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CHAPTER |

INTRODUCTION

1.1 General

Nanotechnology has remarkably become one of the most interesting fields in
biology, chemistry, physics and engineering in-recent years. Nanoshell, an example of
a newly nanoscale innovation.in-fields of medicine and healthcare, can float through
human body and destroy. the tumor just after being activated by a laser beam without
harming surrounding healthycells; Patients will benefit greatly from this kind of
technology as it makes the diagnostics faster yet cheaper. In energy sector, future
household lightings will apply nanocrystalsito transform electricity into light instead
of wasting away into heat. For publie utilities, nanotechnology will provide efficient
water purification technigues, allowing inhébi;[ants in third-world countries to access
clean water (Booker and Boysen, 2005). It "is,__undeniable that nanotechnology will
leverage our standard of living and become ',th_e’next industrial revolution (Ratner and
Ratner, 2002). e

In order to meet those human needs circumspectly, the advanced researches on
material properties of nanostructured materials and nanosized structural elements such
as nanotubes, nanawires,| nanocomposites andmanafilms have-been rapidly reported in
every importantiaspect. For instance, upon the discovery of carbon nanotube (CNT) in
1991 by .lijima _(lijima,, 1991;, lijima, and Ichibashi,, 1993); .CNT has been
experimented and- presently “known “as the ideal material ‘that pessess excellent
mechanical properties, i.e. Young’s modulus, tensile strength and failure strains of
detect-free single-walled CNT are up to 1 TPa, 100 GPa and 15-30%, respectively
(Peng et al., 2008). Useful information about physical and mechanical properties of
materials at nanoscale level is essential for designing realistic microelectromechanical
systems (MEMS) and nanoelectromechanical systems (NEMS) devices.
Nanocrystalline silicon carbide films, as an obvious example, have large hardness

values and could have great applications in producing hard protective coatings for



cutting tools, and computer hard disks (Liao et al., 2005). Moreover, silicon carbide
possess higher Young’s modulus to mass density ratio than other semiconducting
materials (e.g. Si and GaAs), it becomes an ideal semiconductor for device

applications requiring high frequency mechanical response (Yang et al., 2001).

Nanomechanical properties can be investigated by two basic approaches,
namely, experimental methods and thearetical simulations. Some of previous studies
using direct experimental methods include, for example, the work of Wong et al.
(1997) in the determination of mechanical properties of isolated silicon carbide (SiC)
nanorods (NRs) and mulii=wall carbon nanotubes (MWNTS) by using atomic force
microscopy. They suggested.that Sic NRs with smaller Young’s modulus should be
used as a reinforcing material in some composite structures instead of using carbon
nanotubes whereas applications  of MWNTS with ability to store or absorb
considerable energy should be in armor. Mao et al. (2003) tested a single nanobelt of
ZnO and SnO; under an atomic force micrescope and found that the hardness of the
ZnO nanobelt is less than that of 'SnO,. Poncharal et al. (1999) also measured the
bending modulus of carbon nanotubes statiicail‘ly and dynamically in a transmission
electron microscope. Such experiments revealed that the elastic bending modulus as a
function of diameter is found to decrease sharply with increasing diameter, providing

direct evidence of the'size dependence of elastic propertiesat the atomic scale.

Another approach...is based upen the mathematical modeling. Two
predominant models commanly employed to simulate various phenomena in solids
are molecular and continuum models. Though molecular simulations offer advantages
in precise ¥asponse. prediction-because of theireffectiveriess indetailing of bonds or
atoms, but they need tremendous computation effort associated with the need to
model billions of atoms at a nanoscale and hence they are limited in practical
application. Therefore, the continuum-based approach is considered attractive since it
dramatically reduces the computational cost with lesser complexity. To be in
agreement with the response obtained from an atomistic model, the effects that exist
at the nanoscale have to be accounted properly in a classical continuum model. Recent

atomistic computations indicate that atoms near a free surface behave differently from



those of the bulk. In this sense, all structural elements are not strictly homogeneous,
but when the size of elements is in micrometers or larger, the effect of surface free
energy is commonly neglected due to the fact that it does not have significant
influence on overall properties. For nanoscale elements, unlike macroscale elements,
the surface to volume ratio is much higher and the effect of surface free energy
subsequently becomes significant. Thus, to explain the size-dependent behavior at the
nanoscale upon the continuum concept,” several researchers have attempted to
incorporate the concept of surface free energy inie classical continuum models. For
example, He et al. (2004)-proposed a continuum-meodel based on surface elasticity to
analyze the size-dependent.mechanical response of ultra-thin elastic films of
nanoscale thickness. Recently,»\Wang et al. (2010) investigated the size-dependent
deformations of twe=dimensional .nanesized struetures with surface effects by
employing the finite element method: Théy implemented Gurtin and Murdoch surface
elasticity model with ANSYS through its user programmable features and reported
that the effective elastic moduli of an elastic solid containing nanoscale circular voids
is size-dependent. Noticeably, all of these ﬁelds of researches have demonstrated how
the surface elasticity model applies to showj mébhanical responses of materials at the

nanoscale level.

Due to the rapid growth on development of small-scale devices such as
sensors and actuators,¥esearch involving the characterization of material properties at
nanoscale has_recently, gained significant” attention from_various investigators.
Nanoindentation: has now become.a widely ‘adopted ‘technigue to be used in the
measurement of mechanical properties, such as hardness and elastic modulus, at the
nanoscale 1nthe past decade. Unfartunately, the effect of-surface ‘elasticity during the
indentation has been usually considered by experimental measurements and molecular
dynamics/atomistic simulations which are generally very time-consuming and
expensive. To minimize such limitations, modified continuum models accounted for
the surface effects could be developed for nanoindentation problems, additionally, in

order to clearly understand the mechanical properties of soft elastic solids.



In following sections, previous studies related to the surface elasticity model
and indentation problems are presented in order to demonstrate the current advances
of this field and identify the gap of knowledge to be focused on in the present

investigation.
1.2 Background and Review

In this section, an extensive literaitire survey including the existing work
relevant to the current study and the sequene€.efhistorical background in this specific
area is provided. In order t0_De systematic, results from such overview are separated
into two parts regarding.io” thetr main focus. Firstly, the development of surface
elasticity model is reviewed to observe how important of surface energy effects in the
material characterization @f nangscale-elements and soft elastic solids. Then, previous
studies related to indentation problems, both with and without the surface stress

effects, are presented and discussed.
1.2.1 Review of Surface Elasticity Model

Gibbs (1906), who eriginally formulated the most useful and powerful
concepts in studying-surface phenomena, defined the guantity y that represents the
excess free energy per-unit area owing to the existence of a surface. Gibbs was the
first who pointed out that, for solid-solid interfaces, there is another type of
fundamental parameter. called the surface stress that critically.affects the behavior of
surfaces, i.e. to elastically stretch'a pre-existing surface.'Simply saying that, to deform
such a solid, excessive work is needed to stretch=the surface in addition to straining
the bulks The larger partition of wark done to surface, the more important the effect of
surface stress (He and Lim, 2006). Comprehensive literature review on the surface
energy effect and the Gibbsian formulation of the thermodynamics of surfaces can be
found in general researches of surface and interface stresses (Cammarata, 1994;
Cammarata, 1997; Shuttleworth, 1950; Fischer et al., 2008). Especially, Cammarata
(1994) gave an excellent explanation of the concept of the surface stress and also
showed that the difference between the surface stress and the surface free energy yis

equal to the change in surface free energy per unit change in elastic strain of the



surface. It should be noted that y is a scalar quantity, while the surface stress is a
second order tensor in the tangent plane of the surface and the strain normal to the

surface is excluded.

A surface can be identified as a layer that an excess energy is attached and
certain energy is usually termed as the surface energy y (Fischer et al., 2008). Due to
the different number of nearest neighbors between surface atoms and bulk atoms, it
results a corresponding redistribution of elecironic charge and modifies layer spacing
to be lesser at the surface Which deviates from the bulk value (Sander, 2003). As a
result, the energy at a freessurface will, in general, be different from that of the atoms
in the bulk (Dingreville"et al’, 2005). The ratio of surface free energy » (J/m?) and
Young’s modulus E @/m°)¢%/E. jis an inevitable parameter of materials (Yakobson,
2003). For usual metallic materials, the raitio is normally less than one Angstrom. For
some soft solids, such asipolymer gels and Biological materials, however, the surface
energy (or surface stress) is alittle less than that of a metal, but the elastic modulus
can be nearly 7-8 orders smaller than thatsof conventional solids. Therefore, the
corresponding intrinsic length scale of soff sb’\'ids iIs much larger, implying that the
surface energy can play an impertant role on the properties of the materials, and thus
the properties become-size-dependent-(He-and-Lim,-2006). As a consequence, the
effects of surface stress should be extremely incorporated into classical continuum
models in order to study the behavior of soft materials or to obtain the correct

response for nanoscale-problems:

Many authors have developed continuum_models that include surface energy
effectspand one of them is Gurtin-Murdoch model. Gurtin-and Murdoch (1975, 1978),
and Gurtin et al. (1998) proposed a mathematical framework to study the mechanical
behavior of material surfaces through a continuum model with the surface stress. An
elastic surface is assumed to be very thin and modeled as a mathematical layer of zero
thickness bonded to the bulk without slipping. Also, the elastic moduli of the surface
can be different from the bulk. For an isotropic elastic surface, a linearized surface

stress-strain constitutive relation is given by



O =785, +2(1° =7°) &5, +( A +7°) £, 3, + U, (1.1)

where the subscript ‘s’ denotes the quantities corresponding to the surface, #°and A°
are surface Lamé constants and 7 ° is the residual surface tension under unstrained

conditions, which is a constant.

In order to verify Gurtin-Murdoch maodel, Miller and Shenoy (2000) employed
such a model to describe the size dependence oithe stiffness of plates, bars and beams
under either uniaxial tension or bending. Their results were compared with direct
atomistic simulations of*nanoseale structures using the embedded atom method for
face-centered cubic alumiatme« and the Stillinger—\Weber model for silicon. By
neglecting the error induced from the effects of corners present in the modeling of
beams, excellent agregment hetween the simulations and the model is observed.
Shenoy (2002) completed a framework derived earlier by Miller and Shenoy (2000)
by adding the torsional rigidities of ‘nanosized structural elements and applied to the
case of nanoscale bars in torsion« The theQ'reticaI results were compared with direct
atomistic simulations for the torsicn of sql]afé" bars of various metals and found in
good agreement. It is noted that the difference in theoretical values and simulation
results mainly came from-the-assumption-that-the-surface energy depends only on the
surface strain; however, it should also depend on ihe surface curvature strain.
Dingreville et al. (2005) derived analytical expressions for an elastic modulus tensor
of nanosized structural-elements-accounted-for,surface-energy-effects and showed that
the overall elastic“properties’ of “nanosized * particles, ‘wires and films are size-
dependent. The effective Young’s' modulus of=thin films of Warious thicknesses
computed by usingsmoleculargstatie (MS) simulations and_their proposed formulation
found in excellent agreement. They also pointed out that results obtained from MS
simulations were much more computationally intensive than the proposed
formulation. This should confirm the benefit of employing such alternative
continuum-based model to save the computational resources. Undoubtedly, Gurtin-
Murdoch continuum model has been applied and widely used in nanoscale problems
by several investigators, for example, to analyze the size dependent mechanical

response of ultra-thin elastic films (He et al., 2004; Huang, 2008) and thin plates (Lu



et al., 2006). Recently, such a model has been employed to study the problems of
nanoscale inhomogeneities. For instance, Sharma and Wheeler (2007) and Sharma et
al. (2003) reformulated the size dependent elastic field of spherical and ellipsoidal
nano-inclusions by applying this model. Duan et al. (2005) presented the interior and
exterior Eshelby tensors for a spherical inhomogeneity subjected to arbitrary uniform
eigenstrain under the surface/interface effects. Tian and Rajapakse (2007a, 2007b)
derived the solution for a nanoscale circular and elliptical inhomogeneity in an infinite
matrix under remote loading based on the GurtinsMurdoch model. Moreover, Zhao
and Rajapakse (2009) presenied-the analytical-solution of the plane and axisymmetric
problems for an elastic layer.of finite thickness subjected to surface loading by using
Fourier and Hankel Trapnsform /technigues. Numerical results indicated that the
surface effects show-significant influenee on the vertical surface displacement of a
layer and such influenge on.the siress field in the case of horizontal point load is more
significant than that in the gase of verticalr-point load. Intarit et al. (2010) recently
confirmed the significance of the surface stress on very near the surface of both shear
and opening dislocations, and alse on buried vertical and horizontal loads in an elastic
half-plane. They also found that the stress fiéld has an asymptotic solution with

increasing the characteristic length parameter.

It is obviously seen from (1.1) that, to employ Gurtin-Murdoch continuum
model, surface elasticproperties (i.e. surface energy, surface stress, and surface elastic
stiffness) must_be_known“a: priori. In addition, these particular quantities are also
strongly influenced-onithe averall mechanical behavior in nanostructures. Thus, many
approaches have been proposed, based either .an experimental measurements or
atomistic simulations;,to determine such/properties. Among Various experimental
techniques, Jing et al. (2006) measured the elastic properties of the nanowires by
using contact atomic force microscopy (C-AFM) and found that the Young’s modulus
of the silver nanowire with consideration of the surface effect, surface modulus and
surface stress are 56 GPa, 8.7 N/m and 5.8 N/m, respectively. Another method, rather
computationally intensive, is atomistic simulations. Shenoy (2005) developed a fully
nonlinear formulation of the surface elasticity and established a procedure for

calculating surface elastic constants from atomistic simulations by adopting the



embedded atom method. To reduce disadvantages of both experimental and atomistic
approaches, Dingreville and Qu (2007) presented a semi-analytical method to
compute a full set of data on surface elastic properties of crystalline materials. By
applying this developed method, the surface elastic properties were formulated
analytically and explicitly in terms of inter-atomic potentials, and a standard
molecular simulation was used to obtain the relaxed positions of the atoms near the

free surface in order to evaluate such analyiical expressions.
1.2.2 Review of Indentation Probleims

It is understood that andentation technigues have been widely used for
measuring mechanical preperiies on nanoscale such as hardness and elastic modulus.
For example, the use ofsnamoindentation to measure the mechanical properties of
ceramics (Hainsworth‘andPage, 1994), metals (Armstrong et al., 1995; Beegan et al.,
2007) and polymers (Yang and Li, 1995; ¥ang and L1, 1997). By using depth-sensing
indentation tests with either spherical or co.ni-(-:al indenters, Young’s modulus can be
calculated from the slope of the finear pdriibn_ of the unloading curves in the load
versus penetration depth while hariness can be calculated from data along the loading
curves (Doerner and Nix, 1986; Oliver and Phafr, 1992).

Several authors have obtained the elastic solution of the indentation problems
by using various mathematical methods. The classical problem of axisymmetric rigid
punch indenting on ancelasticthalf=space seems ta befirst'considered by Boussinesq
(Boussinesq, 1885). According to the form of a solution, his numerical results were
derived.only. for. a flat-ended.cylindrical and a conical punch, Harding and Sneddon
(1945) and'Sneddon (1965) solved‘Boussinesq’s problem-under’a punch of arbitrary
profile by applying Hankel integral transform techniques. Clements (1971) later
determined the stress fields produced from the rigid indentation on an anisotropic
half-space by employing the theory of anisotropic elasticity developed by Eshelby et
al. (1953) and Stroh (1958). Since the smart materials have recently gained significant
interest from several researchers in the field of mechanics, the classical theory of
elasticity becomes an important tool in studying their behavior from indentation

techniques. Chen (2000) generalized the potential theory to analyze the piezoelastic



contact problem of a punch pressed against a piezoelectric half-space.
Giannakopoulos and Parmaklis (2007) examined the quasistatic contact problem of a
circular rigid punch on piezomagnetic materials and confirmed their theoretical results
by conducting an experiment on Terfenol-D. Moreover, an elastic behavior of a
nonhomogeneous transversely isotropic half-space was studied by Chaudhuri and Ray

(2003) under the action of a smooth rigid axisymmetric indenter.

The indentation problems associated with an elastic layer perfectly bonded to
an elastic half-space have also been,investigated. Lebedev and Ufliand (1958)
considered a problem of.a flat-ended rigid cylindrical indenter on an elastic layer
resting on a rigid foundation” by using Papkovich-Neuber’s representation for the
displacement vector. Aifter reducing mixed_ boundary conditions to a pair of integral
equations, Fredholm ingegral equation V\;as obtained and solved numerically. By
taking the Hankel transform technigue, Dhaliwal and Rau (1970) reduced the
axisymmetric Boussinesq problem. of an elastic layer lying over an elastic half-space
under a rigid punch of“arbitrary profile to a Fredholm integral equation but no
numerical result was presented in their study.r Subsequently, Rau and Dhaliwal (1972)
developed a numerical technigue-to solve the integral equation developed by Dhaliwal
and Rau (1970) and obtained the complete elastic field. Yu et al. (1990) presented
numerical results obtained from solving Fredholm ntegral equation of the second
kind to demonstrate the effect of a substrate on the elastic properties of films and
provided useful .guidelines for the proper ‘choice of an approximate layer thickness
and substrate | elasti¢c ‘properties to' determine \the elastic constants of the layer.
Motivated by a recently developed«multi-dimensional nanocontagct: system (Lucas et
al., 2003), Gao et al (2008). gave an analytical. formulation Dy applying Green’s
functionin Fourier space to predict the effective elastic modulus of film-on-substrate
systems under normal and tangential contact. In addition, Yang (1998) studied the
problem of impressing a rigid flat-ended cylindrical indenter onto an incompressible
elastic film by following a standard procedure such that the Hankel transformation
was applied to the mixed boundary conditions and the Fredholm integral equation of

the second kind was subsequently solved numerically.
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The surface stress effect on mechanical responses of nanoindentation has been
recently studied by applying the Gurtin-Murdoch continuum model. Zhao (2009)
derived an analytical solution of a classical indentation problem in the presence of the
surface energy effect. By applying Gurtin-Murdoch continuum model, he obtained a
solution for elastic fields within the half-space caused by flat-ended cylindrical,
conical and spherical rigid indenters. Although Gurtin-Murdoch continuum model
used in his formulation is not compleie /(e.g. no out-of-plane term), obtained
numerical solutions still showed a size-dependent behavior due to the presence of
surface energy effect, i.e.-when the-€ontaci-area-becomes smaller, the material
behaves stiffer. In addition, iiisremarked that atomistic simulations (Sinnott et al.,
1997; Liu et al., 2007; Chenset al., 2008; Lu et al., 2009) can also be used to
investigate the mechanism,0f an/indentation process under different indenter shapes
(i.e. spherical indenter and pyramidal iindenter), sizes and indentation loads on
interested materials. In this approach, appliea molecular dynamics theory is employed
to finally obtain the mechanical propertieé'stjch as hardness and load-displacement

curves. =

As mentioned in the iniroduction and extensive review of existing works in
this area, the influence of surface energy effects by using.a complete set of Gurtin-
Murdoch continuum model in order to capture the size-tdependent behavior of nano-
indention problems has not been investigated. This-therefore requires profound

exploration to further enhance the correct elastic fields accounted for surface effects.
1.3 Research Objective

The key objective of this'research ‘is to investigate‘mechanical responses of a

rigid punch acting on a half-space with consideration of surface energy effects.
1.4 Research Scopes
The proposed investigation is to be carried out within following context:

1) Arrigid punch is frictionless and possesses an axisymmetric profile.

2) A half-space (bulk) material is homogeneous, isotropic and linearly elastic.
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3) The influence of the surface energy effects is treated by using complete

Gurtin-Murdoch surface elasticity model.
1.5 Research Methodology

1) A corresponding axisymmetric mixed boundary value problem is formulated
and reduced to a set of dual integral equations by using Hankel integral
transform.

2) Dual integral equations are further redueed to a Fredholm integral equation of
the second kind by using-a procedure based on Sonine’s integrals.

3) Selected numerical*teehnigues are adopted to solve resulting Fredholm
integral equation of the'second kind.

4) Once the solutioprof/such Fredholm integral equation is obtained, Hankel
transform invefsions are then employed to determine elastic fields and other

interesting quaniities (i.e. contact pressure and indentation force).

1.6 Research Significance 2L2

The current investigation - proposes an application of continuum-based
concepts in the analysis of indentation problems for nanoscale structures and soft
elastic solids by incorporating surface energy effects into a classical continuum
model. With use of e€omplete Gurtin-Murdoch surface elasticity model, proposed
formulation is_applicable“io perform, the existence of an inevitable parameter of
materials via size-dependent behavior land @lso tolstrongly demonstrate the influence
of out-of-plane contribution of residual surface tension on material stiffness. When
compared with malecular dynamics simulations, this modified continuum model is an
alternative approach in terms of dramatically reduction in computational resources
with an acceptable level of accuracy. Such attractive approach offers an alternative for
studying the mechanical properties and mechanical deformation for punches of
arbitrary axisymmetric profiles. In addition, knowledge and findings from the present
study should provide a crucial basis and guidelines for further investigations in the

area of nanomechanics.



CHAPTER I

THEORETICAL CONSIDERATIONS

In this chapter, the formulation of boundary value problem associated with an
axisymmetric, frictionless, rigid punch acting on a half-space (with consideration of
surface energy effects) is first presented. /The.Hankel transform is then applied to
reduce the corresponding mixed boundary-cenditions to a set of dual integral
equations. These dual integral equations are furtherreduced to a Fredholm integral

equation of the second.kind that is well-suited for constructing numerical solutions.

2.1 Problem Statement

r, X

Z, X3

(a) (b)

Figure 2.1 Indentation of half-space byaxisymmetric rigid frictionless punch:

(a) smooth contact and (b) non-smooth contact

Consider @ "homogeneous,  isotropic, elastic’ half-space indented by an
axisymmetric frictionless rigid punch as shown schematically in Figure 2.1. The
profile of the punch, denoted by a function 6 = & (r), is defined for convenience and
without loss by choosing 6 = 0 at r = 0. The radius of a contact region and the
indentation depth resulting from a resultant force P at the center of the punch are
denoted by a and d, respectively. In this study, the profile of the punch is assumed to
be smooth (i.e. the unit normal vector to the surface of the punch or, equivalently,
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doldr is well-defined) at any point within the contact region except along the
boundary r = a where the profile is allowed to be non-smooth. A punch with well-
defined do/dr for r < a is termed a smooth-contact punch (see Figure 2.1(a)) whereas
a punch with well-defined d&/dr only for r < a is termed a non-smooth-contact punch
(see Figure 2.1(b)). In the present study, the pressure distribution exerted by the punch
and the complete elastic fields within the half-space accounted for surface energy

effects are to be determined.
2.2 Basic Equations and FEormulation.of Indentation Problem

Behavior of theshalf«space (bulk) is governed by a classical theory of
elasticity. In the absence/©f body force, the governing field equations (i.e. equilibrium

equations, constitutive relations.and strain-displacement relations) can be expressed as

oy, =0 | (2.1)

Oy = 2ue; + A0 (2.2)
1 2

& :E(u” +uj’i) (2.3)

where u;, o; and g denote components of the displacement, stress and strain

tensors, respectively; J; 4s.a Kronecker<delta symbol; and 4 and A4 are Lamé

constants of a pulk“material. ‘Note-that lower-case indices fange from 1 to 3 and

repeated indices imply the summation over their range.

A surface of the half-space is regarded as a negligibly thin membrane adhered
perfectly to the bulk without slipping and its behavior (which is different from the
bulk) is modeled by Gurtin-Murdoch continuum model of surface elasticity. The
equilibrium conditions on the surface in terms of the generalized Young-Laplace
equation (Povestenko, 1993), surface constitutive relations and strain-displacement
relationship, when specialized to this particular case, are given by (Gurtin and
Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et al., 1998)
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Oyt +t7=0 (2.4)

Oy =T 04, + 2(/,1S -7 )gza +(is + rs)gjyéﬂa +ouy, oy, =7, (2.5)
S 1 S S

Eop :E(u“ﬁ +UM) (2.6)

where the superscript ‘s’ is used to denote the guantities corresponding to the surface;

u° and A° are surface Lamé constants; z-+iS the residual surface tension under

-

unstrained conditions; ang=t" denotes the prescribed. traction on the surface. It is

important to emphasize*hergthat Greek ilndices range from 1 to 2 and, again, repeated

indices imply the summation over their rénge.

_—

When specialized to an axisymmetfrie;case, the corresponding elastic fields can
be obtained by solving,"insa cylindrical coordinate system (r,d,z), the biharmonic

equation (Sneddon, 1951; Selvadurai; 2000)

il

VD =0 ' - @.7)
, 00 NN&—t— = - =4 )
where V* =—+=-=+— s the axisymmetric form of Laplace’s operator and ®
or: r ok oz
is Love’s strain potential. The displacement and stress fields are given in terms of ®
as follows:
oD 0°D
=AV?| — [-2(A+ 2.8a
o =20 (2 20 T 282)
2
Oy = AV? (@]_M&_@ (2.8b)
0z r oroz
3
c,=BA+4u)V? (aﬁj— 2(A+ ) 0 qe) (2.8¢)
0z 0z
0 o°D
=(A+2u)—(V?®)-2(1+ 2.8d
0 = (A 2u0) — (V@) =204+ 1) (2.8d)
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2
r:_/1+,u@(l) (2.8¢)
M 0roz
2
uZ:/HZ,qucD_/Hya(D (2.8f)

)z po oz

By applying Hankel integral transforms, the biharmonic equation (2.7) can be reduced
to

[d_—gzj G(&,2)=0 ' (2.9)

where G(¢,2) =jr®Jo(§r)dr and. J. (¢)denotes the first order Bessel functions of
0 -
order n. The general solution of (2:9) is given by

G(&2)=(A+Br)e ¥ +(C #D2)ed (2.10)

i

where A, B, C and D are arbitrary functions of & that can be determined from

boundary conditions.

Accordingly, the general solution for displacements and stresses can be transformed

into the relations involving G(&,z) and its derivatives with respect to z by using

Hankel inversien and the relations (2.8a)-(2-8f);

Tl £ 4°G ,.dG 2(H+u)% o dG
O :!5{4 o [ 1@ E}Jo(ér)dé—Qﬁ TAE)ds  (119)

0

Q

. :/{fé{dSG g dcza

2(/1+y)°° , dG
) dz° d—}lo(fr)df+7£§ —ZJl(ér)df (2.11b)

o= el (12w 52 - 21402 2 b ) (2419

z
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arZ:T§2[,1 2 +(l+2y)§zG}J1(§r)d§ (2.11d)
A+u% ., dG
u =ﬂ£§ Sh(enae (2.11¢)
i [d%G av2u
uz—!s{dzz ; 50}3 'l/// (2.11)
-

Note that u,, o, and o to%metry and all non-zero field

By invoking the remote ion ass Cial ed the vanishing displacements and

(&,2) therefore reduces to
(2.12)

Upon substituting (2.12) in on for the components of stresses and

. . eI
displacements are then given in-teris of A

vt T
Uz S

2(/1+,u !5 [ A+ ) JTl (2.13)
HirgaTERYIng

Tﬁﬁ%aﬁﬂﬁwquqwﬂqaﬂ (2.14)
+= jg [-EA+(1-&2)B e, (ér)dé
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GI’Z _OO 3 _ ﬂv _ —&£1
—2(/14%)—!5 [fA (/Hy éz]B}e J(ér)dé (2.16)
UrZ—M”T?[—éM(l—éz)BjefZJl(gr)dg (2.17)
H %
vl éA{ o cafBlleF o (2.18)
Z H % ﬂ-ﬁ-lu 4 :

For the indentation problem shown in Figure 2.1, the boundary of the domain
can be decomposed into a.surface outside the contact region on which the traction
identically vanishes and_a"surface /inside the contact region on which the normal
displacement is prescribedawhile; resulting from the frictionless assumption, the shear

traction vanishes. These mixed boundary Eonditions can be expressed as

uz|z:0 =d-5(r) ot ; 0<r<a (2.19)

O, z:O-i_TS VZuz =0 _.J , a<r<oo (220)
2 o

O |20t KS d l'lr +1%_u_£ =0 ; 0<r<ow (221)
dr O i

where x°=2u4°+A° istassurface material.constant. Upon substituting (2.16) and

(2.17) into the boundary condition (2.21), itleads to a relation hetween A and B:

A§(1+Ao§)=(ﬂi

; Aog] B 222)
u

where A, :zcs/2,u. By enforcing the mixed boundary conditions (2.19) and (2.20)

along with the relation (2.22), it yields a pair of integral equations:

_152{(’1+2“)+(’1+3/‘)A05

21+ Ad) }BJo(fr)dsZ:d—O"(r) , 0<r<a (2.23)
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O ey 8
e

o | 20 (A+ p) +(A+20) A& |+ T°E[(A+2p) +(A+3u) AyE | Mo

;o a<r<o  (2.24)

The dual integral equations (2.23) and (2.24) constitute a complete set of equations

for determining the unknown function B:B(g). By introducing two functions

¢=¢(&) and w=w(&) such that

5(2) 53{2y[(/1+y)+(/1+ 2y)A;§(]1+j\iE§z+2y)+(,1+3u)/\0§]} 5 (229

the dual integral equations (2.23).and (2.24) can further be simplified to

=l

T (&)[2+w(E)]po (T)dE=T(T) 2 . 0<T<1 (2.27)

Tg’(f_)%(_r)df_zo , 1<F<w (2.28)

where () (%) ha=i—[d ©o(D]) o (D=1} arde= d#a, E=¢a, T=r/a,
and ¢=¢(&)=4p(Z)/a. The function ¢=g(Z) becomes the primary unknown of
the dualintegrals (2.27) and (2:28) while the function/w =w(& ) is known and can be

obtained directly from (2.25) and (2.26) as

WE)= e (AL
2[(/1+1)+(/1+2)Ao§}+r5§[(/1+2)+(/1+3)Ao§}

-1 (2.29)

where Z:l/y, Ao =A,/a and Fzrsl(ua). It is evident from (2.29) that the

function w=w(&) possesses a limit equal to -1as & — .
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The solution of dual integral equations of the type (2.27) and (2.28) has been
extensively studied by Mandal (1988) and Sneddon (1966). Following their
procedures, such a set of dual integral equations can be reduced to a Fredholm

integral equation of the second kind as

It can be seen from (2.30) that the fun_ction f (u) is merely related to the indenter

profile and the function w(u) 1S-related to the boundary conditions involving the
surface energy parameters.Fhissingle integral equation (2.30) is in a form well-suited
for constructing numerical‘solutions for ¢ = (). Once the function ¢=¢(&) is
solved, the functions™ A and' B can be‘_‘subsequently determined from (2.22) and
(2.25), respectively, and the complete elastlc flelds within the half-space can also be
obtained from (2.13)-(2.18). In addition, the magnltude of the total indentation force P

producing the indentation depth.d can be obtamed by integrating the contact pressure,
i.e. the left hand side of Eq. (2.20), over-the a,re_a_orf the contact region.

In the absence of surface energy effects, above formulation can readily be
specialized to a special case of a classical indentation problem by setting Ao =0 and
7°=0. The function W:W(E) in (2.29)asimply reduces to a constant w* given

below:

w =% (2.31)
2(,1 +1)

The dual integral equations (2.23) and (2.24) now become

ng o(6T)dE = 17(T) . 0<F<1 (2.32)
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Tg(‘f)%(_r)df:o L 1<F<ow (2.33)

0

where f*(F)=f (F)/w". A set of dual integral equations (2.32) and (2.33) was

solved analytically by Sneddon (1965).

AULINENINYINS
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CHAPTER Il

NUMERICAL IMPLEMENTATIONS

Due to the complexity of the Fredholm integral equation of the second kind
formulated in Chapter Il, numerical schemes are necessarily adopted to construct
approximate solutions. In this chapter, /seVeral components essential for such

numerical implementation™(e.g. domain truheation, discretization of the primary
unknown function ;:E)(E), collocation, linear solvers, Hankel transform inversion,

etc.) are briefly summarizeds

3.1 Domain Truncation

It is evident that.the second integrél-_of the Fredhelm integral equation (2.30) is

an improper integral with‘an infinite uppef';'IiFhit and the involved primary unknown

function ES: Eﬁ(f ) is defined on,a semi-infinité_,j.nterval [0, o). Before constructing an

approximate solution for Eﬁz g_é(,é_ ) ithe doméi—_ingpf integration of the improper integral

is first truncated from-{0, <) to [0, &} where—&ois @ finite real number. The

truncated Fredholm integral equation is given by

— oy 28 ¢ o o d o () du _EER W(U)h(U)s[sin(u+E)e sin(u—E)
¢(§)—”gcos(ft)dtdt!\/tz_uz ﬁj ] { 1 e vz }du (3.1)

3.2 Diseretization

The unknown function %zgﬁ(f ) over the entire truncated domain [0, &,] can

be discretized in the form

IO =EY @) ©2)



22

where ¢; are unknown nodal quantities to be determined, y;(&) are nodal basis
functions, and n is the number of nodes resulting from the discretization. It is worth
noting that the approximation (3.2) results from a special property of the function ¢ at
the origin; more specifically, this function vanishes at the origin of order ¢(¢). Note

also that, in the present study, the nodal basis functions are systematically constructed

in an element-wise fashion based on standard isoparametric, quadratic elements.

Upon inserting the approximation (3.2) into(3:1) and then dividing the entire equation

by &, it leads to a discretized-integral equation
D> M($)a; =F(S) (3.3)
[ .

where the integrals M, (£) and /F(&) aredefined on the truncated domain [0, &] by

ER
M(E) =y (D) + [ (K(E, udy (34)
2ty 2o s d puf (u)du
#E) =~ ! cos(Zt)dt == ! — (3.5)
K(E.u) = w(u) {sin(u +_§) , Sin(u —_.f_)} (36)
T ul+e€ D@4

It can readily,be verified that the kernel K(& ,.u)‘$ regular, for afy pair of points (& ,

u) and, as a result, (&) involves only an regufarintegral for all-€ [0, &]. The

integral (&) is given in terms of a double line integral whose inner integrand
involves the prescribed profile of the punch and is only weakly singular at u = t. To
obtain a better form well-suited for numerical integration, an integration by parts is
performed along with applying a special variable transformation (i.e. u = tsiné) to

remove such singularity and this, finally, leads to
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#6) =2 Jan(@) [ur )., o+ 2
4 0 0

j uf (U], d (3.7)

3.3 Collocation Method

To obtain a sufficient number of equations to solve for the unknown constants

a;, a collocation-based technique is wtilized. In particular, the discretized integral
equation (3.3) is collocated (o, equivalent, forced to be satisfied) at all nodes & =&

(fori=1, 2,3, .., n)and this leads to aset of n linear algebraic equations governing

the nodal quantities ¢; as'follows
Ma =F (3.8)

where a={a,,a,,....d,} As vector of nadal quantities and entries of the coefficient

matrix M and the prescribed vector F are given by

ER EE 4
[MI, =4, () = v, () + [, (@K(E, udu = (3.9)
[FI, = %(&) :—g.lf ln(at)”jzuf (u)|u=tsingd6dt+zco—s("?‘)ﬂfuf w),_,,,46 (3.10)
7 0 0 4 0

3.4 ConstructionofiM and.F

It is evident from (3.9) and (3.10) that.entries of the,matrix M and the
prescribed | nector = “involve only: regular integrals. TFhus, &y standard Gaussian
quadrature can be used to efficiently and accurately evaluate such integrals. While
every entry of the matrix M is given in terms of a definite integral over the truncated

domain [0, &,], this matrix can be efficiently constructed in an element-wise fashion

and the contribution from all elements to the global matrix M can readily be treated

using a standard assembly procedure (e.g. Hughes, 2000). It is worth noting that for
some special punch profiles, the integral (&) admits an explicit expression and, as a

result, construction of the corresponding vector F requires no numerical integration.



24

For instance, the integral $(&) can be obtained for a flat-ended cylindrical indenter

(i.e. 3(?):0) and a paraboloidal indenter (i.e. E(F):acaf2 where « is a constant

representing the slenderness of the punch profile) as

Flat-ended cylindrical indenter: (&) = —Z—E_Sin(f) (3.11)
TT

{22 cos(€) + (-2+£7)sin(€)} (3.12)

Paraboloidal indenter: F(&) = —ﬂsin(?) £ 4“?
& , T

3.5 Linear Solvers

It is evident from" eguation (3:9) that the coefficient matrix M is non-
symmetric and fully dense /Tossolvea system of linear equations (3.8), either a direct
solver based on the LU-decamposition method or an iterative solver adopted from the

stabilized bi-conjugate gradient method is érﬁﬁloyed. Once the nodal quantities o; are
known, the approximate solution for Zﬁzg}é)_,_can readily be obtained from (3.2) for

any & in the truncated domain [0, &. .

3.6 Determination of Field Quantities

Once the numerical solution ¢=¢g(E) is obtained, functions
A=A)=A()/a° and B=B(&) = B(Z)/a" can be obtained at any & [0, £,] by
directly solving ‘the relations (2.22) .and (2.25) via proper normalization. The explicit

formulafor /A = A(&)‘and B =B(&) in.terms of ¢.= ¢(£)"is given by

A(&) = [zz—i_l—FXOEJg(g) 3.13
O R e s (1) (Ar3)neE] o)
B(S)=— (1+XOE)_;}(E) (3.14)

R[N I B (CEE N e
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The stress and displacement fields within the elastic half-space can then be
obtained from the integrals (2.13)-(2.18) via proper normalization and with the upper

limited being replaced by &, , i.e.

o, o B e
arr(r,z)_z(“ﬂ)_ig { §A+[ = gz)B}e J,(E7)dE
_ (3.15)
_ngz [-ZA+(1-E2)Be "deT)as
[ /
ow(F,7)=—20% = z Efz;’a‘_efza (éT)dé
A _2(/1+,u)_1+10 0
- (3.16)
1%z A LG s
+r£§ [ V! §Z)B}e 3,(ér)dE
sur D)= Te @ FRnf £7)8 |e 5, (2102 3.17
GZZ(r,Z)_Z(ﬂ—-Flu)_-([g _5 -l-(z—l-l-‘gZ] _e 0( r) Cj,: ( )
(T 7)) — Oy _ER _3_‘_ Z —_ '_-_ _E7 - =
arz(r,z)_z( W)_!g _cfA—[m—fz]B_e J, (&r)dE (3.18)
ur(r,z)__r:(Z+1)“R§2[_5_A+(1_32)§]e—5231(‘r)dg (3.19)
e T [ B N S Y
uz(r,z):;:—(/1+1)£§ [§A+£m+§zJB}ef J,(&T)dé (3.20)

where z=2z/a. To evaluate such truncated Hankel transform inversions for any pair

of points (T, Z), standard Gaussian quadrature is again employed. It is important to

point out that presence of the exponential term e < in the integrand significantly
increases the rate of decay of the unfavorable oscillated behavior arising from the

Bessel functions J,(& ) for z> 0 and, as a result, the associated integrals converges

very rapidly with a relatively low &,. On the contrary, such exponential term
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becomes one on a free surface of the half-space (i.e. Z = 0) and, due to the slow rate
of decay of the Bessel functions, it generally requires a sufficiently large &, for those

integrals associated with zZ = 0 to achieve their converged value.

Once the elastic fields within the half-space are obtained, other interesting
quantities can also be computed. For instance, the normalized contact pressure under

the punch, denoted by p = p(F), can readily be obtained from

_ P | = e oAU, (G2l)
p(r) —_—= O'zz(r,Z O)+ 2(1_{_]_)

= ; 0<r<l1 (3.22)
2(1+ p)

It is remarked that thegslaplacian/of the normal displacement appearing on the right
hand side of (3.21) can directly be evaluatéd using the prescribed boundary condition
(2.19). The normalized indentation force: P can further be computed by integrating

the contact pressure p = p(r) jover the contact region:

P 2z 1 &

P= =— [ [ p(r)rdrde= —zﬁjﬁkrﬁdr (3.22)

2a° (A + u)

3.7 Determination of. Contact Radius a for Smooth-contact Punch

For a smooth-contact punch, the contact radius a 1s unknown a priori and must
be determinedfirst beforesother quantities-ofinterest-can:he<gbtained. It is remarked
first that once the contact radius a is known, there is no difference of a solution
procedure for.both.smaoth-contact and nonsmooth-contact punch..To solve for a final
contact region a “that“corresponds to“a given findentation 'depth'-d, a physically
admissible condition associated with the continuity of the vertical stress at r = a is
utilized. However, the explicit or close-form relationship between those two
parameters (a and d) cannot be obtained due to the complexity of the boundary value

problem accounted for the surface energy effects.
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3.8 Convergence Study

For the proposed numerical technique, three key factors that affect the
accuracy of the approximate solutions are the truncation parameter &, , the number of

elements employed in the discretization, and the number of integration points used in
standard Gaussian quadrature. Extensive numerical experiments have been performed
to choose a proper truncated domain, the level of mesh refinement and optimal
quadrature to ensure the convergence and _accuracy of numerical results. Such

investigation is briefly discussed below.

The number of Gaussspeints required in the numerical integration can be

significant to accuratelysintegrate oscitlating and complex integrands (resulting from
the Bessel functions, ¢ <%(Z) /thie kernel K(&, u)). From numerical experiments, it

is found that as the size/of elements decreases (i.e. the number of elements in the
discretization increases), itonly requires few Gauss points to achieve highly accurate

results since the integrand on .€ach element exhibits milder variation without

oscillating behavior.

To investigateithe level of mesh refir-le'rrnent required to obtain the converged
results, we perform-experiments for a given truncated demain [0, &,]. A series of
meshes on the fixed [0; &, ] is constructed and then used in the analysis. The number
of elements (N);in the, discretization «is, increased, until a-converged solution (for a
specified tolerance) 1s obtained for-a fixed"&, . By Tepeating the analysis for various
£, aratioeNiE, Arepresenting-the level f-mesh refinement)~to ensure the good

discretization is found approximately equal to 1.

To obtain a proper truncated domain that optimizes the computational cost but,

at the same time, yields accurate results, we next investigate the convergence of
approximate solutions with respect to the truncated parameter ER . From such study, it
can be concluded that the truncated parameter &, to attain a converged results for the

non-smooth contact punch is much larger than that for the smooth contact punch. This
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is due primarily to the singularity induced at the boundary of the contact region of the

non-smooth contact punch. Suggested by various experiments, the truncated
parameter &, in the analysis of non-smooth contact and smooth contact punches

equal to 10,000 and 1,000, respectively.

AULINENINYINS
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CHAPTER IV

NUMERICAL RESULTS

The solution procedure described in chapter 111 is implemented as an in-house
computer code to determine the complete elastic fields for punches of both smooth
and non-smooth contacts. The accuracy of.the.present numerical scheme is first
verified by comparing with-analytical’ solutions-of the classical case (no surface
energy effects) for both calegories. Once the method is tested, it is then applied to
solve more complex indeatation problems accounted for surface stress effects in
which analytical solutions.do not exist. in the analysis, punches with flat-ended and
paraboloidal profiles aré chosen to represent the non-smooth and smooth contacts,
respectively. Numerical sesults for three different models (i.e. classical solution with
no surface stress effects and Soltitions accounted for surface stress effects with and
without the out-of-plane contribution of“;th‘e residual surface tension) are fully

compared and discussed.
4.1 Verification with: Analytical Solutions

Consider a rigid frictionless punch with a flat-ended cylindrical profile (i.e.
&r) = 0) and a paraboloidal-profile (i.e. &r).3 o r’ where « is a constant) indented on
an isotropic, elastic_half-space as shown schematically in/ Figure 4.1(a) and Figure
4.1(b), respectively. Note that, for both punch profiles, the total indentation depth at
the tip’.of the puncilid'andthe final radius'of ¢contact a ‘are‘assogiated with the total
indentation force P. With no surface surface effect, the analytical solutions derived by
Sneddon (1965) are employed to validate the proposed formulation and numerical

implementations. In numerical experiments, the present solution scheme is specialized

to treat the classical case by setting Ao=0and 7* =0. According to Sneddon (1965),
the distribution of contact pressure under the punch pc, the shape of the deformed
boundary u,(r, 0) and the total indentation force P, required to produce the indentation

depth d for flat-ended cylindrical and paraboloidal punches are summarized below.
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Figure 4.1 Indentation of half-space by axisymmetric rigid frictionless punch:
(a) flat-ended cylindrical punch and (b) paraboloidal punch
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() Flat-ended Cylindrical Punch

_duGrmd 1

= ; 0<r<a 4.1
©or(A+2ma 1 (r /a)? 1)
u,(r,0) :ﬁsin‘l(a/ r) . r>a (4.2)
T
p - 8u(d+4) g (4.3)
A+2u
(b) Paraboloidal Punch
d 4
2 -
a‘c - 2a (44)
_8u(A+pmd 2 b4 .
pC_;za(i+2y)Jl (r/a) , 0<r<a (4.5)
u,(r,0) :9{(2—(r/a)2)sin‘1(a/ r)+£«/1—(a/.r)2} . r>a (4.6)
T
p Bu(A+p) s (4.7)
3(4+24)

Though'the| properties of elastic materials in the present study can be arbitrary,
to simply compare some elastic quantities with those obtained by  Zhao (2009), the
same set of ' material properties Is uitilized: Aluminum is uSed j#0r the bulk material
(Meyerstand Chawla, 1999) whereas Al [1 1 1] is employed for the surface (Miller
and Shenoy, 2000); all material constants are summarized in Table 4.1. In the
numerical study, it is convenient to introduce following non-dimensional quantities: ro
= t/Ao; 20 = 2lAp; ap = aldo; dp = d/4p and o = a Aop. It is worth noting that although
the classical solution is independent of Ao, use of this parameter in the non-
dimensionalization allows a direct comparison between non-classical and classical

solutions.
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In the case of flat-ended cylindrical punch with contact radius a; = 0.5,
comparisons betwen numerical solutions for the classical contact pressure and
classical vertical displacement and the benchmark solutions are reported in Figure
4.2(a) and Figure 4.2(b), respectively. It is evidently found that numerical results
obtained from the present study are almost indistinguishable from the exact solutions
proposed by Sneddon (1965). Another comparison is performed for the case of
paraboloidal punch with o = 0.5. It can be obviously seen from Figure 4.3(a) and
Figure 4.3(b) that two numerical solutions cbtained from the present scheme, one is
the contact pressure and-the other is the vertical-displacement at the free surface,
again exhibit excellent agreement with the corresponding analytical solutions. This

additionally confirms the ageuracy of the present technique.
4.2 Results of Punch with Surface Stress Effécts

From the high accuracy of numerical solutions obtained for the classical case,
the proposed scheme issnow convincing_lﬂ)./ :applied to investigate the indentation
problems with the surface Stress effecis belng incorporated. To allow comparisons
with results obtained from Zhao (2009) an'dr demonstrate the significant role of the
surface residual tension z°, Gurtin-Murdoch model . .without the out-of-plane
contribution of z° ‘is"also considered. Selected numerical results are reported and

dicussed for both punch profiles as follows.
4.2.1 [Flat-ended Cylindrical Punch

The case of a flat-ended cylindrical puneh~indented on the"half-space with a
specified contact radius a jand indentation \depth-d 'shown in Figure 4.1(a) is first
examined. Note that this punch is an example of a non-smooth contact punch since
doldr is not well-defined at r = a. The corresponding elastic fields within the half-

space are reported in Figures 4.4-4.7.

It can be obviously seen from Figure 4.4 that the distribution of the contact
pressure under the punch accounted for the surface effects possesses the same trend as
that for the classical solution in which the singularity still exists at the boundary of the
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punch. Due to the integration of the out-of-plane contribution of the surface tension,
the predicted contact pressure for this particular model is considerably less than one
obtained from the other two models (e.g. the classical model and Gurtin-Murdoch
model without the out-of-plane contribution of z°). In the analysis, three values of the
contact radii, ap = 0.5, 1.0 and 1.5, are considered to study the size-dependent
behavior and found that when the radius of a punch is smaller and in the same order
as Ao, the effects of surface stresses are comparatively larger. It is interesting to point
out that when the contact pressure p has been nermalized in a proper manner (i.e.
normalized as zpag/4uds); size-dependent behavior due to the influence of surface
energy effects is significantly-demonstrated and this phenomenon cannot be certainly
observed in the classical.model (only one single dotted line is shown in spite of
changing the contact radits @g). It “implies that the classical model ignores an
inevitable material par@meter (i.g. the intrinsic length Ao) and, as a result, it predicts
erroneous solutions when the radius of a punch is very small. However, the contact
pressure under the larger punch “(i.e. Iafge'k contact radius ag) for both models
accounted for the surface energy effects"c;dnyerges monotonically to the classical

solution.

The variations.-of normalized vertical_stresses, -7#6,,/41do, along the radial
direction at four depths, zo = 0.1, 0.5, 1.0 and 1.5, with contact radius a; = 0.5 are
shown in Figure 4.5. The vertical stress profiles indicate the strong influence of the
surface energy-effects for region relatively-clased to the puneh. In particular, at very
small depth (i.e, zo'="0.1), the vertical stressincreases monotonically and reaches their
peak values near ro/ap = 1 and then'starts to drop=rapidly when rg‘increases. At larger
depths, the verticahstress reaches its maximum at#, = 0 and decreases monotonically
to zero at relatively large ro. It is evident that an ideal surface attached to the bulk of
the current model distributes the localized indentation force to an area outside the
contact region. As a direct consequence, the current model (i.e. Gurtin-Murdoch
model with the out-of-plane contribution of z°) predicts the lower vertical stress under
the punch and higher vertical stress outside the contact region than those obtained
from the other two models. However, such discrepancy becomes insignificant in the

region far away from the punch.
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Numerical results of normalized shear stresses, zor./4udo, and radial stresses,
nord4udo, at various depths with contact radius ap = 0.5 are also presented in Figure
4.6(a) and Figure 4.6(b), respectively. Similar to the vertical stresses, the magnitudes
of shear stresses along the radial direction predicted by the current model are
generally lower and higher than those obtained from the other two models for regions
inside and outside the contact, respectively. The shear stress at any depth vanishes at
ro = 0 because of the axisymmetry and it reaches its peak value near the edge of the
punch (ro/ag = 1) and, thereafier, decreases rapidiywith ro. However, such behavior is
not observed for the radialstress; for instance; the'magnitude of radial stress at zo =
0.5 obtained from the current” model lies between those predicted by the other two
models for a region inside the contact. As expected, the shear and radial stresses
obtained from all thre€ modelsfor relatively large ro possess the same trend and decay
monotonically to zerouThednflence of surface energy effects is extremely small for zo
> 1.5 as clearly demonsirated by insignificant discrepaney between solutions obtained

from the current and classical models.

According to resuits shown in Fir'gu‘r"e? 4.7(a) for the normalized vertical
displacement, u,/44do, along the radial direction at five depths, zo = 0.0, 0.1, 0.5, 1.0
and 1.5, with contact-radius—ag——=-0.5,-one-preaicted by the current model is
comparatively higher than those obtained from the othef two models due to the need
of higher indentation Torce to produce the same indentation depth. Unlike the stress
solutions, vertieal displacementsexhibit-a slower decay.rate as-zo increases while they
still gradually‘converge-to ‘the' classical ‘solutions!~As the final illustration of elastic
fields for this particular punch, the'normalized fadial displacement, u./4,do, at four
dfifferent depths, zp'="0.1, 0.5, L0sand. 1.5, with the same contact radius ap = 0.5 is
reported in Figure 4.7(b). Clearly, the radial displacement increases rapidly from zero
at ro = 0 to its peak value at relatively small ry and then gradually decreases with ro. It
should be noted that the surface energy effects only influence the magnitude of the
radial displacement while its distribution along the radial direction predicted by all

three models is quite similar.
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Figure 4.2 Comparisons of classical numerical solutions with exact solutions for flat-

ended cylindrical punch: (a) normalized contact pressure and (b) normalized vertical

displacement
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Figure 4.7 Normalized displacement profiles of flat-ended cylindrical punch with

contact radius ap = 0.5 at various depths: (a) vertical displacement and (b) radial

displacement
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4.2.2 Paraboloidal Punch

Consider next a paraboloidal punch with ap = 0.5 acting on the half-space with
the indentation depth d and final contact radius a as shown in Figure 4.1(b). This
punch belongs to a class of smooth contact punches since do/dr is well-defined at r =
a where a is unknown a priori. Note again that the final contact radius a is determined
by enforcing the continuity condition of the vertical stress beneath the punch at r = a.
Numerical results for elastic fields of this_ pasticular punch profile are reported in
Figures 4.8-4.11, additionally; some interesting-results demonstrating size-dependent
behavior and material siiffness.due to surface energy effects are finally shown in

Figures 4.12-4.14 and all Crueial.remarks are summarized as follows.

To demonstrate the sizesdependency resulting from the influence of surface
energy effects, the distribution of normalized contact pressure under a paraboloidal
punch, zpao/4udo, is first presented in Figur_e 4.8 for three values of the contact radii,
ap=0.5, 0.8 and 1.0. Interestingly, the cont_act-pressure predicted by the current model
becomes finite at the boundary.while that (;bféiped from the classical case and Zhao's
model vanishes at the boundary of the contabt_rggion. Unlike results for the flat-ended
cylindrical punch, the contact pressure 6btained from the current model is
significantly larger than those obtained from the other two models. However, such
discrepancy becomes smaller when the contact radius is larger. Note in addition that,
upon the proper normalizatien, the distribution of the contact pressure for the classical

case is obviously independent of the contact radius and exhibit.no size-dependency.

Normalized-yvertical stress, profiles for,the paraboloidal-punch with a fixed
contact radius ag = 0.5"at five depths, zo = 0.0, 0:1, 0.5,-2.0 and 1.5; are reported in
Figure 4.9. It is important to emphasize that due to the enforcement of continuity of
the vertical stress at r = a, the singularity behavior at the boundary of the contact
region as that observed in the case of flat-ended punch disappears for this particular
punch profile. The maximum value of the vertical stress occurs at the origin and
rapidly decays to zero as ro increases. Clearly, the distribution of the vertical stress
along the radial direction at a very small depth exhibits significant difference from the

case of the flat-ended punch. Again, the vertical stress very near the free surface
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predicted by the current model deviates from those obtained from the classical and
Zhao’s models and this implies the significant influence of the surface energy effects

and the out-of-plane contribution of the residual surface tension.

Figure 4.10(a) and Figure 4.10(b) show the normalized shear and radial
stresses along the radial direction with contact radius ag = 0.5 at four different depths,
Zo = 0.1, 0.5, 1.0 and 1.5. Similar to the case of flat-ended punch, the shear stress at
each depth increases from zero at ro = 0 10.4tS.peak value near the punch boundary
(ro/ap = 1) and then decays rapidly as rq increases'Whereas the radial stress decreases
monotonically from its.maximuim value at rp = 0 as.rg increases. Again, the surface
energy exhibits significant infltience on bath shear and radial stresses only in a local
region very near the punch and.its contribution becomes negligible at regions very far
from the punch. The dinfluence of strface energy on the vertical and radial
displacements is also clearly demonstrated by results shown in Figure 4.11(a) and
Figure 4.11(b). The ‘vertical displacement, predicted by the current model is
comparatively higher with a slower decay rate when compared with those obtained
from the other two models. This observed behavior is similar to the case of flat-ended

punch.

To further demonstrate the size-dependent behavior, the relationship between
the ratio ap/a. (where a. denotes the contact radius for the classical case) and the
contact radius ap of a paraboloidal punchgis investigated and results are shown in
Figure 4.12. Due to the influence- of| 'surface energy effects, it is evident that the
contact radius 1s smaller than that obtained from the classical case for the same
indentation gepth. Thisiimplies that presence of the surface stress, refiders the material
stiffer. In particular, the difference from the classical solution is less than 1% for
Zhao’s model and up to 30% for the current model. It appears that the out-of-plane
contribution of residual surface tension strongly influences on material stiffness and

the surface energy effects play a prominent role in mechanical properties of materials.

Another set of results that confirms the size-dependent behavior of predicted
solutions when the surface energy effects are incorporated is associated with the

relationship between the normalized indentation force, P/P., and the contact radius ap
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for flat-ended cylindrical and paraboloidal punches as shown in Figure 4.13. It is
obviously seen that, when the radius of the punch becomes smaller, the indentation
force required to produce the same indentation depth is relatively higher due to the
surface energy effects. The discrepancy is more pronounced for results predicted by
the current model when compared with Zhao’s solutions. This implies that the
stiffness of materials characterized by the indentation experiment does not only
depend on the penetration depth but also highly depend on the radius of the punch. In
particular, at the contact radius ag = 0.1, resulis-obtained from Zhao’s model are
approximately 5% higher-than-the classical solution-for both punch profiles whereas
those predicted by a model aceounted for the out-of-plane contribution of the residual
surface tension are up 10 120%@and 160% higher than that obtained from the classical

model for paraboloidalandflai-ended punches, respectively.

To clearly demonstraie the influence of surface energy effects on the material
stiffness, the relationship between normarl_rized indentation force, P/4u4,?, and the
indentation depth do for both punch profiles.are presented in Figure 4.14(a) and Figure
4.14(b). It can be concluded frem- these résdrts that the indentation force for both
punches predicted by the current- model is sig_nificantly higher than that obtained from
the classical model and Zhao’s model. This additionally confirms that materials
become stiffer due t0_the presence of the surface stress effects and the out-of-plane
contribution of the residual surface tension amplifies such influence. It is also
important to emphasize that the, discrepancy of results for, the flat-ended cylindrical
punch is more pronounced’ than ithat' forithe paraboloidal punch due to the non-
smoothness of the punch profile and the singularity of stress fieldr introduced at the

boundary of the contact region.
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Table 4.1 Material properties used in numerical study

Model Parameter Value (unit)
A 58.17x10° (N/m?)
u 26.13x10° (N/m?)

0.16707 (nm)
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CHAPTER V

CONCLUSIONS

5.1 Summary and Major Findings

The complete solutions of an axisymmetric rigid frictionless indentation acting
on an isotropic, elastic half-space with consideration of surface energy effects by
employing a complete version of Gurtin-Murdoch surface elasticity model have been
fully investigated. Based.en the axisymmetric solutions in term's of Love's strain
potential together with the application of Hankel integral transform technique, the
mixed boundary condition$ on the strface of a half-space both outside and inside the
contact region can be‘reduced to a set of dual integral equations which can be further
equivalently transformed into a single Frea_holm integral equation of the second kind.
To obtain the solution of this single inte_Q’jai equation, various numerical schemes
have been employed to enhance both the acgdrqu and computational efficiency of the
solutions. First, standard approximation of afé_ql-@J_tion form and a collocation technique
are adopted to discretize the Fredholm inte'gfél equation. After a system of linear
algebraic equations wuith nonsymmetric, dense coeffient ratrix is obtained from the
discretization, either LU-decomposition or stabilized bi-conjugate gradient method
has been applied to solve such a system. Finally, complete elastic fields within the
half-space are obtained-by applying the Hankel'inaversion along with using standard
Gaussian quadrature. For smooth-contact punches, a physically admissible condition
associated ‘with the continuity-ofvertical stress at'the‘contactbouiidary is employed to

determing the unknown contact radius for a given indentation depth.

The numerical procedures have been implemented as an in-house computer
code to determine the complete elastic fields of both non-smooth contact and smooth
contact punches. The validity of the current formulation and accuracy of the
numerical implementations have been confirmed by comparing with the classical case
in which exact solutions exist. As anticipated, obtained numerical results have

demonstrated that the influence of surface energy effects becomes larger when the
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size of the punch is smaller especially in the region very near the punch. In addition,
material behaves stiffer due to such effects. It is interestingly remarked that the
distribution of contact pressure for two punch profiles (i.e. flat-ended and
paraboloidal punches) obtained from the current model exhibits significant
discrepancy. In particular, the contact pressure obtained from the current model for
the flat-ended punch is considerable lower than the classical case and that by Zhao
(2009) whereas, for the paraboloidal punch,.the current model predicts much higher
contact pressure than the other two models.~However, for both types of contacts,
elastic fields obtained from-the curreat model-indicate the strong influence of the
surface free energy for region relatively close to the punch. Such influence decays
rapidly for the vertical stresSes<but, for the vertical displacements, it exhibits slower
decay as the depth increases. Still; the sigularity at the boundary has been observed
for the case of a nen-smooth contacti. Size-dependent behavior has been also
presented to confirm the‘essence of accounﬁng surface energy effects on analysis of
material properties at nanescale and soft elastic solids due to their high surface to

volume ratio. L

5.2 Suggestions for Future \Work

The boundary value problem focused on in the current study is restricted only
to the axisymmetric indentation on an isotropic, elastic half-space. In addition, the
punch is also assumed te' be rigid with no friction. The generalization to alleviate all
those limitations | should be ' potentially useful to' enhance understanding of

nanomechanics and the mechanics of soft solids in a broader context. For instance,

() A punch' profile can'be“generalized to hon-axisymmetric one and an
elastic half-space can also be replaced by a more general film/substrate
system.

(i) A constitutive model for an elastic half-space can be generalized to
treat both anisotropic linearly elastic and inelastic materials. The
ability to treat material anisotropy and nonlinear material behavior will

enhance the modeling capability for simulating more practical
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problems associated with characterization of material properties using
nanoindentations.

(iii) A proper friction model can be incorporated to treat the interaction
between a punch and an elastic half-space. It is known that frictionless

contact is very idealistic and can hardly be found in practices.

AULINENINYINS
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