutions. 

Aspiration criteria are used to override the tabu status of certain moves and to avoid 

such situations. Most commonly, the aspiration criterion drops the tabu status of 

moves leading to a better solution than the best one visited so far.  

PROCEDURE TabuSearch 

1. Find a feasible solution x 

2. BestX <- x and BestFx <- f(x) and TabuList <- {} 

3. Repeat 

4.   y <- Argmax {f(y) | y  Neighbor(x) MoveAttribute(x,y) 

Tabulist} 

5.   if length(tl) > TabulistLength then remove the oldElement 

from TabuList 

6.   add MoveAttribute(y,x) as the newest element to TabuList 

7.   x <- y 

8.   if f(x) > BestFx then { BestX <- x and BestFx <- f(x) } 

9. Until Termination Condition is met 

Algorithm 2.4: Tabu Search 

 

To increase the efficiency of Tabu search, techniques exploiting the 

long-term memory of the search process are used. These methods are used to achieve 

intensification or diversification of the search process. Intensification strategies 

correspond to efforts of revisiting promising regions of the search space either by 

recovering elite solutions (that is, the best solutions obtained so far) or attributes of 

these solutions. Diversification refers to exploring new search space regions 

corresponding to the introduction of new attribute combinations. Many long term 

memory strategies in the context of TS are based on a frequency memory on the 

occurrence of solution attributes.  
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TS appears to be one of the most successful metaheuristics. For many 

problems, TS implementations are among the algorithms giving the best tradeoff 

between solution quality and the computation-time required [41,42].  

 

2.2.5 GRASP 
Greedy randomized adaptive search procedures (GRASP) [43][44] 

allow escaping from local minima by generating new starting solutions. Each GRASP 

iteration consists of two phases, a construction phase and a local search phase. In the 

construction phase a solution is constructed from scratch, adding one solution 

component at a time. At each construction iteration the components to be added are 

contained in a restricted candidate list which is defined according to a greedy 

function. However, not necessarily the best component is added. Instead, in each 

solution construction step one of the components of the restricted candidate list is 

chosen at random according to a uniform distribution. The algorithm is called 

adaptive because the greedy function value for each component is updated reflecting 

the changes due to the previously added component. The constructed solutions are not 

guaranteed to be locally optimal with respect to some simple neighborhood definition. 

Hence, in the second phase local search is applied to improve solutions. 

PROCEDURE GRASP 

1. generate initial solution s 

2. repeat 

3.   s <- ConstructGreedyRandomizeSolution() 

4.   s’ <- LocalSearch(s) 

5.   if f(s’)< f(sBest) then sBest <- s’ 

6. Until Termination Condition is met 

Algorithm 2.5: GRASP 
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2.3 Population-Based Algorithms 
2.3.1 Genetic Algorithms 

Genetic algorithm (GA) [13][7] is a specific type of evolutionary 

algorithms [45]. Evolutionary algorithms are population-based, adaptive search 

algorithms designed to attack optimization problems. They are inspired by models of 

natural evolution of species and use the principle of natural selection which favors 

individuals that are more adapted to a specific environment for survival and further 

evolution. Each individual in an evolutionary algorithm typically represents a solution 

with an associated fitness value. The three main operators used are selection, 

mutation, and recombination. Selection prefers fitter individuals to be chosen for the 

next generation and for the application of the mutation and recombination operator. 

Mutation is a unary operator that introduces random modifications to an individual. 

Recombination combines the genetic material of two individuals, also called parents, 

by means of a crossover operator to generate new individuals, called offsprings.  

The three main algorithmic developments within the field of 

evolutionary algorithms are genetic algorithms, evolution strategies [46] [47] and 

evolutionary programming [48]. These algorithms have been developed 

independently and, although these algorithms initially have been proposed in the 

sixties and seventies, only in the beginning of the nineties the researchers became 

aware of the common underlying principles of these approaches [45]. (For a detailed 

discussion of similarities and differences between these approaches we refer to [45].) 

Here we focus on genetic algorithms since they appear to be the best suited 

evolutionary algorithms for combinatorial optimization problems, which are the target 

of this dissertation. Evolution strategies and evolutionary programming differ from 

genetic algorithms by representing solutions directly as real valued parameters (in 

case of genetic algorithm applications to continuous parameter optimization problems 

the numbers are coded in binary form) and the much stronger reliance on mutation as 

a primary search operator. Indeed, in evolutionary programming only mutation is used 

for modifying solutions. 

 

 

In the first GA applications, individuals were represented by bit strings 

of fixed length [13]. Yet, this type of representation proved to be insufficient to 
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efficiently attack certain types of combinatorial problems [49] like permutation 

problems. Therefore, for such problems usually more general, problem specific 

encodings are applied. The crossover operator is usually understood as the main 

operator driving the search in genetic algorithms. The idea of crossover is to exchange 

useful information between two individuals and in this way to generate a hopefully 

better offspring. Mutation is understood as a background operator which introduces 

small, random modifications to an individual. Yet, recent results suggest that the role 

of mutation has been underestimated [45]. The selection operator is used to keep the 

population at a constant size, choosing preferably individuals with higher fitness 

(survival of the fittest). The complete cycle of recombination, mutation and selection 

is called generation.  

PROCEDURE GeneticAlgorithm 

1. generate initial population p 

2. repeat 

3.   p’ <- Recombination(p) 

4.   p’ <- Mutation(p) 

5.   p <- Selection(p,p’) 

8. Until Termination Condition is met 

Algorithm 2.6: Simple Genetic Algorithm 

 

2.3.1.1 Crossover operators 

As mentioned in Chapter I, the recombination of two 

permutation sequences is not straight forward. Applying GAs in combinatorial 

problems turns to be somewhat problem dependent. Choosing an inappropriate 

crossover operator would not improve the populations, yet disrupt the schemas as 

well. Many permutation based crossover operators have been consecutively proposed 

since 1985. They are broadly categorized to preserve the schemas in the parent 

solutions in three manners including absolute order, relative order and edge. The 

permutation based crossover operators are reviewed as followed: 
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2.3.1.1.1 Partially-mapped crossover (PMX) [50] was 

first proposed by Goldberg and Lingle. This operator first randomly selects two cut 

points on both parents. In order to create an offspring, the substring between the two 

cut points in the first parent replaces the corresponding substring in the second parent. 

Then, the inverse replacement is applied outside of the cut points, in order to 

eliminate duplicates and recover all positions. 

In figure 2.6, the offspring is created by first replacing 

the substring 4-3-7-6 in parent 1 by the substring 1-7-5-3. Then, the redundancy items 

in the parent 1 are mapped and were replaced by the matched items in the substring. 

Those are item 1 was replaced by item 4 while item 5 was replaced by item 6. 

However, the item 5 was mapped to item 7 which would be redundant to the items in 

the exchanged substring as well, therefore, the mapping procedure repeats until an 

available item is found. The item 5 finally mapped and replaced with the item 6 in the 

parent 2.  

Clearly, PMX tries to preserve the absolute position of 

the items when they are copied from the parents to the offspring. In fact, the number 

of items that do not inherit their positions from one of the two parents is at most equal 

to the length of the string between the two cut points. From the above example, in the 

offspring 1, only item 1 and 5 do not inherit their absolute position from one of the 

two parents. 
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Figure 2.6 The partially-mapped crossover 
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2.3.1.1.2 Cycle crossover (CX) [51] was introduced by 

Oliver. The cycle crossover focuses on subsets of items that occupy the same subset 

of positions in both parents. Then, these items are copied from the first parent to the 

offspring (at the same position), and the remaining positions are filled with the items 

of the second parent. In this way, the position of each item is inherited from one of the 

two parents, However, many edges (connection between each item) can be broken in 

the process, because the initial subset of items is not necessarily located at 

consecutive positions in the parent strings. 

 

In figure 2.7, In order to construct offspring 1, the 

subset of items {2, 9, 8} occupies the subset of positions {1, 7, 8} in both parents. 

Hence, an offspring is created by filling the positions 1, 7, and 8 with the items found 

in the parent 1, and filing the remaining positions with the items found in the parent 2. 
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Figure 2.7 The cycle crossover 
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2.3.1.1.3 Modified crossover [52] was proposed by 

Davis. This crossover operator is an extension of the one-point crossover for 

permutation problems. A cut position is chosen at random on the first parent 

chromosome. Then, an offspring is created by appending the second parent 

chromosome to the initial segment of the first parent (before the cut point), and by 

eliminating the duplicates. An example is provided in figure 2.8. 

Figure 2.8 The modified crossover 
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2.3.1.1.4 Order crossover (OX) proposed by Oliver 

[47] and Goldberg [7]. This crossover operator extends the modified crossover of 

Davis by allowing two cut points to be randomly chosen on the parent chromosomes. 

In order to create an offspring, the string between the two cut points in the first parent 

is first copied to the offspring. Then, the remaining positions are filled by considering 

the sequence of items in the second parent, starting after the second cut point (when 

the end of the chromosome is reached, the sequence continues at position 1). 

 

In figure 2.9, the substring 4-3-7 in parent 1 is first 

copied to the offspring. Then, the remaining positions are filled one by one after the 

second cut point, by considering the corresponding sequence of items in parent 2, 

namely 9-4-1-7-5-3-8-2-6. Hence, item 9 is first considered to occupy position 1, the 

item 4 is secondly considered to occupy the position 2 but it is discarded because it is 

already included in the offspring. Item 1 is the next item to be considered, and it is 

inserted at position 2. The procedure repeats as item 5 fills the position 6, item 3 is 

discarded, item 8 fills the position 7, and item 2 fills the position 8. Finally, the last 

item 5 fills the last sequence.  

 

Clearly, OX tries to preserve the relative order of the 

items rather than their absolute position. In figure 2.9, the offspring2 does not 

preserve the position of most items in parent 1. The variant of OX, known as the 

maximal preservative crossover [MPX], is also described in [53]. 
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Figure 2.9 The order crossover 
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Figure 2.10 The order-based crossover 

2.3.1.1.6 Position-based crossover (PBX) [54] was 

also invented be Syswerda. Here, a subset of positions is selected in the first parent. 

Then, the items found at these positions are copied to the offspring (at the same 

positions). The other positions are filled with the remaining items, in the same order 

as in the second parent. 

The name of this operator is a little bit misleading, 

because it is the relative order of the items that is inherited from the parents (the 

absolute position of the items inherited from the second parent is rarely preserved). 

This operator can be seen as an extension of the order crossover OX, where the items 

inherited from the first parent do not necessarily occupy consecutive positions. 

 

In figure 2.11, positions 3, 5 and 7 are first selected in 

parent 1. items 4, 7 and 9 are found at these positions, and occupy the same positions 

in the offspring. The other positions are filled one by one, starting at position 1, by 
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Figure 2.11 The position-based crossover 

2.3.1.1.7 Weight mapping crossover (WMX) was 

recently proposed by Lee el al. [55][56] In many approaches, the mechanism of the 

crossover is not the same with that of the conventional one-cut point crossover. Some 

offspring may generate new chromosomes that are not possible to succeed the 

character of the parents, thereby retarding the process of evolution. For this reason 

weight mapping crossover is invented.  

In figure 2.12, The weight mapping crossover begins 

with identifying the cut position, then map the items in the substring according to 

their weight. In this case, the weight of an item is equal to its value. For instance, an 

item 3 has a weight equal to 3 as well. Thus, a substring 6-9-8-5 from the parent 1 is 

sorted according to their weight and result is 5-6-8-9 then is map to the sorted 

substring 2-3-6-8 from parent 2. Then the substring 6-9-8-5 is rearranged according to 

the sequence of substring 3-8-2-6. The final step simply legalizes the offspring 

according to the sequence of the mapped weight. 
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Figure 2.12 The weight-mapping crossover 

2.3.1.1.7 Edge recombination (ER) was proposed by 

Whitley et al. [57] The adjacency representation is designed to facilitate the 

manipulation of edges. The crossover operators based on this representation generate 

offspring that inherit most of their edges from the parent chromosomes. The 

adjacency representation can be described as follows: node 𝑗 occupies position 𝑖 in the 

chromosome if there is an edge from item 𝑖 to item 𝑗 in the permutation string. This 

representation usually considers the relationship between edges as they are 

symmetrical. For instance an edge 3-2 is equivalent to 2-3. Various crossover 

operators are designed to manipulate this representation. These operators are aimed at 

transferring as many edges as possible from the parents to the offspring; however, the 

effective and most powerful one has shown to be only edge recombination. 
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The edge recombination operator reduces the myopic 

behavior of the alternate edge crossover [58] approach with a special data structure 

called edge map. The edge map maintains the list of edges that are incident to each 

node item of the parent and that lead to the nodes not yet included in the offspring. 

Hence, these edges are still available for extending the search and are said to be 

active. The strategy is to extend the search by selecting the edge that leads to the node 

item with the minimum number of active edges. In the case of equality between two 

or more item nodes, one of these nodes is selected at random. With this strategy, the 

approach is less likely to get trapped in a dead end. 

 

For the parent 2-1-4-3-7-6-9-8-5 and 9-4-1-7-5-3-8-2-6 

(path representation), the initial edge map is shown in figure 2.13 Let us assume that 

node 1 is selected as the starting node. Accordingly, all edges incident to node 1 must 

first be deleted from the initial edge map. From node 1, we can go to nodes 2, 4 or 7. 

Each node has three active edges; hence, a random choice is made between nodes 2, 4 

and 7. We assume that node 2 is selected. From 2, we can traverse to nodes 5, 6 and 8. 

Node 5 and 8 has up to three active edges while node 6 only has got two, so the latter 

is selected. From node 6, there are two choices 7 and 9 with the same amount of 

active edges, thus a random choice is made. The procedure repeats until there is no 

node left. From the figure 2.13 the final candidate is generated one node by one node 

start from node 1 and end up with 8. The final candidate is 1-2-6-9-4-3-7-5-8 which 

inherits edge 2-1, 6-9, 4-3, 3-7 and 8-5 from parent 1 while inherits edge 2-6, 9-4, 7-5 

from parent 2.  

More variant of edge recombination which focuses on 

edges common to both parents is described in [57]. Recently, a descendant of ER 

called Sequential Constructive Crossover (SCX) [58] proposed by Armed Z.H. 

integrated the edge weight matrix to the edge map in order to choose a better path. 

. 
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Figure 2.13 The edge recombination  
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2.3.1.2 Mutation operators 

Mutation is a genetic operator that alters one or more gene 

values in a chromosome from its initial state. This can result in entirely new gene 

values being added to the gene pool. With these new gene values, the genetic 

algorithm may be able to arrive at better solution than was previously possible. 

However, mutation operators in permutation representation are also needed to be 

design such that the operators always generate the feasible solutions. Typically, the 

move operators of local search are adopted as the mutation operators for 

permutations. 

 

 

2.3.1.3 Selection operators 

Selection is a genetic operator that chooses a chromosome from 

the current generation’s population for inclusion in the next generation’s population. 

Usually, selection operators are not restricted to the representations. The three most 

commonly used selection methods are proportional (roulette wheel), tournament, and 

ranking. A proportional selection operator selects the population from the 

probabilities in which the chance of a chromosome getting selected is proportional to 

its fitness (or rank). This is where the concept of survival of the fittest comes into 

play. A tournament selection operator randomly divides the populations in to subsets, 

and then selects the best candidates among the member of such set. A ranking 

selection operator selects the top N percent of the population based on their rank. The 

variant of these operators can be found in [7]. 
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2.3.2 Ant colony optimization 
Ant colony optimization (ACO) is a population-based search inspired 

by the behavior of ants [59][60][61][62]. Ants are simple insects that live in colonies 

and show their amazing capabilities through their cooperative behavior like finding 

shortest paths from a food source to their colony. The ants exchange information via 

pheromones. The pheromones are chemical substances which the ants lay down in 

varying quantities to mark a path. While isolated ants move essentially at random, an 

ant encountering a previously laid pheromone trail can detect it and may follow the 

pheromone trail. The ants’ probability to follow the pheromone trail depends on the 

pheromone intensity. The higher the pheromone intensity indicates the larger the 

possibility to follow. At the same time the ants following the pheromone trail may lay 

down additional pheromone and a positive feedback loop results. The more ants 

previously have chosen the pheromone trail, the more ants will follow it in the future. 

One of the basic ideas of ant colony optimization is to use an algorithmic counterpart 

of the pheromone trail as a medium for cooperation and communication among a 

colony of artificial ants which is guided by positive feedback.  

 

The most important part in ACO algorithms, in general, is how the 

pheromone trails are used to generate better solutions in future iterations of the 

algorithm. The idea is to combine the solution components that in previous iterations 

have shown to be part of good solutions, even better solutions may be generated. 

Thus, ACO algorithms can be seen as adaptive sampling algorithms – adaptive in the 

sense that they consider past experience to influence future iterations. 

PROCEDURE AntColonyOptimization 

1. Initialize PheromoneTrails, calculate HeuristicInformation 

2. Repeat 

3.   p <- ConstructSolutions(PheromoneTrails, 

HeuristicInformation) 

4.   GlobalUpdateTrails(p) 

5. Until Termination Condition is met 

Algorithm 2.7: Ant Colony Optimization 
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We give an algorithmic skeleton into which fit the ACO algorithm 

applications for static combinatorial optimization problems. For an outline of the 

more general ACO metaheuristics we refer to [65]. In the main loop of the algorithm, 

first solutions are generated for all ants of the colony (the colony is indicated by p) by 

a function ConstructSolutions. The solution construction typically uses the pheromone 

information and problem specific local heuristic information. The solutions are then 

improved by a local search phase (LocalSearch). This local search phase is optional; 

in fact, it is not used in all applications of ACO algorithms to combinatorial 

optimization problems. Finally, the solutions are used to update the pheromone trails 

in a function GlobalUpdateTrails. 

 

2.3.3 Particle swarm optimization 
Particle swarm optimization (PSO) is a population-based metaheuristic 

inspired from swarm intelligence [63]. It mimics the social behavior of natural 

organisms such as bird flocking and fish schooling to find a place with enough food. 

Indeed, in those swarms, a coordinated behavior using local movements emerges 

without any central control. Originally, PSO has been successfully designed for 

continuous optimization problems. Its first application to optimization problems has 

been proposed in Ref. [64].  

 

In the basic model, a swarm consists of 𝑁 particles flying around in a 

𝐷-dimensional search space. Each particle 𝑖 is a candidate solution to the problem, 

and is represented by the vector 𝑥𝑖  in the decision space. A particle has its own 

position and velocity, which means the flying direction and step of the particle. 

Optimization takes advantage of the cooperation between the particles. The success of 

some particles will influence the behavior of their peers. Each particle successively 

adjusts its position 𝑥𝑖  toward the global optimum according to the following two 

factors: the best position visited by itself (𝑝𝑏𝑒𝑠𝑡𝑖) denoted as 𝑝𝑖 = (𝑝𝑖1,𝑝𝑖2,… , 𝑝𝑖𝐷)  

and the best position visited by the whole swarm (𝑔𝑏𝑒𝑠𝑡) (or 𝑙𝑏𝑒𝑠𝑡, the best position 

for a given subset of the swarm) denoted as 𝑝𝑔  The vector (𝑝𝑔 − 𝑥𝑖)   represents the 

difference between the current position of the particle 𝑖 and the best position of its 

neighborhood. 
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PROCEDURE ParticleSwarmOptimization 

1. Initialize p[N] 

2. Repeat 

3.   Evaluate f(p[N]) 

4.   UpdateVelocities(p[N]) 

5.   UpdatePosition(p[N]) 

6.   UpdateBestFoundPaticle(pBest[N],gbest) 

5. Until Termination Condition is met 

Algorithm 2.8: Particle Swarm Optimization 

 

Update the velocity: The velocity 𝑣𝑖  that defines the amount of 

change that will be applied to the particle is defined as 

𝑣𝑖 𝑡 =  𝑣𝑖 𝑡 − 1 +  𝜌𝑖𝐶1 ×  𝑝𝑖 − 𝑥𝑖 𝑡 − 1  + 𝜌2𝐶2 ×  𝑝𝑔 − 𝑥𝑖 𝑡 − 1             (2.5) 

where 𝜌1 and 𝜌2 are two random variables in the range [0, 1]. The constants 𝐶1 and 𝐶2 

represent the learning factors. They represent the attraction that a particle has either 

toward its own success or toward the success of its neighbors. The parameter 𝐶1 is the 

cognitive learning factor that represents the attraction that a particle has toward its 

own success. The parameter 𝐶2 is the social learning factor that represents the 

attraction that a particle has toward the success of its neighbors. The velocity defines 

the direction and the distance the particle should go 

Update the position: Each particle will update its coordinates in the 

decision space. 

 

 𝑥𝑖 𝑡 =  𝑥𝑖 𝑡 − 1 +  𝑣𝑖 𝑡              (2.6) 

Then it moves to the new position. 

 

Update the best found particles: Each particle will update 

(potentially) the best local solution: 

 

     if 𝑓 𝑥𝑖 < 𝑝𝑏𝑒𝑠𝑡𝑖 , then 𝑝𝑖 =  𝑥𝑖              (2.7) 
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Moreover, the best global solution of the swarm is updated: 

 

     if 𝑓 𝑥𝑖 < 𝑔𝑏𝑒𝑠𝑡𝑖 , then 𝑔𝑖 =  𝑥𝑖              (2.8) 

 

Hence, at each iteration, each particle will change its position 

according to its own experience and that of neighboring particles. As for any swarm 

intelligence concept, agents (particles for PSO) are exchanging information to share 

experiences about the search carried out. The behavior of the whole system emerges 

from the interaction of those simple agents. In PSO, the shared information is 

composed of the best global solution gbest. 

 

Traditionally, PSO algorithms are applied to continuous optimization 

problems. Some adaptations must be made for discrete optimization problems. They 

differ from continuous models in mapping between particle positions and discrete 

solutions: Many discrete representations such as binary encodings [65] and 

permutations can be used for a particle position. The velocity models may be real 

valued, stochastic, or based on a list of moves. In stochastic velocity models for 

permutation encodings, the velocity is associated with the probability for each item to 

be generated in a position. Further information can be found in [66][67]. Velocity 

models for discrete optimization problems have been generally inspired from 

mutation and crossover operators of EAs. 

 

 

2.3.4 Estimation of distribution algorithms 
Estimation of distribution algorithms (EDA) are a recent class of 

optimization techniques based on the concept of using probability distribution of the 

population in reproducing new offsprings [68][69]. EDAs construct a probability 

distribution of desired population and then create new individuals by sampling from 

this probability distribution. This class of algorithms is classified as non-Darwinian 

evolutionary algorithms as they replace Darwinian operators with probability 

distributions. The first algorithms belonging to this class have been proposed in Refs. 

[70]. 
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The principal idea in EDAs is to transform the optimization problem 

into a search over probability distributions. They maintain a population of individuals. 

A probabilistic model for promising individuals is constructed. For instance, EDA 

estimates the probability distribution of each decision variable of the optimization 

problem. The probabilistic model represents an explicit model of promising regions of 

the search space. The induced probabilistic model will be used to generate new 

solutions. The generated individuals will replace the old population in a full or a 

partial manner. This process iterates until a given stopping criteria. The general EDA 

can be sketched as follows (Algorithm 2.9): 

PROCEDURE EDA 

1. Initialize ProbabilisticModel 

2. Repeat 

3.   p <- Sampling(ProbabilisticModel) 

4.   p <- Selection(p,p’) 

5.   Update(ProbabilisticModel,p)  

6. Until Termination Condition is met 

Algorithm 2.9: Estimation of Distribution Algorithm 

Various algorithms in EDA class have been proposed since 1994, the 

famous EDAs including PBIL (population based incremental learning)[71], CGA 

(compact genetic algorithm)[72], UMDA (univariate marginal distribution 

algorithm)[73], MIMIC (mutual information maximizing input clustering)[74], and 

BOA (Bayesian optimization algorithm)[75]. These algorithms differ from each other 

in encoding, probability models and the methods to update the models. Further 

information of these algorithms can be found in Refs.[68][69] 

The results obtained from the EDA family of algorithms are not yet 

competitive compared to more traditional metaheuristics especially in combinatorial 

problems. The simple explanation is that all the mentioned EDAs use inappropriate 

encoding to solve permutation problems. Recently, two EDAs that naturally represent 

the permutation in the genotype have emerged. They are called EHBSA (edge 

histogram based sampling algorithm) [18] and NHBSA (node histogram based 

sampling algorithms) [19].  
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2.3.4.1 Edge Histogram Based Sampling Algorithm 

Edge Histogram Based Sampling Algorithm (EHBSA) [18] 

was proposed by Tsutsui in 2002. EHBSA was designed to solve combinatorial 

problems and has shown the competitive performances in solving many real world 

applications including traveling salesman problems (TSP), flow shop scheduling 

problems (FSSP) and capacitated vehicle routing problems (CVRP). 

In permutation scheme, the models of solutions can be 

represented as a graph of nodes connected by edges. EHBSA utilizes Edge Histogram 

Matrix (EHM) to learn the mutual information of edges contained in the selected 

solutions and then construct new solutions by sampling from it. The idea of EHBSA 

is to use the edge recombination (ER) [57] in genetic algorithms with the whole 

selected population instead of tradition two-parent recombination. 

Constructing Edge Histogram Matrix: Edge histogram 

matrix is a matrix that simply store the summation of edge counted from the selected 

population plus a bias. Let string of 𝑘th individual in population 𝑃(𝑡) at generation 𝑡 

represent as 𝑠𝑘𝑡  =  (𝜋𝑘
𝑡  0 ,𝜋𝑘

𝑡  1 ,… ,𝜋𝑘
𝑡  𝐿 − 1 ). 𝜋𝑘𝑡  0 ,  𝜋𝑘𝑡  1 ,… , and 𝜋𝑘

𝑡  𝐿 − 1  

are the permutation of (0,1,…  , 𝐿 − 1) where 𝐿 is the length of the permutation. Edge 

histogram matrix 𝐸𝐻𝑀𝑡  (𝑒𝑖,𝑗
𝑡 )(𝑖, 𝑗 =  0,1,… , 𝐿 − 1) of population 𝑃(𝑡) is 

symmetrical and consists of 𝐿2 items as follows: 

𝑒𝑡 𝑖 ,𝑗 =  
 (𝛿𝑖 ,𝑗  𝑠𝑘

𝑡  + 휀 if 𝑖 ≠ 𝑗𝑁
𝑘=1

0 if 𝑖 = 𝑗
              (2.9) 

where 𝑁 is the population size, 𝛿𝑖 ,𝑗  𝑠𝑘𝑡   is a delta function defined as 

   𝛿𝑖 ,𝑗  𝑠𝑘
𝑡  =   

1 if ∃[ ∈  0,1,…𝐿 − 1 ∧

𝜋𝑘
𝑡   = 𝑖 ∧ 𝜋𝑘

𝑡    + 1 mod𝐿 = 𝑗]

0 otherwise

          (2.10) 

and 휀  휀 > 0  is a bias to control pressure in sampling nodes just like those used for 

adjusting the selection pressure in the proportional selection in GAs. The average 

number of edges of item (𝑒𝑖 ,𝑗
𝑡 ) in 𝐸𝐻𝑀𝑡 is 2𝐿𝑁/(𝐿2 − 𝐿)  =  2𝑁/(𝐿 − 1). So, 휀 is 

determined by a bias ratio 𝐵𝑟𝑎𝑡𝑖𝑜  (𝐵𝑟𝑎𝑡𝑖𝑜 >  0) of this average number of edges as 
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     휀 =  
2𝑁

𝐿−1
𝐵𝑟𝑎𝑡𝑖𝑜             (2.11) 

 

A smaller of value of 𝐵𝑟𝑎𝑡𝑖𝑜  reflects the real distribution of edges in sampling of 

nodes and a bigger value of 𝐵𝑟𝑎𝑡𝑖𝑜  will give a kind of perturbation in the sampling. An 

example of 𝐸𝐻𝑀𝑡 is shown in figure 2.14. 

 

Figure 2.14 An example of asymmetric edge histogram matrix for 

 𝑵 = 𝟓,𝑳 = 𝟓,𝑩𝒓𝒂𝒕𝒊𝒐 = 𝟓. 

Sampling from Edge Histogram Matrix: The sampling 

algorithm of EHBSA is similar to Ant Colony Optimization[20]. A new individual 

permutation 𝒄[] is generated straightforwardly as follows: 

PROCEDURE SamplingfromEHM 

1. Set position counter 𝑝 ←  0 

2. Obtain first node 𝑐[0] randomly from [0, 𝐿 − 1] 

3. Construct a roulette wheel vector 𝑟𝑤[] from matrix as 

𝑟𝑤[𝑗] ← 𝑒𝑡𝑐 𝑝 ,𝑗 (𝑗 = 0,1,… , 𝐿 − 1) 

4. Set to 0 previously sampled nodes in 𝑟𝑤[] (𝑟𝑤[𝑐[𝑖]]  ←  0 for 𝑖 =

0,… , 𝑝) 

5. Sample next node 𝑐[𝑝 + 1] with probability 𝑟𝑤[𝑥]/ 𝑟𝑤[𝑗] 𝐿−1
𝑗=0  using 

roulette wheel 𝑟𝑤[].  

6. Update the position counter 𝑝 ←  𝑝 + 1. 

7. If  𝑝 < 𝐿 − 1, go to Step 3. 

Algorithm 2.10: Sampling Algorithm of EHBSA 

𝑠1
𝑡 =  0,1,2,3,4  

𝑠2
𝑡 = (1,3,4,2,0) 

𝑠3
𝑡 = (3,4,2,1,0) 

𝑠4
𝑡 = (4,0,3,1,2) 

𝑠5
𝑡 = (2,1,3,4,0) 

𝑃(𝑡) 

 

node 𝑗 

 
 
 
 
 
 
 

0 1.1 0.1 1.1 0.1

1.1 0 2.1 2.1 0.1

1.1 2.1 0 1.1 0.1

0.1 1.1 0.1 0 4.1

2.1 0.1 2.1 0.1 0  
 
 
 
 
 
 

 

𝐸𝐻𝑀𝑡  

n
o

d
e 
𝑖 
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 In this review, we exemplify only the simple version of 

EHBSA. However, there are variations of EHBSA such as hybridization with absolute 

order base crossover obtained from genetic algorithm to improve the quality of the 

results. Further information can be found in Ref. [18][19] 

2.3.4.2 Node Histogram Based Sampling Algorithm  

Node Histogram Based Sampling Algorithm [19] (NHBSA) 

was also proposed by Tsutsui. NHBSA was also designed to solve combinatorial 

problems and have shown the competitive performances in many more combinatorial 

problems. However, NHBSA differs from EHBSA as NHBSA is more suitable to the 

problems where fitness’s depend on the absolute order of item. NHBSA utilize a 

Node Histogram Matrix (NHM) to construct a solution. 

Constructing Node Histogram Matrix: Node histogram 

matrix is a matrix that simply store the summation of node counted from the selected 

population plus a bias. Let string of 𝑘th individual in population 𝑃(𝑡) at generation 𝑡 

represent as 𝑠𝑘𝑡  =  (𝜋𝑘
𝑡  0 ,𝜋𝑘

𝑡  1 ,… ,𝜋𝑘
𝑡  𝐿 − 1 ). 𝜋𝑘𝑡  0 ,  𝜋𝑘𝑡  1 ,… , and 𝜋𝑘

𝑡  𝐿 − 1  

are the permutation of (0,1,…  , 𝐿 − 1) where 𝐿 is the length of the permutation. Node 

histogram matrix 𝑁𝐻𝑀𝑡  (𝑛𝑖 ,𝑗
𝑡 )(𝑖, 𝑗 =  0,1,… , 𝐿 − 1) of population 𝑃(𝑡) consists of 

𝐿2 items as follows: 

𝑛𝑡 𝑖 ,𝑗 =  (𝛿𝑖 ,𝑗  𝑠𝑘
𝑡  + 휀 𝑁

𝑘=1                       (2.12) 

where 𝑁 is the population size, 𝛿𝑖 ,𝑗  𝑠𝑘𝑡   is a delta function defined as 

   𝛿𝑖 ,𝑗  𝑠𝑘
𝑡  =   1 if 𝜋𝑘𝑡  𝑖 = 𝑗

0 otherwise
                     (2.13) 

and 휀  휀 > 0  is a bias to control pressure in sampling nodes just like those used for 

adjusting the selection pressure in the proportional selection in GAs. The average 

number of edges of item (𝑛𝑖 ,𝑗𝑡 ) in 𝑁𝐻𝑀𝑡 is 𝐿𝑁/(𝐿2)  =  𝑁/𝐿. So, 휀 is determined by a 

bias ratio 𝐵𝑟𝑎𝑡𝑖𝑜  (𝐵𝑟𝑎𝑡𝑖𝑜 >  0) of this average number of nodes as 

     휀 =  
𝑁

𝐿
𝐵𝑟𝑎𝑡𝑖𝑜             (2.14) 

A smaller of value of 𝐵𝑟𝑎𝑡𝑖𝑜  reflects the real distribution of nodes in sampling of 

positions and a bigger value of 𝐵𝑟𝑎𝑡𝑖𝑜  will give a kind of perturbation in the sampling. 

An example of 𝑁𝐻𝑀𝑡 is shown in figure 2.15. 
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Figure 2.15 An example of node histogram matrix for 

 𝑵 = 𝟓,𝑳 = 𝟓,𝑩𝒓𝒂𝒕𝒊𝒐 = 𝟓. 

Sampling from Node Histogram Matrix: Although the 

𝑵𝑯𝑴𝒕 is simpler to construct than the 𝑬𝑯𝑴𝒕  , the sampling algorithm of NHBSA is 

a little bit more complicate.  In EHBSA, each node is constructed one position by one 

position in a sequence. However, in NHBSA, each node is constructed with a random 

position sequence. A new individual permutation 𝒄[] is generated straightforwardly as 

follows: 

PROCEDURE SamplingfromNHM 

1. Set counter 𝑝 ←  0 

2. Construct a roulette wheel of all positions. 

3. Set to 0 previously sampled positions  

4. Sample a position j from the roulette wheel of position 

5. Construct a roulette wheel vector 𝑟𝑤[] from matrix as 

𝑟𝑤[𝑖] ← 𝑛𝑡 𝑐 𝑝 ,𝑖(𝑖 = 0,1,… , 𝐿 − 1) 

6. Set to 0 previously sampled nodes in 𝑟𝑤[] (𝑟𝑤[𝑐[𝑖]]  ←  0 for 𝑖 =

0,… , 𝑝) 

7. Sample next node 𝑐[𝑝 + 1] with probability 𝑟𝑤[𝑥]/ 𝑟𝑤[𝑗] 𝐿−1
𝑗=0  using 

roulette wheel 𝑟𝑤[].  

6. Update the counter 𝑝 ←  𝑝 + 1. 

7. If  𝑝 < 𝐿, go to Step 2. 

Algorithm 2.11: Sampling Algorithm of NHBSA 

 

𝑠1
𝑡 =  0,1,2,3,4  

𝑠2
𝑡 = (1,3,4,2,0) 

𝑠3
𝑡 = (3,4,2,1,0) 

𝑠4
𝑡 = (4,0,3,1,2) 

𝑠5
𝑡 = (2,1,3,4,0) 

𝑃(𝑡) 

 

position 𝑗 

 
 
 
 
 
 
 
1.1 1.1 0.1 0.1 3.1

1.1 2.1 0.1 2.1 0.1

1.1 0.1 2.1 1.1 1.1

1.1 1.1 2.1 1.1 0.1

1.1 1.1 1.1 1.1 1.1 
 
 
 
 
 
 

 

𝑁𝐻𝑀𝑡  

n
o

d
e 
𝑖 
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2.3.5 Scatter Search and Path Relinking 
Scatter search has its origin in the paper of F. Glover [76]. SS is a 

deterministic strategy that has been applied successfully to some combinatorial and 

continuous optimization problems. Even if the principles of the method have been 

defined since 1977, the application of SS is in its beginning. 

SS is a evolutionary and population metaheuristic that recombines 

solutions selected from a reference set to build others [77]. The method starts by 

generating an initial population satisfying the criteria of diversity and quality. The 

reference set (RefSet) of moderate size is then constructed by selecting good 

representative solutions from the population. The selected solutions are combined to 

provide starting solutions to an improvement procedure based on a S-metaheuristic. 

According to the result of such procedure, the reference set and even the population of 

solutions are updated to incorporate both high-quality and diversified solutions. The 

process is iterated until a stopping criterion is satisfied.  

The SS approach involves different procedures allowing to generate 

the initial population, to build and update the reference set, to combine the solutions 

of such set, to improve the constructed solutions, and so on. SS uses explicitly 

strategies for both search intensification and search diversification. It integrates search 

components from P-metaheuristics and S-metaheuristics. The algorithm starts with a 

set of diverse solutions, which represents the reference set (initial population) This set 

of solutions is evolved by means of recombination of solutions as well as by the 

application of local search (or another S-metaheuristic). 

PROCEDURE ScatterSearch 

1. Generate RefSet 

2. Construct a roulette wheel of all positions. 

3. Repeat  

4.    SolutionRecombinationMethod(RefSet) 

5. Until a termination condition is met 

Algorithm 2.11: Scatter Search 
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 Search components of scatter search algorithms: The search 

component of SS including diversification generation method, improvement method, 

reference set update method, subset generation method and solution combination 

method. 

The diversification generation method generates a set of diverse initial 

solutions. In general, greedy procedures are applied to diversify the search while 

selecting high-quality solutions. The improvement method transforms a trial solution 

into one or more enhanced trial solutions using any S-metaheuristic. In general, a 

local search algorithm is applied and then a local optimum is generated. In reference 

set update method, a reference set is constructed and maintained. The objective is to 

ensure diversity while keeping high-quality solutions. The subset generation method 

operates on the reference set, to produce a subset of solutions as a basis for creating 

combined solutions. This procedure is similar to the selection mechanism in EAs. 

However, in SS, it is a deterministic operator, whereas in GAs, it is generally a 

stochastic operator. Finally, the solution combination method recombined the subset 

of solutions produced by the subset generation method. In general, weighted 

structured combinations are used via linear combinations and generalized rounding to 

discrete variables. This operator may be viewed as a generalization of the crossover 

operator in GAs where more than two individuals are recombined. 

Path relinking method: [78] [79]  The path relinking method is 

simply a solution combination method. However, the main idea of path relinking is to 

generate and to explore the trajectory in the search space connecting a starting 

solution 𝑠 and a target solution 𝑡. The idea is to reinterpret the linear combinations of 

points in the Euclidean space as paths between and beyond solutions in a 

neighborhood space. The path between two solutions in the search space 

(neighborhood space) will generally yield solutions that share common attributes with 

the input solutions. A sequence of neighboring solutions in the decision space is 

generated from the starting solution to the target solution. The best found solution in 

the sequence is returned. The path relinking method becomes popular in finding the 

set of multi-objective solution in the Pareto frontier. The variants of this method can 

be found in the Ref.[80][81] 
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2.4 Multi-Objective Combinatorial Optimization 
As far as real world decision making is concerned, it is also well known, that 

decision makers have to deal with more than one objective. The growth in the interest 

of theory and methodology of multi-criteria decision making (MCDM) over the last 

thirty years [82] [83][84][85] is well aware. 

Definition 2.3: Multi-objective Combinatorial Optimization [82] 

 𝑀𝑂𝑃 =  min𝑥𝜖𝑆 𝐹 𝑥 = (𝑓1 𝑥 ,𝑓2 𝑥 ,… ,𝑓𝑛 𝑥 )             (2.15) 

where 𝑛 (𝑛 ≥ 2) is the number of objectives, 𝑥 =  (𝑥1,…  , 𝑥𝑘) 

is a feasible solution belong to the discrete solution set 𝑆 defined in the 

definition 1.1. 𝐹(𝑥) = (𝑓1 𝑥 ,𝑓2 𝑥 ,… ,𝑓𝑛 𝑥 ) is the vector of 

objectives to be optimized. 

Surprisingly, multi-criteria or multi-objective combinatorial optimization 

(MOCO) has not been widely studied. There is a lack of “standard” benchmarks even 

if recently there is an interest in providing test instances for classical combinatorial 

MOPs. 

In this dissertation, we preferred to review the multi-objective technique in a 

form of addition to the common concepts of single-objective metaheuristics, since the 

multi-objective techniques that applied to combinatorial problems are rarely studied. 

A unified view of multi-objective metaheuristics [24] is presented in an attempt to 

provide a common terminology and classification mechanisms. The goal of the 

general classification is to provide a mechanism that allows a common description 

and comparison of multi-objective metaheuristics in a qualitative way. It also allows 

the design of new multi-objective metaheuristics, borrowing ideas from current ones. 

The multi-objective metaheuristics contains three main search components: 

Fitness assignment: The main role of this procedure is to guide the search 

algorithm toward Pareto optimal solutions for a better convergence. It assigns a 

scalar-valued fitness to a vector objective function. 

Diversity preserving: The emphasis here is to generate a diverse set of Pareto 

solutions in the objective and/or the decision space. 

Elitism: The preservation and use of elite solutions (e.g., Pareto optimal 

solutions) allows a robust, fast, and a monotonically improving performance of a 

metaheuristic. 
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The following sections discuss how these three search components can be 

defined independently to design a multi-objective metaheuristic.  

2.4.1 Fitness assignment strategies 
For a given solution, a fitness assignment procedure maps a fitness 

vector to a single value. The fitness scalar value measures the quality of the solution. 

According to the fitness assignment strategy, multi-objective metaheuristics can be 

classified into four main categories including scalar approaches, criterion-based 

approach, dominance-based approach and indicator-based approsed. Figure 2.16 show 

overviews of dominance-based, criterion-based and scalar approaches.  

Scalar approaches: They are based on the MOP problem 

transformation into a single objective problem. This class of approaches based on 

aggregation that combine the various objectives 𝑓𝑖  into a single objective function𝐹. 

These approaches require for the decision maker to have a good knowledge of his 

problem. 

Criterion-based approaches: In criterion-based approaches, the 

search is performed by treating the various noncommensurable objectives separately. 

Dominance-based approaches: The dominance-based approaches12 

use the concept of dominance and Pareto optimality to guide the search process. The 

objective vectors of solutions are scalarized using the dominance relation. 

Indicator-based approaches: In indicator-based approaches, the 

metaheuristics use performance quality indicators to drive the search toward the 

Pareto front. 

 

 

 

Figure 2.16 Fitness assignment strategies 

 

(a) Dominance-based         (b) Criterion-based    (c) Scalar 
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2.4.1.1 Scalar approaches 

This class of multi-objective metaheuristics contains the 

approaches that transform a MOP problem into a single objective. Among these 

methods one can find the aggregation methods, the weighted metrics, the goal 

programming methods, the achievement functions, the goal attainment methods, and 

the 휀-constraint methods. The use of scalarization approaches is justified when they 

generate Pareto optimal solutions. 

 

 2.4.1.1.1 Aggregation method The aggregation (or weighted) 

method is one of the first and most used methods for the generation of Pareto optimal 

solutions. It consists in using an aggregation function to transform a MOP into a 

single objective problem by combining the various objective functions 𝑓𝑖  into a single 

objective function 𝐹 in a linear way [86][87]: 

 

  𝐹 𝑥 =  𝜆𝑖𝑓𝑖 𝑥 
𝑛
𝑖=1 ,     𝑥 ∈ 𝑆           (2.16) 

 

 where the weights 𝜆𝑖 ∈  0…1 and  𝜆𝑖 = 1𝑛
𝑖=1 . The solution of the 

weighted problem is weakly Pareto optimal. 

 

2.4.1.1.2 Weighted metrics In this approach[88], the decision 

maker must define the reference point 𝑧 to attain. Then, a distance metric between the 

referenced point and the feasible region of the objective space is minimized. The 

aspiration levels of the reference point are introduced into the formulation of the 

problem, transforming it into a single objective problem.  

  

2.4.1.1.3 Goal programming It is one of the oldest and most 

popular methods dealing with MOPs [89]. The decision maker defines aspiration 

levels 𝑧 𝑖for each objective 𝑓𝑖 , which define the goals 𝑓𝑖(𝑥) ≤ 𝑧 𝑖 .Then, the deviations 

𝛿𝑖  associated with the objective functions 𝑓𝑖  are minimized.  

 

2.4.1.1.4 Achievement functions Achievement functions have 

been introduced by Wierzbicki [90]. Unlike the previous methods where the reference 

point must be chosen carefully (e.g., ideal point), an arbitrary reference point 𝑧  can be 
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selected in the objective space. A Pareto optimal solution is produced for each 

location of the reference point. Different Pareto optimal solutions may be generated 

by using various reference points. Without using the augmentation factor, weakly 

Pareto optimal solutions are generated. 

 

2.4.1.1.5 Goal attainment [91] The goal attainment method 

constitutes another approach that is based on the preference specification of the 

intermediary of a goal to reach. In this approach, a weight vector and the goals for all 

the objectives have to be chosen by the decision maker.  

The major drawback of this method is the possible absence of 

the selection pressure of the generated solutions. For instance, if there are two 

solutions that have the same value for one objective and different values for the other 

objective, they have the same fitness. The search algorithm cannot differentiate them 

in the problem resolution. 

2.4.1.1.6 𝝐-Constraint method [92] In the popular 𝜖-

constraint, the problem consists in optimizing one selected objective 𝑓𝑘  subject to 

constraints on the other objectives 𝑓𝑗 , 𝑗 ∈  1,𝑛 , 𝑗 ≠ 𝑘 of a MOP. Hence,  some 

objectives are transformed into constraints. The new considered problem may be 

formulated as follows: 

(𝑀𝑂𝑃𝑘(𝜖)) 

min𝑓𝑘(𝑥)
𝑥 ∈ 𝑆

𝑠. 𝑐. (𝑓𝑗 (𝑥) ≤ 𝜖𝑗 , 𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑘

           (2.17) 

Where the vector 𝜖 = (𝜖1,…𝜖𝑛) represents an upper bound for 

the objectives. Thus, A single objective problem subject to constraints on the other 

objectives is solved.  

 

2.4.1.2 Criterion-based approaches In this class that is mainly based 

on P-metaheuristics, the search is carried out by treating the various objectives 

separately. Few studies belonging to this class exist in the literature. Among them one 

can find the parallel selection in evolutionary algorithms, parallel pheromone update 

in ant colony optimization, and lexicographic optimization. 
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2.4.1.2.1 Parallel Approach [93][94] In this approach, the 

objectives are handled in parallel. P-metaheuristics may be transformed easily to 

parallel criterion-based multi-objective optimization algorithms. Indeed, the 

generation of new solutions will be carried out independently according to the 

objectives. 

 

 2.4.1.2.2 Sequential or Lexicographic approach [95] In this 

approach, the search is carried out according to given preference order of the 

objective defined by the decision maker. This order defines the significance level of 

the objectives. Let us suppose that the objective indices of the functions also indicate 

their priority; the function 𝑓1 has the greatest priority. Then, a set of single objective 

problems are solved in a sequential manner.  

If the problem associated with the most significant objective function 

has a unique solution, the search provides the optimal solution found and stops. 

Otherwise, the problem associated with the second most significant objective function 

is solved, including the constraint that the most significant objective function 

preserves its optimal value (i.e., an equality constraint is associated with the already 

optimized functions).  

The solution obtained with lexicographic ordering of the objective is 

Pareto optimal. A relaxation may be applied to the constraint regarding the previous 

objective functions. For instance, a small decrease in the performance of the most 

significant objective functions may be allowed to obtain trade-off solutions. 

 

2.4.1.3 Domainance-based approaches 

   The dominance-based approaches use the concept of 

dominance in the fitness assignment, contrary to the other approaches that use a 

scalarization function or treat the various objectives separately. This idea was 

introduced initially by Goldberg [7]. The main advantage of dominance-based 

approaches is that they do not need the transformation of the MOP into a single 

objective one. In a single run, they are able to generate a diverse set of Pareto optimal 

solutions and Pareto solutions in the concave portions of the convex hull of feasible 

objective space. 
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P-metaheuristics seem particularly suitable to solve MOPs, 

because they deal simultaneously with a set of solutions that allow to find several 

members of the Pareto optimal set in a single run of the algorithm. Most of Pareto 

approaches use evolutionary multi-objective algorithms (EMOs). One can mention the 

commonly used ones: NSGA-II (nondominated sorting genetic algorithm) [96] , and 

SPEA2 (strength Pareto evolutionary algorithm) [97]. Many other competent EMOs 

have been developed, such as MOMGA (multi-objective messy GA) [98], MOMGA-

II [99][100] and neighborhood constraint GA [515]. Moreover, Pareto P-

metaheuristics are less sensitive to the shape of the Pareto front (continuity, 

convexity). 

 

Figure 2.17 Fitness assignment: some dominance-based ranking methods. 

 

Our concern here is to design a fitness assignment procedure to guide 

the search toward the Pareto border. Ranking methods are usually applied to establish 

an order between the solutions. This order depends on the concept of dominance and 

thus directly on Pareto optimality. Most of these fitness assignment procedures have 

been proposed in the EMO community. The most popular dominance-based ranking 

procedures are as follows (see Figure. 3.17) [102]: 

2.4.1.3.1 Dominance rank In this strategy, the rank associated 

with a solution is related to the number of solutions in the population that dominates 

the considered solution [103]. This strategy was first employed in the MOGA 

algorithm (multi-objective genetic algorithm) [103]. In the MOEA algorithm, the 

fitness of a solution is equal to the number of solutions of the population that 

dominate the considered solution, plus one. 
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2.4.1.3.2 Dominance depth The population of solutions is 

decomposed into several fronts. The nondominated solutions of the population receive 

rank 1 and form the first front 𝐸1. The solutions that are not dominated except by 

solutions of 𝐸1 receive rank 2; they form the second front 𝐸2. In a general way, a 

solution receives the row 𝑘 if it is only dominated by individuals of the population 

belonging to the unit 𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑘−1. Then, the depth of a solution corresponds 

to the depth of the front to which it belongs. For instance, this strategy is applied to 

the NSGA-II algorithm [96]. 

2.4.1.3.3 Dominance count The dominance count of a solution 

is related to the number of solutions dominated by the solution. This measure can be 

used in conjunction with the other ones. For instance, in the SPEA algorithm family, 

the dominance count is used in combination with the dominance rank [97]. 

 

Since a single value fitness (rank) is assigned to every solution in the 

population, any search component of a single objective metaheuristic can be reused to 

solve MOPs. For instance, the selection mechanism in EAs can be derived from the 

selection mechanisms used in single objective optimization. The interest of Pareto-

based fitness assignment, compared to scalar methods, is that they evaluate the quality 

of a solution in relation to the whole population. No absolute values are assigned to 

solutions. 

 

2.4.1.4 Indicator-Based Approaches 

In indicator-based approaches, the search is guided by a 

performance quality indicator [104]. The optimization goal is given in terms of a 

binary quality indicator 𝐼 that can be viewed as an extension of the Pareto dominance 

relation. A value 𝐼(𝐴,𝐵) quantifies the difference in quality between two 

approximated efficient sets 𝐴 and 𝐵. So, if 𝑅 denotes a reference set, the overall 

optimization goal can be formulated as 

 

   arg minA∈Ω 𝐼(𝐴,𝑅)           (2.18) 

 

where Ω represents the space of all efficient set approximations. 
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The reference set 𝑅 does not have to be known, it is just 

required for the formalization of the optimization of the optimization goal. Since 𝑅 is 

fixed, the indicator 𝐼 actually represents a unary function that assigns a fitness 

reflecting the quality of each approximation set according to the optimization goal 𝐼. 

If the quality indicator 𝐼 is dominance preserving, 𝐼(𝐴,𝑅) is minimum for 𝐴 =

 𝑅[842]. Indicator-based multi-objective algorithms have several advantages: 

 The decision maker preference may be easily incorporated 

into the optimization algorithm. 

 No diversity maintenance; it is implicitly taken into account 

in the performance indicator definition. 

 Small sensitivity of the landscape associated with the Pareto 

front. 

 Only few parameters are defined in the algorithm. 

 

2.4.2 Diversity Preservation 
P-metaheuristics are reputed to be very sensitive to the choice of the 

initial population and the biased sampling during the search. Diversity loss is then 

observable in many P-metaheuristics. To face this drawback related to the stagnation 

of a population, diversity must be maintained in the population. The fitness 

assignment methods presented previously tend to favor the convergence toward the 

Pareto optimal front. However, these methods are not able to guarantee that the 

approximation obtained will be of good quality in terms of diversity, either in the 

decision or objective space. 

 

 
Figure 2.18 Diversity maintaining strategies. 
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Thus, diversity preservation strategies must be incorporated into multi-

objective metaheuristics. In general, diversification methods deteriorate solutions that 

have a high density in their neighborhoods. As suggested in Ref. [102], the diversity 

preservation methods may be classified into the same categories used in statistical 

density estimation. 

2.4.2.1 Kernel methods  

Kernel methods define the neighborhood of a solution I 

according to a Kernel function K, which takes the distance between solutions as the 

argument. For a solution 𝑖, the distances 𝑑𝑖𝑗  between 𝑖 and all other solutions of the 

population 𝑗 are computed. The kernel function 𝐾(𝑑𝑖) is applied to all distances. 

Then, the density estimate of the solution i is represented by the sum of the Kernel 

function 𝐾(𝑑𝑖). 

 

2.4.2.2 Nearest-Neighbor methods 

In the nearest-neighbor approach, the distance between a given 

solution I and its 𝑘𝑡  nearest neighbors is taken into account to estimate the density of 

the solution. For instance, this approach is used in the SPEA2 algorithm [97], where 

the estimator is a function of the inverse of this distance. 

 
2.4.2.3 Histograms 

The histograms approach consists in partitioning the search 

space into several hypergrids defining the neighborhoods. The density around a 

solution is estimated by the number of solutions in the same box of the grid. For 

instance, this approach is used in the PAES (Pareto archived evolution strategy) 

algorithm [105]. The hypergrid can be fixed a priori (statically) or adaptively during 

the search with regard to the current population. 

 

One of the most important issues in the diversity preservation 

approaches is the distance measure. Many metrics can be used. Moreover, the 

distance may be computed in the decision and/or objective space of the problem. In 

general, in MOPs, the diversity is preserved in the objective space. However, for 

some problems, the diversity in the decision space may be important in terms of 

decision making, and may also improve the search. 
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2.4.3 Elitism 
In general terms, elitism consists in archiving the “best” solutions 

generated during the search (e.g., Pareto optimal solutions). A secondary population, 

named archive, is used to store these high-quality solutions. First, elitism has been 

used to prevent the loss of the obtained Pareto optimal solutions. In this passive 

elitism strategy, the archive is considered as a separate secondary population that has 

no impact on the search process. Elitism will only guarantee that an algorithm has a 

monotonically nondegrading performance in terms of the approximated Pareto front. 

Then, elitism has been used in the search process of multi-objective metaheuristics 

(active elitism), that is, the archived solutions are used to generate new solutions. 

Active elitism allows to achieve faster and robust convergence toward the Pareto front 

for a better approximation of the Pareto front. However, a care should be taken to be 

trapped by a premature convergence if a high-elitist pressure is applied to the 

generation of new solutions. 

The archive maintains a set of “good” solutions encountered during the 

search. The strategy used in updating the archive (elite population) relies on size, 

convergence, and diversity criteria. 

 

2.5 Chapter Summary 
This Chapter, we review the metaheuristics for solving combinatorial 

problems particularly in the permutation representation. Each metaheuristic approach 

is designed with the aim of both intensification and diversification or sometimes 

called exploitation and exploration. However, the terms exploitation and exploration 

have a more restricted meaning. In fact, the notions of exploitation and exploration 

often refer to rather short term strategies tied to randomness, whereas intensification 

and diversification refer to rather medium and long term strategies based on the usage 

of memory. As the various different ways of using memory become increasingly 

important in the whole field of metaheuristics, the terms intensification and 

diversification are more and more adopted and understood in their original meaning. 

Table 2.2 summarizes them in term of their feature. The symbol  indicates 

the existence of the features. While symbol  presents partial feature and symbol  

indicates nonexistence of the features. Table 2.3 summarizes all the reviewed 

metaheuristics in term of intensification and diversification component.  
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Table 2.2 Feature classification of metaheuristics 

Feature 
Algorithm 

SA Tabu ILS GRASP GA ACO PSO EDA SS 

Trajectory           
Population          
Memory          

Multiple 

Neighborhood          

Nature-inspired          

 

Among the presented metaheuristics, SA, Tabu search and SS are typical 

examples of trajectory methods. These methods usually allow moves to worse 

solutions to be able to escape from local minima. Also local search algorithms which 

perform more complex transitions which are composed of simpler moves may be 

interpreted as trajectory methods. In ant colony optimization, iterated local search, 

genetic algorithms, GRASP, PSO and EDA starting points for a subsequent local search 

are generated. This is done by constructing solutions with ants, modifications to 

previously visited locally optimal solutions, applications of genetic operators, 

randomized greedy construction heuristics, driving particles and sampling from the 

probabilistic model respectively. The generation of starting solutions corresponds to 

jumps in the search space; these algorithms, in general, follow a discontinuous walk 

with respect to the neighborhood graph used in the local search. SS is consider to 

contain both trajectory and non-trajectory methods as the algorithm can be 

customized. 

 

 

 

 

 



70 
 
 

 

Table 2.3 Intensification and diversification component of metaheuristics 

Metaheuristic I&D component 

SA acceptance criterion + cooling 

schedule 

ILS black box local search 

kick-move 

acceptance criterion 

TS neighbor choice (tabu lists) 

aspiration criterion 

GA recombination 

mutation 

selection 

ACO pheromone update 

probabilistic construction 

VNS black box local search 

neighborhood choice 

shaking phase 

acceptance criterion 

GRASP black box local search 

restricted candidate list 

PSO Velocity 

Information Sharing 

EDA Sampling from distribution 

SS diversification generation method 

improvement method 

reference set update method 

subset generation method 

solution combination method 
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Tabu search, simulated annealing, iterated local search, and GRASP are such 

single-point search methods. On the contrary, in ACO, GA, PSO, EDA and SS 

algorithms, a population of individuals is used. Using a population-based algorithm 

provides a convenient way for the exploration of the search space. However, the final 

performance depends strongly on the way the population is manipulated. 

 

Memory is explicitly used in Tabu search. Short term memory is used to 

forbid revisiting recently found solutions and to avoid cycling, while long term 

memory is used for diversification and intensification features. In ACO and EDA an 

indirect kind of adaptive memory of previously visited solutions is kept via the 

pheromone trail matrix which is used to influence the construction of new solutions. 

Also, the population of the GA, PSO and SS could be interpreted as a kind of memory 

of the recent search experience. Recently, the term adaptive memory programming 

[245] has been coined to refer to algorithms that use some kind of memory and to 

identify common features among them. Also ILS could be classified as an adaptive 

memory programming algorithm. On the contrary, SA and GRASP do not use memory 

functions to influence the future search direction.  

 

ILS algorithms typically use at least two different neighborhood structures N 

and N0. The local search starts with neighborhood N until a local optimum is reached 

and in such a situation a kick-move is applied to catapult the search to another point. 

The behavior of GA and SS has the same effect as the kick-move in ILS and therefore 

may also be interpreted as a change in the neighborhood during the local search. On 

the other side, the solution construction process in ACO, EDA and GRASP is not 

based on a specific neighborhood structure. Nevertheless, one could interpret the 

construction process used in ACO, EDA and GRASP as a kind of local search, but this 

interpretation does not reflect the basic algorithmic idea of these approaches. 

 

Among the presented methods, ACO, SA, and GA belong to the nature-

inspired algorithms. The others, have been inspired more by considerations on the 

efficient solution of combinatorial problems. 
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 This dissertation mainly focuses on how a solution is generated. There are two 

main methods that are constructive methods and improvement methods. Table 2.4 

summarize the methods in term of their capability to preserve the schema order of the 

initial solution. 

Table 2.4 Information inheritance for generation methods 

Generate methods 

Preservation 

Relative  
order 

Absolute  
order 

Edge 

Improvement 

Swapping  X  

Insertion X   

Rotation X   

Inversion   X 

Constructive 

Modified (MX) X   

Order (OX) X   

Order based (OBX) X   

Position based (PBX) X   

Partially mapped(PMX)  X  

Cycle (CX)  X  

Weight Mapping (WMX)  X  

Edge recombination (ER)   X 
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 For the multi-objective metaheuristics, we present a unified view of their 

feature in an attempt to provide a common terminology and classification mechanisms 

including fitness assignment, diversity preserving and elitism.  

 

The fitness assignment can be classified as scalar, criterion-based, dominance 

based and indicator based. The scalar methods are more suitable to S-metaheuristic. 

They are easy to implement, yet require a decision maker to fine-tune the parameter. 

Criterion based methods are used in both single solution and population based 

algorithms. These methods are good at finding the extreme solutions for each 

objective as they treating each objective separately, however lack of the coverage in 

the Pareto frontier.  The dominance-based methods are more suitable to population 

based algorithms. They do not need the transformation of the MOP into a single one. 

Moreover, they are able to generate a diverse set of Pareto optimal solutions. 

Indicator-based method use indicator to determine the quality of a solution. The main 

advantage of this method is that it implicitly embedded the diversity mechanism into 

the indicator; therefore, no diversity maintenance is required.  

 

The diversity preservation mechanism is needed to prevent the genetic drifting 

in constructive based algorithms. One of the most importance issues in the diversity 

preservation is the distance measure. Many metrics can be use. In Kernel methods and 

histogram based methods, the distances are usually determined in the objective 

spaces. While the nearest neighbor methods, the distances are usually determine by 

the genotypes of the solutions. Histogram based methods are easiest to implement, 

however, the grids sizes need to be appropriate to the fitness landscape. The nearest 

neighbor methods provide the best diverse solutions compared to the other methods, 

but require expensive computation.  

 

One of the main issues of the multi-objective optimization is elitism. Archives 

are needed to maintain in order to improve both quality and quantity of the solution. 

The strategy used in updating the archive depends on size, convergence and diversity 

criteria. 



CHAPTER III 
 

NEGATIVE KNOWLEDGE 
 

3.1 Introduction 
In nature, the potential differences between two reference points produce 

potential energies including gravity, electricity, elasticity, pressure and temperature. 

The higher the potential difference causes the higher energy and thus higher 

acceleration rate of a particle carrying the energy. It is interesting to find out if there 

exists a potential difference of knowledge in order to accelerate the learning process 

in machine learning. 

 

Machine learning methods usually use the empirical data, such as from sensor 

data or databases to shape the behaviors of computers. In classification tasks, the 

negative samples usually help the learner to learn a concept faster and more 

accurately. However, in optimization tasks, the negative information is rarely utilized. 

In improvement methods such as tabu search[2]. memories are used in order to forbid 

the search process to search in the landscape considered to be inferior. However, in 

constructive methods, the algorithms such as GA[13][7] and SS[76] try to extract only 

good substructures in order to compose a better solution, therefore positive 

information are usually kept in form of a population of desired solution, while the 

negative information are simply neglected. This research tries to study how the 

concept of negative knowledge contributes to the construction of a candidate in 

permutation representation. 

 

3.2 Negative Knowledge 

Negative knowledge has been previously discussed as developed in the field 

of artificial intelligence, education and business philosophy [106] [107] [108]. Before 

we get to know more about the negative knowledge, we need to clarify the definition 

of negative knowledge which commonly misunderstood to be bad, disadvantageous, 

or malign. Just like negative numbers, they are not being either good or bad. The term 

“negative” in negative knowledge does not imply a valuation. Instead, the term 
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“negative” refers to characteristic attributes which will be described later. To clarify 

an important attribute of negative knowledge requires considering the use of the term 

“knowledge” in constructivist theorization which is considered to be “propositional 

knowledge”. In constructivism, knowledge is not seen as an exact representation of 

reality, but rather as a  

 

map of what reality allows us to do. It is the repertoire of concepts conceptual 

relations, and actions or operations that have proven to be viable in the 

pursuit of our goals.(von Glasersfeld) [109] 

 

In that sense, knowledge in a constructivist understanding is regarded as a 

system of representations and assumptions about reality that is closely related to 

individual goals or individual achievement. Roughly speaking, this means that 

individuals‟ assumptions can be called viable if they do not contradict previous 

knowledge and turn out to be useful for reaching goals. Yet, non-viable knowledge is 

knowledge that somehow stands in contradiction to prior knowledge or is 

counterproductive with regard to a certain goal.  

 

The basic idea that is pursued through the concept of negative knowledge is 

that just because knowledge is non-viable in the described understandings, it is not 

necessary worthless or superfluous. This is because in order to reach a goal, there are 

often different ways that seem possible and the task of identifying the right one is 

very complex and demanding. Therefore, it is seen as having a heuristic advantage 

through knowing what is wrong in regard to a certain task: that is, to have negative 

knowledge. Hence, negative knowledge can be described as non-viable knowledge 

that is heuristically valuable. 

 

According to the quote of von Glaserfeld, knowledge is compared to a map. 

Remaining with that metaphor, negative knowledge can be seen as an indicator of 

adverse ways, wrong turns or disadvantageous routes in order to reach a certain 

destination. 
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In 1994, Minsky[106] introduced explicitly the idea of knowing negatively in 

his literature “Negative Expertise”. He points out that competence often requires one 

to know what one must do, but it also requires one to know what not to do. Living 

things more often learn to avoid disaster rather than how to succeed in order to 

survive. In the process of learning, even experts seem to have negative rather than 

positive goals, namely that we seem to learn what should not be done. Minsky also 

states that the creativity of the machine does not only come from the randomization, 

but also come from the reduction of the search space. The performance of a smart or 

creative problem-solver is not how many trials precede a success, but how few. So the 

secret lies not in disorderly search, but in pre-shaping the search space so as reduce 

the numbers of useless attempts. 

 

 In 2005, Oser and Spychiger [107] define negative knowledge as knowledge 

about “what something is not, (in contrast to what it is), and how something does not 

work, (in contrast to how it works), which strategies do not lead to the solution of 

complex problems (in contrast to those, that do so) and why certain connections do 

not add up (in contrast to why they add up)” 

 

In 2006, Parviainen and Eriksson[108] extended Minsky‟s idea. They further 

characterize the negative knowledge by identifying four features of negative knowing 

as follows:- 

1) to know what one does not know: experts are usually aware of their 

own competence, but they must also know what they do not know 

and what they should know 

2) to know what not to do: experts must know both how to achieve 

goals and how to avoid disasters, namely „learning what not to do‟ 

3) unlearning and bracketing knowledge: experts may get into a 

situation when they have to give up some parts of their knowing 

and „unlearn‟ or „bracket‟ their skills and know-how 

4) failures and mistakes: experts should also regard the value of 

failures and disappointments as emotions, as well as recognize the 

creativity that emerges from making mistakes 
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Apart from the negative knowing, they also argue that negative is not 

considered as the mere empty opposite to the positive. They purpose that positive and 

negative knowledge can be considered as independent areas, which overlap one 

another in the following way: 

 
Table 3.1 Linking positive and negative knowledge[108] 

 
Positive knowledge Positive and Negative 

knowledge 
Negative knowledge 

True justified beliefs To know what one 
does not know 

Unlearning and 
bracketing knowledge 

Constructive, 
cumulative, 
paradigmatic 

To know what not to 
do 

Failures and mistakes 
ignorance 

 
 In 2008, Gartmeier et al.[110] describe the three functions of negative 

knowledge as follows:-  

1) negative knowledge increases certainty: It is assumed that negative 

knowledge helps to increase individuals‟ certainty through 

awareness of possible positive as well as negative outcomes of 

their actions and through the capability to judge their respective 

probabilities under given circumstances. 

2) negative knowledge increases efficiency: Negative knowledge is 

assumed to contribute to effective action. 

3) negative knowledge promotes reflection: Negative knowledge is 

assumed to promote detailed reflective processes, because an 

essential component of reflection comprises an engagement with 

individual‟s prior and episodic knowledge. Remembering and 

being aware what is inappropriate in a given situation should 

enhance the ability to precisely discriminate similar phenomena. 

The negative knowledge has shown to be beneficial in many ways. This 

dissertation presumes that it could be used in a constructive algorithm where building 

blocks are combined to form a better solution. On the other hand, bad building block 

should be avoided to construct a solution as well. 
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3.3 Related Concepts and Methodologies 
 
3.3.1 Opposition-based learning 

 
In 2005, the concept of opposition-based learning (OBL)[111] has 

emerged. Tizhoosh introduces the idea of learning toward the opposite states, opposite 

weights, opposite actions and many more opposition ways. The secret behind OBL is 

the simultaneous consideration of an estimate and its corresponding opposite estimate 

in order to achieve a better approximation of the current candidate solution. The 

opposition-based learning has been successfully applied to accelerate reinforcement 

learning[112], back propagation learning[111], and differential evolution[113].  

 

OBL algorithms are considered to be utilizing of the negative 

knowledge to accelerate the optimization process. However the opposition-based 

extension idea of genetic algorithm is still too far from the negative knowledge. The 

anti -chromosome with inverted sub mutation can partially describe some of the 

negative information. The negative concept of a binary representation of a sub-

chromosome  [*101*] is not as simple as [*010*]. The complete negative concept 

should includes [*001*], [*011*], [*100*], [*110*] and [*000*] as well. This 

example indicates that the size of the negative concept in probabilistic-based learning 

is unimaginable large compared to the positive one. 

 

3.3.2 Artificial immune system 

Artificial immune systems (AIS) are computational systems inspired 

by the principles and processes of the vertebrate immune system. The algorithms 

typically exploit the immune system's characteristics of learning and memory to solve 

a problem. The negative selection techniques[114] in AIS try to output the 

complementary concept of the real target concept. Algorithms in this class are used in 

many areas including classification and optimizations. 
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3.3.3 Evolutionary Algorithms 

    There are some works based on evolutionary algorithms that try to 

utilize the negative knowledge hidden in the below average solutions by applying 

classification techniques in optimization. These algorithms include:- 

 

3.3.3.1 Learnable Execution Model (LEM)  

In 2000, Michalski[115] proposed algorithms that apply 

classifiers to develop a population of solutions. The candidates of a population are 

divided as the fittest and the less fitted ones. Then the characteristics of the good ones 

are strengthened while bad ones are avoided. 

 

3.3.3.2 Statistical Learning + Inductive Learning (SI3E) 

Later in 2003, Llorà and Goldberg[116] proposed an algorithm 

that combined the Induction of Decision Tree (ID3) and evolutionary algorithm using 

statistical approaches. 

 

3.3.3.3 Evolutionary Bayesian Classifier-Based Optimization 

Algorithm (EBCOA) 

In 2004, Miquelez, Bengoetxea, and Larrañaga[117] introduced 

a new estimation of distribution algorithm based on Bayesian classifiers and later 

extended in the continuous optimization domains[118]. 

 

  3.3.3.4 Population Based Incremental Learning (PBIL) 

   In 1994, Baluja [71] proposed the first estimation of 

distribution algorithm called PBIL. This algorithm allows learning from the below 

average solutions. Variations of negative learning rate were used in the original paper. 

From the empirical experiments, different negative learning rates show their 

effectiveness in different behaviors in different benchmarks. Moreover, negative 

correlation learning in PBIL contributes to find the optimal solutions in hard 

deceptive problems faster than the other benchmark algorithms in term of function 

evaluations. 
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3.3.3.5 Compact Genetic Algorithm (cGA) 

In 1998, Harik et al. presented and EDA called CGA [72]. In 

each iteration, cGA generates two candidate solutions from the current probability 

vector. Then, the two generated solutions compete against each other. The the winner 

and the loser are used to update the probabilistic vector using reward and punishment 

model. Performance of cGA can be expected to be similar to that of PBIL. 

  
3.3.3.6 Incremental Bayesian Optimization Algorithm (iBOA) 

   In 2008, Pelikan et al. proposed another EDA called iBOA 

[119]. This algorithm modify the original Bayesian Optimization Algorithm (BOA) to 

estimate the probabilistic model in an incremental manner. Similar to cGA, the loser 

of a tournament selection lost their probability to be regenerated to the winner. The 

main benefit of using iBOA instead of the standard BOA is that iBOA eliminates the 

population and it will thus reduce the memory requirements of BOA. iBOA also 

provides the first incremental EDA capable of maintaining multivariate probabilistic 

models built with the use of multivariate statistics.  

 

3.3.4 Particle Swarm Optimization 

  In 2005, Yang and Simon proposed a new version of PSO that 

utilized only the negative knowledge in optimization where each particle adjusts its 

position according to its own previous worst solution and its group's previous worst to 

find the optimal value. The strategy is to avoid a particle's previous worst solution and 

its group's previous worst based on similar formulae of the regular PSO. In their 

experiments, the results show that the NPSO[120] always finds better solutions than 

PSO in every benchmark. 

 

3.3.5 Evolutionary Ensemble with Negative Correlation Learning 

(EENCL) 

In 2000, Liu, Yao and Higuchi proposed ensemble techniques 

[121][122] which composed of neuron networks (NN). The negative correlation 

learning and fitness sharing were adopted to encourage the formation of diverse 

species in the population.  
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3.4 Schema Theorem and Order Schema  
The Schema Theorem is defined by Holland[13] represented a mile stone in 

the development of Genetic Algorithms. In schema theorem, the search space is 

partitioned into subspaces of varying levels of generality, and mathematical models 

are constructed which estimate how the number of individuals in the population 

belonging to certain schema can be expected to grow in the next generation.  

 

3.4.1 Schema theorem 

Theorem 3.1: Schema Theorem [13] 

The expected number 𝐸 of schema 𝐻 at generation 𝑡 + 1 when 

using a canonical GA with proportional selection, single point 

crossover and gene wise mutation is, 

 

              𝐸 𝑚 𝐻, 𝑡 + 1  ≥
𝑚(𝐻,𝑡)𝑓(𝐻,𝑡)

𝑓 (𝑡)
 1 − 𝑝𝑐

𝛿 𝐻 

1−𝑙
𝑝𝑑𝑖𝑓𝑓  𝐻, 𝑡 − 𝑜 𝐻 𝑝𝑚  (3.1) 

 

where 𝑝𝑑𝑖𝑓𝑓  𝐻, 𝑡  is the probability that parent does not match 

schema 𝐻; 𝑝𝑐  is the selected threshold of applying crossover and 𝑝𝑚  

is the threshold of applying mutation. 

Schema theorem implies that schema with fitness 

greater than the average population fitness are likely to account for 

proportionally more of the population at the next generation. From 

this Theorem, Goldberg arose the building block hypothesis (BBH), 

which attempted to explain how a GA solves a problem by positing 

that near optimal solutions were forged from small, low-order, 

better-than-average schemata. 

 

3.4.2 Order schema 

  In 1992, Kargupta, Deb and Goldberg [123] discussed about schemata 

in permutation problems, the so called order schema or o-schema is defined by 

assigning a sequence characteristic to a similarity subset. It has unique alleles at all of 

its fixed positions and contains all permutations of other alleles at don‟t care 

positions. In general, an o-schema can be classified into two broad categories – 

absolute ordering schema and relative ordering schema. 
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Table 3.2 A Comparison of some statistics for binary,l-ary and size-l permutation 

problems[123] 

 𝑏𝑖𝑛𝑎𝑟𝑦 𝑙 − 𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 − 𝑙 permutation 

Solution Space 2𝑙  𝑙𝑙  𝑙! 

String in an order 𝑜(𝐻) schema 2𝑙−𝑜(𝐻) 𝑙𝑙−𝑜(𝐻) (𝑙 − 𝑜(𝐻))! 

Number of 𝑜(𝐻) schemata 2𝑜(𝐻) 𝑙𝑜(𝐻) 
𝑃𝑚(𝑙, 𝑜(𝐻)) 

 

Total schemata 3𝑙  (𝑙 +  1)𝑙    
𝑙

𝑖
 

𝑙

𝑖=0

𝑃𝑚(𝑙, 𝑖) 

 

 

3.4.1.1 Absolute order schema The absolute o-schema defines a 

similarity subset having some common allelic position characteristics. For instance, 

the absolute o-schema [ ! ! !  1 !  8 ! ! ] defines the subset of all valid permutation string 

that have alleles 1 and 8 in fourth and sixth positions respectively. The string 𝑆1 =

 [ 4 3 2 1 5 8 7 6 ] is contained in the schema, while 𝑆2 =   [ 1 5 8 2 4 3 5 6 7 ] is not 

contained in the schema. This schema representation is useful in the problems where 

the placement of certain position is important. In this type of schema, both ordering 

and position of the defined alleles are important. 

3.4.1.2 Relative order schema The relative o-schema defines a 

similarity subset having some common order allelic characteristics which in between 

the order there can be some gap containing any size of the permutation substring. For 

example, the relative o-schema [ ! ! !  1 !  4 ! ! ] represents the subset of all valid 

permutation string that have allele 1 happens before 4 in any configuration without 

having any restriction on the specific allelic position of genes. This coding is 

important for problems where ordering among alleles is the only matter. 

 

According to the literatures [123] and [7], the definitions of relative o-

schema are inconsistent. The definition defined in 1989[7] allow only the fixed 

distance between the defined schemata. For example, the strings containing 4 placed 
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after 1 with in a fixed order of gaps. In this dissertation, we refer to the relative o-

schema proposed in 1989 as type I relative o-schema and the one in 1992[123] as type 

II relative o-schema. 

 

Size of a schema can be used to describe the searching boundary of a 

GA. If a schema dominates a population, the available solution that a simple 

crossover operator can search is reduced according to the size of the schema. Table 

3.2 summarizes the statistics of three different types of schemas, that are binary, unary 

with size 𝑙 and permutation with size 𝑙. For example, in a binary representation GA, 

let [ ∗ ∗  1 ∗ ∗ ] be a binary schema with order 1, given size 𝑙 of the solution strings 

equal to 5, the solution space contained only 2𝑙−𝑜(𝐻) = 25−1 = 14 total strings. The 

number of solution per space ration is 1/2. The larger number of order, the smaller 

number of available space is. 

 

The size of a schema in higher based unary is relatively less than the 

size of a schema in lower based unary. For example, let [ ∗ ∗  4 ∗ ∗ ] be a based 5 𝑙-

ary schema with order 1, given size 𝑙 = 5. The solution space is equal to 55 = 3,125, 

while the number of solution strings in an order 1 schema is equal to 55−1 = 625. 

The number of solution per space ratio is 1/5 which is relatively less than the binary‟s.  

 

Once a schema dominates the population, a GA reduces the search 

space according to the based 𝑙-ary schema. This higher based schema indicates the 

higher degree of exploitation. Consequently, many researches in GA prefer to 

represent the genotype of a solution string using the lowest order as possible, in order 

to fine grain the search and to preserve the diversity. 

 

In permutation representation, the redundancy of an item is not 

allowed. This means that an item can occupy only one position at a time. Therefore, if 

an o-schema dominate the population, the number of solution per space would be 

worse than a unary schema with the equal based. Let [ ∗ ∗  1 ∗ ∗ ] be a binary schema, 

there would be only 16 strings in the order 1 schema which is 1/2 of the solution 

space. While an absolute o-schema [ ! !  1 ! ! ] reduce the solution space down from 

120 to only 24 strings. Figure 3.1 shows the effect of how a schema with greater 
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fitness dominates the population in permutation and binary representation. The gray 

area indicates the number of solutions in the schema, while the white area indicates 

the deducted solution spaces. 

 

 
(a) absolute order schema 

 
(b) binary schema 

Figure 3.1 Effect of how a schema dominate the search space 

   

 

In figure 3.1 (a), an absolute order schema [ 2 ! ! ! ] dominate the 

population causes the reduction of the search space by 3/4, while a binary schema 

[ 0 ∗ ∗ ∗ ] reduces only 1/2 of the whole space in figure 3.1 (b). As generation 

progressed, the more specific order schema [ 2 3 ! !] and binary schema [ 0 0 ∗ ∗] 

dominates the population. The order schema reduces the search space at a much 

greater rate compared to the binary schema. In figure 3.2 (a) the order schema with 

order 2 reduces the space down to only 1/12, while the binary with order 2 reduces the 

search space down to 1/4 . 
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(a) absolute order schema 

 
(b) binary schema 

Figure 3.2 Effect of how a more specific schema dominate the search space 

 

 

 

 

  From the example, binary encoding let the algorithm to fine grain the 

search. However, such encoding could consequence a big trouble as the 

recombination and mutation of one or more solution strings are most likely to 

generate infeasible solutions. Therefore, encoding a solution string in permutation is 

unavoidable. Unfortunately, as mention in Chapter I, using a permutation encoding 

could easily lead to a premature convergence. This is the explanation why GAs with 

permutation encoding do not scale. 
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(a) absolute order schema 

 

 
(b) edge schema 

Figure 3.3 A comparison of absolute order schema and edge schema 

   
  3.4.2.3 Edge schema In this dissertation, we aim to study the roles of 

negative knowledge mainly on edge based estimation of distribution algorithm. 

Therefore we propose a new schema call edge schema. An edge is a link or 

connection between two nodes and has important information about the permutation 

string. However, edge can be symmetry. This research refers to the edge schema as 

the edges are asymmetry. The set of edge schema can be considered as a subset of 

relative o-schema, yet the gaps are not taken into account. Figure 3.3 illustrate the 

comparison of an absolute order schema and an edge schema. In a fitness landscape, 

two types of schema conquer different geometries. The figure 3.3 (a) illustrates how 

an absolute o-schema [ 2 ! ! ! ] dominate the population, while (b) illustrates an edge 

schema[ !  2 3 ! ]. This can be seen that the number of solutions contained in the edge 
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schema [ !  2 3 ! ] is equal to that in the absolute o-schema [ 2 ! ! ! ]. The two darker 

gray bars in (b) are the solution where the circulated edges are taken into the account. 

From this example, we also illustrate the different kind of neighborhoods. Using 

inappropriate move operators or crossover operators could not be able to find such 

good regions. As illustrated, the edge schema can cover all the global optimal 

solutions and consider them to be the neighborhood of each others. 

 
3.4.3 Negative Schema 

In 2006, Tae and Lee[124] prove that a negated concept is defined 

implicitly by a hidden feature abstracted from the property common to all the objects 

not belonging to the concept. This paper proposes based on Minsky that there is a 

logical schema that enables an agent to perceive a negated concept. However, the 

negative schema of Tae and Lee is defined based on an assumption in which an agent 

can recognize only one concept at a time. They also state that the positive and negated 

concepts, exist together, and two concepts cannot be recognized at the same time. 

 

 

3.5 Negative Order Schema 
In this work, we purpose a way to recognize negative schema in the ordering 

problems and show the role of the negative schema in search and optimization. 

 

In most evolutionary algorithms, the positive schemas usually dominate the 

population and assume that the solutions in the inverse set of the schema are negative 

due to the selection process filters the less fitted solutions. Thus the strings that are 

not contained in the schema are extinct especially in the ordering problems; the 

strings satisfied by the schema are not easy to regenerate by chance. The search and 

optimization procedure might be stuck in some local peaks. Moreover, some of the 

multimodal and multi-objective solutions might be missing. These problems are well 

aware therefore many researches try to preserve the diversity and elitist in order to 

explore more in the uncovered searching areas and prevent the extinction of solutions 

in the uncovered space.  
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Negative o-schemas play a different role compared to the positives. They are 

used to void the search space rather than to limit the search space. The more specific 

schemas void less space than the general ones as can be seen in Figure 3.4 The 

negative o-schemas are defined using a “~” in front of the positive o-schema. For 

example ~[ !  3 4 ! ] is negative edge schema that void the search space from the 

string containing in the negative schema. The search space after voiding is reduced 

down from 4! to 4! − 3!. Therefore the remaining space is greater than the space 

bounded by the positive schema with the equally order.  

 

 
Figure 3.4 An example of a negative edge schema ~[ !  3 4 ! ] 

 

 

 

The positive schemas dominated by the selected solution seen so far, thus the 

uncovered peaks that have not been found in the previous generation were not 

considered. In contrast, if the negative schemas are identified by the solution seen so 

far in the very beginning generations, the remaining spaces apart from the set of the 

strings contained in the negative schemas remain to be explored. This mechanism 

enhances the preserving of diversity and force the algorithm to search in the 

unexplored space. 
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3.6 Applying the Negative Knowledge in Optimization 

In most evolutionary algorithms, the schemas are kept in a form of the selected 

population. Thus the knowledge of which schemas are likely to form the bad 

solutions, are abandoned with the non-selected population. The evolutionary process 

repeats searching for the more specific schema within the bounded area assuming that 

the solutions in the unexplored space would not be able to survive. The solutions in 

the unexplored area are composed of the unknown to the positive area and known 

negative area. 

 

Vice versa, the negative schemas void the search space and left behind the 

unexplored area that composed of unknown quality solutions and the positive known 

solutions. 

 

 

In theory, the negative concepts should be the complement of the positive 

concepts. However, it is impossible to identify the positive and the negative concepts 

without verifying all of the solutions in the space. The learning process starts from the 

unknown space. As the learning progresses, the solutions are verified and classified.  

 

In order to combine together the positive and negative schemas, we need to 

discriminate between the good and the bad schemas. However some average solutions 

might contain both good and bad schemas in a solution, such structure should not be 

prejudged and should not be recognized as either good or bad. Therefore the selection 

methods also need to distinguish between the good solutions, the bad solutions and 

the solutions that might contain both positive and negative schemas.  
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Figure 3.5 The classification of the solution in the space 

 

 According to the negative knowledge defined by Parviainen and Eriksson 

[108], the negative cannot be considered to be the complement of the positive due to 

the space contain not only the known positive and known negative but also contain 

the unknown. 

  

In order to utilize the negative knowledge in learning, we apply the four 

feature of the negative knowing proposed by Parviainen and Eriksson. First of all we 

need to categorize the solutions in to two categories as known and unknown. 

Moreover, the known solutions are also divided in to positive and negative. This 

enable the algorithm to distinguish between what is known and what is not known. 

  

 The algorithm should be able to identify the negative schemas in order to pre-

shape the search space and try not to waste the function evaluation with the expected 

undesired geometries containing the bad schemas. Thus, we need a data structure to 

keep the state of schema. 

 

Moreover, the solutions found in the good solutions might contain the same 

schemata found in the bad solutions or vice versa, which can be classified as false 

positive or false negative. Thus, the algorithm should be able to justify the gained 

knowledge and should be able to unlearn or bracket the knowledge back to unknown 

information or re-classify or re-justify the old beliefs. 

Positive

Unknown Known

Negative
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3.7 Chapter Summary 

 This chapter, we give an introduction to the negative knowledge and give a 

brief review of optimization methodologies utilizing them. In many literatures, the 

negative knowledge is proved to be beneficial in many ways including the quality of 

solutions, the diverse solutions, and the time to convergence.  

 

 We adopt the order schema as a tool to explain the behaviors of constructive 

algorithms based on permutation representation. In addition, we introduce a new 

subtype of relative o-schema called edge schema and the negative order schema. 

From the models, we presume that the negative knowledge in edge representation 

should contribute in the following ways: 

 

1) The negative knowledge forces the algorithm to explore out of the search 

space marked as forbidden areas.  

2) The negative knowledge forces to produce diverse solutions, however 

dissimilar to the solutions considered to be bad quality. 

3) In cooperating with the positive knowledge, the negative knowledge 

contributes in discrimination of good and bad substructure. From such 

cooperation, negative knowledge should enhance a constructive method 

should recognize better substructures and composing better solutions.  

 

Finally, we propose some guidelines to design an adaptive searching algorithm 

incorporate the negative knowledge as a form of classifier based algorithm. However, 

such guidelines are not limited to the permutation representation.  



CHAPTER IV 
 

COINCIDENCE ALGORITHM 
 

4.1 Introduction 
 In the Chapter III, we propose some guidelines for designing an evolutionary 

algorithm that can make use of negative knowledge in optimization. In this chapter, 

we introduce a new evolutionary algorithm in a form of estimation of distribution 

algorithm.  

 

4.2 Coincidence Algorithm 
The proposed algorithm is explained in this section. The main idea of the 

algorithm is to allow learning from the below average solutions as well as the 

traditional learning from the good solutions. The coincidence found in a situation 

should be able to statistically describe the chance of the situation to be happening 

whether the situation is good or bad. Thus the learning of the coincidence found in the 

bad solutions should be used to avoid the bad situation as well.  

 

 4.2.1 Design 
  Coincidence algorithm (COIN) is designed to construct the solutions 

based on the mutual information in edge schema. We assume that there are linkages 

between each of the pairwise items. In this algorithm, we rather focus on the pair of 

permuted objects called incidences than the absolute position of a single object. For 

example, two candidates with order 5, 1-2-3-4-5 and 4-5-3-2-1 share the common 

coincidence 4-5 which is considered to be a schema in edge schema. 

 

According to the definition of building blocks hypothesis (BBH), the 

coincidences can be considered to be the building blocks. However, we would not 

rather call the coincidences as building blocks due to the coincidences can describe 

only some partial building blocks in relative o-schema.  
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COIN adapts the first order matrix of MCMC[125] (Markov Chain 

Monte Carlo) as a data structure to maintain the joint probabilities, this matrix is used 

to learn both positive and negatives incidences found in the populations. Then it is 

used to generate the populations according to the conditional probability. Even though 

the relative o-schemas with gaps are not easy to be recognized, they are indirectly 

identified using the conditional probability property of Markov Chain. Therefore 

COIN can indirectly recognize the relative o-schema as well. 

 

COIN uses the same distribution similar to EHBSA. However, COIN 

does not estimate the selected population the same way as EHBSA does. COIN rather 

uses the incremental model based on reward and punishment.  When an incidence is 

found in the above average solutions, it is rewarded more probability to be selected. 

Otherwise, if an incidence is found in the below average solutions, it would be 

punished by deducting the probability to be selected. The reward probabilities are 

gathered from the other incidences equally, while the deducted probabilities are 

scattered to the other incidences the oppositional way. 

 

 4.2.2 Components 
Similar to most black box optimization algorithms, the components of 

the algorithms are composed of data structure and fitness function(s) evaluator. The 

data structure of this algorithm mimics from the first order matrix of Markov Chain in 

which we use to learn the positive and negative building blocks in a form of joint 

probabilities and then use the joint probabilities to generate the candidates. We simply 

call it a generator. 

 

4.2.2.1 Generator 

The COIN algorithm uses a generator to generate the 

population according to the coincidences found in the good and the bad candidates. 

The generator 𝐻 is a matrix of size 𝑛 ×  𝑛 where 𝑛 is the size of a permutation. The 

sum over each row 𝐻𝑖 ,𝑗  where j ranges from 1 to 𝑛 equals to 1.0. It denotes the 

probability of the occurrence of 𝑖𝑗 in the solution string. Each entry of 𝐻𝑖 ,𝑗  has a value 

between 0 to 1.0. The diagonal 𝐻𝑖 ,𝑖  are 0. 
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4.2.2.2 Fitness Function Evaluator 

The fitness function evaluator is used to evaluate the fitness of 

the solution generated by the generator. To maximize the efficiency of the algorithm, 

the solutions are sorted on the fly (an insertion sort is recommended) as the selection 

mechanism of the algorithm needs to select the solutions from their ranks. 

 

 4.2.3 Mechanics 
The mechanism of the COIN algorithm is shown in Algorithm 4.1. It 

begins by initializing the generator then the population is sampling from the 

generator. The generator is updated by each of the coincidences found in the selected 

good and bad candidates according to their evaluated ranks. The generating, 

evaluating and updating steps are repeated until a termination condition is met. 

 

 

PROCEDURE COIN 

1. Initialize Generator 

2. Repeat 

3.   p <- Sampling(Generator) 

4.   p’ <- Sort(Evaluate(p)) 

5.   Reward(Selection(Top(p)),Generator) 

     Punnishment(Selection(Bottom(p)),Generator) 

6. Until Termination Condition is met 

Algorithm 4.1: Estimation of Distribution Algorithm 
 

 

4.2.3.1 Initialization 

The generator  𝐻 is initialized so that each of the joint 

probabilities 𝐻𝑖 ,𝑗  except the 𝐻𝑖 ,𝑖  equal to 1/(𝑛 − 1). The summation of all joint 

probability 𝐻𝑖 ,𝑗  where 𝑗 range from 1 to 𝑛 equals to 1. This initialization represents 

the uniform distribution of each joint probability. 
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4.2.3.2 Generating population 

The sampling algorithm of COIN is similar to EHBSA and ACO. 

Each individual are sampling one position by one position from head to tail. Each 

position is generated depend on the current and all of the previously generated 

position. Therefore the permutation sequences are always feasible. The sampling 

procedure is as follows: 

PROCEDURE SamplingfromCOIN 

1. Set position counter 𝑝 ←  0 

2. Obtain first node 𝑐[0] randomly from [0, 𝐿 − 1] 

3. Construct a roulette wheel vector 𝑟𝑤[] from matrix as 

𝑟𝑤[𝑗] ← 𝐻𝑐 𝑝 ,𝑗 (𝑗 = 0,1, … , 𝐿 − 1) 

4. Set to 0 previously sampled nodes in 𝑟𝑤[] (𝑟𝑤[𝑐[𝑖]]  ←

 0 for 𝑖 = 0, … , 𝑝) 

5. Sample next node 𝑐[𝑝 + 1] with probability 𝑟𝑤[𝑥]/

 𝑟𝑤[𝑗] 𝐿−1
𝑗=0  using roulette wheel 𝑟𝑤[].  

6. Update the position counter 𝑝 ←  𝑝 + 1. 

7. If  𝑝 < 𝐿 − 1, go to Step 3. 

Algorithm 4.2: Sampling Algorithm of COIN 
 

4.2.3.3 Selection 

Two selection methods are considered: a uniform method 

selects from the top and bottom 𝑐 percent of the population and an adaptive method 

selects from the population above and below the average band of two standard 

deviations.  

In the adaptive selection process, if the population contains 

more good candidates, the selector will select more of the bad solutions rather than 

the good solutions. Conversely the selector would select more of the good solution 

when the overall candidates in the population are not good. This mechanism 

maintains the fitness distribution among the candidates in the objective space in which 

we hope to be corresponded to the diversity of the candidates in the decision space. 
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4.2.3.4 Updating the generator 

In the initialization phase, the joint probabilities 𝐻𝑖 ,𝑗  are equally 

initiated so that the probabilities to be selected are uniform. As the generation 

progresses, the candidates are ranked, good and bad populations are well separated. In 

this phase, the mutual information indicating the joint probabilities are used to bias 

the generator in order to generate the desired candidates being closed to the good 

concepts and avoid generating the undesired candidates being distant to the opposite 

concepts. 

The reward and punishment schemes are used to bias the 

generator. The coincidence found in the top ranks are considered as good building 

blocks and given more probabilities to be chosen as rewards. On the other hand, the 

coincidence found in the bottom ranks are considered as bad building blocks and 

punished by deducting the probabilities to be chosen. 

 

The incremental and detrimental models used in the algorithm 

are different to the other evolutionary algorithms based on probabilistic models as 

most of them are represented in binary. The good substructures are usually rewarded 

by deducted from the bads[71][72][119]. In this algorithm, when good and bad 

coincidences are found, all the other coincidences 𝑖𝑗 sharing joint probability 𝑖 are 

affected. The generator updates the good and bad joint probabilities using two 

different methods. 

4.2.3.4.1 Reward When each coincidence 𝑖, 𝑗 is found in a 

better group of candidates, the reward is given to 𝐻𝑖 ,𝑗  by gathering the probability 
𝑘

(𝑛−1)2
 from the 𝐻𝑖 ,𝑗  where 𝑗 range from 1 to n, 𝑗 ≠ 𝑖. 𝑘 is denoting the learning 

coefficient, and 𝑟𝑖 ,𝑗  is the total number of coincidence 𝑖, 𝑗 counted from the good 

solution. The reward equation is  

 

𝐻𝑖,𝑗 (𝑡 + 1) = 𝐻𝑖,𝑗 (𝑡) +
𝑘

 𝑛 − 1 
 𝑟𝑖,𝑗 −

𝑘

 𝑛 − 1 2
  𝑟𝑖,𝑧

𝑛

𝑧=1
  (4.1) 
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The last term, 𝑘

 𝑛−1 2   𝑟𝑖,𝑧
𝑛
𝑧=1  , represents the adjustment step for all “others” 

𝐻𝑖,𝑗  (z ≠  i, z ≠  j) in the opposite direction hence keeping the sum of all probabilities 

in a row constant to one. 

 

4.2.3.4.2 Punishment  Contrary to the rewarding, when each 

coincidence 𝑖, 𝑗 is found in a worse group of candidates it is used to update the joint 

probability 𝐻𝑖 ,𝑗  by scattering its own probability 𝑘

(𝑛−1)2 to every member 𝐻𝑖 ,𝑗  where j 

range from 1 to n, 𝑗 ≠ 𝑖. k is the coefficient denoting the learning coefficient, and 𝑝𝑖 ,𝑗  

is the total number of coincidence i,j counted from the bad solution. The punishment 

equation is 

 

𝐻𝑖,𝑗 (𝑡 + 1) = 𝐻𝑖,𝑗 (𝑡) −
𝑘

 𝑛 − 1 
 𝑝𝑖𝑗  +

𝑘

 𝑛 − 1 2
  𝑝𝑖 ,𝑧

𝑛

𝑧=1
  (4.2) 

 

The last term, 𝑘

 𝑛−1 2   𝑝𝑖 ,𝑧
𝑛
𝑧=1  , also represents 

the adjustment step for all “others” 𝐻𝑖,𝑗  (z ≠

 i, z ≠  j) in the opposite direction hence keeping 

the sum of all probabilities in a row constant to 

one. 

 

 

Combining together reward and punishment when a 

coincidence 𝑖, 𝑗 is found in both good and bad solutions we will get: 

   𝐻𝑖,𝑗  𝑡 + 1 = 𝐻𝑖,𝑗  𝑡 +
𝑘

 𝑛−1 
 𝑟𝑖,𝑗 − 𝑝𝑖 ,𝑗  +

𝑘

 𝑛−1 2   𝑝𝑖 ,𝑧
𝑛
𝑧=1 −  𝑟𝑖 ,𝑧

𝑛
𝑧=1   (4.3) 

  

There is some constraint in updating the generator. Since the joint 

probability is updated by increasing or decreasing by a constant rate, a joint 

probability must not become negative. Therefore we need to maintain the probability 

value by disallowing the punishment if it would decrease the probability down below 

0.  
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Figure.4.1.  Updating the generator k=0.1 
 

 

Figure. 4.1 exemplifies the process of initializing the generator, 

generating the first population, selection of good and bad candidates and finally 

updating the generator using the selected candidates. Since the problem size is equal 

to 5, the generator is initialized so that each joint probability is equal to 0.25. Then, 

the population is generated from the initiated generator. The candidates are sorted and 

classified into three classes: high fitness, medium fitness, and low fitness. The high 

fitness candidates are considered to be the good solutions while the low fitness 

candidates are considered to be the bad solutions in the population. 

 

As seen in the figure 4.1, the candidate X2-X3-X4-X1-X5 is 

classified as a good solution. The incidences X2-X3, X3-X4, X4-X1 and X1-X5 are used to 

update the generator as rewards. The candidate X3-X2-X4-X1-X5 is classified as a bad 

solution thus the incidences X3-X2, X2-X4, X4-X1 and X1-X5 are used to punish the 

generator in the opposite way. Since the coincidences X4-X1 and X1-X5 are found in 

both good and bad solutions, they are counted as a one-time reward and a one-time 

punishment so the row 1,j and row 4,j remain unchanged. While X2-X3 and X3-X4 are 

considered to be the coincidences found in the good solutions, hence these 

coincidences are used to update the row X2 and X3. The coincidences X3-X2 and X2- X4 

are used to punish the generator as they are found in the bad solutions.   
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Figure. 4.2. The probability dependency tree of a 3 dimensions combinatorial problem 

 

     Figure. 4.2 represents the search space of a 3 dimensional ordering problem. 

In the generation 0, all joint probabilities are equal. As the generation progresses, the 

joint probabilities are increased or decreased. It can be seen that some of the 

connections are weaken as they are statistical found in the bottom ranks. Whereas 

some of the connections are strengthen as they are found in the top ranks. 

 

4.2.4 Computational cost and space 
   Let the problem size = n, and there are m candidates in each 

generation, the computational cost and space complexity are as follow: 

 

1. Generating the population requires time 𝑂(𝑚𝑛2) and space 

𝑂(𝑚𝑛) 

2. Sorting the population requites time 𝑂(𝑚 𝑙𝑜𝑔 𝑚) 

3. The generator require space 𝑂(𝑛2) 

4. Updating the generator require time 𝑂(𝑚𝑛2) 
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4.3 Multiobjective Coincidence Algorithm 
The multiobjective version of coin is slightly different from the single 

objective COIN in the selection method. We adopt the non-dominate sorting and 

crowding distance of NSGA-II[25] as the way to select the population used in 

updating the generator. Again, we use the not-good solutions to update the generator. 

The not-good solutions are defined different from the single-objective COIN. They 

are obtained from the non-dominated frontier of the opposite side of the objectives we 

are optimizing.  

Undesired Solutions

)(1 xf

)(2 xf

Desired Solutions

General Solutions

  
 

Figure. 4.3. The non-dominate ranking in multiobjective coincidence algorithm 

 

Figure. 4.3 shows the non-dominate ranking in Multi-objective COIN. The 

number of the selected candidates depends on the rank of the frontiers. In this case the 

first and the second ranks contain 10 candidates, while the last two ranks contain 11 

candidates. 
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4.4 Discussion 
 In this Section, we differentiate COIN from the existing algorithms in the 

Chapter II and III.  Figure 4.4 illustrates genealogy of COIN. Clearly,  COIN is a 

population based metaheuristic and is also a constructive algorithm. COIN and 

EHBSA[18] use the different encoding and different probabilistic model compared to 

most EDAs [71][72][119]. The data structures of COIN and EHBSA are more similar 

to ACO[20]. However, the distinctiveness of COIN is that it learns the negative 

correlation of the worse group of candidates as well as the traditional better group of 

candidates. COIN and ACO incrementally combines the solution components of the 

latest generation with all the previous iterations while EHBSA construct a new 

probabilistic model only from the most recent population. However, ACO uses a more 

complicate model of pheromone evaporation for exploration purpose in which an 

appropriate parameter tuning is needed.  

 

 The negative knowledge of COIN is different to that used in NPSO [120] as 

COIN considers the correlation of bad building blocks in the candidate solutions 

while NPSO considers the negative knowledge of the geometry of neighborhoods. 

 

 The incremental model of COIN is also difference to PBIL, cGA and iBOA. 

PBIL, cGA and iBOA deduct the probability from the opposite values at the same 

absolute positions. However, COIN gathers the probability from the rest of the edges 

sharing the same starting nodes. Incremental models of PBIL, cGA and iBOA 

consider being reward and punishment at the same time, whiling, COIN separately 

uses different method to the reward. The punishment model of COIN scatters the 

probability of an edge to the rest of the edges sharing the same starting nodes. 

 

 The multiobjective version of COIN (MO-COIN) mimics the non-dominated 

sorting and crowding distance from NSGA-II. However, COIN is an EDA, therefore 

COIN does not need to maintain the elitists. The purpose of embedding the crowding 

distance in MO-COIN is to prevent the premature convergence of the probability 

model. 
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Figure. 4.4. Genealogy of COIN. 

 

 

4.5 Chapter Summary 
 In this chapter, we propose a new edge-based estimation of distribution 

algorithm called COIN, which incorporate the negative correlation learning. The 

reward and punishment scheme is used to update the probabilistic model adopt from 

the first order Markov chain matrix. The selection process of COIN discriminate the 

good and the bad edges found in the better and the worse groups of candidates. This 

mechanism enhances the algorithm to recognize the better substructures in order to 

compose them. In addition, the worse substructures are discriminate and can be 

avoided. The figure 4.5 illustrates the recognition of the better quality substructure by 

eliminating the substructures found in the worse group. 

 

GA 

GA-ER 

PBIL cGA 

BOA 

iBOA 

EHBSA 

COIN 

ACO 

NSGA-II 

MO-COIN 
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Figure. 4.5. The differentiation of substructures contain in the good and the bad 

populations. 

 

 We also, propose the extension of COIN to solve the multi-objective problems 

by adopting the non-dominated sorting and crowding distance from NSGA-II. Finally, 

the distinctive characteristics of COIN are discussed. 



 
 

CHAPTER V 
 

EMPIRICAL ANALYSIS 
5.1 Introduction 

 Previously in chapter III and IV, we set a hypothesis that the negative 

knowledge should (i) prevent the composition of bad building blocks and should (ii) 

preserve more diversity. In order to test the hypothesis, this chapter compares two 

EDAs, COIN and EHBSA which utilize similar probabilistic model in order to 

construct a candidate solution. The major difference of COIN and EHBSA is that the 

COIN takes the negative knowledge into account, while EHBSA doesn’t consider the 

negative knowledge at all. In addition, COIN incrementally combines the solution 

components of the latest generation with all the previous iterations while EHBSA 

construct a new probabilistic model only from the most recent population. 

One approach to investigate the behavior of EAs is to test them on artificial 

problems where the solutions are known a priori. For this purpose researchers usually 

used deceptive problems, which are hard globally multimodal optimization problems. 

In our experiments, we use multimodal combinatorial puzzles where the solutions are 

known and expected to mislead the testing algorithm to certain local optimal points. 

We compare COIN with EHBSA in two classes of combinatorial problems that are 

permutation and combination. The permutation problems include 8-Queens puzzles, 

3 × 3  magic square, 4 × 4  magic square and knight’s tour problems while the 

combination problems include 8-Queens, 8-rooks, 14-bishops and 32-knights puzzles.  

EAs and EDAs are usually ineffective in solving globally multimodal 

problems as they converge to a single global optimum. The explanation [126] is 

straight forward. The basins of different global optima may be represented in the 

population. As there is no significant selective preference for one of the basins in the 

population over another, the stochastic variations due to the selection method make 

the population drift towards one of them and, thus, discover only one global optimum 

at most. Moreover, this global optimum is randomly chosen from the existing global 

optima. This phenomenon is known as genetic drift [127][7]. In absence of selective 

pressure, the stochastic nature of the selection method reduces population diversity. 
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5.2 Magic Square 
 5.2.1 Introduction 

A magic square of order n is an arrangement of 𝑛 × 𝑛 distinct integers 

in a square, such that the 𝑛 numbers in all rows, all column and both diagonals sum to 

the same constant or magic sum 𝑀. which can be calculate by the equation 

𝑀 =
𝑛(𝑛2 + 1)

2
 

For normal magic square of order 𝑛 = 3, 4, 5 the magic constants are 15, 34, 65 

respectively 

 
Figure 5.1 Sample of magic square solutions 

(a) The solution of a 3 × 3 magic square 
(b) The solution of a 4 × 4 magic square 

 
 

 5.2.2 Related works 
  Apart from the exact methods, there is no known algorithm to find the 

solution to magic squares. According to [128] and [129], genetic algorithm with 

specific crossover cannot always find a solution to these problems. In the works of 

[128][129], they relax the constraints of the magic squares such that the fitness 

evaluation are calculated only from the row and the column, while, the works of [130] 

use multimillion of runs to find a solution and measure the relative error compared to 

the optimal solution.  

  Surprisingly, magic square problems are composed with the set of 

numbers with summand equal to the magic numbers in each axis, thus they are 

considered to contain building blocks in the genotype. However, constructive 

algorithms such as genetic algorithms can rarely be able to find such a solution. The 

competitive algorithms to solve magic square problems become the improvement 

algorithms that usually are trapped in some local optima. 

2 7 6 

9 5 1 

4 3 8 

(a) 

12 6 15 1 

13 3 10 8 

2 16 5 11 

7 9 4 14 

(b) 
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Figure 5.2 The magic squares that contain the conflict building blocks 

 

  The simple explanation is that even if a constructive algorithm can 

recognize that which squares are better than the others in term of fitness and 

determine that they might contain the good building blocks which should lead to a 

better solution, however, the algorithm cannot be able to recognize that which 

building blocks are good and which ones are not. In addition, even if the algorithm 

can recognize the good building blocks contained in a candidate solution, the 

algorithm does not know how to compose them as they might be being in conflict. 

 

  Figure 5.2 exemplifies two of the fittest solutions in which none of the 

crossover operators [50][51][52][53][54][55][56][57][58]can recombine to form a 

better solution. Moreover, the recombining these two solutions results in generating 

the worse offspring compared to their parents due to the crossover operator would 

rather disrupt the building blocks than constructing the higher order, better ones. 

   

  In a 3 × 3 magic square problem, each axis composed of the 

summands equal to 15. However, not all the summands are the good building blocks. 

For example, the summands M = 15 can be 1+5+9, 2+4+9, 2+6+7, 3+5+7, 1+6+8, 

2+5+8, 3+4+8, 4+5+6 and their permutations, but the subsequence 5+1+9 is not a 

subcomponent of any solution. We call this kind of subsequence a false building 

block. Composing a false building block, might mislead the search algorithm into a 

pitfall. This reason makes the problems become much harder to be solved. 

 

 

 

 

 

2 7 6 

9 5 8 

4 1 3 

 

1 3 4 

8 5 9 

6 7 2 
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 5.2.3 Experimental setup 
We compare EHBSA and COIN in 3 × 3 and 4 × 4  magic square 

problems. Both EHBSA and COIN were implemented using Codegear Delphi 2007 

and test them using Intel core 2 duo 2.16 GHz with 2 GB of RAM. Ten runs ware 

performed for each problem, we apply different configurations of population size and 

number of generation such that the total numbers of evaluation are smaller than the 

solution/space ratios. For the 3 × 3 magic square we use to 5,000 evaluations while in 

the 4 × 4 magic square we use up to 800,000 evaluations. The bias ratio 𝐵𝑟𝑎𝑡𝑖𝑜    of 

EHBSA is 0.005 were used in all experiments while the learning rate k of COIN is set 

to be 0.05. The selection pressure of EHBSA is 50% of the whole population, while 

COIN uses 25% for both reward and punishment.  

 

We evaluate the algorithms by measuring their ANE (average number 

of evaluations to find the first global optimum) #SOL (average number of solution 

found within the given number of evaluations) and #DSOL (average number of 

distinct solution found within the given number of evaluations) 

 

Figure 5.3 illustrates the encoding of a 3 × 3  magic square. The 

candidate simply formed by concatenation of each of the row. This problem is a 

problem that the building blocks are explicitly exposed. Apart from the rows, each 

magic square clearly contains the building blocks for each column and diagonal axes.  

 
Figure 5.3 Encoding and building blocks (BB) of a 3 × 3  Magic Square problem 
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 5.2.4 Discussion 

 
Figure 5.4 Performance of EHBSA in 3 × 3  magic square problem 

 
Figure 5.5 Performance of COIN in 3 × 3  magic square problem 

 

 
Figure 5.4 and 5.5 show the result of EHBSA and COIN in 3 × 3  

magic square problem respectively. The vertical axes indicate the fitness of the 

benchmarks while the horizontal axes indicate the number of generation used by the 

algorithms. The magic squares are the maximization problems, thus the larger number 

indicates the better performance. In these experiments, COIN performs better than 
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EHBSA in magic square problems, as COIN can find a solution to the 3 × 3  magic 

square, while EHBSA cannot converge to find such a solution. COIN learns the 

negative correlation of the bad building blocks contained in the bad solutions. COIN 

prevents the composition of these building blocks, thus easier to converge closer to 

the optimal solutions. For example, in the 3 × 3 magic square problem, The total 

number of 3 combination summand is  9
3
 =  84 × 3!. the summands of magic 

number M = 15 are the permutation of 1 + 5 + 9, 2 + 4 + 9, 2 + 6 + 7, 3 + 5 +

7, 1 + 6 + 8, 2 + 5 + 8, 3 + 4 + 8 and  4 + 5 + 6 altogether = 8 × 3!, otherwise the 

summand are infeasible. (consequently, there are only 24 good valid summand out of 

504 summand which are considered to be the good building blocks). EHBSA cannot 

determine whether which summand belongs to which model. It only tries to compose 

a solution from the good found build blocks, while COIN prevents the composition of 

480 bad building blocks. However, COIN rarely finds the solution of the 4x4 magic 

square. The probability to find a solution is 0.5, otherwise got stuck in a local optima. 

Magic squares are also considered to be a hard deceptive problem 

where the canonical magic squares can be generated all the other by rotation and 

transposition or reflection. The difficult part of this problem is that there are no 

overlapping relative building blocks between each solution, thus, there is no 

significant selective preference for one of the basins in the population over another. 

So the algorithms don’t know which direction they should converge to. The figure 5.6 

reveals all the possible solutions to the 3 × 3 magic square. 

 
Figure 5.6 All of the 3 × 3 magic square solutions 
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Figure 5.7 Generator snapshots of EHBSA, positive COIN, negative COIN and COIN 

for the 3 × 3 magic square problem 

 

  Figure 5.7 shows the generator snapshots of EHBSA and COINs for 

the 3 × 3 magic square problem. In this experiment, we analyze the effects of 

negative correlation learning of COIN by comparing EHBSA and the three versions 

of COIN including the positive correlation learning COIN (P-COIN), the negative 

correlation learning COIN (N-COIN) and COIN that combines the positive and 

negative correlation learning altogether. The lighter blocks indicate the lower 

probabilities while the darker blocks indicate the higher probabilities. The probability 

ranges from white to black as 0 to 1. 

 

  Since the 3 × 3 magic square is a multimodal problem where the 

building blocks are rarely shared, EHBSA and P-COIN cannot converge to a single 

solution. However, EHBSA and P-COIN are different to each other as EHBSA 

estimates the probabilistic model from the current population only, while P-COIN 

incrementally combines the results learned from the current generation with all the 
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previous generations. N-COIN seems to be smarter in exploiting the search space. The 

negative correlation learning contributes in converging by exploiting the common bad 

substructures shared by the below average solutions. The combination of positive and 

negative correlation learning enhances COIN to converge fastest compared to the 

others.  

 
Figure 5.8 Performance of N-COIN in 3 × 3  Magic Square problem 

  Figure 5.8 illustrate the behavior of N-COIN in the 3 × 3  magic 

square problem. The negative correlation learning can make the overall solution 

converge towards the optimality. However, after the whole population is dominated 

by some substructure, the negative correlation learning considers the algorithm to be 

stuck in a local optima and then try to unlearn the edges containing in the below 

average solutions in order to jump off the local optima. 

 

5.3 Combination Chess Puzzle 
 5.3.1 Introduction 

The n-pieces chess puzzles are the problem of placing n kind of the 

same class chess pieces on an 8 × 8 chessboard so that none of them can capture any 

other using their moves. A standard 8 × 8  chessboard can place maximum number of 

8 queens, or  8 rooks, 14 bishops or 32 knights so that none of them can attack each 

other. These n-pieces chess puzzles are considered to be the combination problems 

which are formally defined as “to find an optimal n-combination of a set S is a subset 

of n distinct elements of S”. These combination problems are more difficult than 

selections problems because the feasible set of solutions need to be a fixed size of k 
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distinct items which standard mutation and crossover operators in genetic algorithms 

could produce infeasible solutions even the crossover operators for permutation 

representation is used. For 8-queens puzzle, the problem can be both combination and 

permutation as it is possible to reduce the number of possibilities by generating the 

permutations that are solutions of the eight rooks puzzle and then checking for 

diagonal attacks further reduces the possibilities from 4,426,165,368 or  64
8
 to just 

40,320 

Figure 5.9 shows the available chess moves of the dedicated problems 

and a sample solution to each problem as follows: (a) shows the available rook’s 

move and a sample of 8-rooks puzzles solutions. (b) shows the available bishop’s 

move and a sample of 14-bishops puzzles solutions. (c) shows the available queesn’s 

move and a sample of 8-queens puzzles solutions. (d) shows the available knight’s 

move and a sample of 32-knights puzzles solutions. The rook can move any number 

of squares along any rank or file while the bishop can move any number of squares 

diagonally. The queen combines the power of the rook and bishop and can move any 

number of squares along rank, file, or diagonal. The knight moves to any of the 

closest squares that are not on the same rank, file, or diagonal, thus the move forms an 

"L"-shape two squares long and one square wide. 

 

  
(a) Available rook’s move and  

a sample of 8-rooks puzzles solutions 

  
(b) Available bishop’s move and  

a sample 14-bishops puzzles solutions 

  
(c) Available queen’s move and  

a sample 8-queens puzzles solutions 

 
(d) Available knight’s move and  

a sample 32-knights puzzles solutions
Figure 5.9. Available chess move and sample solutions of combination problems. 

According to [131], The 8-Queens puzzle has totally 92 distinct 

solutions, the 8-Rooks puzzle has up to 40,320 distinct solutions, the 14-Bishops 
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puzzle has totally 8 distinct solutions and the 32-Knights puzzle has only 2 distinct 

solutions 
 

 

 5.3.2 Related works 
  None of the existing literature is found to solve such combination 

chess puzzle problems. However, n-queen problems can be found in many literatures 

including [132][133] and [134], however, the multimodality of the solutions to the n-

queen have not been tested in any of them. 

 

5.3.3 Experimental setup 
  The experiments settings of the combination chess puzzles are similar 

to that in the experiments setting of magic square problems. However, the only 

difference is that the encoding of the solution strings. Figure 5.8 presents the encoding 

of a 8-queen solution. A candidate solution compose of items correspond to the 

positions label in the chess board. The candidate 4-15-19-32-34-45-49-62 represents 

the solution in the figure 5.10.  

 
Figure 5.10 The sample encoding of a combination 8-queen solution 

 

In these test sets, we also include the permutation version of 8-Queens 

benchmark. The encoding is shown in the figure 5.11. 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

 

4 15 19 32 34 45 49 62 
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Figure 5.11 The sample encoding of a permutation 8-queen solution 

 

We also evaluate the algorithms by measuring their ANE (average 

number of evaluations to find the first global optimum) #SOL (average number of 

solution found within the given number of evaluations) and #DSOL (average number 

of distinct solution found within the given number of evaluations) 

 

5.3.4 Discussion 
Figure 5.12 through Figure 5.21 show the results of EHBSA and COIN 

in 8 permutation Queens (8-Queens-P), 8-Rooks, 8 combinations Queens (8-Queens-

C), 14-Bishops and 32-Knights Respectively.  The vertical axes indicate the fitness of 

the benchmarks while the horizontal axes indicate the number of generation used by 

the algorithms. These benchmarks are the minimization problems, thus the smaller 

number indicates the better performance.  
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Figure 5.12 Performance of EHBSA in 8-Queens-P problem 

 

 
Figure 5.13 Performance of COIN in 8-Queens-P problem 
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 Figure 5.14. Performance of EHBSA in 8-Rooks problem 

 

 
 Figure 5.15 Performance of COIN in 8-Rooks problem 
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 Figure 5.16. Performance of EHBSA in 8-Queens-C problem 

 

 
Figure 5.17 Performance of COIN in 8-Queens-C problem 
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Figure 5.18 Performance of EHBSA in 14-Bishops problem 

 

  
Figure 5.19 Performance of COIN in 14-Bishops problem 
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Figure 5.20 Performance of EHBSA in 32-Knights problem 

 

 
Figure 5.21 Performance of COIN in 32-Knights problem 
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From the overall perspective, EHBSA seems to outperform COIN in 

the combination problems as EHBSA can converge to the solution faster than COIN. 

However, COIN can generate more diverse solution compared to EHBSA.  

In 8 Queens-P problems, COIN can find up to 13 distinct solutions 

while EHBSA can find only 4 distinct solutions. 8-Queens-C and 8-Rooks are the 

problems with equal feasible solution space. However, in 8-Queens-C problem 

EHBSA can find an average of 4 distinct solutions while COIN can find up to 9 

distinct solutions, however, the average numbers of distinct solutions are equal. While 

in 8-Rooks problem EHBSA can find more distinct solutions than COIN.  

In 14-Bishops problem, COIN can find all the 8 distinct solutions 

while EHBSA can find only 4 distinct solutions. EHBSA speedily converge to an 

optima point, while COIN tries to maintain all of the possible good substructures in 

order to compose them.  

The 32-Knights problem is the hardest problem. It is considered to be a 

deceptive problem. In this problem, there are only two patterns of solutions, where 

either black or white checkers are all filled. Thus, this implies that there are no 

overlapping building blocks existing. None of the dedicated algorithm can solve this 

problem. According to the figure 5.20 and 5.21, COIN can converge closer to the 

global optimal solution, unfortunately, got stuck in some local optima, where the 

black and the white checkers are equally filled while EHBSA cannot improve the 

average population at all. The explanation is that COIN tries to generate a 

compromise model by filter the bad substructures from the goods. We try to bias the 

algorithm such that both EHBSA and COIN always select the top black corner as a 

starting position. And it results that EHBSA always find an optimal solution within a 

hundred generation, while COIN gives the same compromising results shown in 

figure 5.22.  

        
Figure 5.22 Two compromising 32-Knight solutions obtained from COIN 
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Figure 5.23 Generator snapshots of EHBSA, P-COIN, N-COIN and COIN 

for the 8 Queens-P problem 

 

  Figure 5.23 shows generator snapshots of EHBSA, P-COIN, N-COIN 

and COIN for the 8 Queens-P problem. These generators do not represent the 

graphical phenotype of the solutions. In order to generate a solution, we need to 

sample from the generator. For example, if we begin with the node 3 and then we 

perform the greedy search within the final generator of COIN, we will get a solution 

3-5-7-1-4-2-8-6 which is a solution to the 8-Queens-P. If we begin with the node 4, 

we will either obtain a solution 4-2-8-5-7-1-3-6 or a solution 4-2-8-5-7-1-6-3. The 

first case is also a solution to the 8-Queens-P as well while the latter case is not. 

 

In contrast to the 3 × 3 magic square problem, EHBSA and P-COIN 

converge to a solution faster than N-COIN. However, EHBSA and P-COIN can find 

less distinct solutions compared to the COIN with the negative correlation learning 

embedded. In this problem, the negative correlation learning seems not to be 

converging at all. However, when combining with the positive correlation learning, it 

contributes in producing more diverse distinct solutions as it try to preserve all the 

possible good substructures found in the better population.  
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5.4 Knight’s Tour 
 5.4.1 Introduction 
   Knight’s Tour is a well-known classical chess puzzle which has been 

studied over the last thousand years. The objective of the problem is to find a 

Hamiltonian path in a graph defined by the legal move of a knight on a chess board in 

which the chess knight has to traverse each square exactly once. Moreover, there are 

superior solutions called closed tours which are the solutions that the knight can have 

an extra move to complete the circuit at the starting square. The closed tours are more 

difficult to find. Murray [16] trace the origin of the problem as the first manuscript 

written in Arabic text was introduced by Ali C. Mani in 1350. It described the first 

closed by Ar-Rumi in Baghdad in 840. Later in 1766, Euler [17] proposed the first 

mathematical analysis of the problem. Other well-known mathematicians who work 

on the problem include Taylor, de Moivre and Lagrance. 

 

 

        
Figure 5.24 Two of the earliest known knight’s tour solutions  

Left is the solution by Ali C. Mani.  

Right is the first closed tour solved by Ar-Rumi in 840A.D.  
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 5.4.2 Related works 
   Recently, there are many works on solving the knight’s tour problem 

on a standard 8x8 chessboard. Borrell [135] proposed a straight forward depth first 

search with no bias or heuristic using a Prolog language to develop a brute force 

algorithm. The work aims to speed up the search time.  

    

   In contrast to the exact algorithm, there are metaheuristics approaches 

try to overcome the problem including Ant Colonization Optimization (ACO) by 

Hingston and Kendall [136] which augmented the problem specific heuristic [137] in 

to their algorithms in order to increase the chance to find the solutions. Genetic 

Algorithm (GA) by Gordon and Slocum [138] and Jarfar Al-Gharaibeh Zakariya 

Qawagneh and Hiba Al-Zahawi[139] utilized the repair operation and heuristics 

augmented respectively. The advantage of using the problem specific heuristic is that 

the search space is reduced down from 63! or approximately 1.98x1087 solutions 

down to 865 or approximately 5x1058 solutions. 

    

   Another approach to the knight’s tour was proposed by Takefuji and 

Lee [140]. They utilized a Neural Network to solve the knight’s tour problem on a 

large 26x26 boards. However, standard approaches such as Euler and Warnsdorf [141] 

heuristics and divide and conquer approach proposed by Parburry [142] can easily 

find the knight’s tours on the board as large as 78x78. 

 

    The total number of solutions to the knight’s tours problems was 

researched by Wegener [143] , Mckay [144] and Mordecki [145] using a very large 

scale computers. On a standard 8x8 chess board, McKay calculated the total number 

of closed tours to be 13,267,364,410,532 while Mordecki found the open tours to be 

approximately 1.305x1035. 
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5.4.3 Experimental setup 
   In this section, we report the experiment result of COIN in the knight’s 

tour problem. We conduct the experiment using two algorithms which is EHBSA/WO 

and COIN and then compare the result with ACO [138] GA with repair [140] and GA 

with heuristic [141] using the results report in their literatures.  

 

   For testing purpose, In order to compare the performance of COIN and 

EHBSA, We chose the EHBSA/WO which is the standard version of EHBSA in order 

to contrast the result of edge based sampling algorithm with and without a negative 

learning. We set the parameters of COIN and EHBSA to the following values as:- 

 

 Population size = 400 

 Number of generation = 800 

 COIN Learning rate = 0.05 

 Reward selection pressure = 0.25 

 Punishment selection pressure = 0.25 

 EHBSA selection pressure = 0.5 

   

   Both COIN and EHBSA were implemented with CodeGear Delphi 7, 

the testing environment is MS Windows XP on a 2.4 GHz Intel core 2 duo, with 2 GB 

RAM.  

 

The encoding scheme of both COIN and EHBSA is a straight forward 

permutation string, where each of the items refers to the position of the chess board 

ranging from the top left toward right as 1 to 8 and then repeat to the next row until 64 

at the bottom right. The evaluation function of our approach is the number of legal 

move found in a tour. 
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 5.4.4 Discussion 
    Figure 5.25 compares the performance of COIN and EHBSA. The two 

red top lines are the result of maximum and average tour generated by COIN, which 

can converge to the first open tour at the generation 150. Then more of the complete 

tours are rapidly generated until the first closed tour is found at the generation 301. 

 

    
Figure 5.25 Comparison of the performance of  

COIN vs. EHBSA in the knight’s tour problem 

 
Figure 5.26 Average performance of COIN in the knight’s tour problem 
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Figure 5.27 Two of the solutions generated by the coincidence algorithm.  

Left is the first open-tour found in the generation 150.  

Right is the first closed-tour found in the generation 301. 

Due to [18] and [146], given a same number of function evaluation, 

EHBSAs are better than COINs in TSP benchmarks, however in the knight’s tour 

puzzle which is the globally multimodal problem, EHBSA cannot converge to a single 

optimal tour. The explanation is that in this benchmark, there are substructures in the 

population in which there is no significant selective preference to differentiate which 

one is better. EHBSA cannot even make the population drift towards to a single peak.  

  While EHBSA got stuck in local optima, COIN has an ability to learn 

the negative knowledge contained in the undesired solutions. In a complete graph, a 

knight can have at most 8 legal moves while the rest 56 moves are prohibits. Learning 

the prohibit moves is easier than learning the legal moves as there are the greater 

number of the prohibit moves. 

 

Negative correlation learning of COIN plays two major roles in this 

benchmark. First, it helps recognizing and eliminating the illegal knight’s path from 

the complete graph, which leads to the diversity amongst the legal path. Second, once 

the probability matrix converges, it unlearns some of the occurrence in the previous 

generation in order to find more of the solution models. 
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EHBSA Gen 100 P-COIN Gen 100 N-COIN Gen 100 COIN Gen 100 

EHBSA Gen 110 P-COIN Gen 110 N-COIN Gen 110 COIN Gen 110 

EHBSA Gen 80 P-COIN Gen 80 N-COIN Gen 80 COIN Gen 80 

EHBSA Gen 90 P-COIN Gen 90 N-COIN Gen 90 COIN Gen 90 

EHBSA Gen 70 P-COIN Gen 70 N-COIN Gen 70 COIN Gen 70 
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Figure 5.28 The 27th row generator snapshots of  

EHBSA, P-COIN, N-COIN and COIN for the knight’s tour problem 
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EHBSA Gen 130 P-COIN Gen 130 N-COIN Gen 130 COIN Gen 130 
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  Figure 5.28 shows the generator snapshots of EHBSA, P-COIN, N-

COIN and COIN for the knight’s tour problem. Due to the enormous size of the 

generator, we sample only from the 27th row of the generator. Such row can be 

transform to the possible path of a knight from the coordinate 5B to all the other 

coordinates. In this experiment, we do not embed the problem specific heuristic in 

order to observe the behavior of the 4 algorithms. The probabilistic model of EHBSA 

cannot converge to a stable stage at all as it estimates the distribution from the latest 

generation, while P-COIN, N-COIN and COIN incremental learn from all the 

previous generations. The probabilistic models of P-COIN, N-COIN and COIN 

slowly adjust themselves toward a stable stage. Such stable stages show that the 

probability models try to constraint the probabilities of the possible moves to satisfy 

the knight’s legal moves. 

According to figure 5.29, compared to the figure 5.25, P-COIN 

performs almost as the same quality as COIN. Unfortunately, P-COIN cannot find an 

optimal solution. From the generator snapshot, P-COIN tries to converge to a single 

solution, while COIN tries to maintain all the possible solution. In this problem, the 

negative correlation learning contributes in preventing the premature convergence to a 

single model. 

 
Figure 5.29 Comparison of the performance of  

P-COIN vs. N-COIN in the knight’s tour problem 
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According to [140] and [141], pure genetic algorithm was proven to 

fail to find solutions to the knight’s tour problem. One of the reasons is there are too 

many global optimum which contain diverse of substructure. These substructures are 

not only hard to recognize but also are in conflict to each other. Even if all of the 

substructures are identified, the problem of how to compose these substructures 

remains. The probability matrix of COIN does not only learn to compose 

substructures in order to form a good solution, it also learns not to compose the 

substructures likely to form an undesired solution. 

For method comparison, we increase the number of generation from 

the testing propose to 2,000 generations in order to compare the results with GA with 

heuristic and GA with repair operation proposed by Al-Ghraibah [141] and Slocum 

[142]. We also compare our work with an improved version of ACO called Multiple-

restart Ant Colony Enumeration (MACE) algorithm proposed by Hingston [137] as 

well, however, the number evaluation used by Hingston is incredibly enormous 

therefore we prefer to mainly compare the result using the hit ratio obtained from the 

percentage of tour found from the invested function evaluation. 

Table 5.1  Results of applying different approaches to solve Knight’s tour. 

Algorithms Evaluations Tours Found Hit Ratio 

MACE 172,800,000 13,124,464 7.5% 

COIN 1,000,000 10,531 1.05% 

GA+Repair 1,000,000 5,696 0.57% 

Repair only 1,000,000 192 0.02% 

GA+Heuristic  800,000 12,084 1.51% 

Heuristics only 800,000 1,979 0.25% 
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From Table 5.1 the performance of MACE is superior. Within 

172,800,000 evaluations, MACE has found over 13 millions tours in average as the 

ants quickly bias the prohibit moves by not laying the pheromones on it. Once a 

complete tour is found a population of ants performs local search over the shared 

information. While MACE evolves a tour from the sub-tours containing only the legal 

moves, COIN learns the whole permutation strings where both legal and illegal moves 

are mixed and trying to differentiate the legal and illegal moves among the whole 

populations. This is considered as a totally blind search. Without a problem specific 

heuristics or bias, COIN can find an average of 10,531 tours within a million function 

evaluations with 1.05% hit rate compared to 7.5% obtained from MACE. GA with 

heuristics also perform a great job as it improve the odds to find a solution of a pure 

heuristics from 0.25 up to 1.51%. GA with repair can improve the odds to find a 

solution from an iterated repair operation up to only 0.57%.  

 

However, the numbers of closed tours are not mentioned in the 

literature. In average, COIN can find up to closed 921.4 tours out of 10,531 open 

tours.   

 

5.4 Discussion 
From the 3 sets of experiments, COIN rather gives more diverse solutions 

compared to EHBSA. However, it sacrifices more function evaluation as it trades of 

the convergence rate with the diversity. However, in 8-rooks puzzles, EHBSA can 

find more distinct solutions than COIN, while in 8-queens-C, COIN can find more 

distinct solutions than EHBSA. The explanation to this phenomenon is that the 

solution of the 8-rooks solutions share more common substructure than 8-Queens. The 

8-Rooks solutions share at most 6 positions while the 8-Queens can share at most 2 

positions. Once the probabilistic model of EHBSA converge to a solution, neighbors 

of such solution are likely to be a solution as well. While 8-Queens puzzle rarely 

shares the substructure. Moreover, the substructures of 8-Queens solutions are likely 

to conflict with each others, therefore EHBSA cannot converge to any direction.
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5.7 Chapter Summary 
This chapter, we investigate the roles of negative correlation learning of COIN 

compared to EHBSA where negative information is not taken into account. Table 5.2 

summarizes all the benchmarks and their properties, while table 5.3 summarizes the 

performances of such benchmarks. The results conclude that negative correlation 

learning contributes in preserving diversity and preventing the premature 

convergence. 

 

Table 5.2 Summary of test suites and their properties 

Problem Problem  
Type Search Space No. of  

Solution 
Solution/Space 

Ratio 
Population 

Size 
Number of 
Generation 

Number of 
Trial 

(Evaluation) 

8 Queens-P Permutation 40,320 92 1/438 50 50 2,500 

8 Queens-C Combination 4,426,165,368 92 1/48,110,493 100 1,000 1,000,000 

8 Rooks Combination 4,426,165,368 40,320 1/109,776 100 1,000 1,000,000 

14 Bishops Combination 47,855,6999,958,816 8 1/5,981,962,494,852 100 2,000 2,000,000 

32 Knights Combination 1,832,624,140,942,590,534 2 1/916,312,070,471,295,267 100 5,000 5,000,000 

Knight’s 
Tour Permutation 1.268 x 1089   1.3 x 1035 1/9.72 x 1053 400 1,000 4,000,000 

3x3 Magic  
Square Permutation 326,880 8 1/40860 50 100 5,000 

4x4 Magic  
Square Permutation 20,922,789,888,000 7,040 1/2,971,987,200 100 800 800,000 

 

Table 5.3 Performance of EHBSA vs. COIN in combinatorial puzzles 

Problem 

Algorithm 

EHBSA COIN 

ANE #SOL #DSOL ANE #SOL #DSOL 

8 Queens-P 8 25 4 8 21 13 

8 Queens-C 1821 78 4 3651 10 9 

8 Rooks 25 2457 2293 454 4 4 

14 Bishops 419 408 4 1070 45 8 

32 Knights N/A 0 0 N/A 0 0 

Knight’s Tour N/A 0 0 154 2816 2759 

3x3 Magic Square N/A 0 0 35 40 2 

4x4 Magic Square N/A 0 0 N/A* 0 0 

 



CHAPTER VI 
 

REAL WORLD APPLICATIONS 
6.1 Introduction 

This chapter, we introduce the application of COIN in three major applications 

including travelling salesman problems (TSP), production line balancing problems 

and production line sequencing. 

 

6.2 Travelling Salesperson Problem 
 6.2.1 Introduction 

The traveling salesman problem (TSP) is a typical combinatorial 

optimization problem which is perhaps the most-studied NP-hard combinatorial 

problem. Given a list of cities and their pairwise distances, the common objective is to 

find a shortest possible tour that visits each city exactly once. The problem was first 

formulated as a mathematical problem in 1930 and is one of the most intensively 

studied problems in optimization. It is used as a benchmark for many optimization 

methods.  

 6.2.2 Related works 
Even though the problem is computationally difficult, a large number 

of heuristics and exact methods are known, so that some instances with tens of 

thousands of cities can be solved. There are some near-optimal or approximate 

approaches to solve this problem, such as simulated annealing[147], neural 

networks[148], and tabu search[149]. Integer linear programming approach[150] is an 

exact algorithm to solve this problem by using additional linear constraints to 

eliminate the illegal sub-tours. Genetic algorithm is also purposed with the goal of 

solving the optimization problems, and has been applied to the TSP with varying 

degree of success. 

 6.2.3 Experimental setup 
To measure the performance of COIN, we perform several benchmarks 

on single objective TSP problems and compare them to the experiment of Robles and 

Larrañaga [151]. We aim to measure the performance of the algorithm in two main 

aspects: quality of the results and the number of function evaluations. This research, 
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we show the result of the well known Gröstel24, Gröstel48 and Gröstel120 which can 

be obtained from the TSPLIB [152].   

 
The experiments of Robles and Larrañaga use both of the discrete and 

continuous EDAs in the following learning methods: UMDA [73], MIMIC[74], 

TREE [154] and EBNA [155]. Moreover we compare the results with GA in the 

literature of Larrañaga [156] in 1999 which uses GENITOR [57] algorithm. The 

parameter of COIN in these experiments depends on the size of the problems. For 

each of the combinations shown in the experiment, we perform 10 runs and average 

the results.  

To study the effect of negative correlation learning in multi-objective 

problems, the multi-objective COIN is tested in a multi-objective TSP problem. We 

setup an experiment using kroa100 and krob100 as a bi-objective 100 tours TSP 

problem obtained from the TSPLIB. The population size we used in the experiment is 

250 and the learning step k is equal to 0.1. 

 6.2.4 Discussion 
6.2.4.1Gröstel24  

Table 6.1 Tour length for the Gröstel24 problem 

Population & Local Optimization 

Algorithm 
500-without 500-with 1000-without 1000-with 

Best Aver Best Aver Best Aver Best Aver 

GA-ER* 1272 1272       

GA-OX2* 1300 1367       

UMDA 1339 1495 1272 1272 1329 1496 1272 1272 

MIMIC 1391 1486 1272 1272 1328 1451 1272 1272 

TREE 1413 1486 1272 1272 1429 1442 1272 1272 

EBNA 1431 1528 1272 1272 1329 1439 1272 1272 

COIN unif 1272 1280   1272 1278   

COIN adpt 1272 1272   1272 1272   

* Size of population 200, mutation used SM 

unif denotes uniform selection with learning step k = 0.1 

adpt denotes adaptive selection with learning step k = 0.1 

Optimum 1272 
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The TSP coding for continuous EDAs in the original literature 

uses real numbers which later sorted into the ordering path based on these numbers, is 

known to be a poor alternative coding compared with path representations based on 

permutations. Thus, the results obtained from continuous EDAs are not compared in 

this study due to the use of different representations. Additionally, the detail of local 

search in the literature is limited to us, thus the result of COIN incorporate with local 

search cannot be implemented and compared. 

 

Table 6.2 Number of generations for the Gröstel24 problem 

Population & Local Optimization 

Algorithm 

500-

without 

500-with 1000-

without 

1000-

with 

Gen Gen Gen Gen 

UMDA 75 19 78 12 

MIMIC 47 4 58 4 

TREE 37 4 46 2 

EBNA 72 16 79 7 

COIN 67  48  

 

 

Table 6.1 shows the best results and average results obtained 

for each of population size, with and without local optimization and learning type of 

EDAs. The table also shows results obtained for the GA using the crossover operators 

ER and OX2. The results show that COIN with adaptive selection can find the 

optimum of Gröstel24 without the need of local optimizer and it is competitive with 

all the EDAs in the experiment. 

Figure 6.1 shows the convergence of the Gröstel24 problem 

using only good solutions, only bad solutions and using both. It shows that the use of 

both good and bad solutions outperform the use of only either good or bad solutions. 

Learning from bad solutions creates more diversity amongst the best results but 

retaining the average results. 
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Figure 6.1 The best candidates generated from the generator for Gröstel24 

In this experiment, we use the parameter less adaptive selection 

approach. According to the Figure 6.2, in some generation, there is no reward given to 

the good solutions as overall fitness’s are high. In order to maintain the fitness 

distribution, the selector rather selects more of the bad individuals than the good ones. 

When some generations contain more of the bad solutions, the selector rather give 

more reward than punishment. 

 

Figure 6.2 The number of good and bad selected solutions using an adaptive selection 

method in Gröstel24 problems 
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6.2.4.2 Gröstel48 

The results for the Gröstel48 are shown in Table 6.3 and 6.4 

COIN sacrifices more generations for a better solution compared to the other discrete 

EDAs.  

 

Table 6.3 Tour length for the Gröstel48 problem  

Population & Local Optimization 

Algorithm 
500-without 500-with 1000-without 1000-with 

Best Aver Best Aver Best Aver Best Aver 

GA-ER* 5074 5138       

GA-OX2* 5251 5715       

UMDA 6715 7432 5079 5149 6683 7388 5067 5139 

MIMIC 6679 7083 5046 5053 6104 6717 5046 5057 

TREE - - 5046 5071 - - 5046 5057 

EBNA 7044 7476 5165 5193 6398 7336 5114 5146 

COIN** 6356 6889   6136 6358   

* Size of population 200, mutation used SM 

** Learning step k = 0.12, Adaptive Selection 

Optimum 5046 

 

Table 6.4 Number of generations for the Gröstel48 problem 

Population & Local Optimization 

Algorithm 

500-

without 

500-with 1000-

without 

1000-

with 

Gen Gen Gen Gen 

UMDA 362 47 218 54 

MIMIC 167 23 113 18 

TREE - 8 - 7 

EBNA 306 63 261 65 

COIN 384  304  
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6.2.4.3Gröstel 120 

Table 6.5 and 6.6 show the results of the Gröstel120 problem. 

Again, the COIN algorithm outperforms the rest discrete EDAs. However, more 

function evaluations were sacrificed. 

 

Table 6.5 Tour length for the Gröstel120 problem 

Population & Local Optimization 

Algorithm 
500-without 500-with 1000-without 1000-with 

Best Aver Best Aver Best Aver Best Aver 

UMDA 14550 15530 7171 7257 14440 15127 7287 7298 

MIMIC 13644 14432 7050 7092 12739 13444 7042 7079 

COIN* 12298 14307   10162 11273   

* Learning step k = 0.14, Adaptive selection 

Optimum 6942 

 

Table 6.6 Number of generations for the Gröstel120 problem 

Population & Local Optimization 

Algorithm 

500-

without 

500-with 1000-

without 

1000-

with 

Gen Gen Gen Gen 

UMDA 385 55 368 42 

MIMIC 306 51 348 42 

COIN 659  574  
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6.2.4.4 KroAB100 

We took some snapshots at the number of generations equal to 

100 and 500 respectively. The behavior of the algorithm can be seen in Fig. 14 and 

Fig 15.  

 
Figure 6.3 The population clouds in a bi-objective kroa/b100 TSP 

 

 
Figure 6.4 The parato frontier obtained from different generation and updating 

method in a bi-objective kroa/b100 TSP 
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Figure 6.3 shows the population in the generation 1, 100 and 500 respectively. 

As the generation progresses, the population migrates towards the optimum fitness 

area. Figure 6.4 shows the effect of COIN algorithm in using only reward and only 

punishment compared with using both. Two curves at the upper-right hand corner are 

the result from using only reward or punishment for 500 generations.  Contrast this 

with the rest of the curves in the lower-left corner which use both reward and 

punishment together for 100 and 500 generations.  The use of both reward and 

punishment for just 100 generations outperforms the result from using only either one 

for 500 generations. 

 
 

However, the result of KroAB100 of COIN cannot be compared with the 

results of hybrid algorithms in Kumar and Singh’s experiments [34]. In their 

experiment, the local search methods were used in order to improve the quality of the 

solutions. However, they did not report the number of function evaluation used by 

local search. 
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6.3 U-Shape Assembly Line Balancing Problem 
 6.3.1 Introduction 

U-shaped assembly line balancing is considered to be NP-Hard. This 

kind of assembly line has advantage in reduction of the waste walking time to switch 

from workstation to workstation, thus enhance reduction of employee and cost. Figure 

6.5 illustrates the Jackson’s problem[158] with 11 tasks.  
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Figure 6.5 The precedence diagram with assembly network (Jacjson 1956) 

 

Given each workstation 𝑤𝑠 =  1 to 𝑚 , number of tasks 𝑖 =  1 to 𝑛, 

each task uses time 𝑡𝑖. The total time used in the Figure 6.6 (a) is equal to 10 while it 

used up to 14 if the line is straight. After fitting the tasks and workstations in to the 

assembly line, we can see that the U-shaped assembly line in the Figure 6.6 (b) use 

one less workstation than the straight line in the Figure 6.6 (a) 10. As the employee 

who processes the task number 1 can be shared with the task number 11. 
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Figure 6.6 The comparison of U-Line and straight complete line assignment 
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 6.3.2 Experimental Setup 

We carry three experiments based on the work of Hwang and 

Katayama [159] in three objectives:  

 

Given 𝑚 is number of workstation  

𝑆𝑁𝑘  is number of relatedness of work in the workstation k  

𝑆𝑚𝑎𝑥  is total maximum time in the workstation  

𝑆𝑘  is total time in the workstation 𝑘  

, the three objectives are: 

 
1. To minimize the number of workstation. 

mMinXf )(1                 (6.1) 
2. To minimize the relatedness of the workstations. 





m

k
kSNmmXf

1
2 )(             (6.2) 

3. To minimize the distribution of workload in each station. 

  mSSMinXf
m

k
k




1

2
max3 )(

            (6.3)
 

 

We perform the experiment using Matlab 7.0. The test environment is 

on Intel Core2 Duo 2.00 GHz with 1.49 GB of RAM. NSGA-II use WMX as a 

crossover operator. The crossover probability is 0.7 while the mutation probability is 

0.3. In this experiment, COIN uses an extra probabilistic model to estimate the first 

sequence. Moreover, the precedence constraints are integrated into the probability 

matrix in order to prevent the infeasible solution. In addition, NSGA-II uses a 

repairing algorithm to detect and repair the infeasible solutions.  
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  The performance indicators use in this experiment including 

1. Convergence to the Pareto optimal set. 
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and 𝑆∗ is the set of the solutions, 𝑓𝑖max and  𝑓𝑖min are the 

maximum and minimum value of the objective 𝑖 and 𝑘 is the 

number of objective function.  

2. Spread to the Pareto-optimum set. 

dNdd

dddd
Spread

lf

N

i
ilf

)1(

1

1









             (6.6) 

where 𝑑𝑓  and 𝑑𝑙  are the distances of the Parato ends, 𝑑𝑖  is the 

distance from the neighbor solutions in the Parato front and 𝑁 is 

the total number of solution in the Pareto front. 

 

3. Ratio of non-dominated solution 
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                  (6.7) 

where Sj is the solution set j, S is the union of all Sj, x are the 

member Sj and y are the member of set S. 

 

 

Table 6.7 Problem sets of Hwang and Katayama 

Problem set Product Task Time 
(ces)  

Density 
Network 

Thomopolous 
(1970) 3 19 2 0.122807 

Kim(2006) 4 61 10 0.036066 

Arcus(1963) 5 111 10,000 0.028337 
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The density network shown in table 6.7 indicates the relationship of the 

task. If the density network has high value (limited to 1), the possibility of assigning 

task to workstation is low. In contrast, the possibility of assigning task to workstation 

is high when the density network is low. 

 

 6.3.3 Discussion 
According to the Table 6.8, COIN has higher convergence rate than the 

NSGA-II. NSGA-II give more spread solution in the Pareto-optimal set, but the 

spread of the solution in this experiment has less significant due to the ratio of non 

dominated solution of COIN. It is equal to 1 in every test set as none of the NSGA-

II’s solution can dominate the COIN’s solution. Figure 6.7 to 6.9 compares only the 

Pareto-optimal solution for two objectives since the numbers of workstations in each 

problem are equal. Moreover, in terms of real CPU time, the multi-objective COIN is 

much faster than NSGA-II. The total processing time of NSGA-II in Thomopolous 

(19 tasks), Kim (61 tasks) and Arcus (111 tasks) are 124, 347 and 735minites, while 

COIN uses only 3, 15, and 40 minutes respectively. 
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Figure 6.7 The comparison of NSGA-II and COIN in Thomoulos’s Problem 
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Figure 6.8 The comparison of NSGA-II and COIN in Kim’s Problem 
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Figure 6.9 The comparison of NSGA-II and COIN in Arcus’s Problem 

 

Table 6.8 Result of the experiment in Hwang and Katayama’s problems 

Benchmarking 

Problems and Algorithms 
Thomopolous 

(19 task) 
Kim 

(61 task) 
Arcus 

(111 task) 
NSGA-II COIN NSGA-II COIN NSGA-II COIN 

Convergence 0.295 0 0.847 0 0.189 0 
Spread 0.566 0.523 0.742 0.774 0.485 0.710 
Ratio of solution 0 1 0 1 0 1 
Time (min) 124 3 347 15 735 40 
Population size = 100, Generation = 200 

NSGA-II: Crossover probability = 0.7, Mutation probability = 0.3 

COIN: k = 0.1 
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6.4 U-Shape Assembly Line Sequencing Problem 
 6.4.1 Introduction 

The next case study, the problem sets are sequencing problems on 

mixed-model U-Shaped assembly lines sequencing. In this experiment, we assume 

that line balancing is solved and only sequencing problems are considered. 

Determining the sequence of introducing models to MMUL is of particular 

importance considering the goals crucial for efficient implementation of JIT, i.e. 

smoothening workload and setup time reduction.  

 

 6.4.2 Experimental setup 
We carry three experiments based on the work of Kim and Arcus 

[159] in two objectives:  

Given MPSi is the minimum part set for a task i,  

 MSi is the model sequencing of task i. 

  sik is equal to 1 if the task pattern at the position k of MSi is 

different from the task pattern at k-1, otherwise 0. 

  tik is the machine setting up time for task i. 

 ti0 is the machine initialization time. 

 Li is the total number of task pattern 

 N is the total number of task 

 J is the number of work station 

  Tjs is the number of assigned task to the work station j at 

the sth cycle. 

  T  is the cycle time 

  n is the number of the product in the production line 

 di is the product demand 

, the objective functions are: 

1. To minimize the machine setting up time 

  0
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2. To minimize the absolute deviation of the workload 
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Figure 6.10 Encoding of the sequencing problem. 

 

The experiments settings and performance indicators of this 

experiment are similar to that in the Multiobjective U-shape assembly line balancing 

problems. However, the only difference is that the encoding of the solution strings. 

Figure 6.10 presents the encoding of a sequencing problem. In sequencing problems, 

the sequence items can be redundant. Therefore, in order to apply the coincidence 

algorithm, we need to encoding the redundant items in to a permutation of unique 

items such that the unique items can be mapped to the redundant tasks. 

 

 

   

6.4.3 Discussion 
According to the Table 6.9, COIN defeat NSGA-II in all performance 

measurements. Figure 6.11 and 6.12 compares the Pareto-optimal solution obtained 

from COIN and NSGA-II.  
An important aspect of this individual representation based on 

permutations is that the cardinality of the search space is 𝑛!.This cardinality is higher 

than that of the traditional individual representation, but it is tested for its use with 

EDAs in sequencing problems for the first time here. In addition, it is important to 

note that a permutation-based approach can create redundancy in the solutions, as two 

different permutations may correspond to the same solution. An example of this is 

shown in Figure 6.13, where two individuals with different permutations are shown 

and the solution they represent is exactly the same.  
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Table 6.9 Performances of NSGA II and COIN  
in U-shaped assembly line sequencing problems 

Problem Set Performance 
Measure 

Algorithm 
NSGA-II COIN 

Kim 2 

Convergence 0.015 0 
Spread 0.783 0.719 

Ratio of Solution 0.667 0.778 
Time (min) 398 12 

Kim 3 

Convergence 0.031 0 
Spread 0.532 0.573 

Ratio of Solution 0.667 0.714 
Time (min) 398 12 

Kim 5 

Convergence 0.025 0 
Spread 0.572 0.643 

Ratio of Solution 0.315 0.5 
Time (min) 398 12 

Kim 6 

Convergence 0 0 
Spread 0.427 0.427 

Ratio of Solution 0.693 0.693 
Time (min) 397 11 

Arcus 2 

Convergence 0.013 0 
Spread 0.546 0.549 

Ratio of Solution 0.800 1 
Time (min) 725 18 

Arcus 3 

Convergence 0.178 0.076 
Spread 0.783 0.543 

Ratio of Solution 0.750 0.8 
Time (min) 725 18 

Arcus 4 

Convergence 1.097 0 
Spread 0.758 0.758 

Ratio of Solution 0 1 
Time (min) 725 19 

Arcus 6 

Convergence 0.016 0.019 
Spread 0.664 0.692 

Ratio of Solution 0.714 0.714 
Time (min) 725 18 

Arcus 7 

Convergence 0 0 
Spread 0.553 0.553 

Ratio of Solution 1 1 
Time (min) 725 18 

Arcus 8 

Convergence 0.124 0.049 
Spread 0.687 0.654 

Ratio of Solution 0.333 0.5 
Time (min) 725 18 
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Figure 6.11 The comparison of NSGA-II and COIN in Arcus’s Problem 
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Figure 6.12 The comparison of NSGA-II and COIN in Kim’s Problem 
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Consequently, encoding using such scheme favor NSGA-II to generate 

more diverse solution than COIN due to COIN might waste the function evaluation to 

evaluate the redundant solutions. 

 
Figure 6.13 Example of redundancy in the permutation-based approach. The two 

individuals represent the same solution shown in the phenotype. 

 

6.5 Discussion 
 In this chapter, COIN has proved its efficiency in solving several real world 

applications. COIN searches and samples candidates for single and multiple 

objectives problems very effectively compared to GA. The performances of COIN are 

gained from (i) the sampling method and (ii) the negative correlation learning. As 

shown in the TSP benchmarks, the negative correlation learning does not only 

contribute in preventing the premature convergence, but also contribute in 

accelerating the search process.  

 

 

 

6.6 Chapter Summary 
 This chapter, we propose some application of COIN in several real world 

applications including travelling salesperson problems, line balancing problems and 

sequencing problems. The overall results show that COIN is a competitive algorithm 

in solving both single and multiple objectives real world applications. 
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CONCLUSIONS 
7.1 Conclusions 
 In this dissertation, we addressed the difficulties of combinatorial optimization 

where the main difficulty is the representation and the effective ways to construct a 

candidate solution.  

 We presented a new estimation of distribution algorithm (EDA) called 

Coincidence Algorithm (COIN). Our contribution here is twofold. First, a 

probabilistic model based on Markov Chain Monte Carlo (MCMC), and second new 

incremental learning method that involve the negative correlation learning in the 

model.  

From this algorithm, we propose a new hypothesis called the negative building 

block hypothesis (NBBH) which extends the building block hypothesis (BBH) 

previously proposed by Goldberg [7]. The NBBH simply says that avoiding the 

recombination of short low fitted schemas so called negative building blocks should 

be able to form the average solutions not worse than their ancestors. Searching in a 

scope of schemas can be considered to be a guided search or a search with direction. 

However, searching out of a scope of schemas cannot be considered to be an 

unguided search or a search without a direction but considered to be a multi-direction 

search. The multi-direction search is expected to maintain more diversity than a 

guided search; however, the time to converge and the quantity of the result are 

expected to be poorer. COIN is an algorithm based on both BBH and NBBH. The 

combination of BBH and NBBH is expected to utilize both of the BBH and NBBH 

advantages. 

 Different types and different sizes of the benchmarks have been presented. 

Our contribution here is a set of globally multimodal benchmarks which has never 

been tested by any algorithm on the capability to find the multimodal solutions. The 

results show that the negative correlation learning capability of COIN contributes on 

both quality and quantity of the solutions. However, the negative correlation learning 

expresses differently in different benchmarks which depends mainly on the quantity 

of building blocks being shared and the quantity of building blocks being in conflict. 
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 Finally, one of the best contributions is that we propose an extension of COIN 

in solving multi-objective problems. We adopt the non-dominated sorting and 

crowding distance from NSGA-II. The experiments were performed in several real 

world applications and yield fascinating results. The overall performances of COIN 

are better than NSGA-II in every benchmark indicators. More results of COIN in 

solving multi-objective problems can be found in parallel works including a PhD 

dissertation [160] and five master theses [161][162][163][164][165]. 
 

7.2 Recommendation for Future Research 
Many different adaptations, tests, and experiments have been left for the future 

due to lacking of time (i.e. the experiments with real world applications are usually 

very time consuming, requiring even days to finish a single run). Future work 

concerns deeper analysis of particular mechanisms, new proposals to try different 

methods, or simply curiosity. 

There are some ideas that the author would like to try during the development 

of the updating equation in Chapter IV. This dissertation has been mainly focused on 

the use of negative knowledge in EDAs. However, we used a constant learning rate k 

for both positive and negative sample. Moreover, the learning rate is static. From the 

observations, the greater learning rate would lead the algorithm to converge faster, yet 

easier to get stuck in some local optima. In order to investigate the role of negative 

knowledge, the constant learning rate is needed to be fixed, leaving the study of 

dynamic learning rate outside the scope of the dissertation. The following ideas could 

be tested: 

1. It could be interesting to separate the learning coefficient k for 

reward and punishment.  

2. The learning coefficient k could be change dynamically. 

 

The negative correlation could be apply to node based EDA as well. At the 

very beginning of this research, the incremental node based EDA came up in the 

author’s mind. The prototype of COIN based on absolution position was 

implemented. However, the algorithm was failed to converge. At the end of this 

research, we found out that the candidate solutions in node based EDA should not be 

generated as a sequence, but should be generated according to the random position. 
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The initial population in all EDAs has been built using a uniform distribution. 

Other methods could be also tested, as sometimes a pre-processing step could be 

added such that the search can also start with some specific individuals. Also, other 

types of statistical initializations such as greedy probabilistic methods could help at 

directing the search from the beginning, leading to fewer evaluations. 

 

Regarding the application of parallelism to EDAs, an extension for the near 

future is the use of more powerful multiple instruction multiple data (MIMD) 

architecture. COIN can make use of the advantage of parallel instruction set to 

improve the performance in generating the candidates, updating the probabilistic 

model and evaluation of the population. 
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