CHAPTER IV

CONCLUSION AND SUGGESTION FOR FUTURE WORK

4.1 Conclusion

Part I Syntheses of NiL1, NiL2, PU1NiL1 and PU2NiL1

We have been able to synthesize hexadentate Schiff base nickel complex NiL_1 and its derivative (NiL_2) . NiL_2 was uesd to investigation of reactivity of the amine group in NiL_1 . The results shown that the complete reaction condition was 80 °C / 12 hours for the mole ratio of NiL_1 : hexyl isocyanate = 1:2

Furthermore we have been able to incorporate NiL_1 into polyurea and polyurethane. That is, nickel-containing polyurea (PU_1NiL_1) and nickel containing polyurethane (PU_2NiL_1) were synthesized. The progress of polymerization was monitored by using IR spectroscopy. It was found that the complete polymerization condition of PU_1NiL_1 was 80 °C / 12 hours for the mole ratio of NiL_1 : hexamethylene diisocyanate = 1.1:1 and the complete polymerization condition of PU_2NiL_1 was 80 °C / 18 hours for the mole ratio of NiL_1 : prepolymer = 1.1:1.

The chemical structure of NiL_1 , NiL_2 , PU_1NiL_1 and PU_2NiL_1 was identified by FTIR and elemental analysis.

Part II Thermal behavior of NiL1, NIL2, PU1NiL1 and PU2NiL1

Thermal properties of NiL₁, NiL₂, PU₁NiL₁ and PU₂NiL₁ were investigated by using differential scanning calorimetry (DSC) and thermogravimeyric analysis (TGA). DSC thermogram of NiL₁ showed a large endotherm around 106 °C and two small endotherms around 260 °C and 285.6 °C, respectively, NiL₂ showed two small endrotherms around 63 °C and 236 °C. DSC thermogram of PU₂NiL₁ showed the endothermic peak at 127.9 °C. But in the case of PU₁NiL₁, DSC thermogram showed an exothermic at 228 °C peak that might be due to crosslinking reaction of PU₁NiL₁.

After heating PU₁NiL₁ at 228 °C for 1 hour, IR of the crosslinked PU₁NiL₁ was obtained in the similar pattern as PU₁NiL₁. Additionally DSC thermogram of crosslinked PU₁NiL₁ showed the absentation of exothermic peak at 228°C. Therefore, from IR and DSC experiments, it was possible to conclude that the PU₁NiL₁ underwent crosslinking reaction after heating.

From TGA curve, the result was suggested that PU₂NiL₁ had higher weight loss percentages than PU₁NiL₁. This might be due to the stabilization by hydrogen bonding in PU₁NiL₂. In addition, DSC thermogram of PU₂NiL₂ did not showed the exothermic crosslinking, which may be explained that PU₂NiL₂ contained less NHCO group than PU₁NiL₁.

4.2 Suggestion for future work

The suggestion for future work is to synthesize metal-containing polyurethanes with difference of diisocyanates and diols. Moreover, the different transition metal complexes should give different property of metal-containing polyurethanes. Therefore, further research could also concentrate on the synthesis of metal-containing polyurethane based on different transition metal complexes.