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CHAPTER I

INTRODUCTION

1.1 Problem Identification

Currently, there are many alternative learning algorithms for neural networks used in

several applications. All learning algorithms still cannot learn a new data set without mixing

with the previously learned data set. All current training algorithms require both new incom-

ing data and those previously trained data together in order to correctly learn the whole data

set. Therefore, those previously trained data cannot be discarded after being learned. Some

storage space must be wasted to keep these previously trained data. For this reason, the

neural network cannot learn a new training data set if the old training data set is discarded.

Moreover, many learning algorithms use so many epochs in learning process because of gra-

dient method and optimization techniques. Furthermore, these algorithms consume much

time when the very large data set is learned. Some methods solve these problems by modi-

fying optimization process, but they still use a lot of epochs during learning process.

In this dissertation, the problems of learning new data without forgetting the previ-

ously learned data and learning new data from their new classes in only one pass are con-

centrated. In addition, the learning process is not required to access the previously learned

data. To overcome these problems, a new neural network with incremental learning capacity

and the new incremental learning algorithm that learn a data set in only one pass are devel-

oped. This developed learning algorithm is capable of learning new information without

forgetting the previously learned information. Furthermore, this learning algorithm is able

to accommodate new classes that may accompany with new data without forgetting the pre-

viously learned data and the redundant neurons in the neural network can be reduced during

learning process.
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1.2 Problem Formulation

Learning new data without accessing the previously learned data and learning new data

without forgetting the previously learned data are the challenge problem in neural network

research. The learning algorithm with both characteristics is called incremental learning.

However, it is more useful if this algorithm can learn new data in only one pass so that the

large data set can be learned. In this dissertation, these problems are concentrated. The

problem statements in this dissertation can be formalized as:

1. How can the neural network learn new data without forgetting the previously learned

data and this new data are discarded after being learned?

2. How can the neural network learn data set using in only one pass so that the learning

time can be O(n), where n is the number of data?

With these problems, the new neural network architecture and new learning algorithm should

be created to overcome these problems.

1.3 Research Objective

The main objectives of this dissertation prospectus are:

1. To develop a new incremental learning algorithm to learn a data set in only one pass

and the data are discarded after being learned

2. To develop a new neural network architecture with incremental learning capability

that can learn new information without using the previously learned data.

1.4 Scope of Work

In this dissertation, the proposed learning process must be coped with the following

capabilities:

1. It should be able to learn new data.
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2. It should not require accession of the previously learned data.

3. It should preserve the previously learned data after learning new data.

1.5 Research Advantages

It is expected that the new learning algorithm has the following advantages.

1. This algorithm can be used to solve classification problems.

2. This algorithm can learn a data set in only one pass.

3. This algorithm can learn new data without using the previously learned data.

4. A storage space must not be wasted to keep the training data for further learning.

1.6 Outline of the Thesis

The remaining contents are organized as follows. Chapter II reviews the related lit-

eratures. Chapter III gives a review of some background knowledge. The new versatile

elliptic basis function neural network and learning algorithm are proposed in Chapter IV.

The experimental results are given in Chapter V. Chapter VI concludes the research.



CHAPTER II

LITERATURE REVIEW

A radial basis function neural networks is widely applied to several industrial prob-

lems such as face recognition, pattern recognition [1], [3], [6], pattern classification [2],

time series prediction [4], [7] , and signal processing [5]. The standard RBF neural net-

work consists of three layers. These are an input layer, a hidden layer, and an output layer.

The learning algorithm of RBF neural network concerns the selection of the hidden layer

neuron centers and estimation of the weights connecting the hidden layer and the output

layers. Although the new learning algorithms [8], [9] are proposed continuously, most of

the existing learning algorithms for RBF neural networks still use the Gaussian function as

a basis function for adjusting the weight that is between a hidden unit to an output unit. The

performance of this function depends on the selection of the center [10]. Some methods

are primarily used for selecting the center such as k-mean, self-organizing map (SOM), and

Gaussian mixture model. For k-mean and SOM, the number of centers cannot be predicted

in advance. For the Gaussian mixture model, it is too difficult to compute model parameters.

Such shortcomings directly affect the performance improvement.

An elliptical basis function neural network (EBF) [11] is an extension of a radial

basis function neural network (RBF). The distinction between the elliptical basis function

neural network and the radial basis function neural network is the covariance matrix. The

radial basis function is the Gaussian function with diagonal covariance matrix as a basis

function while the elliptical basis function is the Gaussian function with full covariance

matrices. Although the elliptical basis function is widely applied to many problems [12],

[13], [11], the basis function is still the Gaussian function with full covariance matrix. The

parameters of this basis function are difficult to compute. Man-Wai Mak [11] proposed the

expectation-maximization (EM) algorithm to estimate these parameters. This EM model is

based on the gradient method which requires too many epochs to estimate the parameters.

Jing Luo [14] applied EBF neural network to fault diagnosis of power transformer, but the
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ellipsoidal function was used instead of the Gaussian function. Although this EBF can

partition the input space, this ellipsoidal function cannot rotate to cover the data like the

Gaussian function. In addition, the structure of both EBF and RBF is fixed during training

and is not appropriate for the sequential learning.

Platt [17] proposed the sequential learning algorithm for RBF neural network in which

hidden neurons are added sequentially based on the novelty of the new data. This neural

network is called Resource Allocation Network (RAN). Kadirkamanathan and Niranjan [18]

enhanced RAN using an extended Kalman filter (EKF) for updating the network parameters

instead of least-mean square (LMS) algorithm, known as a RAN Extended Kalman Filter

(RANEKF). The drawback of RAN and RANEKF is that the hidden neurons can grow

up but they are never removed. Yingwei [19] proposed the improvement of RANEKF by

introducing a pruning strategy called Minimal Resource Allocating Network (MRAN). Li

Yan [20] proposed an improved version of the MRAN algorithm called Extended-MRAN

(EMRAN) algorithm in which the parameters that are related to the selected winner neurons

are updated by the EKF algorithm. The disadvantage of these proposed neural networks

is that there are a lot of parameters chosen by trial and error. Although these sequential

learning algorithms are able to learn new information, they are unable to accommodate new

classes that may accompany new data.

Carpenter and Grossberg [21] propose a neural network architecture for incremental

supervised learning of analog multidimensional maps called fuzzy ARTMAP. The Fuzzy

ART neural network composed of two fuzzy Adaptive Resonance Theory (ART) modules

denoted ARTa and ARTb. Each of the fuzzy ART modules consists of three neural layers:

preprocessing F0; matching F1, and competitive F2. These two fuzzy ART modules are

interconnected by map field, Fab, which forms an association between ARTa and ARTb.

The inputs are presented at the ARTa module while the corresponding outputs are presented

at the ARTb module. The fuzzy ARTa module performs clustering in the input space of

data while the fuzzy ARTb performs clustering in the output space of the target data. The

map field determines whether the mapping between the inputs and the outputs is the correct

one. The drawback of fuzzy ARTMAP neural network is that once a node is created in the

network, the node can never be removed. For this reason, it may suffer from the greedy

insertion strategy that leads to a complex network structure. Robi Polikar [22] proposed an
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algorithm for incremental training of neural network pattern classifiers called Learn++. The

proposed algorithm enables supervised neural networks such as the multilayer perceptron

(MLP) to accommodate new data including examples that correspond to previously unseen

classes. In addition, the algorithm does not require access to previously used data during

subsequent incremental learning sessions and it does not forget previous learned knowledge.

Learn++ uses ensemble of classifiers by generating multiple hypotheses using training data

sampled according to carefully tailored distributions. The outputs of the resulting classifiers

are combined using a weighted majority voting procedure. However, Learn++ suffers from

the inherent out-voting problem when asked to learn new classes, causing it to generate

an unnecessarily large number of classifiers. Mu-Chun Su [23] proposed a new approach to

incrementally construct a neural network that is capable of learning new information without

forgetting old knowledge. The proposed neural network, called Hyper-Spherical ARTMAP

network (HS-ARTMAP network), is a synthesis of an RBF-network-like module and an

ART-like module. The HS-ARTMAP network is trained via a training algorithm similar to

the training algorithm for the fuzzy ARTMAP system.

In this dissertation, a very fast training algorithm to learn a data set in only one pass is

proposed. Once a datum is learned, it is discarded. There is no need to use this datum again

for the future learning with new incoming data. The structure of proposed neural network

consists of three layers like RBF and EBF but the structure is flexible and can be adjusted

during the training process.



CHAPTER III

THEORETICAL BACKGROUND

In this dissertation, the idea of radial basis function in the interpolation problem is

applied to develop a new elliptic basis function. In addition, the idea of the interpolation

problem is also applied to develop radial basis function neural network. However, in this

dissertation, the idea of radial basis function neural network is applied to develop a new neu-

ral network architecture. Furthermore, some knowledge of geometrical and some knowledge

of vector space such as orthonormal basis are combined in order to develop the new elliptic

basis function that can be translated and rotated to cover the new data in high dimensional

space. The principal component analysis is also applied to approximate the orthonormal

basis for a data space. Therefore, the details of these theoretical backgrounds are described

in the following sections.

3.1 Interpolation Problem

Interpolation problem is currently one of the principal fields of research in numerical

analysis. There are several approaches for solving the interpolation problem including a

radial basis function technique. Radial basis functions were first applied by Powell to solve

this interpolation problem. The interpolation problem can be stated as follows.

Given a set of N different point {xk ∈ R
m|k = 1, 2, ..., N} and a corresponding set

of N real numbers {dk ∈ R|k = 1, 2, ..., N}, find a function F : Rm → R that satisfies the

interpolation codition:

F (xk) = dk, k = 1, 2, ..., N (3.1)

The radial-basis functions technique consists of choosing a function F that has the

following form (Powell, 1988):

F (x) =
N∑
i=1

wiϕ (‖x − xi‖) (3.2)
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where wi is a real coefficient, {ϕ (‖x − xi‖) , i = 1, 2, ..., N} is a set ofN random (usually

nonlinear) functions, known as radial basis functions, and ‖·‖ represents a norm that is

generally Euclidean. The known data vectors, xi ∈ R
m, i = 1, 2, ..., N , are the centers of

radial basis functions.

Substituting the interpolation conditions of Equation (3.1) into Equation (3.2) yield,

N∑
i=1

wiϕ (‖xk − xi‖) = dk, k = 1, 2, ..., N (3.3)

The system of equations (3.3) can be rewritten in a matrix form as follows:⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ11 ϕ12 · · · ϕ1N

ϕ21 ϕ22 · · · ϕ2N

...
...

...
...

ϕN1 ϕN2 · · · ϕNN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

wN

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

d1

d2
...

dN

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.4)

where

ϕji = ϕ (‖xj − xi‖) , i, j = 1, 2, ..., N (3.5)

Let
d = [d1, d2, ... , dN ]

T

w = [w1, w2, ... , wN ]
T

Φ = [ϕij]N×N

Equation (3.4) is then rewritten compactly as follows.

Φw = d (3.6)

Assuming that Φ is nonsingular, we can solve Equation (3.6) for the weight vector w

as follows.

w = Φ−1x (3.7)

Micchelli’s Theorem Let {xi}Ni=1 be a set of distinct points in R
m. Then the N-by-N inter-

polation matrix Φ, whose ji-th element is ϕji = ϕ (‖xj − xi‖), is nonsingular.

There is a large class of radial-basis functions that is covered by Micchelli’s theorem.

These classes of functions studied in the RBF network include the following functions.
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1. Gaussian function:

ϕ(r) = exp

(
− r2

2σ2

)
, σ > 0; x, c ∈ R (3.8)

2. Multiquadrics:

ϕ(r) =
(
x2 + c2

)1/2
, c > 0; x, c ∈ R (3.9)

3. Inverse Multiquadrics:

ϕ(r) =
1

(x2 + c2)1/2
, c > 0; x, c ∈ R (3.10)

3.2 Radial Basis Function Networks

From Equation (3.1) through (3.7), a radial basis function (RBF) network can be con-

structed in form of a layered structure as illustrated in Figure 3.1. The RBF network consists

of three layers detailed as follows.

1. Input layer consists of m source nodes where m is the dimension of the input vector.

2. Hidden layer consists of the computational units known as hidden neurons. The num-

ber of hidden neurons in the hidden layer is equal to the number of the training sam-

ples. Each hidden neurons in the hidden layer is mathematically described by radial

basis function as follows.

ϕj (x) = ϕ (‖x − xj‖) , j = 1, 2, ..., N

The data vector xj is the center of radial basis function. The vector x is the input

signal which is fed into the input layer.

3. Output layer consists of a single computational unit known as output neuron. The out-

put neuron in the output layer is mathematically described by the following function,

F (x) =
N∑
i=1

wiϕ (‖x − xi‖)

where ϕ(·) is the radial basis function and N is the number of training data.
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Figure 3.1 Structure of RBF network.

The popular radial basis function used in RBF networks is a Gaussian function defined as

ϕj (x) = ϕ(x − xj)

= exp

(
− 1

2σ2
j

‖x − xj‖2
)
, j = 1, 2, ..., N (3.11)

where σj is a measure of the width of the jth Gaussian function with center xj .

3.3 Practical Modifications to the RBF Network

The design of RBF network illustrated in Figure 3.1 via interpolation theory is not

practical in several applications when the number of training data is very large. Since the

number of hidden neurons in the RBF network of Figure 3.1 is equal to the number of

the training data, the computational cost of the network is very expensive. To reduce the

computational cost of the network, the interpolation problem with K basis functions which

is less than N data points is considered instead. This interpolation problem can be done by
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modifying Equation (3.1) as follows.

F (x) =
K∑
i=1

wiϕ (‖x − xi‖) (3.12)

The solution for the weight vector w in Equation (3.7) can be computed as follows.

w =
(
ΦTΦ

)−1
ΦTd

= Φ+d (3.13)

The matrix Φ+ in Equation (3.13) is the pseudo inverse of matrix Φ defined as,

Φ+ =
(
ΦTΦ

)−1
ΦT (3.14)

From Equation (3.12) through Equation (3.14), the practical RBF network can be con-

structed as illustrated in Figure 3.2.

1( )

2 ( )

( )K

2x
Input
vector

x
Output
y = F(x)

Input layer
of size m

Hidden layer
of size K<N

Output layer
of size one

1w

2w

Kw

1x

mx

Figure 3.2 Structure of a practical RBF network.

The structure of this RBF network consists of three layers, an input layer, a hidden

layer, and an output layer. The RBF network receives the input from the input layer and
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transfers this input to the hidden layer. There is not the synaptic weight between the input

layer and hidden layer. The hidden neuron receives the input vector from the input layer,

and calculates the Euclidean distance between the center of radial basis function and the

input vector of the network. Subsequently, the result is passed to the radial basis function.

Therefore, the hidden layer performs a nonlinear transformation and maps the input space

onto a new space call feature space. The output layer performs a linear combiner on this

new space as follows.

F (x) =
K∑
i=1

wiϕ (‖x − xi‖) (3.15)

3.4 Principal Components Analysis

The principal component analysis (PCA) is a statistical method applied primarily

to transform the input data space into a new lower dimensional space. Let X be an m-

dimensional random vector. The mean of random vector X is assumed to be zero. This can

be written as:

E(X) = 0

where E is the statistical expectation operator. Let q be a unit vector, also of dimension m,

onto which the vector X is to be projected. This projection is defined by the inner product

of the vectors X and q as follows.

A = XTq = qTX (3.16)

subject to the constraint

‖q‖ = (qTq)1/2 = 1 (3.17)

The projection A is a random variable with mean and variance related to the statistics

of the random variable X. From the assumption that the random vector X has zero mean, it

implies that the random vector A has zero mean too. The variance of A can be written as
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follows.

σ2 = E[A2]

= E[(qTX)(XTq)]

= qT
E[XXT ]q

= qTRq (3.18)

The m-by-m matrix R is the correlation matrix of the random vector X, formally defined as

the expectation of the outer product of the vector X with itself as follows.

R = E[XXT ] (3.19)

From Equation (3.18), the variance σ2 of the projection A is a function of the unit vector q

as shown in the following equation.

Ψ(q) = σ2

= qTRq (3.20)

where Ψ(q) is a variance probe.

Eigenstructure of Principal Components Analysis

The next problem is how to find the unit vectors q along which Ψ(q) has extremal values,

subject to a constraint on the Euclidean norm of q. To overcome this problem, the vector

q is assumed to be a unit vector such that the variance probe Ψ(q) has an extremal value.

Therefore, for any small perturbation δq of unit vector q, it is seen that

Ψ(q + δq) = Ψ(q) (3.21)

From the definition of the variance probe given in Equation (3.20), it can be written as

Ψ(q + δq) = (q + δq)TR(q + δq)

= qTRq + 2(δq)TRq + (δq)TRδq

The second-order term (δq)TRδq can be ignored because its value is very mall, and then

obtain

Ψ(q + δq) = qTRq + 2(δq)TRq

= Ψ(q) + 2(δq)TRq (3.22)
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Substituting Equation (3.21) in (3.22) yields

(δq)TRq = 0 (3.23)

The perturbations are performed under the restriction that the Euclidean norm of the

perturbed vector q + δq remains equal to unity. That is

‖q + δq‖ = 1

or equivalently,

(q + δq)T (q + δq) = 1

Using Equation (3.17), it can be written as

(δq)Tq = 0 (3.24)

This means that the perturbations δq must be orthogonal to q, and therefore only a

change in the direction of q is permitted.

Scaling Equation (3.24) with −λ and add to Equation (3.23) yields

(δq)TRq − λ(δq)Tq = 0

or equivalently,

(δq)T (Rq − λq) = 0 (3.25)

From Equation (3.25), it is sufficient to have

Rq = λq (3.26)

This is the equation that governs the unit vectors q for which the variance probe Ψ(q)

has extremal values. The Equation (3.26) is known as the eigenvalue problem, commonly

found in linear algebra. The value of λ is called the eigenvalue of the correlation matrix

R and the associated value of q is called the eigenvector. Let the eigenvalues of the m-

by-m matrix R be denoted by λ1, λ2, ..., λm and the associated eigenvectors be denoted by

q1, q2, ..., qm, respectively. Thus, for j = 1, 2, ..., m, it can be written as

Rqj = λjqj (3.27)
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Let the corresponding eigenvalues be arranged in decreasing order:

λ1 > λ2 > ... > λj > ... > λm (3.28)

Let the associated eigenvectors be constructed as an m-by-m matrix:

Q = [q1, q2, ..., qj , ..., qm] (3.29)

The set ofm equations of Equation (3.27) can be combined into a single equation as follows.

RQ = QΛ (3.30)

where Λ is a diagonal matrix defined as follows.

Λ = diag[λ1, λ2, ..., λj, ..., λm] (3.31)

The matrix Q is an orthogonal matrix that satisfies the conditions of orthogonality:

qT
i qj =

⎧⎨
⎩ 1, j = i

0, j �= i
(3.32)

Equivalently, it can be written as

QTQ = I

It can be deduced that the inverse of matrix Q is equal to its transpose as follows.

QT = Q−1 (3.33)

This means that the Equation (3.30) can be rewritten in a form of the orthogonal similarity

transformation:

QTRQ = Λ (3.34)

or in expanded form,

qT
j Rqk =

⎧⎨
⎩ λj , k = j

0, k �= j
(3.35)

From Equation (3.20) and (3.35), it implies that the variance probes and eigenvalues are

indeed equal, as shown by

Ψ(qj) = λj, j = 1, 2, ..., m (3.36)

The two important properties that have found from the eigenstructure of principal

components analysis can be summarized as follows.
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• The eigenvectors of the correlation matrix R pertaining to the zero-mean random vec-

tor X define the unit vectors qj , representing the principal directions along which the

variance probes Ψ(qj) have their extremal values.

• The associated eigenvalues define the extremal values of the variance probes Ψ(qj).

3.5 Vector Spaces

In mathematics, a vector space is defined as a set V that is closed under two algebraic

operations called vector addition and scalar multiplication. These two algebraic opera-

tions must satisfy certain properties. To determine whether a set of objects is a vector space

depends on whether the set is closed under vector addition and scalar multiplication and sat-

isfies certain properties. These properties, the axioms of a vector space, are given as follows.

Definition 3.1: Vector Space

Let V be a set of elements on which two operations called vector addition and scalar mul-

tiplication are defined. Then V is said to be a vector space if the following ten properties

are satisfied.

Axioms for Vector Addition:

(i) If u and v are in V , then u+v is in V

(ii) For all u, v in V , u+v = v+u

(iii) For all u, v, w in V , u+(v+w) = (v+u)+w

(iv) There is a unique vector 0 in V such that 0+u = u+0 = 0

(v) For each u in V , there exists a vector -u such that u+(-u) = (-u)+u = 0

Axioms for Scalar Multiplication:

(vi) If k is any scalar and u is in V , then ku is in V

(vii) k(u+v) = ku+kv

(viii) (k1+k2)u = k1u+k2u

(ix) k1(k2u) = (k1k2)u

(x) 1u = u
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The scalars in Definition 1 may be taken from real numbers. In this case V is referred

to as a real vector space. When the scalars are allowed to be complex numbers, it obtains

a complex vector space. Since R
2 has the properties in Definition 1, it is clear that R2 is a

vector space. Moreover, since vectors in R
3 and R

n have these same properties, it can be

concluded that R3 and R
n are also vector spaces.

Definition 3.2: Linear Independence

A set of vector {u1, u2, ..., un} is said to be linearly independent if the only constants

satisfy the equation

k1u1 + k2u2 + · · ·+ knun = 0 (3.37)

are k1 = k2 = · · · = kn = 0. If the set of vectors is not linearly independent, then it is said

to be linearly dependent.

In R
3, the vector i = [1, 0, 0]T , j=[0, 1, 0]T , and k = [0, 0, 1]T are linearly independent.

Since the equation k1i + k2j + k3k = 0, by equality of vectors, it can be concluded that

k1 = 0, k2 = 0, and k3 = 0. Furthermore, any vector in R
3 can be written as a linear

combination of the linearly independent vectors i, j, and k. The set of vectors {i, j, k} forms

a basis for R3.

Definition 3.3: Basis for a Vector Space

Let’s consider a set of vectors B = {u1, u2, . . . , un} in a vector space V . If the set B is

linearly independent and if every vector in V can be expressed as a linear combination of

these vectors, then B is said to be a basis for V .

A vector space may have many bases. It is mentioned previously that the set of vectors

{i, j, k} is a basis for R3 but it can be proved that {u1, u2, u3}, where

u1 = [1, 0, 0]T , u2 = [1, 1, 0]T , u3 = [1, 1, 1]T

is a linearly independent set.

Proof Let k1, k2, and k3 be three real numbers such that

k1[1, 0, 0]
T + k2[1, 1, 0]

T + k3[1, 1, 1]
T = 0
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Therefore,

k1 + k2 + k3 = 0

k2 + k3 = 0

k3 = 0

The solution to this system is, k1 = 0, k2 = 0, and k3 = 0. So the set of vectors {u1, u2, u3}
is linearly independent.

Furthermore, every vector a = (a1, a2, a3) can be written as a linear combination

a = c1u1 + c2u2 + c3u3. Therefore, the set of vectors {u1, u2, u3} is another basis for R3.

However, the set of vectors {i, j, k} is referred to as the standard basis for R3. For the

vector space R
n, the standard basis consists of the n vectors

e1 = [1, 0, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , . . . , en = [0, 0, 0, . . . , 1]T .

If B is a basis for a vector space V , then for every vector v in V there exists scalars ci,

i = 1, 2, . . . , n such that

v = c1u1 + c2u2 + · · ·+ cnun. (3.38)

The scalars ci, i = 1, 2, . . . , n, in the linear combination (3.38) are called coordinates of v

relative to the basis B.

Definition 3.4: Dimension of a Vector Space

The number of vectors in a basis B for a vector space V is said to be the dimension of the

space.

Every vector in the vector space R
n can be expressed as a linear combination of the

vectors in the standard basis B = {e1, e2, . . . , en}, where

e1 = [1, 0, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , . . . , en = [0, 0, 0, . . . , 1]T .

This standard basis B = {e1, e2, . . . , en} is an example of an orthonormal basis, that is,

each ei, wherei = 1, 2, . . . , n, is mutually orthogonal to one another and is a unit vector,

that is,

ei · ej = 0, i �= j and ‖ei‖ = 1, i = 1, 2, . . . , n.
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Definition 3.5: Orthonormal Basis

Let V be a finite dimensional vector space with an inner product. A set of basis vectors

{u1, u2, . . . , un} for V is called an orthonormal basis if

(i) ui · uj = 0 for i �= j

(ii) ‖uj‖ = 1 for j = 1, 2, . . . , n

Theorem 3.1: Coordinates Relative to an Orthonormal Basis

Suppose B = {u1, u2, . . . , un} is an orthonormal basis for Rn. if v is any vector in R
n, then

v = (v · u1)u1 + (v · u2)u2 + · · ·+ (v · un)un. (3.39)

Proof The vector v is in R
n and B is the basis for Rn. Thus, there exists real scalars ki,

i = 1, 2, . . . , n, such that v can expressed as the linear combination

v = k1u1 + k2u2 + · · ·+ knun. (3.40)

The scalar ki are coordinates of v relative to the basisB. These coordinates can be found by

taking the dot product of v with each of the basis vectors:

v · ui = (k1u1 + k2u2 + · · ·+ knun) · ui

= k1(u1 · ui) + k2(u2 · ui) + · · ·+ kn(un · ui) (3.41)

Since B is orthonormal, ui · uj = 0 for i �= j and ui · ui = ‖ui‖2 = 1. Hence from Equation

(3.41) obtains ki = (v · ui) for i = 1, 2, . . . , n.



CHAPTER IV

MATHEMATICAL MODEL AND ALGORITHM

In the previous Chapter, some knowledge background related to radial basis function,

radial basis function neural network, principal component analysis, and orthonormal basis

for a vector space are described in a particular detail. In this Chapter, this knowledge is

applied to develop a new learning algorithm and a new neural network architecture. The

developing details of these new learning algorithm and new neural network architecture are

explained in the following sections. In section 4.1, the details of the proposed neural network

architecture are described. Section 4.2 describes how to develop the new ecliptic basis

function that can translate and rotate to cover the new data in high dimensional space, and

how to compute the parameters of this new developed function such as center, covariance

matrix, and orthonormal basis. In Section 4.3, the details of the proposed learning algorithm

are described. The main details are how to add a new neuron to the neural network, how to

compute the parameters of this new neuron, how to merge the two redundant neurons into

a new one neuron, and how to compute the merging parameters of this new neuron. The

learning time of this proposed algorithm is also proved to be O(n) , where n is the number

of the training data. Examples of the proposed learning algorithm are illustrated in order to

simplify the understanding.

4.1 Versatile Elliptic Basis Function Neural Network

The structure of the versatile elliptic basis function neural network (VEBF neural

network) is shown in Figure 4.1. The network consists of an input layer, a hidden layer,

and an output layer. In the input layer, the number of nodes in this layer is equal to the

dimension of the input data space. In the hidden layer, the nodes in this layer are separated

into sub-hidden layers whose number of sub-hidden layers is equal to the number of classes

and all neurons in the same sub-hidden layer are added to cover the training data in the same
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Figure 4.1 Structure of Versatile Elliptic Basis Function neural network.

class as explained in the next section. Furthermore, the nodes in each sub-hidden layer can

be automatically increased during the learning process. In the output layer, the number of

nodes in this layer is equal to the number of classes in the training data set. Moreover,

the nodes in the output layer can be automatically increased to learn a new data from new

unseen classes during the learning process.

Initially, there is no node in the network. The nodes in each layer in the network are

automatically increased depending on some conditions during the learning process. Suppose

that the input layer consists of n nodes and the output layer consists of p nodes. For each

given input vector x = [x1, x2, ..., xn]
T in R

n, the output of the kth hidden neuron can be

calculated from the versatile elliptic basis function as follows.

ψk(x) =
n∑

i=1

((x − ck)Tuk
i )

2

(aki )
2

− 1 (4.1)

where
{

uk
1, u

k
2, ..., u

k
n

}
is the orthonormal basis of the kth hidden neuron and the constant

aki is the ith semi-axis length of the versatile elliptic basis function of the k th hidden neuron.

The vector ck = [c1, c2, ..., cn]T is the center of the versatile elliptic basis function of the k th

hidden neuron as explained in the next section.



22

In the output layer, the output at the qth output neuron is obtained from finding a

minimum value from the hidden neurons in the q th sub-hidden layer. The output at the qth

output neuron in the output layer is defined as

yq(x) = min
k

(ψk(x)), q = 1, ..., p (4.2)

where ψk(x) is the output at the kth hidden node in the qth sub-hidden layer.

To predict the class label of the input vector x, the decision function for predicting the

class label of a new input vector is defined. The value of this decision function is obtained

from the minimum output value among the output neurons generated by a hidden neuron

that is covered by input vector x. The decision function, D(x), is defined as follows.

D(x) =

⎧⎨
⎩

k if k = argmin
q
(yq(x)) and yq(x) ≤ 0

unknown otherwise
(4.3)

From Equation (4.3), it is clear that the input vector x is predicted to be the kth class if

there exists a hidden neuron in the kth sub-hidden layer covering the input vector x. If there

is no hidden neuron covering the input vector x, it is predicted to be the unknown class.

Therefore, for any new input vector x, the new input vector can be considered as either kth

class or unknown class. However, the input vectors in the unknown class may be classified

into the kth class by using only the minimum value from the output layer.

4.2 Versatile Elliptic Basis Function

An orthonormal basis is a set of vectors which form a basis for a vector space. For the

vector space R
n mentioned previously, the standard basis consists of the n vectors

e1 = [1, 0, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , . . . , en = [0, 0, 0, . . . , 1]T .

These vectors in the standard basis are mutually orthogonal and are all unit vectors. Thus,

this standard basis {e1, e2, . . . , en} is the orthonormal basis. The coordinates of any vectors

in R
n are relative to this standard basis. Therefore, for each vector x = [x1, x2, ..., xn]

T in R
n

and for a new given orthonormal basis {u1, u2, ..., un} in R
n, the coordinate xi, i = 1, ..., n,

of the vector x relative to the new basis or the new axes can be written as follows.

xi = xTui (4.4)
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Considering the hyper-ellipsoidal equation in n-dimensional space, the hyper-ellipsoidal

equation of unrotated and centered at the origin is defined as

x21
a21

+
x22
a22

+ ...+
x2n
a2n

= 1 (4.5)

where the constant ai, i = 1, ..., n, is the ith semi-axis length of the hyper-ellipsoid. The

simplification of Equation (4.5) can be written as

n∑
i=1

x2i
a2i

= 1 (4.6)

By substituting Equation (4.4) into Equation (4.6) to obtain

n∑
i=1

(xTui)
2

a2i
= 1 (4.7)

where {u1, u2, ..., un} is the orthonormal basis.

From Theorem 3.1 , the Equation (4.7) indicates that the coordinates of hyper-ellipsoid

in Equation (4.6) are changed to the new coordinates relative to the new orthonormal basis.

Therefore, if the new orthonormal basis is rotated from the original one, the hyper-ellipsoid

in Equation (4.7) is rotated along with the new orthonormal basis.

From Equation (4.7), the center of the ellipsoidal equation is located at the origin. This

equation can be generalized by translating the center of the ellipsoidal Equation (4.7) from

the origin to the new center. Suppose x = [x1, x2, ..., xn]
T is a vector whose coordinates

are related to the original axes with the basis {u1, u2, ..., un}. If the original axes of the

hyper-ellipsoidal equation are translated from the origin to a new center c = [c1, c2, ..., cn]
T ,

the new coordinates of vector x relative to the basis {u1, u2, ..., un} can be written as

x′i = (x − c)Tui (4.8)

The hyper-ellipsoidal equation rotated and located at the center c = [c1, c2, ..., cn]
T can be

written as

n∑
i=1

x′2i
a2i

= 1. (4.9)

By substituting Equation (4.8) into Equation (4.9), it can be written as

n∑
i=1

((x − c)Tui)
2

a2i
= 1 (4.10)
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From Equation (4.10), the new elliptic basis function, namely, Versatile Elliptic Basis Func-

tion (VEBF) is defined as shown in the equation below

ψ(x) =
n∑

i=1

((x − c)Tui)
2

a2i
− 1 (4.11)

where {u1, u2, ..., un} is the orthonormal basis, the constant ai, i = 1, ..., n, is the ith semi-

axis length of the hyper-ellipsoid, and the vector c = [c1, c2, ..., cn]T is the center of the

hyper-ellipsoid.

In this research, the versatile elliptic basis function (4.11) is applied in the hidden

layer of the newly developed neural network. As previously mentioned, the main purpose

of this research is to develop a new learning algorithm that can learn the data only one

pass. This learned data can be discarded after learning as it is not required for subsequent

learning. Consequently, the parameters such as the center and orthonormal basis of the

versatile elliptic basis function (4.11) should be adjusted recursively which will be explained

in the next two subsections.

4.2.1 Recursive Mean Computation

Let X = {x1, x2, ..., xN} be a set of N samples, where each xj ∈ R
n, j = 1, ..., N, is

a feature vector. Let μ be the mean vector (center) of this data set. The mean of this data set

can be calculated from the following equation.

μ =
1

N

N∑
j=1

xj (4.12)

Since Equation (4.12) requires all xj , j = 1, 2, . . . , N , to compute the present value

of μ, it is not suitable for 1-pass-throw-away learning where all xj , j = 1, 2, . . . , N , are

discarded after being learned. In order to compute the present value of μ, the value of μ

must be rewritten in a form of recursive relation between the previous value of μ and the

present value of xN . Let μold be the mean vector of the data set X . If xN+1 ∈ R
n is the

new data vector added into the data set X , then the recursive relation can be written as

follows [16].

μnew = αμold + β (4.13)

where μnew is the new mean vector, α = N
N+1

and β = xN+1

N+1
.
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In this research, Equation (4.13) is applied for evaluating the center of the VEBF in

Equation (4.11). By using Equation (4.13) for calculating the center of the VEBF, the center

of the VEBF can be adjusted in one pass. After the the center of VEBF is adjusted by the

current datum, it does not require this datum again for further adjusting because the new

mean vector in Equation (4.13) requires the old mean vector, the number of old data, and

the new incoming datum. The old mean vector and the number of old data have been stored

in the VEBF neural network which will be explained in the next section.

4.2.2 Recursive Covariance Matrix Computation

Let X = {x1, x2, ..., xN} be a set of N samples, where each xj ∈ R
n, j = 1, ..., N, is

a feature vector. Let μ ∈ R
n be the mean vector of this data set. The covariance matrix of

this data set is computed from the following equation.

S =
1

N

N∑
j=1

(xj − μ)(xj − μ)T (4.14)

Another form of the covariance matrix of Equation (4.14) can be written as

S =
1

N

N∑
j=1

xjxT
j − μμT (4.15)

Both covariance matrix equations (4.14) and (4.15) are not suitable for 1-pass-throw-away

learning since all data must be presented. Therefore, in case of 1-pass-throw-away learning,

only the new incoming datum is presented. The other data are already discarded after being

learned. Thus, the present covariance matrix must be rewritten in the form of recursive re-

lation similar to Equation (4.13). The following theorem states this recursive relation.

Theorem 4.1 Let X = {x1, x2, ..., xN} be a set of N data vectors in R
n and Sold be the

covariance matrix of the data set X . If a new data vector xN+1 ∈ R
n is added into the data

set X , then

Snew = αSold + κ (4.16)

where κ = 1
N
(μnew − xN+1)(μnew − xN+1)

T , α = N
N+1

, μnew is the new mean, and Snew is

the new covariance matrix.
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Proof: Let μold be the mean vector of the data set X . Since Sold is the covariance

matrix, from Equation (4.15), it can be written as

Sold =
1

N

N∑
i=1

xixT
i − μoldμ

T
old (4.17)

If a new data vector xN+1 ∈ R
n is added into the data set X , the new covariance matrix,

Snew, can be written as

Snew =
1

N + 1

N∑
i=1

xixT
i +

xN+1xT
N+1

N + 1
− μnewμ

T
new. (4.18)

Subtracting Equation (4.18) by Equation (4.17) yields

Snew − Sold =
1

N + 1

N∑
i=1

xixT
i − 1

N

N∑
i=1

xixT
i + κ1

=

(
− 1

(N + 1)N

) N∑
i=1

xixT
i + κ1

= − 1

(N + 1)

(
1

N

N∑
i=1

xixT
i

)
+ κ1

= − 1

(N + 1)

(
1

N

N∑
i=1

xixT
i − μoldμ

T
old

)
+ κ1 + κ2

= − 1

N + 1
Sold + κ1 + κ2

Therefore,

Snew = Sold − 1

N + 1
Sold + κ1 + κ2

=

(
1− 1

N + 1

)
Sold + κ1 + κ2

=

(
N

N + 1

)
Sold + κ1 + κ2

= αSold + κ (4.19)

where α = N
N+1

, κ = κ1 + κ2, κ1 =
xN+1xTN+1

N+1
− μnewμ

T
new + μoldμ

T
old, κ2 = −µoldµ

T
old

N+1
.

Simplifying κ in Equation (4.19)

κ = κ1 + κ2

=
xN+1xT

N+1

N + 1
− μnewμ

T
new + μoldμ

T
old −

μoldμ
T
old

N + 1

=
xN+1xT

N+1

N + 1
− μnewμ

T
new +

N

N + 1
μoldμ

T
old (4.20)
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The Equation (4.13) can be rewritten as

μold =
1

N
((N + 1)μnew − xN+1) (4.21)

Considering the outer product of μold and itself which can be expressed as follows.

μoldμ
T
old =

1

N2
((N + 1)μnew − xN+1) ((N + 1)μnew − xN+1)

=
1

N2
((N + 1)2μnewμ

T
new − (N + 1)μnewxT

N+1

−(N + 1)xN+1μ
T
new + xN+1xT

N+1) (4.22)

Multiply both terms of Equation (4.22) by N
N+1

to obtain

N

N + 1
μoldμ

T
old =

1

N(N + 1)
((N + 1)2μnewμ

T
new − (N + 1)μnewxT

N+1

−(N + 1)xN+1μ
T
new + xN+1xT

N+1) (4.23)

Substituting Equation (4.23) into Equation (4.20)

κ =
xN+1xT

N+1

N + 1
− μnewμ

T
new

+
1

N(N + 1)
((N + 1)2μnewμ

T
new − (N + 1)μnewxT

N+1

−(N + 1)xN+1μ
T
new + xN+1xT

N+1) (4.24)

All denominators in Equation (4.24) are adjusted to be equal as shown in the following

equation.
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κ =
1

N(N + 1)
(NxN+1xT

N+1)−
1

N(N + 1)
(N(N + 1)μnewμ

T
new)

+
1

N(N + 1)
((N + 1)2μnewμ

T
new − (N + 1)μnewxT

N+1

−(N + 1)xN+1μ
T
new + xN+1xT

N+1)

=
1

N(N + 1)
(((N + 1)2 −N(N + 1))μnewμ

T
new − (N + 1)μnewxT

N+1

−(N + 1)xN+1μ
T
new + (N + 1)xN+1xT

N+1)

=
1

N(N + 1)
((N2 + 2N + 1−N2 −N)μnewμ

T
new − (N + 1)μnewxT

N+1

−(N + 1)xN+1μ
T
new + (N + 1)xN+1xT

N+1)

=
1

N(N + 1)
((N + 1)μnewμ

T
new − (N + 1)μnewxT

N+1

−(N + 1)xN+1μ
T
new + (N + 1)xN+1xT

N+1)

=
1

N(N + 1)
((N + 1)(μnewμ

T
new − μnewxT

N+1 − xN+1μ
T
new + xN+1xT

N+1))

=
1

N(N + 1)
((N + 1)(μnew − xT

N+1)(μnew − xT
N+1)

T )

=
1

N
(μnew − xN+1)(μnew − xN+1)

T (4.25)

Since the principal component analysis is applied to find the orthonormal basis for

the versatile elliptic basis function (4.11), this technique requires the mean vector and the

covariance matrix to compute the eigenvalues and eigenvectors. The set of these eigen-

vectors forms the basis for a data space. Therefore, Equation (4.16) is applied to find the

orthonormal basis for the versatile elliptic basis function (4.11). By using Equation (4.16),

the covariance matrix can be adjusted in one pass and the data can be discard after being

learned.

4.2.3 Orthonormal Basis Computation and Algorithm

The principal component analysis (PCA) is a statistical method applied primarily to

transform the input data space into a new lower dimensional space. The axes of the new

coordinate system of a new space are generated by translating the original axes into the

coordinate of the mean of a data set and then rotating them. The primary axis represents

the direction of maximum variance of the data set. The secondary axis, orthogonal to the

primary axis, represents the direction of the second largest variance of the data set, and so
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on. In this research, we apply the concept of the PCA for finding the orthonormal basis for

the versatile elliptic basis function (VEBF).

Given the data set X = {x1, x2, ..., xN}, xj ∈ R
n, j = 1, ..., N , the mean vector

and the covariance matrix can be computed from Equation (4.13) and (4.16), respectively.

Similarly, eigenvalues and eigenvectors can be computed from the covariance matrix. Since

the eigenvectors are orthogonal to one another and their lengths are equal to 1, the set of

eigenvectors forms the orthonormal basis for this data space. Let {u1, u2, ..., un} be the

orthonormal basis, this orthonormal basis for the VEBF can be computed by the following

algorithm.

Orthonormal Basis Computation Algorithm

1. Calculate the mean vector using Equation (4.13).

2. Calculate the covariance matrix using Equation (4.16).

3. Calculate eigenvalues of the covariance matrix in step 2:

λ1 > λ2 > ... > λn (4.26)

where λi, i = 1..n, is the eigenvalue.

4. Calculate eigenvectors from the eigenvalues obtained in step 3:

u1, u2, ..., un (4.27)

where ui ∈ R
n, i = 1..n, is the eigenvector corresponding to λi.

5. Assign the set of eigenvectors in step 4, {u1, u2, ..., un}, to be the set of orthonormal

basis for the data space.

Since the set of these eigenvectors forms the basis for the data space, this algorithm is

applied to find the orthonormal basis for the versatile elliptic basis function (4.11) which is

used in the new developed neural network and its learning algorithm.
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4.3 The Proposed Learning Algorithm

Let X = {(xj, tj)|1 ≤ j ≤ N} be a finite set of N training data, where xj is a vector

in R
n referred to as a data vector and tj is the class label of the vector xj . Let Ω =

{Ωk|1 ≤ k ≤ m} be a set of m neurons in the hidden layer. Each Ωk contains the covariance

matrix, the center vector whose dimension is equal to that of the data vector, the semi-axis

vector whose elements are the semi-axis lengths, the number of data covered by k th neuron,

and the class label. Therefore, Ωk is denoted as a 5-tuple, (Sk, ck, ak, nk, dk), where Sk

is the covariance matrix of kth neuron, ck = [ck1, c
k
2, ..., c

k
n]

T is the center of kth neuron,

ak = [ak1, a
k
2, ..., a

k
n]

T is the semi-axis vector of kth neuron, nk is the total number of data

covered by kth neuron, and dk is the class label of kth neuron. Let O = {Oq|1 ≤ q ≤ p} be

a set of p neurons in the output layer.

4.3.1 Geometrical Growth Criterion

Initially, there is no hidden neuron in the VEBF neural network. A new hidden neuron

can be automatically added into the network whenever the condition is satisfied. When a

training data (xj, tj) is fed into the network, the VEBF neural network find whether there

exists a hidden neuron with the same class that is closest to the input vector xj . If there is no

such hidden neuron, a new hidden neuron, defined as Ωnew = (Snew, cnew, anew, nnew, dnew),

and a new output neuron are allocated and added into the network. Let a0 = [a1, a2, ..., an]
T

be an initial axes. The parameters of this new hidden neuron are initialized as follows.

Snew = 0 (4.28)

cnew = xj (4.29)

anew = a0 (4.30)

nnew = 1; (4.31)

dnew = tj (4.32)

The zero matrix, defined as 0 in Equation (4.28), is the matrix which all elements are zero.

However, if there exists the closest hidden neuron in the network, this data vector is tem-

porarily considered to be an element of the closest hidden neuron. Let cs be the index of this
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closest hidden neuron. The new temporary parameters of the closest hidden neuron includ-

ing its new center cnewcs , the new covariance matrix Snew
cs , and the new number of elements of

this closest hidden neuron ncs are computed but the semi-axis lengths of the versatile elliptic

basis function are not computed at this moment. The new semi-axis lengths of VEBF are not

computed at this moment because this VEBF with the old semi-axis lengths and these new

temporary parameters need to be considered whether it can cover this input vector x. How-

ever, the closest hidden neuron might not be actually close to the data vector. The following

criterion is used to determine whether the closeness is acceptable. If it is not acceptable

then a new hidden neuron is introduced and added to the network. The output of the closest

hidden neuron is computed using the new temporary parameters along with Equation (4.11)

as follows.

ψcs(xj) =
n∑

i=1

((xj − cnewcs )Tunew
i )2

(acsi )
2

− 1 (4.33)

If ψcs(xj) > 0, called geometrical growth criterion, is satisfied then a new hidden

neuron, Ωnew = (Snew, cnew, anew, nnew, dnew), is allocated and added into the network. The

parameters of this new neuron are initialized as Equation (4.28), (4.29), (4.30), (4.31), and

(4.32), respectively.

Therefore, whenever the new input vector is fed into the network and the geomet-

rical growth criterion is satisfied or there is no hidden neuron with the same class of this

new input vector, the new hidden neuron is created and then added into the network. The

new parameters of this new hidden neuron are initialized by using equations (4.28), (4.29),

(4.30), (4.31), and (4.32), respectively. Moreover, a new neuron in the output layer can be

automatically added into the network whenever the new data with the new classes are fed

into the network.

4.3.2 Merging Strategy

Since the new neurons can be automatically added into the network, the number of

neurons in the network will be gradually increased during learning process. However, it is

possible that there are some number of redundant neurons in the network. In which case,

some neurons may be very close to one another and can be merged together in order to

reduce the number of neurons in the network. For this reason, a merging strategy for these
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redundant neurons will be introduced in the learning algorithm in order to reduce these

redundant neurons and the computational cost.

For merging the two neurons into a new neuron, since all data learned by these two

neurons are discarded, the parameters of the new neuron cannot be computed from previ-

ous learn data. The new parameters such as the new center and the new covariance must

be calculated from the parameters of these two neurons. Thus, the merging center and the

merging covariance should be derived in order to evaluate the new parameters. The follow-

ing theorems state theses merging strategies.

Theorem 4.2 Let X = {x1, x2, ..., xN1} be a set of N1 data vectors and Y = {y1, y2, ..., yN2
}

be a set of N2 data vectors. Let μ1 and μ2 be the mean vector of the data set X and Y,

respectively. If these two data set X and Y are merged into the new data set Z, then

μnew =
1

N1 +N2

(N1μ1 +N2μ2) (4.34)

where μnew is the new mean vector called combined mean vector of the new data set Z.

Proof: Sice μ1 is the mean vector of the data set X, that is

μ1 =
1

N1

N1∑
i=1

xi. (4.35)

The Equation (4.35) can be rewritten as

N1μ1 =

N1∑
i=1

xi. (4.36)

Sice μ2 is the mean vector of the data set Y, that is

μ2 =
1

N2

N2∑
i=1

yi. (4.37)

The Equation (4.37) can be rewritten as

N2μ2 =

N2∑
i=1

yi. (4.38)

Because μnew is the mean vector of the data set Z, this means that

μnew =
1

N1 +N2
(

N1∑
i=1

xi +

N2∑
i=1

yi). (4.39)
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Substituting Equation (4.36) and Equation (4.38) into Equation (4.39) yields

μnew =
1

N1 +N2
(N1μ1 +N2μ2) (4.40)

Theorem 4.3 Let X = {x1, x2, ..., xN1} be a set of N1 data vectors and Y = {y1, y2, ..., yN2
}

be a set of N2 data vectors. Let μ1 and μ2 be the mean vector of the data set X and Y,

respectively, and S1 and S2 be the covariance matrix of the data set X and Y, respectively. If

these two data set X and Y are merged into the new data set Z then

Snew =
N1

N1 +N2
S1 +

N2

N1 +N2
S2 +

N1N2

(N1 +N2)2
(μ1 − μ2)(μ1 − μ2)

T (4.41)

where Snew is the new covariance matrix called combined covariance matrix of the new data

set Z.

Proof: Let μnew be the combined mean vector in theorem 4.2. Thus,

μnew =
1

N1 +N2
(N1μ1 +N2μ2) . (4.42)

Because S1 and μ1 are the covariance matrix and the mean vector of data set X, respectively,

that is

S1 =
1

N1

N1∑
i=1

xixT
i − μ1μ

T
1 (4.43)

It follows that
N1∑
i=1

xixT
i = N1S1 +N1μ1μ

T
1 (4.44)

Since S2 and μ2 are the covariance matrix and the mean vector of data set Y, respectively,

that is

S2 =
1

N2

N2∑
i=1

yiy
T
i − μ2μ

T
2 (4.45)

Equation (4.45) can be rewritten as

N1∑
i=1

yiy
T
i = N2S2 +N2μ2μ

T
2 (4.46)

Since Snew is the new covariance matrix of the new data set Z, from Equation (4.15) yields

Snew =
1

N1 +N2

(
N1∑
i=1

xixT
i +

N1∑
i=1

yiy
T
i

)
− μnewμ

T
new. (4.47)
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Substituting Equation (4.44) and (4.46) into Equation (4.47) yields

Snew =
1

N1 +N2

(
N1S1 +N1μ1μ

T
1 +N2S2 +N2μ2μ

T
2

)− μnewμ
T
new. (4.48)

Using Equation (4.42), the outer product of μnew and itself can be written as

μnewμ
T
new =

1

(N1 +N2)2
(N1μ1 +N2μ2) (N1μ1 +N2μ2)

T

=
1

(N1 +N2)2
(
N2

1μ1μ
T
1 +N1N2μ1μ

T
2 +N1N2μ2μ

T
1 +N2

2μ2μ
T
2

)
=

N2
1

(N1 +N2)2
μ1μ

T
1 +

N1N2

(N1 +N2)2
μ1μ

T
2 +

N1N2

(N1 +N2)2
μ2μ

T
1

+
N2

2

(N1 +N2)2
μ2μ

T
2 (4.49)

Equation (4.48) can be expressed as

Snew =
N1

N1 +N2
S1 +

N2

N1 +N2
S2 +

N2
1

(N1 +N2)2
μ1μ

T
1 +

N1N2

(N1 +N2)2
μ1μ

T
1

+
N1N2

(N1 +N2)2
μ2μ

T
2 +

N2
2

(N1 +N2)2
μ2μ

T
2 − μnewμ

T
new (4.50)

Substituting μnewμ
T
new of Equation (4.49) into Equation (4.50) to obtain

Snew =
N1

N1 +N2

S1 +
N2

N1 +N2

S2 +
N2

1

(N1 +N2)2
μ1μ

T
1 +

N1N2

(N1 +N2)2
μ1μ

T
1

+
N1N2

(N1 +N2)2
μ2μ

T
2 +

N2
2

(N1 +N2)2
μ2μ

T
2 − N2

1

(N1 +N2)2
μ1μ

T
1

− N1N2

(N1 +N2)2
μ1μ

T
2 − N1N2

(N1 +N2)2
μ2μ

T
1 − N2

2

(N1 +N2)2
μ2μ

T
2

=
N1

N1 +N2
S1 +

N2

N1 +N2
S2 +

N1N2

(N1 +N2)2
μ1μ

T
1 +

N1N2

(N1 +N2)2
μ2μ

T
2

− N1N2

(N1 +N2)2
μ1μ

T
2 − N1N2

(N1 +N2)2
μ2μ

T
1

=
N1

N1 +N2
S1 +

N2

N1 +N2
S2 +

N1N2

(N1 +N2)2
(
μ1μ

T
1 − μ1μ

T
2 − μ2μ

T
1 + μ2μ

T
2

)
=

N1

N1 +N2
S1 +

N2

N1 +N2
S2 +

N1N2

(N1 +N2)2
(μ1 − μ2)(μ1 − μ2)

T

Any two hidden neurons can be merged into one new neuron whenever some con-

ditions are satisfied. The Equation (4.34) and (4.41) in Theorem 4.2 and 4.3 are applied

to adjust the new parameters of this new neuron. Let Ωx = (Sx, cx, ax, nx, dx) and Ωy =

(Sy, cy, ay, ny, dy) be any two hidden neurons x and y in a VEBF neural network, respec-

tively. In this research, the merging function is defined in terms of the distance from neuron
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x to neuron y as follows.

φ(cx, cy) =
n∑

i=1

((cx − cy)Tuy
i )

2

(ayi )
2

− 1 (4.51)

where uy
i is the ith basis of the orthonormal basis of the nodes Ωy, and ayi is the ith semi-axis

length of the node Ωy.

If merging criterion, φ(cx, cy) ≤ θ and dx = dy, is satisfied, these two hidden neurons

are merged into one new hidden neuron Ωnew = (Snew, cnew, anew, nnew, dnew). The thresh-

old θ is a constant value used to identify whether these two neurons should be merged into

a single neuron. Using Equation (4.34) and (4.41), the new parameters of this new hidden

neuron can be computed as follows.

cnew =
1

nx + ny
(nxcx + nycy) (4.52)

Snew =
nx

nx + ny

Sx +
ny

nx + ny

Sy (4.53)

+
nxny

(nx + ny)2
(cx − cy)(cx − cy)T

nnew = nx + ny (4.54)

anewi =
√

2π|λi|, i = 1, ..., n (4.55)

dnew = dx (4.56)

where λi is ith eigenvalue of the new covariance matrix Snew.

4.3.3 VEBF Learning Algorithm

Let Ω = {Ωk|1 ≤ k ≤ m} be the set of m neurons. Therefore, m is the number of

elements in the set Ω. In other words, m is the number of neurons in the network. If there is

no hidden neuron in the network, the value of m is zero. Let θ be the threshold for merging

the two hidden neurons in the network, and X = {(xj, tj)|1 ≤ j ≤ N} be a set ofN training

data. The learning algorithm for VEBF neural network can be summarized as follows:

1. Initialize the semi-axis vector a0 = [a1, a2, ..., an]
T and the value of n0.

2. Input the training data (xj , tj) into the VEBF neural network.

3. Find a hidden neuron Ωk ∈ Ω and dk = tj such that

k = argmin
i
(||xj − ci||), i = 1, ..., m.
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If there exists such a neuron Ωk then do the following steps:

(a) Compute the new center cnewk based on Equation (4.13).

cnewk = αcoldk + β

(b) Compute the new covariance matrix Snew
k based on Equation (4.16).

Snew
k = αSold

k + κ

else

(a) Create a new hidden neuron Ωnew.

(b) Adjust the parameters of this new neuron using Equations (4.28), (4.29), (4.30),

(4.31), and (4.32).

(c) Set Ω = Ω ∪ Ωnew and remove (xj , tj) from the training data set X.

(d) Go to step 7.

end

4. Compute the orthonormal basis for Ωk.

(a) Compute the eigenvalues of covariance matrix Snew
k :

λ1 > λ2 > ... > λn

(b) Compute the eigenvectors of the covariance matrix Snew
k :

uk
1, u

k
2, ..., u

k
n

where uk
i is the eigenvector corresponding to λi.

(c) Assign
{

uk
1, u

k
2, ..., u

k
n

}
be the set of orthonormal basis for Ωk.

5. Compute ψk(xj) =

n∑
i=1

((xj − cnewk )Tuk
i )

2

(aki )
2

− 1.

If ψk(xj) ≤ 0 then update the parameters of Ωk using these steps:

(a) Update the center of Ωk, ck = cnewk .
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(b) Update the covariance matrix of Ωk, Sk = Snew
k .

(c) Update the parameter nk = nk + 1.

(d) If nk > n0 then update the semi-axis lengths of Ωk by setting

aki = aki +
∣∣(cnewk − coldk )Tuk

i

∣∣ , i = 1, ..., n

end

else

(a) Create a new hidden neuron Ωnew.

(b) Adjust the parameters of this new neuron using Equations (4.28), (4.29), (4.30),

(4.31), and (4.32).

(c) Set Ω = Ω ∪ Ωnew and remove (xj , tj) from the training data set X.

end

6. Compute the merging function φ(ck, cl) and φ(cl, ck) such that dk = dl for l = 1, ..., m

based on Equation (4.51).

If φ(ck, cl) ≤ θ or φ(cl, ck) ≤ θ then do the following steps:

(a) Merge the hidden neurons Ωk and Ωl into the new hidden neuron Ωnew and com-

pute its parameters by using Equations (4.52), (4.53), (4.54), (4.55), and (4.56).

(b) set Ω = Ω ∪ Ωnew and then remove Ωk and Ωl from the network.

end

7. If the training data set X is not empty then go to step 2

else, stop training.

Theorem 4.4. The time complexity, Talg, of the proposed learning algorithm isO(m) where

m is the number of data.

Proof: Since the computations in steps 1, 2, and 7 do not depend on the number of

data, the time used in these steps is constant. Then, the time complexity of these steps is

O(1). In step 3, the searching of the minimum distance between the current training data
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and the existing neurons can be done by comparing the distant between the current data and

the existing neurons. Because the maximum number of the existing neurons is m − 1 , the

comparison can be done in m − 1 time in the worst case. In addition, since computations

of the new mean vector and the new covariance matrix are not dependent on the number of

data, the time complexity is constant. So, the time complexity of the third step is O(m). In

step 4, the computations of eigenvalues and eigenvectors do not depend on the number of

data. Then, the time complexity of this step is O(1). In step 5, the computation of this step

depends on the dimension of the data which is constant and is independent of the number of

data. So, the time complexity of this step is O(1). In step 6, the computations are done in

m− 1 time in the worst case so the time complexity of this step is O(m). From steps 1 to 7,

the time complexity is

Talg = O(1) +O(1) +O(m) +O(1) +O(1) +O(m) +O(1) = O(m)

4.3.4 Training VEBF Neural Network

Once each input data vector is learned, it is discarded from the process forever. Ini-

tially, the VBEF neural network is empty. The nodes in the network will be automatically

increased during the training process. Consider this simple example. Suppose that X =

{([5, 16]T , 0), ([15, 6]T , 1), ([10, 18]T , 0), ([5, 6]T , 1), ([11, 16]T , 0)} is a set of training data

in R
2. There are two classes in this data set labeled by class 0 and class 1. Suppose the train-

ing data in class 0 is illustrated by the plus ‘+’ while the training data of class 1 is illustrated

by the star ‘*’.

Firstly, the training data ([5, 16]T , 0) is fed into the VEBF neural network. This train-

ing data is in class 0. Since there is no VEBF neuron of class 0 in the network, a new VEBF

neuron of class 0 is created and all parameters of this new VEBF neuron are computed.

This creates VEBF neuron which is shown in Figure 4.2(a) with the versatile elliptic basis

function in R
2.

Secondly, the training data ([15, 6]T , 1) is fed into the VEBF neural network. This

training data is in class 1. Because there is no VEBF neuron of class 1 in the network, a

new VEBF neuron of class 1 is created and all parameters of this new VEBF neuron are

computed. Figure 4.2(b) shows the created VEBF neuron of class 1.
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Figure 4.2: The learning event for the first two input data. (a) The first neuron with class ’0’

is created in the feature space. (b) The second neuron with class ’1’ is created next.

Thirdly, the training data ([10, 18]T , 0) is fed into the VEBF neural network. This

training data is in class 0. Since there exists a VEBF neuron in class 0, the closest VEBF

neuron can be found, and the data is temporarily assigned to this neuron. All new temporary

parameters of the this neuron and the output value of this versatile elliptic basis function

are computed using these new temporary parameters. Since the computed output value of

this function is less than zero, it means that the neuron can cover the data and this training

data can be assigned to this neuron. All new temporary parameters now become the actual

parameters of this neuron. Figure 4.3(a) shows the VEBF neuron trying to adjust itself to

cover the new data. The adjusted neuron to cover the data is shown in Figure 4.3(b).

Fourthly, the training data ([5, 6]T , 1) is fed into the VEBF neural network. This train-

ing data is in class 1. Since there exists some VEBF neuron in class 1, the closest VEBF

neuron is found. The algorithm tries to assign the data to this neuron. All new temporary

parameters of this neuron and the output value of the versatile elliptic basis function are

computed using these new temporary parameters. Because this output value is greater than

zero, it means that the neuron cannot cover the data. A new VEBF neuron is created and all

new parameters of this neuron are assigned. Figure 4.4(a) shows the second neuron trying

to adjust itself to cover the new data. Since it cannot cover the data, a new VEBF neuron is

created to cover this new data as shown in Figure 4.4(b).
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Figure 4.3: The learning process for the next two data. (a) The first neuron attempts to adjust

itself to cover the data (dot line). (b) The adjusted neuron covering the data.

Finally, the training data ([11, 16]T , 0) is fed into the VEBF neural network. This

training data is in class 0. Since there exists some VEBF neurons in class 0, the closest

VEBF neuron is found. Then, the algorithm tries to assign the data to this neuron. All

new temporary parameters of this neuron and the output value of the versatile elliptic basis

function are computed using these new temporary parameters. Because the value of this

function is less than zero, this training data is assigned to this neuron and all new temporary

parameters become the actual parameters of this neuron. Figure 4.5(a) shows the VEBF

neuron trying to adjust itself to cover the new data. Since it can cover the new data, the

adjusted neuron to cover the data and all new parameters of this node are updated. The

adjusted neuron is shown in Figure 4.5(b).

Another example is the spiral data set trained by the proposed algorithm with the

constant n0 = 10. The initial semi-axis vector of VEBF is equal to [0.9, 0.5]T . The network

learns this data set in only one epoch. After training, the result is illustrated in Figure 4.6.
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Figure 4.4: The event during the fourth data training. (a) The second neuron attempts to

adjust itself to cover the data (dot line). (b) The third neuron is created in the feature space.
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Figure 4.5: The event during the fifth data training. (a) The first neuron attempts to adjust

itself to cover the data (dot line). (b) The first neuron adjusts itself to cover the data in the

feature space.
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Figure 4.6 The spiral data set trained by our proposed algorithm.



CHAPTER V

EXPERIMENTAL RESULTS

In this research, the performance of VEBF neural network is evaluated on the two-

class classification problem and multi-class classification problem. The results are com-

pared with the conventional radial basis function neural network with Gaussian radial ba-

sis function (RBF), multilayer perceptron (MLP) for multi-class classification problem and

two-class classification problem. In the two-class classification problem, the results are also

compared with support vector machine (SVM) because SVM is suitable for the two-class

classification problem. In the multi-class classification problem, the results are not com-

pared with support vector machine (SVM) because SVM has a costly computational time.

The simulations are done on MATLAB using neural network toolbox. To fairly evaluate

the performance, the number of neurons used in VEBF, MLP, and RBF models are equally

set in all simulations. However, the number of neurons of RBF and MLP are set according

to the proposed model because the numbers of neurons of the RBF and MLP can be fixed

in advance but the number of neurons of the proposed model cannot be fixed in advance.

The data sets used to train and test are collected from UCI Repository of machine learning

database [15]. The properties of the data set are given in Table 5.1. In this experiment,

five-fold cross-validation is used to train and test the models. Each data set is divided into

five disjoint subsets. Then, four subsets are used as a training set and the other subset is used

as a testing set. This process is repeated five times which each of the five subsets is used

exactly once as the testing set. Eventually, the results from each testing set are averaged. In

multi-class classification problem, the testing data may be classified into the unknown class

which is considered as misclassification. In two-class classification problem, each datum

in the unknown class will be classified into the class of the hidden neuron that is closest to

this datum in order to reduce the problem of local decision boundary. The proposed neural

network (VEBF neural network) is trained by the proposed learning algorithm in only one

epoch. The proposed VEBF neural network can incrementally learn the new data sets with-
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Table 5.1 Properties of the data sets used in the experiment.

Data sets No. of attributes No. of classes No. of instances

Iris 4 3 150

E.coli 8 8 336

Yeast 8 10 1484

Image Segmentation 19 7 2310

Waveform 21 3 5000

Heart 13 2 270

Spambase 57 2 4601

Sonar 60 2 208

Liver 7 2 345

out the previous learned data sets but the MLP, RBF, and SVM cannot. The initial semi-axis

lengths of VEBF neural network, denoted by ak, k = 1, . . . , n, is computed from

ak = δ ∗ dav (5.1)

where dav = 1
N2

N∑
i=1

N∑
j=1

dij , dij is the Euclidean distance between ith and jth instances, and

N is the number of data. For VEBF learning algorithm, the constant n0 is set to 2 and the

threshold θ is set to 0 for all experiments. For the MLP model, the simulation runs 10 times

with each data set and the best accuracy is chosen. However, the initial width σk of the radial

basis function is equally set to the initial semi-axis length ak of the proposed basis function

if they can achieve the highest accuracy and set to be larger or smaller than the proposed

basis function if they can achieve the highest accuracy with the same number of neurons.

5.1 Multi-Class Classification Problem

5.1.1 Iris Data Set

The iris data set consists of four attributes in three classes. There are 150 instances in this

data set. In this experiment, the proposed algorithm uses only one epoch to learn this data

set. The initial semi-axis lengths of VEBF is computed from Equation (5.1) with δ = 1/3
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and the initial width of RBF is computed from Equation (5.1) with δ = 10. For the MLP

model, the simulation runs 10 times and the best result is chosen. The comparative results

of VEBF, RBF, and MLP are illustrated in Table 5.2. From this table, the accuracy of the

proposed model and MLP are equal but higher than the accuracy of RBF. However, the

training time of the proposed model is less than that of MLP and RBF when the number of

neurons is equal.

Table 5.2 The comparative results trained by Iris Data Set.
VEBF RBF MLP

Testing Time No. of Accuracy Time No. of Accuracy Time No. of Accuracy

fold (s) neurons (%) (s) neurons (%) (s) neurons (%)

1 0.08 3 96.67 1.11 3 96.67 1.18 3 96.67

2 0.03 3 100.00 0.13 3 96.67 0.43 3 100.00

3 0.03 3 96.67 0.10 3 100.00 0.43 3 100.00

4 0.03 3 100.00 0.10 3 96.67 0.44 3 96.67

5 0.03 3 96.67 0.10 3 96.67 0.43 3 96.67

Average 0.04 3 98.00 0.31 3 97.33 0.58 3 98.00

5.1.2 Ecoli Data Set

The ecoli data set consists of eight attributes in eight classes. There are 336 instances in

this data set. In this experiment, the initial semi-axis lengths of VEBF is computed from

Equation (5.1) with δ = 1 and the initial width of RBF is computed from Equation (5.1)

with δ = 1. For the MLP model, the simulation runs 10 times and the best result is chosen.

The proposed algorithm used only one epoch to learn this data set. The comparative results

of VEBF, RBF, and MLP are shown in Table 5.3. From this table, the accuracy of the

proposed model is higher than that of RBF and MLP. In addition, the training time of the

proposed model is less than those of RBF and MLP.

5.1.3 Yeast Data Set

The yeast data set consists of eight attributes in 10 classes. There are 1484 instances in

this data set. In this experiment, the initial semi-axis lengths of VEBF is computed from

Equation (5.1) with δ = 1 and the initial width of RBF is computed from Equation (5.1)
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Table 5.3 The comparative results trained by Ecoli Data Set.
VEBF RBF MLP

Testing Time No. of Accuracy Time No. of Accuracy Time No. of Accuracy

fold (s) neurons (%) (s) neurons (%) (s) neurons (%)

1 0.12 8 88.41 1.13 8 68.12 1.24 8 66.67

2 0.09 8 87.88 0.16 8 65.15 0.49 8 72.73

3 0.09 8 92.54 0.15 8 64.18 0.57 8 62.69

4 0.08 8 79.71 0.14 8 56.52 0.52 8 62.32

5 0.09 8 84.62 0.15 8 67.69 0.43 8 72.31

Average 0.09 8 86.63 0.35 8 64.33 0.65 8 67.34

with δ = 1. For the MLP model, the simulation runs 10 times and the best result is chosen.

The proposed algorithm learned this data set in only one epoch. The comparative results

of VEBF, RBF, and MLP are illustrated in Table 5.4. From this table, the accuracy of the

proposed model is higher than the accuracy of RBF and MLP. Furthermore, the training time

of the proposed model is less than that of RBF and MLP.

Table 5.4 The comparative results trained by Yeast Data Set.
VEBF RBF MLP

Testing Time No. of Accuracy Time No. of Accuracy Time No. of Accuracy

fold (s) neurons (%) (s) neurons (%) (s) neurons (%)

1 0.58 17 58.59 3.04 17 41.08 1.86 17 42.09

2 0.48 17 55.70 2.08 17 39.26 2.26 17 42.62

3 0.50 18 56.76 2.16 18 43.24 0.75 18 38.18

4 0.59 17 55.41 2.13 17 35.14 1.44 17 43.58

5 0.53 17 54.88 2.08 17 37.71 1.02 17 36.36

Average 0.54 17.2 56.27 2.30 17.2 39.29 1.47 17.2 40.57

5.1.4 Image Segmentation Data Set

The image segmentation data set consists of 19 attributes in seven classes. There are 2310

instances in this data set. In this experiment, the initial semi-axis lengths of VEBF is com-

puted from Equation (5.1) with δ = 1 and the initial width of RBF is computed from Equa-

tion (5.1) with δ = 1. For the MLP model, the simulation runs 10 times and the best result
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is chosen. The proposed algorithm learned this data set in only one epoch. The comparative

results of VEBF, RBF, and MLP are shown in Table 5.5. From this table, the accuracy of

the proposed model is less than that of the MLP model but higher than the accuracy of the

RBF model. However, the training time of the proposed model is less than that of RBF and

MLP.

Table 5.5 The comparative results trained by Image Segmentation Data Set.
VEBF RBF MLP

Testing Time No. of Accuracy Time No. of Accuracy Time No. of Accuracy

fold (s) neurons (%) (s) neurons (%) (s) neurons (%)

1 1.69 13 75.76 5.63 13 39.61 7.70 13 89.18

2 1.38 12 80.74 4.61 12 45.02 3.20 12 87.45

3 1.16 10 76.62 4.19 10 40.26 3.13 10 89.18

4 1.42 12 80.74 4.59 12 45.45 1.71 12 86.36

5 1.38 12 79.00 4.54 12 44.59 3.20 12 81.17

Average 1.41 11.8 78.57 4.71 11.8 42.99 3.79 11.8 86.67

5.1.5 Waveform Data Set

The waveform data set consists of 21 attributes in three classes. There are 5000 instances

in this data set. In this experiment, the initial semi-axis lengths of VEBF is computed from

Equation (5.1) with δ = 1 and the initial width of RBF is computed from Equation (5.1) with

δ = 1. The proposed algorithm learned this data set in only one epoch. The comparative

results of VEBF, RBF, and MLP are illustrated in Table 5.6. From this table, the accuracy

of the proposed model is higher than that of RBF and MLP. Moreover, the training time of

the proposed model is less than those of RBF and MLP.

5.2 Two-Class Classification Problem

5.2.1 Heart Data Set

The Heart data set consists of 13 attributes in two classes. There are 270 instances in this

data set. In this experiment, the VEBF neural network is compared to RBF, MLP, and sup-

port vector machine (SVM) with Gaussian kernel. The initial semi-axis lengths of VEBF
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Table 5.6 The comparative results trained by Waveform Data Set.
VEBF RBF MLP

Testing Time No. of Accuracy Time No. of Accuracy Time No. of Accuracy

fold (s) neurons (%) (s) neurons (%) (s) neurons (%)

1 2.65 3 83.82 15.90 3 58.14 2.32 3 74.13

2 3.45 3 85.60 14.71 3 60.10 2.08 3 79.80

3 2.45 3 83.58 14.75 3 60.86 1.83 3 77.08

4 2.46 3 84.50 14.68 3 64.80 7.24 3 78.20

5 2.45 3 85.30 14.78 3 60.50 2.65 3 75.30

Average 2.69 3 84.56 14.96 3 60.88 3.22 3 76.90

is computed from Equation (5.1) with δ = 1. The initial width of RBF is computed from

Equation (5.1) with δ = 10. The initial width of the Gaussian kernel of SVM is computed

from Equation (5.1) with δ = 1. For the proposed model, the order of training inputs is

selected randomly. For the MLP model, the simulation runs 10 times and the best result is

chosen. The proposed algorithm learned this data set in only one epoch. The comparative

results are illustrated in Figure 5.1. From the results shown in Figure 5.1, the average accu-

racy of the proposed model is less than that of MLP but higher than those of RBF and SVM.

The comparative results of the training time are shown in Table 5.7. From this table, the

average training time of the proposed model is less than that of RBF, MLP, and slightly less

than the average training time of SVM. Although the average accuracy of MLP is higher

than others, the training time of MLP is conversely higher than the rest.

Table 5.7 The comparative results trained by Heart Data Set.

VEBF RBF MLP SVM

Testing Time No. of Time No. of Time No. of Time No. of

fold (s) neurons (s) neurons (s) neurons (s) neurons

1 0.21 5 0.97 5 1.15 5 0.68 N/A

2 0.07 2 0.19 2 0.42 2 0.06 N/A

3 0.15 4 0.20 4 0.39 4 0.02 N/A

4 0.13 3 0.17 3 0.37 3 0.02 N/A

5 0.15 5 0.17 5 0.43 5 0.02 N/A

Average 0.14 3.80 0.34 3.80 0.55 3.80 0.16 N/A
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Figure 5.1 The comparative results trained by Heart data set.

5.2.2 Spambase Data Set

The Spambase data set consists of 57 attributes in two classes. There are 4601 instances in

this data set. In this experiment, the VEBF neural network is compared to RBF, MLP, and

support vector machine (SVM) with Gaussian kernel. The initial semi-axis lengths of VEBF

is computed from Equation (5.1) with δ = 1. The initial width of RBF is computed from

Equation (5.1) with δ = 10. The initial width of the Gaussian kernel of SVM is set to 100.

For the proposed model, the order of training inputs is selected randomly. The proposed

algorithm learned this data set in only one epoch and the comparative results are illustrated

in Figure 5.2. From the results shown in Figure 5.2, the average accuracy of the proposed

model is slightly less than those of RBF, SVM but less than MLP’s. The comparative results

of the training time are shown in Table 5.8. From this table, the average time of the proposed

model is less than those of RBF and SVM but slightly higher than MLP. It can be seen that

when the number of the training data is large, the training time of the SVM is very high as

well.
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Figure 5.2 The comparative results trained by Spambase data set.

5.2.3 Sonar Data Set

The Sonar data set consists of 60 attributes in two classes. There are 208 instances in

this data set. In this experiment, the VEBF neural network is compared to RBF, MLP,

and support vector machine (SVM) with Gaussian kernel. The initial semi-axis lengths of

VEBF is computed from Equation (5.1) with δ = 1. The initial width of RBF is computed

from Equation (5.1) with δ = 10. The initial width of the Gaussian kernel of SVM is

computed from Equation (5.1) with δ = 1. For the proposed model, the order of training

inputs is selected randomly. For the MLP model, the simulation runs 10 times and the best

result is chosen. The proposed algorithm learned this data in set only one epoch and the

comparative results are illustrated in Figure 5.3. From the results shown in Figure 5.3, the

average accuracy of the proposed model is slightly less than that of SVM but higher than

those of RBF and MLP. The comparative results of the training time are shown in Table 5.9.

From this table, the average training time of the proposed model is less than that of MLP

but higher than the average training time of RBF and SVM.
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Table 5.8 The comparative results trained by Spambase Data Set.

VEBF RBF MLP SVM

Testing Time No. of Time No. of Time No. of Time No. of

fold (s) neurons (s) neurons (s) neurons (s) neurons

1 38.31 19.00 37.86 19.00 40.47 19.00 5517.60 N/A

2 37.61 20.00 38.19 20.00 30.44 20.00 3832.60 N/A

3 35.59 18.00 36.59 18.00 19.23 18.00 4806.63 N/A

4 36.82 19.00 37.34 19.00 13.98 19.00 4323.74 N/A

5 35.10 18.00 36.68 18.00 45.37 18.00 4251.20 N/A

Average 36.69 18.80 37.33 18.80 29.90 18.80 4546.35 N/A

Table 5.9 The comparative results trained by Sonar Data Set.

VEBF RBF MLP SVM

Testing Time No. of Time No. of Time No. of Time No. of

fold (s) neurons (s) neurons (s) neurons (s) neurons

1 0.47 2.00 0.63 2.00 1.11 2.00 0.81 N/A

2 0.44 2.00 0.16 2.00 0.46 2.00 0.11 N/A

3 0.44 2.00 0.14 2.00 0.45 2.00 0.10 N/A

4 0.43 2.00 0.14 2.00 0.42 2.00 0.08 N/A

5 0.43 2.00 0.13 2.00 0.45 2.00 0.07 N/A

Average 0.44 2.00 0.24 2.00 0.58 2.00 0.23 N/A

5.2.4 Liver Data Set

The Liver data set consists of 7 attributes in two classes. There are 345 instances in this

data set. In this experiment, the VEBF neural network is compared to RBF, MLP, and sup-

port vector machine (SVM) with Gaussian kernel. The initial semi-axis lengths of VEBF

is computed from Equation (5.1) with δ = 1. The initial width of RBF is computed from

Equation (5.1) with δ = 1. The initial width of the Gaussian kernel of SVM is computed

from Equation (5.1) with δ = 1. For the proposed model, the order of training inputs is

selected randomly. For the MLP model, the simulation runs 10 times and the best result is

chosen. The proposed algorithm learned this data set in only one epoch and the compara-
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Figure 5.3 The comparative results trained by Sonar data set.

tive results are illustrated in Figure 5.4. From the results shown in Figure 5.4, the average

accuracy of the proposed model is slightly less than those of RBF and MLP but higher than

that of SVM. The comparative results of the training time are shown in Table 5.10. From

this table, the average training time of the proposed model is less than that of RBF, MLP,

and SVM.

Table 5.10 The comparative results trained by Liver Data Set.

VEBF RBF MLP SVM

Testing Time No. of Time No. of Time No. of Time No. of

fold (s) neurons (s) neurons (s) neurons (s) neurons

1 0.21 10.00 0.71 10.00 1.07 10.00 0.67 N/A

2 0.14 9.00 0.21 9.00 0.45 9.00 0.07 N/A

3 0.15 11.00 0.20 11.00 0.45 11.00 0.04 N/A

4 0.11 9.00 0.19 9.00 0.50 9.00 0.04 N/A

5 0.15 8.00 0.19 8.00 0.45 8.00 0.04 N/A

Average 0.15 9.40 0.30 9.40 0.59 9.40 0.17 N/A
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Figure 5.4 The comparative results trained by Liver data set.

5.3 Discussion

In multi-class classification problem, there are five data sets including Iris Data Set,

E.coli Data Set, Yeast Data Set, Image Segmentation Data Set, and Waveform Data Set.

From the results previously mentioned, it can be seen that the proposed model achieves

the higher performance than that of others in four data sets except Image Segmentation

Data Set. In this data set, the average accuracy of the proposed model is less than that of

the MLP model. Considering the MLP model, the decision function used in the hidden

layer and the output layer of MLP is a linear function. Therefore, the distribution of the

data in Image Segmentation Data Set is appropriate to a linear classifier. Unfortunately,

the proposed model uses a nonlinear classifier. Although the performance of the proposed

model is acceptable, it still depends upon the order of training inputs and the initial semi-axis

lengths which can affect the number of neurons and its performance.

In two-class classification problem, four data sets are used in this problem which are

Heart Data Set, Spambase Data Set, Sonar Data Set, and Liver Data Set. From the results

mentioned previously, the average accuracy of the proposed model is higher than that of the

RBF model in two data sets which are Heart Data Set and Sonar Data Set. The average

accuracy of the proposed model is higher than that of the MLP model in Sonar Data Set.
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The average accuracy of the proposed model is higher than that of the SVM model in two

data sets which are Heart Data Set and Liver Data Set. Consequently, the proposed model

cannot achieve the best performance in two-class classification problem. Considering the

function used in each model, the basis function used in the hidden layer of RBF and the

kernel function of SVM are a nonlinear function. Therefore, these two models perform

a nonlinear mapping from the input space to the output space. If they can map the data

from the input space to the output space that can be linearly separable, it might achieve a

good performance. Since the decision function used in the output layer of RBF, MLP, and

SVM is a linear decision function, the distribution of the data in two-class classification

problem may be suitable for the linear decision function. However, the proposed model can

incrementally learn the new data set without previous learned data set so it can learn more

new data sets without considering the old data set but this cannot be handled by any other

models.

Since the different functions are applied to different models, the boundaries of these

functions around each group of data are different. Then, the distribution of the data space

can affect the performance of these models. Therefore, the distribution of the data space

should be further studied for choosing the proper model for a problem.



CHAPTER VI

CONCLUSION

A new elliptic basis function, namely, Versatile Elliptic Basis Function (VEBF) based

on hyper-ellipsoid and orthonormal basis was proposed. This function can be translated and

rotated to cover the data depending on the distribution of the data set in the data space. In

addition, a very fast 1-pass-throw-away neural learning algorithm based on the VEBF net-

work was introduced. The network consists of an input layer, a hidden layer, and an output

layer. In the hidden layer, the hidden neurons use the VEBF as its basis function. The pro-

posed learning algorithm adjusts the VEBF parameters in only one pass by using only new

incoming datum which is not required for subsequent learning. Consequently, this learned

datum can be discarded after being learned. For these reasons, this proposed neural network

trained by the proposed learning algorithm uses only one epoch to learn a data set. It can

learn a new data set without involving the already learned and discarded old data set. The

number of neurons in the hidden layer and output layer can be automatically increased dur-

ing the learning process with some conditions. However, the hidden neurons in the network

can be merged into a new neuron whenever some conditions are satisfied. Consequently, the

number of redundant neurons in the network can be reduced. The proposed neural network

trained by the proposed algorithm can learn the data set in O(n), where n is the number of

data. From the experimental results, the proposed model is 7.8 times faster than RBF and

14.5 times faster than MLP in Iris Data Set. In Ecoli Data Set, the proposed model is 3.9

times faster than RBF and 7.2 times faster than MLP. In Yeast Data Set, the proposed model

is 4.3 times faster than RBF and 2.7 times faster than MLP. In Image Segmentation Data Set,

the proposed model is 3.3 times faster than RBF and 2.7 times faster than MLP. In Waveform

Data Set, the proposed model is 5.6 times faster than RBF and 1.2 times faster than MLP.

These experimental results signify that the proposed algorithm can learn the data set very

fast and the proposed algorithm outperforms the RBF and MLP in multi-class classification

problem.
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