

สถาปัตยกรรมฟาร์มแคชอจัฉริยะสําหรับการจดัการเครือขา่ย

นางสาวสภุาวดี หิรัญพงศ์สนิ

วิทยานิพนธ์นีเ้ป็นสว่นหนึง่ของการศกึษาตามหลกัสตูรปริญญาวิทยาศาสตรดษุฎีบณัฑิต

สาขาวิชาวทิยาการคอมพิวเตอร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ จฬุาลงกรณ์มหาวิทยาลยั

ปีการศกึษา 2554

ลขิสทิธ์ิของจฬุาลงกรณ์มหาวทิยาลยั

บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

INTELLIGENT CACHE FARMING ARCHITECTURE FOR NETWORK MANAGEMENT

Miss Supawadee Hiranpongsin

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University
Academic Year 2011

Copyright of Chulalongkorn University

Thesis Title INTELLIGENT CACHE FARMING ARCHITECTURE FOR
NETWORK MANAGEMENT

By Miss Supawadee Hiranpongsin
Field of Study Computer Science
Thesis Advisor Assistant Professor Pattarasinee Bhattarakosol, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

 ……………………………………………….. Dean of the Faculty of Science
 (Professor Supot Hannongbua, Dr. rer. nat.)

THESIS COMMITTEE

 ……………………………………………….. Chairman
 (Assistant Professor Nagul Cooharojananone, Ph.D.)

 ………………………………………….……. Thesis Advisor
 (Assistant Professor Pattarasinee Bhattarakosol, Ph.D.)

 ……………………………………………….. Examiner
 (Siripun Sanguansintukul, Ph.D.)

 ……………………………………………….. External Examiner
 (Assistant Professor Ohm Sornil, Ph.D.)

 ……………………………………………….. External Examiner
 (Surapant Meknavin, Ph.D.)

 iv

สภุาวดี หิรัญพงศ์สนิ : สถาปัตยกรรมฟาร์มแคชอจัฉริยะสําหรับการจดัการเครือขา่ย.

(INTELLIGENT CACHE FARMING ARCHITECTURE FOR NETWORK

MANAGEMENT) อ. ท่ีปรึกษาวิทยานิพนธ์หลกั : ผศ. ดร. ภทัรสนีิ ภทัรโกศล, 97

หน้า.

 การแคชเว็บ (Web Caching) นบัเป็นเทคนิคท่ีมีประสิทธิภาพเทคนิคหนึ่งท่ีได้รับการ

ยอมรับว่าสามารถปรับปรุงคณุภาพการให้บริการบนอินเทอร์เน็ตได้เป็นอย่างดี ตวัอย่างเช่น

ลดระยะเวลาท่ีผู้ใช้งานรอการตอบกลบัจากเคร่ืองให้บริการ และลดการใช้งานแบนด์วิดท์ของ

เครือข่าย เป็นต้น อย่างไรก็ดีการให้บริการบนอินเทอร์เน็ตยงัคงพบกบัปัญหาเม่ือปริมาณของ

ผู้ใช้งานอินเทอร์เน็ตเพิ่มขึน้ เน่ืองมาจากข้อจํากดัทางฮาร์ดแวร์และนโยบายการบริหารจดัการ

แคช เพ่ือเป็นการแก้ไขปัญหาข้างต้นงานวิจยันีจ้งึได้นําเสนอสถาปัตยกรรมฟาร์มแคชอจัฉริยะ

(Intelligent Cache Farming Architecture - ICFA) เพ่ือเป็นต้นแบบสถาปัตยกรรมการแคช

ทางเลือกท่ีได้รวมกลไกของการให้คําแนะนําไว้ด้วย พฤติกรรมการเรียกใช้งานบนอินเทอร์เน็ต

ของผู้ ใช้งานจะถูกนํามาวิเคราะห์และนํามาใช้งานสําหรับบริหารจัดการกลุ่มแคช ดังนัน้

ประสิทธิภาพของการให้บริการอินเทอร์เน็ตจะถูกปรับปรุงอย่างมากและชัดเจนยิ่งขึน้

สถาปัตยกรรมท่ีนําเสนอนีถ้กูทดสอบด้วยการจําลองเหตกุารณ์การใช้งานอินเทอร์เน็ต และ

สถาปัตยกรรมแบบดัง้เดิมท่ีไม่มีการจดักลุ่มของแคชบนสภาพแวดล้อมเคร่ืองกลแบบเสมือน

(virtual machine environment) ผลลพัธ์ท่ีได้จากการจําลองเหตกุารณ์ชีใ้ห้เห็นว่า การวดั

ระยะเวลาการรอ (delay) ของสถาปัตยกรรม ICFA ลดลงได้มากกว่า 44% ในขณะท่ีอตัรา

ความแม่นยํา (hit ratio) และอตัราขนาดของข้อมลูในแคชท่ีสามารถตอบสนองความต้องการ

ของผู้ใช้งานได้ (byte hit ratio) เพิ่มขึน้มากกวา่ 20% และ 43% ตามลําดบั

ภาควิชา คณิตศาสตร์และวิทยาการคอมพิวเตอร์ ลายมือช่ือนิสติ...
สาขาวิชา วิทยาการคอมพิวเตอร์ ลายมือช่ือ อ.ท่ีปรึกษาวทิยานิพนธ์หลกั……………….
ปีการศกึษา 2554 2

 v

5073890623 : MAJOR COMPUTER SCIENCE

KEYWORDS : WEB CACHING / PROXY SERVER / RECOMMENDER SYSTEM /

WEB CLASSIFICATION / WEB USAGE PATTERN

SUPAWADEE HIRANPONGSIN : INTELLIGENT CACHE FARMING

ARCHITECTURE FOR NETWORK MANAGEMENT. ADVISOR :

ASST.PROF. PATTARASINEE BHATTARAKOSOL, Ph.D., 97 pp.

 Web caching is widely recognized as an effective technique that improves

the quality of service (QoS) over the Internet, such as reducing user latency and

network bandwidth usage. However, it still meets problems when the number of

users increases due to limitations of hardware and management policy of caches.

Therefore, this research proposes the Intelligent Cache Farming Architecture

(ICFA) to be an alternative caching architecture model integrating with the

recommending mechanism. The proposed architecture is the cache grouping

mechanism where browsing characteristics are applied to improve the

performance of the Internet services. In order to prove the proposed architecture,

the trace-driven simulation and the traditional caching model, which is the original

model without grouping criteria for the web cache, are implemented in a virtual

machine environment. The results indicate that the delay measurement of the

ICFA is dropped more than 44%, while the hit rate and the byte hit rate of the

ICFA increase more than 20% and 43%, respectively.

Department : Mathematics and Computer Science Student’s Signature
Field of Study : Computer Science Advisor’s Signature
Academic Year : 2011

 vi

ACKNOWLEDGEMENTS

During my years as a Ph.D. student, I have received a lot of tuition, care

and friendship from several people, some of which I wish to thank here. I would like to

thank the Office of Higher Education Commission, Ubon Rajathanee University, and

Chulalongkorn University for their financial support.

I would like to express my deepest gratitude to my advisor,

Assist.Prof.Dr. Pattarasineee Bhattarakosol, to whom with her advice, guidance and

care, help me to overcome all the difficulties of the process of research and make this

dissertation possible.

My thanks also goes to dissertation committee, Assist.Prof.Dr. Nagul

Cooharojananone, Dr. Siripun Sanguansintuku, Assist.Prof.Dr. Ohm Sornil, and Dr.

Surapant Meknavin for their advices and guidance about the research activities.

I would like to thank the Department of Computer Science, Purdue

University for their facility support during my visiting scholar in 2009-2010, especially,

Distinguished.Prof.Dr. Douglas E. Comer for encouragement, guidance and spending

time on my research discussion.

I would also like to thank all lecturers and colleagues at the Department

of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University,

the Thai Students Association and friends in Purdue University, and all my friends, for

their help, warmest care and support, especially Mr. Worrachat Tangsurat who gave me

the idea of writing a program.

Last but not least, I would like to express my sincere gratitude and deep

appreciation to my parents, and my family for constant encouragement, love, and

supports throughout my life.

CONTENTS

page

Abstract (Thai) ... iv

Abstract (English) ... v

Acknowledgements ... vi

Contents... vii

List of Tables .. xi

List of Figures .. xii

Chapter I INTRODUCTION ... 1

1.1 Introduction and Problem Review ... 1

1.2 State of problem ... 2

1.3 Research objectives ... 3

1.4 Scopes of the Study .. 3

1.5 Contribution .. 4

1.6 Research Plans ... 4

1.7 Benefits of the Research... 5

1.8 Organization of the Dissertation ... 5

Chapter II BACKGROUND AND LITERATURE REVIEWS .. 7

2.1 Implementations of Proxy Server .. 7

2.1.1 Caching Proxy Server ... 7

2.1.2 Web Proxy Server ... 9

2.1.3 Transparent Proxy Server ... 9

2.1.4 Squid Proxy Server ... 9

2.1.4.1 Installation ... 10

2.1.4.2 Configuration ... 10

2.2 Types of Proxy Server ... 11

2.2.1 Forward proxy server .. 11

2.2.2 Reverse proxy server .. 12

 viii

 page

2.3 Architectures of Web Proxy Caching .. 14

2.3.1 Hierarchical caching architecture .. 15

2.3.2 Distributed caching architecture .. 17

2.3.3 Hybrid caching architecture ... 20

2.4 Cache Replacement Policies .. 22

2.4.1 Recency-based policies ... 22

2.4.1.1 The advantages of the recency-based policies 23

2.4.1.2 The disadvantages of the recency-based policies 23

2.4.2 Frequency-based policies .. 24

2.4.2.1 The advantages of the frequency-based policies 25

2.4.2.2 The disadvantages of the frequency-based policies 25

2.4.3 Size-based policies .. 26

2.4.3.1 The advantages of the size-based policies 26

2.4.3.2 The disadvantages of the size-based policies 26

2.4.4 Function-based policies ... 27

2.4.4.1 The advantages of the function-based policies 28

2.4.4.2 The disadvantages of the function-based policies 28

2.4.5 Randomized policies .. 29

2.4.5.1 The advantages of the randomized policies 29

2.4.5.2 The disadvantages of the randomized policies 29

2.5 Recommender System ... 30

2.5.1 Content-based (CB) approach ... 31

2.5.2 Collaborative Filtering (CF) approach .. 31

Chapter III DATA COLLECTION AND ANALYSIS .. 33

3.1 Data Collection ... 33

3.1.1 Squid Log Format Overview ... 33

3.1.2 Data Sources .. 35

3.1.3 Log File Filtering ... 35

 ix

 page

3.2 Data Analysis : Grouping Mechanism .. 40

3.2.1 Web Directory-based Grouping ... 41

3.2.2 Browsing Behavior-based Grouping .. 47

Chapter IV PROPOSED METHOD ... 50

4.1 Proposed architecture: Intelligent Cache Farming Architecture (ICFA) 50

4.1.1 Web Profile Database System (WPDB)... 51

4.1.2 Proxy Manager (PM) ... 52

4.1.2.1 Record Analyzer Module ... 53

4.1.2.2 Automatic Classification Module Proxy Manager Interface 53

4.1.2.3 Gateway-like Module ... 54

4.1.2.4 Internet Communication Module ... 54

4.1.2.5 Squid Cache Module... 55

4.1.2.6 WPDB Communication Module ... 55

4.1.3 Specific Proxy Servers .. 55

4.2 Proposed algorithms .. 55

4.2.1 Algorithms for Information Update Process .. 56

4.2.1.1 Daily Update Process Algorithm (DUPA) 57

4.2.1.2 Weekly Update Process Algorithm (WUPA) 58

4.2.1.3 Monthly Update Process Algorithm (MUPA) 59

4.2.2 Algorithm for Web Classification: Web Pattern Classification Algorithm

(WPCA) ... 59

4.3 System workflow. .. 62

Chapter V IMPLEMENTATION AND EXPERIMENTAL RESULTS 64

5.1 Implementation ... 64

5.2 Simulation model .. 66

5.3 Simulation results .. 67

5.3.1 Experiment 1 ... 68

5.3.2 Experiment 2 ... 69

 page

x

5.3.3 Experiment 3 ... 71

5.3.3.1 Caching performance overviews .. 71

5.3.3.2 Caching performance of the caches in the ICFA 75

5.3.3.3 Daily caching performance ... 78

Chapter VI DISCUSSION AND CONCLUSION .. 82

6.1 Discussion .. 82

6.2 Conclusion .. 84

References .. 86

Biography ... 97

 xi

List of Tables

Table page

2.1 Comparison among hierarchical, distributed, and hybrid caching

 architectures .. 21

3.1 The detailed access.log record ... 34

3.2 The WIDB structure ... 37

3.3 The WCDB structure .. 39

3.4 Equations used in the WCDB .. 40

3.5 Thailand Web Directory at Truehits.net ... 42

3.6 The subgroups of the business group ... 43

3.7 The subgroups of the travel group. ... 44

3.8 Overview of Thailand Web Directory at Truehits.net .. 45

3.9 Examples of URLs contained in Thailand Web Directory at Truehits.net 46

3.10 The types of grouping criteria .. 49

4.1 Parameters used in algorithms .. 56

5.1 Performance metrics used in cache replacement policies.................................. 65

5.2 Simulation parameters ... 67

5.3 Results of the Paired Samples Test ... 74

 xii

List of Figures

Figure page

2.1 The basic operation of caching proxy server .. 8

2.2 Forward proxy server ... 12

2.3 Reverse proxy server ... 13

2.4 A single caching proxy ... 15

2.5 Hierarchical caching architecture ... 16

2.6 Distributed caching architecture ... 18

2.7 Hybrid caching architecture .. 20

3.1 The squid log format .. 33

3.2 Examples of the browsing records stored in the access.log file 34

3.3 The daily browsing behavior .. 47

3.4 The weekly browsing behavior .. 47

4.1 The Intelligent Cache Farming Architecture (ICFA) ... 50

4.2 The Proxy Manager’s Architecture .. 52

4.3 Daily Update Process Algorithm (DUPA) ... 57

4.4 Weekly Update Process Algorithm (WUPA) .. 58

4.5 Monthly Update Process Algorithm (MUPA) .. 59

4.6 The Web Classification Mechanism of the WPCA using the boundary values 60

4.7 The Web Pattern Classification Algorithm (WPCA) .. 61

4.8 System workflow .. 63

5.1 The simulation system environment for the proposed ICFA 66

5.2 Comparisons of caching performance between the ICFA and the TCA

in different metrics .. 69

5.3 Comparisons among cache replacement policies measured by Hit Rate,

Byte Hit Rate and Average Response Time in models 70

5.4 Caching performance overviews ... 73

5.5 Daily Hit/Miss Rate of each cache in the ICFA .. 77

Figure page

xiii

5.6 Daily comparison of caching performance between the ICFA and the TCA

measured by Hit Rate and Miss Rate ... 78

5.7 Daily comparison of caching performance between the ICFA and the TCA

measured by Byte Hit Rate and Byte Miss Rate ... 79

5.8 Daily comparison of caching performance between the ICFA and the TCA

measured by Average Response Time of Hit ... 80

5.9 Daily comparison of caching performance between the ICFA and the TCA

measured by Average Response Time of Miss .. 80

1

CHAPTER I

INTRODUCTION

1.1 Introduction and Problem Review

Since a high volume of information is available over the Internet via the web-

based system, growth rate of web usage is rapidly enlarged infinitely. The quality of

services (QoS) of Internet Service Providers (ISPs) is then highly affected and various

strategies have been settled to maintain their services. Unfortunately, none of these

strategies can completely satisfy their customers. Thus, a long delay and a low

throughput rate occur.

One important metric of the QoS is the performance where different variables are

applied to identify this indicator, such as an average delay, an average hit rate, an

average byte hit rate, etc. The values of these indicators are influenced by different

factors, which are such as the limitation of hardware, unqualified service management

system, etc. As a consequence, the termination of the browsing transactions is

performed [1-2] and the performance drops.

 In order to avoid this problem, many techniques have been proposed and

applied for managing the cache. Originally, the cache replacement algorithm was used

to manage a single cache [3-7]. Currently, the cache management is based on the

cache farming architecture where composed caches work together. Two different

management models of cache farming are a hierarchical model [8], and a distributed

model [9]. The hierarchical caching model requires some intermediate caches

arranged as a tree-like structure in the network and allows those caches to work

together in a parent-child relationship. This process satisfies many users who request

web documents. Each retrieval process leaves a copy of the requested web document

in every cache levels through the traversal paths. Unfortunately, this hierarchical

caching model has several problems associated with a caching hierarchy, such as an

2

additional overhead at every hierarchy, a bottom necks issue at upper level caches

making high client latency, and the wastes of the proxy cache space [10].

On the other hand, the distributed caching model has no intermediate caches.

None of the copies are saved at the intermediate caches. When a request is issued, the

content search will be performed over the distributed caches. The distributed method is

achieved in a cooperative proxy caching unless its implementation encounters several

problems, such as having complicated network system, high bandwidth usage, and

administrative issues [10]. Other issues for a rough comparison between hierarchical

and distributed caching architectures are shown in [11].

Based on the problems mentioned above, a cache management mechanism

considering types of transactions was proposed. Additionally, the user behavior should

be used as a management factor when the cache is performed [12]. Thus, this research

proposes a new architecture of cache farm integrating the concept of recommender

system. All arising behaviors are considered to manage the incoming transactions so

the retrieval time and bandwidth can be maintained as expected. Consequently, the

proposed solution can be called as an economical system because the number of

caches needs not expand when the number of users expands [13-14].

1.2 State of problem

According to the literature [15], the performance of a browse is independent of

the type of browsed file for all existing cache management algorithms. As a

consequence, all ISPs always extend volumes of their service caches for every certain

period of time. This management method causes system complexity and increases cost

of management. Therefore, this research proposes a possible solution to manage the

cache farm so that the performance of the service or the QoS can satisfy many users.

The new architecture, called as the Intelligent Cache Farming Architecture

(ICFA), is implemented to manipulate cache farm in an economical way. This proposed

architecture using the concepts of recommender system can maintain the QoS that is

3

the response time without expanding cache sizes when the number of users increases.

Therefore, the behavior of users over the Internet must be correctly defined in order to

be able to classify the right groups of browsed webs. Consequently, this new

architecture can maintain or increase the performance of cache management although

the number of users is altered [16].

1.3 Research objectives

The main objectives of this research are the following:

• To propose a new architecture of cache farming with the recommender system

concepts. The proposed architecture is the groups of caches where user

behaviors are applied to improve the performance of the Internet services.

• To enhance or maintain the QoS without expanding sizes of caches when the

number of users increases. The proposed architecture and management

mechanism will be applied for web caching system.

1.4 Scopes of the Study

In this research, the scopes of work are constrained as following:

• To study the patterns of retrieved webs over the Internet in academic areas. The

studied patterns are used as the grouping criteria for the web classification.

• To perform the experiments which are independent of the efficiency of

peripheral devices supplied by various venders.

• To evaluate the performance of proposed architecture and algorithms on the

simulation model using the data of web browsing provided by the volunteer

university as the experimental data.

4

1.5 Contribution

The Intelligent Cache Farming Architecture (ICFA) is proposed in this research

to be an alternative caching architecture model integrating with the recommending

mechanism. The behaviors of users are analyzed and applied to manage groups of

caches so the performance of the Internet services is highly and obviously improved.

The components of the ICFA are the web pattern database system (WPDB), the proxy

manager (PM), and the specific proxy servers (SPSs). Within the PM, however, there is

an important module called the automatic classification module (ACM) that is

responsible for classifying the retrieved webs. The ACM applies the concepts of the

recommender system to classify the right groups of browsed webs based on their

patterns. The proposed architecture was proved by the trace-driven simulation and the

traditional caching model in a virtual machine environment.

1.6 Research Plans

In order to achieve the defined objectives above, the following tasks will be

stated by mean of appropriate principal related works and theoretical techniques:

• Study concepts of related technologies, such as cache management policies,

user requirements, web classifications, proxy systems, hierarchical and

distributed systems, and recommender systems

• Define problem of the study and review various kinds of literatures relating to this

research

• Collect data that is Squid log files, named access.log obtained from University

Office of Information Technology of Chulalongkorn University to analyze the

patterns of browsed webs. Moreover, the log files are also gathered from

Computer Center of Nakhon Pathom Rajabhat University to use for the simulation

experiments as the experiment data

5

• Define model among the relationships of data achieved by grouping mechanism

of browsing behavior

• Define a prototype of network according to the defined model of user’s browse

• Develop mechanism to maintain the database system and an algorithm to

manage all functions of system which is the dynamic mechanism

• Prove the performance of defined prototype by simulating the system on virtual

machine environment

• Test and evaluate the functions of system and report the results

1.7 Benefits of the Research

Although the number of users continuously increases without expanding the size

of caches in the farm, the proposed architecture will:

• Help reducing the retrieval time and also increasing the hit rate and the byte hit

rate since the caching system has a pattern of Internet services.

• Maintain the cost and avoid administrative issue due to URL’s grouping and

simple structure of the proxy cache farming system

1.8 Organization of the Dissertation

The rest of this dissertation is organized into five chapters as follows.

Chapter II is the background information and the methods related to this

research. This chapter describes the implementations of the proxy server, the types of

the proxy server, the architectures of the web proxy caching, the cache replacement

policies, and the recommender system.

6

Chapter III is the explanation of data collection and analysis methods. The data

used in this research is the Squid log file, named access.log. The data collection

section presents Squid Log Format Overview, Data Sources, and Log File Filtering. The

data analysis is the grouping mechanism which includes Web directory-based grouping

and Browsing behavior-based grouping.

Chapter IV describes the new architecture and the modified algorithm proposed

to manage caches in the farm as well as the system workflow. The proposed

architecture comprises of the web profile database system, the proxy manager system,

and the specific proxy server system. The proposed algorithms consist of the

information update process algorithms, which include the daily update process

algorithm, the weekly update process algorithm, and the monthly update process

algorithm, and the web pattern classification algorithm. For the last section, this chapter

presents the system workflow.

In Chapter V is the implementation and experimental results of this research. In

order to evaluate and compare the caching performance of the proposed architecture to

the traditional caching architecture, which is original model without grouping criteria for

the web cache, the trace-driven simulation is performed by implementing both models in

a virtual machine environment. The simulation results to demonstrate the performance

of the proposed architecture are elaborated as well.

Finally, Chapter VI is the discussion and conclusion on the proposed cache

farming architecture applying the recommending mechanism.

7

CHAPTER II

 BACKGROUND AND LITERATURE REVIEWS

This chapter describes the implementations of the proxy server, the types of the

proxy server, the architectures of the web proxy caching, the cache replacement

policies, and the recommender system. The implementations of the proxy server

present the caching proxy server, the web proxy server, the transparent proxy server,

and the squid proxy server including its installation and configuration. The forward

proxy and the reverse proxy are presented in the common types of the proxy server.

Three types of the architectures of the web proxy caching are the hierarchical, the

distributed, and the hybrid caching architectures. The various cache replacement

policies defined in the proxy cache are such as Least Recently Used (LRU), Least

Frequently Used (LFU), Greedy Dual-Size (GDS), etc. The recommender system

comprises of two basic approaches: the content-based filtering (CB) and collaborative

filtering (CF).

2.1 Implementations of Proxy Server

A proxy server [17-20] is a hardware that is located between Web servers and

one or more clients. It facilitates access to the content on the Internet. A proxy server

receives requests from clients who search some resources from other servers. These

clients connecting to the proxy server request some services, such as files, web pages,

or other resources available from different servers. However, the proxy servers are

implemented for one or more of functions as following:

2.1.1 Caching Proxy Server

A caching proxy server services the requested objects without contacting the

original server of the objects. It retrieves the contents of requested objects which are

saved on its cache to send them back to the users. The caching proxy server

conserves the local copies of popular resources. This significantly reduces the

8

upstream bandwidth usage and cost of the Internet Service Providers (ISPs), hence,

increasing its performance. Figure 2.1 shows the basic operation of caching proxy

server.

Figure 2.1: The basic operation of caching proxy server.

Referring to Figure 2.1, when a proxy cache receives a request made by a

client, it will determine whether the requested object is already in its cache by examining

the list of stored objects. Moreover, the proxy cache decides whether the stored object

is valid for sharing (fresh) by examining available information of that object, such as the

object creation date, storage date, expiration date, client and server preferences, etc.

However, the decision can be made accurately by the help of the HTTP version 1.1. If

the stored object is fresh, it will be retrieved from the local cache, and then sent as an

HTTP response to the client. In this case, there is no need to fetch the objects from the

object’s web server, resulting in the retrieval time and bandwidth saving.

However, if a fresh copy of the object cannot be found in the cache, it must be

retrieved from the original web server. The retrieved object will be stored in the cache if

the disk space is available and finally the cache forwards this object as the response to

the client.

9

2.1.2 Web Proxy Server

A web proxy server is a server focusing on the World Wide Web traffic. Many

web proxy servers attempt to block unpleasant the web contents. Other web proxy

servers re-format the web pages for a specific purpose, such as smart phones.

However, the network operators can also deploy these proxies to detect computer

viruses and other unreceptive contents served on remote web pages.

In order to provide caching services and security, several organizations, such as

academic organizations, commercial organizations, etc., implement the proxy servers to

their network system. Generally, the traditional web proxy is set up as non-transparent

proxy to the client application, which must be configured to use the proxy either

manually or with a configuration script.

2.1.3 Transparent Proxy Server

A transparent proxy server is also known as an intercepting proxy server or

forced proxy server. It is between the client’s browser and the Internet. Generally, the

transparent proxy combines a proxy server with a gateway. When the connections are

initiated by the clients through the gateway, they are recognized and redirected through

the proxy cache without configuring clients. For this reason, this type of proxy server is

extremely attractive to network administrators. Additionally, the administrators have no

need specific instructions for web applications and their versions, then they can control

over the traffics sent to the caches.

However, most Internet Service Providers (ISPs) or other organizations that

provide the Internet services use this implemented proxy server to save their upstream

bandwidth and also improve user delay or response times by caching.

2.1.4 Squid Proxy Server

Squid proxy server [21-22] is a full-featured caching proxy server [23] that

caches the web content closer to a client than its original location of origin web server.

10

Various kinds of web objects, including the popular network protocols that are such as

HTTP, FTP, etc., can be supported the caching of the Squid proxy. Normally, the squid

is implemented to perform transparent caching; however, it can implement caching of

Secure Sockets Layer (SSL) and Domain Name Server (DNS). Furthermore, the squid

also support a variety of caching protocols, such as Internet Cache Protocol (ICP), the

Cache Array Routing Protocol (CARP), and the Web Cache Coordination Protocol

(WCCP), etc.

2.1.4.1 Installation

The squid is open source software which was originally designed to run on Unix-

based systems. However it can also be run on windows systems. The squid proxy

server is usually installed on a separate server. If the system is running on, for example,

Ubuntu, one of the Unix-based systems, the command to install the squid software is

“sudo apt-get install squid”. The first implementation of the squid proxy server was

performed in the Harvest Project. The squid proxy is a high-performance proxy caching

server and widely used in the organizations especially in the academic field [24].

The ISPs employ the squid proxy servers to provide faster web retrieval process

and reduce user’s latency, particularly for delivering rich media contents, such as video

contents. Additionally, the operators of the web site frequently locate the squid proxy

server as the content accelerator. This accelerator caches frequently retrieved content

and alleviates loading on the web servers. In addition, the squid proxy is used in the

content delivery networks to improve load balancing and to handle all traffic spikes for

popular web contents.

2.1.4.2 Configuration

Referring to the installation of Squid mentioned previously, both of the Unix-

based and Windows-based systems can implement the squid proxy server. Since this

research working on Ubuntu, the detailed configuration of Squid is based on Ubuntu

afterward. The configuration of the squid is to edit the directives contained within the

11

configuration file named “/etc/squid/squid.conf” that a large number of options are

included. Some directives might be also modified. They are listed below. For more

squid’s configurations in various systems, see the references in [17], [22], [25].

• To set the squid proxy server to listen on TCP port 8888 instead of the

default TCP port 3128, the http_port directive is changed to: “http_port 8888”

• To set the Internet use to be available only for users with 161.200.126.0/24

subnetwork, the squid's access control is configured as follows: add “acl

example_network src 161.200.126.0/24” at the ACL section of the

/etc/squid/squid.conf file. Then, add “http_access allow example_network”

at the http_access section of the /etc/squid/squid.conf file

After the /etc/squid/squid.conf file is configured and saved, the squid server

application is restarted to operate the changes of the squid.conf file using the command

entered in a terminal prompt: “sudo /etc/init.d/squid restart”.

2.2 Types of Proxy Server

This section describes two common types of proxy server that are a forward

proxy server and a reverse one. The forward proxy acts as a specific group of content

consumers while the reverse one acts as the origin web server and helps the specific

group of servers to deliver the content [26].

2.2.1 Forward proxy server

The most common form of the proxy server is the forward proxy server that is

generally used to pass the requests from an internal network to the Internet through a

firewall. However, the requests from the internal network, or the Intranet, can be

rejected or allowed to pass through the firewall. Instead of passing through the Internet,

the requests will be fulfilled by serving from the cache of the forward proxy. Figure 2.2

shows a forward proxy configuration. The procedure of the forward proxy is described

12

as follows.

Figure 2.2: Forward proxy server.

1. Check the validation of a request: the forward proxy server verifies the

request. If the request is not valid or blocked by the proxy, the forward proxy

will reject the request and then the client will receive an error or a redirect. If

it is not so meaning the request is valid, the forward proxy will check the

requested information on its cache.

2. Check the existence of requested contents in the cache: the forward proxy

serves the cached contents to the user if the contents are found in the proxy

cache. If the contents are not found, the request is sent through a firewall to

the content’s web server. Afterword, the forward proxy server will transmit

these contents to the client and copy them for the future requests on its

cache.

2.2.2 Reverse proxy server

Another common form of a proxy server is the reverse one that is generally used

to pass the requests from the Internet, through a firewall to the internal or private

networks. This type of proxy server appears to users to be an ordinary web server; so

that the requests are forwarded to this reverse proxy server that handles those requests.

The reverse proxy server is used to prevent the Internet users from directly or unwanted

accessing to the sensitive data residing on the content servers under the internal

13

network. If the caching is allowed, the reverse proxy will serve the cached contents

rather than sending all requests to the origin content servers. Figure 2.3 shows a

reverse proxy configuration. The procedure of the reverse proxy is described as

follows.

Figure 2.3: Reverse proxy server.

1. Check the validation of a request: the reverse proxy server verifies the

request. If the request is not valid or blocked by the proxy, it will not

continue to process the request and then the client will receive an error or a

redirect. If it is valid, the reverse proxy server will check whether the

requested contents are cached.

2. Check the existence of requested contents in the cache: the reverse proxy

server serves the cached contents to the user who requests that web

contents if the requested contents are found in its cache. If not, the reverse

proxy server will request the contents from the original content server and

serves them to the requesting user. In addition, the reserve proxy also

keeps the copied contents in its cache for future requests.

The advantages of the reverse proxy setting are (i) reducing the bandwidth

usage on the internal network, and (ii) allowing the web contents even though the web

server is offline.

For the first advantage, the bandwidth usage is not required on the internal

14

network when the cached contents are served directly from the reverse proxy server.

Thus, the bandwidth usage on the internal network is reduced. Another advantage is

that the reverse proxy server can provide the web contents when the web server is

offline. Since the web server can be offline for various reasons, such as crashing of a

hardware or software of the web server, or the downtime of the web server during the

routine maintenance period. Therefore, whenever the web server is offline, the web

contents are available to the Internet users because the contents are served from the

reverse proxy cache. Furthermore, there are several reasons for installing the reverse

proxy server are such as Load balancing, Security, Encryption, Compression, etc [27-

28].

2.3 Architectures of Web Proxy Caching

Proxy caching is an example of technologies which overcome the two main

problems which are server overloading and network congestion [11], [27], [29-31].

Using this approach, the content objects of retrieved webs are moved closer to the user

for faster retrieval [24], [32]. Then, the user requests will be redirected to and served

from the proxy device. Instead of requesting the pages from the original web server,

they can be quickly retrieved from the cache of proxy server, by the same or different

clients the next time that pages are requested. Hence, the access time is shortening

and the significant network resources, such as bandwidth and processing resources are

conserved. Figure 2.4 shows a single caching proxy configuration.

15

Figure 2.4: A single caching proxy.

2.3.1 Hierarchical caching architecture

A caching hierarchy is one of the caching models set up in order to coordinate

proxy caches in the same network system. This hierarchical caching model locates the

caches in each level of the network as illustrated in Figure 2.5. There are the client or

browser caches at the bottom, the institutional caches, the regional caches, the national

caches, and the original web server at the top of cache levels [10], [33]. A request

made by the client is satisfied firstly at the client cache if the request is found on this

level cache. If it is not so, the request is redirected to the next level caches, the

institutional cache, the regional caches, and so on, to find the requested object.

However, if the requested object is not found at any level of the caches, the national

cache will directly contact the object’s web server. Either at any cache or at the original

web server that the requested object is found, the object travels down the hierarchy and

leaves its copy at every level cache along its traversal path. Further requests for the

same requested object travel up the caching hierarchy until the object is hit at some

cache level.

16

Figure 2.5: Hierarchical caching architecture.

The hierarchical web caching was proposed in the Harvest project [8] firstly

since 1996. Then, Adaptive Web caching [34] and Access Driven cache [35] focusing

on the improvement of the hierarchical caching, are introduced. In order to improve this

caching model to support the Internet usages rapidly growing, many research papers

studied on the architecture of caches by managing different cache sizes as hierarchical

structure of a web cache farm. Foygel and Strelow [36] applied a prefetching algorithm

to the hierarchical web caches. Moreover, the Internet Small Computer System

Interface (iSCSI) protocol [37] to communicate between a lower-level; and, its higher-

level proxy server was proposed with a new web caching scheme. In the year 2005, the

Hierarchical Web Caching Placement and Replacement (HCPR) algorithm was drawn

out [38]. This algorithm places the most frequently referenced documents close to

users in the leaf nodes of the hierarchy. Then, the Content Distribution Network (CDN)

architecture was applied to the hierarchical web caching technology by Yang and Chi

[39].

Originally, the researches on hierarchical caching model are usually reserved for

depth-first search (DFS) exploration. Thus, a general framework of hierarchical caches

that can be used by breadth-first search (BFS) was proposed [40]. This method can

17

guarantee to terminate and to traverse every transitions of the state space. However,

there is very little research made on the web cache performance for the different

combinations of replacement policy. In order to evaluate the performance of web

caching, mostly, performance metrics are captured by Hit Rate (HR) and Byte Hit Rate

(BHR) [41-42]. Additionally, a cost function model was implemented based on both

performance metrics to investigate the suitability of applied policies over the two-level

hierarchical cache model [43]. The result indicated that the performance obtains higher

when the lower-level cache uses the LFU or LRU and the upper-level cache uses the

GDS.

Despite the benefits of hierarchical caching architecture, this caching

architecture has several problems associated with a caching hierarchy [9-10]:

1. The implementation of this caching hierarchy need to place the proxy

servers at the key access points in the network. Consequently, this caching

model frequently requires significant coordination among proxy servers.

2. Every cache level introduces additional delays.

3. The bottleneck problem may occur at high level caches due to travelling up

the caching hierarchy, resulting in having long queuing delays.

4. There are many copies of the same requested object stored at different

cache levels.

2.3.2 Distributed caching architecture

According to the problems of the hierarchical caching architecture mentioned

above, the distributed caching architecture is set up to provide the requested webs

made by the clients. The distributed caching model [9], [46], has no other intermediate

caches than the institutional caches, which serve the miss of other caches. In order to

18

make a decision which the institutional cache serves a miss web document, each

institutional cache keeps the meta-data information informing the contents of other

institutional caches. However, the meta-data information is more efficient and scalable

when a hierarchical distribution mechanism is applied. The hierarchy in the distributed

cache model is only used to distribute the information of directories indicating the web

document’s location, not the actual copies of the web documents.

The benefits of this distributed caching model are less congested, no additional

disk space, better load sharing, and more fault tolerant. Nevertheless, a deployment of

a large-scale distributed caching model encounters various problems, such as high

connection times, high bandwidth usage, administrative issues, etc. [10]. Figure 2.6

shows the structure of the distributed caching architecture.

Figure 2.6: Distributed caching architecture.

19

There are several approaches employed to the distributed caching. The Internet

Cache Protocol (ICP) [44] designed by the Harvest group is message-based scheme

that communicates between caches using a simple query message. A different

approach is taken in Cache Array Routing Protocol (CARP) [45] that distributes the URL

among neighbor caches storing only the documents whose URL is hashed to it.

Additionally, Provey and Harrison proposed a distributed Internet cache [46]. With this

scheme, the upper level caches are replaced by directory servers. These servers

contain the location hints about the documents which are kept at each cache. A

hierarchical meta-data-hierarchy can be used to increase the efficiency and scalability

of distribution of these location hints. Tewari et al. proposed a similar approach to

employ a distributed caching system where the location hints are locally replicated at

the institutional caches [9]. Wang introduced Cachemesh [47] that is a distributed

cache system for the World Wide Web. In the Cachemesh, caching servers create a

cache routing table among them, and then each server becomes the designed server

for a number of the web sites. When the user requests are raised, they are forwarded to

the proper caching server according to the cache routing table.

In the year 1998, a novel protocol, named Cache Digest [48], was proposed to

optimize the communication among cooperative proxy caches. This technique allows

proxy caches to make a summary of their contents in a compact format, called as

digest. Each proxy cache can use this digest to identify which neighbors are likely to

contain the requested web document. Other similar techniques to the cooperative web

caching were proposed, for example, the Relais project [49] and Summary Cache

protocol [50]. Each cache exchange messages indicating their content and also keep

the local directories to find the documents in other caches. In the late 2010, the

centrally managed cache cooperation architecture (CRISP) [51] was proposed to

minimize the cost of communication among cooperative web caching proxies. With this

CRISP, the cooperative caching proxies share their caches using a central mapping

20

service with a complete directory of cached objects of participating caches.

Unfortunately, the investigation of the reference [52] pointed out that this model causes

the congestion over the network. So, the techniques of web caching and web

prefetching were implemented in the proxy system to solve the problems of server load

and congestion control [53].

2.3.3 Hybrid caching architecture

The hybrid caching architecture is the caching model combining the benefits of

two cooperative caching models: the hierarchical and the distributed caching models.

With this hybrid model, the caches cooperate with other caches at the same cache level

or at a higher cache level using distributed caching as shown in Figure 2.7.

Server

Client Cache Client Cache Client Cache

Client CacheClient Cache

Client Cache

Figure 2.7: Hybrid caching architecture.

Some researches employ the hybrid caching model to improve the performance

of cooperative web caching. Rabinovich et al. [54] proposed a technique to limit the

21

cooperation among neighbor caches to avoid obtaining documents from remote

caches. Additionally, Baek et al. [55] proposed one interesting hybrid model where the

reference table was employed at each level in the hierarchy except the lowest level.

Another solution in this model focused on some significant factors which are related to

QoS such as communication between the caches and cache contents [11].

In order to illustrate the overall properties of three architectures of the

cooperative caching proxies [33], Table 2.1 presents the comparison among

hierarchical, distributed, and hybrid caching architectures as follows.

Table 2.1: Comparison among hierarchical, distributed, and hybrid caching

architectures.

Features Hierarchical Distributed Hybrid

Parent caches congested slight congestion slight congestion

User latency high low low

Connection time short long long

Bandwidth usage low high low

No.of Hierarchies less than four one one - two

Transmission time high low low

Network traffic unevenly distributed evenly distributed evenly distributed

Disk space usage Significant low low

Placement of caches

in strategic locations
vital not required up to ISP

Freshness of cached

contents
difficult easy easy

Hit ratio high very high high - very high

Response time moderate fast fast

Duplication of objects high low low

22

2.4 Cache Replacement Policies

Since the cache replacement policy is a part of the effectiveness of proxy

caches. Thus, the studies of cache replacement policies have been performed

continually in order to improve various cost metrics, such as the hit ratio, the byte hit

ratio, the response time, and the total cost. The cache replacement policy evicts the

object stored in the cache to make a space for a new cached object when the cache is

full due to a finite capacity of the cache. Several cache replacement policies are used

to choose the object to be evicted or replaced. They can be classified into different

categories as follows.

2.4.1 Recency-based policies

The primary factor of the recency-based policies is recency. The rationale of

this category is that recently referenced objects will be referenced again in the near

future.

• Least Recently Used (LRU) is the most popular policy that evicts or replaces

the least recently referenced objects. With this policy, the cache will

eventually fill with the most recently referenced objects.

• Pitkow/Recker [32] evicts the objects in the LRU order by considering the

object’s size. Then, the largest file sizes are removed first.

• LRU-Threshold [56] is similar to the traditional LRU, but the objects that are

larger than a certain threshold size is not cached.

• SLRU (Segmented LRU) [7] partitions the cache into two segments called

protected (stored the popular objects) and unprotected. When the object is

requested for the first time, the object is inserted into the unprotected

segment. When the object hit occurs in the unprotected segment, the object

23

is moved to the protected segment. Moreover, both segments apply the

LRU strategy. However, only the deletion of the objects is performed in the

unprotected segment. If there is not enough space in the protected

segment then the least recently used object is moved back as the most

recently used object into the unprotected segment.

• LRU* [57] is the LRU variant. This policy inserts the referenced objects in a

LRU list. The popularity indicator is a request counter counted from the hit of

the referenced object, incrementing one per hit time and used as the hit

count of each object. If the requested object is hit, the hit count is

incremented by one and the cached object is moved to the beginning of the

list. Additionally, the least recently used object is checked its hit count at

each round of the replacement process. The object is evicted from the list if

the hit count is equal to zero. Otherwise, the hit count is decreased by one

and the object is moved to the beginning of the list.

2.4.1.1 The advantages of the recency-based policies

• These policies perform very well when web traffic exhibits high temporal

locality. That means many users are interested in the same object at the

same time.

• These policies are mostly popular due to simple implementation and

practically good performance in various situations.

2.4.1.2 The disadvantages of the recency-based policies

• The size of the web is not considered in the LRU replacement process even

though it is useful for balancing the load of the cached objects.

• In more static system environments, the frequency can be an important

24

factor to make a decision in removing or caching the object.

2.4.2 Frequency-based policies

The primary factor of the frequency-based policies is the popularity of the object.

The rationale of this category is that only a small set of objects is popular, and those

objects should be cached.

• Least Frequently Used (LFU) is the simple policy that replaces the least

frequently referenced objects. In the other hand, the cache implementing

the LFU policy will be filled with the most frequently referenced objects.

• HYPER-G [57] combines three traditional replacement policies; they are the

LFU, the LRU, and the SIZE. Whenever the cache needs the space to keep

the new object, the LFU policy is used to make a decision in replacing the

object first. Then the LRU performs. If there are several cached objects that

cannot be chosen to replace. Finally, the SIZE is applied if the use of the

LRU policy cannot determine which the cached object will be evicted.

• swLFU [57] applies both of the LFU and the LRU in the replacement

process. This policy uses a weighted frequency counter as a factor to

cache the object. The lowest weight wi of the object i is replaced first. In the

case that two or more objects have the same weighted frequency value, then

the LRU is used to manage those objects. Moreover, the swLFU has one

extension called Aged-swLFU or A-swLFU. The A-swLFU policy evicts the

LRU-object on every k replacement.

• LFU-Aging [7] is a variant of the LFU avoiding the cache pollution of the LFU.

In order to avoid this pollution, the LFU-Aging uses two parameters. The first

parameter is to limit the average number of the requests for all cached

objects. If the average number of the requests is over the limit, all request

25

counters are divided by two, causing the inactive objects to lose their

popularity. The second one is to limit the value of the request counters.

Thus, it can control how long a previously popular object will stay in the

cache.

• LFU with Dynamic Aging (LFUDA) [58] is similar to the LFU using a dynamic

aging technique to avoid the cache pollution problem. The dynamic aging

technique increments the cache age by one when the cached object is

accessed. For this reason, the cache age of the recently popular objects

becomes a larger value. Thus this can prevent previously popular objects

from polluting the cache because the LFUDA evicts the object that has the

smallest cache age.

2.4.2.1 The advantages of the frequency-based policies

• These policies are suitable for the static system environments such that the

object popularity does not change much in the specific time period, such as

a day or a week.

2.4.2.2 The disadvantages of the frequency-based policies

• The LFU-based policies require most complexity of cache management.

• The simple LFU policy causes the cache pollution. This situation occurs

when the popular objects requested frequently during one time period can

be stored in the cache even they are not requested for a long time period.

That is because the LFU uses the frequency count as the factor for replacing

the object in the cache.

• These kinds of replacement policies require other factors to break the

replacement process when two or more objects have the same frequency

26

count.

2.4.3 Size-based policies

The primary factor of the size-based policies is the size of the object. The

rationale of this category is that most objects are small-size objects, thus if a large-size

object is removed, the cache can be make room for multiple smaller ones.

• LRU-MIN [59] minimizes the number of replaced documents. The LRU-MIN

evicts the least recently used object whose size is greater than S, the least

recently used object whose size is greater than S/2, the least recently used

object whose size is greater than S/4, and so on, where S is the size of

incoming object. The LRU-MIN uses ⎣ ⎦)(log2 sizedocument as its primary

key and the last accessing time as the secondary key, in the sense that the

cache is partitioned into several size ranges and document removal starts

from the group with the largest size range.

• SIZE [57] is the representative policy for this category. SIZE evicts the

largest object first. In case, there are many objects with the same size

stored in the cache, then the LRU is applied to those objects.

• Largest File First (LFF) evicts the largest object to make the most space in

the cache for the new ones. Additionally, both size and age of the object are

frequently considered in choosing the object to be replaced.

2.4.3.1 The advantages of the size-based policies

• These strategies work very well if the largest object is less popular.

2.4.3.2 The disadvantages of the size-based policies

• The SIZE policy emphasizes too much on the object size. It should be

27

implemented with some techniques, such as adding a priority queue or

limiting the time of cached objects, to improve the cache hit. The LRU-MIN

is also focused more on the size of the cached objects even it takes

advantage of the LRU policy to replace the object.

2.4.4 Function-based policies

Function-based policies are key-based policies using multiple combined keys

without sequential order among those keys. Each key can be differently weighted in the

cost function. Moreover, the most valuable object will be retained in the cache

considering the cost function defined in the different way. Generally, the object with the

smallest value is evicted first. The rationale of this category is that more factors

considered together can help to achieve a higher hit ratio.

• GreedyDual-Size (GDS) [5] assigns a value of benefit to each object.

Initially, a value is set to cost/size. The object with the smallest value of

benefit is evicted first. The object’s value of benefit is decreased when the

object is removed from the cache while this value is increased to the original

value when the object is hit.

• GDS with Frequency (GDSF) [58] is a variant of the GDS that considers the

frequency count of the referenced object as well. The GDSF optimizes the

object hit ratio by storing the popular smaller objects in the cache. A value

of benefit is assigned as the object’s frequency count divided by its size,

plus the cache age factor used to limit the influence of previously popular

documents, as described above for LFUDA.

• GD* [7] is the extended GDS, called as GD* or GDSP algorithm proposed by

Jin and Bestavros [61]. However, the performance of web caching

algorithms in relation to the type of document being cached had been

28

studied that the GD* works best for the image, the HTML and the multimedia

documents comparing to the LRU, the LFU-DA, and the GDS algorithms

[62].

• LUV (Least-Unified Value) [7] is proposed by Bahn et al. [63]. The LUV

uses the reference potential of an object as a factor. The reference potential

is estimated by using a function that relates the reference potential of an

object to its most recent reference. For example, a function is
xλ

xf ⎟
⎠
⎞

⎜
⎝
⎛=

2
1)(,

with 10 <≤ λ , where x measures the time until the last reference. However,

the problem of this policy is to choose the right choice ofλ .

2.4.4.1 The advantages of the function-based policies

• There is no fixed combination of factors, resulting in no bias for many

objects. According to the proper alternative of weighting factors, one of

factors can optimize any performance metric.

• A different number of factors are chosen to handle the different situations of

the workloads.

2.4.4.2 The disadvantages of the function-based policies

• The challenging task of this category is to choose appropriate weights of

factors. Some reviews assume the weights from the study of the web trace.

Although this assumption is simple, it is an error prone approach. That is

because the workloads of the webs always change and require some

adaptive setting of the factors. However, this adaptive setting adds the

complexity to the replacement process.

• The latency should not be used in the value calculation. For this reason, it

can introduce inaccurate latency estimation. The factors influencing to the

29

latency are such as many components on the path between the web server

and the proxy server or the client, new technologies supporting the object

movement, etc. Therefore, using latency can lead to improper replacement

decisions.

2.4.5 Randomized policies

The eviction decisions of these policies have no require complex data structures

and high computation overhead.

• RAND [57] evicts the object randomly from the cache. The RAND policy

requires no state information, causing to save both memory and processing

power. However, the RAND uses only simple random function based on

equal probability for each object. Thus it does not perform well.

• HARMONIC [60] improves the performance using a non-uniform probability

distribution. Each object has a probability inversely proportional to its

specific cost that is cost/size. The object with lower costs is evicted first.

However, this policy requires a simple data structure in order to keep the

cost value of objects in the cache.

2.4.5.1 The advantages of the randomized policies

• These randomized policies do not require special data structures of the

object’s insertion and deletion while the object’s search can be supported by

special data structures.

• The implementation of these policies is simple.

2.4.5.2 The disadvantages of the randomized policies

• The evaluation of these policies is unwieldy. For example, the obtained

30

results from the different simulations with the same web trace are slightly

different.

In fact, the number of users over the Internet via web usages is rapidly

increasing and causes a high delay for every browse since the amount of browsed

content cannot be served and saved in the proxy’s cache. Thus, various researches

have proposed a new caching algorithm to manage contents in the cache even though

many cache replacement policies are implemented before, such as the GDS [5], the

GD* [6], etc. Moreover, the workload over the caching strategy had been considered

by Haverkort et al. [7]. This study leaded to the development of the Class-Based Least-

Recently Used (C-LRU), which is a refinement of standard LRU. The C-LRU manages

the cache by partitioning it into classes; each one is reserved for objects of a particular

size range and the LRU algorithm is applied within a class. However, some algorithms

of document replacing consider more than one factor into their scheme to improve

caching performance. In the late 2005, Frequency REcency and Size Cache

Replacement (FRES-CAR) [64] considering the document reference recency, frequency,

and size was proposed. Moreover, Bian and Chen introduced the Least Grade

Replacement (LGR) [65] applying the perfect-history into account for web cache

optimization. Another replacement policy is named as Semantic and Least Recently

Used (SEMALRU) [66]. The SEMALRU evicts objects that are less related to an

incoming object or least recently used object. Thus, only related objects are stored in

the cache. Although, various new replacement strategies were implemented to enhance

the caching performance, mostly encourages the locality problem. Thus, Dump and

Clear [67] that was presented to solve the locality problem based on Petersen Graph

[68] topology.

2.5 Recommender System

A recommender system (RS) is a customization tool in an e-commerce system.

31

The RS generates the personalized recommendations that match with the taste of the

users [69]. The goal of the RS is to generate the significant recommendations to a

group of users for items or products that those users might be interested in them.

Additionally, the RS achieves in solving the problem of information overloading; it

provides users with more proactive and personalized information services. Generally,

two basic recommendation approaches used in the RS are Content-based (CB) and

Collaborative Filtering (CF) approaches.

2.5.1 Content-based (CB) approach

The CB approach recommends the items that are similar to the ones that the

user liked in the past or matched to attributes of the user. The similarity of items is

calculated based on the features associated with the compared items. For example, if a

movie belonging to the comedy genre is positively rated by a user, then the system can

learn to recommend other movies from this genre [70].

2.5.2 Collaborative Filtering (CF) approach

The CF approach recommends to the user the items that other users with similar

tastes liked in the past [71]. The taste similarity of two users is calculated based on the

similarity in the rating history of the users. Thus, the CF approach is called as “people-

to-people correlation” [72]. Moreover, this approach is the most popular and widely

implemented technique in the recommender system [73-74].

Since the development of the Recommender System (RS) in the area of

information retrieval is widely implemented in the information search algorithm to shorten

down the search time, the METIOREW technique was implemented for web search

mechanism [75]. This technique applied the document evaluation results from the users

as the “intelligent bookmark” to find the most relevant web pages under search topics.

On the other hand, Amazon.com system uses the Item-to-Item Collaborative Filtering

[76] as its recommender system. As same as Amazon.com, RS is extremely

32

implemented in many internet activities and services, such as course management

systems [77], e-learning system [78-79], etc. Furthermore, the modification of the RS is

applied on some products or service systems to improve the efficiency of the RS. For

example, the RS with the fuzzy scatter difference was presented [80]. Additionally, the

time contexts and group preferences are used to improve the customer profile in

collaborative systems [81].

CHAPTER III

DATA COLLECTION AND ANALYSIS

This chapter describes the data collection method and the data analysis

method. The data used in this research is the Squid log file, named access.log. The

data collection section presents Squid Log Format Overview, Data Sources, and Log

File Filtering. The data analysis is the grouping mechanism which includes Web

directory-based grouping and Browsing behavior-based grouping. They are elaborated

as follows.

3.1 Data Collection

3.1.1 Squid Log Format Overview

Since the Squid is the general proxy caching server, especially for academic

area [24], therefore in this research will analyze the access.log, a type of log file of

Squid, in order to identify suitable groups of webs requested by users. Figure 3.1

shows the standard access.log format; its usage is “logformat <name> <format

specification>”, where <name> is the name of the log format and <format specification>

is a string with embedded % format codes [82]. The default formats available in Squid

are squid, squidmime, common, and combined. However, this research used the

“squid” format that is the most used one of default formats shown as below:

logformat squid %ts.%03tu %tr %>a %Ss/%03Hs %<st %rm %ru %un %Sh/%<A %mt

<name> <format specification>

Figure 3.1: The squid log format.

Referring to Figure 3.2, each record in the access.log file usually consists of (at

least) 10 columns separated by one or more spaces. For example, the access.log

record is “1241323199.891 34 161.200.43.96 TCP_MISS/200 18650 GET

34

http://p.mthai.com/picpost/2009-04-29/409816_12124309_0.jpg - DIRECT/p.mthai.com -

”. The details of this example record are described as demonstrated in Table 3.1.

Figure 3.2: Examples of the browsing records stored in the access.log file.

Table 3.1: The detailed access.log record.

Column name Format codes Descriptions Example

timestamp %ts.%03tu
A UNIX timestamp as UTC seconds with a millisecond

resolution
1241323199.891

time elapse %tr The elapsed time or response time (milliseconds) 34

source IP %>a
The IP address of the requesting instance, the client

source IP address
161.200.43.96

function/status_code

(result code)
%Ss/%03Hs

Squid request status (TCP_HIT, TCP_MISS, etc) / HTTP

status code (200, 302, etc)

TCP_MISS/200 (The message

means a valid copy of the

requested object was not in the

cache and successful actions)

file size (bytes) %<st
The size is the amount of data delivered to the client

including HTTP headers
18650

transferred/request

method
%rm The request method to obtain an object (GET, POST, etc) GET

destination URL %ru This column contains the URL requested
http://p.mthai.com/picpost/2009-

04-29/409816_12124309_0.jpg

rfc931 %un
The ident lookups (User name) for the requesting client. If

no ident information is available, a "-" will be logged
-

peer status/peer host

(hierarchy code)
%Sh/%<A

Squid hierarchy status (DIRECT, DEFAULT_PARENT, etc)

/ Server IP address or peer name
DIRECT/p.mthai.com

content type of the object %mt

The content type of the object as seen in the HTTP reply

header. If the object don't have any content type, and

thus are logged "-"

-

35

3.1.2 Data Sources

The study of web browsing behavior is performed using sampling data from the

oldest and the largest university of Thailand named Chulalongkorn University,

henceforth called “Chula”. Since this university provides various branches of study

programs and researches to serve societies both in national and international, there will

be varieties of data to be retrieved over the Internet. Therefore, various browsed

information, various languages, and varieties of locations are existed from the requests.

Additionally, these requests of the Internet services must pass the proxy server and

transactions will be recorded in the access.log. As a consequence, these transactions,

or browsed information, can be applied as the input data set in the behavioral analysis

process over the Internet. Based on the access.log data obtained from the University

Office of Information Technology of Chula, collected from January to August 2009, is 1.5

TB (compressed files); the number of transactions is approximately 50 million

transactions per day.

In addition, there is a volunteer university; Nakhon Pathom Rajabhat University

(NPRU), by Computer Center had provided 2 months information during October to

November 2010, in the volume of 8 GB. This data set that is 56,762,933 transactions is

used as the experiment data set after the grouping condition is defined.

3.1.3 Log File Filtering

After the access.log data are analyzed, the next process is to clean or filter the

irrelevant information and fields in the log file. Based on the format of the access.log,

there are many fields being stored, such as the retrieval time or the timestamp, the file

size, the destination URL, and access situation (hit/miss), etc. However, this research

uses only two fields: the destination URL, and the file size. Considering the destination

URL field, the URLs considered in the analysis procedure are only the host name, not

full path name of the URL. As illustrated in Table 3.1, the browsed URL is

http://p.mthai.com/picpost/2009-04-29/409816_12124309_0.jpg, thus, the host name

36

“p.mthai.com” is used. The popularity indicator is a counter counted from the existing of

the URL host name, incrementing one per existing time and used as the browse

frequency of each URL. This method is called as the frequency-based analysis. The

consequence result of this method is the “Frequency Pattern (FP)”; this FP shows the

popularity of webs in a certain period of time.

Nevertheless, the information contained in the destination URL field does not

only show the host name, but also be used to identify the type of webs implicitly.

Generally, the types of webs can be classified as static and dynamic webs [83]. The

dynamic webs will be specified using the specific symbols; “cgi-bin”, a question mark

“?”, or a suffix “.cgi” contained in the URL string. Thus, in this research, the dynamic

web will be assigned with special character to differentiate from the static web.

It is the fact that the value of “file size” is varied based on the type of webs

(dynamic or static), status of web servers, or traffic conditions during the called web is

delivered. Thus, in this research, the average number of “file size” of each unique URL

is calculated and be used as the representative of the web size before plotting the

histogram of retrieved “file size” to see distribution, using all records in the access.log.

This result is to indicate the cache load as needed. The consideration based on the

web size is called as “Loading Size Pattern (LSP)”, and this value can be applied as a

weighting value in the architecture designing process of the cache farm.

By conclusion, the meaningful information that is extracted from the access.log

to analyze the browsing behavior of users will be stored in two main databases; they are

the web identification database (WIDB) and the web classification database (WCDB), for

managing the caches in the farm. The information structures of both the WIDB and the

WCDB are shown in Table 3.2 and Table 3.3, respectively as follows:

37

Table 3.2: The WIDB structure.

Column Name Data Type Description

URLText varchar The host name of the URL

BeginDate date The first time of date that the URL is stored

UpdateDate date The last time of date that the information is updated

URLType varchar The type of webs: static or dynamic

Cnt_W integer The weekly counter

URLActCode varchar The active code: active or inactive

AccumFreq integer The accumulated frequency of each URL during a week

AccumSize integer The accumulated file size of each URL during a week

Freq integer The browse frequency of the URL (per a week)

Size integer The average size of the URL (per a week)

GroupCode varchar The group code

Primary key is URLText

Foreign key are URLType, GroupCode

Referring to Table 3.2, the URL host name is represented by the URLText. When

the access.log data was filtered, the meaningful information will be stored in the WIDB

for future process of web classification. The new URL is specified BeginDate and

UpdateDate with the present date of the first existing time in the database. Then, the

UpdateDate will be updated for every weekend when the RAM performs. As mentioned

previously, the types of browsed webs (URLType) consisting of static and dynamic will

be assigned in different characters. Thus, the static web is identified by “0” while the

dynamic web is assigned with the character “1”.

In order to follow the browses of the users for every week, the weekly counter

(Cnt_W) is defined that is running from 0 (zero) to 4. Every new URL stored in the WIDB

will be assigned the Cnt_W value with 0 (zero), and then incremented by one at every

weekend until the Cnt_W value is equal to 4, the fourth week, that is the maximum value

38

before re-counting in the next month. Furthermore, the active code (URLActCode) to

recognize whether the URL is the active URL is used together with the Cnt_W. The

URLActCode is also evaluated for every weekend as same as the Cnt_W. The

URLActCode consists of four digits initiated with “0000” that represents the four-week

action of the URL; the value of each digit is either “0” or “1”. The value “0” stands for the

inactive URL while the active URL is referred with the value “1”. If the URL is active that

means the URL is requested at least one time during a week, the URLActCode will be

updated with “1” at the nth position, where n is Cnt_W value. Otherwise, the

URLActCode is the original value at the initial state. For example, once new URL is

inserted in the WIDB, the URLActCode of this new URL is assigned as “1000” at the first

weekend. If this new URL still be browsed in the second week, the URLActCode will be

updated with “1” at the 2th position, where 2 is the Cnt_W value; the URLActCode is

identified with “1100”. On the other hand, the URLActCode will be “1000” if there is no

browse of this new URL during the second week.

As a consequence of filtering the access.log data, the frequency and the size of

each retrieved URL are available. Both of the frequency and the size of the web are

accumulating counted week by week; the former is indicated in the AccumFreq field

while the latter is indicated in the AccumSize field. Moreover, the AccumFreq value is

used as the real browse frequency (Freq) whereas the average file size of retrieved web

(Size) can be calculated from the AccumSize value divided by the AccumFreq value.

However, the group code (GroupCode) of the classified URLs is indicated in the WIDB

after the web classification process is performed using the Freq value and the Size

value as indicators.

39

Table 3.3: The WCDB structure.

Column Name Data Type Description

GroupCode varchar The group code

GroupName varchar The group name

GrFreq integer
The average frequency of the browsed webs in each

group (per a week)

StdFreq integer
The standard deviation of frequency of the browsed

webs in each group (per a week)

GrSize integer
The average file size of the browsed webs in each

group (per a week)

StdSize integer
The standard deviation of web size of the browsed

webs in each group (per a week)

UpdateDate date The last time of date that the information is updated

Primary key is GroupCode

Referring to Table 3.3, each group of web patterns is named by the group code

(GroupCode) which is running from “1”, “2”, and so on; so that it depends on the

number of grouping criteria. If the number of the grouping criteria is equal to four, the

group code will be stating at “1” and ending at “4”.

In this research, the WCDB contains the boundary value of the browse

frequency, bvF(i), and the boundary value of the web size, bvS(i), for every group (i) that

will be performed for every weekend. Moreover, all boundary values, bvF(i) and bvS(i),

are applied to the web classification process. The bvF(i) is derived from the average

frequency of the browsed webs (GrFreq) and the standard deviation of frequency of the

browsed webs (StdFreq) of group (i). The bvS(i) is derived from the average file size of

the browsed webs (GrSize) and the standard deviation of web size of the browsed webs

(StdSize) of group (i). When the boundary values contained in this WCDB are updated

with the new values, the value in the UpdateDate field is up to date as the present date.

40

However, all values, GrFreq, GrSize, StdFreq, and StdSize, contained in the WCDB are

derived from the equations shown in Table 3.4.

Table 3.4: Equations used in the WCDB.

Term Equation

The average frequency for group i : GrFreq(i)
∑
∈

∈=

Nm
m

Nm

ir
iGrFreq

)(
)(
∑ m if)(

The average file size for group i : GrSize(i)
∑
∑

∈

∈=

Nm
m

Nm
m

ir

is
iGrSize

)(

)(
)(

The standard deviation of browse frequency

for group i : StdFreq(i))1)((

))()((
)(

2

−

−
=

∑
∑

∈

∈

Nm
m

Nm
m

ir

iGrFreqif
iStdFreq

The standard deviation of file size for group i

: StdSize(i))1)((

))()((
)(

2

−

−
=

∑
∑

∈

∈

Nm
m

Nm
m

ir

iGrSizeis
iStdSize

Notation:

i = the ith of classified group

fm = the browse frequency for Web m

sm = the web size for Web m

rm = the total number of requests for Web m

N = set of all browsed Webs

3.2 Data Analysis : Grouping Mechanism

As the fact that the cache management is the significant issue of all Internet

Service Providers. Therefore, the content-grouping criterion is an important factor to

achieve the performance of Proxy servers. Although the research of [84] had proposed

the group fetching while the research of [12] the record in cache will be evicted based

on LRU policy under each containing group. Thus, this research will consider the

41

combination of these two mechanisms by finding the suitable grouping criterion and

time for group fetching.

3.2.1 Web Directory-based Grouping

Generally, users search their desired information by looking at the default

groups that appeared on the search engine screen, such as entertainment, sports,

computers, books, etc. However, there is no evidence to support that the grouping

technique of the proxy cache is implemented based on this standard knowledge of

human being. The group-based management of file cache was proposed [84] by

grouping the files that have possibility to be accessed together. This method is based

on the predicting model while another grouping technique proposed in [12] used

content of the browsed information as the primary grouping condition. However, this

grouping mechanism is applied only in a small faculty; therefore the content-based

grouping is possible to be managed by the department-IP.

In this research, after considering the data set obtaining from the University

Office of Information Technology of Chula, the concept of Internet Innovation Research

Center Co., Ltd., Thailand, the owner of the Truehits.net had been applied. In the year

2009, this company had classified user requirements into 19 groups, named Thailand

Web Directory at Truehits.net (http://directory.truehits.net/). Since Web directories are

directories where organize Web sites by subject, and is usually maintained by humans

instead of software [85]. Using Web directories, the chance that web pages will be

classified in the wrong categories is low due to viewing and checking the pages by

humans [86].

According to the advantage of Web directory, this research used Thailand web

directory at Truehits.net which are business, computer, internet, shopping, travel,

mobile, real estate, entertainment, news, games, finance, car, sports, government,

health, art, education, person, and adult as presented in Table 3.5, in order to match the

webs to the right groups. However, under each group, there are subgroups that contain

42

more specific information where users can identify their needs when browse. For

example, Table 3.6 – Table 3.7 show the subgroups of the business group and the travel

group, respectively.

Table 3.5: Thailand Web Directory at Truehits.net.

43

Table 3.6: The subgroups of the business group.

44

Table 3.7: The subgroups of the travel group.

In summary, the overview of Thailand Web Directory at Truehits.net is shown in

Table 3.8.

45

Table 3.8: Overview of Thailand Web Directory at Truehits.net.

CategoryCode Category The number of subcategories

01 Business 34

02 Computer 10

03 Internet 20

04 Shopping 24

05 Travel 10

06 Mobile 6

07 Realestate 4

08 Entertainment 13

09 News 10

10 Games 12

11 Finance 12

12 Car 8

13 Sports 18

14 Government 34

15 Health 10

16 Art 10

17 Education 26

18 Person 16

19 Adult 6

Referring to Table 3.9, some examples of the URLs contained in Thailand Web

Directory at Truehits.net are listed according to their groups and subgroups. The group

of each URL is denoted by the GroupCode. The GroupCode consists of four digits; the

first two digits refer to the category code and the last two digits refer to the subcategory

code. The matching method is searching each URL, the host name filtered from the log

record, along with the categories including the subcategories. Therefore, the

46

GroupCode of the URL is assigned when the searching URL can be matched to a web

directory.

For example, the searching URL is “www.dtac.co.th” that is found in the

subgroups, called “ผู้ให้บริการโทรคมนาคม ผู้ จําหนา่ย”, under the business group, then the

group of the searching URL is defined by GroupCode “0120”, where “01” is the

business group code (Table 3.5) and “20” is the subgroup code of “ผู้ให้บริการ

โทรคมนาคม ผู้ จําหน่าย” (Table 3.6).

Table 3.9: Examples of URLs contained in Thailand Web Directory at Truehits.net.

In order to prove the performance of Thailand Web Directory at Truehits.net,

some data sets are used as the data test set; the number of transactions is

2,669,656,230 transactions of 2,911,467 unique URLs. The result of applying these 19

main groups based on the definition of Truehits.net is that there are 62.86% of URLs

(1,830,065 unique URLs) that cannot be identified their group because these URLs are

47

not match to the defined categories. Thus, the defined groups of Truehits.net are not

suitable for URL cache grouping management.

3.2.2 Browsing Behavior-based Grouping

As a consequence of the Web directory-based grouping that had been tested,

all records of access.log are analyzed. Initially, the access.log files collected from

January - June 2009 are used, and then the daily browsing behavior and the weekly

browsing behavior are plotted shown in Figure 3.3 and Figure 3.4, respectively, to

consider the patterns of browsing behavior.

Figure 3.3: The daily browsing behavior.

Figure 3.4: The weekly browsing behavior.

48

Referring to Figure 3.3, the chart shows that the daily browsing behavior has an

obvious browsing pattern. This browsing pattern is the time series with sine wave

pattern. According to this wave pattern, the volume of web browsing is likely to become

lower in the long weekend or vacation time period, such as January or April - May.

However, this volume becomes continuously higher after breaking, especially, in the

study time period, such as February – March or June. Furthermore, the chart also

shows that there is a small number of browsing during the weekend; Saturday - Sunday.

As shown in Figure 3.4, the pattern of the weekly browsing behavior is similar to

the pattern of the daily browsing behavior. For this reason, the browsed webs are tightly

requested in the study period while they are decreasingly requested in the vacation

period.

However, the frequency of each retrieved URL is also determined. Based on the

FP and the LSP mentioned previously, after considering the existing values of the FP,

there are three different groups can be identified. The first group, low frequency or LF,

is the group of URLs that were browsed less than three times per week. This group is

approximately 58% of URLs. Moreover, most of these websites are webs where their

pages obtained from various server locations, such as facebook.com, or live.com. In

addition, webs with frequency only one or two times per week are authorized webs. The

second group, medium frequency or MF, is 17% of total URLs retrieving from 4 to 8

times per week. The last group, high frequency or HF, is 25% of total URLs and it is

retrieved more than 8 times per week.

As a consequence of the LSP-based analysis, the web size can be grouped to

three specific ranges. The fist range, normal size (NS), 69% of all webs, ranges from the

file size between 0 and 4,000 bytes. This NS can be categorized into two sub-ranged

as small size (SS), and medium size (MS). The SS is the group for the browsed files with

sizes less than 1,100 bytes while the MS is the group for the browsed files with sizes

between 1,100 bytes and 4,000 bytes. The second range, large size (LS), over 30% of

all webs, is ranging from the file size between 4,000 bytes and 10 Mbytes. The third

49

range, extra size (ES), almost 1% of all webs, is for all files that have size larger than 10

Mbytes. For last range, the ES range, this rang is independently grouped as another

group due to the sizeable webs though a few webs are browsed. Table 3.10 shows the

grouping criteria for web cache based on the FP and LSP.

Table 3.10: The types of grouping criteria.

Types Grouping Criteria Loading Ratio (%)

Type 1 LF with SS, MF with LS 25.11

Type 2 LF with MS, MF with NS 23.37

Type 3 HF with All of size ranges excepting ES 25.62

Type 4 All of frequency groups with ES 25.89

Referring to Table 3.10, the probability that a retrieved URL will be a member of

a group is approximately equal to 0.25 for every group. These criteria are employed to

setup the proxy caches in the ICFA. Nevertheless, groups of webs are altered when the

patterns of browsed webs have been changed. Consequently, the system configuration

will occur in the classification process. This group classification must be performed in a

fixed schedule, such as one week, or one month, depending on the business objective

and policy of each organization. Details of the ICFA are elaborated in the following

chapter.

50

CHAPTER IV

PROPOSED METHOD

This chapter describes the proposed cache farming architecture model, the

proposed algorithms, and the system workflow. The proposed cache farming

architecture is the cache management model which comprises of the web profile

database system, the proxy manager system, and the specific proxy server system.

The proposed algorithms consist of the update process algorithms, which include the

daily update process algorithm, the weekly update process algorithm, and the monthly

update process algorithm, and the web pattern classification algorithm. For the last

section, this chapter presents the system workflow.

4.1 Proposed architecture: Intelligent Cache Farming Architecture (ICFA)

According to the limitation of proxy caches of ISPs and the existing policy of

cache management, the number of caches must be increased when the number of

users expanded. Consequently, the complexity of cache management occurs. Thus, in

this research, a new architecture, ICFA, has been proposed to eliminate this weakness.

Figure 4.1: The Intelligent Cache Farming Architecture (ICFA).

51

Referring to Figure 4.1, the ICFA consists of different groups of specific proxy

servers (SPS) where the main part is the proxy manager (PM) that cooperates with data

in the web profile database system (WPDB). Each part of ICFA will be described as

follows.

4.1.1 Web Profile Database System (WPDB)

The web profile database system (WPDB) consists of three sub-databases: a

web classification database (WCDB), a web identification database (WIDB), and a log

database (WLDB), as illustrated in Figure 4.1.

These sub-databases are implemented for web classifications when users call

for webs. Among these three databases, the WCDB and the WIDB are used in the web

classification process when retrieving URLs. The WCDB contains both a boundary

value of the browse frequency (bvF) and a boundary value of the web size (bvS). These

data are calculated and used to identify the group whenever a request of the user

arrives at the PM. While the WIDB is a database that stores the information of each web,

for example, the host name of web, the browse frequency, the size of web, etc.

Moreover, the information stored in the WIDB is used with both boundary values stored

in the WCDB to identify the pattern of browsed webs by the automatic classification

module (ACM) in the PM.

Consider the situation that a request is issued from a client. This request will be

recorded into the WLDB; so, the system can be recovered when a failure or an

unexpected event arises. Additionally, the records in the WLDB are not obtained from

only the retrieved command from the ACM, but also the retrieved commands recorded

in the local log database of each SPS, or caches. The transferring of data from all local

log databases from each SPS is the offline mode and performed before the RAM starts

its evaluation only.

Nevertheless, all data of the WPDB system are necessary for the PM processes

that are described as the following section.

52

4.1.2 Proxy Manager (PM)

The proxy manager (PM) is an assigned proxy server in the cache farm,

responsible in classifying webs into groups of webs depending on browsing patterns

mentioned previously. However, this system consists of six modules: Record Analyzer

Module (RAM), Automatic Classification Module (ACM), Gateway-like module (GM),

Internet Communication Module (ICM), Squid Cache Module (SCM), and WPDB

Communication Module (WPDB CM). One significant function of this system is the

adaptation of the recommending mechanism in the transaction identification when the

transaction is indefinable in the normal classification process. Figure 4.2 demonstrates

the PM’s architecture to perform all tasks. All details of these modules are elaborated

below.

Figure 4.2: The Proxy Manager’s Architecture.

53

4.1.2.1 Record Analyzer Module

The RAM is the only module that works individually for pattern classification.

This module deals with all URLs stored in the WLDB. The outcomes of RAM computing

are new values of browse frequencies and web sizes that must be updated to the WIDB

every end of the day. These values are used to justify all unknown webs received from

the ACM. Moreover, the re-analyzing of all boundary values, bvF(i) and bvS(i), for every

group (i) will be performed for every weekend because webs are always inserted,

updated, and deleted every second. These new values will overwrite the previous

values in the WCDB.

However, these new boundaries may not be suitable since the number of webs

in the existing groups under the new defined indexes might break the load balancing

policy of the network. Thus, webs with their frequencies and sizes that are closed to the

upper or lower bounds of their neighbors are changed to their neighbors until the

number of webs in each group is significantly equivalent. Then, the new boundary

values, bvF(i) and bvS(i), for every group (i) will be recalculated and stored in the WCDB.

As a result of RAM process, the size of available caches for each group when passing

the process of the ACM may change to obtain high performance and maintain the load

balance of each group properly when use.

4.1.2.2 Automatic Classification Module

After all boundaries are calculated by the RAM, the ACM will use them for web

grouping. As mentioned in the RAM section, the pattern analysis of web browsing will

be performed every weekend. Thus, the process of the ACM will automatically run every

weekend as same as the RAM. The group categorization of the ACM is performed

based on the most popularity system, called the recommender system. Since this

system has two different approaches for recommending users, the content-based (CB)

approach and the collaborative-filtering (CF) approach [87-88], so the ACM integrates

both of them to gain highest efficiency in the web categorization process.

54

Based on the calculation values obtained from the RAM process, the CF and CB

are applied to identify webs into their suitable groups. Since there are various methods

of the CF classification process, the user-based collaborative filtering technique [88], is

applied to identify webs in the WIDB. By applying this technique, the webs that have

similar pattern share the same proxy cache. For example, if the web X and Y have

similar web patterns then the web X can be classified into Group I, and the web Y can

be classified into Group I.

Although the real content of each web is unidentified, thus, in this research, the

browsing frequency is used as the indicator for users’ preference based on the CF rule.

Moreover, the file size is used as the web’s characteristic based on the CB concept.

The algorithm of the ACM is described in Section 4.2.

4.1.2.3 Gateway-like Module

The gateway-like module (GM) is responsible for classifying all arrived

transactions from the Internet; so, they will be sent to the suitable proxy servers. The

situation of a transaction can be either classifiable or unclassifiable. If the requested

transaction is classifiable, then, the request will be sent via the ICM to the classified SPS

that links to the PM system, as shown in Figure 1. Otherwise, the request will be sent to

the SCM to retrieve the required information. The GM can classify the request using

information in the read only mode of the WIDB.

4.1.2.4 Internet Communication Module

The Internet Communication Module (ICM) is responsible for sending a message

from the PM to the SPSs according to the classification result of the ACM. The

connection between this module and the SPS is the connection-oriented using TCP/IP to

guarantee the delivery of data. Moreover, the format of the sending message is the

same format of the packet received from the GM. The communication type of the ICM to

any SPSs is the simplex method because every SPS will return the requested page to

users directly.

55

4.1.2.5 Squid Cache Module

The Squid Cache module (SCM) is a cache module in the PM. The responsibility

of this module is to serve all unidentified webs. Therefore, the load of this module

depends on the existing of number of undefined URLs.

4.1.2.6 WPDB Communication Module

Every process of the PM must use data from the WPDB system. This system

consists of three sub-databases: WLDB, WIDB, and WCDB. Therefore, the WPDB

communication module (WPDB CM) is responsible for creating a connection to the

WPDB system to retrieve the required data. The connection performed by this module is

the connection-oriented using TCP/IP to prevent occurring of the network congestion

and adding of the maintenance costs due to the transmission loss.

4.1.3 Specific Proxy Servers

The specific proxy server (SPS) is a group of caches defined based on contents

in the WIDB. Since there are many types of defined boundaries in the WCDB that

related to webs in the WIDB, therefore, there are many installed SPSs in the PM. The

rule to install a cache or SPS is that a cache can serve more than one group of web

patterns, but not vice versa.

However, the size of each SPS is relied on the weekly calculation of the RAM.

As a consequence, the size of each SPS is said to be dynamic to maintain the

performance of each server which affects to the performance of the entire system.

Nevertheless, after the SPS sends all records in its local log database to the WLDB, the

SPS will reset its log database and start recording new uses for the next evaluation time.

4.2 Proposed algorithms

In this section, the algorithms for information update process and the algorithm

for web classification are presented. The algorithms for information update process are

56

performed in the RAM while the algorithm for web classification is functioned in the

ACM.

Table 4.1: Parameters used in algorithms.

Based on the WIDB structure in Table 3.2 and the WCDB structure in Table 3.3,

some information contained in both two databases are used as parameters in this

section. Table 4.1 shows the parameters used in all proposed algorithms. The detailed

algorithms are formally given as follows:

4.2.1 Algorithms for Information Update Process

Since webs are always updated their contents to support a variety of

requirements of the Internet users, all information relating to characteristics of those

57

webs need to be updated. In this research, the RAM performs this update process of

the information stored in both the WIDB and the WCDB. As mentioned previously, there

are three sub-process algorithms: the daily update process algorithm (DUPA), the

weekly update process algorithm (WUPA), and the monthly update process algorithm

(MUPA). The next section elaborates all algorithms of the RAM.

4.2.1.1 Daily Update Process Algorithm (DUPA)

Referring to Figure 4.3, a function of the DUPA is to read records in the WLDB,

and then to update the frequency and the size of each retrieved URL, and finally to

indicate both of new values into the WIDB for every end of the day. As a fact that there

are several new URLs found when the log data is performed, thus, each new URL will be

inserted into the WIDB with its size and frequency assigned to be 1 for the first existing

time in the database. On the other hand, the existing URLs will be updated their

frequency incremented by one for every time when the URL is found. Not only the

frequency of existing URL is increased but also the size of this URL will be accumulated

counted.

Daily Update Process Algorithm (DUPA):

/* Updating accumFreq and accumSize in the WIDB */

1. FOR every url stored in the WLDB DO
2. IF (the url is found in the WIDB) THEN
3. accumFreq = accumFreq + 1;
4. accumSize = accumSize + size of url;
5. ELSE inserting the url into the WIDB with accumFreq = 1 and accumSize = size of url;
6. END IF
7. END FOR

Figure 4.3: Daily Update Process Algorithm (DUPA).

58

4.2.1.2 Weekly Update Process Algorithm (WUPA)

Referring to Figure 4.4, the WUPA is responsible for updating some information

stored in the WIDB and the WCDB, respectively, for every end of the week. In the

beginning of the process, the WUPA calculates the browse frequency (fm) and the web

size (sm) of every URL to indicate in the WIDB. These two values are used in the ACM

process after finishing the RAM process. Then, the adjustments of the cnt_W and the

url_ActCode are performed; the cnt_W is incremented by one, and the url_ActCode is

revised if the retrieved URL is the active URL. After this state, the accumFreq and the

accumSize can be cleared and the updateDate is set to the present date. The next

process of the WUPA is re-calculating of all boundary values, bvF(i) and bvS(i), for every

group (i) that are contained in the WCDB.

Figure 4.4: Weekly Update Process Algorithm (WUPA).

59

4.2.1.3 Monthly Update Process Algorithm (MUPA)

There are several reasons that affect to the use of webs. These reasons are

such as changing of user’s requirements, developing of most webs, etc. Consequently,

some webs stored once in the database are never used. However, data overloading in

the database system are concerned in order to manage and maintain all data.

Therefore, the MPUA is introduced to control this situation; this process is performed

every end of the month. As illustrated in Figure 4.5, after the first week if the classified

web stored in the WIDB is inactive for the last three consecutive weeks; url_ActCode =

“1000” and cnt_W = 4, it will be removed from the WIDB.

Monthly Update Process Algorithm (MUPA):

/* Removing the inactive urls from the WIDB */

1. FOR every url where url_ActCode = “1000” and cnt_W = 4 DO
2. removing url ;
3. cnt_W = 0;
4. END FOR

Figure 4.5: Monthly Update Process Algorithm (MUPA).

4.2.2 Algorithm for Web Classification: Web Pattern Classification Algorithm (WPCA)

After the WUPA of the RAM is completed, the outcomes of the WUPA, fm, sm,

bvF(i), and bvS(i), are used for web grouping in the WPCA. The WPCA is called by the

ACM and performed every weekend. The WPCA process is classifying the webs to the

right group or SPS. Figure 4.6 shows the classification of the requested web that is sent

to the corresponding group or the SPS using two boundary values, the bvF and the bvS,

as indicators.

Let m be the set of different requested webs, named {w1, w2,…,wm}; each wm has

the browse frequency denoted by fm , and the web size denoted by sm.

60

 Figure 4.6: The Web Classification Mechanism of the WPCA using the boundary values.

Referring to Figure 4.3, each group has the bvF and the bvS which the bvF of

group (i) denoted by bvF(i), and the bvS of group (i) denoted by bvS(i), where i is the ith of

classified group. Then, the bvF(i) and the bvS(i) are defined as Equation (1) and

Equation (2), respectively.

Given ℜ∈)(),(),(),(iSiSiFiF ulul , and)()(iFiF ul < and . Let)()(iSiS ul <

)() istdF()(iavgiF Fl −= and)(istdF)(iF)(avgiFu += , where is the

average of the browse frequency of group (i) and

ℜ∈)(iavgF

ℜ∈)(istdF

)(iSl

 is the standard deviation

of the browse frequency of group (i). In addition,)()(istdi SS −avg= and

)() istdS()(iavgiS Su += , where ℜ∈)(iavgS

ℜ

 is the average of the web size of group (i)

and is the standard deviation of the web size of group (i). Then, ∈)(istdS

[] { })()(|)(),()(iFxiFxiFiFibv ululF ≤≤== (1)

[] { })()(|)(),()(iSyiSyiSiSibv ululS ≤≤== (2)

Since , and ℜ∈mm sf ,)(ibvf Fm ∈ ↔)()(iFfiF uml ≤≤ and)(ibvs Sm ∈ ↔

. Thus, if)(iSu)(siS ml ≤≤)(ibvFfm ∈ and)(ibvSms ∈ , then the wm is classified to

that group (i). However, the data management and maintenance are recognized to

61

handle data overloading in the database. For this reason, if the classified wm is inactive

for a certain period of time, within one month, it will be removed from the database. The

detailed WPCA is formally given as shown in Figure 4.4.

Referring to Figure 4.7, the ACM with the WPCA will handle the unidentified URL.

Since the values in WIDB contain the real fm and sm during a week, every fm and sm of

each web will be compared with bvF(i) and bvS(i) in the WCDB for grouping. Therefore,

there are two possible situations of this comparison. The first situation is the normal

situation where webs satisfy the condition of group (i) in the WCDB, fm∈bvF(i) and

sm∈bvS(i), then, those webs are classified as webs of group (i). The second situation

occurs when there is no suitable condition in the WCDB for webs in the WIDB, either

fm∉bvF(i) or sm∉bvS(i), or neither of them. So, these webs will be identified to the group

with highest avgF under the assumption that the more popular request, the more chance

to meet requirement. However, since the execution of the WPCA may require scanning

of all URLs in the database at every classification decision, the time complexity of the

algorithm would incur O(n) where n is the number of URLs in the database.

Web Pattern Classification Algorithm (WPCA):

/* the fm and the sm of url are stored in the WIDB

the bvF(i) and the bvS(i) are contained in the WCDB */

INPUT: urls stored in the WIDB;

1. BEGIN
2. FOR every url DO
3. IF (fm bvF(i) and sm bvS(i)) THEN
4. classify url to a corresponding SPS of group (i);
5. ELSE automatically classify url to a SPS of group (i) that has the highest avgF(i);
6. END IF
7. END FOR
8. END

OUTPUT: The group (i);

Figure 4.7: The Web Pattern Classification Algorithm (WPCA).

62

4.3 System workflow

Referring to Figure 4.8, the system workflow is presented. The proxy manager

(PM) receives a user request, then classifies the web into a group of web patterns, and

finally pushes the user request to a corresponding specific proxy server (SPS) or the

Squid cache module (SCM) inside the PM. The classified web is sent to the SPS while

the unclassified web is pushed to the SCM to retrieve the required information. After

that the assigned SPS or the SCM handles the user request. It searches the web object

on its cache and returns the object to the user. If it is not available, the SPS or the SCM

will fetch the web object from the object’s Web server, then not only return that object to

the user, but also keep the object in its cache.

63

Start

User requests a web
document

Finish

The PM receives the
requested web

Send the web object
to Squid cache

module

The SPS finds the
web object in its

cache

Fetch the web object from the
object’s web server

Return the requested
web to the user

Found

Keep the web object in the
SPS’s cache

Send the web object
to the corresponding

SPS

NoYes

Browser

Proxy Manager
(PM)

Specific Proxy Server
(SPS)

No Identified

Yes

Figure 4.8: System workflow.

CHAPTER V

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In order to evaluate and compare the caching performance of the proposed

ICFA to the traditional caching architecture (TCA), which is the original model without

grouping criteria for the web cache, the trace-driven simulation is performed by

implementing both models in a virtual machine environment. The simulation results to

demonstrate the performance of the proposed architecture are described as follow.

5.1 Implementation

The implementation for the simulation environment system is performed on HP 2

Quad Cores with XEON Processors and 16 GB main memory running Ubuntu 10.04

Desktop. Moreover, several softwares are installed on this environment system. The

database management system employs MySQL Server version 5.1, and the

phpMyAdmin running on Apache2 Web server is used to deal with MySQL Server.

However, all mechanisms maintaining the database system, algorithms, and all

functions of system are developed using Java (openjdk-6-jre-headless openjdk-6-jdk).

Since Squid is a high-performance proxy caching server for web clients and widely

used in academic organization [24]; this simulation system is implemented by Squid 2.7

STABLE7.

Based on the default replacement strategies in Squid 2.7 software, four cache

replacement policies [89] are applied to assess the efficiency of both the proposed

ICFA and the original TCA models. The first policy is lru, Squid's original list based

Least Recently Used (LRU). The LRU policy keeps recently referenced documents but

evicts the least recently accessed documents. The second policy is heap GDSF

(Greedy-Dual Size Frequency). The GDSF policy is a variant of the Greedy Dual-Size

policy taking into account frequency of reference. This policy optimizes document hit

rate by remaining smaller popular documents in cache, so it has a better chance to get

the hit.

65

The last two policies which are heap LFUDA (Least Frequently Used with

Dynamic Aging), and heap LRU. These are the third and the fourth policy, respectively.

The LFUDA policy is a variant of the LFU using a dynamic aging policy to accommodate

shifts in the set of popular documents. The LFUDA maintains popular documents in the

cache regardless of their sizes; and, thus, it optimizes byte hit rate at the expense of hit

rate since one large, popular document will prevent many smaller, slightly less popular

documents from being cached. The last policy, the heap LRU, is LRU policy

implemented using a heap.

Table 5.1: Performance metrics used in cache replacement policies.

Performance Metric Definition

Hit Ratio (HR)
∑
∑

∈

∈=

Nm
m

Nm
m

r

h
HR

Byte Hit Ratio (BHR)
∑
∑

∈

∈

⋅

⋅
=

Nm
mm

Nm
mm

rs

hs
BHR

Average Byte (Avg.Byte)
N

s
ByteAvg Nm

m∑
∈=.

Average Response Time of

Hit (Avg.RTH) ∑
∑

∈

∈

⋅

⋅
=

Nm
mm

m
Nm

m

rrt

hrt
RTHAvg.

Average Response Time

(Avg.RT) N

rt
RTAvg Nm

m∑
∈=.

Notations:

rm = the total number of requests for document m

hm = the total number of hits for document m

sm = the size of document m

rtm = the response time for document m

N = the set of all browsed documents

N = the size of N

66

However, performance metrics are used to evaluate a cache replacement

policy. Classical performance metrics [59], [90] which are Hit Rate (HR), Byte Hit Rate

(BHR), Average Byte (Avg.Byte), Average Response Time of Hit (Avg.RTH), and

Average Response Time (Avg.RT), are measured in the experiments. Their definitions

are shown in Table 5.1. The HR is defined as the percentage of requests that can be

satisfied by the cache. The BHR is the number of bytes satisfied from the cache as a

fraction of the total bytes requested by clients. The Avg.Byte is the average number of

bytes requested by clients. The Avg.RT is the average number of the response time or

an amount of time that a server starts to process a request and stops after it has

received the return. Finally, the Avg.RTH is the average number of response time that

causes a hit in the cache.

5.2 Simulation model

Based on the defined groups in Section 3.2.2, the WCDB contains four pairs of

boundaries according to four groups of webs in the WIDB. Thus, there are four SPSs in

the simulation system and one SCM inside the PM for undefined webs. Figure 5.1

shows the simulation system environment for the ICFA.

Figure 5.1: The simulation system environment for the proposed ICFA.

67

As mentioned in Section 3.1.2, the access.log data is not only retrieved from

Chula, but also obtained from NPRU. The Chula’s log data is used as the samples of

retrieval behavior to identify types of browsing characteristics while the NPRU’s log data

is used as the experimental data after the types of grouping criteria are defined. In

order to prove the proposed architecture, the simulation with parameters shown in Table

5.2 is performed on the environments of two models: the ICFA and the TCA.

Table 5.2: Simulation parameters.

Parameters Values

Number of days for experiment data 60 days (October-November 2010)

Total transactions for experiment data approximately 57 million records

Cache size for each server 256 MB

Cache replacement policies lru, heap LRU, heap LFUDA, GDSF

5.3 Simulation results

This section presents the comparisons of caching efficiency between the

proposed ICFA and the TCA model. The simulation results are stated in three

experiments as follows:

Experiment 1: The objective of the first experiment is to show that the

implementation of the ICFA applying the WPCA algorithm improves the caching

performance comparing to the implementation of the TCA in different replacement

policies.

Experiment 2: The second experiment is to investigate which cache replacement

policy is suitable for the proposed ICFA and the TCA measured by the HR, the BHR,

and the Avg.RT.

Experiment 3: The third experiment shows the effectiveness of the ICFA which

can enhance the performance of caching when the number of users (requests) is

68

higher. Additionally, daily caching performance of the ICFA comparing to the TCA is

demonstrated.

5.3.1 Experiment 1: The cache effect of different replacement policies for the

comparison between the ICFA and the TCA

As shown in Figure 5.2, the ICFA yields significantly better performance,

compared to the TCA in every cache replacement polices. In addition, the results also

present that the LRU used by the ICFA is better than other three algorithms, the heap

LRU, the heap LFUDA, and the heap GDSF. For this reason, the HR and the Avg.RT of

the ICFA are enhanced approximately 30% while the BHR increases more than 52%.

69

Figure 5.2: Comparisons of caching performance between the ICFA and the TCA in

different metrics; (a) Hit Rate, (b) Byte Hit Rate, and (c) Average Response Time.

5.3.2 Experiment 2: The cache effect of different replacement policies measured by

various performance metrics for the ICFA and the TCA

Generally, the cache replacement algorithm is automatically implemented in the

cache box of proxy server. As mentioned previously, there are four replacement

algorithms listed in Squid software, thus, one of these algorithms will be selected to set

up the policy for cache management. For this reason, the cache performances

investigated by the HR, the BHR, and the Avg.RT for different cache replacement

policies are observed in the ICFA and the TCA.

70

Figure 5.3: Comparisons among cache replacement policies measured by Hit Rate,

Byte Hit Rate and Average Response Time in models; (a) the ICFA, and (b) the TCA.

Referring to Figure 5.3 (a), the experimental results show that the LRU

outperforms other three policies assessed by the HR (45.88%) and the BHR (55.45%)

while the heap GDSF achieves the Avg.RT of 1,019.60 milliseconds. On the other hand,

the results of the TCA illustrated in Figure 5.3 (b) show that the heap LRU performs

better than the others; this result is confirmed by the highest HR (37.28%) and the

highest BHR (39.74%). Additionally, the Avg.RT of 1,161.08 milliseconds is

accomplished by the heap LFUDA.

Since some metrics are not achieved at the same time, a policy performs very

well in terms of one performance metric but poorly in terms of the others [62]. As the

results, the LRU can be selected as the suitable policy for the ICFA while the heap LRU

can be selected to perform in the TCA due to the achievement of two-three of all

measured metrics.

After considering the results of Experiment 2, however, one interesting of these

results is that both of the ICFA and the TCA models obtain the similar results of the HR

and the BHR for the heap LFUDA. That is the heap LFUDA shows the worst results for

both metrics.

71

5.3.3 Experiment 3: The cache effect of increasing requests

In this experiment, the performance metrics for increasing requests or browses

are observed. All performance results including the caching performance overviews,

the caching performance of each cache in the ICFA, and finally daily caching

performance for the comparison between the ICFA and the TCA are shown in the

following sections.

5.3.3.1 Caching performance overviews

Since the Internet users’ satisfaction is an important issue for the Internet

services, every organization providing the services needs to recognize this importance.

The QoS must be maintained, even though the services requested from the users

increase.

In order to quantify the caching performance of the ICFA and the TCA, the

experimental data is divided into two different data sets: the first data set (smaller data

set) and the second data set (larger one). The first data set is the NPRU’s log data

collected in October 2010; they are approximately 18 million records. The second data

set is the NPRU’s log data collected in November 2010; they are approximately 39

million records. Then, both of data sets are performed sequentially in this experiment.

However, the cache replacement policy needs to be the same for both the ICFA

and the TCA for testing. As a testing consequence in Experiment 2, each cache of the

ICFA and the TCA for this experiment employs the Least Recently Used (LRU) algorithm

as their cache replacement policy; so, the similarity in individual cache management

can be directly compared without bias or any external influencers.

72

73

Figure 5.4: Caching performance overviews.

Referring to Figure 5.4 (a), this figure shows the ICFA’s caching performance in

different amount of requests. The results show that all performance metrics, the HR, the

BHR, and the Avg.RT, are obviously improved when the amount of the requests

increases. The HR increases more than 9% while the BHR significantly increases, that is

approximately 28%. The last metric, the Avg.RT, decreases almost 3%. In contrast, the

TCA’s caching performance is poor in all terms of metrics when the amount of requests

increases as shown in Figure 5.4 (b). The HR and the BHR reduce more than 10% and

approximately 1%, respectively, and especially the Avg.RT increase almost 46%.

As illustrated in Figure 5.4 (c), considering all data sets to the comparison

between the ICFA and the TCA, the results show that the ICFA performs significantly

better than the TCA in every metrics. The HR and the BHR increase more than 20% and

43%, respectively. As for the other two metrics, the Avg.RT reduces approximately 15%

and the Avg.RTH extremely reduces to 44%. Moreover, in order to verify the presented

simulation results, the statistical data analysis of the HR, the BHR, the Avg.RTH, and the

Avg.RT is performed using SPSS statistic software.

74

Since the t-test algorithm is the procedure comparing the means of two groups

or (one-sample) compares the means of a group with a constant, the t-test algorithm is

used to determine the difference of obtained performance results between the ICFA and

the TCA using Paired-Samples t-test technique [91]. The tested data is the results of

performance metrics in each day of both models; they are 60 records of data. At 95% of

confidence level, the alternative hypothesis of this testing is that the means of the

performance metric for two models are significantly different while the null hypothesis is

that the means of the performance metric for two models are significantly equal. Table

5.3 shows the results of statistical data analysis using Paired-Samples t-test technique.

Table 5.3: Results of the Paired Samples Test.

(a) Paired Samples Test for HR.

(b) Paired Samples Test for BHR.

(c) Paired Samples Test for RT.

75

(d) Paired Samples Test for RTH.

Considering the Probability Value (p-value) shown in Table 5.3, the p-values in

every performance metric is less than 0.05 that are 0.000 for the HR, the BHR, and the

RTH, and 0.001 for the RT. By convention, if the p-value is less than 0.05 (95% of

confidence level), the null hypothesis is rejected. Thus, there is a statistically significant

difference in the performance metrics between the ICFA and the TCA at a 95% of

confidence level.

5.3.3.2 Caching performance of the caches in the ICFA

This section demonstrates the measured performance of each cache in the

ICFA. Based on the different types defined in Table 3.10, Type 1 is assigned to Group 1

in Figure 5.5 (a), Type 2 is assigned to Group 2 in Figure 5.5 (b), and so on. In addition,

the SCM in the PM is assigned to Group Main in Figure 5.5 (e). Figure 5.5 displays the

daily hit/miss rates of caches in the ICFA.

76

77

Figure 5.5: Daily Hit/Miss Rate of each cache in the ICFA; (a) Group 1, (b) Group 2, (c)

Group 3, (d) Group 4, and (e) Group Main.

As shown in Figure 5.5, it comes out that the average hit rate of Group 1 to

Group 4 is approximately 50% while the average hit rate of Group Main is only 21.22%

which is a half of the average hit ratio of the four groups. From the first 30 days (the first

data set) depicted in Figure 5.5 (a) - (d), the contents in Group 1 and Group 4 are hardly

changed and easily to be found since Group 1 and Group 4 contain mostly static webs

whereas Group 2 and Group 3 are mostly dynamic webs. Consequently, the hit rates of

Group 1 and Group 4 are higher than the hit rates of Group 2 and Group 3.

Focussing on the last 30 days (the second data set) shown in Figure 5.5 (a) –

(d), all active URL will be updated their groups according to their patterns. Thus, the

new result of web classification shows that some URLs belonging to Group 1 and Group

2 might be changed their groups to Group 3 as well as some URLs of Group 3 that are

mostly dynamic webs might be classified to Group 1 and Group 2. Thus, the hit rate of

Group 3 increases whereas the hit rates of Group 1 and Group 2 decrease.

As for Group Main, it contains various data due to serving the unclassified webs.

However, after a re-classifying process, these unclassified webs are identified to their

group. Thus, the hit rate of this group will decrease as shown in Figure 5.5 (e).

78

5.3.3.3 Daily caching performance

Figure 5.6 - Figure 5.9 provide a daily plot of the performance of the ICFA

compared to the TCA.

Figure 5.6: Daily comparison of caching performance between the ICFA and the TCA

measured by Hit Rate and Miss Rate.

Referring to Figure 5.6, at the beginning of the measurement process, the hit

rate of the ICFA (blue line) is a bit higher than the TCA (green line). Nevertheless, the

variety of webs in each cache is small when starting the ICFA but all requested webs,

based on the defined patterns, will be daily accumulated to the system until most of the

requests are available in the prospered cache. Thus, the number of hits based on the

ICFA has potential to be much better. However, if retrieved URLs have no pattern as

expected, the daily hit rates of both the ICFA and the TCA will be dropped.

79

Figure 5.7: Daily comparison of caching performance between the ICFA and the TCA

measured by Byte Hit Rate and Byte Miss Rate.

Since the hit rate is increased under the system of the ICFA, the simulation also

illustrates that the number of byte hits is increased, as shown in Figure 5.7. It results

from the grouping mechanism of cache because webs with the similar characteristics

are stored and manipulated in the same area. Thus, the possibility of the required web

is found in the managed caches of the ICFA is higher than storing different groups of

webs in the same area as the TCA. As a result, the byte hit rate of the TCA (green line)

is lower than the byte hit rate of the ICFA (blue line) while the byte miss rate of the TCA

(purple line) is higher than the byte miss rate of the ICFA (red line).

80

Figure 5.8: Daily comparison of caching performance between the ICFA and the TCA

measured by Average Response Time of Hit.

Figure 5.9: Daily comparison of caching performance between the ICFA and the TCA

measured by Average Response Time of Miss.

81

Since the requested web in the caches of the ICFA is faster than in the TCA; the

response time to obtain the required information is shorter than the TCA system (see

Figure 5.8). Consequently, the users in the ICFA are faster served than the users in the

TCA. Thus, the user latency is reduced. On the contrary, as can be seen in Figure 5.9,

the retrieving information from the external sources of the ICFA architecture is larger

than the retrieval time of the TCA. This is the result from losing the overhead to search

the non-existing content in each cache.

The test results confirm that the cache management policy of the ICFA is very

efficient and the QoS can be maintained even though the number of transactions

continuously increases. This is the outcome from categorizing and grouping webs

based on the available retrieval pattern; then, these classified webs are stored in the

individual cache based on the defined groups.

82

CHAPTER VI

DISCUSSION AND CONCLUSION

6.1 Discussion

Since the number of Internet users is continuously increase, the issue of quality

of service (QoS) is an important concern of users. Every Internet Service Provider (ISP)

generally groups their customers based on their applications or organizational profiles.

However, this criterion does not fit well for cache management to serve users when the

size of users is expanded. Therefore, various cache management mechanisms are

implemented to maintain retrieval process of users over the Internet environment.

In this research, it has shown that the proposed architecture, ICFA, is easy to

manage and reduce the retrieval time comparing with the traditional cache systems that

arrange the caches in the distributed model or the hierarchical model. The distributed

web proxy caching [9], [52], [92] employ sophisticated caching and searching schemes

to distribute and search the cached web documents. Using sophisticated caching

scheme increases the complexity of proxy’s management, while the proposed ICFA is

designed as one layer of distributed architecture with one management scheme, the

PM. Therefore, the complexity of the ICFA is less than the existing distributed web proxy

caching.

Considering the hierarchical caching architecture [39], [93], this architecture

needs intermediate caches with the high-quality algorithms to avoid vastly loading in the

caches that will result in high retrieval time. However, this concept does not support

economical issue when the number of usages increases. Therefore, the ICFA has many

advantages than the hierarchical system because of the function of recommending

system. According to efficiency of the recommending function, the increasing number

of users will not affect to the retrieval time. Thus, there is no obligatory to expand size of

available caches of ICFA although the number of users is increasing. Furthermore,

there is no change in the retrieval time under such situation. Referring to the efficiency

83

of the recommender system, users can save time to obtain their required files from the

file repository or database. Therefore, applying the concepts of recommender system

for classifying webs will also decrease the retrieval time from the cache farm without

effects from the implemented cache replacement algorithm.

However, an interesting issue of choosing a replacement policy to implement in

the system is a challenging task. This is because the policy that performs best in all

environments is impossible due to various workload characteristics. One workload may

make the policy performs well, and another make it performs less well. Moreover, the

measurement of caching performance is important as well, thus, the hit rate and the byte

hit rate are often used to perform this task. Nevertheless, other factors need to be

considered for maintaining the service performance, such as implementation issue,

cache size, processing power requirement, memory consumption, and where the cache

server is installed [60].

According to the results of Experiment 2 presented previously, the best cache

replacement algorithm for the simulation models is the LRU confirmed by the HR and the

BHR. Based on the design rationale of the LRU, one of replacement policies in the

recency-based category, the recently referenced documents will be referenced again in

the near future. Since this research focuses on studying in the academic areas which

have the obvious objective of Internet usage, most users are interested in the same or

similar web documents at about the same time. So, a recently accessed web requested

by one user is likely to be accessed again from other users in the near future.

Consequently, this situation corresponds to the rationale of the LRU; so that the LRU is

the suitable policy for the proposed ICFA environment.

Furthermore, the proposed architecture arranges the number of caches based

on the number of web patterns and also the ratio of these existing groups while most of

the cache architecture do not consider in the existing usage ratio among usage

contents [38-39], [52], [94]. Thus, the adaptation of cache sizes will perform only within

the available caches in the farm, based on the result from RAM. Unlike the proposed

84

ICFA technique, the existing cache farm will be re-implemented or add more cache size

for every increasing number of users. Therefore, the proposed technique can save the

maintenance cost in buying new hardware and time to install new cache into the legacy

system.

6.2 Conclusion

Currently, the Internet becomes an important resource for people around the

world since it contains various interesting contents that mostly are presented as web

pages controlled by web servers. However, retrieving information from any webs within

the ISPs or organizations required proxy and cache management system to filter

suitable information flow in and out the organization networks. Thus, accessing

performance must depend on the cache management mechanism of the proxy server

and the cache farm.

One major problem of the ISPs is the unlimited increasing size of their customers

where this can affect to the performance of the entire service system when cache

management mechanism cannot serve all requests as suitable as it should. Various

transactions must be delivered out to the Internet to retrieve information from the original

source where some can find contents in the cache area. Thus, the response time for

users will not be fast as expected, or sometimes, the transaction has gone down

according to the congestion traffic of the Internet. So, the QoS of ISP can be dropped

according to users’ disappointments. Many cache management techniques were

proposed to solve the problems stated above. Even though there are various

techniques have been proposed and installed to increase the service quality, none of

them can maintain the service quality as expected when the number of transactions

expands.

This research proposed a new architecture for cache management, called

Intelligent Cache Farming Architecture (ICFA). The proposed ICFA integrates the

concepts of the recommender system, using frequencies and browsed file sizes, to

85

maintain the quality of service (QoS) that is the response time for the Internet usages.

The components of the BBCMM are the WPDB, the PM, and the SPSs; within the PM,

there is an important module, called as the ACM. This module is responsible for

classifying all retrieved webs.

The experiment has demonstrated that under the systematic organization with

clear objective of browses, most of the important metrics have been changed positively

although the number of transactions increases neither adding nor adjusting new

hardware, including the change in the cache management policy. Therefore, this ICFA

can be an eco-proxy system that provides high serving performance for any

organizations.

86

References

[1] Wooster, R.P., and Abrams, M. Proxy Caching that Estimates Page Load

Delays. Computer Networks and ISDN Systems. 29, 8-13 (1997): 977-986.

[2] Mardesich, J. The Web is no shopper's paradise. Fortune. (1999): 188-198.

[3] O’Neil, E. J., O’Neil, P. E., and Weikum, G. The LRU-k page replacement algorithm

for database disk buffering. ACM SIGMOD Record. 22, 2 (1993): 297-306.

[4] Williams, S., Abrams, M., Standridge, C. R., Abdulla, G., and Fox, E. A. Removal

Policies in Network Caches for World-Wide Web Documents. Proceedings of

ACM SIGCOMM. (1996): 293-305.

[5] Cao, P., and Irani, S. Cost-aware WWW Proxy Caching Algorithms. Proceedings

on USENIX Symposium on Internet Technologies and Systems. (1997): 193-206.

[6] Jin, S., and Bestavros, A. Greedy-dual* Web Caching Algorithm: Exploiting the

Two Sources of Temporal Locality in Web Request Streams. Computer

Communications. 22 (2000): 174-183.

[7] Haverkort, B. R., Khayari, R. E. A., and Sadre, R. A Class-based least-recently

used caching algorithm for world-wide web proxies. Lecture Notes in Computer

Science [Online]. 2794 (2003): 273–290. Available from:

http://www.springerlink.com/content/7khpur60hn9q2npp/[2003, September 18].

[8] Chankhunthod, A., Danzig, P.B., Neerdaels, C., Schwartz, M.F., and Worrell, K.J. A

Hierarchical Internet Object Cache. Proceedings of the 1996 Annual Conference

on USENIX Annual Technical Conference. (1996): 153-164.

[9] Tewari, R., Dahlin, M., Vin, H.M., and Kay, J.S. Beyond hierarchies: Design

considerations for disturbed caching on the Internet. Proceedings of the 19th

87

IEEE International Conference on Distributed Computing Systems ICDCS ’99.

(1999).

[10] Rodriguez, P., Spanner, C., and Biersack, E.W. Analysis of Web caching

architectures: hierarchical and distributed caching. IEEE/ACM Transactions on

Networking (TON). 9, 4 (2001): 404-418.

[11] Oneis, M.S.E., Barada, H., and Zemerly, M.J. Towards An Efficient Web Caching

Hybrid Architecture. Proceedings of the 4th International Conference On

Information Technology (ICIT 2009). (2009).

[12] Bhattarakosol, P., and Ngamaramvaranggul, V. An Internet web management

policy for government organization. Proceedings of the 18th APAN Conference,

Network Research Workshop. (2004): 249-255.

[13] Bhattarakosol, P., and Srisujjalertwaja, W. Customer-oriented policy for proxy

management system. Proceedings of International Computer Symposium.

(2004): 1168-1173.

[14] Hiranpongsin, S., and Bhattarakosol, P. Intelligent Caching Algorithm for Web

Cache Farming System. Proceedings of 2009 International Conference on

Wireless Information Networks & Business Information System WINBIS ’09.

(2009).

[15] Khayari, R.E.A., Best, M., and Lehmann, A. Impact of Document Types on the

Performance of Caching Algorithms in WWW Proxies: A Trace Driven Simulation

Study. Proceedings of the 19th International Conference on Advanced

Information Networking and Applications (AINA '07).1 (2005): 737-742.

[16] Jianhui, L., Tianshu, H., and Chao, Y. Research on WEB Cache Prediction

Recommend Mechanism Based on Usage Pattern. Proceedings of the 1st

88

International Workshop on Knowledge Discovery and Data Mining (WKDD 2008).

(2008): 473-476.

[17] Healy, J., Director, Networks and Systems, Squid (WWW Proxy Server). [2008,

March].

[18] Proxy Server [Online]. Available from: http://en.wikipedia.org/wiki/Proxy_server.

[2009, October 21].

[19] Proxy Server [Online]. Available from:

www.webopedia.com/TERM/P/proxy_server.html. [2009, October 21]

[20] Proxy Systems [Online]. Available from:

www.unix.org.ua/orelly/networking/firewall/ch07_01.htm. [2009, October 24]

[21] Squid (software) [Online]. Available from:

http://en.wikipedia.org/wiki/Squid_(software). [2009, October 24]

[22] Squid: Optimising Web Delivery [Online]. Available from: http://www.squid-

cache.org/. [2009, October 24].

[23] Squid – Proxy server [Online]. Available from:

https://help.ubuntu.com/11.04/serverguide/C/squid.html. [2009, October 24].

[24] Feng, S., Zhang, J., and Zeng, B. Design of the Visualized Assistant for the

Management of Proxy Server. Proceedings of the 3rd. International Symposium

Electronic Commerce and Security. (2010): 204-208.

[25] Banerjee, B. Squid: Master this Proxy Server. LINUX FOR YOU. (2003): 55-62.

[26] Hofmann, M., and Beaumont, L. Content Networking Architecture, Protocols, and

Practice. Elsevier, CA,: Morgan Kaufmann Publishers, (2005).

89

[27] Vakali, A.I., and Pallis, G.E. A Study on Web Caching Architectures and

Performance, Proceedings of the 5th World Multi-Conference on Systemics,

Cybernetics and Informatics (SCI 2001). (2001): 1-5.

[28] Ajwalia, P. Proxy Server [Online]. Available from: http://www.engiguide.com/Paper-

Presentation/Proxy%20Server.pdf [2010, January 10].

[29] Che, H., Tung, Y., and Wang, Z. Hierarchical Web Caching Systems: Modeling,

Design and Experimental Results. IEEE Journal on Selected Areas in

Communications. 20, 7 (2002): 1305-1314.

[30] Xu, Z., Bhuyan, L., and Hu, Y. Tulip: A New Hash Based Cooperative Web

Caching Architecture. The Journal of Supercomputing. 35 (2006): 301–320.

[31] Kaya, Cuneyd C., Zhang, G., Tan, Y., and Mookerjee, V.S. An admission-control

technique for delay reduction in proxy caching. Decision Support Systems. 46

(2009): 594–603.

[32] Wang, J. A Survey of Web Caching Schemes for the Internet. Computer

Communication Review. 29, 5 (1999): 36-46.

[33] Oneis, M.S.E., Zemerly, M.J., and Barada, H. Intelligent Exploitation of Cooperative

Client-Proxy Caches in a Web Caching Hybrid Architecture. Computational

Intelligence and Modern Heuristics: Artificial Intelligence. InTech Publisher,

(2010).

[34] Michel, S., Nguyen, K., Rosenstein, A., Zhang, L., Floyd, S., and Jacobson, V.

Adaptive Web caching: towards a new caching architecture. Computer Network

and ISDN Systems. (1998).

[35] Yang, J., Wang, W., Muntz, R., and Wang, J. Access driven Web caching. UCLA

Technical Report # 990007. (1999).

90

[36] Foygel, D., and Strelow, D. Reducing Web Latency with Hierarchical Cache-Based

Prefetching. Proceedings of the 2000 International Workshop on Parallel

Processing, (2000).

[37] Lim, H., and Du, D. H. C. Design considerations for hierarchical Web proxy server

using iSCSI. Proceeding of 2003 Symposium on Applications and the Internet.

(2003): 414-417.

[38] Li, W., Wu, K., Ping, X., Tao, Y., Lu, S., and Chen, D. Coordinated Placement and

Replacement for Grid-Based Hierarchical Web Caches. Lecture Notes in

Computer Science. 3795 (2005): 430-435.

[39] Yang, F. H., and Chi, C. H. Using Hierarchical Scheme and Caching Techniques

for Content Distribution Networks. Proceedings of the Third International

Conference on Semantics, Knowledge and Grid. (2007): 535-538.

[40] Mateescu, R., and Wijs, A. Hierarchical Adaptive State Space Caching Based on

Level Sampling. Lecture Notes in Computer Science. 5505 (2009): 215-229.

[41] Busaria, M., and Williamson, C. ProWGen: a synthetic workload generation tool for

simulation evaluation of web proxy caches. Computer Networks. 38, 6 (2002):

779-794.

[42] Shi, L., and Zhang, Y. Optimal Model of Web Caching. Proceedings of the Fourth

International Conference on Natural Computation. (2008): 362-366.

[43] Shi, L., Yao, P., Wei, L., and Tao, Y. Cost-benefit Analysis of the Web Hierarchy

Caching Model. Information Technology Journal. 11, 3 (2012): 364-367.

[44] Wessels, D., and Claffy, K. Internet cache protocol (ICP), version 2, RFC 2186.

[45] Valloppillil, V., and Ross, K. W. Cache array routing protocol v1.0, Internet Draft

<draft-vinod-carp-v1-03.txt>.

91

[46] Povey, D., and Harrison, J. A distributed Internet cache. Proceedings of the 20th

Australian Computer Science Conference. (1997).

[47] Wang, Z. Cachemesh: a distributed cache system for World Wide Web, Web

Cache Workshop. (1997).

[48] Rousskov, A., and Wessels, D. Cache Digest. Proceedings of 3rd International

WWW Caching Workshop. (1998).

[49] Relais: cooperative caches for the World Wide Web [Online]. Available from:

http://www-sor.inria.fr/projects/relais/. [2008, September 30].

[50] Fan, L., Cao, P., Almeida, J., and Broder, A. Z. Summary cache: A scalable wide-

area web cache sharing protocol. IEEE/ACM Transactions on Networking. 8, 3

(2000): 281-293.

[51] Gadde, S., Rabinovich, M., and Chase, J. Reduce, reuse, recycle: an approach to

building large Internet caches. Proceedings of the HotOS’97 Workshop [Online].

Available from: http://www.cs.duke.edu/ari/cisi/crisprecycle/crisp-recycle.htm.

[2010, May 2].

[52] Piatek, M. Distributed web proxy caching in a local network environment. Available

from: www.acm.org/src/subpages/papers/piatek.src.2004.pdf. [2008, March

15].

[53] Manikandan, C. V., Manimozhi, P., Suganyadevi, B., Radhika K., and Asha, M.

Efficient load reduction and congession control in Internet through multilevel

Border Gateway Proxy Caching. Proceeding of 2010 IEEE International

Conference on Computational Intelligence and Computing Research. (2010): 1-

4.

92

[54] Rabinovich, M., Chase, J., and Gadde, S. Not all hits are created equal:

cooperative proxy caching over a wide-area network. Computer Networks And

ISDN Systems. 30, 22-23 (1998): 2253-2259.

[55] Baek, J., Kaur, G., and Yang, J. A New Hybrid Architecture for Cooperative Web

Caching. Journal of Ubiquitous Convergence and Technology. 2, 1 (2008).

[56] Abrams, M., Standridge, C. R., Abdulla, G., Williams, S., and Fox, E. A. Caching

proxies: limitations and potentials. Proceedings of the 4th International WWW

Conference. (1995).

[57] Podlipnig, S., and Boszormenyi, L. A Survey of Web Cache Replacement

Strategies. ACM Computing Surveys. 35, 4 (2003): 374–398.

[58] Dilley, J., Arlitt, M., and Perret, S. Enhancement and Validation of Squid’s Cache

Replacement Policy. HPL-1999-69. (1999).

[59] Balamash, A., and Krunz, M. An Overview of Web Caching Replacement

Algorithms. IEEE Communications Surveys: The Electronic Magazine of Original

Peer-Reviewed Survey Articles. 6, 2 (2004).

[60] Wong, Kin-Yeung. Web Cache Replacement Policies: A Pragmatic

Approach. IEEE Network. (2006): 28-34.

[61] Jin, S., and Bestavros, A. Greedy-dual* web caching algorithm: Exploiting the two

sources of temporal locality in web request streams. Computer Communications.

22 (2000): 174–283.

[62] Lindemann, C., and Waldhorst, O. Evaluating the impact of different document

types on the performance of web cache replacement schemes. Proceedings of

IEEE Int’l Performance and Dependability Symposium. (2002): 717–726.

93

[63] Bahn, H., Koh, K., Noh, S.H., and Min, S.L. Efficient replacement of nonuniform

objects in web caches. IEEE Computer. 35 (2002): 65–73.

[64] Pallis, G., Vakali, A., and Sidiropoulos, E. FRES-CAR: an adaptive cache

replacement policy. Proceedings of the International Workshop on Challenges in

Web Information Retrieval and Integration. (2005): 74-81.

[65] Bian, N., and Chen, H. A Least Grade Page Replacement Algorithm for Web

Cache Optimization. Proceedings of the First International Workshop on

Knowledge Discovery and Data Mining. (2008): 469-472.

[66] Geetha, K., Gounden, N. A., and Monikandan, S. SEMALRU: An Implementation of

modified web cache replacement algorithm. World Congress on Nature &

Biologically Inspired Computing. (2009): 1406-1410.

[67] Zhang, B., and Wu, H. A new distributed caching replacement strategy. IEEE 3rd

International Conference on Communication Software and Networks. (2011):

167-170.

[68] Holton, D. A., and Sheehan, J. The Petersen Graph. Cambridge University Press,

NY.

[69] Hauger, S., Tso, K.H.L., and Schmidt-Thieme, L. Comparison of Recommender

System Algorithms focusing on the New-Item and User-Bias

Problem. Proceedings of the 31st Annual Conference of the German

Classification Society on Data Analysis, Machine Learning, and Applications.

s

(2007).

[70] Ricci, F., Rokach, L., and Shapira, B. Introduction to Recommender System

Handbook. Recommender Systems Handbook, Springer, (2011): 1-35.

94

[71] Schafer, J.B., Frankowski, D., Herlocker, J., and Sen, S. Collaborative filtering

recommender systems. The Adaptive Web. Springer Berlin/Heidelberg (2007):

291–324.

[72] Schafer, J.B., Konstan, J.A., and Riedl, J. E-commerce recommendation

applications. Data Mining and Knowledge Discovery. 5(1/2), 115–153 (2001).

[73] Breese, John S., Heckerman, D., and Kadie, C. Empirical analysis of predictive

algorithms for collaborative filtering. Proceedings of the 14th Conference on

Uncertainty in Artificial Intelligence (UAI-98). Morgan Kaufmann. (1998): 43–52.

[74] O’Donovan, J., and Dunnion, J. A framework for evaluation of collaborative

recommendation algorithms in an adaptive recommender system. Proceedings

of the International Conference on Computational Linguistics (CICLing-04).

(2004): 502–506.

[75] Bueno, D., Conejo, R., and David, A. A. METIOREW: An Objective oriented content

based and collaborative recommending system. Lecture Notes in Computer

Science. 2266 (2002): 310-314.

[76] Linden, G., Smith, B., and York, J. Amazon.com Recommendations: Item-to-Item

Collaborative Filtering. IEEE Internet Computing. 7, 1 (2003): 76-80.

[77] Itmazi, J., and Megías, M. Using Recommendation Systems in Course

Management Systems to recommend Learning Objects. The International Arab

Journal of Information Technology. 5, 3 (2008): 234-240.

[78] Bobadilla, J., Serradilla, F., Hernando, A., and MovieLens. Collaborative filtering

adapted to recommender systems of e-learning. Knowledge-Based Systems. 22

(2009): 261-265.

95

[79] Souali, K., Afia, A. E., Faizi, R., and Chiheb, R. A new recommender system for e-

learning environments. Proceedings of International Conference on Multimedia

Computing and Systems. (2011): 1-4.

[80] Gong, Y., and Xue, Q. Study on internet recommendation system of collaborative

filtering based on scatter difference. Proceedings of International Conference on

Computer, Mechatronics, Control and Electronic Engineering. 1 (2010): 160-163.

ime Context and Group

[81] Julashokri, M., Fathian, M., Gholamian, M. R., and Mehrbod, A. Improving

Recommender System's Efficiency Using T

Preferences. Advances in Information Sciences and Service Sciences. 3, 4

(2011): 162-168.

[82] Squid configuration directive logformat [Online]. Available from: http://www.squid-

ork and Computer Applications

cache.org/Doc/config/logformat/. [2009, May 30].

[83] Ravi, J., Yu, Z., and Shi, W. A survey on dynamic Web content generation and

delivery techniques. Journal of Netw . 32, 5

uted

dings of the International Conference on Distributed

(2009): 943-960.

[84] Amer, A., Long, D.D.E., and Burns, R.C. Group-Based Management of Distrib

File Caches. Procee

Computing Systems. (2002): 525-534.

[85] Web Directory [Online]. Available from:

http://websearch.about.com/od/enginesanddirectories/a/subdirectory.htm.

[2009, November 6].

[86] Advantages of web directory [Online]. Available from:

http://www.iboldesign.com/ibol-news/advantages-of-web-directory.html. [2009,

November 6].

96

[87] Balabanovic, M., and Shoham, Y. Fab: Content-based, collaborative

recommendation. Communications of the ACM. 40, 3 (1997): 66-72.

[88] Ricci, F., Rokach, L., Shapira, B., and Kantor, P.B. Recommender Systems

Handbook, Springer, New York,: Dordrecht Heidelberg London, (2011).

[89] Cache_replacement_policy [Online]. Available from: http://www.squid-

_policy.html. [2010, May cache.org/Versions/v2/2.7/cfgman/cache_replacement

25].

[90] Bahn, H. Web cache management based on the expected cost of web

objects. Information and Software Technology. 47 (2005): 609–621.

[91] SPSS Annotated Output: T-test [Online]. Available from:

http://www.ats.ucla.edu/stat/spss/output/Spss_ttest.htm. [2011, November 26].

[92] Touch, J. The LSAM Proxy Cache – a Multicast Distributed Virtual

Cache. Proceedings of the 3rd Int. WWW Caching Workshop. (1998).

[93] Che, H., Wang, Z., and Tung, Y. Analysis and Design of Hierarchical Web Caching

Systems. Proceedings of IEEE INFOCOM’01. 3 (2001): 1416-1424.

[94] Laoutaris, N., Syntila, S., and Stavrakakis, I. Meta Algorithms for Hierarchical Web

Caches. Proceedings of 2004 IEEE Int. Conf. on Performance, Computing, and

Communications. (2004): 445-452.

97

Biography

Name: Miss Supawadee HIRANPONGSIN.

Date of Birth: 1st April, 1978.
Educations:

• Ph.D., Program Computer Science and Information Technology, Department of Mathematics and
Computer Science, Faculty of Science, Chulalongkorn University, Thailand, (June 2007 - May
2012).

• Visiting scholar, Department of Computer Science, Purdue University, USA, (September 2009 -
August 2010).

• M.S., Program Computer Science, Faculty of Applied Statistics, National Institute of
Develpoment Administration (NIDA), Thailand, (October 2004 - March 2007).

• B.Sc., Program Mathematics, Department of Mathematics, Faculty of Science, Chulalongkorn
University, Thailand, (May 1996 - April 2000).

Publication papers:
• S. Hiranpongsin and P. Bhattarakosol, “Enhancing the QoS of Proxy Cache Using the Squid Log

File,” In Proceedings of International Conference on INTERNET STUDIES (NETs2012), Bangkok,
Thailand, August 17-19, 2012 (In Press).

• S. Hiranpongsin and P. Bhattarakosol, “Intelligent Caching Algorithm for Web Cache Farming
System,” In Proceedings of 2009 International Conference on Wireless Information Networks &
Information System (WINBIS 09), Kathmandu, Nepal, February 27- March 1, 2009.

• S. Hiranpongsin and P. Bhattarakosol, “Intelligent Cache Farming Architecture with the
Recommender System,” Journal of Engineering Science and Technology (JESTEC), Vol. 4(2),
pp. 206-219, June 2009.

• S. Hiranpongsin and P. Bhattarakosol, “Intelligent Cache Farming Architecture with the
Recommender System,” In Proceedings of 2008 International Conference on Networks,
Applications, Protocols, and Services (NetApps2008), Universiti Utara Malaysia, Malaysia,
November 21-22, 2008.

• S. Hiranpongsin and P. Bhattarakosol, “Intelligent cache farming Architecture for E-Business
services,” In Proceedings of 7th International Conference on e-Business 2008 (INCEB 2008),
Bangkok, Thailand, pp. 140-147, November 6-7, 2008.

Work:
• Analyst, Funds and Liquidity Management Department, Treasury Division, Bangkok Bank P.C.L.

(Headquarters), (2000 - 2004).

Scholarship:
• THE 90th ANNIVERSARY OF CHULALONGKORN UNIVERSITY FUND (Ratchadaphiseksomphot

Endowment Fund), (May 2011).
• The Inter-University Network (UniNet) Unit under the Office of the Higher Education Commission

(OHEC), Thailand. (February 2010).
• University Development Commission (UDC) Scholarship from Ubon Rajathanee University,

Thailand. (October 2004 – September 2011).
• Chulalongkorn University Scholarship (1997 - 2004).

	Cover (Thai)

	Cover (English)

	Accepted

	Abstract (Thai)

	Abstract (English)

	Acknowledgements

	Contents
	Chapter I Introduction
	1.1 Introduction and Problem Review
	1.2 State of problem
	1.3 Research objectives
	1.4 Scopes of the Study
	1.5 Contribution
	1.6 Research Plans
	1.7 Benefits of the Research
	1.8 Organization of the Dissertation

	Chapter II Background and Literature Reviews

	2.1
Implementations of Proxy Server
	2.2 Types of Proxy Server
	2.3 Architectures of Web Proxy Caching
	2.4
Cache Replacement Policies
	2.5 Recommender System

	Chapter III Data Collection and Analysis
	3.1 Data Collection
	3.2 Data Analysis : Grouping Mechanism

	Chapter IV Proposed Method
	4.1
Proposed architecture: Intelligent Cache Farming Architecture (ICFA)
	4.2
Proposed algorithms
	4.3 System workflow

	Chapter V Implementation and Experimental Results

	5.1
Implementation
	5.2
Simulation model
	5.3 Simulation results

	Chapter VI DISCUSSION AND CONCLUSION
	6.1
Discussion
	6.2 Conclusion

	References
	Vita

