CIAPTER 2

A BRIEF ACCOURNT OF X-RhY CRYSTAL STRUCTURE DETERMIMNATION

2,1 ¥-ray diffraction

When a crystal is in the path of an ¥X-ray heam, diffrac-
tion will occur only ifceriain corditions are satisfied.

A crystal is eomposed of atoms. An atom consists of a
swarm of electrons about & positively charged nucleus. When X;
rays pass throucgh a erystal. an electron within the atom will vi-
brate with the frequency of the inecident radiation, periodically
absorbing e¢nergy and emitting it as' X-radiation of the same fre-
quency and wavelength ag the incident bheam. Then the elactron
is said to scatter the original X-ray waves and acts as a source
of secondary X~ravs. The nucleus may be neglected in connection
with scattering hecause of its comparatively high mass. Each of
the electron.in the, aton gcatters.Z-rays and _then combines to give
the effect of, a polnt source. Therefore, the atom as a whole
scatterspd-rayvs+s @Al atoms ip theypath,of pan K-rawy, heam scatter
X-rays ;simultaneously. The scattered X-~rays interfere with and
destroy one another, but in certain specific directicns they com-
bine to form new wave fronts. This cooperative scattering is

known as diffraction(B’g’s).



The diffraction of X-rays by crystals was discovered by Max
von Laue in 1912, He suggested that the periodic structure of a
crystal might be used to diffract X-rays just as gratinags are used
0o produce diffraction pétterns with visible 1ight(6}. Scattering

of light by a diffraction grating with repeat distance "a" is shown

.in Fig. 2.1.

A b .
Fig. 2.1 Scattering of light by a diffraction cgrating.

The incideni hean makes an angle u with the diffraction
grating. The incident ray DE travels farther than 2B hefore reach-
”
ing the grating and) tile scattered (ray BC travels| farther thah EF
after passing the grating. The difference in path lengths of the
beams ABEC and DGIF is BH-GE. The condition ﬁor 2 dAiffraction maxi-

mam is therefors:

BH - GE = ni



where A is the wavelenath of the light, and n is an integer. By
simple geometry BH = a cos v and GE = a cos u, where a is the re-
peat distance, so
a cos v - acos i = ni
Since crystals are periocdic in three dimensions, three
equations are required for the diffraction conditions

: acos vy —.acos uy} = hiA  ......... 2.1 a

ki A R &

i

b cos w8 -4 o5 uj

c cosdV3 # cfgos 13 1A ..., 2.1 ¢C
where 11, Uo and u3 are tihe angles betwaen +he incident X-ray beam
and the unit cell axes a,b,c respectively and v;, vz and vz axe
the corresponding angles for the diffracted heam, and_h, k and 1
are integers. These equations are called the Laue equations.
Shortly after the discovery of Reray diffraction, Bragg
noted that the diff¥action of X-raws bv a crystal is analogous to
the reflaction of light I»v a plane mirror. He deduced a simple
equation treating diffraction as "reflection” from planes in the
lattice. To derive the eguation, |let an ¥-ray beam incidents on
a pair of parallel planes with interplanar spacing "d" {Fig. 2.2)}.
The varalliel dncident\rays make an angle € with these blanes. The
condition that the reflections from these planes be in phase is
that the path difference of rays reflected from_these planes be an
integral number "n" of wavelengths; Fig. 2.2 shows that this path

difference is 2d sin € hence the condition is

24 sin 0O = ni ersmaces 2.2
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This is Bragg's lav.

Fig. 2.2 Construction showing conditions for diffraction.

2.2 The structure factor

The structure factor, F(hkl), is +the resultant wave due to
the combined scattering of all the atoms in the unit cell. In order
to calculate the structure factor, it is necessary tc know the scat-
tering factor of the atom and tﬁe phase of the wave scattered by

the atom.

Fig. '2.3 Censtruction showing a set of (hk) planes in a two+dimen—
sional structure with an atom J having fractional coordi-

nates ¥.v..
3Y3



To express a phase in te Vs-oﬁ thé position of the atom,

let us consider a set of (hk) ﬁlanes in a two-dimensional struc-
ture with an atom j having fractional coordinates xjyj, as shown

in Fig. 2.3. The closest (hk) plane to the origin has intercepts
a/h and b/k on thé cell edges. Fxom Bragg's law, a path difference
between reflection from successive planes of any given set hkl is
equal to 2in. »Rccordingly, the distance a/h is equivalent to phase
difference 29 if n = 1 ana then the distance axj will be equiva-
lent to phase difference Zﬁaxj b'4 2— = 2ﬂhxj. Similarly the dis-
tance byj is eguivalentgto/the phase difference 2ﬁkyj. Therefore,
the phase difference of /a wave scattered by an atom whose fract-

e

ional coordinates xjvj is

I}

8. - 09 (. + Ky.) eev.. 2.3
i (hitg + Ky 4) “

The corresponding expression for the three dimensions is
S,
]

The scattering factor of the atom, ﬁj, is a function only

2 ky 12.) ceee. 2.4
z_ﬂ(hxj + yj + J) 2

of the atom type and of sinf/A vhere € 1s the Bragg's anyle and A
is the wavelenqgth of the incident heam, ‘Tt is also_independent
of the position of the atem' inthe cell, ' The variation of the scat-
tering factor-of tﬁngsten. cobalt, and. oxygen with sinf/A_are shown
in Fig. 2.4

When sin6/A = O all waves are in phase, so the value of
fo is equal to the total number of electrons in the atom. As sin@/A
increases, fO decreases hecause X-rays scattered from an electren

in one part of an atom will be to an increasing extent out of phase

with those scattered in another part of the electron cloud.
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Fig. 2.4 Atomic scattering facior of tungsten, cokalt and oxygen

as a function of siné/ A -

Atomic scatterxing factors, fo ;, are caleulated for atoms at

rest, but, in fact, at ordinary temperatures the atoms are always

vibrating about their rest points.. .The magnitude of vibration de-

rends on the temperature, the mass 'of the atom, and the type of

konds in the cxystal. ,The scattering. factor. of,an atom-at, ordinary

temperatures (f) is related to its scattering factor at rest (fo)

by the expressionts)
2

-y
., 2
e“BSln 6/ ceeceseess 2.5

f = £
o -
vhere B is the Dehye factor which is related to the mean displace-

ment of the atom from its mean position and depends on the kind



of the atom and the orientation of the reflecting planes in the

crvstal.

Fig. 2.5 Vectors rer ion o: atite wavas of different
amplitudes an
From IFig. 2.5

2
| (hk1).

fyi

where A = F coS5 amr ficos

ﬂumwmwmm
ama{nﬁ‘i‘uﬂﬁ%ﬂ‘ﬁ%a

Ff.sin 8. esscasens 2.8
i J
vhere fj and 6j are the scattering factor and phase of the jth atom
a(kl) = tant 2
. zf.sind.
= tan 13— ceernees 2.9
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Substituting Si 2‘;!(hxj 2 ij + 1zj) into eq. {2.£&), we

ohtain

2 2
|F (hk1) | (Zf,cos2(hx.+ ky.+ 1z.)]
.3 SRS M
J
2
+ [Ef.sin29(hx +ky.+ 1z.)) «------ 2.10
3 MRS R

]

" . ) 3
Tne function cos %, sin x and /o may be expressed by

the series

a 4
cos x = I-Z 4l 2.11
y3 xs
sinx = x = — F = /<. enea. 2,12
34 54
X x2 x3
e = 1 4+ x + 5 EX . . RO R . ... 2.13
Substituting ¥ = ié and multiplying both sides of the eg. (2.13)
by f we have
: 82 &3 ok
f315 = F£(1 + 18 ~ — = i +'§‘,-a;)
& ST a . .
. .82 g o 83§ =Y
= f[(; —— e 3 +'§i_""}]
= f(@os6 + isiné) T 2 .14

Since the right side of the eqg.(2.14) is a complex number which
represent a wave with amplitude' £fland-phase’'angls &, the left side
éf this equationwill also represent the same meaning. Therefore,
the struchture factoy which is the'sum of the ‘waves ‘scattered by
the n atoms is

Zf.eiaj e neeeaca 2.15
3 J

Substituting & as given in eq. (2.4) into eg. (2.15) we have

P =

EAN

F?e:Zﬁi(hxj+ L:yjﬂzj)

F(hkl)
3
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The structure factor may be considered as the sum of the
wavelets scattered from all the infinitesimal elements of electron
density in a unit cell. The electron density, pi{x,v,z), is the
number of electrons per unit volume, so the number of electrons in
any volume element dv is

pilx,y,z}dv
The wavelet scattered by the electron in volume element is

291 (hx+tkv+lz
plx,y,2) ( 4 )dV

and *he structure factoriwild ke egual to the sum of all of the
volume elements in the uniticeil, i.é. the integral over its volume

Zﬂi(hx+ky+lz)dv 2.17

F(hkl) = 6 pix,v,z)e
rthe obhserved intensitics of the beam of X-rays diffracted
in any given direction from a crystal OFf any shape or size are re- .
lated to the structure factor by the following relation(7)
|F_ bk oL YT (hk1) Lfornnaa. 2.18
where|Fo(hkl)| is the moduius of the observed structure facto:,
therefore only |Fo(hkl)| can be obtained experimentally.

There aré|various factors] that-can)affectsthe-cbserved in-
tensities, namelylithe polarization of X-rays, the absorption of
X-rays by ‘thélerystil, (the dength ©f time) that the|plare is in a
scattering position and the apparatus used in measurement of the in-

tensities. The value of ]Fo(hkl)i,-therefore, reguires corrections

for these factors. The eg. (2.18) will be rewritten as

KT —
hkl
" r ‘l = / -
I-o‘h"l" ok ceeeneeas 2.

]
\0
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where K is a scale factor necessary to place I on an absolute
basis and depending on crystal size, beam intensity, and a number
of fundamental constants, p is the polarization factor which is

given by

2
1 + cos 20 . 2.20
P - ...__—_.2.-—-._..--_-.-—~ '-onov-..‘ -

and is a function of 2€ only. The Lorentz factor ; L, depends on
the precise measurement- technique used. For the equi-inclination

Weissenberg it is given Ly

sin®
L : = - . tecasnos 2.21

7 . N2

sinPvsin' B-sin U
where u is the equi-inclination setting angle. A is an absorption

correction.
If the proposed structure of the crystal is correct, the
value of the ohserved structure factor and the calculated one will

be theoretically equal.
2.3 Flectron density

Since X~Yays are scattefed by-the jelectronssof the atoms,
a crystal property suitable for our mathematical treatment is the
electron density.

Whén a function is periodig, it is freqguently useful to

express that function by means of a Fourier series. & general one-

dimensional Fourier series may be written as

n
f {x) = a + fl{a, cos2¥hx + b, sin2fhx) .. sceccas 2.22
o 1 h =~ h
or
n 29ihx 2.23
£ (x) = L Ce
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Since crystals are periodic structure, they can be describ-
ed by periodic functions. The three-dimensional periodic electron

density in a crystal can be represented by a three-dimensional

Fourier series similar to eg.(2.23)
'q- - +_.~ -
o (x,y,2) = LB REcld G2 (hTxakTy+lTz) o o4
Rexyus/s

where h”, k” and 1~ are integers between<w and «c .

Substituting p (x,vy2) from eqg.(2.24) in eq.(2.17) we have
294 (hTxrk y+1 72} 274 (hx+ky+1
i(hix+k y ?e i (hx+ky z)dv

P(hkl) = JSL Z F G . 4.2
vh'k“1” 0
ceenan.. 2225
F(hkl) = S I I ch,.k,,l,ez‘iTl (b0 xt Qe D y+ (141 ) 2] o
v h"k“1”
cerenna. 2426
If W =-h, ¥ = -k, ¥ = -1, the eg.(2.26) heccmes
F(hkl) = fcm_mdv = NG cscessncs 227
Vlhkl hkl
c___ = _ GEKL cevenee. 2.28
hkl
Substitution of h; %, 1 for h°, k', 1 ana of c___ from eqg.

hk1
2.28 in eq.(2.24) gives
=241 (hx+ky+1z)

L % tF{hkl)e eseesne 2,29
Bk X
The expression| for the structure factor, eq.{2.16), and the

<f et

p(x,v,z} =

electron density, eq.(2.29}, are similar bhut the exponential terms

are opposite in sign becansé théseé guantities| are Fourier transform

of each other.

the structure factor can be written in the form

|7 kD) {2 h1= |7 (kD) |e 0Ky --.. 2.30

i

F (hicl)

where 27a” is the phase angle. Then the eq.(2.28) can be re-

hkl

written
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1l
v

=291 (hx+ky+1lz-a” )

g2z lF (k) je hkl'  L...... 2.31
hk1l

Bence the electron density in the cell can be calculated if the

plx,y,2}) =
rhase angles are known.
2.4 Patterson function

As we have seen in section 2.2 that only the modulus of

the structure factors camebe derived from the observed intensi-
ties, so it is impossible to. directly deduce the actual positions
of the atoms in the eellys However, it is theoretically possible
to deduce the vectors between every pair of atoms in a crystal.

In 1934, A,L. Patterson showed that.a Fourier series.using values
of 'F{hkl)]z as coefficients in'stead of F(hkl) could produce this
useful information. This series is called the Patterson function.
A peak at ‘the point uvw in- @ Pattersen map indicates that there

exist atoms at x Tyt and S i in-the-erystal such that

1
u = X)X,
Ve€a~ Y17Y3
W = 2,54,
Patterson defined a function P (uvw}. of the form
P {uvw) - vé;é;é;p(xyz)p(x+u,y+v,z+w)dxﬁydz oleanes 2.32

Substituting the values of clectron density from eqg.(2.29) we

obtain

—Zﬂi{hx+ky+lz)

i

P (uvw) L I B DD
V2oopngy

-

L £ F{hkl)e
k7L

™

v -2 ) - - ‘z - rp[i ‘.» # -
< F(h‘k‘l’)e?m(h x+k “y+l7z2) =271 (h"u+k ‘v +1 W)dxdydz

cossveve 2.33
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The right-hand side will be zero unless h” =-h, k7 ==k, 17 =-1.

¥Yhen this condition applies,

F(hk1)F (AkI) o2+ (utkvrlw) o o,

P (uvw) é-z Tz
hkil

By using Friedel's law I = I . the relationship between

F(hkl) and F(BQI) can be obtained. /

N

?§§- i BChkLY
Adhkl)

£\ Snchkh
%

Fig. 2.6 Vector représentaticn of F(hkl) and F(Egi)-

From Fig. 2.6

F (hkl)

i

A{hkl) + iB(hkl}

F(hk1) A(hkl) - iB(hkD)

If these are multiplied)together) |the resulitiis

F(hK1JE (hkD) = [a(hkl) + iB(hk1)]{ A(hk1) - 15 (nk1) )

Az(hkl} 4 Bz(hkl)

#

= ek |2 ..., . 2.35
Substitue in eq.{2.34) we get
P (uvw) = E.; T3 IF(hkl)lzezﬂl(nu+kv+lw)
Vierkl '

0085935
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o
This result can be simplified by expanding-the exponential with the

aid of the relation

i -
e 2 = cos@® + ising cooosns 2237

This expression changes "'aqg. (2.36) to

P (uvw) = %—E 2 Z}F(hkl)|2[cos2ﬂ(hu+kv+1w)+isin2ﬂjhu+kv+lwﬂ
hk1l
eeaesan 2,38
Since !F(hk1)|2 = IF(EEi)IZ, the summation gives rise to pair terms

in hkl and hki :

lF(hkl)lzisinzq(hu+kv+1w)

and
— D Y & 5 :
|7 (Rk1) | “isin2®(hustkytiw) = |F (hk1) | “isin2T (hutkvlw)

These terms cancel each other in the summation, leaving

Pluvw) = ¢ 3 5|kl [Feos2 (hutkv+ly) .oooo.. 2.39
h k1

T his function has the same value for uvw and uvw, con-

<

seguently it is centrosymmetrical at the origin. ,This means that

all Patterson functions have a center of symmetry.
2.5 Difference synthesis

The second Fourier function of importance is the'so-called
difference synthesis or error synthesis whiech ‘the-coeffickents are
the quantities (Fo_Fr) or AF. The difference synthesis corresponds

to point-by-point subtraction of an FC Fourier from an Fo Fourier

calculated with the same phases(7).

ew2ﬂ1(hX+ky+lz)°°. .40

P, (X¥,2)
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~-2%1 (hx+ky+1z)

chkle crscse 2.41

LILF
hkl

if eq.(2.41) is subtracted from eqg.(2.40), the difference syn-

<

DC(X!Y;Z) =

thesis vill be given as

X 1 - _ =2¥1i {hx+ky+1z)
DO(X:YIZ)“QC(X'YiZ) = 7 5 ; E(Fo FC)hkle
TV ceve. 2.42
or
Ao = Eﬂg £ TP l‘!F I)elac-zﬁl(hx+ky+lz)
VE  m——
crosos 2.43

The difference synthe€is has two major virtues. First, if
the model matched the actual structurelexactly, the.difference den=-
sity map should be zero everywhere, except that random errors in
measuring ]FOI should produce a small random fluctuation in the
function. Therefore, if the phases G4 are correct, it provides a
direct measure of the errors between the model used and the true
Structure. This property is very useful for refinement. Second,
it permits the selection anc use Qf a partial set of data for which
the probabilities are e@specially high that the assigned phases are
correct. Furthermore, "this partial zéf can provide useful infor-
mation which is difficult Or impossible to obtain from the Fo synthe-
sis. Only the second case is cofhsidered is detail.

To seelhow te select ‘the data for theé difforence synthesis
let us consider three limiting cases of fFO['s and IFCI"S. Pirst,
the reflections for which !FOI < IFcf. These reflections tend
mefely to reproduce the model ana add little new information. Fur-
thermore, if @, differs from the true value, a large ’Fol can in-

troduce serious errors inte the resulting synthesis. S0 in the dif-
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~

ference synthesis IFol —|Fc1 %~ 0, these reflections are rejected.
Second, those for which !Fo]# IFcl. Iif [Fo}>>|FC|, these reflec-
tions are theoretically useful becausec |Fof will make a signifi-
cant contribution to the Fo Fourier and should provide useful in-
formation, but the probability of correspondence hetween ac and

o is small and diminishes as |Fc| approaches zero. In the 4dif-~
ference synthesis, IFofmchl will Be larcae and contribute to the
summation, but the phasewincertainty is still present so these re-
flections are also eliminaged. 'The thir< whieh is the most in-
teresting case is [F0|<<]Fc|, These reflections carry information
about the disagreement betweén the model and the trne structure.
The value IFOI - [Fc! will bs large and contribute to the summation
in the difference synthesis. Furthermore, whenrlFOl becomes small-

er than IFCI , the approximaticn that @,.is nearly egual to 5 be-
c

A

comes more and morc reliable, where o, is the phase of AF.

il

The coefficients for the difference synthesis are

AF = F - F toeseese 2,44
. O (o]

|67 et | o = dr el fralel™ A ... 2.45
o C

Since ¢n is unknown, we assume that' og I a¢then

*

laplei® = e X% . jpeitc 0 2.6
Q L&)
|Arfe ™ V2D Bs R F et LAV o 4y
o c
lapie™ = ape™™ ceeecee. 2.48

AF is always negative because ]Fo|<<|FC|, then

i(},' ~ 1 iGL 1
larple™™d z ~{aFf e " ceeeenes 2.48
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AF

Qk
Ama Smin

Fig. 2.7 Construction showing range of G, -

From Fig. 2.7, the radius of the big circle is egual to
IFCI and the radius of the small one is egual to Fofo It can be
seen that the end of"AF must always lie on the small circle, «ad
as the small circle is smaller and smaller, the range over which

o, will vary as N changed i) smaller-téc! () Therefore the approxi-

mation that oy i% nearly egual to o_ becomes more and more reliable,

With the reasons described above, the most valuable reflec-~
tions for use in the difference synthe;is are those for which [Fol
is very small and.]Fc[ is very large.

The difference gvynthesis also has other verj useful appli-~

cations. First, difference density maps are nearly free from series

termination errors because these errors are about the same for bhoth
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Py and pc. Second, when a crystal contains atoms having a wide
range of atomic numbers, it is very difficult or impossible to find
very light atomé in an ordinary Fourier synthesis of the electron
density because the peak heights of the light atoms are nearly

equal to the hackground fluctuations. Howevar the background fluct-
uations occurring in pO and o, are nearly the same, they tend to
cancel in the difference density leaving as a residue any real dif-
ference in the electreon.déngities of the structure and model.

Since the difference synthesis corresponds to a point-by-point
subtraction of an FC Epduriey from an FO Fouriexr calculated with the
same phases, it may ocgtir /that cerrectly placed atoms will not ap-
pear in the synthesis, incerreetly placed ones will be in holes and
missing ones will appear as peaks. Therefore, the difference synthe-
sis can be used as a quide in the removal of atoms which are incor-
rectly placed, However, the appearance of holes.in the difference
map.should not lead automatically to the conclusion that the par-
ticular atoms or the whole structure is ingorréct. These holas ap-

"

pear for various reasons.) First [ fthe failure to include a AFOOO
term in the synthesis for which the model is less than the whole
structure.! "Second,| the-application ‘of ‘weighting or cutoff function
w<l for !Fc|<}F°ﬁ which makes the effective average value of |Fc|
toc large and the corresponding calcﬁlated electron density too
high, then this excess density becomes a hole in the difference map.

Furthermore, the physical reasons for the appearance of atoms in

holes are the use of too small thermal parameters (Fig. 2.8) which
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increases the calculated peak density over what it should be, and

the misidentification of atom types.

Fig. 2.8 Difference ‘electyeon density resulting from using too

small values cf thermal parameters.

2.6 Refinement

After completing the structure, the refinement stage will
be taken to improve thd precision andidetails of the structure.
The degree to whichia . stricturé has begen improved is cormonly
measured by & residual index

R = « doleelc e 2.59

There is no single value of the R factor which can be taken as

assuring the correctness of a placing model. Uith modern techni-
gues, any well-behaved structure should be éapable of refinement
to an R below 0.2 and most to below 0.1. Tor a comp;etely wronag

structure the expected value of R is 0.83 if the crystal is cen~
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trosymmetrical, or 0.59 if noncentrosymmetrical; Models with R
values of 0.45 or lower are worth trying to improve by refine-
ment(3).

An analyticai method of refinement of great power and
generality is the method of ieast sguares. The basis of this
method can most easily be understood bysconsidering a linear
function with n variabies xlg x2, -

£ = plxl + p2x2 + p3x3 S pnxn eoeses 2.51
where p,, éé, --. p aré independent parameters. If the values
of the function are measuged at m different points with m®n, the
principle of least sguares states that the best values for the
parame;ers Pys Poyeceen R, are those which minimize the sums of the
squares of the properly weighted.differences between the observed
and calculated values of the function for all the obs=rvational
points. Thus the quantity to be minimized is given by

= 2
D = I w (f -f ) i ieeee. D.52

r or ©he
. r=1 .
where w_ is the weigh* to be assigned an observation, fOr is one
of the m observed walues ofnthe fanctionj|and fcr is“the corres-

ponding calculated value.

In"¥X-ray diffrdction, the Quanhtity most | commonlys minimized

2 N
is D = w . (P ] - kP D ...l 2053
hki hkl o c
where I indicates surmation over all the observed reflections
1~
and Vil is the weight of the observation. Usually in crystallo-

. . . , i . (8
graphy only relative weights can be estimated. Crulcksnann{“)

suggested that
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— =l 2 .
w o= l/(c:__L + |.L-o] + CZIFOI } teee 2.54

where c, and c, are about 2|Fo-min| and 2/'[1? | respectively.

1 2 o max

It is now a common practice to refine structures by the

method of least squares because of the development and improve-

nent of the high-speed elactronic e . Furthermore, this

£ < ’/ﬁdinates of each atom
but also to findé the be nermal p mﬁthe corresponding

atom,

W

]
U
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