็การสลายตัวของโพลี (ไวนิล คลอไรต์) ในลำรละลาย เนื่องจากแล้ง

นางสารสู้ภากรณ์ ต้นจอย

วิทยานิพแร้นี้เ ป็นส่วนหนึ่งของการศึกษาตามหลักสู่ตรปริญญาวิทยาคำลัตรมหาปัณฑิต

ภาควิชา เคมี

ปนฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2529

ISBN 974-566-969-5

013516

18027.57x

PHOTODEGRADATION OF POLY (VINYL CHLORIDE) IN SOLUTION

Miss Supaporn Tanjoy

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Chemistry
Graduate School
Chulalongkorn University
1986

ISBN 974-566-969-5

Thesis Title

Photodegradation of Poly (vinyl chloride) in solution

Miss Supaporn Tanjoy

Department

Chemistry

Thesis Advisor Assistant Professor Supawan Tantayanon, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Master's degree.

S Bhiselt...Dean of Graduate School

(Associate Professor Sorachai Bhisabutra, Ph.D.) Acting Associate Dean for Academic Affairs

for

Acting Dean of the Graduate School

Thesis Committee

Pout Sidsh..... Chairman

(Professor Padet Sidisunthorn, Ph.D.)

Krorb ratina Kronusaful Member

(Assistant Professor Korbratna Kriausakul, Ph.D.)

Pipat Korrtiang Member

(Associate Professor Pipat Karntiang, Ph.D.)

Suy Tentay Member

(Assistant Professor Supawan Tantayanon, Ph.D.)

หัวย้อวิทยานิพนธ์

การล่อายตัวของโพลิ (ไวนิล คลอไรณ์) ในลำรละอายเนื่องจากแล่ง

ປິ່ວນີລິດ

นางสาวสุภาภรณ์ ต้นจ้อย

อาจารย์ที่ปรึกษา

ญ้ป่วยคำสัตราจารย์ ดร. คู่ภวรรณ ตันตยานนท์

ภาควี่ป่า

គេនី

ปีการศึกษา

2528

<mark>บทศัดยอ</mark>

ศรอย่าง พี วี ซี จากอิมพีเรียล เคมิกัล อินดัสทรี, ประเทศออสเตรเลีย (ไอ ซี ไอ 1, ไอ ซี ไอ 2) และบริษัทไทยพลาสติกและเคมีภัณฑ์, ประเทศไทย (ที พี 1, ที พี 2 และ ที พี 3) ได้จำแนกด้วยวิธีการทาความหนือของสารละลายเจือจางซึ่งทำให้สามารถหาค่ำองศาของ โพลิเมอไรเซชนของตัวอย่าง พี วี ซี ได้จากการคำนวณ เท่ากับ 1,024 , 1,888 , 1,072 1,408 และ 1,920 สำหรับ พี วี ซี-ไอ ซี ไอ 1, พี วี ซี-ไอ ซี ไอ 2, พี วี ซี-ที พี 1, พี วี ซี-ที พี 2 และ พี วี ซี-ที พี 3 ตามลำดับ

ในงานวิชยนี้ เครื่องมือพิเศษได้ออกแบบขึ้นมาสำหรับตรวจวัดไฮโดร เจนคลอไรด์ที่ ให้ออกมาจากปฏิกริยา โดยอาศัย เครื่องมือที่ใช้วัดการนำไฟฟ้า ไฮโดร เจนคลอไรด์ที่เกิดขึ้น ปรากฏว่า ได้จากการสลายตัวของ พี วี ซี เนื่องจากแสง พบว่า ปริมาณไฮโดร เจนคลอไรด์ที่ได้ ลดลง เมื่อองศาของโพลิเมอไร เชชัน เพิ่มขึ้นและจะ เพิ่มขึ้น เมื่อความ เข้มข้นของ พี วี ซี เพิ่มขึ้น สาร เติมแต่งที่เติมลงไปจะช่วยลดไฮโดร เจนคลอไรด์ที่เกิดขึ้น

การ เปลี่ยนสีระหว่างการสลายตัวของ พี วี ซี เนื่องจากแสง สัมพันธ์กันกับการ เกิด พันธะคู่แบบคอนจู เกตขึ้นในโซโพลิ เมอร์โดยวิธีทางส เปกโตรสโคปีในช่วงอุลตราไวโอ เลต เมื่อ สารละลาย พี วี ซี สลายตัว เนื่องจากแสงในบรรยากาศของออกซึ เจนสารที่สลายตัวจะแสดงแถบ การคูดกลืนใกล้กับช่วง 1,700 เชนตี เมตร ปรากฏการณ์นี้แสดงว่า เมื่อมีออกซิ เจนอยู่จะ เกิดโครงสร้างของคาร์บอนิลในโซโพลิ เมอร์

ผลการศึกษานี้ เปรียบ เทียบกับผลงานอื่นๆ แสดงให้ เห็นร้ำ แนวโน้มของการสลายตัว เนื่องจากแสงของ พี วี ซี ในรูปของแข็ง เหมือนกับในสารละลาย ดังนั้น กลไกสำหรับการสลาย ตัวของพี วี ซี ในสารละลายน้าจะ เหมือนกับการสลายตัวของ พี วี ซี พีล์ม หรือ พี วี ซี ที่ เป็นของ แข็ง ซึ่ง เป็นปฏิกริยา เกิดผ่านขั้น เริ่มต้นซึ่งสาร เจือปนใน พี วี ซี จะ เป็นตัวริเริ่ม โม เลกุลแรก ของไฮโดร เจนคลอไรด์ที่ให้ออกมาจะช่วยให้ไฮโดร เจนคลอไรด์โม เลกุลอีนหลุดออกง่ายขึ้น

Thesis Title Photodegradation of Poly (vinyl chloride) in solution

Name Miss Supaporn Tanjoy

Thesis Advisor Assistant Professor Supawan Tantayanon, Ph.D.

Department Chemistry

Academic Year 1985

ABSTRACT

aro amiun

PVC samples from Imperial Chemical Industries, Australia (ICI 1, ICI 2) and Thai Plastic & Chemical Co.Ltd., Thailand (TP 1, TP 2, and TP 3) were characterized by their dilute solution viscosities. The degrees of polymerization were calculated to be 1,024; 1,880; 1,072; 1,408 and 1,920 for PVC-ICI 1, PVC-ICI 2, PVC-TP 1, PVC-TP 2 and PVC-TP 3 respectively.

In this research work, a specific apparatus was designed so that the hydrogen chloride, produced from the reaction, could concurrently detected conductometrically. The formation of hydrogen chloride was proved to evolve from the photodegradation of PVC. It has been found that the amount of hydrogen chloride produced decreases with increasing degree of polymerization but increases with higher PVC concentration. In the presence of intentionally added additives, the hydrogen chloride formation is suppressed.

The discolouration during the photodehydrochlorination of PVC is associated with the formation of conjugated double bonds within the polymer chain as revealed by ultraviolet spectroscopy. When the PVC solution was photodegraded under an oxygen atmosphere, the degraded material exhibited the absorption bands near 1,700 cm. This suggests that in the presence of oxygen, carbonyl groups are generated in the polymer chain.

Comparison of the results from this study with other works reveal that the trends of photodegradation of PVC both in solid form and in solution are similar. Consequently, the mechanism for the photodegradation of PVC in solution presumably similar to the photodegradation of PVC film or solid PVC. That is the reaction occurs via the initiation step in which the impurities in the PVC serves as an initiator. The first molecule of hydrogen chloride produced then facilitate further elimination of another hydrogen chloride molecule.

ACKNOWLE DGEMENT

The author wishes to express her deep gratitude to Assistant Professor Dr. Supawan Tantayanon for her helpful guiding, advising, and encouraging throughout the course of this research. The author wishes to thank Dr. Bela Ternai and Thai Plastic & Chemical Co., Ltd. for the donation of PVC samples. The author also thanks the thesis committee for their comments. Finally, the author wishes to thank Professor Dr. Tab Nilanidhi Foundation for granting a scholarship and Dr. Buarech Khamthong for financial support in part for this thesis.

CONTENTS

	PAGE
ABSTRACT (IN THAI)	iv
ABSTRACT (IN ENGLISH)	vi
ACKNOWLEDGEMENT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xvi
LIST OF SCHEMES	кiк
CHAPTER I: INTRODUCTION	1
1.1 Poly (vinyl chloride)	1
1.2 Preparation of poly (vinyl chloride)	2
1.3 Deterioration of poly (vinyl chloride)	4
1.4 Photodegradation of solid poly (vinyl chloride).	7
II: EXPERIMENTALS	9
2.1 Materials	9
2.2 Apparatus and Instruments	9
2.3 Molecular weight determination of PVC sample	10
. 2.4 Typical procedure for the photodegradation	
study	14
2.5 Preliminary study of photodegradation of PVC	16
2.6 Control experiments for photodegradation study	18
2.6.1 In the absence of light	18
2.6.2 No poly (vinyl chloride)	19
2.6.3 Without bubbling nitrogen during irradia-	
	20

			PAGE
2.7	The fac	tors influencing the photodegradation of	
	PVC		22
	2.7.1	Degree of polymerization	22
	2.7.2	Concentration of PVC	24
· ·	2.7.3	In the presence of additives	26
• •		2.7.3.1 Plasticizer; Dioctyl phthalate	26
		2.7.3.2 Stabilizer; TINUVIN P	27
		2.7.3.3 Pigments; Titanium dioxide,	
		Carbon black	28
2.8	Standa	rd hydrochloric acid	30
•	2.8.1	Preparation of secondary standard 0.001	
		M sodium hydroxide	30
	2.8.2	Preparation of various concentrations of	
		hydrochloric acid	. 32
	2.8.3	Relationship between concentration of	
		standard hydrochloric acid and the corre	s-
		ponding conductivity	. 39
2.9	Spectr	oscopic study for determination of PVC	
6	photod	egradation product	. 42
. 9	2.9.1	Ultraviolet spectroscopic study	42
N7	199	2.9.1.1 Photodegradation of PVC in	
		nitrogen	42
		2.9.1.2 Photodegradation of PVC in	
		oxygen	42
	2.9.2	The infrared spectroscopic study	
		2.9.2.1 Photodegradation of PVC in	
	•	nitrogen	4.3

	$oldsymbol{I}_{ij}$	PAGE
	2.9.2.2 Photodegradation of PVC in	
	oxygen	43
III:	RESULTS AND DISSCUSSION	
	3.1 Poly (vinyl chloride) samples	44
	3.2 Preliminary investigation of the photodegradation	
	Study	54
	3.3 Factorsthat influence the PVC photodegradation	63
	3.3.1 Degree of polymerization of PVC	63
	3.3.2 Concentration of PVC	69
	3.3.3 Added additives	74
	3.4 PVC photodegradation product	89
IV:	CONCLUSION	99
REFERENCES.	•••••••••••••••••••••••••••••••••••••••	102
APPENDIX		106
VITA		108

LIST OF TABLES

TABLE			PAGE
	2-1	Flow time of tetrahydrofuran	11
·	2-2	Flow time of PVC-ICI 1 solution at various	
		concentrations	12
	2-3	Flow time of PVC-ICI 2 solution at various	
		concentrations	12
	2-4	Flow time of PVC-TP 1 solution at various	
		concentrations	13
	2-5	Flow time of PVC-TP 2 solution at various	. %
		concentrations	13
	2-6	Flow time of PVC-TP 3 solution at various	
- '		concentrations	13
	2-7	The relationship between irradiation time and	
		conductivity for PVC-ICI 1 in nitrogen	17
* 14 - * * * * * * * * * * * * * * * * * *	2-8	The relationship between irradiation time and	
	•	conductivity for PVC-TP 1 in nitrogen	18
•	2-9	Conductivity in the absence of light	19
	2-10	Conductivity in the absence of PVC	20
% *	2-11	Conductivity in the absence of bubbling nitrogen	
	ġ	during irradiation	21
÷	2-12	Conductivity after 4 hours of irradiation	22
	2-13	Relationship between conductivity and irradiation	
		time for PVC-ICI	23
	2-14	Relationship between conductivity and irradiation	
	•	time for PVC-TP	24
	2-15	Relationship between conductivity and irradiation	

TABLE			PAGE
	•	time for PVC-ICI 1 at various concentrations	25
	2-16	Relationship between conductivity and irradiation	
		time for PVC-TP 1 at various concentrations	26
	2–17	Relationship between conductivity and irradiation	•
	:	time for the solution of PVC-ICI 2 in the absence	•
		and in the presence of DOP	27
	2-18	Relationship between conductivity and irradiation	
		time for the solution of PVC-ICI 2 in the absence	
		and in the presence of TINUVIN P	28
	2–19	Relationship between conductivity and irradiation	
		time for the solution of PVC-ICI 2 in the absence	
		and in the presence of titanium dioxide	29
	2-20	Relationship between conductivity and irradiation	
	* .*	time for the solution of PVC-ICI 2 in the absence	
		and in the presence of carbon black or titanium	
		dioxide	30
:	2-21	Conductometric titration data for 25 ml of 0.0001	
		M potassium hydrogen phthalate with approximately	
		0.001 M sodium hydroxide	31
	2-22	Conductometric titration data for approximately	
	O 09	0.0001 M hydrochloric acid	33
	2-23	Conductometric titration data for approximately	
		0.0005 M hydrochloric acid	34
	2-24	Conductometric titration data for approximately	•
		0.0010 M hydrochloric acid	35
	2-25		
		0.0015 M hydrochloric acid	36
	2-26	Conductometric titration data for approximately	

TABLE	:	9	PAGE
•		0.0020 M hydrochloric acid	37
	2-27	Relationship between concentration of standard	
-		hydrochloric acid and the corresponding conduc-	
		tivity	40
	3-1	The inherent viscosity of PVC-ICI l at various	
	.*	concentrations	45
	3-2	The inherent viscosity of PVC-ICI 2 at various	
		concentrations	45
٠.	3-3	The inherent viscosity of PVC-TP l at various	
		concentrations	46
	3-4	The inherent viscosity of PVC-TP 2 at various	
		concentrations	46
-	3-5	The inherent viscosity of PVC-TP 3 at various	
		concentrations	47
	3-6	Viscosity average molecular weight and degree of	
		polymerization of PVC samples	53
•	3–7	The relationship between irradiation time and	
		concentration of PVC-ICI 1 in nitrogen	56
	3-8	The relationship between irradiation time and	
	ລ າກ	concentration of PVC-TP l in nitrogen	58
	3–9	Relationship between concentration of hydrogen	
		chloride produced and time for PVC-ICI 1 after 4	•
		hours of irradiation	61
	3-10	Relationship between concentration of hydrogen	
		chloride produced and irradiation time for	
	·	PVC-ICI at various degrees of polymerization	64
	3-11		
		chloride produced and irradiation time for	

TABLE			PAGE
•		PVC-TP at various degreesof polymerization	67
	3-12	Relationship between concentration of hydrogen	
		chloride produced and irradiation time for	
		PVC-ICI 1 at various concentrations	70
	3–13	Relationship between concentration of hydrogen	
		chloride produced and irradiation time for	
		PVC-TP 1 at various concentrations	72
	3-14	Relationship between concentration of hydrogen	
		chloride produced and irradiation time in the	
		absence and in the presence of DOP: PVC-ICI 2	7.5
* * .	3–15	Relationship between concentration of hydrogen	
		chloride produced and irradiation time in the	
	,	presence and in the absence of TINUVIN P:	
		PVC-ICI 2	80
	3-16	Relationship between concentration of hydrogen	
		chloride produced in the absence and in the	
,		presence of carbon black or titanium dioxide	85
	3–17	Relationship between concentration of hydrogen	
		chloride produced and irradiation time in the	
	ର ଖ	presence and in the absence of titanium dioxide:	
*	4 14	PVC_TCT 2	86

LIST OF FIGURES

		PAGE
1-1	Spectral energy distribution of daylight	5
2-1	Ubbelohde viscometer	10
2-2	Apparatus for the photodegradation study	15
2-3	Conductometric fitration of approximately 0.001 M	
••	NaOH with 0.001 M potassium hydrogen phthalate	32
2-4	Conductometric titration of approximately 0.0003 M	
	HC1 with 0.0025 M NaOH	38
2-5	Conductometric titration of approximately 0.0006 M	
	HC1 with 0.0025 M NaOH	38
2-6	Conductometric titration of approximately 0.0009 M	
	HC1 with 0.0025 M NaOH	38
2-7	Conductometric titration of approximately 0.0015 M	
	HCl with 0.0025 M NaOH	38
2-8	Conductometric titration of approximately 0.0020 M	
	HCl with 0.0025 M NaOH	39
2-9	Concentration-conductivity profile	41
3-1	The plot of the amount of PVC-ICI 1 in tetrahydro -	
ລ າກ	furan with the corresponding inherent viscosity	48
3-2	The plot of the amount of PVC-ICI 2 in tetrahydro-	
	furan with the corresponding inherent viscosity	49
3–3	The plot of the amount of PVC-TP 1 in tetrahydro-	
	furan with the corresponding inherent viscosity	50
3-4	The plot of the amount of PVC-TP 2 in tetrahydro-	
	furan with the corresponding inherent viscosity	51
3-5	The plot of the amount of PVC-TP 3 in tetrahydro-	
	2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 3-1 3-2 3-3	2-1 Ubbelohde viscometer

FIGURE			PAGE
		furan with the corresponding inherent viscosity	52
	3-6	Concentration of hydrogen chloride produced at	
		various time PVC-ICI 1 (repetition)	57
	3-7	Concentration of hydrogen chloride produced at	
		various time: PVC-TP l (repetition)	59
	3-8	Concentration of hydrogen chloride produced at	
		various time after 4 hours of irradiation:	
		PVC-ICI 2	62
	3–9	The effect of degree of polymerization on the PVC	
	•	photodegradation: PVC-ICI 1 (DP 1,024) and PVC-	
		ICI 2 (DP 1,885)	65
	3-10	The effect of degree of polymerization on the PVC	
		photodegradation: PVC-TP 1 (DP 1,072), PVC-TP 2	
		(DP 1,536) and PVC-TP 3 (DP 1,904)	68
:	3-11	The effect of concentration on the PVC photo-	
		degradation PVC-ICI 1	71
•	3-12	The effect of concentration on the PVC photo-	. *
		degradation PVC-TP 1	73
	3-13	The effect of DOP on the PVC photodegradation:	
	ର ୨୫	. PVC-ICI 2	76
	3-14	Absorption spectrum of DOP	78
	3-15	The effect of TINUVIN P on the PVC photodegradation:	
		PVC-ICI 2	81
	3-16	Absorption spectrum of TINUVIN P	83
	3-17	The comparison of PVC photodegradation in the	
	٠.	presence of titanium with carbon black	87
	3-18	The effect of titanium dioxide on the PVC photo-	

IGURE			PAGE
		degradation: PVC-ICI 2	88
	3-19	Absorption spectra of PVC after irradiation in	÷ "
		nitrogen: PVC-ICI 2	91
	3-20	Absorption spectra of PVC after irradiation in	
	· .	oxygen: PVC-ICI 2	92
	3-21	Infrared spectrum of PVC before irradiation	96
	3-22	Infrared spectrum of PVC after irradiation for	• • •
		8 hours in nitrogen	97
	3-23	Infrared spectrum of PVC after irradiation for	
	•	8 hours in oxygen	98

LIST OF SCHEMES

SCHEME			PAGE
	1-1	Polymerization of vinyl chloride	3
	1-2	Evolution of hydrogen chloride in PVC	6

สุนย์จิทยทรัพยากร เกลงกรณมทาจิทยาลัย