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CHAPTER I 

INTRODUCTION 

 

1.1 General 

Nanotechnology has remarkably become one of the most interesting fields in 

biology, chemistry, physics and engineering in recent years. Nanoshell, an example of 

a newly nanoscale innovation in fields of medicine and healthcare, can float through 

human body and destroy the tumor just after being activated by a laser beam without 

harming surrounding healthy cells. Patients will benefit greatly from this kind of 

technology as it makes the diagnostics faster yet cheaper. In energy sector, future 

household lightings will apply nanocrystals to transform electricity into light instead 

of wasting away into heat. For public utilities, nanotechnology will provide efficient 

water purification techniques, allowing inhabitants in third-world countries to access 

clean water (Booker and Boysen, 2005). It is undeniable that nanotechnology will 

leverage our standard of living and become the next industrial revolution (Ratner and 

Ratner, 2002). 

In order to meet those human needs circumspectly, the advanced researches on 

material properties of nanostructured materials and nanosized structural elements such 

as nanotubes, nanowires, nanocomposites and nanofilms have been rapidly reported in 

every important aspect. For instance, upon the discovery of carbon nanotube (CNT) in 

1991 by Iijima (Iijima, 1991; Iijima and Ichihashi, 1993), CNT has been 

experimented and presently known as the ideal material that possess excellent 

mechanical properties, i.e. Young’s modulus, tensile strength and failure strains of 

detect-free single-walled CNT are up to 1 TPa, 100 GPa and 15-30%, respectively 

(Peng et al., 2008). Useful information about physical and mechanical properties of 

materials at nanoscale level is essential for designing realistic microelectromechanical 

systems (MEMS) and nanoelectromechanical systems (NEMS) devices. 

Nanocrystalline silicon carbide films, as an obvious example, have large hardness 

values and could have great applications in producing hard protective coatings for 
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cutting tools, and computer hard disks (Liao et al., 2005). Moreover, silicon carbide 

possess higher Young’s modulus to mass density ratio than other semiconducting 

materials (e.g. Si and GaAs), it becomes an ideal semiconductor for device 

applications requiring high frequency mechanical response (Yang et al., 2001). 

Nanomechanical properties can be investigated by two basic approaches, 

namely, experimental methods and theoretical simulations. Some of previous studies 

using direct experimental methods include, for example, the work of Wong et al. 

(1997) in the determination of mechanical properties of isolated silicon carbide (SiC) 

nanorods (NRs) and multi-wall carbon nanotubes (MWNTs) by using atomic force 

microscopy. They suggested that Sic NRs with smaller Young’s modulus should be 

used as a reinforcing material in some composite structures instead of using carbon 

nanotubes whereas applications of MWNTs with ability to store or absorb 

considerable energy should be in armor. Mao et al. (2003) tested a single nanobelt of 

ZnO and SnO2 under an atomic force microscope and found that the hardness of the 

ZnO nanobelt is less than that of SnO2. Poncharal et al. (1999) also measured the 

bending modulus of carbon nanotubes statically and dynamically in a transmission 

electron microscope. Such experiments revealed that the elastic bending modulus as a 

function of diameter is found to decrease sharply with increasing diameter, providing 

direct evidence of the size dependence of elastic properties at the atomic scale.  

Another approach is based upon the mathematical modeling. Two 

predominant models commonly employed to simulate various phenomena in solids 

are molecular and continuum models. Though molecular simulations offer advantages 

in precise response prediction because of their effectiveness in detailing of bonds or 

atoms, but they need tremendous computation effort associated with the need to 

model billions of atoms at a nanoscale and hence they are limited in practical 

application. Therefore, the continuum-based approach is considered attractive since it 

dramatically reduces the computational cost with lesser complexity. To be in 

agreement with the response obtained from an atomistic model, the effects that exist 

at the nanoscale have to be accounted properly in a classical continuum model. Recent 

atomistic computations indicate that atoms near a free surface behave differently from 
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those of the bulk. In this sense, all structural elements are not strictly homogeneous, 

but when the size of elements is in micrometers or larger, the effect of surface free 

energy is commonly neglected due to the fact that it does not have significant 

influence on overall properties. For nanoscale elements, unlike macroscale elements, 

the surface to volume ratio is much higher and the effect of surface free energy 

subsequently becomes significant. Thus, to explain the size-dependent behavior at the 

nanoscale upon the continuum concept, several researchers have attempted to 

incorporate the concept of surface free energy into classical continuum models. For 

example, He et al. (2004) proposed a continuum model based on surface elasticity to 

analyze the size-dependent mechanical response of ultra-thin elastic films of 

nanoscale thickness. Recently, Wang et al. (2010) investigated the size-dependent 

deformations of two-dimensional nanosized structures with surface effects by 

employing the finite element method. They implemented Gurtin and Murdoch surface 

elasticity model with ANSYS through its user programmable features and reported 

that the effective elastic moduli of an elastic solid containing nanoscale circular voids 

is size-dependent. Noticeably, all of these fields of researches have demonstrated how 

the surface elasticity model applies to show mechanical responses of materials at the 

nanoscale level. 

Due to the rapid growth on development of small-scale devices such as 

sensors and actuators, research involving the characterization of material properties at 

nanoscale has recently gained significant attention from various investigators. 

Nanoindentation has now become a widely adopted technique to be used in the 

measurement of mechanical properties, such as hardness and elastic modulus, at the 

nanoscale in the past decade. Unfortunately, the effect of surface elasticity during the 

indentation has been usually considered by experimental measurements and molecular 

dynamics/atomistic simulations which are generally very time-consuming and 

expensive. To minimize such limitations, modified continuum models accounted for 

the surface effects could be developed for nanoindentation problems, additionally, in 

order to clearly understand the mechanical properties of soft elastic solids. 
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In following sections, previous studies related to the surface elasticity model 

and indentation problems are presented in order to demonstrate the current advances 

of this field and identify the gap of knowledge to be focused on in the present 

investigation.  

1.2 Background and Review 

In this section, an extensive literature survey including the existing work 

relevant to the current study and the sequence of historical background in this specific 

area is provided. In order to be systematic, results from such overview are separated 

into two parts regarding to their main focus. Firstly, the development of surface 

elasticity model is reviewed to observe how important of surface energy effects in the 

material characterization of nanoscale elements and soft elastic solids. Then, previous 

studies related to indentation problems, both with and without the surface stress 

effects, are presented and discussed. 

1.2.1 Review of Surface Elasticity Model 

Gibbs (1906), who originally formulated the most useful and powerful 

concepts in studying surface phenomena, defined the quantity  that represents the 

excess free energy per unit area owing to the existence of a surface. Gibbs was the 

first who pointed out that, for solid-solid interfaces, there is another type of 

fundamental parameter called the surface stress that critically affects the behavior of 

surfaces, i.e. to elastically stretch a pre-existing surface. Simply saying that, to deform 

such a solid, excessive work is needed to stretch the surface in addition to straining 

the bulk. The larger partition of work done to surface, the more important the effect of 

surface stress (He and Lim, 2006). Comprehensive literature review on the surface 

energy effect and the Gibbsian formulation of the thermodynamics of surfaces can be 

found in general researches of surface and interface stresses (Cammarata, 1994; 

Cammarata, 1997; Shuttleworth, 1950; Fischer et al., 2008). Especially, Cammarata 

(1994) gave an excellent explanation of the concept of the surface stress and also 

showed that the difference between the surface stress and the surface free energy  is 

equal to the change in surface free energy per unit change in elastic strain of the 
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surface. It should be noted that  is a scalar quantity, while the surface stress is a 

second order tensor in the tangent plane of the surface and the strain normal to the 

surface is excluded.  

A surface can be identified as a layer that an excess energy is attached and 

certain energy is usually termed as the surface energy γ (Fischer et al., 2008). Due to 

the different number of nearest neighbors between surface atoms and bulk atoms, it 

results a corresponding redistribution of electronic charge and modifies layer spacing 

to be lesser at the surface which deviates from the bulk value (Sander, 2003). As a 

result, the energy at a free surface will, in general, be different from that of the atoms 

in the bulk (Dingreville et al., 2005). The ratio of surface free energy  (J/m2) and 

Young’s modulus E (J/m3), /E, is an inevitable parameter of materials (Yakobson, 

2003). For usual metallic materials, the ratio is normally less than one Angstrom. For 

some soft solids, such as polymer gels and biological materials, however, the surface 

energy (or surface stress) is a little less than that of a metal, but the elastic modulus 

can be nearly 7-8 orders smaller than that of conventional solids. Therefore, the 

corresponding intrinsic length scale of soft solids is much larger, implying that the 

surface energy can play an important role on the properties of the materials, and thus 

the properties become size-dependent (He and Lim, 2006). As a consequence, the 

effects of surface stress should be extremely incorporated into classical continuum 

models in order to study the behavior of soft materials or to obtain the correct 

response for nanoscale problems. 

Many authors have developed continuum models that include surface energy 

effects, and one of them is Gurtin-Murdoch model. Gurtin and Murdoch (1975, 1978), 

and Gurtin et al. (1998) proposed a mathematical framework to study the mechanical 

behavior of material surfaces through a continuum model with the surface stress. An 

elastic surface is assumed to be very thin and modeled as a mathematical layer of zero 

thickness bonded to the bulk without slipping. Also, the elastic moduli of the surface 

can be different from the bulk. For an isotropic elastic surface, a linearized surface 

stress-strain constitutive relation is given by 
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    ,2s s s s s s s s s su                                   (1.1) 

where the subscript ‘s’ denotes the quantities corresponding to the surface,  s and  s 

are surface Lamé constants and  s is the residual surface tension under unstrained 

conditions, which is a constant. 

In order to verify Gurtin-Murdoch model, Miller and Shenoy (2000) employed 

such a model to describe the size dependence of the stiffness of plates, bars and beams 

under either uniaxial tension or bending. Their results were compared with direct 

atomistic simulations of nanoscale structures using the embedded atom method for 

face-centered cubic aluminum and the Stillinger–Weber model for silicon. By 

neglecting the error induced from the effects of corners present in the modeling of 

beams, excellent agreement between the simulations and the model is observed. 

Shenoy (2002) completed a framework derived earlier by Miller and Shenoy (2000) 

by adding the torsional rigidities of nanosized structural elements and applied to the 

case of nanoscale bars in torsion. The theoretical results were compared with direct 

atomistic simulations for the torsion of square bars of various metals and found in 

good agreement. It is noted that the difference in theoretical values and simulation 

results mainly came from the assumption that the surface energy depends only on the 

surface strain; however, it should also depend on the surface curvature strain. 

Dingreville et al. (2005) derived analytical expressions for an elastic modulus tensor 

of nanosized structural elements accounted for surface energy effects and showed that 

the overall elastic properties of nanosized particles, wires and films are size-

dependent. The effective Young’s modulus of thin films of various thicknesses 

computed by using molecular static (MS) simulations and their proposed formulation 

found in excellent agreement. They also pointed out that results obtained from MS 

simulations were much more computationally intensive than the proposed 

formulation. This should confirm the benefit of employing such alternative 

continuum-based model to save the computational resources. Undoubtedly, Gurtin-

Murdoch continuum model has been applied and widely used in nanoscale problems 

by several investigators, for example, to analyze the size dependent mechanical 

response of ultra-thin elastic films (He et al., 2004; Huang, 2008) and thin plates (Lu 
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et al., 2006). Recently, such a model has been employed to study the problems of 

nanoscale inhomogeneities. For instance, Sharma and Wheeler (2007) and Sharma et 

al. (2003) reformulated the size dependent elastic field of spherical and ellipsoidal 

nano-inclusions by applying this model. Duan et al. (2005) presented the interior and 

exterior Eshelby tensors for a spherical inhomogeneity subjected to arbitrary uniform 

eigenstrain under the surface/interface effects. Tian and Rajapakse (2007a, 2007b) 

derived the solution for a nanoscale circular and elliptical inhomogeneity in an infinite 

matrix under remote loading based on the Gurtin-Murdoch model. Moreover, Zhao 

and Rajapakse (2009) presented the analytical solution of the plane and axisymmetric 

problems for an elastic layer of finite thickness subjected to surface loading by using 

Fourier and Hankel Transform techniques. Numerical results indicated that the 

surface effects show significant influence on the vertical surface displacement of a 

layer and such influence on the stress field in the case of horizontal point load is more 

significant than that in the case of vertical point load. Intarit et al. (2010) recently 

confirmed the significance of the surface stress on very near the surface of both shear 

and opening dislocations, and also on buried vertical and horizontal loads in an elastic 

half-plane. They also found that the stress field has an asymptotic solution with 

increasing the characteristic length parameter. 

It is obviously seen from (1.1) that, to employ Gurtin-Murdoch continuum 

model, surface elastic properties (i.e. surface energy, surface stress, and surface elastic 

stiffness) must be known a priori. In addition, these particular quantities are also 

strongly influenced on the overall mechanical behavior in nanostructures. Thus, many 

approaches have been proposed, based either on experimental measurements or 

atomistic simulations, to determine such properties. Among various experimental 

techniques, Jing et al. (2006) measured the elastic properties of the nanowires by 

using contact atomic force microscopy (C-AFM) and found that the Young’s modulus 

of the silver nanowire with consideration of the surface effect, surface modulus and 

surface stress are 56 GPa, 8.7 N/m and 5.8 N/m, respectively. Another method, rather 

computationally intensive, is atomistic simulations. Shenoy (2005) developed a fully 

nonlinear formulation of the surface elasticity and established a procedure for 

calculating surface elastic constants from atomistic simulations by adopting the 
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embedded atom method. To reduce disadvantages of both experimental and atomistic 

approaches, Dingreville and Qu (2007) presented a semi-analytical method to 

compute a full set of data on surface elastic properties of crystalline materials. By 

applying this developed method, the surface elastic properties were formulated 

analytically and explicitly in terms of inter-atomic potentials, and a standard 

molecular simulation was used to obtain the relaxed positions of the atoms near the 

free surface in order to evaluate such analytical expressions. 

1.2.2 Review of Indentation Problems 

It is understood that indentation techniques have been widely used for 

measuring mechanical properties on nanoscale such as hardness and elastic modulus. 

For example, the use of nanoindentation to measure the mechanical properties of 

ceramics (Hainsworth and Page, 1994), metals (Armstrong et al., 1995; Beegan et al., 

2007) and polymers (Yang and Li, 1995; Yang and Li, 1997). By using depth-sensing 

indentation tests with either spherical or conical indenters, Young’s modulus can be 

calculated from the slope of the linear portion of the unloading curves in the load 

versus penetration depth while hardness can be calculated from data along the loading 

curves (Doerner and Nix, 1986; Oliver and Pharr, 1992). 

Several authors have obtained the elastic solution of the indentation problems 

by using various mathematical methods. The classical problem of axisymmetric rigid 

punch indenting on an elastic half-space seems to be first considered by Boussinesq 

(Boussinesq, 1885). According to the form of a solution, his numerical results were 

derived only for a flat-ended cylindrical and a conical punch. Harding and Sneddon 

(1945) and Sneddon (1965) solved Boussinesq’s problem under a punch of arbitrary 

profile by applying Hankel integral transform techniques. Clements (1971) later 

determined the stress fields produced from the rigid indentation on an anisotropic 

half-space by employing the theory of anisotropic elasticity developed by Eshelby et 

al. (1953) and Stroh (1958). Since the smart materials have recently gained significant 

interest from several researchers in the field of mechanics, the classical theory of 

elasticity becomes an important tool in studying their behavior from indentation 

techniques. Chen (2000) generalized the potential theory to analyze the piezoelastic 
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contact problem of a punch pressed against a piezoelectric half-space. 

Giannakopoulos and Parmaklis (2007) examined the quasistatic contact problem of a 

circular rigid punch on piezomagnetic materials and confirmed their theoretical results 

by conducting an experiment on Terfenol-D. Moreover, an elastic behavior of a 

nonhomogeneous transversely isotropic half-space was studied by Chaudhuri and Ray 

(2003) under the action of a smooth rigid axisymmetric indenter. 

The indentation problems associated with an elastic layer perfectly bonded to 

an elastic half-space have also been investigated. Lebedev and Ufliand (1958) 

considered a problem of a flat-ended rigid cylindrical indenter on an elastic layer 

resting on a rigid foundation by using Papkovich-Neuber’s representation for the 

displacement vector. After reducing mixed boundary conditions to a pair of integral 

equations, Fredholm integral equation was obtained and solved numerically. By 

taking the Hankel transform technique, Dhaliwal and Rau (1970) reduced the 

axisymmetric Boussinesq problem of an elastic layer lying over an elastic half-space 

under a rigid punch of arbitrary profile to a Fredholm integral equation but no 

numerical result was presented in their study. Subsequently, Rau and Dhaliwal (1972) 

developed a numerical technique to solve the integral equation developed by Dhaliwal 

and Rau (1970) and obtained the complete elastic field.  Yu et al. (1990) presented 

numerical results obtained from solving Fredholm integral equation of the second 

kind to demonstrate the effect of a substrate on the elastic properties of films and 

provided useful guidelines for the proper choice of an approximate layer thickness 

and substrate elastic properties to determine the elastic constants of the layer. 

Motivated by a recently developed multi-dimensional nanocontact system (Lucas et 

al., 2003), Gao et al. (2008) gave an analytical formulation by applying Green’s 

function in Fourier space to predict the effective elastic modulus of film-on-substrate 

systems under normal and tangential contact. In addition, Yang (1998) studied the 

problem of impressing a rigid flat-ended cylindrical indenter onto an incompressible 

elastic film by following a standard procedure such that the Hankel transformation 

was applied to the mixed boundary conditions and the Fredholm integral equation of 

the second kind was subsequently solved numerically. 
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The surface stress effect on mechanical responses of nanoindentation has been 

recently studied by applying the Gurtin-Murdoch continuum model. Zhao (2009) 

derived an analytical solution of a classical indentation problem in the presence of the 

surface energy effect. By applying Gurtin-Murdoch continuum model, he obtained a 

solution for elastic fields within the half-space caused by flat-ended cylindrical, 

conical and spherical rigid indenters. Although Gurtin-Murdoch continuum model 

used in his formulation is not complete (e.g. no out-of-plane term), obtained 

numerical solutions still showed a size-dependent behavior due to the presence of 

surface energy effect, i.e. when the contact area becomes smaller, the material 

behaves stiffer. In addition, it is remarked that atomistic simulations (Sinnott et al., 

1997; Liu et al., 2007; Chen et al., 2008; Lu et al., 2009) can also be used to 

investigate the mechanism of an indentation process under different indenter shapes 

(i.e. spherical indenter and pyramidal indenter), sizes and indentation loads on 

interested materials. In this approach, applied molecular dynamics theory is employed 

to finally obtain the mechanical properties such as hardness and load-displacement 

curves. 

As mentioned in the introduction and extensive review of existing works in 

this area, the influence of surface energy effects by using a complete set of Gurtin-

Murdoch continuum model in order to capture the size-dependent behavior of nano-

indention problems has not been investigated. This therefore requires profound 

exploration to further enhance the correct elastic fields accounted for surface effects. 

1.3 Research Objective 

The key objective of this research is to investigate mechanical responses of a 

rigid punch acting on a half-space with consideration of surface energy effects. 

1.4 Research Scopes 

The proposed investigation is to be carried out within following context: 

1) A rigid punch is frictionless and possesses an axisymmetric profile. 

2) A half-space (bulk) material is homogeneous, isotropic and linearly elastic. 
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3) The influence of the surface energy effects is treated by using complete 

Gurtin-Murdoch surface elasticity model. 

1.5 Research Methodology 

1) A corresponding axisymmetric mixed boundary value problem is formulated 

and reduced to a set of dual integral equations by using Hankel integral 

transform. 

2) Dual integral equations are further reduced to a Fredholm integral equation of 

the second kind by using a procedure based on Sonine’s integrals. 

3) Selected numerical techniques are adopted to solve resulting Fredholm 

integral equation of the second kind. 

4) Once the solution of such Fredholm integral equation is obtained, Hankel 

transform inversions are then employed to determine elastic fields and other 

interesting quantities (i.e. contact pressure and indentation force). 

1.6 Research Significance 

The current investigation proposes an application of continuum-based 

concepts in the analysis of indentation problems for nanoscale structures and soft 

elastic solids by incorporating surface energy effects into a classical continuum 

model. With use of complete Gurtin-Murdoch surface elasticity model, proposed 

formulation is applicable to perform the existence of an inevitable parameter of 

materials via size-dependent behavior and also to strongly demonstrate the influence 

of out-of-plane contribution of residual surface tension on material stiffness. When 

compared with molecular dynamics simulations, this modified continuum model is an 

alternative approach in terms of dramatically reduction in computational resources 

with an acceptable level of accuracy. Such attractive approach offers an alternative for 

studying the mechanical properties and mechanical deformation for punches of 

arbitrary axisymmetric profiles. In addition, knowledge and findings from the present 

study should provide a crucial basis and guidelines for further investigations in the 

area of nanomechanics. 



CHAPTER II 

THEORETICAL CONSIDERATIONS 

 

In this chapter, the formulation of boundary value problem associated with an 

axisymmetric, frictionless, rigid punch acting on a half-space (with consideration of 

surface energy effects) is first presented. The Hankel transform is then applied to 

reduce the corresponding mixed boundary conditions to a set of dual integral 

equations. These dual integral equations are further reduced to a Fredholm integral 

equation of the second kind that is well-suited for constructing numerical solutions. 

2.1 Problem Statement 

       

                             (a)                                                                   (b) 

Figure 2.1 Indentation of half-space by axisymmetric rigid frictionless punch: 

(a) smooth contact and (b) non-smooth contact 

Consider a homogeneous, isotropic, elastic half-space indented by an 

axisymmetric frictionless rigid punch as shown schematically in Figure 2.1. The 

profile of the punch, denoted by a function  =  (r), is defined for convenience and 

without loss by choosing  = 0 at r = 0. The radius of a contact region and the 

indentation depth resulting from a resultant force P at the center of the punch are 

denoted by a and d, respectively. In this study, the profile of the punch is assumed to 

be smooth (i.e. the unit normal vector to the surface of the punch or, equivalently, 
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d/dr is well-defined) at any point within the contact region except along the 

boundary r = a where the profile is allowed to be non-smooth. A punch with well-

defined d/dr for r ≤ a is termed a smooth-contact punch (see Figure 2.1(a)) whereas 

a punch with well-defined d/dr only for r < a is termed a non-smooth-contact punch 

(see Figure 2.1(b)). In the present study, the pressure distribution exerted by the punch 

and the complete elastic fields within the half-space accounted for surface energy 

effects are to be determined. 

2.2 Basic Equations and Formulation of Indentation Problem 

Behavior of the half-space (bulk) is governed by a classical theory of 

elasticity. In the absence of body force, the governing field equations (i.e. equilibrium 

equations, constitutive relations and strain-displacement relations) can be expressed as 

, 0ij j                     (2.1) 

2ij ij ij kk                       (2.2) 

 , ,

1

2ij i j j iu u                     (2.3) 

where iu , ij  and ij  denote components of the displacement, stress and strain 

tensors, respectively; ij  is a Kronecker-delta symbol; and   and   are Lamé 

constants of a bulk material. Note that lower-case indices range from 1 to 3 and 

repeated indices imply the summation over their range. 

A surface of the half-space is regarded as a negligibly thin membrane adhered 

perfectly to the bulk without slipping and its behavior (which is different from the 

bulk) is modeled by Gurtin-Murdoch continuum model of surface elasticity. The 

equilibrium conditions on the surface in terms of the generalized Young-Laplace 

equation (Povestenko, 1993), surface constitutive relations and strain-displacement 

relationship, when specialized to this particular case, are given by (Gurtin and 

Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et al., 1998) 
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0
, 3 0s

i i it                       (2.4) 

    ,2s s s s s s s s s su                       ,     3 3,
s s su              (2.5) 

 , ,

1

2
s s su u                         (2.6) 

where the superscript ‘s’ is used to denote the quantities corresponding to the surface; 

s  and s  are surface Lamé constants; s  is the residual surface tension under 

unstrained conditions; and 0
it  denotes the prescribed traction on the surface. It is 

important to emphasize here that Greek indices range from 1 to 2 and, again, repeated 

indices imply the summation over their range. 

When specialized to an axisymmetric case, the corresponding elastic fields can 

be obtained by solving, in a cylindrical coordinate system ( , , )r z , the biharmonic 

equation (Sneddon, 1951; Selvadurai, 2000) 

4 0                      (2.7) 

where 
2 2

2
2 2

1

r r r z

  
   

  
 is the axisymmetric form of Laplace’s operator and   

is Love’s strain potential. The displacement and stress fields are given in terms of   

as follows: 

3
2

2
2( )rr z r z

          
                   (2.8a) 

2
2 2( )

z r r z
             

              (2.8b) 

3
2

3
(3 4 ) 2( )zz z z

          
                   (2.8c) 

 
3

2
2

( 2 ) 2( )rz r z r

  
     

  
                  (2.8d) 
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2

ru
r z

  
 

 
 


                 (2.8e) 

2
2

2

2
zu

z

   
   


   
 

               (2.8f) 

By applying Hankel integral transforms, the biharmonic equation (2.7) can be reduced 

to 

 
22

2
2

, 0
d

G z
dz

 
 

  
 

                 (2.9) 

where    0

0

,G z r J r dr 


   and  nJ  denotes the first order Bessel functions of 

order n. The general solution of (2.9) is given by 

     , z zG z A Bz e C Dz e                   (2.10) 

where A , B , C  and D  are arbitrary functions of   that can be determined from 

boundary conditions. 

Accordingly, the general solution for displacements and stresses can be transformed 

into the relations involving ( , )G z  and its derivatives with respect to z  by using 

Hankel inversion and the relations (2.8a)-(2.8f): 

       
3

2 2
0 13

0 0

2
2rr

d G dG dG
J r d J r d

dz dz r dz

 
          

  
    

 
       (2.11a) 

     
3

2 2
0 13

0 0

2d G dG dG
J r d J r d

dz dz r dz

 
        

  
   

 
          (2.11b) 

     
3

2
03

0

2 3 4zz

d G dG
J r d

dz dz
        

  
    

 
           (2.11c) 
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   
2

2 2
12

0

2rz

d G
G J r d

dz
       

  
   

 
            (2.11d) 

 2
1

0

r

dG
u J r d

dz

    



                (2.11e) 

 
2

2
02

0

2
z

d G
u G J r d

dz

    


  
  

 
             (2.11f) 

Note that u , r  and z  vanish due to the axisymmetry and all non-zero field 

variables are independent of  . 

By invoking the remote condition associated with the vanishing displacements and 

stresses as z  , C and D must vanish and the function ( , )G z  therefore reduces to 

   , zG z A Bz e                   (2.12) 

Upon substituting (2.12) into (2.11), the expression for the components of stresses and 

displacements are then given in terms of A and B by 

   

   

3
0

0

2
1

0

2

2

1
1

zrr

z

A z B e J r d

A z B e J r d
r





      
   

    







  
        

     




           (2.13) 

   

   

3
0

0

2
1

0

2

1
1

z

z

Be J r d

A z B e J r d
r





    
   

    








 

     




            (2.14) 

   3
0

02
zzz A z B e J r d     

   


  

       
            (2.15) 
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   3
1

02
zrz A z B e J r d     

   


  

       
            (2.16) 

   2
1

0

1 z
ru A z B e J r d      






                  (2.17) 

 2
0

0

2 z
zu A z B e J r d      

  


  

       
            (2.18) 

For the indentation problem shown in Figure 2.1, the boundary of the domain 

can be decomposed into a surface outside the contact region on which the traction 

identically vanishes and a surface inside the contact region on which the normal 

displacement is prescribed while, resulting from the frictionless assumption, the shear 

traction vanishes. These mixed boundary conditions can be expressed as 

0 ( )z zu d r         ;   0 r a           (2.19) 

2
0 0s

zz z zu           ;   a r            (2.20) 

2

0 2 2

0

1
 0

s r r r
rz z

z

d u du u

dr r dr r


 
    

 
     ;   0 r            (2.21) 

where 2s s s     is a surface material constant. Upon substituting (2.16) and 

(2.17) into the boundary condition (2.21), it leads to a relation between A and B: 

 0 01A B
  

 
 

     
              (2.22) 

where 0 2s   . By enforcing the mixed boundary conditions (2.19) and (2.20) 

along with the relation (2.22), it yields a pair of integral equations: 

     02
0

00

2 3
( )

(1 )
BJ r d d r

    
   

 

     
     
  ;   0 r a               (2.23) 
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       
   0 03

02
00

2 2 2 3
0

1

s

BJ r d
            

  
 

                      
  

;   a r       (2.24) 

The dual integral equations (2.23) and (2.24) constitute a complete set of equations 

for determining the unknown function  B B  . By introducing two functions 

     and  w w   such that 

         
 

0 03
2

0

2 2 2 3

1

s

B
            

  
 

                     
      (2.25) 

        01 2

0

2 3
1

(1 )
w B

    
    

 
     

        
           (2.26) 

the dual integral equations (2.23) and (2.24) can further be simplified to 

       1
0

0

1 w J r d f r     


        ;   0 1r           (2.27) 

   0

0

0J r d   


       ;   1 r            (2.28) 

where ( ) ( ) / [ ( )]f r f r a d r    , ( ) ( ) /r r a  , /d d a , a  , /r r a , 

and     / a      . The function      becomes the primary unknown of 

the dual integrals (2.27) and (2.28) while the function  w w   is known and can be 

obtained directly from (2.25) and (2.26) as 

         
0

0 0

( 2) ( 3)
1

2 1 2 2 3s
w

  
       

   
 

              

          (2.29) 

where /   , 0 0 / a    and / ( )s s a   . It is evident from (2.29) that the 

function  w w   possesses a limit equal to -1 as   . 
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The solution of dual integral equations of the type (2.27) and (2.28) has been 

extensively studied by Mandal (1988) and Sneddon (1966). Following their 

procedures, such a set of dual integral equations can be reduced to a Fredholm 

integral equation of the second kind as 

             1

2 2
0 0 0

sin sin2
cos

t u uuf u du w u ud
t dt du

dt u u ut u

  
  

   
  

  
 

 
 
 

   (2.30) 

It can be seen from (2.30) that the function  f u  is merely related to the indenter 

profile and the function  w u  is related to the boundary conditions involving the 

surface energy parameters. This single integral equation (2.30) is in a form well-suited 

for constructing numerical solutions for     . Once the function      is 

solved, the functions A  and B  can be subsequently determined from (2.22) and 

(2.25), respectively, and the complete elastic fields within the half-space can also be 

obtained from (2.13)-(2.18). In addition, the magnitude of the total indentation force P 

producing the indentation depth d can be obtained by integrating the contact pressure, 

i.e. the left hand side of Eq. (2.20), over the area of the contact region. 

In the absence of surface energy effects, above formulation can readily be 

specialized to a special case of a classical indentation problem by setting 0 0   and 

0s  . The function  w w   in (2.29) simply reduces to a constant w  given 

below: 

 
2

1
2 1

w



 
 


                (2.31) 

The dual integral equations (2.23) and (2.24) now become 

     1
0

0

J r d f r    


      ;   0 1r           (2.32) 
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   0

0

0J r d   


       ;   1 r            (2.33) 

where     /f r f r w  . A set of dual integral equations (2.32) and (2.33) was 

solved analytically by Sneddon (1965). 

  



CHAPTER III 

NUMERICAL IMPLEMENTATIONS 

 

Due to the complexity of the Fredholm integral equation of the second kind 

formulated in Chapter II, numerical schemes are necessarily adopted to construct 

approximate solutions. In this chapter, several components essential for such 

numerical implementation (e.g. domain truncation, discretization of the primary 

unknown function ( )   , collocation, linear solvers, Hankel transform inversion, 

etc.) are briefly summarized. 

3.1 Domain Truncation 

It is evident that the second integral of the Fredholm integral equation (2.30) is 

an improper integral with an infinite upper limit and the involved primary unknown 

function ( )    is defined on a semi-infinite interval [0, ∞). Before constructing an 

approximate solution for ( )   , the domain of integration of the improper integral 

is first truncated from [0, ∞) to [0, R ] where R  is a finite real number. The 

truncated Fredholm integral equation is given by 

1

2 2
0 0 0

2 ( ) ( ) ( ) sin( ) sin( )
( ) cos( )

Rtd uf u du w u u u u
t dt du

dt u u ut u

      
   

  
      

    (3.1) 

3.2 Discretization 

The unknown function ( )    over the entire truncated domain [0, R ] can 

be discretized in the form 

1

( ) ( )
n

j j
j

     


                    (3.2) 
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where j are unknown nodal quantities to be determined, j() are nodal basis 

functions, and n is the number of nodes resulting from the discretization. It is worth 

noting that the approximation (3.2) results from a special property of the function  at 

the origin; more specifically, this function vanishes at the origin of order )(O . Note 

also that, in the present study, the nodal basis functions are systematically constructed 

in an element-wise fashion based on standard isoparametric, quadratic elements. 

Upon inserting the approximation (3.2) into (3.1) and then dividing the entire equation 

by  , it leads to a discretized integral equation 
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where the integrals )(jM  and  )(F  are defined on the truncated domain [0, R] by 
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It can readily be verified that the kernel K( , u) is regular for any pair of points ( , 

u) and, as a result, )(jM  involves only an regular integral for all [0, ]R  . The 

integral )(F  is given in terms of a double line integral whose inner integrand 

involves the prescribed profile of the punch and is only weakly singular at u = t. To 

obtain a better form well-suited for numerical integration, an integration by parts is 

performed along with applying a special variable transformation (i.e. u = tsin) to 

remove such singularity and this, finally, leads to 
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3.3 Collocation Method 

To obtain a sufficient number of equations to solve for the unknown constants 

j, a collocation-based technique is utilized. In particular, the discretized integral 

equation (3.3) is collocated (or, equivalent, forced to be satisfied) at all nodes i   

(for i = 1, 2, 3, ..., n) and this leads to a set of n linear algebraic equations governing 

the nodal quantities j as follows 

FMα                                (3.8) 

where T
n},...,,{ 21 α  is vector of nodal quantities and entries of the coefficient 

matrix M and the prescribed vector F are given by 
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3.4 Construction of M and F 

It is evident from (3.9) and (3.10) that entries of the matrix M and the 

prescribed vector F involve only regular integrals. Thus, a standard Gaussian 

quadrature can be used to efficiently and accurately evaluate such integrals. While 

every entry of the matrix M is given in terms of a definite integral over the truncated 

domain [0, R ], this matrix can be efficiently constructed in an element-wise fashion 

and the contribution from all elements to the global matrix M can readily be treated 

using a standard assembly procedure (e.g. Hughes, 2000). It is worth noting that for 

some special punch profiles, the integral )(F  admits an explicit expression and, as a 

result, construction of the corresponding vector F requires no numerical integration. 
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For instance, the integral )(F  can be obtained for a flat-ended cylindrical indenter 

(i.e. ( ) 0r  ) and a paraboloidal indenter (i.e. 2( )r ar   where  is a constant 

representing the slenderness of the punch profile) as 

Flat-ended cylindrical indenter: )sin(
2

)( 


 d
F                                              (3.11) 

Paraboloidal indenter:  2
3

2 4
( ) sin( ) 2 cos( ) ( 2 )sin( )

d a     
 

     F (3.12) 

3.5 Linear Solvers 

It is evident from equation (3.9) that the coefficient matrix M is non-

symmetric and fully dense. To solve a system of linear equations (3.8), either a direct 

solver based on the LU-decomposition method or an iterative solver adopted from the 

stabilized bi-conjugate gradient method is employed. Once the nodal quantities j are 

known, the approximate solution for ( )    can readily be obtained from (3.2) for 

any  in the truncated domain [0, R ]. 

3.6 Determination of Field Quantities 

Once the numerical solution ( )    is obtained, functions 

5( ) ( ) /A A A a    and 4( ) ( ) /B B B a    can be obtained at any [0, ]R   by 

directly solving the relations (2.22) and (2.25) via proper normalization. The explicit 

formula for ( )A A   and ( )B B   in terms of ( )    is given by 
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The stress and displacement fields within the elastic half-space can then be 

obtained from the integrals (2.13)-(2.18) via proper normalization and with the upper 

limited being replaced by R , i.e. 
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where /z z a . To evaluate such truncated Hankel transform inversions for any pair 

of points ( r , z ), standard Gaussian quadrature is again employed. It is important to 

point out that presence of the exponential term ze   in the integrand significantly 

increases the rate of decay of the unfavorable oscillated behavior arising from the 

Bessel functions Jn( ) for z > 0 and, as a result, the associated integrals converges 

very rapidly with a relatively low R . On the contrary, such exponential term 
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becomes one on a free surface of the half-space (i.e. z  = 0) and, due to the slow rate 

of decay of the Bessel functions, it generally requires a sufficiently large R  for those 

integrals associated with z  = 0 to achieve their converged value. 

Once the elastic fields within the half-space are obtained, other interesting 

quantities can also be computed. For instance, the normalized contact pressure under 

the punch, denoted by )(rpp  , can readily be obtained from 
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It is remarked that the Laplacian of the normal displacement appearing on the right 

hand side of (3.21) can directly be evaluated using the prescribed boundary condition 

(2.19). The normalized indentation force P  can further be computed by integrating 

the contact pressure )(rpp   over the contact region: 
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3.7 Determination of Contact Radius a for Smooth-contact Punch 

For a smooth-contact punch, the contact radius a is unknown a priori and must 

be determined first before other quantities of interest can be obtained. It is remarked 

first that once the contact radius a is known, there is no difference of a solution 

procedure for both smooth-contact and nonsmooth-contact punch. To solve for a final 

contact region a that corresponds to a given indentation depth d, a physically 

admissible condition associated with the continuity of the vertical stress at r = a is 

utilized. However, the explicit or close-form relationship between those two 

parameters (a and d) cannot be obtained due to the complexity of the boundary value 

problem accounted for the surface energy effects. 
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3.8 Convergence Study 

For the proposed numerical technique, three key factors that affect the 

accuracy of the approximate solutions are the truncation parameter R , the number of 

elements employed in the discretization, and the number of integration points used in 

standard Gaussian quadrature. Extensive numerical experiments have been performed 

to choose a proper truncated domain, the level of mesh refinement and optimal 

quadrature to ensure the convergence and accuracy of numerical results. Such 

investigation is briefly discussed below. 

The number of Gauss points required in the numerical integration can be 

significant to accurately integrate oscillating and complex integrands (resulting from 

the Bessel functions, ( )   , the kernel K( , u)). From numerical experiments, it 

is found that as the size of elements decreases (i.e. the number of elements in the 

discretization increases), it only requires few Gauss points to achieve highly accurate 

results since the integrand on each element exhibits milder variation without 

oscillating behavior. 

To investigate the level of mesh refinement required to obtain the converged 

results, we perform experiments for a given truncated domain [0, R ]. A series of 

meshes on the fixed [0, R ] is constructed and then used in the analysis. The number 

of elements (N) in the discretization is increased until a converged solution (for a 

specified tolerance) is obtained for a fixed R . By repeating the analysis for various 

R , a ratio N/ R  (representing the level of mesh refinement) to ensure the good 

discretization is found approximately equal to 1. 

To obtain a proper truncated domain that optimizes the computational cost but, 

at the same time, yields accurate results, we next investigate the convergence of 

approximate solutions with respect to the truncated parameter R . From such study, it 

can be concluded that the truncated parameter R  to attain a converged results for the 

non-smooth contact punch is much larger than that for the smooth contact punch. This 
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is due primarily to the singularity induced at the boundary of the contact region of the 

non-smooth contact punch. Suggested by various experiments, the truncated 

parameter R  in the analysis of non-smooth contact and smooth contact punches 

equal to 10,000 and 1,000, respectively. 



CHAPTER IV 

NUMERICAL RESULTS 

 

The solution procedure described in chapter III is implemented as an in-house 

computer code to determine the complete elastic fields for punches of both smooth 

and non-smooth contacts. The accuracy of the present numerical scheme is first 

verified by comparing with analytical solutions of the classical case (no surface 

energy effects) for both categories. Once the method is tested, it is then applied to 

solve more complex indentation problems accounted for surface stress effects in 

which analytical solutions do not exist. In the analysis, punches with flat-ended and 

paraboloidal profiles are chosen to represent the non-smooth and smooth contacts, 

respectively. Numerical results for three different models (i.e. classical solution with 

no surface stress effects and solutions accounted for surface stress effects with and 

without the out-of-plane contribution of the residual surface tension) are fully 

compared and discussed. 

4.1 Verification with Analytical Solutions 

Consider a rigid frictionless punch with a flat-ended cylindrical profile (i.e. 

(r) = 0) and a paraboloidal profile (i.e. (r) = r2 where  is a constant) indented on 

an isotropic, elastic half-space as shown schematically in Figure 4.1(a) and Figure 

4.1(b), respectively. Note that, for both punch profiles, the total indentation depth at 

the tip of the punch d and the final radius of contact a are associated with the total 

indentation force P. With no surface surface effect, the analytical solutions derived by 

Sneddon (1965) are employed to validate the proposed formulation and numerical 

implementations. In numerical experiments, the present solution scheme is specialized 

to treat the classical case by setting 0 0   and 0s  . According to Sneddon (1965), 

the distribution of contact pressure under the punch pc, the shape of the deformed 

boundary uz(r, 0) and the total indentation force Pc required to produce the indentation 

depth d for flat-ended cylindrical and paraboloidal punches are summarized below. 
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 (a) 

 

 (b) 

Figure 4.1 Indentation of half-space by axisymmetric rigid frictionless punch: 

(a) flat-ended cylindrical punch and (b) paraboloidal punch 
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(a) Flat-ended Cylindrical Punch 
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(b) Paraboloidal Punch 
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Though the properties of elastic materials in the present study can be arbitrary, 

to simply compare some elastic quantities with those obtained by Zhao (2009), the 

same set of material properties is uitilized. Aluminum is used for the bulk material 

(Meyers and Chawla, 1999) whereas Al [1 1 1] is employed for the surface (Miller 

and Shenoy, 2000); all material constants are summarized in Table 4.1. In the 

numerical study, it is convenient to introduce following non-dimensional quantities: r0 

= r/Λ0; z0 = z/Λ0; a0 = a/Λ0; d0 = d/Λ0 and 0 =  Λ0. It is worth noting that although 

the classical solution is independent of Λ0, use of this parameter in the non-

dimensionalization allows a direct comparison between non-classical and classical 

solutions. 
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In the case of flat-ended cylindrical punch with contact radius a0 = 0.5, 

comparisons betwen numerical solutions for the classical contact pressure and 

classical vertical displacement and the benchmark solutions are reported in Figure 

4.2(a) and Figure 4.2(b), respectively. It is evidently found that numerical results 

obtained from the present study are almost indistinguishable from the exact solutions 

proposed by Sneddon (1965). Another comparison is performed for the case of 

paraboloidal punch with 0 = 0.5. It can be obviously seen from Figure 4.3(a) and 

Figure 4.3(b) that two numerical solutions obtained from the present scheme, one is 

the contact pressure and the other is the vertical displacement at the free surface, 

again exhibit excellent agreement with the corresponding analytical solutions. This 

additionally confirms the accuracy of the present technique. 

4.2 Results of Punch with Surface Stress Effects  

From the high accuracy of numerical solutions obtained for the classical case, 

the proposed scheme is now convincingly applied to investigate the indentation 

problems with the surface stress effects being incorporated. To allow comparisons 

with results obtained from Zhao (2009) and demonstrate the significant role of the 

surface residual tension s , Gurtin-Murdoch model without the out-of-plane 

contribution of s  is also considered. Selected numerical results are reported and 

dicussed for both punch profiles as follows. 

4.2.1 Flat-ended Cylindrical Punch 

The case of a flat-ended cylindrical punch indented on the half-space with a 

specified contact radius a and indentation depth d shown in Figure 4.1(a) is first 

examined. Note that this punch is an example of a non-smooth contact punch since 

d/dr is not well-defined at r = a. The corresponding elastic fields within the half-

space are reported in Figures 4.4-4.7.  

It can be obviously seen from Figure 4.4 that the distribution of the contact 

pressure under the punch accounted for the surface effects possesses the same trend as 

that for the classical solution in which the singularity still exists at the boundary of the 
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punch. Due to the integration of the out-of-plane contribution of the surface tension, 

the predicted contact pressure for this particular model is considerably less than one 

obtained from the other two models (e.g. the classical model and Gurtin-Murdoch 

model without the out-of-plane contribution of  s). In the analysis, three values of the 

contact radii, a0 = 0.5, 1.0 and 1.5, are considered to study the size-dependent 

behavior and found that when the radius of a punch is smaller and in the same order 

as Λ0, the effects of surface stresses are comparatively larger. It is interesting to point 

out that when the contact pressure p has been normalized in a proper manner (i.e. 

normalized as pa0/4d0), size-dependent behavior due to the influence of surface 

energy effects is significantly demonstrated and this phenomenon cannot be certainly 

observed in the classical model (only one single dotted line is shown in spite of 

changing the contact radius a0). It implies that the classical model ignores an 

inevitable material parameter (i.e. the intrinsic length Λ0) and, as a result, it predicts 

erroneous solutions when the radius of a punch is very small. However, the contact 

pressure under the larger punch (i.e. larger contact radius a0) for both models 

accounted for the surface energy effects converges monotonically to the classical 

solution. 

The variations of normalized vertical stresses, zz/4d0, along the radial 

direction at four depths, z0 = 0.1, 0.5, 1.0 and 1.5, with contact radius a0 = 0.5 are 

shown in Figure 4.5. The vertical stress profiles indicate the strong influence of the 

surface energy effects for region relatively closed to the punch. In particular, at very 

small depth (i.e. z0 = 0.1), the vertical stress increases monotonically and reaches their 

peak values near r0/a0 = 1 and then starts to drop rapidly when r0 increases. At larger 

depths, the vertical stress reaches its maximum at r0 = 0 and decreases monotonically 

to zero at relatively large r0. It is evident that an ideal surface attached to the bulk of 

the current model distributes the localized indentation force to an area outside the 

contact region. As a direct consequence, the current model (i.e. Gurtin-Murdoch 

model with the out-of-plane contribution of  s) predicts the lower vertical stress under 

the punch and higher vertical stress outside the contact region than those obtained 

from the other two models. However, such discrepancy becomes insignificant in the 

region far away from the punch. 
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Numerical results of normalized shear stresses, rz/4d0, and radial stresses, 

rr/4d0, at various depths with contact radius a0 = 0.5 are also presented in Figure 

4.6(a) and Figure 4.6(b), respectively. Similar to the vertical stresses, the magnitudes 

of shear stresses along the radial direction  predicted by the current model are 

generally lower and higher than those obtained from the other two models for regions 

inside and outside the contact, respectively. The shear stress at any depth vanishes at 

r0 = 0 because of the axisymmetry and it reaches its peak value near the edge of the 

punch (r0/a0 = 1) and, thereafter, decreases rapidly with r0. However, such behavior is 

not observed for the radial stress; for instance, the magnitude of radial stress at z0 = 

0.5 obtained from the current model lies between those predicted by the other two 

models for a region inside the contact. As expected, the shear and radial stresses 

obtained from all three models for relatively large r0 possess the same trend and decay 

monotonically to zero. The inflence of surface energy effects is extremely small for z0 

 1.5 as clearly demonstrated by insignificant discrepancy between solutions obtained 

from the current and classical models. 

According to results shown in Figure 4.7(a) for the normalized vertical 

displacement, uz/Λ0d0, along the radial direction at five depths, z0 = 0.0, 0.1, 0.5, 1.0 

and 1.5, with contact radius a0 = 0.5, one predicted by the current model is 

comparatively higher than those obtained from the other two models due to the need 

of higher indentation force to produce the same indentation depth. Unlike the stress 

solutions, vertical displacements exhibit a slower decay rate as z0 increases while they 

still gradually converge to the classical solutions. As the final illustration of elastic 

fields for this particular punch, the normalized radial displacement, ur/Λ0d0, at four 

dfifferent depths, z0 = 0.1, 0.5, 1.0 and 1.5, with the same contact radius a0 = 0.5 is 

reported in Figure 4.7(b). Clearly, the radial displacement increases rapidly from zero 

at r0 = 0 to its peak value at relatively small r0  and then gradually decreases with r0. It 

should be noted that the surface energy effects only influence the magnitude of the 

radial displacement while its distribution along the radial direction predicted by all 

three models is quite similar. 
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Figure 4.2 Comparisons of classical numerical solutions with exact solutions for flat-

ended cylindrical punch: (a) normalized contact pressure and (b) normalized vertical 

displacement 
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          (b) 

Figure 4.3 Comparisons of classical numerical solutions with exact solutions for 

paraboloidal punch: (a) normalized contact pressure and (b) normalized vertical 

displacement 
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Figure 4.4 Distribution of normalized contact pressure under flat-ended cylindrical 

punch with various contact radii 
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Figure 4.5 Normalized vertical stress profiles of flat-ended cylindrical punch with 

contact radius a0 = 0.5 at various depths 
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          (b) 

Figure 4.6 Normalized stress profiles of flat-ended cylindrical punch with contact 

radius a0 = 0.5 at various depths: (a) shear stress and (b) radial stress 
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           (b) 

Figure 4.7 Normalized displacement profiles of flat-ended cylindrical punch with 

contact radius a0 = 0.5 at various depths: (a) vertical displacement and (b) radial 

displacement 
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4.2.2 Paraboloidal Punch 

Consider next a paraboloidal punch with 0 = 0.5 acting on the half-space with 

the indentation depth d and final contact radius a as shown in Figure 4.1(b). This 

punch belongs to a class of smooth contact punches since d/dr is well-defined at r = 

a where a is unknown a priori. Note again that the final contact radius a is determined 

by enforcing the continuity condition of the vertical stress beneath the punch at r = a. 

Numerical results for elastic fields of this particular punch profile are reported in 

Figures 4.8-4.11, additionally, some interesting results demonstrating size-dependent 

behavior and material stiffness due to surface energy effects are finally shown in 

Figures 4.12-4.14 and all crucial remarks are summarized as follows. 

To demonstrate the size-dependency resulting from the influence of surface 

energy effects, the distribution of normalized contact pressure under a paraboloidal 

punch, pa0/4d0, is first presented in Figure 4.8 for three values of the contact radii, 

a0 = 0.5, 0.8 and 1.0. Interestingly, the contact pressure predicted by the current model 

becomes finite at the boundary while that obtained from the classical case and Zhao's 

model vanishes at the boundary of the contact region. Unlike results for the flat-ended 

cylindrical punch, the contact pressure obtained from the current model is 

significantly larger than those obtained from the other two models. However, such 

discrepancy becomes smaller when the contact radius is larger. Note in addition that, 

upon the proper normalization, the distribution of the contact pressure for the classical 

case is obviously independent of the contact radius and exhibit no size-dependency. 

Normalized vertical stress profiles for the paraboloidal punch with a fixed 

contact radius a0 = 0.5 at five depths, z0 = 0.0, 0.1, 0.5, 1.0 and 1.5, are reported in 

Figure 4.9. It is important to emphasize that due to the enforcement of continuity of 

the vertical stress at r = a, the singularity behavior at the boundary of the contact 

region as that observed in the case of flat-ended punch disappears for this particular 

punch profile. The maximum value of the vertical stress occurs at the origin and 

rapidly decays to zero as r0 increases. Clearly, the distribution of the vertical stress 

along the radial direction at a very small depth exhibits significant difference from the 

case of the flat-ended punch. Again, the vertical stress very near the free surface 
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predicted by the current model deviates from those obtained from the classical and 

Zhao’s models and this implies the significant influence of the surface energy effects 

and the out-of-plane contribution of the residual surface tension. 

Figure 4.10(a) and Figure 4.10(b) show the normalized shear and radial 

stresses along the radial direction with contact radius a0 = 0.5 at four different depths, 

z0 = 0.1, 0.5, 1.0 and 1.5. Similar to the case of flat-ended punch, the shear stress at 

each depth increases from zero at r0 = 0 to its peak value near the punch boundary 

(r0/a0 = 1) and then decays rapidly as r0 increases whereas the radial stress decreases 

monotonically from its maximum value at r0 = 0 as r0 increases. Again, the surface 

energy exhibits significant influence on both shear and radial stresses only in a local 

region very near the punch and its contribution becomes negligible at regions very far 

from the punch. The influence of surface energy on the vertical and radial 

displacements is also clearly demonstrated by results shown in Figure 4.11(a) and 

Figure 4.11(b). The vertical displacement predicted by the current model is 

comparatively higher with a slower decay rate when compared with those obtained 

from the other two models. This observed behavior is similar to the case of flat-ended 

punch.  

To further demonstrate the size-dependent behavior, the relationship between 

the ratio a0/ac (where ac denotes the contact radius for the classical case) and the 

contact radius a0 of a paraboloidal punch is investigated and results are shown in 

Figure 4.12. Due to the influence of surface energy effects, it is evident that the 

contact radius is smaller than that obtained from the classical case for the same 

indentation depth. This implies that presence of the surface stress renders the material 

stiffer. In particular, the difference from the classical solution is less than 1% for 

Zhao’s model and up to 30% for the current model. It appears that the out-of-plane 

contribution of residual surface tension strongly influences on material stiffness and 

the surface energy effects play a prominent role in mechanical properties of materials. 

Another set of results that confirms the size-dependent behavior of predicted 

solutions when the surface energy effects are incorporated is associated with the 

relationship between the normalized indentation force, P/Pc, and the contact radius a0 
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for flat-ended cylindrical and paraboloidal punches as shown in Figure 4.13. It is 

obviously seen that, when the radius of the punch becomes smaller, the indentation 

force required to produce the same indentation depth is relatively higher due to the 

surface energy effects. The discrepancy is more pronounced for results predicted by 

the current model when compared with Zhao’s solutions. This implies that the 

stiffness of materials characterized by the indentation experiment does not only 

depend on the penetration depth but also highly depend on the radius of the punch. In 

particular, at the contact radius a0 = 0.1, results obtained from Zhao’s model are 

approximately 5% higher than the classical solution for both punch profiles whereas 

those predicted by a model accounted for the out-of-plane contribution of the residual 

surface tension are up to 120% and 160% higher than that obtained from the classical 

model for paraboloidal and flat-ended punches, respectively. 

To clearly demonstrate the influence of surface energy effects on the material 

stiffness, the relationship between normalized indentation force, P/4Λ0
2, and the 

indentation depth d0 for both punch profiles are presented in Figure 4.14(a) and Figure 

4.14(b). It can be concluded from these results that the indentation force for both 

punches predicted by the current model is significantly higher than that obtained from 

the classical model and Zhao’s model. This additionally confirms that materials 

become stiffer due to the presence of the surface stress effects and the out-of-plane 

contribution of the residual surface tension amplifies such influence. It is also 

important to emphasize that the discrepancy of results for the flat-ended cylindrical 

punch is more pronounced than that for the paraboloidal punch due to the non-

smoothness of the punch profile and the singularity of stress field introduced at the 

boundary of the contact region. 
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Figure 4.8 Distribution of normalized contact pressure under paraboloidal punch with 

various contact radii 
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Figure 4.9 Normalized vertical stress profiles of paraboloidal punch with contact 

radius a0 = 0.5 at various depths 
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           (b) 

Figure 4.10 Normalized stress profiles of paraboloidal punch with contact radius a0 = 

0.5 at various depths: (a) shear stress and (b) radial stress 
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           (b) 

Figure 4.11 Normalized displacement profiles of paraboloidal punch with contact 

radius a0 = 0.5 at various depths: (a) vertical displacement and (b) radial displacement 



 

 

46

a0

0 1 2 3 4 5

a 0/
a c

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Paraboloidal punch
Classical solution
Zhao's solution
Current study

 

Figure 4.12 Variation of a0/ac versus contact radius a0. 
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Figure 4.13 Variation of normalized indentation force versus contact radius a0 
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          (b) 

Figure 4.14 Relationship between normalized indentation force and indentation depth 

d0: (a) flat-ended cylindrical punch and (b) paraboloidal punch 
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Table 4.1 Material properties used in numerical study 

Model Parameter Value (unit) 

 58.17x109 (N/m2) 

 26.13x109 (N/m2) 

Λ0 0.16707 (nm) 

s 6.8511 (N/m) 

 s -0.376 (N/m) 

 s 1 (N/m) 

 

 



CHAPTER V 

CONCLUSIONS 

 

5.1 Summary and Major Findings 

The complete solutions of an axisymmetric rigid frictionless indentation acting 

on an isotropic, elastic half-space with consideration of surface energy effects by 

employing a complete version of Gurtin-Murdoch surface elasticity model have been 

fully investigated. Based on the axisymmetric solutions in term's of Love's strain 

potential together with the application of Hankel integral transform technique, the 

mixed boundary conditions on the surface of a half-space both outside and inside the 

contact region can be reduced to a set of dual integral equations which can be further 

equivalently transformed into a single Fredholm integral equation of the second kind. 

To obtain the solution of this single integral equation, various numerical schemes 

have been employed to enhance both the accuracy and computational efficiency of the 

solutions. First, standard approximation of a solution form and a collocation technique 

are adopted to discretize the Fredholm integral equation. After a system of linear 

algebraic equations with nonsymmetric, dense coeffient matrix is obtained from the 

discretization, either LU-decomposition or stabilized bi-conjugate gradient method 

has been applied to solve such a system. Finally, complete elastic fields within the 

half-space are obtained by applying the Hankel innversion along with using standard 

Gaussian quadrature. For smooth-contact punches, a physically admissible condition 

associated with the continuity of vertical stress at the contact boundary is employed to 

determine the unknown contact radius for a given indentation depth. 

The numerical procedures have been implemented as an in-house computer 

code to determine the complete elastic fields of both non-smooth contact and smooth 

contact punches. The validity of the current formulation and accuracy of the 

numerical implementations have been confirmed by comparing with the classical case 

in which exact solutions exist. As anticipated, obtained numerical results have 

demonstrated that the influence of surface energy effects becomes larger when the 
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size of the punch is smaller especially in the region very near the punch. In addition, 

material behaves stiffer due to such effects. It is interestingly remarked that the 

distribution of contact pressure for two punch profiles (i.e. flat-ended and 

paraboloidal punches) obtained from the current model exhibits significant 

discrepancy. In particular, the contact pressure obtained from the current model for 

the flat-ended punch is considerable lower than the classical case and that by Zhao 

(2009) whereas, for the paraboloidal punch, the current model predicts much higher 

contact pressure than the other two models. However, for both types of contacts, 

elastic fields obtained from the current model indicate the strong influence of the 

surface free energy for region relatively close to the punch. Such influence decays 

rapidly for the vertical stresses but, for the vertical displacements, it exhibits slower 

decay as the depth increases. Still, the sigularity at the boundary has been observed 

for the case of a non-smooth contact. Size-dependent behavior has been also 

presented to confirm the essence of accounting surface energy effects on analysis of 

material properties at nanoscale and soft elastic solids due to their high surface to 

volume ratio. 

5.2 Suggestions for Future Work  

The boundary value problem focused on in the current study is restricted only 

to the axisymmetric indentation on an isotropic, elastic half-space. In addition, the 

punch is also assumed to be rigid with no friction. The generalization to alleviate all 

those limitations should be potentially useful to enhance understanding of 

nanomechanics and the mechanics of soft solids in a broader context. For instance, 

(i) A punch profile can be generalized to non-axisymmetric one and an 

elastic half-space can also be replaced by a more general film/substrate 

system. 

(ii) A constitutive model for an elastic half-space can be generalized to 

treat both anisotropic linearly elastic and inelastic materials. The 

ability to treat material anisotropy and nonlinear material behavior will 

enhance the modeling capability for simulating more practical 
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problems associated with characterization of material properties using 

nanoindentations.  

(iii) A proper friction model can be incorporated to treat the interaction 

between a punch and an elastic half-space. It is known that frictionless 

contact is very idealistic and can hardly be found in practices. 



REFERENCES 

 

Armstrong, R. W., Shin, H., and Ruff, A. W.  1995.  Elastic/plastic effects during very 

low-load hardness testing of copper.  Acta Metallurgica et Materialia 43: 

1037-1043. 

Beegan, D., Chowdhury, S., and Laugier, M. T.  2007.  Comparison between 

nanoindentation and scratch test hardness (scratch hardness) values of copper 

thin films on oxidised silicon substrates.  Surface and Coatings Technology 

201: 5804-5808. 

Booker, R., and Boysen, E.  2005.  Nanotechnology for dummies.  New Jercy: Wiley. 

Boussinesq, J.  1885.  Applications des Potentiels à l’ Étude de l’ Équilibre et du 

Mouvement des Solides Élastiques.  Paris: Gauthier-Villars. 

Cammarata, R. C.  1994.  Surface and interface stress effects in thin films.  Progress 

in Surface Science 46: 1-38. 

Cammarata, R. C.  1997.  Surface and interface stress effects on interfacial and 

nanostructured materials.  Materials Science and Engineering A 237: 180-184. 

Chaudhuri, P. K., and Ray, S.  2003.  Effects of an axisymmetric rigid punch on a 

nonhomogeneous transversely isotropic half-space.  Australian & New 

Zealand Industrial and Applied Mathematics Journal 44: 461–474. 

Chen, C. S., Wang, C. K., and Chang, S. W.  2008.  Atomistic simulation and 

investigation of nanoindentation, contact pressure and nanohardness.  

Interaction and Multiscale Mechanics 1: 411-422. 

Chen, W.  2000.  On piezoelastic contact problem for a smooth punch.  International 

Journal of Solids and Structures 37: 2331-2340. 



 53

Clements, D. L.  1971.  The indentation of an anisotropic half space by a rigid punch.  

Journal of the Australian Mathematical Society 12: 75-82. 

Dhaliwal, R. S., and Rau, I. S.  1970.  The axisymmetric boussinesq problem for a 

thick elastic layer under a punch of arbitrary profile.  International Journal of 

Engineering Science 8: 843-856. 

Dingreville, R., and Qu, J.  2007.  A semi-analytical method to compute surface 

elastic properties.  Acta Materialia 55: 141-147. 

Dingreville, R., Qu, J., and Cherkaoui, M.  2005.  Surface free energy and its effect on 

the elastic behavior of nano-sized particles, wires and films. Journal of the 

Mechanics and Physics of Solids 53: 1827-1854. 

Doerner, M. F., and Nix, W. D.  1986.  A method for interpreting the data from depth-

sensing indentation instruments.  Journal of Materials Research 1: 601-609. 

Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L.  2005.  Eshelby formalism 

for nano-inhomogeneities.  Proceedings of the Royal Society A 461: 3335-

3353. 

Eshelby, J. D., Read, W. T., and Shockley, W.  1953.  Anisotropic elasticity with 

applications to dislocation theory.  Acta Metallurgica 1: 251-259. 

Fischer, F. D., Waitz, T., Vollath, D., and Simha, N. K.  2008.  On the role of surface 

energy and surface stress in phase-transforming nanoparticles.  Progress in 

Materials Science 53: 481-527. 

Gao, Y. F., Xu, H. T., Oliver, W. C., and Pharr, G. M.  2008.  Effective elastic 

modulus of film-on-substrate systems under normal and tangential contact.  

Journal of the Mechanics and Physics of Solids 56: 402-416. 

Giannakopoulos, A. E., and Parmaklis, A. Z.  2007.  The contact problem of a circular 

rigid punch on piezomagnetic materials.  International Journal of Solids and 

Structures 44: 4593–4612. 



 54

Gibbs, J. W.  1906.  The scientific papers of J. Willard Gibbs.  Vol. 1.  London: 

Longmans Green. 

Gurtin, M. E., and Murdoch, A. I.  1975.  A continuum theory of elastic material 

surfaces.  Archive for Rational Mechanics and Analysis 57: 291-323. 

Gurtin, M. E., and Murdoch, A. I.  1978.  Surface stress in solids.  International 

Journal of Solids and Structures 14: 431-440. 

Gurtin, M. E., Weissmüller, J., and Larché, F.  1998.  A general theory of curved 

deformable interfaces in solids at equilibrium.  Philosophical Magazine A 78: 

1093-1109. 

Hainsworth, S. V., and Page, T. F.  1994.  Nanoindentation studies of the 

chemomechanical effect in sapphire.  Journal of Materials Science 29: 5529-

5540. 

Harding, J. W., and Sneddon, I. N.  1945.  The elastic stresses produced by the 

indentation of the plane surface of a semi-infinite elastic solid by a rigid 

punch.  Mathematical Proceedings of the Cambridge Philosophical Society 41: 

16-26. 

He, L. H., and Lim, C. W.  2006.  Surface green function for a soft elastic half-space: 

Influence of surface stress.  International Journal of Solids and Structures 43: 

132–143. 

He, L. H., Lim, C. W., and Wu, B. S.  2004.  A continuum model for size-dependent 

deformation of elastic films of nano-scale thickness.  International Journal of 

Solids and Structures 41: 847–857. 

Huang, D. W.  2008.  Size-dependent response of ultra-thin films with surface effects.  

International Journal of Solids and Structures 45: 568-579. 

Hughes, T. J. R.  2000.  The finite element method: Linear static and dynamic finite 

element analysis.  New Jersey: Dover Publications. 



 55

Iijima, S.  1991.  Helical microtubules of graphitic carbon.  Nature 354: 56-58. 

Iijima, S., and Ichihashi, T.  1993.  Single-shell carbon nanotubes of 1-nm diameter.  

Nature 363: 603-605. 

Intarit, P., Senjuntichai, T., and Rajapakse, R. K. N. D.  2010.  Dislocations and 

internal loading in a semi-infinite elastic medium with surface stresses.  

Engineering Fracture Mechanics 77:3592-3603. 

Jing, G. Y., et al.  2006.  Surface effects on elastic properties of silver nanowires: 

Contact atomic-force microscopy.  Physical Review B 73: 235409. 

Lebedev, N. N., and Ufliand, I. S.  1958.  Axisymmetric contact problem for an 

elastic layer.  Journal of Applied Mathematics and Mechanics 22: 442-450. 

Liao, F., Girshick, S. L., Mook, W. M., Gerberich, W. W., and Zachariah, M. R.  

2005.  Superhard nanocrystalline silicon carbide films.  Applied Physics 

Letters 86: 171913. 

Liu, C. L., Fang, T. H., and Lin, J. F.  2007.  Atomistic simulations of hard and soft 

films under nanoindentation. Materials Science and Engineering A 452-453: 

135-141. 

Lu, C., Gao, Y., Michal, G., Huynh, N. N., Zhu, H. T., and Tieu, A. K.  2009.  

Atomistic simulation of nanoindentation of iron with different indenter shapes.  

Proceedings of the Institution of Mechanical Engineers 223: 997984. 

Lu, P., He, L. H., Lee, H. P., and Lu, C.  2006.  Thin plate theory including surface 

effects.  International Journal of Solids and Structures 43: 4631-4647. 

Lucas, B. N., Hay, J. C., and Oliver, W. C.  2003.  Using multidimensional contact 

mechanics experiments to measure poisson's ratio.  Journal of Materials 

Research 19: 58-65. 



 56

Mandal, B. N.  1988.  A note on Bessel function dual integral equation with weight 

function.  International Journal of Mathematics and Mathematical Sciences 11: 

543-550. 

Mao, S. X., Zhao, M., and Wang, Z. L.  2003.  Nanoscale mechanical behavior of 

individual semiconducting nanobelts.  Applied Physics Letters 83: 993-995. 

Miller, R. E., and Shenoy, V. B.  2000.  Size-dependent elastic properties of 

nanosized structural elements.  Nanotechnology 11: 139-147. 

Oliver, W. C., and Pharr, G. M.  1992.  An improved technique for determining 

hardness and elastic modulus using load and displacement sensing indentation 

experiments.  Journal of Materials Research 7: 1564-1583. 

Peng, B., et al.  2008.  Measurements of near-ultimate strength for multiwalled carbon 

nanotubes and irradiation-induced crosslinking improvements.  Nature 

Nanotechnology 3: 626-631. 

Poncharal, P., Wang, Z. L., Ugarte, D., and de Heer, W. A.  1999.  Electrostatic 

deflections and electromechanical resonances of carbon nanotubes.  Science 

283: 1513-1516. 

Povstenko, Y. Z.  1993.  Theoretical investigation of phenomena caused by 

heterogeneous surface tension in solids.  Journal of the Mechanics and Physics 

of Solids 41: 1499-1514. 

Ratner, M., and Ratner, D.  2002.  Nanotechnology: A gentle introduction to the next 

big idea.  New Jercy: Prentice Hall. 

Rau, I. S., and Dhaliwal, R. S.  1972.  Further considerations on the axisymmetric 

boussinesq problem.  International Journal of Engineering Science 10: 659-

663. 

Sander, D.  2003.  Surface stress: Implications and measurements.  Current Opinion in 

Solid State and Materials Science 7: 51-57. 



 57

Selvadurai, A. P. S.  2000.  Partial differential equations in mechanics 2.  Germany: 

Springer. 

Sharma, P., and Wheeler, L. T.  2007.  Size-dependent elastic state of ellipsoidal 

nano-inclusions incorporating surface⁄interface tension.  Journal of Applied 

Mechanics - Transactions of the ASME 74: 447-454. 

Sharma, P., Ganti, S., and Bhate, N.  2003.  Effect of surfaces on the size-dependent 

elastic state of nano-inhomogeneities.  Applied Physics Letters 82: 535-537. 

Shenoy, V. B.  2002.  Size-dependent rigidities of nanosized torsional elements.  

International Journal of Solids and Structures 39: 4039–4052. 

Shenoy, V. B.  2005.  Atomistic calculations of elastic properties of metallic fcc 

crystal surfaces.  Physical Review B 71: 094104. 

Shuttleworth, R.  1950.  The surface tension of solids.  Proceedings of the Physical 

Society Section A 63: 444-457. 

Sinnott, S. B., Colton, R. J., White, C. T., Shenderova, O. A., Brenner, D. W., and 

Harrison, J. A.  1997.  Atomistic simulations of the nanometer-scale 

indentation of amorphous-carbon thin films.  Journal of Vacuum Science and 

Technology A 15: 936-940. 

Sneddon, I. N.  1951.  Fourier transform.  New York: McGraw-Hill. 

Sneddon, I. N.  1965.  The relation between load and  penetration in the axisymmetric 

boussinesq problem for a punch of arbitrary profile.  International Journal of 

Engineering Science 3: 47-57. 

Sneddon, I. N.  1966.  Mixed boundary value problems in potential theory.  New 

York: John Wiley & Sons. 

Stroh, A. N.  1958.  Dislocations and cracks in anisotropic elasticity. Philosophical 

Magazine 3: 625-646. 



 58

Tian, L., and Rajapakse, R. K. N. D.  2007a.  Analytical solution for size-dependent 

elastic field of a nanoscale circular inhomogeneity.  Journal of Applied 

Mechanics - Transactions of the ASME 74: 568-574. 

Tian, L., and Rajapakse, R. K. N. D.  2007b.  Elastic field of an isotropic matrix with 

a nanoscale elliptical inhomogeneity.  International Journal of Solids and 

Structures 44: 7988-8005. 

Wang, W., Zeng, X., and Ding, J.  2010.  Finite element modeling of two-dimensional 

nanoscale structures with surface effects.  World Academy of Science, 

Engineering and Technology 72: 867-872. 

Wong, E. W., Sheehan, P. E., and Lieber, C. M.  1997.  Nanobeam mechanics: 

Elasticity, strength, and toughness of nanorods and nanotubes.  Science 277: 

1971-1975. 

Yakobson, B. I.  2003.  Nanomechanics.  In W. A. Goddard; D. W. Brenner; S. E. 

Lyshevski; and G. J. Iafrate (eds.),  Handbook of nanoscience, engineering, 

and technology,  chapter 17.  Florida: CRC Press. 

Yang, F.  1998.  Indentation of an incompressible elastic film.  Mechanics of 

Materials 30: 275-286. 

Yang, F., and Li, J. C. M.  1995.  Impression test of 63Sn-37Pb eutectic alloy.  

Materials Science and Engineering A 201: 40-49. 

Yang, F., and Li, J. C. M.  1997.  Viscosity of selenium measured by impression test.  

Journal of Non-Crystalline Solids 212: 136-142. 

Yang, Y. T., et al.  2001.  Monocrystalline silicon carbide nanoelectromechanical 

systems.  Applied Physics Letters 78: 162-164. 

Yu, H. Y., Sanday, S. C., and Rath, B. B.  1990.  The effect of substrate on the elastic 

properties of films determined by the indentation test-axisymmetric boussinesq 

problem.  Journal of the Mechanics and Physics of Solids 38: 745-764. 



 59

Zhao, X. J.  2009.  Surface loading and rigid indentation of an elastic layer with 

surface energy effects.  Master’s thesis,  Faculty of graduate studies 

(mechanical engineering).  The university of british columbia (vancouver). 

Zhao, X. J., and Rajapakse, R.K.N.D.  2009.  Analytical solutions for a surface-loaded 

isotropic elastic layer with surface energy effects.  International Journal of 

Engineering Science 47: 1433-1444. 



 

 

60

BIOGRAPHY 

 

The author, Miss. Yutiwadee Pinyochotiwong graduated her Bachelor of 

Engineering degree in Civil Engineering from Chulalongkorn University in 2008. As 

she would like to obtain the advanced knowledge of structural engineering, she 

continued her Master’s degree in structural civil engineering at Chulalongkorn 

University in the same year under the supervision of Assistant Professor Dr. Jaroon 

Rungamornrat and Professor Dr. Teerapong Senjuntichai. For two years of studying 

in Master’s degree, she had studied new interesting knowledge of advanced solid 

mechanics solved by the powerful numerical techniques and decided to do her 

research on this kind of field. She successfully fulfilled the requirements for the 

Master of Engineering degree in 2010. 

 


	Cover (Thai) 
	Cover (English) 
	Accepted 
	Abstract (Thai)
	Abstract (English) 
	Acknowledgements 
	Contents 
	CHAPTER I INTRODUCTION
	1.1 General
	1.2 Background and Review
	1.3 Research Objective
	1.4 Research Scopes
	1.5 Research Methodology
	1.6 Research Significance

	CHAPTER II THEORETICAL CONSIDERATIONS
	2.1 Problem Statement
	2.2 Basic Equations and Formulation of Indentation Problem

	CHAPTER III NUMERICAL IMPLEMENTATIONS
	3.1 Domain Truncation
	3.2 Discretization
	3.3 Collocation Method
	3.4 Construction of M and F
	3.5 Linear Solvers
	3.6 Determination of Field Quantities
	3.7 Determination of Contact Radius a for Smooth-contact Punch
	3.8 Convergence Study

	CHAPTER IV NUMERICAL RESULTS
	4.1 Verification with Analytical Solutions
	4.2 Results of Punch with Surface Stress Effects

	CHAPTER V CONCLUSIONS
	5.1 Summary and Major Findings
	5.2 Suggestions for Future Work

	References 
	Vita



