

DETERMINATION OF THE STRUCTURE

Chapter 5

The tungsten vanadium oxide is composed of tungsten, vanadium and oxygen which atomic numbers are 74, 23 and 8 respectively. Since the atomic number of tungsten is much larger than those of vanadium and oxygen, the structure of tungsten vanadium oxide can be determined by heavy atom method.

Numerical computations were made on IBM 3031-008 system (OS/VSI) using standard crystallographic program.

(32) All programs were written in FORTRAN IV. The details of the programs used are listed in Table 5.1 Computations with these programs were carried out at the Computer Service Centre, Chulalongkorn University.

Table 5.1 Programs used in performing the crystallographic calculations on IBM 3031-008 system (OS/VSI)

Program	Calculation	Authors
ABSW	Lorentz-polarization and absorption	J-O LUNDGREN
	corrections on X-ray data collected in a	ลัย
	two-circle (Weissenberg) geometry crystals	
	can be of shperical, cylindrical or general	
	shape.	
UPALS	Calculation of structure factors and	Idem.
	full-matrix least-square refinements.	

Table 5.1 (continued)

Program	Calculation	Authors
FORDUP	Fourier syntheses maps can be calculated in	Idem.
	planes parallel to unit cell axes or in	
	planes defined by three non-colinear points,	·
	arbitrarily chosen in the unit cell. Fo, Fc,	·
	difference maps : reflexion input is from	
	an UPALS output file. Patterson maps :	
	reflection input is from a standard file or	
	an UPALS output file.	
DISTAN	Calculation of distances and angles with	Idem.
	E.S.D.'s. An input file for this program	
	may be writtenin UPALS.	

Intensity Data Reduction

From Weissenberg intensity data of 238 reflections of hol, \bar{h} ol and 231 reflections of h21, \bar{h} 21, Lorentz and polarization correction as well as absorption correction using the Gaussian grid method applied to obtain the square of observed structure factor amplitudes by using the ABSW program. The linear absorption coefficient of $W_3V_5O_{20}^{\circ}$ for MoK_{α}- radiation is 287 cm⁻¹ which was derived from the Eq. 5.1 as follows:

$$\mu_{\lambda} = \rho \sum_{n}^{\Sigma} \left(\frac{P_{n}}{100}\right) \left(\frac{\mu}{\rho}\right)_{\lambda, E_{n}} \qquad \dots \qquad 5.1$$

where μ_{λ} is the linear absorption, (μ/ρ) is defined as the mass absorption coefficient for the wavelength used and taken from the International Table, Vol.III, P. 162 and $\frac{P_{n}}{100}$ is number of percent of an element of a compound. The transmission factors varied between 0.2576 and 0.3696

All of the 469 reflections were used for the calculation of Patterson function, F_{Ω} synthesis and least square refinements.

Determination of Heavy Atom Positions by Using Patterson Function

It is shown from experimental data (chapter 4) that $W_3V_5^0{}_{20}$ crystallizes in monoclinic system. A unit cell consists of six atoms of tungsten, ten vanadium atoms and forty oxygen atoms. The space group of $W_3V_5^0{}_{20}$ crystals may be one of three space groups (C2,Cm,C2/m).

By considering unit cell parameters obtained from oscillation, Weissenberg and precession photographs, it is found that these values are close to the unit cell parameters of WV_2^0 , by Mondet et al. and of $W_3V_5^0$ by Kihlborg et al. (Table 5.2)

Table 5.2 Comparing unit cell parameters from this work with the values by Mondet et al. and the values by Kihlborg et al.

unit cell parameters	By Mondet et al.	By Kihlborg et al.	From this work
a (Å)	24.4	24.413 (3)	24.412 (2)
ъ (Å).	7.44	7.446 (2)	7.4479 (8)
c (Å)	3.95	3.950 (1)	3.9506 (3)
β, (degree)	90	91.03 (2)	91.027 (7)

In order to find out the most probable space group and the structure model for this V-W-O compound, the calculation of structure factors of these two models using UPALS X-ray data from this work were made. These yielded an R value of 0.398 for $W_3V_5O_{20}$ model lower than that of 0.447 for WV_2O_7 model. Since the space group of WV_2O_7 is C2 and the space group of $W_3V_5O_{20}$ is C2/m, C2 should not be the space group of the model in this work. Only two space groups, C2/m and Cm, therefore, would be used for $W_3V_5O_{20}$ in determining heavy atomic positions.

The atomic positions of $W_3V_5O_{20}$ were determined from the Patterson synthesis. It is seen from the interatomic vectors derived from general positions of C2/m and Cm as shown in Table 5.3 and Table 5.4 that the Harker planes (uow) and (u½ w) occured only in space group C2/m whereas the Harker lines (ovo) and (½ vo) appears both in space groups C2/m and Cm. So it is not possible to find the coordinates x and z from the Patterson sections with the space group Cm.

The Patterson section P (uow), (u ½ w) and (uvo) were evaluated by the FORDUP program using all of 469 reflections. The calculations were performed at sections uow, u 0.5 w, with the fractional grid intervals of 0.02 along "u" and "w" and at the section uvo with the fractional grid intervals of 0.02 along "u" and "v". These maps are shown in Fig. 5.1

According to the program, the height of the origin peak is normalized to 999, the expected peak height for the various Patterson maxima can be approximately determined. The Patterson's peak height maxima for a pair of atoms proportional to the products of the atomic numbers of the atoms they join. The approximated peak height maxima

Table 5.3 Interatomic vectors derived from a general equivalent position 8j in the space group C2/m

				NAME OF THE PARTY				
	x,y,z	x,-y,z	-x,y,-z	-x,-y-z	½+x,½+y,z	½+x,½-y,z	¹₂-x,¹₂+y,-z	¹ 2-x, ¹ 2-y, -z
x,y,z	0,0,0	0,-2y,0	-2x,0,-2z	-2x,-2y,-2z	½,½,0	½,½-2y,0	½-2x,½,-2z	½-2x,½-2y,-2z
·	0,2y,0	0,0,0	-2x,2y,-2z	-2x,0,-2z	½,½+2y,0	¹ 2, ¹ 2, 0	½-2x,½+2y,-2z	½-2x,½,-2z
	2x,0,2z	2x,-2y,2z	0,0,0	0,-2y,0	¹ ₂ +2x, ¹ ₂ , 2z	¹ ₂ +2x, ¹ ₂ -2y, 2z	1, 1, 0	1 ₂ , 1 ₂ -2y, 0
	2x,2y,2z	2x 0 2z	0 2y 0	0,0,0	¹ ₂ +2x, ¹ ₂ +2y, 2z	½+2x,½,2z	½,½+2y,0	¹ 5, ¹ 5, 0
¹ 2+x, ¹ 2+y, z	- ¹ ₂ , - ¹ ₂ , 0	- ¹ ₂ ,- ¹ ₂ ,0	-1 ₅ -2x,-1 ₅ ,-2z	-1 ₂ -2x,-1 ₂ -2y,-2z	0,0,0	0, -2y, 0	-2x,0,-2z	-2x,-2y,-2z
¹ 2+x, ¹ 2-y, z	- ½,- ½+2y,0	- ¹ ₂ ,- ¹ ₂ ,0	-½-2x,-½,-2z	-1 ₂ -2x,-1 ₂ ,-2z	0,2y,0	0,0,0	-2x,-2y,-2z	-2x,0,-2z
	-½+2x,-½,2z	- ½+2x,-2y,2z	- ½,-½,0	-½,-½-2y,0	2x,0,2z	2x,2y,2z	0,0,0	0,-2y 0
1 ₂ -x, 1 ₂ -y, z	-1 ₂ +2x,1 ₂ +2y,2z	-½+2x,-½+2y,2z	-½,-½+2y,0	-12,-12,0	2x,2y,2z	2x 0 2z	0,-2y,0	0,0,0

Table 5.4 Interatomic vectors derived from a general equivalent positions
4b in the space group Cm

	x,y,z	х,-у,ż	¹ 5+x, ¹ 5+y, z	¹ ₂ +x, ¹ ₂ -y, z
x,y,2	0,0,0	0,2y,0	¹ 2, ¹ 2, 0	¹ 2, ¹ 2-2y, 0
х,-у, г	0,2y,0	0,0,0	¹ ₂ , ¹ ₂ +2y,0	½,½,0
½+x,½+y,z	-½,-½,0	-12,-12,0	0,0,0	0,-2y,0
¹₂+x,¹₂-y,z	-½,-½+2y,0	- ¹ 2,- ¹ 2,0	0,2y,0	0,0,0

in the Patterson map between two atoms are listed in Table 5.5

Table 5.5 The approximated peak height maxima in Patterson map of $W_3V_5O_{20}$

Type to atoms	The approximated height maxima
origin peak	999
W-W	134
W-V	42
V-V W-O	หาวิ ¹³ ยาส
v-o	5
0-0	2

From the Patterson maps, there was only one peak that should be correspond to tungsten-tungsten peak. This was the peak of height 373 on the Harker plane (u,o,w) and the other peak of height 999 on the Harker line (½ vo). These peaks should correspond to tungsten - tungsten peak. Thus the following assignments could be drawn:

- a. Section (u,0,w),

 peak found at 0.14 0 0.16

 assigned $\pm 2x$, 0, $\pm 2z$ SO x = 0.07, z = 0.08 and x = 0.93, z = 0.92
- b. Section (u,v,o),

 peak found at 0, 0.5, 0 and

 assigned 0, $\pm 2y$, 0 and $\pm \frac{1}{2}$, $\pm (\frac{1}{2}-2y)$, 0

 hence y = 0.25 or 0.75

The coordinates of atoms obtained from the above assignments are 0.07, 0.25, 0.08; 0.07, 0.75, 0.08; 0.93, 0.25, 0.92 and 0.93, 0.75, 0.92. The last three coordinates are equivalent positions with the first by symmetry. The coordinates of 8 tungsten atoms W1 obtained from Patterson maps, therefore should be at 0.07, 0.25, 0.08 in 8j position of space group C2/m or assumed 4 tungsten atoms at 0.07, 0.25, 0.08 in position 4b of space group Cm.

Determination of Other Atoms by the Fo Synthesis

'Fourier calculations using the observed structure factor amplitudes with the calculated phases as the coefficients are called the Fo synthesis. This can be expressed in the form

0.1603050 3 2 = 2 = 1 = 1 = 1 = 2 = 1 = 2 = 2 0. 0. 0. 0. 3. 3. 0. 3. 3. 0. c. c. c. c. 0. 3. 3. 1. 3. 0. 0. 0. 0. 3. c. 0 20 40 60 80 100 120 140 150 130 230 240 260 280 200 32) 540 350 570 400 420 440 460 480 500 14 23 41 . X= 0.0006 15 -15 -15 -15 -15 -15 -15 -25 -27 -23 -17 -15 -16 -7 -2 X= 0.0200 X= 3.3-03 -3 -11 -13 -23 -26 -23 -22 -25 -22 -12 -13 -13 -13 -13 -14 -12 -11 -2 -5 X= 3.3500 3; 22 10 -2-12-11-22 -22 -22 -22 -21 -19 -15 -11 42 A= 0.3533 -9 -15 -20 -23 -23 -22 -20 -10 -20 -20 -25 -29 X= 0.1000 13. 5 X= 0.1290 5 (153 271 060 073) 305 196 103) 50 2.7 2.5 24 45 45 i= 0.1400 7.2 3.3 7. 53 37 ف د 43 X= 0.1600 --; 23 22 15 -12 -20 -27 -1 3 -2 X= 0.1400 -3 12 15 13 14 3.5 -3 -1X = J.2333 3 J X= 0.2231 -17 -10 -13 -7 5 X= 0.2400 -22 -21 -21 -17 -11 - 30 - 23 - 25 X= 0.250) -23 -14 K= C. 2370 -1 -q -5 -2 ラー11 -12 - 12X= 3.3000 11 -31 -31 -23 -24 -21 -20 -20 -20 -13 -17 -17 -17 -13 -3 -2 X= 3.3335 3 3 -5 -10 -10 -4 -1 35 X= C. 3+00 -4. -7 -5 -4 -4 -5 -6 -10 -9 →ò 3 -28 X= 0.3500 -41 -37 -35 -35 -35 -35 -34 -34 -34 -34 -32 -23 -24 -21 X= 0.3333 -43 -45 -44 -41 -45 -67 -11-116-124-110 -83 -55 -40 -34 -54 -35 -34 X= C.4000 3 14 13 5 -5 -14 -17 -23 -26 -28 -28 -27 -27 -27 -27 -26 -23 -17 -12 X= 0.4200 -13 -22 -33 -43 -49 -50 ++3 -41 -35 -31 -27 -26 -25 -26 -27 -37 -21 -26 -23 -19 X= 0.++33 -1 -20 -32 -43 -51 -5+ -5+ -52 -47 -41 -35 -32 -31 -31 -24 -25 -22 -21 -42 X= 0.461) 30 7-12-23-23-19-16-19-25..-27-24-19-13-19-10-13-7 X= 0.-300 999 888 620 335 142 57 3! 22 3 -8 -5 2 3 -1 -1 4 7 14 22 X= 0.5000

(a)

Fig. 5.1 Patterson maps of $W_3V_5^0_{20}$

- (a) P (uow)
- (b) P (uvo

	-										***	4***	** ** 4	***													
RMA	X=	35.55	-								*	2 = (0.000) *.				•• .•			٠.	Ç	=	. 2	.153	20 52	·
			•								***	** * * :	***	***													
		Υ=																									
		0.). () .)	. (). 0	. ().)	. 0	. (. 1	0. (D. (). (3. 0	. (). (:. 0	٠. ٥	• 0	. 3	. 0	. :	. 0	.)	્ ર	
		0	20	40	50	80	103	12)	140	150	133	200	2 20	240	260	280	300	320	340	360	380	400	¥20	440	+6.2	48C	500
		=	_																				-				
	0.0000	. <u>999</u>	919																						J21.	.979.	
	0.)20)	74	7 :	29											-)					25	25	45	55	02		72	74
	0.0400	}	-3												-4										-9		-9
	0.3533																								-13		
	C. 3333	•	1												- 25										•	-	2.
	0.1333																								-40		
	9.1533																								-+7		
	0.1+00																								-33		-26
	0.1-11																								-9		- 9
	9.1333																								-29		-3:
	0.5339	-7	-1			-									-23									-9	-3	-7	-7
	0.2233		Ŧ		•		4	-2	15	13	21	23		- 32			-23	21		15				4	2	1	1
	0.2400														423										-73		
	0.2600	-106	- ∙3 3	-73	- 34	17	73	1 + 3	239	273	329	Q75	407	423	423	407	/375	/329		210	143	78	13	-34	-73	-97-	- 10 é
	0.2333	ı	1	_	4										27					15					2	1	1
X=	C. 3 3 3 3																								-8		-7
	00 څخه ن														10										-29		
% =	0.3+00																								-9		
X=	C.3500																								-23		
Á=	0.3333	-43	زو.−	-+7	-+7	-45	-45	-+4	-43	-12	-41	- 4 2	- 40	-40	-40	-40	-41	-41	-42	-43	-44	-45	-46	-47	-47	- 43	-49
XΞ	0.4733	-43	-42	-+0																					-40	-42	-43
X≖	0.1211	2	1	j	-2	-5	+ა	-11	-14	-17	-20	-23	-24	-25	- 25	-24	-22	-?)	- 17	-14	-11	s-	-5	-2	ú	2	2
X=	3-4+10	-13	-13	-13	-13	-13	-13	-13	-13	-13	-1 3	-13	-12	-12	- 12	-12	-12	-12	-12	-12	-12	-12	-13	-13	ذ:-	-13	-13
X≠	3.4533	-9	-9	-9	-9	- 3	-3															-8	-5	ب ــ	- 3	-9	-3
X=	0. +833	-7-	- 73	_28	52	. 54.	.45	35.	25	.15			-5	- 9	-7	-6	-:	ប	1.5	2.5	35.	45	54	02	53	72	74
X =	0.5000	999	979	921	328	707	504	+) }	251	101	-33	-1+1	-217	-255	-255-	- 21/-	- 141	-33	101	25!.	496	503	726	325	92 L	579	979
		=			5 4	34	45	35	25	15	ć	-1	-5	-9	-9	-6	-!	5	15	25	35	+5	55	62	59	72	74
•																											

(b)

Fig. 5.1 Patterson maps of $W_3V_5^0_{20}$

(a) P (uow)

(b) P (uvo)

$$\Phi_{O}(xyz) = \frac{1}{V} \frac{\Sigma}{hkl} A_{OC} \cos 2\pi (hx+ky+lz) + \frac{1}{V} \frac{\Sigma}{hkl} B_{OC} \sin 2\pi (hx+ky+lz) + \frac{1}{V} \frac{\Sigma}{hkl} B_{OC} \sin 2\pi (hx+ky+lz) + \frac{1}{V} \frac{\Sigma}{hkl} B_{OC} \sin 2\pi (hx+ky+lz) + \frac{1}{V} \frac{\Sigma}{hkl} B_{OC} (hkl) = |F_{O}(hkl)| \cos \alpha_{C} (hkl) + |F_{O}(hkl)| \sin \alpha_{C} (hkl) + |F_{O}(hkl)| + |F_{O}(hkl)|$$

Since the $W_3V_5^{0}_{20}$ crystal has a center of symmetry, Eq. 5.1 gives B = 0 and

The sequence of finding the positions of other atoms by $\mathbf{F}_{\mathbf{O}}$ synthesis are as follows:

- 1. The structure factors F_c were calculated by program UPALS using only the positions of tungsten atoms W_1 obtained from the Patterson maps. The temperature factor of 0.33 and the scale factor of 2.0 obtained from the Wilson's plot were also used in the structure factor calculation. The first structure factor calculation yielded the R value of 0.57 for space group C2/m and 0.34
- 2. The F_0 synthesis was then performed by FORDUP program and taking the phase from calculated structure factor based only 8 tungsten atoms W_1 for C2/m and 4 tungsten atoms for Cm. The first electron density map on sections (010) were performed at y=0, 0.25, 0.5 for both

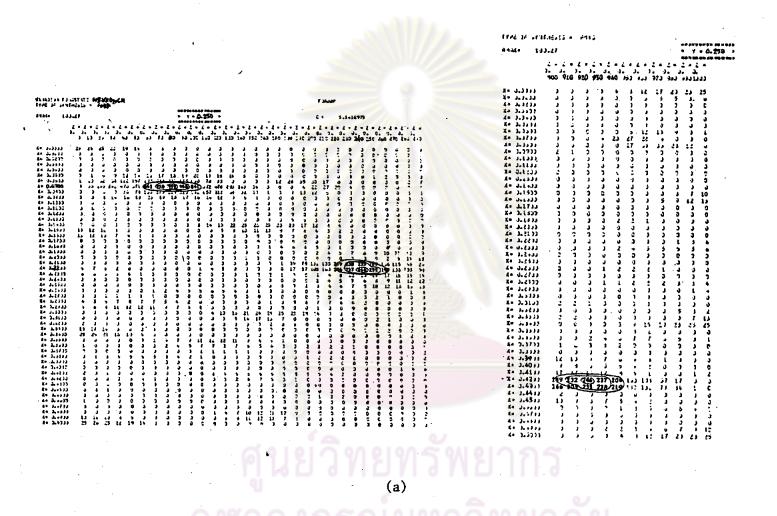


Fig. 5.2 F_o maps where input 'W" = .07 .25 .08, (a),(b),(c) F_o maps with space group Cm, (d),(e),(f) F_o maps with space group C2/m

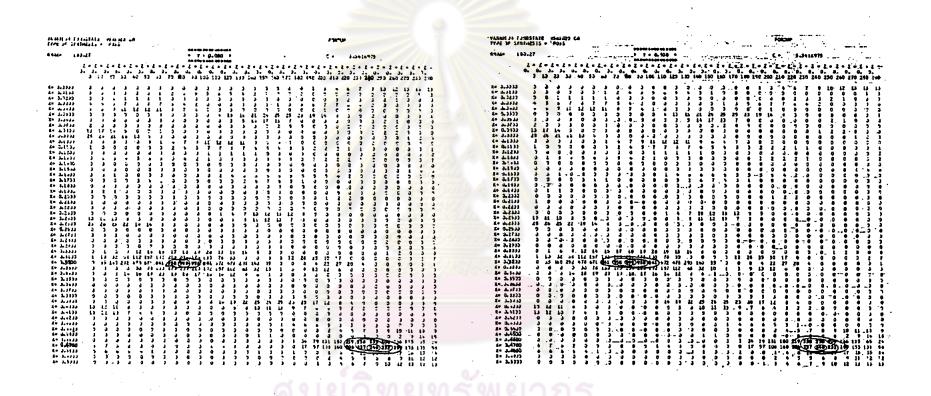


Fig. 5.2 (continued)

(b)

ศูนยวิทยทรีพยากร เกลงกรณ์ ^(c)หาวิทยาลั

Fig. 5.2 (condinued)

TYPE OF SYNTHESIS = FOIS * Y = 0.000 . 2 = 2 ± 3. C. 3 5931.000 2 * Z = Z * Z * 0. 0. 0. 0. 0 900 910 920 930 Z = Z = Z = Z = 0. C. C. O. 0 940 350 960 970 940 ٥.) 1: 2000 15 12 1 j õ õ Ċ 3.0133 15 14 C ıδ 0000 11023050000 0.0400 ん= 人= 人= C 13 20 20 30 10 00 00 0 **/= /=** 3.1330 1000 28 232 703 75 16 C (= (= ζ= ζ= 000 2 23 **∢**= 0.1500 21 54 31 2 35 11 15 0. 15 10 0.17 10 33 XΞ 940 999 975 X= Э 34 10 0 20000 Je 1 1 10 3.2000 3.2100 3.2200 J 0 0 0 9 42 c **/=** 0 5 43 0 20 **ζ=** 0.2300 1530 Ü 0000 0000 0.2+33 3003 X= 0.2500 19 15 15 0 1.2.00 J. 2700 10 . Κ≃ . Κ= 0 0 0 000 X= .3.3300 X= 3.3100 X= 3.3200 X= 3.3300 J 600 0000 11 0 000000 L3 **/=** 0.3400 A= 0.3510 X= 0.3510 X= 0.3700 000 0 0 0 0 0 25 11 0 0 0 3 12 0 0 . . 007000051 0 2 -(= 0.3330 X=_0.4000 X= 0.4100), 41)0 o 30 23 0 0 0 3 13 12 000 0 13 C 0 2 X= o O 0.4500 J.4500 5 ζ= 3 3 0 ... 7 0 K= J. 4900

(d)

Fig. 5.2 (continued)

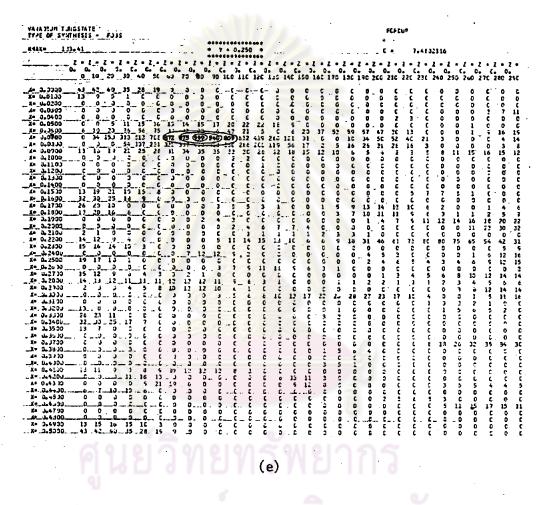


Fig. 5.2 (continued)

```
TYPE OF SYNTHESIS =
 444X= 135.41
                                                                                           * Y = 0. #CC
                                             Z = Z = Z = Z =
0. 0. 0. 1. (
900 910 920 730
                                                    Z = Z = Z = Z = Z =
C. O. C. O. O.
54C 35C 360 370 930
                                                                                         2 = 2 =
2. C.
                                                                                        3. c.
3.3901000
                        ن
و
د
11
                                        11
                                                  3
                                                         000
                                                                00000
 A= 0.0100
A= 0.0100
                                                                                     14
                                 12
                                                                             10
                                                                                                    1314
                                                                        )
                                                                                             0
16
12
1
                                  <u>ز</u>
ذ.
                                                 23:50
      0.3435
                           3 2 3 0 5
                                                                                      0
  =).
      0.0500
     0. 3533
0. 3733
                                                                0
                                                         S
 ⋌=
                                                                               ٠,
                                                                                       J
 χ=
                                                                                             20
20
30
                                                                               6
 X= 0.0330
                                                                              13
                                                                      15
  /=
      0.100
                           0
                                                                              19
      0.1100
0.1200
0.1300
  <=
                           000
                                                                000
                                                                                              00000
 X=
                                                                                       Ú
                                                 3000
 Λ=
                                                                                       )
                                                                                                    0 0 13 0
                         2 33
 <=
     .0-1+33
                                                                0
                                                                                       Ú
 X= 0.1500
X= 0.1500
X= 0.1700
                                                           28
-232
)768
75
                                                                    25
137
513
53
15
                                             34 31
37 221
975 872
                                                                            .:1
54
31 ) 1
                                                                                             10
                                 35
                      809 940
                                                                                     53
 X= .0.1800
                                     (999)
                                                                                             34
10
0
                                                       0 d
15
 X≈
     3,1000
                                                                             36
                                                                                     2)
                                                                                                      6
                                                                             11
     20, 27.10
      0.2130
0.2200
 X=
                                          1
                                                                       0
                                                                                       0
                                                                                              0
                           300
                                                 000
                                                                000
                                                                                             0
0
42
                                  J
                                                                               0
                                                                       0
                                                                                       005
                                                                                                      0
       9.23 10
                                                                                                    0
13
43
                                  )
                                                              19
 Χ÷
                           000000
                                                                             35
15
0
 X= 0.2301
                                   )
                                                  )
                                                                      20
                                                                                     40
.4= 0.2500
.4= 0.2500
.4= 0.2700
.4= 0.2300
X= 0.2300
                                                                      10
                                                                                     16
                                                                                             15
                                                                                                    13
                                  000
                                                         C
                                                                300000
                                                 000000
                                                       00000
                                                                             0 0
                                  )
                                                                        0
      יני נידינ
                           0000
                                                                                     10
. X ÷
                                  C
                                                                        J
                                                                                              3
                                                                                                      C
                                          ō
 ٨×
      D-31 io
                                                                        á
                                                                                                      6 0 0
                                                3
3
12
      3, 32 19
                                          o
                                                                               o
                                                               à l
                                                                                       3
 X=
       33330
                                                                      13
                                                       10
 4=
      3.3+30
                           3
                                 12
                                        1.3
                                                                        3
                                                                               3
      0.3500
0.3500
0.3700
                                          )
 χæ
                                  J
                                                         C
                                                                800000000000
                                                                                       )
                           0000000
                                                 300
                                                                                              000007
                                                                                                      00000
 .≾=
                                  :ນ
ວ
                                                         0
                                                                       0
                                                                               0
                                                                                     0 0 0 0 0 25
 ζ=
                                               0.4430
                                                                        ă
                                                                               õ
      3.3130
                                                                       3 7
                                                                             17 0
  .(=
     J
                                          0000
                                                                                                    32
26
13
                                  )
                                                         000
                                                                                             30
23
0 0 0
                                                                                     11
      0.43 10
 X= 0.4400
X= 0.4500
                                                                                       0
                           9
                                                                                                      002
                                        12
                                  3
                                                                        5
                                                                               0
                                                                                           3
13
12
C
                                                       10
      0.4000
                                 10
                                                                                     12 7
                                                                             11
                                                12 2 3
                                                       12
                                 11
                                                               11
                                                                      11
                                                                                                   14
15
C
                                         .
.
                                                                0
. 4=_0.4300
                           0
λ= J. 1110
...λ=..0. 3110 ...
                                  3
                                                                       0
```

(f)

Fig. 5.2 (continued)

space groups. The F_0 synthesis of these two space groups were prepared only in one asymmetric unit which was one-fourth of cell volume, i.e. x = 0-0.5, z = 0-1.0. These maps were shown in Fig. 5.2

The maximum electron density is proportional to the atomic number of the atom. For $W_3V_5O_{20}$ the atomic number 74 corresponds to electron density peak 999, therefore the atomic number 23 and 8 should approximately correspond to peaks of height 311 and 108 respectively.

By considering the electron density peak from the map it was found 28 metal atoms (Table 5.6) for space group "Cm" which are much more than the number of metals of $W_3V_5O_{20}$ (16 atoms) in a unit cell. So this space group is not fit for these intensity data. For space group C2/m only 3 peaks (Table 5.6) are obtained. Thus space group C2/m was used for later calculations.

Table 5.6 Coordinates of peaks obtained from ρ maps of space group of C2/m and C2 were shown.

space group	peak height	coordinates	calculated atoms from F map O
Cm	999	0.07,0.25,0.08	4
מגוויי	999	0.32,0.50,0.08	2
g)	999	0.07,0.75,0.08	4
หาลงร	246	0.47,0.00,0.24	2
14 101 41	246	0.22,0.25,0.24	4
	246	0.42,0.25,0.92	4
	246	0.47,0.50,0.24	. 2
; 	246	0.17,0.50,0.92	2
-	246	0.22,0.75,0.24	4
C2/m	999	0.07,0.25,0.08	8
	999	0.18,0.00,0.92	4.
	999	0.18,0.50,0.92	4

From the F map better coordinates of atoms were obtained. The shifted atomic positions were determined by the Booth's method.

Table 5.7 $\Delta \rho$ as a function of x coordinate in the Booth's method

х	0	1	2	n 2n 20
Δρ	0	ρ ₁	ρ ₂	° ₁ ≥° ₂ ≥0

From Table 4.6 the highest peak obtained from the electron density map is at the point x=1. $\Delta \rho$ is the difference between electron density of each point and that of the lowest point, i.e. at x=0. The electron density is assumed to be given by the equation

$$\rho = ax^2 + bx \qquad \qquad 5.3$$

Substituting the value of x corresponding to ρ_1 and ρ_2 from table 5.7 Eq. 5.3 gives

$$a = \frac{\rho_2 - 2\rho_1}{2}$$

$$b = -(\frac{\rho_2 - 4\rho_1}{2})$$

The position of the maximum electron density is obtained by differentiating Eq. 5.3 and equating the result to zero

$$x_{m} = \frac{-b}{2a}$$

$$= \frac{\rho_{2}^{-4\rho} 1}{2\rho_{2}^{-4\rho} 1}$$

$$= \frac{(\rho_{2}^{/\rho} 1) - 4}{(2\rho_{2}^{/\rho} 1) - 4} \cdot \dots \cdot 5.4$$

where $\mathbf{x}_{\mathbf{m}}$ is the distance to be shifted from $\mathbf{x} = \mathbf{0}$. The y and z coordinates are also calculated by the same procedure as the x coordinate.

The coordinates of atoms obtained from the first electron density map are listed in Table 5.8

Table 5.8 The coordinate of atoms obtained from the first electron density map and refined by Booth's method.

peak height	atomic coordinate	position in C2/m					
999	0.071,0.25,0.078	8j					
999	0.179,0.50,0.922	4i					
999	0.179,0.00,0.922	41					

- 3. All of the three 999 peaks were first assigned as positions of "W". The calculations then were performed as in step2. The second F_0 map obtained show that no peaks corresponded to "V" positions. By considering the number of atoms in a unit cell of 6 W.,10 V and 20 oxygen atoms, the assignments of the three peaks were 8 W_1 in 8j position (.071, .25, .078); 4 V_2 in 4i (.179, 0, .922) and 4 W_2 in 4i (.179, .5, .922). The structure factor calculation obtained from these assignments gave the R value of 0.311. However the number of "W" positions in this assignment was more than that expected in $W_3V_5O_{20}$ and that of "V" positions was lower than that expected in $W_3V_5O_{20}$. Thus the position (.071, .25, .078) must be occupied by both W and V and the occupancy factors of "W" and of "V" should be 0.25 and 0.75 respectively.
- 4. The same procedure was repeated as "step2" to obtain the third F_o maps (Fig. 5.4) using (W_1V_1) in 8j (0.71, 0.25, 0.078) with

A- 0-3100 #= 0.3400 #= 0.3530 #= 0.3830 #= 0.3900 4. 0-41-0 -3 2 6 15 26 16 22 8 6 6 7 12 12 12 16 9 10 1 0 9 12 13 14 21 24 11 14 2 5 15 11 15 15 16 25 16 27 1 15 23 13 22 -1 -3 16 21 10 19 17 13 14 29 16 10 Ä= 0.4300 15 25 17 26 19 22 14 8 13 # 0.4400 # 0.4500 18 24 24 10 17 15 16 23 28 14 16 39 19 A- 0.4600 25

(a)

19 19

Fig. 5.3 (a),(b),(c),(d),(e),(f) F_0 maps where input " W_1 ", " V_2 ", with space group C2/m

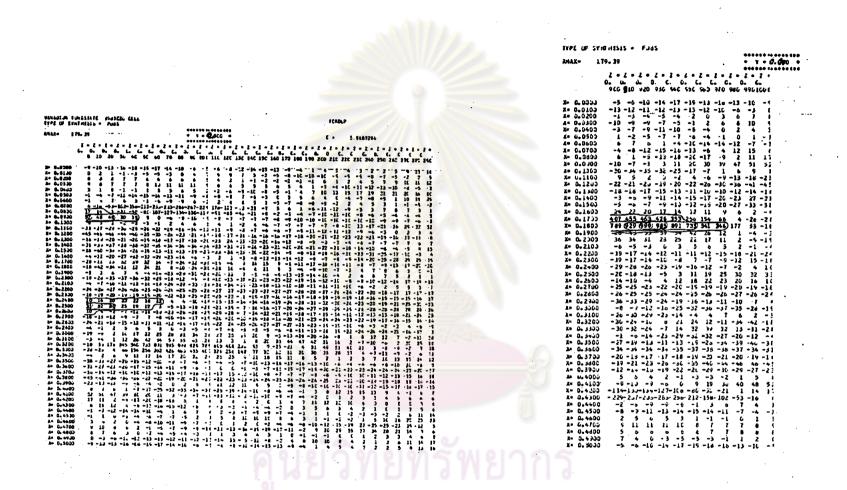
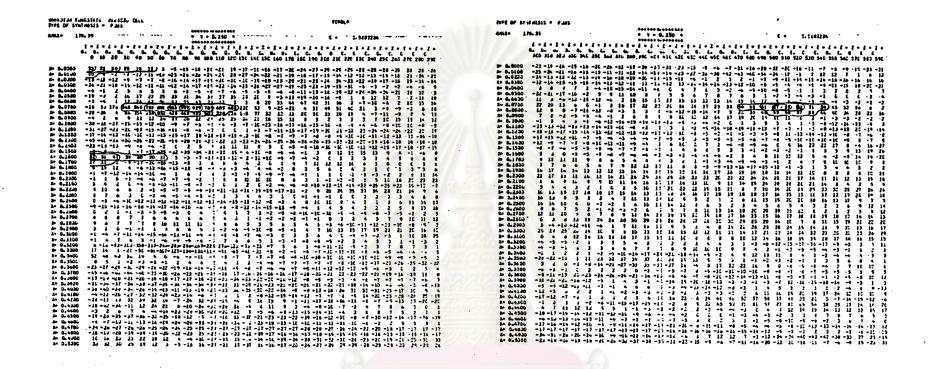



Fig. 5.3 (continued)

(b)

(c)

Fig. 5.3 (continued)

(d)

27 20 5

12

X= 0.4400

A- 0-4700

X- 0-4800

0.4963 # 0.5300

ĸ

19

กุมย์จิทยทร พยากร

Fig. 5.3 (continued)

```
TYPE OF SYNTHESIS = FJBS
                                                               Y = 0.500
          179.39
= XZMS
              Z = Z = Z = Z = Z = Z = Z = Z

• 0• 0• 0• 0• 0• 0• 0•
                                                              Ç o
                                                   G. J.
              900 910 920 930 940 950 960 970 980 9961666
X= 0.0000
                                       -13
                                           -12
                        -11 -12
                                 -13
              - 13 - 12
X=
   0.0100
   0.0230
                -1
                   - 3
Χ±
                         - 3
                                   - š
                                                        3
                                        -1
              -10
   0.0300
                         -9
                                        -8
                             -1i
                                   -1 ù
   0.0403
                -3
                        - 5
                                   - 7
                                        . 6
   0.0500
                 1
                                   -4
X= 0.0600
                          ó
                                1
                                                       12
                    -3 -12 -15
                                 -16
                                       -13
                                            -6
                                                            15
   0.0700
                             .13
                                 -13
                                                            11
   0.0800
                 6
                     1
                        -5
-3
                                       -26
                                  11
                                        20
                                                  39
   0.0900
              - 10
                    -7
                                3
                                             3)
                                                  1
                                                        6
               - 30
                        -35
                                  -25
                                        -17
   0.1000
                   - 34
                                             -14 -13
                                                           -18 -23
   0.1100
                 9
                     5
                           2
                                  - 2
                                            -20 -30 -36
                                                           -41 -45
               -22 -21
                        -20 -19 -20
                                       -22
   0.1200
               -18 -13 -17 -15 -13
-3 -6 -9 -11 -14
                                            -10 -10 -12
                                                          -14
                                       -11
                                                                -16
   0.1300
                             -11 -14
-9 -10
                                            -17
                                                 -20 -23
                                                           . 47
XΞ
    0.1400
                                       -12
12
                                                      -21
    0. 1500
                                            -15
                                                -20
                                                           -33
X=
               24 22
407 455
    0.1600
                                             11
                                                        6
X=
               407 455 463
7 89 929 999
    0.1700
                                             154
                                                  66
                                                         4
                                                                -28
X=
                              985) 891
                                        733
                                             541
                                                 340
                                                     177
                                                             53
                                                                -18
    0.1800
Х×
                               59
   0.1900
X=
                                    25
                                                                - 1 9
                     34
                          16
                               48
                                         22
                36
X=
    0.2000
                                                         2
                                û
                     -5
X= 0.2100
                -6
                                                           - 21
                                            -12
                                                  -15 -13
                                  -11 -11
X= 0.2200
               -19 -17 -14
                             -12
                                   - d
                                                      -12
                                                  - 9
                                                           -15
                             -10
   0.2300
               -19 -17 -14
                             -23
                                  -19 -16
                                            -12
X= 0.2403
               -29 -23 -26
               -29 -20
-20 -13 -13
-14 -10 -4
                                        11
                              - 5
                                   3
                                              19
                                                  25
                                                       30
                                                             32
 A= 0.2500
   0.2600
               -14 -10
-25 -25
                                                 23
-19
                                                      20
-20
                                                           16
-15
                                    12
                                              22
               -25 -25 -23 -22 -20 -19 -19 -26 -25 -25 -24 -24 -25 -26
                                                 -26 - 27
                                                                -24
                                                           -26
 X= 0.2800
               -36 -33 -29 -24 -19 -16 -13 -11 -16 -8 -9 -12 -18 -25 -32 -36 -37 -35
 x= 0.2900
   0.3000
                                                 -37 -35
                                                           -28 -19
 X= 0.3100
X= 0.3200
               -26 -30 -29 -23 -14
-30 -24 -10 d 21
                                              4
                                                   7
                                                         6
                             8 21
-7 14
                                                           -42
               -30 -24 -10
                                             12 -11 -34
                                                                  1 6
                                       32 39 32 13
-32 -32 -27 -20
                                                           -11
               -30 -32 -24
 X= 0.3300
                                                           -12
                -1 -5 -14 -23 -29
 X= 0.3400
                                                      -39
               -27 -19 -13 -11 -13 -19
                                            -25
                                                 -34
 X= 0.3500
               -24 -34 -34 -34 -35 -37 -38
                                                 -38 -37
 X= 0.3600
                                            -26 -21 -20 -19
-40 -44 -46 -46
               -20 -10 -17 -17 -10 -19
 X= 0.370J
               -19 -21 -23 -20 -30
                                        -35
 X= 0.3800
               -12 -14 -15
                             -19 -22 -26
                                             -29
                                                  -30
                                                       -29
 X= 0.3300
                                             -3
                                                  -2
 X= 0.4003
                                2
                                    - 1
                                         - 3
                 -9 -10
                                             19
                                                             48
                                     C
                                          Q
                                                   30
    0.4100
              -114-130-134-127-168 -86 -50
    0.4200
                                                  -21
                                                         1
                                                             14
    0.4300
              -229-267-286-283-256-212-158-
                                                            -16
                              -9 -6
                                        - 1
                                               3
                                                    5
                                                         7
                 -2
 X= 0.4400
                    -ó
    0.4503
                 - 8
                                                         Ò
    0.4503
                           b
    0.4703
                                11
                           6
                                6
                                      6
                                           6
                                                    7
                                                         8
                                                              Я
                       ó
 X= 0.4300
                              -3
                                        - 5
 X= 0.4900
                                   - 5
                          0
                         -10
                                        -19
 X= 0.5300
```

(f)

Fig. 5.3 (continued)

occupancy factor of 0.25 and 0.75 for W_1 and V_1 respectively, W_2 in 4i (.179, .5, .922), V_2 in 4i (0.179, 0.5, 0.922). These gave the positions (8 coordinates) of 8 independent oxygen atoms. The better atomic coordinates were made by Booth's method as tabulated in Table 5.9

Table 5.9	Coordinates	of	all	atoms	of	W2V5020	in	an	asymmetric	unit.
Table 2.7	Cooldinates	-				3 5 20			•	

Position in C 2/m	atom	peak height	atomic coordinate
8j	w ₁ (v ₁)	999	0.071 ,0.25 ,0.078
4;	w ₂	999	0.179 ,0.50 ,0.922
4i	v ₂ .	999	0.179 ,0.00 ,0.922
4g	01	33	0.00 ,0.25 ,0.00
41	02	52	0.0895,0.00 ,0.00
ز8	03	52	0.161 ,0.25 ,0.00
41	04	54	0.0895,0.50 ,0.00
41	o ₅	33	0.250 ,0.50 ,0.00
8;	06	87	0.073 ,0.25 ,0.507
41	07	87	0.177 ,0.50 ,0.493
41	08	87	0.177 ,0.00 ,0.493

Least Squares Refinement

The structure was finally refined by the full matrix least squares method using the UPALS program with Cruickshank (35) weight scheme. The individual isotropic temperature factors were assigned as 0.33 obtained from Wilson's plot for every atoms. The refinement of structure in this work was the refinement of atomic positions and isotropic temperature factors. The 469 observed unique reflections

were used to refine atomic positions and isotropic temperature factors. The scale factors, $\mathbf{k_1}$, $\mathbf{k_2}$ for hol and h2l respectively were refined in every refinement.

The refinements of atomic positions were separated into 4 steps as follows.

At first only coordinates of W_1 and V_1 were simultaneously refined by resetting V, and the other atomic positions were fixed. Three cycles of refinement led to the value of R=0.136 Second step, the coordinates of W2, W1 and V1 were simultaneously refined by fixing the other atomic positions. Three cycles of refinement were made. led to the better k value of 0.114. Third step only the coordinates of V₂ was refined by fixing other atomic positions. Three cycles of refinement led to the value of R=0.113. The forth step, coordinates of 8 oxygen atoms were refined. Firstly only the coordinates of an oxygen atom 0, in 8j position was refined and three cycles of refinement were made. Then the atomic coordinates of 0_3 and 0_6 both atoms in 8j position were simultaneously refined and again with three cycles. coordinates of independent oxygen atoms simultaneously refined were added one at each refinement until all coordinates of eight independent atoms were simultaneously refined except 01. Because the position of 0_1 is 0., 0.255, 0. and y coordinate can not be refined due to limited data. Again three cycles of refinement were made. The final R value was 0.113.

The isotropic temperature factor of each individual atoms was refined in later stage by fixing all of atomic positions and the isotropic temperature factors of other atoms. Three cycles for each refinement was made. The refinement of isotropic temperature factors was also

separated in 4 steps.

Isotropic temperature factor of W_1 was refined first by resetting isotropic temperature factor of V_1 . The second step was refinement of W_2 . The third was of V_2 and finally refinement of overall isotropic temperature factors of all eight oxygen atoms were made simultaneously. The R values of 4 step were 0.112, 0.114, 0.113 and 0.112 respectively.

The final parameters are listed in Table 5.10. The observed and calculated structure factors are listed in Table 5.11.

Table 5.10 The final atomic coordinates, thermal parameters and their .

standard deviations in the last digits given within parentheses.

Atom	x	Y	z	в Å ²
W ₁ (V ₁)	0.0744 (2)	0.25	0.0867 (17)	0.472 (44)
W ₂		0.50	0.9285 (8)	0.278 (4)
v ₂	0.1755 (4)	0.	0.9229 (24)	0.260 (3)
0,	0.0	0.250	0.0	0.320 (4)
02	0.087271	0.0	0.01451	0.320 (4)
03	0.1590 (12)	0, 25	0.0189 (48)	0.320 (4)
04	0.0929 (17)	0.50	0.0262 (150)	0.320 (4)
05	0.2508 (13)	0.50	0.9616 (76)	0.320 (4)
06	0.0776 (9)	0.25	0.5070 (58)	0.320 (4)
07	0.1767 (17)	0.50	0.4712 (111)	0.320 (4)
o ₈	0.181312	0.0	0.5175 (106)	0.320 (4)

Table 5.11 The observed and calculated structure factors of 469 reflections

Н	κ	L.	YOE	YC	
8	0	ō	443.91	535.48	
12	0	0	451.09	503.49	
16	0	0	198.66	218.19	
20	C	. 0	365.48	356.22	
24	0	0	49.86	27.44	•
28	0	0	236.40	278.77	
32	0	0	99.01	90.92	•
36	0	0	152.70	153.04	
40	0	0	153.59	159.64	
44	0	0	67.84	72.16	
48	,0	0	119.67	139.99	
56	0	0	89-47	104.21	
60	0	0	40 • 72	59.83	
64	0	0	34.33	31.56	
0	0	2	403.88	450.34	
Ú	0	3	46.77	57.18	
0	0	4	64.73	51.06	. *.
0	0	5	245.52	194.45	
0	0	6	195.93	170.84	
Q.	0	7	189.42	163.84	
0	0	8	95.84	78.36	
0	0	9	43.21	32.21	
0	0	10	31.82	29.55	
4	0	i	375.26	372.30	
4	0	2 3	452 - 65	488.19	
4	ŏ	4	377.80	372.15	
4	ŏ	5	260.87	268.02	
4	ŏ	7	132.70	99.88 94.59	
4	ŏ	8	134.47	111.09	
4	0	9	134.69	114.91	
4	Ö	10	81.98	74.35	
8	o	1	176.05	182.51	
8	ō	2	43.11	57.71	
8	ō	3	187.29	191.52	
8	Ö	4	230.15	224.61	919
8	ō	5	274.85	260.32.	
8	Ö	6	182.99	184.40	
8	0	7	133.06	121.91	
8	0	10	66.79	59.60	
12	.0	$-$ J $_{f i}$ \circ	476.47	432.61	
12	0	2	449.15	507.47	
12	0	3	236.99	234.79	
12	0	4	153.28	157.90	
12	0	7	153.38	134.45	
12	0	8	106.78	133.51	
12	0 -	9	87.79	90.68	
12	0	10	35.13	37.15	
16	0	1	40.15	17.26	
16	0	2	165.33	100.36	•

Table 5.11 (continued)

н	K.	L	YOE	YC
16	0	3	239.68	267.27
16	0	4	280.02	264.11
16	0	5	233.27	214.65
16	0	6	151.15	127.84
16	0 .	9	67.84	64.17
16	0	10	67.32	68.95
20	0	1	273 - 65	275.63
20	0	2	250.46	247.13
20 20	0	3	61.65	139.30
20	Ö	6	147.38	145.46
20	ŏ	7	163.98	151.82
20	0	8	108.92	95.41
20	0	9	68.36	55.27
24	Ö	1	170.03	1,57.39
24	0	2	240.53	262.42
24	0	3	264.77	260.36
24	0	4	237.67	227.10
24	0	5	126.06	127.49
24	0	6	58.10	52.83
24	0	8	63.40	58.38
24	0	. 9	76.97	79.03
24	0	10	42.15	58 - 22
. 28	0	1	203.12	173.67
28	0	. 2	103.10	94.82
28	0	3	52.60	47.18
28	٥	4	101.45	108.73 159.47
28	0	5	128.70	138.93
28 28	0	6	126.60 103.46	105.60
28	ő	8	59.71	51.90
32	Ö	1	154.70	145.42
32	0	2	225.43	198.80
32	ŏ	3	131.55	143.77
32	Ö	4	98.68	100.22
32	0	7	77.18	88.75
32	0	8	78.22	81.19
32	0	9	76.57	75.19
36	0	1	61.17	56.11
36	0	3	95.96	109.69
36	0	4	122.53	142.47
36	. 0	5	126.85	133.23
36	0	6	97.19	100.80
36 40	0	. 7	68.62 141.14	158.81
40	0	2	144.35	157.36
40	ő	3	79.67	80.80
40	ŏ	6	54.49	67.54
40	ŏ	7	73 - 70	83.36
40	ŏ	8	59.13	65.08
44	õ	2	51.69	67.35
44	ŏ	3	71.96	91.12
44	c	4	79.62	100.32
44	0	5	66.22	62.51
44	0	5	41.23	34.75

Table 5.11 (continued)

			YOE	YC
H	K	L 1	106-16	111.23
48	0	2	76.47	76.33
48 48	0	5	40.48	64.34
48 48	ŏ	6	51.36	71.83
48	0	7	44.68	58.66
52	o	1	45.82	68.21
52	0	2	68.08	104.01
52	0	3	65.88	90.37
52	0	4	62.16	76.21
52	0	5	40.37	30.27
56	0	1	60.89	70.22
56	0	. 5	32.06	46.48
56	. 0	6	25.47	46.43 72.52
60	0 .	1	48.39	77.60
60	0	2	47.16	53.41
60	0	3	39.52 33.09	29.72
60	0	4		45.17
64	0	3	18.55	145.64
-4	0	1	232.64	296.02
-4	0	2	529.54	370.75
-4	0	3	427.96	306.11
-4	0	4	274.57	208.13
-4	0	. 5	94.85	87.06
-4 4	0	6 - 8	94.37	76.82
-4		9	108.32	102.62
-4	0	10	102.45	95.07
-8	0	1	389.69	427.45
-8	o	2	385.18	441.76
-8	ŏ	3	153.66	165.97
8	ŏ	4	49.77	54.59
-8	ŏ	5	138.95	120.79
-8	0	.6	185.71	148.91
-8	10	7	218.91	186.36
-8	0	8	156.23	127.38
-8	0	9	107-34	91.58
-12 -12	0	1	185.61	170.98
-12	. 0	2	25.09	19.71 211.17
-12	0	3	207.18	225.96
-12	0	4	217.57	236.73
-12	0	- 5	275.90 166.27	140.15
-12	0	6	78.83	71.95
-12	0	7	78.36	58.66
-12 -12	0	9	88.33	87.28
	0	10		315.32
-16	0	1	286.34 316.68	377.24
-16	0	2	235.22	264.22
-16		3 4	164.03	164.23
- 16		6	76.04	69.54
-16		7	162.71	140.14
-16		8	159.47	132.91
-16		9	141.48	118.07
-16 -16		10	71.44	65.46
- 20		1	185.10	183.38
		-		

Table 5.11 (continued)

ш	J.		YOE	YC
H	K	L 2	95.74	99.84
- 20	0	. 3	103.72	110.40
-20 -20	0	4	122.88	161.95
-20		5	224.43	238.82
-20	0	6	205.18	183.08
-20	0	7	177.51	151.05
- 20	0		73.06	55.39
-20	0	8	42.19	48.99
- 20	0	10	116.27	134.92
- 24	0	1		224.31
-24	0	2	213.99	249.70
-24	0	.3	288.50	197.62
-24	0	4	206.39	110.81
-24	0	5	132.43	58.86
-24	0	7	69.02	99.35
- 24	0	8	109.63	106.13
-24	0	9	118.78	86.57
-24	0	10	92.13	231.82
-28	0	1	212.79	
-28	0	, 2	211.09	196.74 43.78
-28	0	3	59.47	
-28	0	5	153.80	143.35
-28	0	6	185.83	146.99
-28	0	7	179.44	158 . 22
-28	0	8	123.22	95.68
-28	· 0	9	68.03	58.40
-32	0	1	39.37	49.66
-32	0	2	133.92	129.87
-32	0	3	263.36	217.56
-32	0	4	277.56	206.54
-32	0	5	201.68	183.62
-32	0	6	120.72	98.98
-32	0	7	38.38	36.59
-32	0	- 8	79.13	34.94
- 32	0	9	70.88	62.11
-36	0	1	180.54	187.85
-36	0	2	204.86	196.45
-36	0	3	162.62	125.13
-36	0	4	91.06	59.21
36	0	6	79.83	81.43
-36	0	7	139.32	118.72
- 36	0	8	125.62	100.44
-36	0	9	92.52	79.68
-40	0	1	60.10	70.05
-40	٥	3	108.29	95.26
-40	0	4	151.25	123.37
-40	0	5	184.01	154.45
-40	0	6	145.02	111.03
-40	0	7	85.63	79.59
-44	ō	1	139.21	140.67
-44	ō	. 2	160.09	171.05
-44	ō	3	170.08	163.78
-44	ō	4	136.00	120.42
- 44		5	71.88	56.37
-44	•			53.51
-44		В	74.26	74.19
77	•	_		

Table 5.11 (continued)

н	ĸ	L	YOE	YC.
- 48	Ô	1	94.78	109.10
		2	68.00	74.50
-48	. 0		50 . 04	46.95
-48	0	4		97.86
- 48 - 48	0	5	106.10	91.00
-48	0	6.	102.21	93.45
-48	0	7	97.43	88.34
-52	0	ì	37.73	35.84
- 52	0	2	62.61	75.29
-52	0	3	93.49	108.69
-52 -52	Ō	4	86.20	98.50
_52	ō	5	12.52	76.12
- 52	o	6	29.31	28.82
- 52			85 20	113.03
-56	0	1 2	85.20 83.27	101.53
- 56	0		83.21	101.53 59.22 33.43
-56	0	3	52.34	27 . 42
-56	0	5	35.06	33.43
-56	0	6	52.21	56.51 59.36
-60	0	3	53.19	59.36
-60	0	4	57.31	71.21
-60	0	5	58.90	74.48
-64	0	1	40.00	58.91
-64	Ö	2	45.32	65.33
,-64	Ö	3	35.41	56,43
10	3	o	102.80	98.59
	2.	o	510.38	527.17
14	2		121.06	104.65
18	2 2 2 2 2 2 2 2	0		310.37
22	2	0	268.65	310.37
26	2	O	272.26	277.61
30	2	0	131.42	129.32 238.71
. 34	2	0	223.70	238./1
38	2	0	53.39	47 • 40
.42	2	0	159.24	167.54
46	2	0	77.12	85.71
50	2	^	68.90	62.38
. 54	2 2 2	0	82.86	96.77
58	. 2	Õ	37.57	22.11
62		0.	47.14	65.60
	2 2	2	143.83	110.68
			305.97	295.19
2 2 2	2	3		283.66
2	2	4	300.95	254.81
2	2	5	294.34	234.01
2	2	6	177.71	149.62
2	2	7	71.76	63.96
2	2	9	69.75	63.50 81.51
2 2 2 2	2	10	85.52	31.51
6	2		351.89	314.90
6	2	2	307.38	339.05
6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	94.19	79.80
6	2	5	180 . 55	162.87
6	2	6	190.76	171.60
	2	7	206.46	191 .83
6	4	8	136.53	124.39
6	2	0	106.10	82.60
.6	.7	9		138.14
10	2	1	162.34	289.71
10	2	2	295.11	207. (I

Table 5.11 (continued)

		_	wo P	
Н	K	ř	YOE	YC 317.11
10	2	3	318.30	269.21
10	2	4	268.39	703+7T
10	2 2	5	172.96	161.75
10	2	6	68.13	61.84
10	2	7	44.33	33.98
10	2	8	82.90	78.25
10	2	9	121.69	100.92
10	2	10	77.58	82.28 327.72
14	2	ì	286.57	327 - 72
14	2	2 3	222.92	233.34
14	2 2 2 2 2 2 2 2	3	3.9.01	12.61
14	. 5	4	139.40	93.56 189.78
14	2	5	201.53	189.78
14	2	6	180.10	163.28
14 14	2	. 7	147.29	140.56
14		8	75.53	66.14
18	2	. 1	75.53 196.43	204.00
18	2	1 2 3	281.45	299.09 226.75
18	2	3	225.68	226 - 75
18	2'	4	163.05	165.33
18	2	7	104.93	165.33
18	2	8	. 116.13	105.87
18	5	9	112.03	105.87
18	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	112.03 56.91	61.41
18 22	2	1	133.51	140.24
22	2	3	137.70	140.24 126.02
22 22 22 22	2	4	137.79 166.56	169.83
22	2	5	183.09	103 06
22	2	6	135.30	132.13 72.82 51.80 281.76
22	2	7	81.63	72.82
22	2 2 2	10	41.17	51.80
24	2	1	268.02	281.76
22 26 26	2	2	299.03	294.47
20	2	2	178.38	170.03
26	2		96.50	93.29
26	2 2 2 2	4	96.50 64.35	68.93
26	- 4		.99.69	108.44
26	2	4	87.41	84.53
26	2 2 2	2 3 4 6 7 8 9 2 3 4 5 6	67.89	65.55
26	2	. ,	108.23	99.54
30	2 2 2	- 2	160.42	99.54 156.76
30	5		181.98	167.54
30 30			124.82	122.61
30	2 2 2	2	76.71	70.84
30	. 4	9	49.41	70.84 61.92
30		_	1 20 03	193.94
34	2	1	158.83	157.25
34. 34	2 2 2 2 2 2 2 2 2	3	50.60	44.90
	2	5	85.85	89.47
34	2		92.44	97.56
34	- 2	-6. 7	86.66	93.29
. 3+	2		56.98	58.86
34	. 2	8		26.13
34	. 2	9	33.66 105.69	116.64
38	. 2	1 2	160.54	181.53
38	2	2	100.74	701000

Table 5.11 (continued)

н		`L	YOE	YC
38	2	3	165.83	169.69
38	2	4	118.66	1,49.01
38		5	79.69	75.72
	2	٠	33.48	29.73
38	2	6	27.52	42.00
38	2	8	26.53	42.00 107.07
42	2	.1	94.37	101.01
42 .	2	8 1 2 4	52.41	46.36
42	2	4	64.33	75 - 17
42	2	5	87.82	94.18
42	2 2 2	6_	83.72	85.91
72	٠.	7	60.68	54.63
42	2			26.84
42	2	8	28.53	111.33
46	2	1	94.78	111.33
46	2	2	11.3.96	134.47
46	2	. 3	87.88	94.67
46		4	64.88	62.73
46	2	7	33.31	52.94
50	2	3	55.10	82.57
50	.2	4	76.24	103.04
50	-	4 5	66.51	84.29
50	2	3.	62.11	66.75
50	2	6	02.11	25 51
50	2	7	24.07 75.25	25.51 94.51
54	-,2	1	75.25	94.51
54	2	2	61.97	83.59
-54	2	3	45.91	41.68
58	2 2	3	37.75	60.02
- 59	- 2	4	40.53	63.91
-58	2 2 2 2		29.01	36.53
- 28	2	5 1 2	42.59	50.93
62	2	1	20-25	23.83
62		2	29.25	445.26
-2	2	1	486.32	445.20
-2	. 2	2	469.05	508.92
-2	2	3	291.84	294.64
-2	2	4	183.74	175.29
-2 -2 -2 -2 -2 -2 -2 -2 -2 -6 -6 -6 -6	2	6 7	94.35	82.48
-2	5	7	181.90	153.63
-2	2	. 8	142.95	132.06
- 2	2	9	130.20	132.06
-2				54.92
-2	2	10	57, 99	129.18
-6	2	1	156.21	153+10
-6	2	2	65.57	51.29 208.12
-6	2	3	187.54	208.12
-6	2	4	23.5 . 58	233.84 291.48 210.65
-6	2 2 2	5 .6, .	300.41	291.48
-6	2	6	238.65	210.65
-6	2	7	161.43	157.85
	٤			52.30
-6	2	8	64.19	55.11
-6	۷.	10	62.74	
-10	2	1	280.05	299.18
-10	2	2	345.43	404.32
-10	2	. 3	327.39	362.69
-10	2	4	280.20	269.67
-10	2	5	141.92	129.07
-10	2	7	87.40	7.3.53
-10	2	8	121.95	106.51
- 10	۲.			,

Table 5.11 (continued)

-10	н	K	Ł	. YQE	YC
-10			-		
-14	-10	Ž			83.34
-14					
-14	-14	2	2		313.71
-14	-14	2	3		51.23
-14		2			
-14	-14	2			
-14	-14	2			
-14	-14	2		197.27	173.41
-18	- 14	2			92.70
-18	-14	2			
-18	- 18				
-18	-18				
-18	-10				
-18	-18	2			200.07
-18	-10			122 07	
-18	-18	2		56 26	52 72
-18	-18				81 53
-22	-18			87.99	89.37
-22	-22				320.81
-22	- 22	2			323.04
-22	-22	2			175.40
-22	-22				
-22	-22		5		62.39
-22		2		108.14	106.10
-22 2 9 101.20 86.94 -26 2 1 119.29 114.69 -26 2 3 140.67 138.17 -26 2 4 180.37 165.65 -26 2 5 212.50 195.54 -26 2 6 136.96 125.97 -26 2 7 85.56 79.40 -26 2 9 50.98 38.58 -30 2 1 181.08 217.30 -30 2 2 249.36 259.10 -30 2 3 235.52 219.61 -30 2 4 179.16 150.87 -30 2 5 64.78 46.08 -30 2 7 97.91 91.37 -30 2 8 118.14 102.94 -30 2 9 109.09 96.52 -34 2 1 152.24 161.15 -34 2 2 109.03 105.59 -34 2 1 152.24 161.15 -34 2 9 7.46 81.33 -34 2 1 76.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54	-22	2		165.71	150.12
-26	-22				113.31
-26	-22				
-26	-26				
-26				140.67	
-26					
-26 2 7 85.56 79.40 -26 2 9 50.98 38.58 -30 2 1 181.08 217.30 -30 2 2 249.36 259.10 -30 2 3 235.52 219.61 -30 2 4 179.16 150.87 -30 2 5 64.78 46.08 -30 2 7 97.91 91.37 -30 2 8 118.14 102.94 -30 2 9 109.09 96.52 -34 2 1 152.24 161.15 -34 2 2 109.03 105.59 -34 2 4 97.46 81.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54		2			
-26 2 9 50.98 38.58 -30 2 1 181.08 217.30 -30 2 2 249.36 259.10 -30 2 3 235.52 219.61 -30 2 4 179.16 150.87 -30 2 5 64.78 46.08 -30 2 7 97.91 91.37 -30 2 8 118.14 102.94 -30 2 9 109.09 96.52 -34 2 1 152.24 161.15 -34 2 2 109.03 105.59 -34 2 4 97.46 81.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54			7		70.40
-30 2 1 181.08 217.30 -30 2 2 249.36 259.10 -30 2 3 235.52 219.61 -30 2 4 179.16 150.87 -30 2 5 64.78 46.08 -30 2 7 97.91 91.37 -30 2 8 118.14 102.94 -30 2 9 109.09 96.52 -34 2 1 152.24 161.15 -34 2 2 109.03 105.59 -34 2 4 97.46 31.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54	- 26				
-30					217.30
-30	-30				259: 10
-30	-30				219-61
-30 2 5 64.78 46.08 -30 2 7 97.91 91.37 -30 2 8 118.14 102.94 -30 2 9 109.09 96.52 -34 2 1 152.24 161.15 -34 2 2 109.03 105.59 -34 2 4 97.46 81.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54	-30			179.16	150.87
-30 2 7 97.91 91.37 -30 2 8 118.14 102.94 -30 2 9 109.09 96.52 -34 2 1 152.24 161.15 -34 2 2 109.03 105.59 -34 2 4 97.46 91.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54	-30	2			46.08
-30	-30	2	7		
-30. 2 9 109.09 96.52 -34 2 1 152.24 161.15 -34 2 2 109.03 105.59 -34 2 4 97.46 81.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54	-30	2		118.14	102.94
-34 2 2 109.03 105.59 -34 2 4 97.46 81.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54	– 30 .	2	9	109.09	96.52
-34 2 4 97.46 91.33 -34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54	- 34	2	1		
-34 2 5 176.56 152.00 -34 2 6 152.56 128.36 -34 2 7 138.88 116.06 -34 2 8 62.82 48.22 -6 2 0 513.51 455.05 -38 2 1 58.89 59.74 -38 2 2 117.57 119.54					
	-34	2	4		81.33
	- 34	2			
		2			
		2			
		2			
		2			
		2	2	117.57	
		2	3		158.07

Table 5.11 (continued)

			•	
н	K	L	YDE	YC
-38	2	4	163.00	133.22
-38	2 2 2 2 2	5	106.62	88 - 95
-38	2	8	88.69	73.70
-42	2	1	163.48	159.93
-42	2	2	134.56	140.61
- 42	2	3	69.88	56.72
- 42	2	5	84.87	78.63
- 42	2	6.	110.27	96 - 45
-42	2	7	120.65	111.55
-42	2 2 2 2 2	8	75.11	76.45
-46	2	2	52.95	49.12
-46	2	3	111.82	114.49
-46	2	4	110.34	119.95
-46	2	5	129.51	118.28
-46	2 2 2 2 2 2 2 2	6	82.38	68.59
-46	2	7	27.18	29.75
-50	2	1	91.13	97.55 106.39
- 50	2	1 2 3	98.84	106.39
-50	2	3	77.91	78.38
-50	2	6	50.50	55.35
-50	2	7	82.34	81.97
-54	2	1	37.03	53.90
-54	2	.3	51.25	46.38
-54	2.	4	82.14	73 - 24
-54	2	5	96.37	97.78
-54	2 2 2 2	6	68.23	79.11
-58	2	1	66.15	67.80
-58	2	2	65.73	89.17
-58	2	2	90.40	95.45
-58	2	4	68.04	73.49
-58	2 2 2 2 2	5	29 . 85	40.05
-62	2	1	43.14	58.64
-62	2	2 4	26.66	38.48
-62	2 . 2 .	4	28.93	30.95

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย