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This thesis presents a novel active contour using scalable local regional information on

expandable kernel for image segmentation. We call it LREK active contour. Our model uses

intensity values of pixels on a set of scalable kernels alongevolving contour. These kernels are

to direct contour front towards object’s boundary within animage domain. Key feature of our

model is that scale of the kernels increases gradually untilthe boundary is detected. So, our

LREK may reach the boundary faster than some other methods. We compare performance of our

LREK to existing edge and region-based active contour models. Experimental results show more

desirable segmentation outcomes of our method. Furthermore, we also extract directional property

of scalable local regional information so that it can chooseobjects of desirable edge’s type. In

addition to an ability in segmenting two different edge’s type objects with only one initial contour,

our proposed scheme performs effectively in segmenting noisy, concave boundary, non-uniform,

and heterogeneous textures objects with a large capture range and fast convergence. Meanwhile,

level set formulation makes our model topologically flexible. Moreover, our Gaussian LREK is

able to trace blur or smooth boundary.
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CHAPTER I

INTRODUCTION

1.1 Importance

Image segmentation is one of the ubiquitous tasks in computer vision. It tries to separate

an image into distinct and meaningful regions where segmentation outcome shall clearly mark

pixel regions according to the image region it represents. Spatial intensity variation can cause

changes in the image intensity such that non-uniform or heterogeneous texture occurs. Thus, real

scenes and medical images have rise the challenging segmentation tasks. Moreover, the fact that

particular images may have several objects of interest, that overlap each other or lie on a complex

background appearance, makes them difficult to be distinguished. The segmentation task may

be extended not only to separate desirable objects from its background but also from undesired

surrounding objects.

Active contour models is one of the models that have been broadly applied to image seg-

mentation. The segmentation process begins with an initialcontour that can be obtained automati-

cally or with user interaction. In these models, the basic idea is to evolve the contour driven by the

gradient flow which derived from an energy function that represented and solved in a calculus of

variations and partial differential equations (PDEs). A general energy function consists of image

features and a closed contour that separate the image. This variational method finds a solution via

optimization where typically the energy is minimized by deriving its first variation and iteratively

evolving the contour. Such that, when a solution is reached,it will be optimum (maximum or

minimum) that is when the contour evolution stops at the boundary.

This variational technique of active contour schemes yields several beneficial properties.

This optimization problem is easy to understand by simply analysing its mathematical formula-

tion of the energy functional. A variational solution depends on the energy itself where a particular

energy minimization framework will produce a similar final outcome of segmentation which does

not depend on the choice or heuristics related to the numerical implementation of the energy func-

tional. Furthermore, these schemes can segment the object boundaries with sub-pixel accuracy

and a smooth and closed contour as segmentation outcomes which useful for next processing step.

Besides, they can simultaneously achieve image smoothing or non-uniform intensity correction.

In the noisy environment, an enhancement operation may not be necessary for active contour to
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detect the boundaries. Moreover, incorporation of variousprior knowledge such as shape, edge,

and intensity of the image is allowed in these schemes.

1.2 Literature Review

Since the work of Kasset al. [1] in 1988, snakes or active contour models have been used

extensively addressing the problem of image segmentation,one of the important tasks in image

processing and analysis. The contour moves and evolves towards object boundaries under action

of a combination between internal and external forces that formulated in PDEs derived from the

energy functional. While the contour’s internal force regulates its smoothness during contour

evolution, the contour’s external force that generated from image features acts as a gravitational

field to pull the contour toward the boundary of desired object within the image domain. The

image feature may refer to the edge information or regional appearances. Hence, active contour

models can be categorized into edge and region-based ones.

The edge-based external force employs local edge information as a clue to find the bound-

ary. Such edge information derived from image gradient is a response of an edge indicator. So

that the contour evolution will stop when it arrives at the edges. Classical snake (CS), proposed

by Kasset al. [1], represents the contour explicitly in a parametric form and employs gradient

vector of image’s edge map. It is known to be unable to extractboundary concavity and to have

limited capture range. To overcome these problems, recently many edge-based active contours

with various improved external forces [7]-[9] have been proposed. Furthermore, still using image

gradient, Casseleset al. [3] and Maladiet al. [2] independently represent the contour implicitly

via level set function. Geodesic active contour [3] also embeds edge information into the level set

function. It has been shown by Sethian and Osher [2] in 1988 that the level set method is capable

in handling complex topology automatically thus enables the contour to change its topology by

splitting and merging. While the advantage of topological flexibilities is not readily accessible in

the parametric active contours (PAC) [1], [10], these geometric active contours are able to auto-

matically split and merge in a natural way. Nevertheless, they are generally very sensitive to noise

and initial conditions. They often have boundary leakage problems where the object is occluded

or has weak boundaries.

The region-based external force, as opposed to the edge-based ones which consider only a

few pixels in the image gradient as boundary candidates, uses more global information than just

the gradient pixels to drive the contour toward the boundaries. As early as 1989, Mumford and

Shah [13] proposed the piecewise smooth model that providestheoretical framework of image

segmentation that utilizes global regional information. It is later independently implemented with
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the level set method by Tsaiet al. [14] and Vese and Chan [15]. The Mumford-Shah formulation

assumes the regions be smooth and slowly varying; whereas, the Chan-Vese model [17] approxi-

mates the regions by two piecewise constant functions whichare the constants of intensity average

inside and outside evolving contour. Furthermore, Yezziet al. [18] added the regional variances

instead of just the mean statistics. Their energy function is optimized when the means on two sides

the contour are most different. Michailovichet al. [19] utilized the Bhattacharyya difference [20]

to minimize the probability density functions both sides the contour. These region-based models

use global data fitting function.

Instead of using global fitting energy, Liet al. [21] proposed region-scalable fitting (RSF)

energy using local window analyzed by Brox and Cremers [22] as a statistical interpretation of

the piecewise smooth model [13]. Addressing non-uniform intensity problems, the RSF locally

approximates the global image intensities using two scalable intensity fitting functions in either

sides of the contour. The fixed-scale Gaussian kernel insideand outside the contour convolve

each side image regions, thus, allow approximation of intensity averages at a certain regions

scale. The RSF provides choices of the scale from small to large Gaussian sigma, however, it

is predetermined and not changing in contour’s evolution. Hence, we consider this model as a

global region-scalable active contour scheme. Similar schemes [23]-[30] are proposed using local

energy measure of kernels or windows.

Lankton and Tannenbaum [31] proposed localizing region-based active contour (LRAC).

They addressed heterogeneous textures problem by employing regional intensity statistics within

fixed-radius ball masks along the contour and ignoring inhomogeneity that may rise far away.

With a predetermined ball radius, however, it has a poor capture range and problem of reaching

boundary concavity. Daroltiet al. [32] proposed local region descriptors for active contour evo-

lutions called the LRD. Addressing real scene situation where global distributions of foreground

and background overlap, regional information is computed within square windows centered at

active contour. To solve the local minima problem and searchfor the boundary, they added the

balloon force. The additional balloon force, however, limits placement of the initial contour. It ac-

tually can be put anywhere but only inside the object. Moreover, it remains unclear that the LRD

model is capable of tracing any deep concavity and solving the problem of limited capture range.

In contrast to the global region-scalable models where global regional statistics is approached by

the kernel in two sides of the contour as region-scalable fitting functions, we consider these two

models as local region-scalable active contours where region-scalable statistics are controlled by

scale of the local window or ball located at the evolving contour.

Phumeechanyaet al. [33] proposed active contour using local regional information on
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extendable search lines called the LRES. The LRES was inspired by active shape models (ASM)

[34] and active contours without edges [17]. While the ASM uses pre-determined fixed length

search lines that are perpendicular to the contour front to find the strongest edge pixels, the LRES

active contour moves itself using the regional statistics on the search lines that are normal to the

contour front. Moreover, to extend the capture range into any concave object part, the length

of each LRES search line increases until a suspecting boundary is detected. As a result, this

model has various capture ranges on its contour front. It hasbeen shown to perform effectively

in segmenting images with heterogeneous textures [33]. Nonetheless, the LRES algorithm is

quite time consuming. Even though the long thin LRES’s search line is extendable, however, not

scalable to the image area. It does not have any choice to masksignificantly larger area. Hence,

we consider it as a local region-based active contour scheme. Similar schemes proposed [35]-[38].

In summary, the choice of RSF’s Gaussian kernel and LRAC’s ball mask is preferable

to maintain scalability than the LRES’s search line. In contrast to the RSF where the region-

scalable intensity fittings of the kernel are convolved to all around the image, the LRAC and LRES

localize the regional statistics in its ball mask and searchline that evenly centered and distributed

at the contour, thus, ignore any intensity information outside the masking area. Furthermore,

the scalability of the RSF’s Gaussian kernel and LRAC’s ballmask is controlled priori by a pre-

determined sigma and radius from small to large choice of thescale. Their scales, however, do not

change throughput the evolution process. In essence, the scalability is manually fixed by a user.

Although the RSF uses Gaussian kernel we could not find the role of Gaussian function in the

segmented images. In addition, using a fixed-area LRAC’s ball, the model has poor convergence

into concave boundary and poor capture range.

Nevertheless, particular images may have a complex appearance where exists several ob-

jects of interest with various edge’s type. This makes the objects difficult to be distinguished since

they may overlap each other or lie on a complex background. The previous methods, however,

may attract the contour regardless any particular edge’s type, thus, lead into wrong edges that may

have different direction with respect to the desired boundary. Additional directional information

is proposed to pull the contour into the intended edges only.

For instance, Parket al. [40] proposed directional snake (DS) by adding gradient direc-

tional information into the CS which originally considers only magnitudes of image gradient. By

choosing directional parameter either+1 or −1, the DS provides inward or outward gradient di-

rection. Angle between gradient and contour’s perpendicular direction is to tell which direction

to move. The DS moves only toward edges where the angle is smaller thanπ/2. On the other

hand, when the contour’s normal direction is opposite to thegradient direction, corresponding



5

force is set to zero. In this manner, the DS does not get attracted to the edges that has opposite

direction. Thus, only edges with correct gradient direction participate in the deformation. The

DS uses TS’s force field which is very sensitive to initialization, has limited capture ranges, and

boundary concavity problems. Tanget al. [41] added directional information into the gradient

vector field (GVF) active contour [7] where its vector field isextended by spatially diffused the

image gradient. Directional GVF (DGVF) provides two types of edge map function: positive

and negative edge map. Positive edge defines an edge transition from a dark into a bright while

negative edge is its opposite. The DGVF’s external force is similar to the GVF’s excepts com-

puted from chosen directional edge map. The contour shall attract edges from the selected edge

map function only. Furthermore, Cheng and Foo [42] modified the GVF into dynamic directional

GVF (DDGVF). Unlike the TS, GVF, DS, and DGVF where they utilize a static external force,

the DDGVF’s force field dynamically changes in the deformation process. The DDGVF’s vector

field has four components of both positive and negative edge in horizontal and vertical direction.

During the deformation, each component is automatically switched driving the contour.

As external force of these directional edge-based approaches is in a form of gradient vector

field that derived from the image gradient, although they mayguide the contour into the intended

object’s edges, they basically have several drawbacks associated with their external forces. They

are considered to have poor convergence into concave parts,limited capture ranges, boundary

leakage problems in weak edges, and also to be very sensitiveto noises and initial conditions.

No longer using gradient information, Phumeechanyaet al. [43] proposed edge’s type

selectable active contour using local regional information on extendable search line. Formulated

in parametric curve, the model uses intensity value along a set of search lines. Each search

line is designed to be of adaptive length so that it can navigate the contour front toward the

boundary. The difference of means intensity on the search line is employed as an information to

automatically select the edge’s type during the deformation. Balloon force is to drive the contour

away from unintended object. However, it limits initialization to be placed inside or outside object

of interest only. Although the search line is extendable, its area does not change much to measure

significantly smaller or larger pixel area. It is not scalable to image area thus time consuming.

Lack of information caused by inappropriate scale results in there is no force to pull the contour

towards the boundary.

Nevertheless, those above methods with additional directional information are formulated

in the parametric form where such topological change is not readily accessible. Furthermore,

making the PAC robust to noise and initialization, Zimmer and Olivo-Marin [10] use parametric

contour and replace the gradient information with the Chan-Vese energy [17]. In the presence
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of noises, this model does not require to smooth the image which will smooth the edges too.

However, they notice a slight misplacement of the boundary caused by noises. This global region-

based PAC does not guarantee detecting the boundary accurately.

1.3 Objective

In this thesis, we propose a novel active contour model usingscalable local regional infor-

mation on expandable kernel for image segmentation. The regional information are localized in

kernels by masking them only centered at the contour. In order to maintain the scalability and to

search for suspecting boundary, we use magnitude of intensity difference within the kernel to let

the scale of these kernels vary itself in the level set evolution. Due to various scale of the kernels

that adaptively changes in the evolution process, our LREK may converge to the boundary quickly.

Meanwhile, preserving the benefits of local region descriptor, scalable local regional information

gives the advantages of an ability to segment desired objectwith noise, intensity inhomogeneity,

and heterogeneous textures with fast convergence. Adaptive local statistics of expandable kernel

allows our model tracing boundary concavity with a large capture range. By using Gaussian ker-

nel, our model can trace the smooth or blur boundary, hence, show the effect of Gaussian function

in the segmented images. Level set formulation of our model makes our active contour topologi-

cally flexible. In addition, to inform particular edge’s type objects to attract, directional property

of our model is extracted from sign of the means intensity difference. Hence, our active contour

is able to choose desirable edge’s type objects with the sameinitialization.

1.4 Scope of the Thesis

1. Study characteristics and performances of existing active contour models available in the

literature.

2. Propose an active contour using scalable local regional information on expandable kernel

for image segmentation.

3. Extract another benefit of scalable local regional information to select desired edge’s type

object.

4. Apply these proposed schemes to various real scene and medical images.

5. Study characteristics and performance of the proposed method and provide a comparison

with existing active contour models.
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1.5 Research Procedures

1. Study relevant literatures.

2. Study characteristics and performances of existing active contour models.

3. Classify existing region descriptors of active contour models based on data fitting terms.

4. Develop a novel active contour model that using local region descriptor.

5. Study characteristics and performance of the proposed method and compare it with existing

active contour models.

6. Extract another benefit of our model to select desirable edge’s type objects.

7. Apply the proposed schemes to various real scene and medical image.

8. Publish in the international conferences.

9. Write the thesis.



CHAPTER II

THEORY

In snakes or active contour models, segmentation process isstarted by evolving an initial

contour, placed around the object, subject to constraints from an image detecting the boundaries.

2.1 The Edge-Based Active Contour Models

2.1.1 Geodesic Active Contour (GAC)

It has been shown by Caselleset al. [3] that geodesic active contour (GAC) is derived from

a particular class of classical snakes (CS) [1]. To show its relation, we briefly discuss the CS here.

Let I : Ω̄ → R be a given image,∂Ω its boundary, andC(s) : [0, 1] → R
2 be a parametric curve.

ECS(C(s)) =

∫ 1

0
[Einternal(C(s)) + Eexternal(C(s))] ds

=
1

2

∫ 1

0

[

α|C ′(s)|2 + β|C ′′(s)|2 − λ |∇I(C(s))|2
]

ds (2.1)

The first two terms are the internal energy that regulate smoothness of the contour whereα andβ

are positive parameters to weigh the contour’s tension and rigidity, respectively. Practically,β is

usually zero in order to be second-order discontinuous and contain corners. The third term is the

external energy which attracts the contour towards image edges. By minimizing this energy, the

evolving contour will stop at the points maxima|∇I|, supposedly the true boundary, while keep

the smoothness of the contour at the boundary.

The GAC considers the rigidity coefficient to be zero (β = 0) and generalizes the edge in-

dicator part by replacing−|∇I|2 with g(|∇I|)2. Hence, from the CS’s energy function in the 2.1,

energy components in the GAC are reduced into two parts,1
2

∫ 1
0

[

α|C ′(s)|2 + λg(|∇I(C(s))|)2
]

ds.

A general edge indicator (2.2) is defined by a positive and decreasing function such that

Figure 2.1: The edge-based active contour models.
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limz→∞ g(z) = 0. So that, the image would be homogeneous and positive exceptat the edges

which would be zero as illustrated in Figure 2.1. Hence, magnitude of motion forces,g(|∇I|),

takes smallest values when the evolving contour arrives at the strong edges that exist within the

image. In other words, it has an effect to slow down the shrinking or expanding speed once the

contour arrives at the edges.

g(|∇I|) =
1

1 + |∇Gσ ∗ I|p
, p = 1 or 2, (2.2)

where∇ is gradient operator andGσ∗I is the convolution of the imageI with Gaussian smoothing

functionGσ .

The GAC represents regularization term of the arclength of the contour as line integral,

LC =
∮

|C ′(s)| ds =
∮

dr. A GAC’s energy function is obtained by weighting the lengthelement

dr with g(|∇I(C(s))|), which includes information of object boundaries.

EGAC(C(s)) =

∫ 1

0
g(∇I(C(s)))dr =

∫ 1

0
g(∇I(C(s)))

∣

∣C ′(s)
∣

∣ ds (2.3)

This is a computational problem of geodesic or shortest pathin a Riemannian space regarding a

metric on image edges. By minimizing (2.3), this model not only searches for the path of new

shortest length
∮

dr but also considers the image features. Thus, GAC evolution equation becomes

∂C

∂t
= g(|∇I|)κ ~N − (∇g(|∇I|) · ~N ) ~N (2.4)

κ = div

(

∇φ

|∇φ|

)

(2.5)

whereκ is the curvature of the contour which has smoothing effect onthe contour and~N = −∇φ

is the inward normal vector.

The GAC also represents the contour implicitly by embeddingthe contour as the zero level

of the level set function where the level set formulation of the GAC is given by

∂φ

∂t
= |∇φ| div

(

g(|∇I|)
∇φ

|∇φ|

)

= g(|∇I|)|∇φ|div

(

∇φ

|∇φ|

)

+∇g(|∇I|) · ∇φ (2.6)

We see that a gradient term∇g · ∇φ is naturally incorporated on geodesic framework, however,

missing in the CS (2.1) and geometric active contours (2.7).The geometric model that indepen-
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dently proposed by Caselleset al. [4] and Malladiet al. [5] is given by

∂φ

∂t
= g(|∇I|)|∇φ|div

(

∇φ

|∇φ|

)

+ ωg(|∇I|)|∇φ|

= g(|∇I|)|∇φ|(κ + ω) (2.7)

whereg(|∇I|) with p = 1 for [5] and p = 2 for [4].

The term∇g ·∇φ in (2.7) drives the contour to object boundaries where∇g points it exactly

into the middle of the boundaries. Because in practiceg is never be zero on the edges thus the

contour may not stop at the intended boundary. This term is a special help when the boundary has

a large variation on its gradient values and it has stronger attraction to locate the contour towards

real boundary.

(a) (b) (c) (d)

Figure 2.2: Various initial contour placement; (a) outsidethe object, (b) inside the object, (c) inside and
outside the object, and (d) final contour on the object’s boundary.

∂φ

∂t
= g(|∇I|)|∇φ|div

(

∇φ

|∇φ|

)

+∇g(|∇I|) · ∇φ+ ωg(|∇I|)|∇φ|

= g(|∇I|)|∇φ|(κ + ω) +∇g(|∇I|) · ∇φ. (2.8)

The GAC also adds the balloon force or constant motion termω similar to the one in the geomet-

rics models in 2.7. It may help to avoid a certain local minimaand to increase the convergence

speed. On the other hand, removing this term will result in a slower convergence. The term

ωg(|∇I|)|∇φ| is also considered as a weighted area constraint where its role is to expand or

shrink the contour at a constant speed. Magnitude of this constant velocity determines how fast

the contour moves while its sign determines an inward or outward direction it should evolve. This

constant which allows to trace concave boundary with a largecapture range, on the other hand,

introduces an undesired property, i.e., sensitivity to initialization. If the initial contour is entirely

outside the object as in Figure 2.2(a), the coefficientω is to be positive so that the contour moves

inward tracing the object. Conversely, if the coefficientω is set to be negative then the initial
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contour need to be put entirely inside the object as in Figure2.2(b) so that the contour moves

outward. If the initial contour is placed both inside and outside the object as in Figure 2.2(c), then

the constantω should be removed so that it can move inward and outward simultaneously, how-

ever, with a slower convergence. All these conditions make this model sensitive to initial contour

placement.

(a) (b) (c)

Figure 2.3: Performance of the GAC on various spatial intensity variation

All of these methods rely on the edge indicator depending on the image gradient|∇I|.

Consequently, they can detect only object boundaries defined by the gradient where the edge is

assumed located at rapid intensity changes area. In fact, itmay not only represent the boundaries

but also the noises where the gradient operator may also produce edges of noisy pixels. As a

result, the contour may be attracted to wrong edges thus doesnot arrive at the actual boundary.

The first row of Figure 2.3(b) and (c) show the performance of the GAC in the homogeneous

intensity image with Gaussian and salt and pepper noise added. To remove the noises, the strength

of Gaussian smoothing function need to be high which howeverwould blur the edges as well, or

alternatively an enhancement operation need to be performed. These models has been known very

sensitive to the noises and initial contour placement. Moreover, in case the object is occluded or

has weak boundary, where the edges are not defined well, the contour may pass through the

boundary. Nonetheless, an advantage of this model is that there is no consideration of global

constraint on the image region inside or outside the contour. So that, even though the object

and background are of non-uniform or heterogeneous textures, a correct segmentation may be

achieved when strong edge pixels are available. This advantage of the GAC is showed in the

second row of Figure 2.3(b) and (c) in handling non-uniform and heterogeneous textures, however,

it passes over the actual boundaries in the weak edge.
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2.2 Region-Based Active Contour Models

In the literature, there have been several region descriptors of active contour models. We

categorize them into four main methods based on their data fitting terms or energy measures. They

can be differentiated into global, region-scalable, and local data fitting functions. Based on these

criterion, the region-based models are classified into global region-based, global region-scalable,

local region-scalable, and local region-based active contours as illustrated in Figure 2.4.

These two global fitting models approximate global image intensity which are interior and

exterior regions of the contour. While the global region-based models only allow intensity ap-

proximation of entire image domain and do not have choice to approximate a smaller region

scale. The global region-scalable models provide choices of the scale from local neighbourhood

to the full domain to measure the intensity averages at a certain scale. By sliding the fixed-area

kernel into image area both sides of the contour, this scalable regional energy measure fits global

image intensity.

While the local region-based models are not provided by any scale choice to measure any

smaller or larger intensity region, and thus only able to approximate local intensity regions. In

the local region-scalable models, its local energy measurehas flexibility to approximate intensity

average in small or large scale of the kernel that spread on the contour pixels. These two regions

of the kernel inside and outside the contour are formed by splitting the kernel with the contour

line as two local energy measures to compute samples within interior and exterior region.

In the global region-scalable models, no matter how small orlarge scale of the kernel is

used, they calculate and include all image intensities by convolving the kernel to inner and outer

regions of the contour. Hence, the role of kernel scale is to control degree of intensity details to

preserve as the segmentation outcome. Small scale would preserve more intensity details while

large scale would ignore some intensity details. On the other hand, the local region-scalable

models with small scale kernel will only calculate and include local intensities within the kernel

while ignoring intensities outside the kernel. With extremely large scale, it would include all

image intensities. In these models, hence, the degree of localness or globalness is controlled by

the scale of the kernel.

2.2.1 Global Region-Based Models

The global region-based models use more global constraint than just the gradient pixels.

The active contour is to segment the image into two regions: the region inside the contour is to

be the object and the one outside the contour is to be the background. The piecewise smooth of
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(a) Global region-based models (b) Global region-scalable models

(c) Local region-scalable models (d) Local region-region models

Figure 2.4: Various region descriptor of active contour models.

Mumford-Shah model [13] assumes the two regions be smooth and slowly varying; whereas, the

piecewise constant of Chan-Vese model [17] approximates the regions by two constants of inten-

sity averages on two sides of the contour. This energy is minimized when the means optimally

approximate the regions. Furthermore, Yezziet al. [13] assume that object and background max-

imally separate the intensity averages. Their energy is optimized so that the averages inside and

outside the contour are most different. Michailovichet al. [19] minimize intensity histograms of

the interior and exterior regions of the contour.

2.2.1.1 Active Contour Without Edge (ACWE)

Active contour without edge proposed by Chan and Vese [17] isbased on simplification

of the piecewise smooth of the Mumford-Shah functional. Here are a brief description of the PS

model where its energy function is given by

EPS(f,C) =

∫

Ω
(f(x)− I(x))2dx+ ρ

∫

Ω C

∇f(x)|2dx+ ν|C| (2.9)

where|C| is the length of the contourC, ρ, andν regulate smoothness contributions of the ap-

proximating function and of the contourC.

The minimization of the Mumford-Shah functional [13] is obtained with a piecewise

smooth functionf(x) that approximates the original imageI(x) with smooth regions within each

connected components in the image domainΩ and discontinuous at the boundaries separated by
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an optimal contourC. In practice, however, the PS model involves expensive computation which

limits its applications [21].

ECV(µ1, µ2, C) =

2
∑

i=1

λi

∫

Ω
|I(x)− µi(x)|

2dx+ ν|C| (2.10)

A special case of the piecewise smooth (PS) of the Mumford-Shah problem is where the

imagef(x) in the (2.10) is a piecewise constant function of means intensity µi(x). This model

assumes the image intensities be statistically homogeneous and separates the image into disjoint

regions of object and background with approximately piecewise-constant intensities of distinct

statisticsµ1 andµ2, instead of formed by smooth regions. The level set formulation of Chan-Vese

energy is given as follows

ECV(µ1, µ2, φ) =

2
∑

i=1

λi

∫

Ω
|I(x)− µi(x)|

2Hǫ
i (φ(x))dx

+ ν

∫

Ω
δǫ(φ(x))|∇φ(x)|dx (2.11)

whereHǫ
1(φ(x)) = Hǫ(φ(x)) andHǫ

2(φ(x)) = 1−Hǫ(φ(x)). Hǫ(φ(x)) andδǫ(φ(x)) [17],[16]

are given by

Hǫ(φ(x)) =
1

2

[

1 +
2

π
arctan

(

φ(x)

ǫ

)]

(2.12)

δǫ(φ(x)) = H ′

ǫ(φ(x)) =
1

π

ǫ

ǫ2 + φ2(x)
(2.13)

With the smooth Heaviside function (2.12) and its derivative, a smooth Dirac delta function (2.13),

the algorithm computes a global minimizer while (3.2) and (3.3) that also used by the LRAC, the

algorithm tends to compute a local minimizer [16]-[17].

From (2.11), we see that the difference between intensity values of a given imageI and

means intensity each side image regionµ1 andµ2 act as a gravitational force to evolve the contour.

If the contour is outside the object as shown in Figure 2.2(a), the intensity value inside the contour

will be different fromµ1 and outside the contour be close toµ2, the contour will shrink capturing

the object. If the contour is inside the object as in 2.2(b), the intensity values inside the contour

will be close toµ1 while outside the contour will be different fromµ2. Consequently, the contour

will expand capturing the object. If the contour is both inside and outside the object as illustrated

in Figure 2.2(c), the intensity value inside and outside contour are respectively far different from

µ1 andµ2, and thus the contour will shrink and expand simultaneously. The fitting term will be
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minimized when the intensity value inside and outside the contour are close toµ1 andµ2 and

magnitude of the force is zero which is when the contour is placed on the object as in Figure

2.2(d).

(a) (b) (c)

Figure 2.5: Performance of the ACWE on various spatial intensity variation.

By keepingµ1 andµ2 fixed and taking the first variation ofECV with respect toφ, we obtain

the associated Euler-Lagrange equation forφ. The energy function is minimized by solving the

following gradient flow equation:

∂φ

∂t
= −

(

λ1δǫ(φ)|I − µ1|
2 − λ2δǫ(φ)|I − µ2|

2
)

+ νδǫ(φ)div

(

∇φ

|∇φ|

)

= δǫ(φ)
[

−λ1|I − µ1|
2 + λ2|I − µ2|

2 + νκ
]

(2.14)

µi(x) =

∫

ΩH
ǫ
i (φ(x))I(x)dx

∫

ΩH
ǫ
i (φ(x))dx

, i = 1, 2 (2.15)

whereκ is given in (2.5).µ1 andµ2 that are given in (2.15) are two constants of means intensity

that characterize the intensity of image region inside and outside the contour. Such constants

will estimate all samples from two regions either sides of the contour and minimize the global

fitting energy. This model is less sensitive to noise as illustrated in the first row of Figure 2.5(b)

but such global region descriptor tends to capture not only the object but also white and black

pixels of salt and pepper noise in the second row of Figure 2.5(c). Nevertheless, by choosing

large value ofν, this model can ignore such small noisy pixels as shown in Figure 2.6 where the

first row shows the image corrupted by Gaussian noise while the second row shows the image

corrupted by salt and pepper noise. The constants, in fact, can be far away from original image
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data if the intensity within inner and outer regions are non-uniform or heterogeneous. This model

is applicable to tackle homogeneous intensity images therefore fails to segment particular images

with non-uniform and heterogeneous textures which illustrated in the second row of Figure 2.5(b)

and (c), respectively.

(a) (b)

Figure 2.6: Performance of the ACWE with (a) small and (b) bigvalue ofν on noisy images.

2.2.2 Global Region-Scalable Models

Those region-based models actually use global intensity fitting function. In particular im-

ages with non-uniform or heterogeneous textures, such global region-based models, however,

may not perform efficiently. In cases where the object cannotbe distinguished in terms of global

statistics, the global region-scalable active contours are capable in dealing intensity inhomogene-

ity problems. Usage of the kernel, however, leads to drawback of local energy measure. Small

scale gives local intensity approximation but results in there is no evolution when it lies entirely on

a homogeneous area where local statistics on both side of thecontour are the same. By choosing

a larger scale, it leads to global intensity approximation and just gives results similar to the global

intensity fitting energy. Solving the problem, Piovano and Papadopoulo [24] find optimal scale

by comparing the energy measures with a constant threshold.Adaptive local statistics allows the

kernel neighbourhood to slowly increase from the minimum scale to the maximum until it crosses

the boundary and gives direction where it is supposed to move.
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2.2.2.1 Region-Scalable Fitting (RSF) Model

Region-scalable fitting energy proposed by Liet al. uses intensity information in local

regions with controllable scale which given by

ERSF(µ
K
1 , µ

K
2 , φ) =

∫

Ω

∫

Ω

2
∑

i=1

λiKσ(x− y)|I(x) − µi(y)|
2Hǫ

i (φ(x))dxdy

+ ν

∫

Ω
δǫ(φ(y))|∇φ(y)|dy (2.16)

where the kernel functionKσ(x− y) = 1
2π

n

2 σn

exp
(

d2

2σ2

)

centered at the pointx with a distance

d to pointy, the Heaviside and Dirac delta function are respectively given in (2.12) and (2.13),

similar to the ACWE, and theµK1 andµK2 are given in (2.17).

µKi (x) =
Kσ ∗ [H

ǫ
i (φ(x))I(x)]

Kσ ∗ [Hǫ
i (φ(x))]

, i = 1, 2 (2.17)

The values ofµK1 andµK2 that minimizesERSF are weighted means intensity in a neighbor-

hood ofx. They are respectively determined by convolution ofKσ(d) to inner image region

Hǫ(φ(x))I(x) divided by convolution ofKσ(d) to inner areaHǫ(φ(x)) and convolution of

Kσ(d) to outer image region(1−Hǫ(φ(x)))I(x) divided by convolution ofKσ(d) to outer area

1 −Hǫ(φ(x)). As a matter of facts, this global region-scalable models can be considered as the

global region-based models forσ → ∞.

lim
σ→∞

µKi (x) =

∫

Hǫ
i (φ(x))I(x)dx
∫

Hǫ
i (φ(x))dx

, i = 1, 2 (2.18)

In the data fitting term (2.16), each integral is a weighted average square distance from the fitting

valuesµK1 (x) andµK2 (x) to all image regions either side the contour, with the kernelKσ(d)

as the weight. By convolving the kernel inside and outside the contour, the weighted means

characterize the image intensities in an area centered at the pointx whose scale can be controlled

by theσ parameter. The data fitting term is region-scalable in a sense that the kernel with a

small σ concerns the intensities within a small neighborhood whilea largeσ exploits a large

region of image intensities. With an extremely largeσ this model is similar to the global region-

based models. This condition is confirmed whenσ = ∞, (2.18) is similar to (2.15) which leads

to similarity of this model to the global region-based models behaviours. Hence, the regional

scalability allows the choice of the kernel scale to includedifferent scales of intensity information.

They can be in a region of any size thus are not restricted onlyto a small or large region.

By taking the derivative ofERSF with respect toφ and keepingµK1 andµK2 fixed, the
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following gradient flow equation is achieved.

∂φ

∂t
= −

(

λ1

∫

Ω
δǫ(φ(x))Kσ |I − µK1 |2dx− λ2

∫

Ω
δǫ(φ(x))Kσ |I − µK2 |2dx

)

+ νδǫ(φ(y))κ

=

∫

Ω
δǫ(φ(x))

(

−λ1Kσ|I − µK1 |2 + λ2Kσ|I − µK2 |2
)

dx+ νδǫ(φ(y))κ (2.19)

whereκ is as in (2.5).

(a) (b) (c)

Figure 2.7: Performance of the RSF on various spatial intensity variation.

The values ofµK1 (x) andµK2 (x) are determined by all image intensitiesI(x) in a region

centered atx. For a small displacement∆x from a pointx to an adjacent pointx′ = x+∆x, most

of the pixels in the region centered atx
′ is still on the region centered atx. Hence,µK1 (x′) and

µK2 (x′) are respectively close toµK1 (x) andµK2 (x) due to overlap between neighborhood ofx and

x
′. Convolution of a region aroundx to the inner and outer image regions of the contour implies

the smoothness property. This property therefore overcomes the problem of overlap intensity

distribution of the non-uniform or heterogeneous texturesas illustrated in the second row of Figure

2.7(b) and (c). Meanwhile, the first row of Figure 2.7(b) and (c) depicts its global computation

where it not only captures the object but also the noisy environment. Nonetheless, the noise can

be ignored by settingν parameter to be large as in Figure 2.8.

2.2.3 Local Region-Scalable Models

The LRAC’s superiority of localizing regional informationto global region one is an ability

to handle heterogeneous texture problems. In order to pull the contour towards the boundary, the

LRAC masks the intensity statistics within a set of balls with a pre-determined radius along the
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(a) (b)

Figure 2.8: Performance of the RSF with (a) small and (b) big value ofν on noisy images.

contour. With a fixed ball radius, the LRAC is unable to trace parts with deep concavity and

has poor capture range. Moreover, the user needs to set the radius of the balls priori and wisely,

depending on the distance between the position of the initial contour and the location of the object

within the image. If the initial contour is placed too far from the boundary and the ball radius is

too small, the contour may not reach the boundary or into any concave shapes. In other words,

this method may have a diminished capture range. On the otherhand, if the radius is set too

large, it tends to ignore local intensity details and acts just like the global region-based method.

It is difficult to set an appropriate radius, especially whenthere are objects with various concave

shapes. In Figure 2.9, this condition is illustrated with200× 200 pixels size by varying radius of

the ball to 10, 20, 30, 40, and 50 pixels and fixing the iteration numbers to 300. Furthermore, the

LRD suffers similar problem when the contour lies in a homogeneous region. The local energy

measure on both sides of a contour tends to be equal making themotion force approximately

zero. Being unable to use information from image parts outside the windows, the contour stuck

in a local minimum. An appropriate size of predetermined LRD’s windows needs to be chosen

wisely. While small windows do not include enough samples toreliably compute statistic forces,

large windows are associated with large uncertainty about real boundary positioning. As long as

the window size contains enough information from each region and once the boundary is found,

the result is influenced minimally and generally accurate. To solve the local minima problem and

find the boundary, they added the balloon force to drive the contour to grow when the means and

variances of either sides the contour in each window are minimally different. When the contour

reaches the boundary, the local regions are different enough for the contour to stop. The additional

balloon force, however, limits initial contour placement that it can be put anywhere but only inside
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the object of interest. Moreover, it is not clear that the LRDmodel is capable of tracing any deep

concavity and solving the problem of limited capture range.

(a) (b) (c)

Figure 2.9: Performance of the LRAC with various radius on various grayscale intensity image.

2.2.3.1 Localizing Region-Based Active Contour (LRAC)

Object and background with non-uniform and heterogeneous textures may be correctly

segmented with less global information similar to those in the edge-based models. global re-

gion descriptors approximate entire image regions howeverit may not applicable to image with

overlapping intensities in non-uniform and heterogeneoustextures. When probability densities of

image intensities strongly overlap between foreground andbackground, such piecewise constant

function of global region-based models may produce poor segmentation result. To decrease over-

lapped intensity distribution, the following energy function is re-formulated to sample intensity

within regions only around the contour. So, the regions are described only locally to minimize the

overlapped intensity. The energy functional proposed by Lankton and Tanenbaum are given by:

ELRAC(φ) =

∫

Ω
δǫ(φ(y))

2
∑

i=1

∫

Ω
|I(x)− µBi (x)|

2B(x,y) ·Hǫ
i (φ(x))dxdy

+ ν

∫

Ω
δǫ(φ(y))|∇φ(y)|dy (2.20)

The derivation of the LRAC’s energy in (2.20) is computed by replacingE(φ) with E(φ + ξψ)

whereψ represents a small perturbation normal toφ weighted by a small numberξ. Thus, the

derivative ofE(φ+ ξψ) is taken with respect toφ. The LRAC’s gradient flow equation becomes

∂φ

∂t
= δǫ(φ(y))

(
∫

Ω
δǫ(φ)B(x,y)|I − µB1 |

2dx−

∫

Ω
δǫ(φ)B(x,y)|I − µB2 |

2dx

)

+ νδǫ(φ(y))κ
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= δǫ(φ(y))

[
∫

Ω
δǫ(φ)B(x,y)

(

|I − µB1 |
2 − |I − µB2 |

2
)

dx+ νκ

]

(2.21)

B(x,y) =







1, ||x− y|| < r

0, otherwise
(2.22)

whereB(x,y) is the ball mask centered on the contour,κ is defined in (2.5), the Heaviside and

Dirac delta function are given in (3.2) and (3.3), andµL1 andµL2 are given as following

µBi (x) =
B(x,y) ·Hǫ

i (φ(x)) · I(x)

B(x,y) ·Hǫ
i (φ(x))

, i = 1, 2 (2.23)

We can see that behaviour of local and global constraint can be controlled by the radius of the

ball. If the ball radius is set to be very small, therefore theLRAC energy function is to be an edge

indicator where the pixels within the ball are as small as thewidth of the edge derived from image

gradient. On the other hand, by tuning the radius to be large,the ball will involves the whole

image information where the regional statistics are exploited by all pixels in the image.

(a) (b) (c)

Figure 2.10: Performance of the LRAC on various spatial intensity variation.

Table 2.1 contains computational time required for different size of ball radius of LRAC

for image in first row of Figure 2.10(a) which illustrates that the convergence speed is a response

of radius size. The smallest radius consumes more and more time to converge and eventually may

arrive at a local minimum. Based on less information, the contour makes decision and evolves

with a slower convergence. With the largest radius, too global energy measure will make the

contour converges quickly however may ignore some intensity details of the object. This shows

the trade off between speed of convergence and local radius size. In addition too small or big
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Table 2.1: Computational cost of the homogeneous circle image.

Radius
(pixels)

Computational Time

Iterations Time (s)

10 810 144.3441

15 310 62.8119

20 155 32.2441

25 95 19.5210

30 75 16.8365

35 70 17.3614

40 70 18.1929

45 70 18.5836

50 70 19.0964

radius may lead to an incorrect segmentation. Nonetheless,it seems the appropriate size of the

ball will optimize betweem the number of iterations and timerequired for convergence. We see

from the Table 2.1 when the radius is getting larger the less time required. After it has reached

an optimal radius the number of iterations cannot be reducedany longer while the computational

time increases.

2.2.4 Local Region-Based Models

The local region-based method has been shown to effectivelysegment images with hetero-

geneous textures (see second line of Figure 2.11(b) and (c)). Also, the first row of Figure 2.10(b)

and (c) depicts its robustness to Gaussian and salt and pepper noise. Nevertheless, the LRES

forces are determined from a set of long thin search lines where its area is very small compared

to the image domain. Therefore, it produces a relatively lowforce even though it is extendable

and spreads on the contour. As a result, the LRES algorithm isquite time consuming where

this is confirmed with the Table 2.1 where the smaller area will consume more computational

time. Moreover, its inappropriate scale may lack of information to consider, thus, not produce any

contour evolution which illustrated in second line of Figure 2.11(b) and (c). Unlike the scalable

RSF’s Gaussian kernel and LRAC’s ball mask, the long thin LRES’s search line is not scalable to

the image area, thus, does not have any choice to mask significantly larger area even though it is

extendable. Using parametric curve, Karaolaniet al. [35] proposed active contours using finite

elements to control local scale. The external force is localregional intensity at fix priori sampled

elements along the contour. This local region-based force thus pulls the contour into the bound-

ary. Segmentation accuracy then highly depends on number ofthe elements. While the LRES

has slightly similar idea with this model in embedding localelements in the contour, the authors

[36]-[38] embed local energy measure on neighbourhood along both sides of the contour. Ronfard

[36] employs intensity of local regions only around the neighbourhood of both sides the contour.
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This model, however, requires initial contour placement not too far from the boundary than the

neighbourhood width. Dealing with non-uniform image background, J. Mille [37] proposed a nar-

rowband region-based active contour. He calculates two constants of intensity variances within

inner and outer narrow region along the contour with fixed thickness. Consequently, it may not

have enough capture range and cannot escape a local minima when the energy measure on both

regions has similar statistics. Li and Yezzi [38] proposed dual-front active contours. To generate

a narrow active region, morphological dilation and erosionare used to extend the contour inside

and outside. Although this model is flexible in initializations, suitable width of the active region

needs to be priori chosen carefully. Small size leads to local minima problem while large size

makes it act with global constraint.

2.2.4.1 Active Contour Using Local Regional Information on Extendable Search Line

(LRES)

The LRES active contour uses intensity profiles of the pixelsalong a set of search lines that

are normal to the contour front. These search lines are to inform the contour front which direction

to move in order to find object’s boundary. The LRES is motivated by ASM the work of Cootes

et al where their approach searches for strength edge pixelsalong a set of predetermined fixed

length lines perpendicular to the contour front. Each of these lines guides the contour point to

move to a new location where maxiumum gradient magnitude is located. As a result, this model

may have a limited capture range due to fixed length of lines that priori set by a user. Hence,

the initial contour must be placed no further far from the object boundary than the length of each

search line. Otherwise, the contour front may not move because the lines is too short to find any

boundary candidate. In other words, the ASM has limited capture due to fixed length of the lines.

To increase the capture range, length of the LRES search lines increases gradually according to

the obtained local information within the search lines until a boundary of the object is found. In

addition, instead of finding the edge pixel, the LRES uses intensity profile within the search line

as criterion to find the boundary.

ELRES(φ) = λ

∫

Ω
δǫ(φ(y))

2
∑

i=1

∫

Ω
|I(x)− µLi (y)|

2L(x,y) ·Hǫ
i (φ(x))dxdy

+ ν

∫

Ω
δǫ(φ(y))|∇φ(y)|dy (2.24)

The total LRES’s energy functional in (2.24) consists of thesmoothing term and regional

information that is embedded in each search lineL(x,y). The intensity profile along the search

line is divided into two regions, one inside the contour and the other outside.µL1 andµL2 are the
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(a) (b) (c)

Figure 2.11: Performance of the LRES on various spatial intensity variation.

average statistics calculated from pixel intensity valueswithin the search line that are respectively

inside and outside the contour. The search line is spread evenly on the contour according to the

number of pixels on the contour. Each search line is gradually extended according to image’s

local information which informs the contour front which direction to move. The moving direction

is determined from the data fitting calculated from the difference between local image intensityI

within the search line and respectivelyµL1 andµL2 . This energy function will guide the contour

front either inward or outward direction. If the intensity value within the search line inside the

contour is about the same asµL1 and far different from the search line outside the contour, the

positive sign of the force will move the contour front inward. On the other hand, if the intensity

value outside the contour is closer toµL2 than inside the contour toµL1 , negative sign of the force

will drive the contour front in the outward direction.

By replacingφ with φ + ξψ, the derivation of the LRES’s energy in (2.20) is taken. Thus,

E(φ + ξψ) is derived with respect toφ whereψ is a small perturbation normal toφ weighted by

a small numberξ. The LRES’s evolution equation is written by

∂φ

∂t
= δǫ(φ(y))

(
∫

Ω
δǫ(φ)L(x,y)|I − µL1 |

2dx−

∫

Ω
δǫ(φ)L(x,y)|I − µL2 |

2

)

dx+ νδǫ(φ(y))κ

= δǫ(φ(y))

[
∫

Ω
δǫ(φ)L(x,y)

(

|I − µL1 |
2 − |I − µL2 |

2dx
)

+ νκ

]

(2.25)

L(x,y) =







1, (x,y) is on the search line

0, otherwise
(2.26)
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whereL(x,y) is the search line spread on the contour as in,κ is defined in (2.5), the Heaviside

and Dirac delta function are respectively given in (3.2) and(3.3), andµL1 andµL2 are given as

following

µi(x) =
L(x,y) ·Hǫ

i (φ(x)) · I(x)

L(x,y) ·Hǫ
i (φ(x))

, i = 1, 2 (2.27)



CHAPTER III

PROPOSED METHODS

3.1 Local Region-Scalable Active Contour Using Expandable Kernel (LREK)

In this chapter, we describe our novel active contour model using scalable local regional in-

formation within a set of kernels with various scale. To navigate the contour within image domain

towards the boundary, our active contour comprises kernelswith various scales. These kernels,

centered at the contour front, spread evenly along the contour where its subset are shown in Figure

3.1. The support of each kernel is adaptive throughout the evolution process. The adaptation pro-

cess of the kernel scale is influenced by image’s local information. In other words, each kernel is

to be gradually expanded until there is enough information to inform which direction the contour

should locally evolve. In this manner, an object located anywhere within the image can be cap-

tured, which is opposed to the fixed-area ball mask that produces no evolution when the ball does

not cross any object boundary. The expandable kernels allowthe contour front to move into any

deep concave parts of the object with a large capture range. Meanwhile, scalable local regional

information of the kernel enables in segmenting image that has non-uniform and heterogeneous

textures with fast convergence.

3.1.1 Scalable Local Regional (SLR) Force

(a) (b)

Figure 3.1: Scalable local region on expandable kernel.

The local information that is used in our LREK active contouris the image’s weighted aver-

age intensity within the kernel, as shown in Figure 3.1 (b). Motion of each pixel on contour front

is determined by such scalable local regional information.A contour line divides the kernels into

two local regions, one inside the contour and another one outside. Two local regional statistics,

µin andµout, are the weighted means intensity of all pixels on the inner and outer regions within
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the kernel centered on the contour, respectively.

Our model is implemented via level set technique. One of the benefits of this technique

is that it can solve problem of required topological changesduring evolution. Let a contour

C ⊂ Ω an image spatial domain, which is embedded as the zero level of the level set function

φ(x) : Ω → R, whereR is a set of real numbers.

C = {x ∈ Ω : φ(x) = 0} (3.1)

whereΩ denotes the image domain. In addition, the inner region of the contour,φ(x) > 0, is

defined to be positive where specified in (3.2) by the smoothedHeaviside functionHǫ(φ) [16],

[17] and the outer one,φ(x) < 0, is to be negative which defined by1 − Hǫ(φ). Therefore, the

derivative ofHǫ(φ), a smooth Dirac delta functionδǫ(φ) as in (3.3), represents the pixels just

around the contourC.

Hǫ(φ(x)) =



















1 if φ(x) > ǫ

0 if φ(x) < −ǫ

1
2

[

1 + φ(x)
ǫ

+ 1
π
sin
(

πφ(x))
ǫ

)]

if |φ(x)| ≤ ǫ

(3.2)

δǫ(φ(x)) =



















1 if φ(x) = ǫ

0 if |φ(x)| < ǫ

1
2ǫ

[

1 + cos
(

πφ(x)
ǫ

)]

if |φ(x)| ≤ ǫ

(3.3)

Here we derive our local region-scalable force. To mask local region, a kernel is centered

and distributed along evolving contour. The kernel function,K(d), is parameterized by pointy

that is within a distance,d = ‖x− y‖, with center point atx which is on the contour, and0

otherwise. ‖ · ‖n is theLn-norm. A choice ofn = 2 results in the Euclidean distance while

n = ∞, the infinite norm, results in a support of square shape as shown in Fig. 1(b). The choice

of the kernel is flexible, it can be chosen as a uniform function in (1) similar to the LRAC.

Ku(d) = c (3.4)

wherec is a positive constant.

We also choose a Gaussian kernel in our model. This kernel is considered to be a circle
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with different weighting functions. Contribution of the intensity decreases as the distance from the

contour or the center pointx to the pointy increases and becomes effectively zero whend > 3σ.

KG(d) =
1

(2π)
n

2 σn
exp

(

−
d2

2σ2

)

(3.5)

We define the SLR energy in each kernel mask,K(x− y), wherey is any point within

image domain with the distanced from center pointx that is exactly on the contour.F only

operates on local image information withinK(x− y). The total contribution of the energy is

the sum ofF values for everyK(x− y) neighborhood distributed on the contour. So, the SLR

energy functional of each kernel can be expressed as

ESLR(φ) =

∫

Ω
K(x− y) · F (I(x), φ(x)) dx (3.6)

I denotes the pixel intensity values of a given image.F represents the SLR energy measure at

each point along the contour. From existing global region-based models [17]-[19], we mention

here at least two candidates forF .

Chan-Vese energy function [17] relies on the assumption that the object and background

are statistically homogeneous. This energy is minimized when two constant intensities of their

averages approximate the regions optimally, given by

FCV = |I(x)− µin(y)|
2Hǫ(φ(x)) + |I(x)− µout(y)|

2 (1−Hǫ(φ(x))). (3.7)

The energy proposed by Yezziet al. [18] is optimized when means intensity of inner and

outer regions are well separated. Since it assumes that the means of the object and background

are most different. The mean separation energy function is as shown below:

FMS = −
1

2
|µin(y)− µout(y)|

2 (3.8)

whereµin andµout represent local intensity averages of the two regions withinK(x− y) located

at the contour, written as

µin(y) =

∫

ΩK(x− y)Hǫ(φ(x))I(x)dx
∫

ΩK(x− y)Hǫ(φ(x))dx
(3.9)

µout(y) =

∫

ΩK(x− y)(1−Hǫ(φ(x)))I(x)dx
∫

ΩK(x− y)(1 −Hǫ(φ(x)))dx
. (3.10)
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By taking the first variation of (3) with respect toφ, we have the following local region-

scalable force

FSLR =

∫

Ω
K(x− y) ·

∂F (I(x), φ(x))

∂φ(x)
dx (3.11)

In order to fully expressFSLR, we take the derivative of two aforementioned energies,FCV and

FMS, with respect toφ. ∂F (I(x),φ(x))
∂φ(x) becomes

∂FCV

∂φ
= δǫ(φ(x))

(

|I(x)− µin(y)|
2 − |I(x)− µout(y)|

2
)

(3.12)

∂FMS

∂φ
= −δǫ(φ(x))(µin(y)− µout(y))

(

I(x)− µin(y)

Ain
+
I(x) − µout(y)

Aout

)

(3.13)

whereAin andAout are two areas of a scalable local region of the kernel that split by the contour

line, as follows:

Ain =

∫

Ω
K(x− y)Hǫ(φ(x))dx (3.14)

Aout =

∫

Ω
K(x− y)(1 −Hǫ(φ(x)))dx. (3.15)

E(φ) = −

(
∫

Ω
δǫ(φ(y))ESLRdy − ν

∫

Ω
|∇Hǫ(φ(y))|dy

)

(3.16)

We write our total energy term in (3.16). Multiplication ofESLR with the Dirac functionδǫ(y)

ensures the contour not to spontaneously develop new contours, although it still allows to solve

contour’s topological changes. It also accomplishes computation ofESLR only considering pix-

els contribution within the distanced of the contour and ignores spatial variation that may arise

outside of the kernel. In addition, a regularization term isadded to regulate contour’s elasticity

during the evolution by penalizing the arc length of the contour and weighting it by a parameter

ν.
∂φ

∂t
(y) = δǫ (φ(y)) (FSLR + FSM) (3.17)

FSM = νdiv

(

∇φ(y)

|∇φ(y)|

)

(3.18)

Finally, our LREK evolution equation in (3.17) is obtained by taking the first variation of (3.16)

with respect toφ where the complete derivation can be found in Appendix A. Thefirst term,

FSLR, is our local region-scalable force as in (3.11) that acts asan attractor to move the center of

each kernel, which is the contour. The second term as in (3.18) is smoothing force to keep the

contour smooth.
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Figure 3.2: Flowchart of our LREK evolution process.

3.1.2 Adaptive Local Statistics of Expandable Kernel

When the fixed-area ball mask lies on a homogeneous region of an object or background, it

produces motion force approximately zero. To solve the problem, we are motivated by the local

adaptation process. In detecting object’s boundary of an image, we let the kernel expand itself

until it covers pixels of both object and background. The scale of each kernel, which parame-

terized by distanced, gradually increases by adding∆d pixels from initial distancedstart pixels.

This process is allowed by checking whether the kernel overlaps the homogeneous region or not.

If it is still on the homogeneous area that meansµin is about the same asµout. Then, support of

the kernel is expanded. Once it has found a non-homogeneous region, supposedly crossing the

boundary, there is a significant difference of local regional statistics on either sides of the contour.
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In other words,µin will be of different fromµout. To check how muchµin is different fromµout,

their absolute difference is compared to a threshold valueτ . While the threshold of the uniform

kernel is[L ∗ τ ], whereτ = [0, 1] andL = 255 for 8-bit grayscale. For Gaussian kernel, we

can conveniently choose the threshold between0 and1 since its normalization constant satisfies
∫

KG(x− y)dx = 1. Afterwards, the kernels direct the contour front towards which direction

to meet the boundary. The SLR force to evolve the contour either inward or outward depends on

the sign of the difference between|I − µout| and |I − µin|. If the intensity profile of the pixel

within the kernelI is closer toµout thanµin, a positive sign of the SLR force will locally move

the contour front inward. On the other hand, if the intensityprofile of the pixel within the kernelI

is about the same asµin and far different fromµout, a negative sign of the SLR force will drive the

contour front in the local outward direction. In addition, magnitude of this force is normalized by

taking its sign only. Each force will have value either−w or +w, wherew is positive parameter.

This acts as a force to evolve the contour for one iteration. Another iteration of contour’s evolution

will be started by initially setdi = dinitial then repeat the kernel adaptation process. The contour’s

evolution will stop when the contour converges into the boundary. The overall evolution process

is illustrated in the flow chart of Figure 3.2.

3.2 Directional LREK (DLREK)

In this section, we extract another advantage of using localregion-scalable information

that is to select desirable edge’s type object. We called it adirectional local region-scalable active

contour using expandable kernel (DLREK). Our active contour uses variable scale kernel to detect

an object’s boundary. Scalable local regional informationis intensity profile of the pixels within

the expandable kernel that spread on the contour. Two means intensity,µin andµout, are calculated

from inner and outer regions formed by splitting a scalable local region of kernels with the contour.

Magnitude of intensity difference is used in detecting object’s boundary. It indicates whether the

kernel is crossing the boundary or not. If not, it is then expanded. In case it has crossed the

boundary, they are used to inform where the contour should locally evolve. However, this attracts

the contour towards boundary regardless of any edge’s type object. In case the kernel has found

unintended edge’s type object, the contour point needs to beguided away from such undesired

edge by a balloon force. Next, the relationship betweenµin andµout is to be a condition for

choosing which object’s edges to attract. Sign of its difference is to inform a particular edge’s

type object to attract. It is used as a switching parameter [43] to manage the forces driving the

contour toward objects with desirable edge’s type. Ifµin is smaller thanµout, it implies that

the kernel is lying on a positive edge. Once it crosses a negative edge thenµin will be larger

thanµout. With these conditions in mind, we modify LREK evolution equation. In addition to
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an ability in looking for objects of desired edge’s type withthe same initialization, our model

preserves many advantages, such as: 1) robustness to noise,2) an ability to segment non-uniform

and heterogeneous textures, 3) a large capture range, 4) an ability to handle boundary concavity,

5) fast convergence, and 6) topologically flexible.

3.2.1 Evolution Equation

Our scalable local regional (SLR) energy is given by (3.6). This energy, however, will

guide the contour front towards any type of object’s edge. Itmay not be able to decide particular

object’s edge to attract. In case the contour lies on an undesired image region, it needs to be guided

by another energy. As the third term, we therefore add local balloon energy to locally drive the

contour away from the unintended object. Then, we add the switching parameter (3.20) in these

two energies so that they will be automatically chosen one ina time. To regulate contour’s tension

during evolution, we add a smoothing term which associated with contour length as the first term.

The second term is our SLR energy. Our total energy becomes

E(φ) = ν

∫

Ω
δǫ(φ(y))|∇φ(y)|dy

+ (1− α)

∫

Ω
δǫ(φ(y))ESLRdy

+ α

∫

Ω
Hǫ(φ(y))dy (3.19)

α = sign[β · sign(µin − µout) + 1] (3.20)

sign(z) =



















−1 for z < 0

0 for z = 0

+1 for z > 0

(3.21)

whereHǫ(φ) is the smooth regularized Heaviside function and the Dirac delta functionδǫ(φ) is

the derivative ofHǫ(φ) as in (3.2) and (3.3), respectively [16], [17]. The switching parameter

α automatically manages the SLR and local balloon energy to act in turns regarding local image

edge’s type. It switches the energy for each kernel at each iteration. Value ofα is either0 or 1.

We see that ifα = 0, ESLR is used and ifα = 1, thenELB is used. The local image edge’s type

within the kernel consists of two categories; positive and negative edge’s type. Positive edge is

where a darker object lies on brighter background and vice versa. The type of object’s edge that

we are interested in can be chosen by setting edge’s type parameterβ. Its value is either+1 or

−1. If object with positive edge is to be segmented,β is set to be+1 and in case we want to

find negative-edge object we just setβ = −1. Moreover,sign(·) is the sign function where its

corresponding value is shown in (3.21). We obtain an evolution equation of (3.22) by taking the
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first variation of (3.19) with respect toφ.

∂φ

∂t
(y) = δǫ(φ(y)) [FSM + (1− α)FSLR + αFLB] (3.22)

whereFSM andFSLR are given in (3.18) and (3.6), respectively andFLB is as follows

FLB =







+ω inward local balloon

−ω outward local balloon
(3.23)

The first term,FSM, enforces the smoothness of the contour. Secondly,FSLR is our lo-

cal region-scalable force. Lastly,FLB is the local balloon force, whereω is the positive-valued

parameter and acts as the speed-size ofFLB. FLB is set to+ω so that the contour shall locally

shrink and vice versa. With this local balloon force, the initialization is not necessarily be placed

entirely inside or outside the object of interest. In each kernel at each iteration, eitherFSLR or

FLB will be selected as a force for locally driving the contour point. The SLR force shall pull the

contour when local image is of desired edge’s type and the local balloon force will locally drive

the contour away once it is of undesired edge’s type.

3.2.2 Evolution Process

Figure 3.3 depicts the whole evolution process of our model.This process starts by setting

initial condition for contour, edge’s type parameter, and kernel scale. Next,µin andµout are

computed for each kernel. Their absolute difference is compared with a threshold valueτ . If the

difference is less than the threshold then the kernel is expanded. After local adaptation process of

expandable kernel found its optimal scale to detect the boundary, we check whetherµin is larger

or smaller thanµout. This condition is used in controlling the forces. Supposedwe setβ = +1

and found thatµin < µout, at this time the SLR force drives the contour. Once the kernel found

an area withµin > µout then the force on the contour front will be switched into local balloon.

For β = −1, the SLR force pulls the contour to a local region withµin > µout. On the other

hand, local balloon force shall attract the contour away from a local region withµin < µout. The

process is repeated until the contour converges.
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Figure 3.3: Flow chart of our DLREK evolution process.



CHAPTER IV

EXPERIMENTS

4.1 Local Region-Scalable Active Contour Using Expandable Kernel (LREK)

In this section, we performed several experiments to our model proposed in Chapter 3

and various active contour models: the GAC, ACWE, RSF, LRAC and LRES. In all experiment,

unless otherwise spe cified, we setω = 0 andσ = 1 for the GAC,ν = 0.01 × 255 × 255 and

λ1 = λ2 = 1 for the ACWE, andν = 0.001 × 255 × 255 andλ1 = λ2 = 1 for the RSF,ν = 0.8

for the GAC, LRAC, LRES, and LREK.

Images in Figure 4.1 and 4.2 are arranged into 6 rows and 4 columns. The first to the sixth

rows are the GAC, ACWE, RSF, LRAC, LRES, and LREK where each column depicts initial,

intermediate, final and post-final contours of each method, respectively.

Figure 4.1 is the synthetic flower image with various grayscale intensities. Table 4.1 shows

computational cost of the synthetic flower in the Figure 4.1 for each active contour in two different

size of images, i.e.,100 × 100 and200 × 200 pixels. For the image size of100 × 100 pixels,

the following parameter are used for each model: the GAC withω = 1, the RSF withσ = 9, the

LRAC with r = 45 andFCV, the LRES withlinitial = 30, ∆l = 5, andτ = 20, and our LREK

with dinitial = 20, ∆d = 5, τ = 10, andFCV. For200 × 200 pixels image size, each model uses

the following parameters: the GAC withω = 3, the RSF withσ = 15, the LRAC withr = 90 and

FCV, the LRES withlinitial = 60, ∆l = 5, τ = 20, and our LREK withdinitial = 40, ∆d = 5,

τ = 10, andFCV.

Intermediate contours for the GAC, ACWE, RSF, LRAC, LRES, and LREK are taken at

30, 2, 4, 85, 100, and 80 iterations, respectively. The GAC, ACWE, RSF, LRAC, LRES, and

LREK’s contours converge to the boundary at 60, 5, 8, 190, 200, and 160 iterations, respectively.

By tuning more numbers of iteration to 90, 7, 8, 275, 300, and 240, their contours remain the

same. Withω = 1, the GAC takes 30 and 60 iterations which consume 5.36 and 30.55 seconds,

respectively. By setting largerω, the GAC is able to move faster however will pass through the

weak edge. The ACWE and RSF cannot trace boundary of the flowercorrectly. They exclude

circle area inside the flower since its intensity is similar to the background. Even so, the ACWE

just require 5 iterations for either size of images with 1.17and 1.63 second. The RSF needs

only 8 iterations for both sizes of images. Its average and total computational cost rise 1.5 times
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(a) (b) (c) (d)

Figure 4.1: Performance of several active contour models for a synthetic flower image, i.e., (a) initial, (b)
intermediate, (c) final and (d) post-final contour
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from 0.26 to 0.38 second and2.07 to 3.00 seconds, respectively. Withd = 20 andd = 40,

our method converges to desired boundary considerably fastsince it just consumes0.11 and0.29

second per iteration which rises2.5 times to the increasing image size. Meanwhile, the LRAC’s

radius needs to be set as large as45 and90 to reach the boundary for both images at110 and190

iterations. We observed that its average iteration time increases4 times from0.14 to 0.52 second

per iteration. With smaller or larger radius than mentioned, the LRAC’s contour moves with a

slower convergence. Also, it has problem of limited capturerange to trace concave shape while

it also needs more iteration numbers which consumes more time to capture the object. The larger

radius will give fast convergence on the other hand will ignore some intensity details particularly

in the weak boundary. The LRES is considered more time consuming than the others. Its total

computational cost increases6.5 times from161.45 to 1071.71 seconds. This confirms that the

long thin search line is not scalable to the image area. Although it can be extended its area does

not change much. With the larger and larger image size, its area is still about the same where

such a small area of the search line produces a relatively small force in any kind of image size. It

requires more and more time to arrive at the boundary. It seems to be more efficient in segmenting

image with small size.

Table 4.1: Computational cost of the synthetic flower image

Active 100× 100 pixels 200× 200 pixels

Contours Iterations Time (s) Iterations Time (s)

GAC 30 5.36 60 30.55

ACWE 5 1.17 5 1.63

RSF 8 2.07 8 3.00

LRAC 110 15.10 190 99.13

LRES 100 161.45 200 1071.71

LREK 85 9.35 160 46.79

Figure 4.2 contains an U-shape image with various grayscaleintensities and200 × 200

pixels size. For this image, we use following parameter:ω = 1 for the GAC,σ = 5 for the RSF,

r = 20 andFCV for the LRAC,linitial = 20, ∆l = 5, andτ = 10 for the LRES, anddinitial = 20,

∆d = 5, τ = 10, andFCV for our LREK.

The GAC, ACWE, RSF, LRAC, LRES, and LREK’s contour convergesat 120, 4, 70, 2000,

360, and 400 iterations, respectively. The intermediate contour in Figure 4.2(b) is taken at 60, 2,

35, 1000, 180, and 200 iterations, respectively. By adding more numbers of iteration to 180, 6,

105, 3000, 540, and 600, each contour does not change. We see that although the ACWE and RSF

do not include part of the object that is almost similar to thebackground intensity their contour
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(a) (b) (c) (d)

Figure 4.2: Performance of several active contour models for a synthetic U-shape image, i.e., (a) initial, (b)
intermediate, (c) final and (d) post-final contour.
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Table 4.2: Computational cost of the synthetic U-shape image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 120 121.69 1.02

ACWE 4 1.17 0.29

RSF 70 15.92 0.23

LRAC 2000 356.29 0.18

LRES 360 1008.67 2.80

LREK 400 95.88 0.24

capture the whole object and are distributed everywhere on the image with only small number

of iterations. That is because of global computation. It is different to the contour movement of

the local models. With the initial contour placed outside the object, the GAC, LRAC, LRES, and

LREK’s contours gradually shrink tracing the object. With the balloon forceω = 1, the GAC has

additional force to move inward with a constant force. At 60 iterations, it has captured the outer

part of the object while is trying to move into concave part and finally converges at 120 iterations.

Even though, the LRAC’s radius is set similar to the LREK’s kernel scale which equal to 20 pixels,

the LRAC seems to have limited capture range and problem to move into the boundary concavity.

At 1000 iterations, its contour is still unable to trace someof the outer part. After 2000 iterations

the contour has traced the outer part but does not move insidethe concavity. By adding to 3000

iterations, it is still unable to move in. On the other hand, the LRES and LREK’s contours are

able to move inside where at 180 and 200 iterations their intermediate contours have traced the

outer part and are trying to move in. We can see that the GAC, LRES and LREK’s contours are

placed at about the same intermediate contour position eventhough they need different numbers

of iterations and consume different computational cost. Finally, their contours are placed at the

boundary at 120, 360, and 400 iterations by consuming 121.69, 1008.67, and 95.88 seconds,

respectively.

In Figures 4.3-4.14, eight images are arranged into two rowsand four columns. Images in

the first row consist of (a) an original image, segmented image with final contour of (b) the GAC,

(c) ACWE, and (d) RSF, respectively. The second row consistsof (a) the initial, and final contour

of (b) LRAC, (c) LRES, and (d) our LREK that plotted on the image, respectively. Computational

cost of each active contour model in segmenting each image are shown in Tables 4.3-4.15 where

each table consists of iteration number, computational cost, and average computational time.

Figure 4.3 contains an air plane image with size200 × 340 pixels. For this image, we use

following parameter:σ = 5 for the RSF,r = 15 andFCV for the LRAC,linitial = 25, ∆l = 5,

andτ = 30 for the LRES, anddinitial = 15, ∆d = 5, τ = 10, andFCV for our LREK.
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(a) (b) (c) (d)

Figure 4.3: Performance of several active contour models for an air plane image.

Table 4.3: Computational cost of the air plane image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 100 103.97 1.04

ACWE 10 6.22 0.62

RSF 20 6.21 0.31

LRAC 1800 281.24 0.16

LRES 500 923.61 1.85

LREK 550 114.94 0.21

We see that all methods are able to segment the air plane imageexcept the GAC. That is

due to sensitivity of the GAC to initial condition. We set theballoon force equal to zero since

the initial contour is placed both inside and outside the object. However, it seems confused and

does not move towards the boundary even after 100 iterations, it is unable to evolve tracing the

the boundary of the air plane. By choosing the balloon force to be−ω or +ω, the contour will

move faster however it will constantly grow or shrink, respectively. These values are appropriate

if the initial contour is placed entirely inside or outside the object. The ACWE and RSF seem

to misclassify air plane part where its intensity is similarto the background pixels. Hence, their

contours split excluding that pixels. Even so, they converge considerably quick since they only

need 10 and 20 iterations with 6.22 and 6.21 seconds, respectively. On the other hand, the LRAC,

LREK, and LREK exhibit complete segmentation outcome of theair plane. The LRAC requires

more number of iterations with 1800 iterations and 281.24 seconds to converge while the LRES

is considered more time consuming since it needs 923.61 seconds for 500 iterations to reach the

boundary of the object. Our LREK’s contour converges at 550 iterations which only consumes

114.94 seconds.

Figure 4.4 is a white blood cell image of size200 × 200 pixels. For this image, we use

σ = 49 for the RSF,r = 45 andFMS for the LRAC, linitial = 40, ∆l = 5, andτ = 30 for the
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(a) (b) (c) (d)

Figure 4.4: Performance of several active contour models for a white blood cell image.

Table 4.4: Computational cost of the white blood cell image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 100 73.23 0.73

ACWE 20 11.63 0.58

RSF 50 69.75 1.40

LRAC 1300 433.52 0.33

LRES 500 2223.21 4.45

LREK 390 141.58 0.36

LRES,dinitial = 45, ∆d = 5, τ = 20 andFMS for our LREK.

In Figure 4.4, we intend to trace the U-shape nucleus of the white blood cell. Withω = 0,

the GAC evolves slowly and with small capture range. Again, although we set iteration numbers

as much as 100, the GAC’s contour does not move anywhere. It may also be stuck by noisy

environment of the image. We can see that the ACWE and RSF can segment the nucleos, however,

they also include some other parts which are not considered as the object. The LRES is segmenting

the whole cell instead of the nucleus itself. Meanwhile, it requires expensive computation with

500 iterations for 2223.21 seconds. The LRAC and LREK achieve satisfactory segmentation

of the nucleus only while ignoring the other parts. Nonetheless, our LREK converges faster

with 390 iterations for 141.58 seconds than the LRAC where consumes 1300 iterations with total

computation time 433.52 seconds.

A starfish image in Figure 4.5 has size200× 200 pixels. The parameters are set as follows:
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Figure 4.5: Performance of several active contour models for a starfish image.

Table 4.5: Computational cost of the starfish image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 240 422.11 1.76

ACWE 10 4.35 0.44

RSF 30 17.45 0.58

LRAC 1500 315.22 0.21

LRES 275 547.36 1.99

LREK 310 90.96 0.29

c = 1 for the GAC,σ = 9 for the RSF,r = 30 andFMS for the LRAC,linitial = 30, ∆l = 5, and

τ = 10 for the LRES,dinitial = 30, ∆d = 5, τ = 0.1 andFMS for our LREK.

In Figure 4.5, there are two separate starfishes. By settingω = 1, we let the GAC’s contour

to shrink since the initial contour is placed mostly outsidethe starfishes. However, after 240 iter-

ations, it does not give a complete segmentation outcome. The RSF not only detect the starfishes

but also the noisy pixels on the starfishes. With as much as 1500 iterations, the LRAC’s con-

tour is still unable to move into the concave part in between two starfishes thus give a connected

starfishes as an segmentation result. The ACWE, LRES, and ourLREK is capable to provide

an actual boundary of the two separate starfishes. Because, the ACWE separate the image by

calculating two piecewise constant of means intensity which in this case best approximate homo-

geneous foreground and background of the starfishes. With local adaptation process, the LRES

and LREK does not have problems segmenting object with various concave shape. In spite of

that, our LREK only consumes 90.96 seconds for 310 iterations which is faster than LRES with
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Table 4.6: Computational cost of the bear cartoon image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 70 74.48 1.06

ACWE 10 7.79 0.78

RSF 40 33.34 0.83

LRAC 2000 385.07 0.19

LRES 190 404.92 2.13

LREK 240 59.92 0.25

547.36 seconds for 275 iterations.

(a) (b) (c) (d)

Figure 4.6: Performance of several active contour models for a bear cartoon image.

Figure 4.6 is a bear cartoon image with size273 × 320 pixels. The following parameter

are respectively set: the RSF withσ = 19, the LRAC with r = 15 andFMS, the LRES with

linitial = 30, ∆l = 5, andτ = 20, the LREK withdinitial = 15, ∆d = 5, τ = 20, andFMS.

An initial contour in Figure 4.6 is set manually by determining each point in the image

and connecting that point to create a region of initial contour. So that, the user can interact to

determine the initialization. This image contains two separate objects which are the bear cartoon

and its shadow. However, the shadow is undesired as a segmentation outcome. The GAC gen-

erally can segment only the bear while ignoring the shadow. Although some part of the initial

contour are inside the bear. We setω = 3 because the initial contour is mainly outside the ob-

ject. High magnitude of balloon force helps the GAC to converge quickly with just 70 iterations.

However, it constantly moves inward thus misclassifies someparts of an ear and two hands. The

ACWE and RSF not only include the shadow as segmentation result but also divide the bear as

several objects. This is due to the object contains various intensity region. Meanwhile the RSF



44

Table 4.7: Computational cost of the T-shape image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 55 17.33 0.32

ACWE 20 6.71 0.34

RSF 270 58.48 0.22

LRAC 1600 213.88 0.13

LRES 100 157.09 1.57

LREK 140 17.19 0.12

capture more details than the ACWE because it uses small kernel to be convolved to all image re-

gions. With average computational time 0.78 and 0.83 secondper iteration, they consume similar

computational cost per iteration. However, the RSF requires 40 iterations more than required by

ACWE to converge with only 10 iterations. Although, the iteration numbers for the LRAC is set

to 2000, the contour is unable to move into concave part between head and foot. It is not easy

to determine the optimal ball radius particularly when the object has various concave part. The

LRES generally segments the bear although it misclassifies the ear part. This is perhaps due to

small thin search line that might not reliably sample the pixels intensity thus confused and direct

the contour wrongly. Also, the LRES is considered more time consuming where it requires 2.13

seconds per iteration compared to our proposed scheme whichonly consumes 0.25 second per

iteration. Meanwhile, our LREK extracts complete object boundaries.

(a) (b) (c) (d)

Figure 4.7: Performance of several active contour models for a T-shape image.

A T-shape object with non-uniform intensity in Figure 4.7 has 96 × 127 pixels of image

size. The RSF’s kernel is set withσ = 3, the LRAC’s ball radius is set withr = 10 andFMS, the

length of LRES’s search line is set tolinitial = 10, ∆l = 3, andτ = 30, and parameter for our

LREK is set withdinitial = 10, ∆d = 5, τ = 30, andFMS.
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The T-shape object in Figure 4.7 has spatial variation of intensity inhomogeneity. With

ω = 0, the GAC has low speed and small range of capture, the GAC’s contour is confused thus

does not move capturing the object. The ACWE is confused withthe non-uniform textures and

tends to separate the image into brighter and darker areas. The RSF, LRAC, LRES, and LREK

generally can deal with intensity inhomegenity of the image. The RSF’s final contour is correctly

placed on the object. However, it consumes 270 iterations and 58.48 seconds to successfully

place its contour on the object. To arrive at the object boundary, the LRAC’s contour needs 1600

iterations and 213.88 seconds. Meanwhile, it ignores smallintensity details in some corners of

the T-shape object. The LRES just have a small problem with the shadow. It is confused with the

shadow part and consider it as part of the object. Finally, byconsuming just 140 iterations and

17.19 seconds, the T-shape can be segmented accurately without any problem by our scheme.

(a) (b) (c) (d)

Figure 4.8: Performance of several active contour models for a synthetic heterogeneous textures image.

An object with heterogeneous texture without adding noise in Figure 4.8 has200 × 200

pixels of image size. The parameters are given as follows: the RSF withσ = 11, the LRAC

with r = 40 andFCV, the LRES withlinitial = 40, ∆l = 5, andτ = 10, and our LREK with

dinitial = 10, ∆d = 5, τ = 50, andFMS.

The image in Figure 4.8 has heterogeneous textures where either its object or its background

contains both brighter and darker intensities. It also contains various concave parts. Due to local

consideration of image gradient, the GAC does not confuse with the overlapped intensity between

the foreground and background. However, after its contour evolves for 500 iterations, the choice

of ω = 0 is unable to attract the contour to some corners of the object. By settingω to be

positive or negative, it just makes the contour shrink or expand with a constant speed while the
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Table 4.8: Computational cost of the heterogeneous textures image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 500 718.41 1.44

ACWE 10 3.99 0.40

RSF 500 160.43 0.32

LRAC 550 133.64 0.24

LRES 300 658.35 2.19

LREK 350 68.91 0.19

contour actually needs to shrink and expand accordingly. The piecewise-constant approximation

of global means intensity leads to image separation according to the image area that represented

by its intensity. Thus, the brighter area is considered as the foreground while the darker area as

the background. We observed that the RSF, LRAC, and LRES segment most of the object parts

except the part where the intensities of foreground and background are hardly distinguished. They

successfully segment the part where the difference betweenforeground and background can be

clearly distinguished. All these region-based methods with local constraint do not confuse the

overlapped intensities between the foreground and the background due to its local consideration.

Their total computational time are 160.43, 133.64, and 658.35 seconds for the RSF, LRAC, and

LREK, respectively. On the other hand, our scheme provides acomplete segmentation result.

It consumes 68.91 seconds for 350 iterations with average computation time 0.19 second per

iteration.

(a) (b) (c) (d)

Figure 4.9: Performance of several active contour models for a synthetic heterogeneous texture image with
added salt and pepper noise.
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Table 4.9: Computational cost of the heterogeneous textures image with salt and pepper noise.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 220 308.20 1.40

ACWE 10 21.48 2.15

RSF 30 53.85 1.80

LRAC 550 280.65 0.51

LRES 300 626.59 2.09

LREK 400 111.34 0.28

A noisy heterogeneous textures image in Figure 4.9 has size200×200 pixels. The following

paremeters are used:σ = 13 for the RSF,r = 50 andFCVfor the LRAC, the LRES withlinitial =

40, ∆l = 5, andτ = 10, and our LREK withdinitial = 15, ∆d = 5, τ = 45, FMS.

Figure 4.9 contains the same image in Figure 4.9 with added salt and pepper noise. Since

the GAC uses edge information of image gradient, it is sensitive to noise. Even though the GAC’s

contour move for 220 iterations it does not move anywhere because it is stuck by the gradient

pixels of the salt and pepper noise. Although the ACWE requires only 10 iterations with 21.48

seconds it still separate the image into brighter area as theobject and the darker area as the back-

ground. Also, it includes white and black pixels of the noiseas the object. With only 30 iterations,

the RSF almost captures the whole object. However, it also includes the noise as part of the ob-

ject. Even though it uses local window, this is perhaps due toconvolution of two fitting functions

of the kernels to all over the image. It is different to the rest of the three methods: the LRAC,

LRES and LREK. They use local image intensity and compute it using local window spread on

the contour. Even so, the LRAC and LRES cannot segment effectively the lower part of the object

where the intensities of the foreground and background are less distinguishable. Nonetheless, our

method still provides successful segmentation result evenin the presence of noise with average

computational time 0.28 second per iteration.

An ultrasound image of size221 × 217 is shown in Figure 4.10. The following parameter

are used: the RSF withσ = 21, the LRAC withr = 15 andFMS, the LRES withlinitial = 15,

∆l = 5, andτ = 20, and our LREK withdinitial = 15, ∆d = 5, τ = 10, andFMS.

Since the initial contour is placed entirely inside the object, the balloon force is set to−1

to constantly grow the contour capturing the object. Noisy environment, however, makes it stuck

thus it is unable to further capture the actual object. The ACWE and RSF consider all the white

pixels as the object. While the RSF is capable in handling intensity inhomogeneity, the ACWE

cannot distinguish that kind of spatial variation. Consideration of local image intensity makes the
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(a) (b) (c) (d)

Figure 4.10: Performance of several active contour models for an ultrasound image.

Table 4.10: Computational cost of the ultrasound image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 150 80.37 1.53

ACWE 10 5.11 0.511

RSF 35 25.36 0.72

LRAC 300 29.99 0.10

LRES 150 98.49 0.66

LREK 240 29.90 0.12
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Table 4.11: Computational cost of the corpus callosum image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 180 549.79 3.05

ACWE 10 41.67 4.17

RSF 25 186.72 7.47

LRAC 2500 689.17 0.28

LRES 670 923.96 1.38

LREK 1000 305.06 0.31

LRAC, LRES, and LREK act similar to the GAC rather than the ACWE and RSF. Even though

the iteration numbers is set as much as 300, problem of limited capture range makes the LRAC’s

contour unable to evolve further into the lower part of the object. With extendable search line,

the LRES does not have problem of limited capture range. It isjust confused with the small area

in the lower part where its intensity is less distinguishable. On the other hand, with an ability of

expandable kernel, our scheme provides more complete segmentation outcome although its kernel

scale is set to 15 pixels similar to the LRAC.

(a) (b) (c) (d)

Figure 4.11: Performance of several active contour models for a corpus callsoum of an MR brain image.

A magnetic resonance image (MRI) of a corpus callosum part ofa brain in Figure 4.11 is

of size550 × 550. For each scheme the parameter are respectively set as follows: the RSF with

σ = 41, the LRAC withr = 20 andFCV, the LRES withlinitial = 20, ∆l = 3, andτ = 10, and

our LREK withdinitial = 15, ∆d = 5, τ = 20, andFMS.

For the corpus callosum image in Figure 4.11, the initial contour is placed to the right of
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the corpus callosum. The constant motionω is set to−1.5 so the contour move outward from

initial contour that is totally inside the object. However,it is stuck in the middle of the corpus

callosum. The ACWE and RSF tend to segment the whole part of the image instead of the corpus

callosum. The contours of LRAC, LRES and LREK are able to moveinto the concave part. It is

worth to note that by setting the LRAC’s ball radius to 15 pixels similar with our LREK’s kernel

scale, the LRAC’s contour is stuck. To have larger capture range, its radius is set to 20 pixels. The

adaptive statistics of expandable kernel gives the advantages of expandable capture ranges so that

with just 15 pixels our model is able to trace a complete corpus callosum without getting stuck.

Moreover, it requires less iteration number with 1000 iterations than the LRAC which requires

2500 iterations. It converges faster with only 305.06 seconds than computational time of 923.96

seconds required by the LRES.

(a) (b) (c) (d)

Figure 4.12: Performance of several active contour models for a left ventricle of cardiac MR image.

Figure 4.12 contains left ventricle of cardiac MRI (CMRI) with size324× 324. Parameter

settings used are as given: the RSF withσ = 17, the LRAC withr = 25 andFMS, the LRES with

linitial = 30, ∆l = 5, andτ = 20, our LREK withdinitial = 30, ∆d = 5, τ = 20, andFMS.

Left ventricular segmentation requires segmentation of epicardial and endocardium bound-

ary simultaneously and as a result it will form a ring-like object. Initial contour is placed inside

the ring-like object. Withω = −1, the GAC is able to trace most of the epicardial boundary

however it has boundary leakage problem in the weak boundary. When segmenting endocardium,

it moves ignoring the endocardium particularly in some blurand weak boundaries and as a result

only a small amount of pixels is left. The ACWE and RSF captureall brighter intensity regions as

the object. The RSF, on the other hand, captures more intensity details and handle non-uniform
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Table 4.12: Computational cost of the ventricle image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 900 2047.82 2.28

ACWE 10 9.01 0.90

RSF 30 25.89 0.86

LRAC 4000 1071.63 0.26

LRES 750 2208.45 2.94

LREK 1700 724.93 0.42

textures while the ACWE ignores some details and its spatialintensity variation. Before radius of

the LRAC’s ball is set to 25,r = 30 is used. However, the LRAC’s contour shrink and disappear

immediately. Withr = 25, it evolves capturing the ring-like object. However, afterit reaches

3000 iterations the contour stops at two intersections. By adding number of iterations to 4000,

it is no longer evolve. This is perhaps due to the distance between the contour as the center of

fixed-radius ball and the boundary may be too far from the radius. Hence, the LRAC’s ball is

unable to include appropriate statistics as a force to drivethe contour to the real boundary. A a

result, it reaches local minima and stops even though we let it moves for 1000 iterations more.

The LRES seems confused which direction to guide the contour. Instead of tracing the ring-like

object, it just evolves in the epicardial boundary. Nevertheless, our proposed scheme has enough

capture range to detect both epicardial and endocardium simultaneously. It has no problem to

trace concave shape object of the ring-like object. In addition, our LREK requires 1700 iterations

and 2208.45 seconds to arrive at the intended boundary.

(a) (b) (c) (d)

Figure 4.13: Performance of several active contour models for a liver tumor of a CT scan image.

Figure 4.13 is a liver tumor of a computed tomography (CT) scan image with size315×368

pixels. The parameters used for this image are as follows: the RSF withσ = 23, the LRAC with
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Table 4.13: Computational cost of the liver tumor image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 250 492.23 1.96

ACWE 10 11.67 1.17

RSF 30 41.71 0.31

LRAC 4000 1014.72 0.25

LRES 620 2514.90 4.06

LREK 1350 580.55 0.43

r = 29 andFMS, the LRES withlinitial = 40, ∆l = 5, andτ = 15, our LREK withdinitial = 29,

∆d = 5, τ = 10, andFMS.

In Figure 4.13, liver region as well as several tumor areas are desirable as segmentation

outcome. By settingω = −3 and initial contour totally inside the object, high speed ofthe

balloon force does not make the GAC’s contour stuck. Hence, it is able to evolve capturing the

liver region although it does not include the tumor and misclassifies some small liver region.

Again, these two global regional models tend to segment all image region with more organs while

the liver and tumors are the only intended segmentation object. While the ACWE includes less

object details of the image, the RSF captures more details such as the tumors. Perhaps this is as

an advantage of convolving small kernel into all image area.The LRAC’s contour gets stuck by

the tumors thus cannot move into lower part of the liver region. The LRES traces all the liver

region and half of small tumor area but still has some spill-over area on the liver boundary. Its

average computational time reaches 4.06 seconds for each iteration where its total computational

time costs 2514.90 seconds. Nonetheless, our LREK’s contour evolves with a large capture range

from its initial contour until reaching the boundary of the liver region while excluding some tumor

regions. It demonstrates an ability of our LREK in splittingand merging in order to detect liver

boundary and two tumors simultaneously where this is as the advantage of level set formulation in

handling topological changes. In addition, our LREK is moreeffective and efficient in segmenting

the image which requires less iteration number than the LRACand takes less computational time

compared to the LRES while gives more complete segmentationresult.

An X-ray hand image in Figure 4.14 has size255 × 180. Following parameter are used:

the RSF withσ = 17, the LRAC withr = 15 andFCV, the LRES withlinitial = 40, ∆l = 5, and

τ = 15, the LREK withdinitial = 15, ∆d = 5, τ = 10, andFCV.

Figure 4.14 depicts performance of each model in segmentingthe bone of X-ray image.

Placement of initial contour both inside and outside the object makes the GAC’s contour stuck in
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(a) (b) (c) (d)

Figure 4.14: Performance of several active contour models for a bone part of an X-ray hand image.

Table 4.14: Computational cost of the bone image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 100 74.30 0.74

ACWE 10 4.39 0.44

RSF 100 45.76 0.45

LRAC 660 112.35 0.17

LRES 300 658.35 2.19

LREK 660 188.59 0.29
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the wrong image gradient. Hence, it cannot evolve and arriveat the actual boundary. The ACWE

and RSF almost traces whole bone part but the ACWE includes more of the skin region than

the RSF. The LRAC’s contour cannot move into finger area whichis considered as the concave

shape and lower part of the hand perhaps due to its limited capture range. The LRES, which is

able to handle concave part, can move into some fingers area. However, local statistics on the

search line may not enough to describe the local image intensity. This lack of information, hence,

makes the search line does not produce any force to pull the contour towards real boundary. It is

confused then unable to move into the lower part of the hand. Meanwhile, our method provides

segmentation of the whole bone and completely excludes the skin part. It has a large capture range

to reach concave boundary of the fingers and lower part of the hand. We also notice that LREK’s

contour is able to split excluding the skin part on the lower part of the hand.

(a) (b) (c)

Figure 4.15: Performance of several active contour models for a skin part of an X-ray hand image.

Figure 4.15 contains the same image in Figure 4.14 with size255 × 180 pixels. In the first

row, there are original image, segmentation result of the GAC and RSF, respectively. The initial,

final contour for the LRAC and LREK are respectively plotted in the second row. The following

parameter are used for each model: the GAC withω = 3, the RSF withσ = 101, the LRAC with

r = 100 andFCV, our LREK withdinitial = 100, ∆d = 5, τ = 10, andFCV.

In Figure 4.15, we show segmentation outcomes on the skin part instead of the bone. Es-
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Table 4.15: Computational cost of the skin image.

Active
Contours

Computational Time

Iterations Time (s) Average time (s)

GAC 125 180.02 1.44

RSF 20 48.94 2.45

LRAC 330 351.11 1.06

LREK 450 64517.94 143.37

pecially for the GAC, we put the initial contour entirely outside of the object and use high speed

balloon force withω = 3. The GAC detects most of the skin part while in the weak edges it passes

over the actual boundary. Even though we set large value for the sigma of the RSF’s Gaussian

kernel and radius of the LRAC’s ball, their results are approximately the same with the ACWE

in Figure 4.14. In our formulation, we can show the role of theGaussian function to segment

the blur or smooth boundary. By setting large value of sigma,our Gaussian LREK provides most

of the skin part. It is worth to note that in the RSF we could notfind the smoothness effect of

the Gaussian property in both choice of small or large scale of the kernel. In addition, the RSF

obtains accurate segmentation outcome with small scale sigma. With sufficiently large scale, it is

insensitive to the initial condition similar to the global region-based model. However, it acts like

the global region-based model and ignores some object details to be captured.

In summary, all these experiments verify that our LREK provides more desirable and effi-

cient segmentation outcomes. Scalable local regional information enables our method to quickly

converge into desired objects with noises, non-uniform, and heterogeneous textures. Adaptive

local statistics of expandable kernel allows our LREK to reach any deep concavity with a large

capture range. Our Gaussian LREK has an ability to segment the smooth or blur boundary. Level

set formulation makes our LREK topologically flexible.

4.2 Directional LREK (DLREK)

In this section, we test performance of the DLREK on real scene of medical images. They

are two MR images of brain tumor, cardiac MR image of left ventricle of the heart, and ultrasound

image. The original image is shown in the first column of each tested image. The initial contour

and the final contour on the positive-edge object and the negative-edge object are plotted on the

second, third, and fourth column of each tested images in Figures 4.16-4.19, respectively. All of

the tested images contain two objects of different edge’s types. They are the positive-edge object

which are considered as a darker object lies on a brighter background and the negative one as a

brighter object on a darker background.
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(a) (b) (c) (d)

Figure 4.16: Performance of our DLREK for an MR brain tumor image

The image in Figure 4.16 has two objects of interest to be captured. They are a lateral

ventricle as the positive-edge object and a bright spot of a tumor as the negative-edge object. We

see that our model segments two desirable objects accurately. The contour evolves then finally

converges in both objects using the same initial contour position. By settingβ = +1, the lateral

ventricle as the positive-edge object can be correctly segmented as in Figure 4.16 2(c). On the

other hand, we just setβ = −1 to obtain an accurate segmentation outcome of the bright spot of

the tumor (see column d).

(a) (b) (c) (d)

Figure 4.17: Performance of our DLREK for a CMR left ventricle image

Figure 4.17 contains the same image in Figure 4.12. There aretwo candidates of left

ventricular segmentation which consist of epicardial boundary as positive-edge object and en-

docardial boundary as negative-edge object. By settingβ = +1 andβ = −1, postive-edge of

epicardial boundary and negative-edge of endocardium boundary are respectively segmented by

our DLREK. As a special help to drive the contour away from undesired local image intensity,

ω is chosen to be−1 so that the local balloon force gives outward direction to capture epicardial

boundary in Figure 4.17 (c) andω = +1 is to allows the contour locally shrink in the undesired

image area. After it has reached the intended object, the force will be switched back to the SLR

force.

Figure 4.10 contains an ultrasound image of a small baby. In this image, we want to capture

the positive-edge object while ignoring small baby which isthe negative-edge object and vice
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(a) (b) (c) (d)

Figure 4.18: Performance of our DLREK for an ultrasound image of a small baby

versa. To detect positive-edge object,β andω are set to be+1 and−1, respectively. Since the

initial contour is put inside the positive-edge object,ω = −1 is a special help to grow the contour

detecting the object. Once the contour is near the desirableboundary, the force is switched back

to the SLR force. Otherwise, the balloon force will make the contour further grow ignoring the

boundary. Next, the parameters are chosen to beβ = −1 andω = +1. ω = +1 is selected so

that it gives an inward direction for balloon force to capture the small baby as the negative-edge

object.

(a) (b) (c) (d)

Figure 4.19: Performance of our DLREK for an MR brain tumor image

In Figure 4.19, there are two segmentation candidates that are two spots of tumors and the

right part of the brain. The tumors are considered as two separate positive-edge objects. The

right part of the brain that has two separate tumors is considered as the negative-edge object. A

contour tries to segment the tumors only and the brain without the tumors. As the advantage of

level set formulation, an initial contour may split capturing two separate tumors accurately as two

positive-edge objects (see column c). The fourth column of Figure 4.19(d) demonstrates an ability

of our DLREK in splitting and merging to detect the right partof the brain but exclude the tumors

instead. The right part of the brain can be captured conveniently without any leaking into the

tumors or the left part of the brain. Our model has a large capturing area to evolve from its initial

contour until finally reach concave shape of the boundary of the brain.
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In addition, all these experiments validate that the DLREK is capable in tracing two edge’s

type objects conveniently without getting stuck by any noisy pixels. The scalable kernel samples

intensity statistics with an appropriate scale thus deemphasizes role of small noisy pixels by taking

averages of intensity profiles within the kernel.



CHAPTER V

CONCLUSION

5.1 Thesis Summary

A new active contour model called the LREK that utilizes local region-scalable statistics

on expandable kernels has been presented in this thesis. Thescalable local regional information

is intensity profile of the pixels on a set of expandable kernels that centered and distributed at

the contour. Each kernel is designed to be of adaptive scale so that it can navigate the contour

front toward the object boundary with expandable capture range. The intensity statistics on a set

of kernels are utilized to produce local region-scalable force, enabling the contour to segment

image with intensity inhomogeneities and heterogeneous textures. We compare our LREK over

other active contour schemes. Our scheme is less sensitive to noise and initial condition than

the edge-based models. When compared to such global models,our method is more robust to

noise than the ACWE and RSF. Although the RSF model uses Gaussian kernel, we cannot find

the effect of Gaussian function in small or large sigma value. On the other hand, our Gaussian

LREK is capable in tracing the smooth boundary, hence, showing the role of Gaussian function

in the segmented image. From the experiments, the advantages of our method over the LRAC is

an ability to reach concave shape with a large range of capture. Furthermore, when compared to

local region-based active contour that uses extendable search line such as the LRES, our method

provides more effective and efficient segmentation results. The long thin LRES’s search line may

not reliably sample the local intensity, hence, confused and unable to attract the contour to the true

boundary. Moreover, unscalable search line makes the LRES being computationally expensive.

On the other hand, we found that our model converges to the intended boundary quickly. In addi-

tion, to choose objects of desirable edge’s type, we also present a directional local region-scalable

active contour using expandable kernel (DLREK). While magnitude of intensity difference is used

in local adaptation statistics in order to detect object’s boundary, sign of the difference is utilized

to automatically switch appropriate force depending on local image edge’s type. With directional

property, one initial contour placement results in two segmentation outcomes of desirable edge’s

type. Hence, not only is our model capable in handling imageswith noises, non-uniform, and

heterogeneous textures with quick convergence, it also hasa large capture range to trace concave

shape object. In addition, formulation of our method in the level set enables our active contour to

naturally split and merge.
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5.2 Discussion

5.2.1 Global versus Local Models

Such global models have one energy function that trying to segment the object by approach-

ing whole image intensity with its statistical properties.That is different to the local model where

each of the energy function is defined on many local area distributed on the contour. The energy

function of global models should have one global minima while each of the energy function of

the local models should have one local minima.

5.2.2 Effect of Localization to Initialization

The global region descriptor may have more flexibility in initialization than the one with

local constraint. This flexible initialization, however, may not have choices to get different object

of segmentation candidate by placing different initial condition. Wherever initial contour is put,

it will produce similar segmentation outcome. In fact, several images may have complex appear-

ance where exist several objects. From several objects, a particular object may be desirable as

segmentation outcome. Such global models have tendency to detect all object no matter where

initial condition is put. It may not be able to choose particular object of interest from several

object existing on the image. Localization property of the proposed method, on the other hand,

can be a desirable property. As a result of the localization,this desirable property, even though

requires clever initialization, is able not only to separate objects from its background but also from

undesired other objects according to initial contour placement.

5.2.3 Relation between Active Contour Models

Unlike the local region-scalable models, the local region-based models are unable to change

the scale of the local region. These models just consider a local intensity region and ignore the

rest of image features, hence, with extremely small scale kernel they have close relation with the

edge based or local region-based models which considers only a small edge pixels.

We also see that global region-scalable models has close relation to the global region-based

models where the scalable region of the kernel has a degree offreedom to choose its scale to

be small to approaches local intensity details or to be largeto meet behaviour of global region-

based models. On the other hand, the local region-scalable models illustrate the connection of the

relation between the edge-based or local region-based models and global region-based models.

One could see that behaviour of the LRAC is controlled by the fixed-radius ball while the width of

the edge pixels of the edge-based models are controlled by sigma parameter of the edge indicator
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where mostlyσ is chosen to be1. Considering the ball radius is either1 or∞, with the radius of

1 then it acts similar to the edge-based or the local region-based models while with the radius of

∞ the ball will include all intensity statistics all over the image, hence, acts similar to the global

region-based models.

Hence, in our proposed model we let the relation between edgeand region-based models

acts in the evolution process automatically. The kernel expands itself from its initial scale to the

optimum scale according to the local image feature so that the kernel finds its optimum scale to

detect the boundaries. In our formulation, from extremely small initial scale of the kernel, i.e.,

d = 1, the adaptive local statistics can reach the maximum scale as large as possible (d = ∞)

which covers all image intensity. Withd = 1, our formulation of DLREK with additional balloon

force is similar to the GAC with additional balloon force too. The GAC considers only small

pixels of image gradient where the width is determined byσ parameter of Gaussian function.

With d = 1, such small kernel only considers intensities for 1 pixel similar to the GAC. Additional

balloon force can be a special help to expand capture range ofsuch small kernel while switching

parameter will help to switch it back to SLR force once it arrives at the boundaries.
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APPENDIX A

DERIVATION OF THE EQUATION

For convenience, we restate here our total energy function

E(φ) = −

∫

Ω
(δǫ(φ(y))ESLR − ν|∇Hǫ(φ(y))|) dy (A.1)

SinceH ′
ǫ(φ) = δǫ(φ), we getHǫ(φ) = δǫ(φ)|∇φ|. Thus, by substitutingESLR with (3.6),E

becomes

E(φ) = −

∫

Ω

(

δǫ(φ(y))

∫

Ω
K(x− y) · F (I(x), φ(x)) dx− νδǫ(φ(y))|∇φ(y)|

)

dy (A.2)

To obtain the optimalφ, the first variation the Euler-Lagrange equations for the level set

must be taken. To compute the variation ofφ, we consider replacingφ with φ + ξψ where

ψ represents a tiny change perpendicular toφ weighted by a small numberξ. We change the

parameters by writingE(φ) asE(φ+ ξψ)

E(φ+ ξψ) = −

(
∫

Ω
δǫ(φ(y) + ξψ)

∫

Ω
K(x− y) · F (I(x), φ(x) + ξψ) dxdy

− ν

∫

Ω
δǫ(φ(y) + ξψ)|∇(φ(y) + ξψ)|dy

)

(A.3)

SinceE is minimized byφ, the partial derivative of this energy is derived with respect to ξ,
∂E(φ+ξψ)

∂ξ
= 0, evaluated atξ = 0 to represent a small differential of movement.

∂E(φ + ξψ)

∂ξ
|ξ=0 = −

(
∫

Ω
δǫ(φ(y)) ×

∫

Ω
ψK(x− y)

∂F (I(x), φ(x))

∂φ(x)
dxdy (A.4)

+ ψ

∫

Ω
δ′ǫ(φ(y))

∫

Ω
K(x− y) · F (I(x), φ(x)) dxdy

− ν

∫

Ω

(

δ′ǫ(φ(y))|∇φ(y)|ψ + δǫ(φ(y))
∂|∇(φ(y) + ξψ)|

∂ξ

)

dy

)

The last partial derivative of the third term in (A.4) is expressed by plugging inξ = 0.

∂|∇(φ(y) + ξψ)|

∂ξ
=

1

2|∇(φ(y) + ξψ)|
+

∂

∂ξ

(

(

∂φ(y)

∂x
+ ξ

∂ψ

∂x

)2

+

(

∂φ(y)

∂y
+ ξ

∂ψ

∂y

)2
)

=
1

2|∇(φ(y)|
2

(

∂φ(y)

∂x

∂ψ

∂x
+
∂φ(y)

∂y

∂ψ

∂y

)

=
∇φ(y)∇ψ

|∇φ(y)|
(A.5)

On the zero level set function,δ′ǫ(φ(y)) in the third term of (A.4) evaluates to zero. So, the
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contour movement is not affected and this term can be ignored. By plugging in the term in (A.5)

into the last partial derivative of the first term in (A.4) andintegrating it by parts, we obtain

∂E(φ+ ξψ)

∂ξ
|ξ=0 = −

(
∫

Ω

∫

Ω
ψδǫ(φ(y))K(x − y)×

∂F (I(x), φ(x))

∂φ(x)
dxdy

− ν

∫

Ω

(

δ′ǫ(φ(y))|∇φ(y)|ψ + δǫ(φ(y))
∇φ(y)∇ψ

|∇φ(y)|

)

dy

)

= −

(
∫

Ω

∫

Ω
ψδǫ(φ(y))K(x − y)×

∂F (I(x), φ(x))

∂φ(x)
dxdy

− ν

∫

Ω

(

δ′ǫ(φ(y))|∇φ(y)|ψ − div

(

δǫ(φ(y))
∇φ(y)

|∇φ(y)|

)

ψ

)

dy

)

+

∫

∂Ω

δǫ(φ(y))

|∇φ(y)|
∇φ(y)~nψdy (A.6)

where~n denotes the exterior normal to the boundary∂Ω. We can write

div

(

δǫ(φ(y))
∇φ(y)

|∇φ(y)|

)

=
∂

∂x

(

δǫ(φ(y))
φx(y)

|∇φ(y)|

)

+
∂

∂y

(

δǫ(φ(y))
φy(y)

|∇φ(y)|

)

= δ′ǫ(φ(y))
φ2x(y)

|∇φ(y)|
+ δǫ(φ(y))

∂

∂x

(

∇φ(y)

|∇φ(y)|

)

+ δ′ǫ(φ(y))
φ2y(y)

|∇φ(y)|
+ δǫ(φ(y))

∂

∂y

(

∇φ(y)

|∇φ(y)|

)

= δ′ǫ(φ(y))|∇φ(y)| + δǫ(φ(y))div

(

∇φ(y)

|∇φ(y)|

)

(A.7)

By plugging in (A.7) to the first term of (A.6)

(

∂E

∂φ
, ψ

)

= −

∫

Ω

(
∫

Ω
δǫ(φ(y))K(x − y)×

∂F (I(x), φ(x))

∂φ(x)
dx (A.8)

+ ν

(

δǫ(φ(y))div

(

∇φ(y)

|∇φ(y)|

)))

ψdy + ν

∫

∂Ω

δǫ(φ(y))

|∇φ(y)|
∇φ(y)~nψdy

According to the chain rule, the partial derivative in (A.6)can be written by simultaneously plug-

ging in ξ = 0 thus achieving∂E
∂φ

. For allψ, this partial derivative must be zero, then, we have

∂E
∂φ

= 0. The Cauchy-Schwartz inequality can be used to show the optimal direction to moveφ.

Hence, the gradient flow equation is expressed as

∂φ

∂t
= δǫ(φ(y))

∫

Ω
K(x− y)

∂F (I(x), φ(x))

∂φ(x)
dx+ νδǫ(φ(y))div

(

∇φ

|∇φ|

)

= δǫ(φ(y))

(
∫

Ω
K(x− y)

∂F (I(x), φ(x))

∂φ(x)
dx+ νdiv

(

∇φ(y)

|∇φ(y)|

))

= δǫ(φ(y)) (FSLR + FSM) (A.9)

with initial conditionφ(y, 0) = φ0(y), (y) ∈ R and boundary conditionδǫ(φ)
∇φ

∂φ
∂~n

= 0 on ∂Ω,

where∂φ
∂~n

denotes the normal derivative ofφ at the boundary.
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