CHAPTER V

RESULTS AND DISCUSSIONS

5.1 Experimental Results

The experiment results of cracking of polybutene-1 by Fe/activated carbon catalyst by studying its influences to conversion percentage of the products and yielded oil composition have the following variables; percentage of iron loading on activated carbon, reaction temperature, mass of catalyst, initial pressure of hydrogen gas and reaction time. The results of the experiments from different conditions and those of oil composition analysis are shown in Table A-1 and Table A-2 (Appendix A). The influences of each variable above-mentioned are shown in Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 5.8 and 5.9, respectively.
5.1.1 Influences of percentage of iron on activated carbon on composition of oil product

The products yield of variation of percentage loading of Fe 1,5 and 10\% on activated carbon using as catalyst at a fixed condition of 15 g of polybutene-1, with hydrogen pressure of $40 \mathrm{~kg} / \mathrm{cm}^{2}$, reaction time of 60 min , temperature at $410^{\circ} \mathrm{C}$ and 0.3 g catalyst were shown in Figure 5.1. The percentage of oil yield was iny a range of 81.74 to 91.00%, gases Fyeld of 5.40 to 10.73% and solid yield 3.73 to 5.53%, Table A-2 showed that 1% Fe yielded 50.66% naphtha, 16.94% kerosene, 11.39% light gas oil, 7.5% heavy gas oil while 5% Fe yielded naphtha 51.67%, kerosene 15.55%, light gas oil 10.83%, heavy gas oil 7.78%.

Figure 5.1 Product yield of PB-1 with various \%Fe/AC (0.3 mm) catalyst. Reaction conditions : 15 g
of $\mathrm{PB}-1$, initial H_{2} pressure $40 \mathrm{~kg} / \mathrm{cm}^{2}, 60 \mathrm{~min}$ and $410^{\circ} \mathrm{C}$.

From these data if considering together with oil yield, it could be concluded that the different percentage of Fe , was no significant effect to the oil yield and composition.

Figure 5.2 shown the percentage of products form reaction that carried out without using catalyst compared with using $0.3 \mathrm{~g} \mathrm{Fe} /$ Activated carbon ($5 \% \mathrm{Fe}$) catalyst. The percentage of oil composition was lower quality when compared to using catalyst. It could be explained that without catalyst, the thermal cracking played only the important role in immediately cracking very long hydrocarbon chains to intermediate molecules. The catalytic reaction was simultaneously proceeded by thermal and catalytic cracking; as a result, the distribution of hydrocarbon molecules would obtain better quality oil and increase of naphtha from 34.66 to 45.06%,

5.1.2 Influences of temperafare on composition of oil product

The study of the influence of reaction temperature on the cracking of polybutene-1 was performed by operating at various reaction temperatures; 375, 385, 395, 410 and $425{ }^{\circ} \mathrm{C}$ by using 0.3 .9 of 5% Fe/AC catalyst under initial hydrogen pressure $30 \mathrm{~kg} / \mathrm{cm}^{2}$ and fixing reaction time at 60 min .

The characteristic of obtained product at low reaction temperature, 375 ${ }^{\circ} \mathrm{C}$, was the mixture of oil and wax and partial oil product still was solid at room temperature. Therefore in this case, it couldfol be determined exactly percent of oil and solid. The percentage ofoill fraction fromeracking as a function of temperature was showed in Figure 5.3 and 5.4. It was found that the percentage of naphtha largely increases from 35.23% to 44.95% with the increase of the temperafure from 385 to 410 ${ }^{\circ} \mathrm{C}$ but other composition except solid yield slightly decrease with the increase of the temperature. However when increase temperature to $425{ }^{\circ} \mathrm{C}$ oil yield decreased dramatically from 88.57% to 63.11% while gas and solid yield were largely increased from 6.6\% and 7.5\%
\square Gas \square Naphtha \square Kerosene \square Light Gas Oil \square Heavy Gas Oil \square Long Residues \square Solid

initial H_{2} pressure $40 \mathrm{~kg} / \mathrm{cm}^{2}, 60 \mathrm{~min}$ and $410^{\circ} \mathrm{C}$.

Figure 5.3 PB-1 conversion on $5 \% \mathrm{Fe} / \mathrm{AC}(0.3 \mathrm{~mm})$ catalyst with various reaction temperature.
Reaction conditions : 15 g of $\mathrm{PB}-1$, initial H_{2} pressure $30 \mathrm{~kg} / \mathrm{cm}^{2}, 60 \mathrm{~min}$ and 0.3 g of catalyst

to 19.86% and 17.03%. It can be concluded that low reaction temperature was not suitable condition to crack polybutene-1 because of obtained mixture of oil and wax product. It also shown that thermal cracking of low temperature was not good enough to break down polybutene-1 to be the lower molecular weight hydrocarbon when compared with at high reaction temperature. Moreover, Figure 5.3, showed the comparison of product distribution at various temperature, $385-425^{\circ} \mathrm{C}$, gas yield from low reaction temperature was quite low, 5.19%, whereas, increased to 6.7% at $410{ }^{\circ} \mathrm{C}$ and largely increased to 19.86% at $425^{\circ} \mathrm{C}$. From this result it was found that too high reaction temperature would create huge amount of gas yield with lower oil yield and higher solid yield. This is because an increase in the temperature inducing a largely amount of thermal cracking of polybutene-1 to be lower hydrocarbon. But too high reaction temperature gave more low molecular weight hydrocarbon, gas and increment of solid yield at high reaction remperature due to coking at catalyst surface. This result was confirmed with the work of Phungtu(m) ${ }^{[8]}$ who studied the conversion of polypropylene into oil product using iron on activated carbon catalyst in a microreactor by varying operation conditions as pressure of hydrogen gas range of 28 to $50 \mathrm{~kg} / \mathrm{cm}^{2}$, reaction temperature between 395 and $455^{\circ} \mathrm{C}$ and reaction time 30 to 90 min for each catalyst. The analyzed oil product from GC Simulated Distillation was found that iron on activated carbon was suitable and used as catalyst at $435{ }^{\circ} \mathrm{C}$, hydrggen pressure at $30 \mathrm{~kg} / \mathrm{cm}^{2}$ and reaction time 60 min . The product yield was 2.34% of gas, 96.33% of oil and 1.33% of solid. Shabtai et ak., ${ }^{[6]}$ studied the solid superacid-catalyzed depolymerizationliquefaction (DL) reactions of cis-polybutadiene, The, samples were systematically investigated as a function of processing conditions, i.e., temperature $\left(350-450^{\circ} \mathrm{C}\right)$, time $(0.5-3.0 \mathrm{~h}) \mathrm{H}_{2}$ pressure ($500-2000 \mathrm{osig}$), catalyst type and concentration, and the presence of solvents, oatalyst died, inotuded $\mathrm{SO}_{4}^{2} / \mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{SO}_{4}^{2} / \mathrm{ZrO}_{2}$ and a Pt-modified $\mathrm{SO}_{4}^{2-} / \mathrm{ZrO}_{2}$. At temperature more than $400{ }^{\circ} \mathrm{C}$, with $1-2 \mathrm{wt} \%$ of $\mathrm{SO}_{4}^{2-} / \mathrm{Fe}_{2} \mathrm{O}_{3}$ or $\mathrm{SO}_{4}{ }^{2-} \mathrm{ZrO}_{2}$ as catalyst. The result obtained 84.00% of oil yield, 5.9% of gas yield and 10.17% of solid yield respectively.

In case of polybutene-1 its structure is quite similar to polypropylene with longer side chain, it means that polybutene-1 easier to crack when compared to polypropylene.

If compared to Shabtai work obtained 84% oil yield at reaction temperature $430{ }^{\circ} \mathrm{C}$. It was confirmed by the result of this work polybutene-1 optimum reaction temperature was $410{ }^{\circ} \mathrm{C}$, and it yielded 45.76% naphtha, 13.77% kerosene, 9.59% light gas oil, 6.89% heavy gas oil and 12.56% long residue respectively.

5.1.3 Influences of initial pressure of hydrogen on composition of oil product

The study of the influence of initial hydrogen pressure was performed by various pressures at $20,30,40$ and $50 \mathrm{~kg} / \mathrm{cm}^{2}$. The catalytic cracking of polybutene-1 at the optimum reaction temperature is $410^{\circ} \mathrm{C}, 60 \mathrm{~min}$ of reaction time and 0.3 g of 5\%Fe/AC catalyst. The compositions of products and oil yield were shown in Figure 5.5.

Figure 5.5 showed that the product composition changed with changes in initial hydrogen pressure. The increasing of hydrogen pressure from $20-40 \mathrm{~kg} / \mathrm{cm}^{2}$ increased the \% yield of oil product from 78.71 to 88.57%. It can be described that an increase in amount of hydrogen helps to stimulate cracking reaction and causes higher catalytic cracking reaction. Thisisconfirmed in the theory of spill over of hydrogen on catalyst during the reaction, some hydrogen at the surface of catalyst is consumed, so the higher pressure of hydrogen, the more mass transfer from gas phase to solid surface of catalyst. Therefore it causes high conversion and more quantity of recovery product. So it showed a higher result of naphtha from 43.06 to 45.76%. Other composition was stable, gas yield slightly increased while solid reduces from 20.43 to 4.57%. However, at pressure of $50 \mathrm{~kg} / \mathrm{cm}^{2}$, yield of bil product, naphtha decreased but solid yield increased. This is because there was deakage of H_{2} from the safely valve during the reactionbecause of tco/bigh severity in the reaction systern so the amount and composition of products were affected.

\square Gas \square Naphtha \square Kerosene \square Light Gas Oil \square Heavy Gas Oil \square Long Residues \square Solid

Reaction conditions : 15 g of PB-1, $60 \mathrm{~min}, 410^{\circ} \mathrm{C}$ and 0.3 g of catalyst

The high reactivity of polybutene-1 can be described to the presence of multiple tertiary carbons in the polymeric chains and the consequent stable formation of tertiary carbon radicals in the presence of free radicals initiators. Such carbon radicals undergo the Beta -cleavage reactions to yield lower branched paraffins and olefins by a scheme proposed in Figure 5.6.

From the discussion, It could be said conclusively that the optimum hydrogen pressure was $40 \mathrm{~kg} / \mathrm{cm}^{2}$. It showed the highest oil product yield (88.57%), the highest naphtha (45.76%) and kerosene (13.77%, while solid was lowest.

5.1.4 Influences of mass of gatalyst on composition of oil product

The variation of weight catalyst from $0.15,0.3,0.45$, and 0.6 g at fixed conditions of $5 \% \mathrm{Fe} / \mathrm{AC}$, with 15 g of polybutene-1, hydrogen pressure at $40 \mathrm{~kg} / \mathrm{cm}^{3}, 60$ min reaction time and at $410^{\circ} \mathrm{C}$ (Figure, 5.7), it was found that a higher mass of catalyst from 0.15 g to 0.3 g induced a slight increase in percentage of oil from 81.10% to 88.57% and slightly decrease from 0.3 g to 0.45 g from 88.57% to 88.25% then dramatically decreased when increase/mass of catalyst to 0.6 g from 88.25% to 68.85%, it could be explained that high amount of catalyst increased the cracking reaction it caused the long chain polybutene-1molecules were cracked to the lower and lower molecular weight hydrecarbon finally it became gas melecules, so gas yield was increased dramatically. This experiment showed that mass of catalyst affected cracking reaction, For 15 g of polybutene-1, hydrogen pressure at $40 \mathrm{~kg} / \mathrm{cm}^{3}, 60 \mathrm{~min}$ reaction time and at $410^{\circ} \mathrm{C}$. Catalyst mass at 0.3 g gave the highest oil yield/lowest gas yield and low solid, This can be explained that Fe conducted the catalytiolactivity, reduce the activation energy of the chemisorption reaction. This mass of catalyst was mixed and contacted well all liquid polybutene-1, therefore, the highest oil yield was obtained.

Figure 5.7 Product yield of PB-1 with various mass of catalyst. Reaction conditions: 15 g of PB-1,
initial H_{2} pressure $40 \mathrm{~kg} / \mathrm{cm}^{2}, 60 \mathrm{~min}$ and $410^{\circ} \mathrm{C}$.
5.1.5 Influences of reaction time on composition of oil product

The influences of reaction time on the percentage recovered of reaction systems was performed by various time at $30,60,75$ and 90 min . PB-1 was carried out by fixing the condition at reaction temperature $410^{\circ} \mathrm{C}$, initial hydrogen pressure 40 $\mathrm{kg} / \mathrm{cm}^{2}$ and $5 \% \mathrm{Fe} / \mathrm{AC}$ catalyst 0.3 g . The compositions of products and oil yield from cracking reaction was shown in Figure 5.8.

Figure. 5.8 showed that when the reaction time increased from 30 to 60 min , the \% yields of oil and \% naphtha increased whereas kerosene, light gas oil and heavy gas oil being the same quanities. Solid yield decreased from 30 to 60 min , then increased from 60 to 75 min and largely increase with 90 min reaction time. After reaction time more than 60 min , it was observed the decreasing of oil yield and \%naphtha, in the contrast it was noticed more increasing of gas. The experiments were fixed the temperature and initial hydrogen pressure, so the thermal and catalytic cracking were occurred the same phenomena when reaction time increased to 60 min . It obtained the maximum oil yield \%/raphtha and lowest solid yield, it means that 60 min is the appropriate reaction time. Mareover it could be observed also that when the longer time of reaction, the $\%$ of gas largely increased from 7.13 to 24.06%, it means that more reaction time allowed more thermal and catalytic cracking. Longer cracking reaction time was converted hydrocarbon into low molecular weight hydrocarbon; such a result there is a clear increasing in value of gás yield. Longer time also caused coking at the surface of catalyst such a result it was observed the largely increase of \%naphtha and \%yield. In conclusion, the optimum of reaction time was 60 min , because this reaction time gave the highest gil yield. 88.57% and higheșt naphthes 45.06%.
5.1.6 Characterization of Fe/activated carbon before and after using in reaction

Table 5.1 showed the surface specific area before and after using in reaction. It was found that when Fe was impregnated on the surface of pure
\square Gas \square Naphtha \square Kerosene \square Light Gas Oil \square Heavy Gas Oil \square Long Residues \square Solid

Figure 5.8 PB-1 Conversion on 5% Fe/AC (0.3 mm) catalyst with various reaction time. Reaction
conditions : 15 g of $\mathrm{PB}-1,410^{\circ} \mathrm{C}$, initial H_{2} pressure $40 \mathrm{~kg} / \mathrm{cm}^{2}$ and 0.3 g of catalyst.
(u!̣) әш!! ио!̣юеәу
activated carbon, the surface decreased slightly about 5.3%, it means that there were attached Fe metal crystals in the pores of activated carbon, and it was not affected to the percentage loading of Fe on surface area. The surface area of each type percentage loading Fe was not significant different. It implied that each percentage loading of iron caused the same covering of plastics on metal crystal situating throughout all the pores of activated carbon, therefore it was observed no effect of surface area on the oil yield and composition of the former experiments.

Table 5.1 showed also the surface specific area of catalyst after using in reaction. It was found that the surface area was decreased largely after being carried out reaction. This was because of some small amount of unconverted polybutene-1 covering the surface of catalyst during cooling to the ambient temperature.

Table 5.1 Surface specific area (BET) of pure activated carbon and any loading of Fe on activated carbon of particle size 0.3 mm , before and after using in reaction at $410{ }^{\circ} \mathrm{C}$, initial H_{2} pressure $40 \mathrm{~kg} / \mathrm{cm}^{2}$.

Figure 5.9 showed the surface specific area of catalyst before using in reactor if compare to Figure 5.10. It confirmed that there was coking at the surface of catalyst during the reaction.

Figure 5.9 The surface specific area of catalyst before using in reactor

Figure 5.10 The surface specific area of catalyst after using in reactor

5.2 Comparison of this Work with Other Works.

The comparison of this work with Phungtum work and Shabtai et al., work were presented with fractions of gases, oils and solids and expressed in Table 5.2.

Table 5.2 Comparison of this work with Phungtum and Shabtai et al.

Phungtum ${ }^{[8]}$ studied hydrocracking of polypropylene into oil product using Fe/activated carbon catalyst in microreactor by varying operation conditions such as pressure of hydrogen as range of 28 to $50 \mathrm{~kg} / \mathrm{cm}^{2}$, reaction temperature between $395-$ $455^{\circ} \mathrm{C}$ and reaction time 30 to 90 min for each catalyst. The results found that reaction temperature of $435{ }^{\circ} \mathrm{C}$ hydrogen pressure at $30 \mathrm{~kg} / \mathrm{cm}^{2}$ and reaction time 60 min was yielded the highest \%oil. If compare to this work, the optimum condition (reaction temperature $410{ }^{\circ} \mathrm{C}$ initial hydrogen pressure at $40 \mathrm{~kg} / \mathrm{cm}^{2}$ and reaction time 60 min) was yield 88.57% of oil product which is lower yield, this could be explained that Fe/activated carbon would gave the higher cracking activity when reacting with polypropylene.

Shabtai et al. studied the solid the solid superacid-catalyzed depolymerization-liquefaction (DL) reactions of cis-polybutadiene (PB) samples were systematically investigated as a function of processing condition, temperature (350$450^{\circ} \mathrm{C}$), time ($0.5-3.0 \mathrm{~h}$) H_{2} pressure ($500-2000$ psig), catalyst type and concentration, and the presence of solvents. Catalystused included $\mathrm{SO}_{4}{ }^{2 \cdot} / \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SO}_{4}^{2-} / \mathrm{ZrO}$, and a Ptmodified $\mathrm{SO}_{4}{ }^{2-} / \mathrm{ZrO}_{2}$. Experiment was gonducted in a batch apparatus using microclave reactor, under atmospheric pressure. The microclave reactor has, an internal volume 300 ml . From Table 5.2, result obtained 84.00% of oil yield, 5.9% of gas yield and 10.17% of solid yield respectively, compared to this work obtained 88.57% oil yield, 6.86% of gas yield and 4.57% of solid yield. Although Shabtailused higher activity cracking catalyst but this work showed higher oil sjeld and ower solid, it is because of the mechanism of cracking polybutene-1. At initiation step, tadicals attacked the polybutene-1 molecule at the tertiary carbon which provided more stable hydrocarbon radicalsso the catalytic cracking reaction was occurred more effectively.

