CHAPTER II

EXPERIMENTAL

2.1 General

The weight of all chemical substances was determined on a Mettler AE200 electrical balance. Melting points were recorded on an Electrothermal 9100 melting point apparatus. Evaporation of solvents was carried out on a Büchi Rotavapor R-114 equipped with a Büchi B-480 Waterbath and a water aspirator. The progress of the reactions was followed by Thin Layer Chromatography (TLC) performed on Merck D.C. silica gel 60 F₂₅₄ 0.2 mm precoated aluminium plates and visualized using either UV light (254 nm), ninhydrin, or potassium permanganate reagents. Flash column chromatography was performed on Merck 230-400 mesh silica gel using a medium pressure of 2–3 atm provided by a domestic air-pump.

Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ACF200 spectrometer operating at 200 MHz (¹H) and 50 MHz (¹³C) in CDCl₃ (unless otherwise stated). Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane using the residual protonated solvent signal as a reference. Coupling constants (*J*) are for proton-proton coupling unless otherwise noted and are reported in Hertz (Hz).

Optical rotations were measured in a Bellingham + Stanley Ltd. ADP220 polarimeter. The ESITOF mass spectra were obtained from a Micromass LCT mass spectrometer.

2.2 Materials

Indium powder > 99.99 % containing 1.2 % Mg was purchased from Aldrich Chemicals Co., Ltd. and $R(-)-\alpha$ -phenylglycinol (> 99 % ee) was purchased from Fluka. All other chemicals were purchased from Fluka, Merck or Aldrich Chemicals Co., Ltd. and were used as received without further purification. Commercial grade solvents for column chromatography were distilled before use. Solvents for reactions were AR grade and used without further purification.

2.3 General procedure for the preparation of imines

$$R^{1}$$
 H $+$ $R^{2}NH_{2}$ $\xrightarrow{CH_{2}Cl_{2}, rt}$ R^{1} H

To a 25 mL round bottom flask was added the amine (1 mmol) and 5 mL of dichloromethane, followed by addition of the aldehyde (1 mmol) and anhydrous magnesium sulfate (10 mg) at room temperature. After leaving overnight, the magnesium sulfate was removed by filtration. The filter cake was washed with dichloromethane, the filtrate was collected and the solvent was removed *in vacuo* to obtain the desired product which was used for the next step without further purification.

2.3.1 N-Benzylidenebenzylamine

I-1

Colorless oil, 94.7 % yield (1 mmol scale); ¹H-NMR (CDCl₃, 200 MHz); δ 4.87 (2H, s, CH₂Ph), 7.38 (8H, m, aromatic CH), 7.83 (2H, m, aromatic CH), 8.41 (1H, s, HC=N); ¹³C-NMR (CDCl₃, 50 MHz); δ 65.1 (CH₂Ph), 127.1, 128.0, 128.4, 128.6, 128.7, 130.8, 136.2, 139.4 (aromatic CH), 162.0 (HC=N)

2.3.2 N-Benzylidene diphenylmethylamine

Colorless oil, 95.7 % yield (1 mmol scale); ¹H-NMR (CDCl₃, 200 MHz); δ 5.64 (1H, s, C<u>H</u>Ph₂), 7.30 (13H, m, Ar), 7.86 (2H, m, Ar), 8.46 (1H, s, <u>H</u>C=N);

I-5

¹³C-NMR (CDCl₃, 50 MHz); δ 78.0 (<u>C</u>HPh₂), 127.1, 127.7, 128.5, 128.6, 130.8, 136.3, 143.9 (Ar), 160.9 (H<u>C</u>=N)

2.3.3 N-benzylidene-(R)-2-amino-1-phenylethanol

Colorless oil, 95 % yield (1 mmol scale); ¹H-NMR (CDCl₃, 200 MHz); δ 3.93 (2H, m, C<u>H</u>₂OH), 4.50 (1H, m, PhC<u>H</u>CH₂OH), 7.24-7.89 (10H, m, aromatic C<u>H</u>), 8.36 (1H, s, <u>H</u>C=N)

2.3.4 2-Isopropyl-4-(R)-phenyloxazolidine

I-31

Colorless oil, 100 % yield (1 mmol scale); 1 H-NMR (CDCl₃, 200 MHz); δ 0.99 (6H, m, (C<u>H</u>₃)₂CH), 1.85 (1H, m, (CH₃)₂C<u>H</u>), 2.68 (1H, br s, N<u>H</u>), 3.55 (1H, m, 1×C<u>H</u>₂OH), 4.08 (1H, t J=7.6 Hz, 1×C<u>H</u>₂OH), 4.20 (1H, t J=7.6 Hz, PhC<u>H</u>CH₂OH), 4.26 (1H, d J=9.5 Hz, i PrC<u>H</u>), 7.20-7.30 (5H, m, aromatic C<u>H</u>)

Other imines derived from phenylglycinol were used without characterization.

2.4 General procedure for the allylation of imines

$$R^{1}$$
 H R^{2} R^{5} R^{5} R^{6} R^{1} R^{1} R^{2} R^{5} R^{1} R^{2} R^{3} R^{4}

To a mixture of the imine (1.0 mmol) and indium powder (288 mg, 2.0 mmol) in an appropriate alcoholic solvent (5 mL) was added allyl bromide (3.0 mmol). The reaction was stirred vigorously at room temperature until all the metal had dissolved (30 min - 2 h), at which time TLC indicated complete reaction. The reaction mixture was diluted with 10 % aqueous NaHCO₃ and extracted with ethyl acetate (10 mL x 3). The combined organic extracts were dried (MgSO₄), evaporated and the residue was purified by flash column chromatography on silica gel using hexane-ethylacetate as eluent.

2.4.1 N-benzyl-1-phenylbut-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a yellow oil 0.17 g, 72 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.80 (1H, br s, NH), 2.42 (2H, m, CH₂ allyl), 3.50 (1H, d J=13.3, CH₂H_bPh), 3.65 (2H, m, CH₂H_bPh and Ar-CH), 5.01 (2H, m, CH=CH₂), 5.70 (1H, m, CH=CH₂), 7.30 (m, 10 H, aromatic CH); 13 C-NMR (100 MHz, CDCl₃) δ 43.0 (CH₂ allyl), 51.4 (CH₂Ph), 61.5 (ArCH), 117.5 (CH=CH₂), 126.8, 127.0, 127.3, 128.1, 128.3, 128.4, 135.4 (CH=CH₂), 140.5, 143.7; LRMS (ESI+) m/z 238.2 (M·H⁺)

2.4.2 N-benzyl-1-(3'-hydroxyphenyl)but-3-enamine

II-2

Purified by flash column chromatography (10 % ethyl acetate-hexane) to give a yellow oil 0.17 g, 66 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 2.48 (2H, m, CH₂ allyl), 3.64 (1H, m, CH_aH_bPh), 3.68 (2H, m, CH_aH_bPh and ArCH), 5.06 (2H, m, CH=CH₂), 5.66 (1H, m, CH=CH₂), 6.82 (2H, m, ArC₂·H and ArC₄·CH), 7.25 (10H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 42.1 (CH₂ allyl), 51.1 (CH₂Ph), 61.5 (ArCH), 114.4, 115.2, 118.1, 119.7 (CH=CH₂), 127.3, 128.6, 129.8, 135.0 (CH=CH₂), 139.2, 144.1, 156; LRMS (ESI+) m/z 254.2 (M·H)⁺

2.4.3 N-benzyl-1-(4'-cholrophenyl)but-3-enamine

Purified by flash column chromatography (10 % ethyl acetate-hexane) to give a yellow oil 0.19 g, 69 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.88 (1H, br s, NH), 2.43 (2H, m, CH₂ allyl), 3.56 (1H, d, J=13.3, CH_aH_bPh), 3.73 (2H, m, CH_aH_bPh and ArCH), 5.15 (2H, m, CH=CH₂), 5.73 (1H, m, CH=CH₂), 7.36 (m, 9H, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 43.2 (CH₂ allyl), 51.5 (CH₂Ph), 61.0 (ArCHCH₂), 118.0 (CH=CH₂), 127.0, 128.2, 128.5, 128.7, 128.8, 132.7, 135.1 (CH=CH₂), 140.5, 142.5; HRMS (ESI+) calcd for C₁₇H₁₈ClN·H⁺ 271.1128, found m/z 272.1207 (M·H)⁺

2.4.4 N-diphenylmethyl-1-(2'-methoxyphenyl)but-3-enamine

II-6

Purified by flash column chromatography (10 % ethyl acetate-hexane) to give a yellow oil 0.25 g, 72 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 2.35 (1H, br s, NH), 2.62 (2H, t *J*=7.0 Hz, CH₂ allyl), 3.76 (3H, s, OCH₃), 3.99 (1H, t *J*=7.0 Hz, ArCH), 4.73 (1H, s, CHPh₂), 5.09 (1H, m, CH=CH₂), 5.85 (1H, m, CH=CH₂), 7.02 (2H, 2×d *J*=7.4, 19.1, ArC₃·H and ArC₆·H), 7.33 (12 H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 40.9 (CH₂CH=CH₂), 55.2 (ArCH), 55.8 (CH₃O), 64.0 (CHPh₂), 110.8, 116.5 (CH=CH₂), 120.6, 126.8, 126.9, 127.5, 128.0, 128.4, 128.8, 131.4, 136.6 (CH=CH₂), 143.9, 145.2, 157.8

2.4.5 N-diphenylmethyl-1-(2'-pyridyl)but-3-enamine

II-7

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a yellow oil 0.25 g, 79 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 2.56 (3H, t *J*=9.6 Hz, CH₂ allyl and NH), 3.75 (1H, t *J*=6.8 Hz, ArCH), 4.62 (1H, s, CHPh₂), 5.04 (2H, 2×d *J*=16.8, 6.3 Hz, CH=CH₂), 5.73 (1H, m, CH=CH₂), 7.29 (m, 13H, Ph-CH and Py-CH), 8.62 (1H, m, Py-C₆·H); ¹³C-NMR (50 MHz, CDCl₃) δ 41.5 (CH₂ allyl), 60.8 (ArCH), 64.2 (Ph₂CH), 117.2 (CH=CH₂), 122.0, 122.6, 126.9, 127.1, 127.4, 127.9, 128.3, 128.5, 135.5 (CH=CH₂), 136.1, 143.4, 144.6, 149.7, 163.1; LRMS (ESI+) *m/z* 315.2 (M·H)⁺

2.4.6 N-diphenylmethyl-1-isopropylbut-3-enamine

II-8

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a yellow oil 0.17 g, 61 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 0.99 (6H, d *J*=7.8 Hz, (CH₃)₂CH), 1.55 (1H, s, NH), 1.93 (1H, m, (CH₃)₂CH), 2.27 (2H, m, ⁱPrCHCH₂), 2.45 (1H, m, ⁱPrCH), 5.07 (s, 1H, CHPh₂), 5.18 (2H, m, CH=CH₂), 5.85 (1H, m, CH=CH₂), 7.35 (m, 10 H, CHPh₂); ¹³C-NMR (50 MHz, CDCl₃) δ 18.4 and 18.8 [(CH₃)₂CH], 29.9 [(CH₃)₂CH], 34.5 (CH₂CH=CH₂), 59.0 (ⁱPrCH), 64.2 (CHPh₂), 116.9 (CH=CH₂), 126.9, 127.0, 127.6, 127.8, 128.4, 128.5, 136.5 (CH=CH₂), 144.6, 144.9; LRMS (ESI+) *m/z* 280.2 (M·H)⁺

2.4.7 N-diphenylmethyl-1-hexylbut-3-enamine

II-9

2.4.8 N-benzyl-1-phenyl-2,2-dimethylbut-3-enamine

II-10

Purified by flash column chromatography (4 % ethyl acetate-hexane) to give a yellow oil 0.08 g, 30 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 0.91 [3H, s, $1\times(C\underline{H}_3)_2CCH$], 0.95 [3H, s, $1\times(C\underline{H}_3)_2CCH$], 3.36 (2H, d, m, $C\underline{H}_aH_bPh$ and PhC \underline{H}), 3.63 (2H, d J=13.5 Hz, $CH_a\underline{H}_bPh$), 5.06 (2H, $2\times d$ J=17.3, 10.9 Hz, CH= $C\underline{H}_2$), 5.82 (1H, dd J=17.3, 10.9 Hz, $C\underline{H}$ = CH_2), 7.27 (10H, m, $2\times Ph$); 13 C-NMR (50 MHz, CDCl₃) δ 20.8, 26.6 (2×CH₃), 41.3 (CH₃)₂ \underline{C} , 51.7 ($\underline{C}H_2Ph$), 113.0 ($\underline{C}H$ = $\underline{C}H_2$), 126.7, 127.0, 127.5, 128.1, 128.2, 129.5 ($\underline{C}H$ = $\underline{C}H_2$), 140.4, 141.0, 146.6; LRMS (ESI+) m/z 266.2 ($\underline{M}\cdot H$)

2.4.9 N-diphenylmethyl-1-phenyl-2,2-dimethylbut-3-enamine

II-11

Purified by flash column chromatography (4 % ethyl acetate-hexane) to give a yellow oil 0.10 g, 30 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.03 [3H, s, $1\times(C\underline{H}_3)_2C$], 1.08 [3H, s, $1\times(C\underline{H}_3)_2C$], 2.18 (1H, br s, N \underline{H}), 3.35 (1H, s, ArC \underline{H}), 4.54 (1H, s, C \underline{H} Ph₂), 5.12 (2H, $2\times d$ J=10.6, 17.3 Hz, CH=C \underline{H}_2), 5.85 (1H, dd J=10.9, 17.3 Hz, C \underline{H} =CH₂), 7.35 (15 H, m, CH \underline{P} h₂ and Ar-CH); 13 C-NMR (50 MHz, CDCl₃) δ 22.5 [$1\times(C\underline{H}_3)_2C$], 26.3 [$1\times(C\underline{H}_3)_2C$], 41.3 [\underline{C} (CH₃)₂], 63.4 (\underline{C} HPh₂), 67.8 (Ar \underline{C} H), 113.2 (CH= \underline{C} H₂), 126.8, 127.0, 127.4, 127.7, 128.1, 128.3, 128.4, 128.9, 129.4, 130.2 (\underline{C} H=CH₂), 140.5, 143.6, 145.0, 145.2, 146.2

2.4.10 N-phenyl-1-phenyl-2,2-dimethylbut-3-enamine

II-12

Purified by flash column chromatography (0.5 % ethyl acetate-hexane) to give a yellow oil 0.14 g, 55 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 1.03 [3H, s, 1×(CH₃)₂CCH], 1.19 [3H, s, 1×(CH₃)₂C], 4.11 (1H, s, ArCH), 4.28 (1H, br s, NH), 5.22 (2H, 2×d *J*=17.0, 11.1 Hz, CH=CH₂), 5.92 (1H, dd *J*=11.1, 17.0 Hz, CH=CH_aH_b), 6.50 (2H, d *J*=7.9 Hz, PhNH *ortho* CH), 6.67 (1H, t, PhNH *para* CH), 7.08 (2H, t, PhNH *meta* CH), 7.30 (6H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 23.1 [1×(CH₃)₂C], 25.9 [1×(CH₃)₂C], 41.4 [C(CH₃)₂], 65.9 (ArCH), 113.4 (CH=CH₂), 113.9, 117.1, 127.1, 127.8, 128.7, 128.8, 129.1 (CH=CH₂), 140.4, 145.1, 147.7; LRMS (ESI+) *m/z* 252.2 (M·H)

2.4.11 N-diphenylmethyl-1,2-diphenylbut-3-enamine

II-13

Purified by flash column chromatography (1 % ethyl acetate-hexane) to give a colourless oil 0.24 g, 62 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds = 83:17 as determined by 1 H-NMR). Major isomer: 1 H -NMR (200 MHz, CDCl₃) δ 3.71 (1H, t, CHCH=CH₂), 3.72 (1H, d J=9.3 Hz, CHPh), 4.47 (1H, s, CHPh₂), 4.95 (2H, 2×d J=21.0, 10.2 Hz, CH=CH₂), 5.85 (1H, m, CH=CH₂), 6.88-7.37 (20 H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃); δ 57.7 (CHPh), 62.8 (CHPh₂), 64.2

[ArCHC(CH₃)₂], 116.2 (CH=CH₂), 126.6, 126.8, 126.9, 127.3, 127.6, 128.1, 128.2, 128.3, 128.5, 128.6, 139.1 (CH=CH₂), 141.5, 141.9, 142.9, 144.5

Minor isomer: ¹H-NMR (200 MHz, CDCl₃) δ 3.58 (1H, t, C<u>H</u>CH=CH₂), 3.72 (1H, d *J*=9.3 Hz, C<u>H</u>Ph), 4.68 (1H, s, C<u>H</u>Ph₂), 5.33 (2H, m, CH=C<u>H</u>₂), 6.28 (1H, m, C<u>H</u>=CH₂), 6.98-7.46 (20 H, m, aromatic C<u>H</u>); ¹³C-NMR (50 MHz, CDCl₃); δ 58.7 (<u>C</u>HPh), 62.8 (<u>C</u>HPh₂), 64.2 [Ar<u>C</u>HC(CH₃)₂], 117.2 (CH=<u>C</u>H₂), 126.7, 127.0, 127.1, 127.4, 128.2, 128.3, 128.4, 128.7, 139.2 (<u>C</u>H=CH₂), 141.6, 142.1, 143.1, 144.6

2.4.12 Methyl-2-benzyl-2-(1'-phenylbut-3'-enylamino)acetate

(diasteromeric ratio = 75:25)

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give the major isomer (II-15a) a yellow oil 0.09 g, 28 % yield (1 mmol scale): ¹H-NMR (200 MHz, CDCl₃) δ 2.07 (1H, br s, NH), 2.36 (2H, m, CH₂ allyl), 2.88 (2H, m, CH₂Ph), 3.31 (1H, t, CHCOOMe), 3.63 (3H, s, OCH₃), 5.12 (2H, m, CH=CH₂), 5.75 (1H, m, CH=CH₂), 7.08-7.28 (m, 10H, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃); δ 40.2 (CH₂ allyl), 43.7 (CH₂Ph), 51.5 (OCH₃), 60.0 (ArCHCH₂), 60.4 (CHCOOMe), 117.8 (CH=CH₂), 126.6, 127.1, 127.3, 128.2, 128.3, 129.4, 135.1, 137.5, 143.2 (CH=CH₂), 174.5 (COOMe)

The minor isomer (II-15b) was determined as a yellow oil 0.03 g, 10 % yield: ${}^{1}\text{H-NMR}$ (200 MHz, CDCl₃) δ 1.90 (1H, br s, NH), 2.36 (2H, m, CH₂ allyl), 2.93 (2H, m, CH₂Ph), 3.39 (3H, s, OCH₃), 3.47-3.60 (2H, m, CHCOOMe and ArCH), 4.93 (2H, m, CH=CH₂), 5.56 (1H, m, CH=CH₂), 7.12-7.34 (m, 10H, aromatic CH); ${}^{13}\text{C-NMR}$ (50 MHz, CDCl₃) δ 39.1 (CH₂ allyl), 42.2 (CH₂Ph), 51.5 (OCH₃), 61.2 (ArCHCH₂), 61.6 (CHCOOMe), 117.5 (CH=CH₂), 117.5, 126.7, 127.3, 127.5, 128.3, 128.4, 129.3, 135.0, 137.2, 143.0 (CH=CH₂), 174.6 (COOMe)

2.4.13 2-Benzyl-2-(1'-phenylbut-3'-enylamino)ethanol

Purified by flash column chromatography (10 % ethyl acetate-hexane) to give a yellow oil 0.11 g, 40 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds = 67.33 as determined by 1 H-NMR). Major isomer: 1 H-NMR (500 MHz, CDCl₃) δ 2.38 (2H, m, CH₂ allyl), 2.76 (2H, m, CH₂Ph), 3.33 (1H, m, 1×CH₂OH), 3.67 (1H, m, 1×CH₂OH), 3.75 (1H, dd J=11.9, 5.2 Hz, ArCH), 5.04 (1H, 2×d J=17.7, 10.4 Hz, CH=CH₂), 5.65 (1H, m, CH=CH₂), 6.94-7.38 (10H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 38.9 (CH₂ allyl), 42.7 (CH₂Ph), 56.5, 59.5, 61.7 (ArCH, PhCH₂CH and PhCHCH₂OH), 117.4 (CH=CH₂), 126.4, 126.8, 127.1, 128.5, 129.3, 135.2, 138.5 (CH=CH₂)

Minor isomer: ¹H-NMR (500 MHz, CDCl₃) δ 2.38 (2H, m, CH₂ allyl), 2.87 (2H, dd *J*=13.1, 6.1 Hz, CH₂Ph), 3.22 (1H, dd *J*=10.7, 6.4 Hz, 1×CH₂OH), 3.67 (1H, m, 1×CH₂OH), 3.75 (1H, m, ArCH), 5.04 (1H, 2×d *J*=17.7, 10.4 Hz, CH=CH₂), 5.59 (1H, m, CH=CH₂), 6.94-7.38 (10H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃); δ 38.0 (CH₂ allyl), 43.4 (CH₂Ph), 58.0, 60.2, 63.9 (ArCH, PhCH₂CH and PhCHCH₂OH), 118.0 (CH=CH₂), 126.4, 126.8, 127.1, 128.5, 129.3, 135.2, 138.5 (CH=CH₂)

2.4.14 2-Isopropyl-2-(1'-phenylbut-3'-enylamino)ethanol

II-17a

II-17b

Purified by flash column chromatography (10 % ethyl acetate-hexane) to give a yellow oil 0.15 g, 51 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds = 90:10 as determined by ¹NMR). Major isomer: ¹H-NMR (500 MHz, CDCl₃) δ 0.80 (6H, 2×d J=7.0 Hz, [(CH₃)₂CH], 1.66 (1H, m, [(CH₃)₂CH], 2.24 (1H, m, ¹PrCHNH), 2.44 (2H, m, CH₂ allyl), 3.37 (1H, dd J=10.8, 4.4 Hz, 1×CH_aH_bOH), 3.58 (1H, dd J=10.9, 4.3 Hz, 1×CH_aH_bOH), 3.71 (1H, t J=6.7 Hz, ArCH), 5.00 (2H, 2×d J=17.1,9.1 Hz, CH=CH₂), 5.65 (1H, m, CH=CH₂), 7.19-7.31 (m, 5H, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 18.9, 19.4 [(CH₃)₂CH], 29.4 [(CH₃)₂CH], 42.7 (CH₂ allyl), 59.9 (ArCHCH₂), 60.1 (CHCH₂OH), 61.1 (CHCH₂OH), 117.3 (CH=CH₂), 127.1, 127.3, 128.4, 135.4 (CH=CH₂), 143.9

Minor isomer: 1 H-NMR (500 MHz, CDCl₃) δ 0.86 (6H, 2×d J=7.0 Hz, [(C \underline{H}_{3}) 2 CH], 1.89 (1H, m, [(CH₃) 2 C \underline{H})], 2.24 (1H, m, i PrC \underline{H} NH), 2.33 (2H, m, C \underline{H}_{2} allyl), 3.16 (1H, m, 1×C \underline{H}_{a} H $_{b}$ OH), 3.30 (1H, dd J=10.9, 4.5 Hz, 1×CH $_{a}$ H $_{b}$ OH), 3.76 (1H, dd J=8.5, 5.2 Hz, ArC \underline{H}), 5.09 (2H, 2×d J=17.7, 9.1 Hz, CH=C \underline{H}_{2}), 5.72 (1H, m, C \underline{H} =CH₂), 7.19-7.31 (m, 5H, aromatic C \underline{H}); 13 C-NMR (50 MHz, CDCl₃) δ 17.5, 19.4 [(\underline{C} H₃) 2 CH], 28.2 [(CH₃) 2 CH], 43.6 (\underline{C} H₂ allyl), 59.9 (ArCHCH₂), 60.1 (\underline{C} HCH₂OH), 60.8 (CHC \underline{H}_{2} OH), 118.2 (CH=C \underline{H}_{2}), 127.1, 127.3, 128.4, 135.4 (CH=CH₂), 143.9

2.4.15 (2R)-2-phenyl-2-[(1'R)-1'-phenylbut-3'-enylamino]ethanol

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a colourless oil 0.24 g, 89 % yield (1 mmol scale); $[\alpha]^{23}_{D} = -35.2$ (c = 1.052, CHCl₃), $[\alpha]^{12}_{D} = -42.3$ (c = 4.00, CHCl₃). H-NMR (200 MHz, CDCl₃) δ 2.46 (2H, m, NH, CH₂ allyl), 3.53 (1H, dd J=10.7, 9.0 Hz, $1\times \text{CH}_2\text{OH}$), 3.73 (2H, $2\times \text{d} J=3.4$, 4.6 Hz, ArCHCH₂ and $1\times \text{CH}_2\text{OH}$), 3.85 (1H, dd J=6.9, 4.6 Hz, PhCHCH₂OH), 4.99 (1H, m, CH=CH₂), 5.65 (1H, m, CH=CH₂), 7.18-7.37 (m, 10H, aromatic CH); C-NMR (50 MHz, CDCl₃) δ 41.3 (CH₂ allyl), 59.8, 61.4, 65.6 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 117.5 (CH=CH₂), 125.9, 127.2, 127.4, 127.5, 128.4, 128.6, 134.9 (CH=CH₂), 141.1, 143.5; LRMS (ESI+) m/z 268.2 (M·H)⁺. Anal. Calcd for C₁₈H₂₁NO: C, 80.86; H, 7.92; N, 5.24. Found: C, 80.86; H, 7.98; N, 5.23 %

2.4.16 (2R)-2-phenyl-2-[(1'R)-1-(2"-pyridyl)but-3'-enylamino|ethanol

II-21

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a yellow oil 0.26 g, 98 % yield (1 mmol scale); $[\alpha]^{24}_{D} = -15.2$ (c = 0.99, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 2.53 (2H, t, J=6.8 Hz, CH₂ allyl), 2.74 (1H, br s, NH), 3.54 (1H, dd J=10.6, 7.6 Hz, 1×CH₂OH), 3.75 (3H, m, PyCHCH₂, PhCHCH₂OH and 1×CH₂OH), 5.01 (2H, m, CH=CH₂), 5.66 (1H, m, CH=CH₂), 7.15 (7H, m, aromatic CH), 7.45 (1H, t J=7.9 Hz, Py-C₄H) 8.43 (1H, m, Py-C₆H); ¹³C-NMR (50 MHz, CDCl₃) δ 40.5 (CH₂ allyl), 61.3, 62.8, 66.1 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 117.6 (CH=CH₂), 121.8, 122.3, 127.2, 127.4, 128.3, 128.5, 134.8 (CH=CH₂), 136.1, 141.0, 149.0, 162.4; HRMS (ESI+) calcd for C₁₇H₂₀N₂O·H⁺ 269.1654, found m/z 269.1649 (M·H)⁺. Anal. Calcd for C₁₇H₂₀N₂O: C, 76.09; H, 7.51; N, 10.44. Found: C, 74.83; H, 7.75; N, 10.36 %

2.4.17 (2R)-2-phenyl-2-[(1'R)-1'-(2"-furyl)but-3'-enylamino]ethanol

II-22

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a yellow oil 0.20 g, 79 % yield (1 mmol scale); $[\alpha]^{24}_{D} = -5.71$ (c = 1.05, CHCl₃); 1 H-NMR (200 MHz, CDCl₃) δ 2.54 (2H, m, CH₂ allyl), 2.74 (1H, br s, NH), 3.53 (1H, dd J=10.8, 7.4 Hz, 1×CH₂OH), 3.68 (1H, dd J=10.8, 4.5 Hz, 1×CH₂OH), 3.84 (2H, m, ArCH, PhCHCH₂OH), 5.03 (2H, m, CH=CH₂), 5.76 (1H, m, CH=CH₂), 6.05 (1H, d J=3.1 Hz, furyl C₃H), 6.19 (1H, m, furyl C₄H), 7.25 (6H, m, aromatic CH and furyl C₅H); 13 C-NMR (50 MHz, CDCl₃) δ 38.3 (CH₂ allyl), 53.7, 61.8, 66.0 (furyl CHCH₂, CHCH₂OH and CHCH₂OH), 106.5, 109.9, 117.7 (CH=CH₂) 127.2, 127.5, 128.5, 134.5 (CH=CH₂), 140.8, 141.5 (CH=CH₂), 155.9; LRMS (ESI+) m/z 258.1 (M·H)⁺. Anal. Calcd for C₁₆H₁₉NO₂: C, 74.68; H, 7.44; N, 5.44. Found: C, 74.72; H, 7.43; N, 5.45 %

2.4.18 (2R)-2-phenyl-2-[(1'R)-1'-(2"-chlorophenyl)but-3'-enylamino]ethanol and (2R)-2-phenyl-2-[(1'S)-1'-(2"-chlorophenyl)but-3'-enylamino]ethanol

Purified by flash column chromatography (20 % ethyl acetate-hexane) to give a white solid 0.28 g, 94 % yield (1 mmol scale) (inseparable mixture of diastereomer; d.r.= 94:6 as determined by ¹H-NMR): (m.p. 67-68 °C); $[\alpha]^{26}_D = -36.2$ (c = 1.02, CHCl₃). Major isomer (2*R*,1*S*): ¹H-NMR (500 MHz, CDCl₃) δ 1.72 (1H, br s, NH),

2.45 (2H, m, CH₂ allyl), 3.55 (1H, dd *J*=10.4, 6.1 Hz, 1×CH₂OH), 3.71 (2H, m, PhCHCH₂OH and 1×CH₂OH), 4.31 (1H, t *J*=6.4 Hz, ArCH), 5.04 (2H, m, CH=CH₂), 5.71 (1H, m, CH=CH₂), 7.21 (m, 9H, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 40.5 (CH₂ allyl), 56.3, 62.0, 65.5 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 117.9 (CH=CH₂), 127.3, 128.4, 129.7, 133.2, 134.5 (CH=CH₂), 140.9, 141.3

Minor isomer (2*R*,1*R*): ¹H-NMR (500 MHz, CDCl₃) δ 1.72 (1H, br s, N<u>H</u>), 2.24 (2H, m, C<u>H</u>₂ allyl), 3.47 (1H, m, C<u>H</u>CH₂OH), 3.71 (2H, m, PhC<u>H</u>CH₂OH and $1\times C\underline{H}_2OH$), 4.07 (1H, m, ArC<u>H</u>), 5.04 (2H, m, CH=C<u>H</u>₂), 5.63 (1H, m, C<u>H</u>=CH₂), 7.21 (m, 9H, aromate-C<u>H</u>); ¹³C-NMR (50 MHz, CDCl₃) δ 42.1 (<u>C</u>H₂ allyl), 56.3, 65.5, 69.6 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 118.2 (CH=<u>C</u>H₂), 126.8, 128.0, 133.3, 134.5 (<u>C</u>H=CH₂), 134.7, 140.8; HRMS (ESI+) calcd for C₁₈H₂₀CINO·H⁺ 302.1312, found m/z 302.1311 (M·H)⁺. Anal. Calcd for C₁₈H₂₀CINO: C, 71.63; H, 6.68; N, 4.64. Found: C, 71.46; H, 6.88; N, 4.64 %.

2.4.19 (2R)-2-phenyl-2-[(1'R)-1'-(2"-methoxyphenyl)but-3'-enylamino]ethanol and (2R)-2-phenyl-2-[(1'S)-1'-(2"-methoxyphenyl)but-3'-enylamino]ethanol

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a yellow oil 0.24 g, 82 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds= 80:20 as determined by 1 H-NMR); [α] $^{24}_{D}$ = -45.2 (c = 1.04, CHCl₃). Major isomer (2R,1R): 1 H-NMR (500 MHz, CDCl₃) δ 1.87 (1H, br s, NH), 2.51 (2H, m, CH₂ allyl), 3.49 (1H, dd J=10.4, 6.4 Hz, PhCHCH₂OH), 3.64 (3H, s, OCH₃), 3.66 (1H, m, ArCHCH₂), 4.00 (2H, t, CH₂OH), 5.00 (1H, m, CH=CH₂), 5.73 (1H, m, CH=CH₂), 6.71, 6.84, 7.14 (d, t, m, 9H, aromatic-CH); 13 C-NMR (50 MHz, CDCl₃) δ 39.9 (CH₂ allyl), 55.0 (OCH₃), 56.6, 61.7, 65.2 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 110.5,

116.7 (CH= $\underline{\text{CH}}_2$), 120.4, 127.6, 128.3, 131.1, 136.0 ($\underline{\text{C}}$ H=CH₂), 141.8, 157.1 ($\underline{\text{C}}$ OCH₃)

Minor isomer (2*R*,1*S*): ¹H-NMR (500 MHz, CDCl₃); δ 1.85 (1H, br s, N<u>H</u>), 2.38 (2H, m, C<u>H</u>₂ allyl), 3.54 (1H, m, C<u>H</u>CH₂OH), 3.72 (3H, s, OC<u>H</u>₃), 3.90 (1H, dd *J*=8.5, 5.5 Hz, ArC<u>H</u>CH₂), 4.00 (2H, t, C<u>H</u>₂OH), 5.00 (1H, m, CH=C<u>H</u>₂), 5.64 (1H, m, C<u>H</u>=CH₂), 6.71, 6.94, 7.30 (d, t, m, 9H, Ph-C<u>H</u> and Ph-OCH₃); ¹³C-NMR (50 MHz, CDCl₃) δ 41.1 (<u>C</u>H₂ allyl), 55.2 (<u>O</u>CH₃) 59.0, 61.5, 67.2 (Ar<u>C</u>HCH₂, <u>C</u>HCH₂OH and CH<u>C</u>H₂OH), 110.8, 116.9 (<u>C</u>H=<u>C</u>H₂), 120.7, 127.6, 128.3, 131.1, 136.2 (<u>C</u>H=CH₂), 141.1, 157.6 (<u>C</u>OCH₃); LRMS (<u>E</u>SI+) *m/z* 298.1 (M·H)⁺. Anal. Calcd for C₁₉H₂₃NO₂: C, 76.73; H, 7.80; N, 4.71. Found: C, 76.67; H, 7.65; N, 4.72 %

2.4.20 (2R)-2-phenyl-2-[(1'R)-1'-(2"-hydroxyphenyl)but-3'-enylamino|ethanol

II-25

Purified by flash column chromatography (25 % ethyl acetate-hexane) to give a colourless oil 49 % yield (1 mmol scale); $[\alpha]^{24}_{D} = -63.1$ (c = 0.89, CHCl₃). ¹H-NMR (200 MHz, CDCl₃) δ 2.56 (2H, m, CH₂ allyl), 3.71 – 3.95 (m, ArCH, PhCH, CH₂OH), 5.20 (2H, m, CH=CH₂), 5.74 (1H, m, CH=CH₂), 6.67 (2H, m, ArC₄H and ArC₆H), 6.80 (1H, d, J=7.5 Hz, ArC₃H), 7.05 (1H, t, J=7.5 Hz, ArC₅H), 7.20 (5H, m, C₆H₅); ¹³C-NMR (50 MHz, CDCl₃) δ 40.1 (CH₂ allyl), 60.4, 61.2, 64.2 (ArCH, PhCHCH₂OH and CH₂OH), 116.9 (CH=CH₂), 119.0, 125.5, 127.3, 127.7, 128.0, 128.4, 128.6, 128.9, 134.4 (CH=CH₂), 139.3, 157.2; HRMS (ESI+) calcd for C₁₈H₂₁NO₂H⁺ 284.1651, found m/z 284.1638 (M·H)⁺. Anal. Calcd for C₁₈H₂₁NO₂: C, 76.29; H, 7.47; N, 4.94. Found: C, 76.08; H, 7.45; N, 4.97 %

2.4.21 (2R)-2-phenyl-2-[(1'R)-1'-(3'-chlorophenyl)but-3'-enylamino]ethanol and (2R)-2-phenyl-2-[(1'S)-1'-(3''-chlorophenyl)but-3'-enylamino]ethanol

Purified by flash column chromatography (20 % ethyl acetate-hexane) to give a white solid 0.21 g, 71 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds=94:6 as determined by 1 H-NMR): (m.p. 67-68 °C); $[\alpha]^{23}_{D}=-22.1$ (c=1.13, CHCl₃). Major isomer (2R,1R): 1 H-NMR (200 MHz, CDCl₃) δ 2.32 (1H, br s, N<u>H</u>), 2.52 (2H, m, C<u>H</u>₂ allyl), 3.59 (1H, dd J=11.0, 7.1 Hz, $1\times C\underline{H}_{2}OH$), 3.76 (2H, m, PhC<u>H</u>CH₂OH and $1\times C\underline{H}_{2}OH$), 3.88 (1H, dd J=2.4, 7.0 Hz, ArC<u>H</u>), 5.09 (2H, m, CH=C<u>H</u>₂), 5.71 (1H, m, C<u>H</u>=CH₂), 7.21 (m, 9H, aromatic C<u>H</u>); 13 C-NMR (50 MHz, CDCl₃) δ 41.2 (<u>C</u>H₂ allyl), 59.8, 62.1, 65.9 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 118.0(<u>C</u>H=CH₂), 125.4, 127.2, 127.4, 128.5, 129.6, 134.4 (CH=<u>C</u>H₂), 140.9, 145.9

Minor isomer (2*R*,1*S*): 1 H-NMR (500 MHz, CDCl₃) δ 2.32 (1H, br s, N<u>H</u>), 2.52 (2H, m, C<u>H</u>₂ allyl), 3.55 (1H, m, 1×<u>C</u>H₂OH), 3.76 (2H, m, PhC<u>H</u>CH₂OH and 1×C<u>H</u>₂OH), 3.88 (1H, m, ArC<u>H</u>), 5.15 (2H, m, CH=C<u>H</u>₂), 5.71 (1H, m, C<u>H</u>=CH₂), 7.11 (m, 9H, aromatic C<u>H</u>); 13 C-NMR (50 MHz, CDCl₃) δ 43.1 (<u>C</u>H₂ allyl), 58.5, 61.2, 67.1 (Ar<u>C</u>HCH₂, <u>C</u>HCH₂OH and CH<u>C</u>H₂OH), 118.3 (<u>C</u>H=CH₂), 125.4, 127.2, 127.4, 128.5, 129.6, 134.4 (CH=<u>C</u>H₂), 139.5, 145.9; Anal. Calcd for C₁₈H₂₀ClNO: C, 71.63; H, 6.68; N, 4.64. Found: C, 70.68; H, 6.54; N, 4.66 %

2.4.22 (2R)-2-phenyl-2-[(1'R)-1'-(3"-methoxyphenyl)but-3'-enylamino]ethanol and (2R)-2-phenyl-2-[(1'S)-1'-(3"-methoxyphenyl)but-3'-enylamino]ethanol

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a yellow oil 0.16 g, 51 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds= 80:20 as determined by 1 H-NMR); [α] $^{24}_{D}$ = -45.2 (c = 1.04, CHCl₃). Major isomer (2R,1R): 1 H-NMR (500 MHz, CDCl₃) δ 2.28 (1H, br s, NH), 2.51 (2H, m, CH₂ allyl), 3.56 (1H, dd J=11.7, 4.0 Hz, PhCHCH₂OH), 3.72 (1H, t, ArCHCH₂), 3.77 (3H, s, OCH₃), 3.86 (2H, dd J=7.0, 2.1 Hz, CH₂OH), 5.05 (1H, m, CH=CH₂), 5.70 (1H, m, CH=CH₂), 6.79 (4H, m, Ph-OCH₃), 7.21 (5H, m, Ph-CH); 13 C-NMR (50 MHz, CDCl₃) δ 41.3 (CH₂ allyl), 55.2 (OCH₃), 60.0, 61.2, 65.7 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 112.5, 117.5 127.3, 128.5, 129.4, 134.5 (CH=CH₂), 141.3, 145.4 (CH=CH₂), 159.6 (COCH₃)

Minor isomer (2*R*,1*S*): ¹H-NMR (500 MHz, CDCl₃) of a minor product; δ 1.85 (1H, br s, N<u>H</u>), 2.38 (2H, m, C<u>H</u>₂ allyl), 3.54 (1H, m, C<u>H</u>CH₂OH), 3.72 (3H, s, OC<u>H</u>₃), 3.90 (1H, dd *J*=8.5, 5.5 Hz, ArC<u>H</u>CH₂), 4.00 (2H, t, C<u>H</u>₂OH), 5.00 (1H, m, CH=C<u>H</u>₂), 5.64 (1H, m, C<u>H</u>=CH₂), 6.71, 6.94, 7.30 (d, t, m, 9H, aromatic-C<u>H</u>); ¹³C-NMR (50 MHz, CDCl₃) δ 43.0 (<u>C</u>H₂ allyl), 55.1 (<u>OC</u>H₃), 59.0, 61.2, 66.9 (Ar<u>C</u>HCH₂, <u>C</u>HCH₂OH and CH<u>C</u>H₂OH), 112.9, 117.9 (CH=<u>C</u>H₂), 127.4, 128.5, 129.4, 136.0, 141.1, 154.4 (<u>C</u>H=CH₂), 159.6 (<u>C</u>OCH₃); Anal. Calcd for C₁₉H₂₃NO₂· 0.6H₂O: C, 74.04; H, 7.91; N, 4.54. Found: C, 73.89; H, 7.70; N, 4.60 %

2.4.23 (2R)-2-phenyl-2-[(1'R)-1'-(3"-hydroxyphenyl)but-3'-enylamino]ethanol and (2R)-2-phenyl-2-[(1'S)-1'-(3"-hydroxyphenyl)but-3'-enylamino]ethanol

Purified by flash column chromatography (30 % ethyl acetate-hexane) to give a colourless oil 0.22 g, 78 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds=94:6 as determined by $^{1}\text{H-NMR}$); [α] $^{24}_{D}=-36.1$ (c=0.97, CHCl₃). Major isomer (2R,1R): $^{1}\text{H-NMR}$ (500 MHz, CDCl₃) δ 2.44 (2H, m, CH₂ allyl), 2.78 (1H, br s, NH), 3.53 (1H, dd J=10.7, 7.0 Hz, $1\times\text{CH}_{2}\text{OH}$), 3.65 (1H, t J=6.4 Hz, PhCHCH₂OH), 3.74 (1H, $2\times\text{d}$ J=10.7, 4.6 Hz, $1\times\text{CH}_{2}\text{OH}$), 3.84 (1H, m, ArCH), 5.00 (2H, $2\times\text{d}$ J=18.3, 10.4 Hz, CH=CH₂), 5.63 (1H, m, CH=CH₂), 6.80 (3H, m, aromatic CH), 7.24 (6H, m, aromatic CH); $^{13}\text{C-NMR}$ (50 MHz, CDCl₃); δ 40.7 (CH₂ allyl), 59.6 61.2, 65.4 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 114.3, 114.6, 117.6, 119.2, 127.3, 127.7, 128.6, 129.6, 134.8 (CH=CH₂), 140.4, 144.9, 156.4

Minor isomer (2*R*,1*S*): ¹H-NMR (500 MHz, CDCl₃) δ 2.32 (2H, m, CH₂ allyl), 2.78 (1H, br s, NH), 3.47 (1H, m, CHCH₂OH), 3.65 (1H, t *J*=6.4 Hz, PhCHCH₂OH), 3.74 (1H, 2×d *J*=10.7, 4.6 Hz, 1×CH₂OH), 3.84 (1H, m, ArCH), 5.07 (2H, 2×d *J*=17.1, 11.0 Hz, CH=CH₂), 5.63 (1H, m, CH=CH₂), 6.80 (3H, m, aromatic CH), 7.24 (6H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃); δ 42.9 (ArCHCH₂), 58.4, 60.9, 66.5 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 113.7, 114.6, 118.1, 119.9, 127.3, 127.7, 128.6, 129.6, 135.1 (CH=CH₂), 140.0, 144.6, 156.7; HRMS (ESI+) calcd for C₁₈H₂₁NO₂·H⁺ *m/z* 284.1651, found *m/z* 284.1661 (M·H)⁺

2.4.24 (2R)-2-phenyl-2-[(1'R)-1'-(4"-chlorophenyl)but-3'-enylamino|ethanol

II-29

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.27 g, 91 % yield (1 mmol scale): (m.p. 68-70 °C); $[\alpha]^{23}_D = -18.3$ (c = 1.04, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 1.99 (1H, br s, NH), 2.42 (2H, m, CH₂ allyl), 3.51 (1H, dd J=10.4, 6.8 Hz, 1×CH₂OH), 3.75 (3H, m, ArCH, 1×CH₂OH and PhCHCH₂OH), 5.03 (2H, m, CH=CH₂), 5.63 (1H, m, CH=CH₂), 7.21 (m, 9H, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃); δ 41.4 (CH₂ allyl), 59.4, 61.6, 65.8 (ArCH, PhCHCH₂OH and PhCHCH₂OH), 117.8 (CH=CH₂), 127.1, 127.5, 128.4, 128.6, 132.7, 134.5 (CH=CH₂), 140.9, 142.2; LRMS (ESI+) m/z 302.1 (M·H)⁺. Anal. Calcd for C₁₈H₂₀ClNO: C, 71.63; H, 6.68; N, 4.64. Found: C, 71.61; H, 6.70; N, 4.65 %

2.4.25 (2R)-2-phenyl-2-[(1'R)-1'-(4"-methylphenyl)but-3'-enylamino]ethanol

II-30

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.37 g, 98 % yield (1 mmol scale): (m.p. 66-68 °C); $[\alpha]^{26}_D = -28.5$ (c = 1.01, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 2.32 (3H, s, CH₃-4'), 2.41 (1H, br s, NH), 2.48 (2H, m, CH₂ allyl), 3.51 (1H, dd J=10.6, 6.9 Hz, 1×CH₂OH), 3.70 (2H, m, ArCH and 1×CH₂OH), 3.82 (1H, m, PhCHCH₂OH), 4.98 (1H, d J=9.1 Hz,

CH=C \underline{H}_aH_b), 5.07 (1H, d J=10.4 Hz, CH=CH $_a\underline{H}_b$), 5.65 (1H, m, C \underline{H} =CH $_aH_b$), 7.10 (4H, s, 4×ArC \underline{H}) 7.22 (m, 5H, aromatic C \underline{H}); ¹³C-NMR (50 MHz, CDCl $_3$) δ 21.1 ($\underline{C}H_3$ -4'), 41.3 ($\underline{C}H_2$ allyl), 59.3, 61.2, 65.5 (Ar $\underline{C}H$), Ph $\underline{C}HCH_2OH$ and PhCH $\underline{C}H_2OH$), 117.3 (CH= $\underline{C}H_2$), 127.0, 127.2, 127.4, 128.6, 129.1, 135.1 ($\underline{C}H$ =CH $_2$), 136.7, 140.6, 141.3; LRMS (ESI+) m/z 382.2 (M·H)⁺ Anal. Calcd for C₁₉H₂₃NO: C, 81.10; H, 8.24; N, 4.98. Found: C, 80.90; H, 8.41; N, 5.10 %

2.4.26 (2R)-2-phenyl-2-[(1'R)-1'-isopropylbut-3'-enylamino]ethanol

II-31

Purified by flash column chromatography (20 % ethyl acetate-hexane) to give a yellow solid 0.23 g, 98 % yield (1 mmol scale): (m.p. 52-53 °C); $[\alpha]^{24}_D = -116.1$ (c = 1.042, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 0.78 [6H, 2×d J=6.8 Hz, (CH₃)₂CH],1.63 [1H, m, (CH₃)₂CH], 2.06 (1H, br s, NH), 2.18 (2H, m, CH₂ allyl), 2.30 (1H, m, ¹PrCH), 3.46 (1H, dd J=10.5, 8.5 Hz, 1×CH₂OH), 3.63 (1H, dd J=10.6, 4.5 Hz, 1×CH₂OH), 3.86 (1H, dd J=9.0, 4.5 Hz, PhCHCH₂OH), 5.03 (1H, d J=9.1 Hz, CH=CH₂Hb), 5.08 (1H, d J=15.8 Hz, CH=CH₂Hb), 5.82 (1H, m, CH=CH₂), 7.32 (m, 5H, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 18.2, 18.8 [(CH₃)₂CH], 30.5 [(CH₃)₂CH], 35.1 (CH₂ allyl), 59.5, 61.9, 66.9 [(CH₃)₂CHCH₂, CHCH₂OH and CHCH₂OH], 116.8 (CH=CH₂), 127.4, 127.5, 128.5, 136.1 (CH=CH₂), 141.4; LRMS (ESI+) m/z 234.2 (M·H)⁺. Anal. Calcd for C₁₅H₂₃NO: C, 77.21; H, 9.93; N, 6.00. Found: C, 77.03; H, 9.90; N, 5.95 %

2.4.27 (2R)-2-phenyl-2-[(1'R)-1'-n-propylbut-3'-enylamino]ethanol

II-32

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a colourless oil 0.12 g, 51 % yield (1 mmol scale); $[\alpha]^{31}_{D} = -94.2$ (c = 1.35, CHCl₃); 1 H-NMR (200 MHz, CDCl₃) δ 0.77 (3H, m, (CH₂)₂CH₃), 1.25 (4H, m, (CH₂)₂CH₃), 2.17 (2H, m, CH₂ allyl), 2.25 (1H, br s, NH), 2.49 (1H, m, CH₃(CH₂)₂CH), 3.46 (1H, m, 1×CH₂OH), 3.63 (1H, dd J=10.5, 4.5, 1×CH₂OH), 3.86 (1H, dd J=8.6, 4.5 Hz, PhCHCH₂OH), 5.08 (2H, m, CH=CH₂), 5.56 (1H, m, CH=CH₂), 7.27 (m, 5H, aromatic CH); 13 C-NMR (50 MHz, CDCl₃); δ 14.1 [(CH₂)₂CH₃], 19.0, 37.0 [(CH₂)₂CH₃], 37.8 (CH₂ allyl), 53.5, 61.6, 65.8 [CH₃(CH₂)₂CHCH₂, CHCH₂OH and CHCH₂OH], 117.2 (CH=CH₂), 127.2, 127.5, 128.6, 135.2 (CH=CH₂), 141.3; LRMS (ESI+) m/z 234.2 (M·H)⁺. Anal. Calcd for C₁₅H₂₃NO: C, 77.21; H, 9.93; N, 6.00. Found: C, 77.51; H, 10.26; N, 5.71 %

2.4.28 (2R)-2-phenyl-2-[(1'R)-1'-n-butylbut 3'-enylamino]ethanol

II-33

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a colourless oil 0.08 g, 33 % yield (1 mmol scale); $[\alpha]^{31}_D = -76.3$ (c = 0.47, CHCl₃); 1 H-NMR (200 MHz, CDCl₃) δ 0.80 [3H, m, (CH₂)₃CH₃], 1.25 [6H, m, (CH₂)₃CH₃], 2.17 (2H, m, CH₂ allyl), 2.34 (1H, br s, NH), 2.47 [1H, m, (CH₂)₃CH], 3.47 (1H, m, 1×CH₂OH), 3.63 (1H, dd J=10.6, 4.6, 1×CH₂OH), 3.86 (1H, dd J=8.6, 4.5 Hz, PhCHCH₂OH), 5.08 (2H, m, CH=CH₂), 5.76 (1H, m, CH=CH₂), 7.31 (m, 5H,

aromatic CH); 13 C-NMR (50 MHz, CDCl₃); δ 14.0 [(CH₂)₃CH₃], 22.7, 28.0, 34.4 [CH₂)₃CH₃], 37.7 (CH₂ allyl), 53.7, 61.7, 66.8 [CH₃(CH₂)₂CHCH₂, CHCH₂OH and CHCH₂OH], 117.2 (CH=CH₂), 127.2, 127.5, 128.6, 135.2, 141.2 ; LRMS (ESI+) m/z 248.2 (M·H)⁺. Anal. Calcd for C₁₆H₂₅NO: C, 77.68; H, 10.19; N, 5.66. Found: C, 77.51; H, 10.26; N, 5.72 %

2.4.29 (2R)-2-phenyl-2-[(1'R)-1'-cyclohexylbut-3'-enylamino]ethanol

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a colourless oil 0.21 g, 78 % yield (1 mmol scale); $[\alpha]^{24}_{D} = -78.9$ (c = 1.07, CHCl₃); 1 H-NMR (200 MHz, CDCl₃) δ 0.80–1.69 (11H, m, (c Hex C<u>H</u>), 2.15 (2H, m, C<u>H</u>₂ allyl) 2.24 (1H, m, c Hex C<u>H</u>), 3.40 (1H, dd J= 10.52, 8.56 Hz, 1×C<u>H</u>₂OH), 3.56 (1H, dd J= 10.48, 4.64 Hz, 1×C<u>H</u>₂OH), 3.78 (1H, dd J=8.56, 4.6 Hz, PhC<u>H</u>CH₂OH), 5.00 (2H, m, CH=C<u>H</u>₂), 5.72 (1H, m, C<u>H</u>=CH_aH_b), 7.20 (m, 5H, aromatic C<u>H</u>); 13 C-NMR (100 MHz, CDCl₃) δ 26.3, 26.4, 26.6, 26.8, 29.2, 34.8 (c Hex <u>C</u>H), 40.8 (<u>C</u>H₂ allyl), 58.7, 61.8, 66.8 [(CH₂)₅CHCH₂, <u>C</u>HCH₂OH and CH<u>C</u>H₂OH], 116.7 (CH=<u>C</u>H₂), 127.3, 127.4, 128.4, 136.0 (<u>C</u>H=CH₂), 141.3; HRMS (ESI+) calcd for C₁₈H₂₇NO·H⁺ 274.2171, found m/z 274.2192 (M·H)⁺

2.4.30 (2R)-2-phenyl-2-[(1'R)-1'-(2"-phenylethenyl)but-3'-enylamino]ethanol

Purified by flash column chromatography (20 % ethyl acetate-hexane) to give a yellow oil 0.25 g, 87 % yield (1 mmol scale); $[\alpha]^{24}_{D} = +26.0$ (c = 1.00, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 2.26 (1H, br s, NH), 2.37 (2H, m, CH₂ allyl, ArCHCH₂), 3.34 (1H, dd J=13.9, 5.8 Hz, RCH), 3.56 (1H, dd J=10.7, 7.6, $1\times CH_2OH$), 3.72 (1H, dd J=10.8, 4.6 Hz, $1\times CH_2OH$), 3.90 (1H, dd J=7.4, 4.5 Hz, PhCHCH₂OH), 5.08 (1H, d J=10.1 Hz, CH=CH_aH_b), 5.14 (1H, d J=18.6 Hz, CH=CH_aH_b), 5.84 (1H, m, CH=CH₂), 5.94 (1H, d J=8.0 Hz, ArCH=CH), 5.94 (1H, d J=15.9 Hz, ArCH=CH), 7.25 (m, 10H, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 39.7 (CH₂ allyl), 58.1, 61.4, 65.9 (ArCHCH₂, CHCH₂OH and CHCH₂OH), 117.5 (CH=CH₂), 126.2, 127.2, 127.3, 127.4, 128.4, 128.5, 130.5, 132.6 (CH=CH₂), 136.8, 141.5; HRMS (ESI+) calcd for C₂₀H₂₃NO·H⁺ 294.1858, found m/z 294.1871 (M·H)⁺

2.5 General procedure for the preparation of homoallyl amine hydrochloride salts

The homoallyl amine bearing the phenylglycinol auxiliary was treated with a slight excess of Pb(OAc)₄ in 1:1 CH₂Cl₂/MeOH at 0 °C for 2 hours. Large excess of methanolic solution of hydroxylamine hydrochloride (10 eq) was then directly added to affect the cleavage of the resulting imine. The reaction was followed by TLC which indicated complete cleavage within 1 h at 0 °C. The mixture was adjusted to pH=1 with 10 % aqueous HCl and was extracted with diethyl ether to remove non-basic impurities. The aqueous phase was adjusted to pH=12 with aqueous 15 % NaOH and was extracted with diethyl ether. The dried ether phase was treated with excess amount of methanolic HCl (prepared *in situ* from acetyl chloride methanol at 0 °C). The solvent was evaporated and the residue was dried under vacuum to give the homoallyl amine as a hydrochloride salt.

2.5.1 (R)-1-phenyl-but-3-enamine hydrochloride

V-6

A white solid 0.14 g, 78 % yield (1 mmol scale); $[\alpha]^{24}_{D} = -1.18$ (c = 0.85, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 2.78 (2H, m, CH₂ allyl), 4.17 (1H, m, ArCH, 5.01 (2H, m, CH=CH₂), 5.49 (1H, m, CH=CH₂), 7.31 (5H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 38.6 (CH₂ allyl), 55.8 (ArCH), 120.0 (CH=CH₂), 127.7, 129.0, 131.6, 135.8 (CH=CH₂); LRMS (ESI+) m/z 148.1 (M·H)⁺

2.5.2 (R)-1-isopropyl-but-3-enamine hydrochloride

A yellow solid 0.11 g, 74 % yield (1 mmol scale); $[\alpha]^{24}_{D} = -4.8$ (c = 0.834, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 0.80 [6H, d, (CH₃)₂CH], 1.79 [1H, m, (CH₃)₂CH], 2.26 [2H, m, (CH₃)₂CHCH₂], 3.98 (1H, m, ⁱPrCH) 5.05 (2H, m, CH=CH₂), 5.60 (1H, m, CH=CH₂); ¹³C-NMR (50 MHz, CDCl₃) δ 17.8 [(CH₃)_{2a}CH], 18.5 [(CH₃)_{2b}CH], 29.5 [(CH₃)₂CH], 34.2 (CH₂ allyl), 57.4 (ⁱPrCH), 120.0 (CH=CH₂), 132.2 (CH=CH₂) HRMS (ESI+) calcd for C₇H₁₅N·H⁺ m/z 114.1283, found m/z 114.1215 (M·H)⁺

2.5.3 (R)-1-(2'-methoxyphenyl)but-3-enamine hydrochloride

V-8

A white solid 0.17 g, 82 % yield (1 mmol scale); $[\alpha]^{22}_D = -6.91$ (c = 1.04, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 2.80 (2H, m, CH₂ allyl), 3.80 (3H, s, OCH₃), 4.56 (1H, m, ArCH), 5.02 (2H, dd J=17.2, 10.2, CH=CH₂), 5.58 (1H, m, CH=CH₂),

6.89, 7.30 (4H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 36.8 (<u>C</u>H₂ allyl), 55.4 (O<u>C</u>H₃), 58.1 (Ar<u>C</u>H), 110.8, 119.4 (CH=<u>C</u>H₂), 120.7, 123.6, 127.6, 128.8, 130.0, 132.3 (<u>C</u>H=CH₂), 156.9 (<u>C</u>OCH₃); HRMS (ESI+) calcd for C₁₁H₁₅NO·H⁺ 178.1232, found m/z 178.1236 (M·H)⁺

2.5.4 (R)-1-(2'-phenylethenyl)but-3-enamine hydrochloride

A yellow oil 0.15g, 73 % yield (1 mmol scale); $[\alpha]^{24}_{D} = +23.1$ (c = 0.78, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 2.61 (2H, m, CH₂ allyl), 3.78 (1H, m, RCHNH₂), 5.08 (2H, m, CH=CH₂), 5.62 (1H, m, CH=CH₂), 6.18 (1H, dd J=15.9, 8.1, PhCH=CH), 6.63 (1H, d J=15.9, PhCH=CH), 7.24 (5H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 37.7 (CH₂ allyl), 53.8 (ArCH), 120.1 (CH=CH₂), 123.8, 126.9, 128.4, 128.6, 131.5, 135.5, 135.8 (CH=CH₂); HRMS (ESI+) calcd for C₁₂H₁₅N·H⁺ 174.1283, found m/z 174.1284 (M·H)⁺

2.5.5 (R)-1-(2'-pyridyl)but-3-enylamine hydrochloride

V-10

A yellow oil 0.14 g, 75 % yield (1 mmol scale); $[\alpha]^{27}_D = +20.29$ (c = 1.02, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 2.55 (2H, m, CH₂ allyl), 4.29 (1H, m, ArCH), 4.96 (2H, m, CH=CH₂), 5.55 (1H, m, CH=CH₂), 6.94-7.59 (3H, m, Pyridyl C₃·H, C₄·H, C₅·H), 8.43 (1H, m, Pyridyl C₆·H); ¹³C-NMR (50 MHz, CDCl₃) δ 40.2 (CH₂ allyl), 55.4 (ArCH), 119.3 (CH=CH₂), 122.4, 122.9, 132.8, 136.9, 149.1 (CH=CH₂), 158.5. HRMS (ESI+) calcd for C₉H₁₂N₂+2H⁺ 150.1157, found m/z 150.08 [M+2H]⁺

2.5.6 (R)-1-propyl-but-3-enamine hydrochloride

A colourless oil 0.12 g, 82 % yield (1 mmol scale); $[\alpha]^{27}_{D} = -0.16$ (c = 1.10, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 0.88 [3H, m, (CH₂)₂CH₃], 1.36 (2H, m, CH₂CH₂CH₃), 1.61 (2H, m, CH₂CH₂CH₃), 2.40 (2H, m, CH₂ allyl), 3.26 (1H, m, ⁿPrCHNH₂), 5.19 (2H, m, CH=CH₂), 5.70 (1H, m, CH=CH₂); ¹³C-NMR (50 MHz, CDCl₃) δ 13.8 (CH₂CH₂CH₃), 18.7 (CH₂CH₂CH₃), 34.3 (CH₂CH₂CH₃), 35.9 (CH₂ allyl), 51.9 (ⁿPrCH), 120.4 (CH=CH₂), 131.8 (CH=CH₂); HRMS (ESI+) calcd for C₇H₁₅N·H⁺ 114.1283, found m/z 114.1206 (M·H)⁺

2.5.7 (R)-1-cyclohexyl-but-3-enamine hydrochloride

V-12

A colourless oil 0.11 g, 56 % yield (1 mmol scale); $[\alpha]^{27}_D = -0.16$ (c = 1.10, CHCl₃); ¹H-NMR (200 MHz, CDCl₃) δ 1.22 (5H, m, $(C\underline{H}_2)_2C\underline{H}$), 1.70 (5H, m, $(C\underline{H}_2)_2C\underline{H}$), 2.48 (2H, m, $C\underline{H}_2$ allyl), 3.10 (1H, m, ^cHexC \underline{H}), 5.22 (2H, m, CH=C \underline{H}_2), 5.77 (C \underline{H} =CH₂); ¹³C-NMR (50 MHz, CDCl₃) δ 25.9, 27.9, 28.9, 31.5, 34.3 (\underline{C}_6H_{11}), 39.0 ($\underline{C}H_2$ allyl), 56.7 (^cHex $\underline{C}H$), 119.8 (CH= $\underline{C}H_2$), 132.5 ($\underline{C}H$ =CH₂); HRMS (ESI+) calcd for C₁₀H₁₉N·H⁺ 154.1596, found m/z 154.1597 (M·H)⁺

2.6 General procedure for the coupling of Boc-phenylglycine to the homoallyl amine

A suspension of the homoallyl amine hydrochloride salt in dichloromethane was stirred with Et₃N (1 eq) to liberated the free amine. The free amine was then treated with (R)- or (S)-Boc-phenylglycine (1 eq), 1-hydroxybenzotriazole monohydrate (HOBt·H₂O) (1 eq) and dicyclohexylcarbadi-imide (DCC) (1 eq) until the reaction was judged complete by TLC. The reaction mixture was filtered to remove the dicyclohexylurea, and the amide was purified by flash chromatography on silica gel using hexane/ethyl acetate as eluent.

2.6.1 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(R)-1-phenylbut-3-enamine

(R,R)-XI-1

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.19 g, 52 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.37 (9H, m, (CH₃)₃CO), 2.45 (2H, m, CH₂ allyl), 5.10 (4H, m, CH=CH₂, ArCHCH₂ allyl and Phegly C_{α}H), 5.58 (1H, m, CH=CH₂), 5.83 (1H, m, NHCHCH₂ allyl), 6.20 (1H, d, NH Phegly), 6.92 (2H, m, aromatic CH), 7.35 (8H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 40.5 (CH₂ allyl), 52.5 (ArCHCH₂ allyl), 58.6 (Phegly C_{α}H), 80.1 [(CH₃)₃CO], 118.5 (CH=CH₂), 126.0, 127.3, 128.4, 129.0, 133.6

(<u>C</u>H=CH₂), 138.3, 141.2, 155.2 (Boc<u>C</u>O), 169.4 (Phegly <u>C</u>ONH); HRMS (ESI+) calcd for $C_{23}H_{28}N_2O_3\cdot Na^+$ 403.1998, found m/z 403.1996 (M·Na)⁺

$2.6.2\ N-[1-N'-(tert-but oxy carbonyl)-(S)-phenylgly cyl]-(R)-1-phenylbut-3-enamine$

(S,R)-XI-1

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.23 g, 61 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 1.37 [9H, m, (CH₃)₃CO], 2.37 (2H, m, CH₂ allyl), 4.77 (1H, d *J*=16.7, CH=CH_aH_b), 4.84 (1H, d *J*=9.0, CH=CH_aH_b), 5.00 (1H, m, ArCHCH₂ allyl), 5.15 (1H, d, Phegly C_αH), 5.43 (1H, m, CH=CH₂), 5.87 (1H, d, NHCHCH₂ allyl), 6.29 (1H, d, NH Phegly), 7.16 (10H, m, Aromatic-CH); ¹³C-NMR (50 MHz, CDCl₃); δ 28.3 [(CH₃)₃CO], 40.4 (CH₂ allyl), 52.7 (ArCHCH₂ allyl), 58.4 (Phegly C_αH), 79.8 [(CH₃)₃CO], 118.1 (CH=CH₂), 126.5, 127.2, 128.1, 128.5, 128.8, 133.5 (CH=CH₂), 138.6, 141.3, 155.2 (BocCO), 169.8 (Phegly CONH); HRMS (ESI+) calcd for C₂₃H₂₈N₂O₃·Na⁺ 403.1998, found *m/z* 403.1998 (M·Na)⁺

$2.6.3\ N-[1-N'-(tert-but oxy carbonyl)-(S)-phenylgly cyl]-(S)-1-phenylbut-3-enamine$

(S,S)-XI-1

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.20 g, 52 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.38 [9H, m, (C $\underline{\text{H}}_{3}$)₃CO], 2.46 (2H, m, C $\underline{\text{H}}_{2}$ allyl), 5.07 (4H, m, CH=C $\underline{\text{H}}_{2}$ and ArC $\underline{\text{H}}$ CH₂ allyl), 5.59 (1H, m, C $\underline{\text{H}}$ =CH₂), 5.82 (1H, m, Phegly C_{α}H), 6.20 (1H, m, N $\underline{\text{H}}$ Phegly),

6.92-7.34 (10H, m, aromatic C<u>H</u>); ¹³C-NMR (50 MHz, CDCl₃) δ 28.3 [(<u>C</u>H₃)₃CO], 40.5 (C<u>H</u>₂ allyl), 53.1 (ArC<u>H</u>CH₂ allyl), 58.4 (Phegly C₀<u>H</u>), 70.5 [(CH₃)₃<u>C</u>O], 118.5 (<u>C</u>H=CH₂), 126.0, 127.3, 128.4, 129.0, 133.6 (CH=<u>C</u>H₂), 138.3, 140.2, 155.2 (Boc<u>C</u>O), 169.4 (Phegly <u>C</u>ONH); HRMS (ESI+) calcd for C₂₃H₂₈N₂O₃·Na⁺ 403.1998, found m/z 403.1992 (M·Na)⁺

2.6.4 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(S)-1-phenylbut-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 56 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 1.37 [9H, m, (CH₃)₃CO], 2.38 (2H, m, CH₂ allyl), 4.77 (1H, dd *J*=17.2, 9.0 Hz, CH=CH₂), 5.04 (2H, m, ArCHCH₂ allyl, NH and Phegly C_αH), 5.43 (1H, m, CH=CH₂), 5.87 (1H, m, Phegly C_αH), 6.20 (1H, m, NH), 7.16 (10H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 39.0 (CH₂ allyl), 52.5 (ArCHCH₂ allyl), 58.4 (Phegly C_αH), 79.5 [(CH₃)₃CO], 118.5 (CH=CH₂), 125.5, 127.3, 128.4, 129.0, 133.6 (CH=CH₂), 137.3, 141.2, 155.2 (BocCO), 169.4 (Phegly CONH); HRMS (ESI+) calcd for C₂₃H₂₈N₂O₃·Na⁺ 403.1998, found *m/z* 403.1998 (M·Na)⁺

$2.6.5\ N\hbox{-}[1\hbox{-}N'\hbox{-}(tert\hbox{-butoxycarbonyl})\hbox{-}(R)\hbox{-phenylglycyl}]\hbox{-}(R)\hbox{-}1\hbox{-isopropylbut-}3\hbox{-}enamine$

(R,R)-XI-2

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a yellow oil 0.17 g, 50 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 0.66

[6H, $2\times d$ J=6.8 Hz, $(C\underline{H}_3)_2CH$], 1.28 [9H, m, $(C\underline{H}_3)_3CO$], 1.58 [1H, m, $(CH_3)_2C\underline{H}$], 2.15 (2H, m, $C\underline{H}_2$ allyl), 3.83 (1H, m, ${}^iPrC\underline{H}CH_2$ allyl), 5.05 (3H, m, Phegly $C_{\alpha}\underline{H}$ and $CH=C\underline{H}_2$), 5.49 (1H, m, $N\underline{H}CHCH_2$ allyl), 5.68 (1H, m, $C\underline{H}=CH_2$), 5.82 (1H, m, $N\underline{H}$ Phegly), 7.29 (5H, m, aromatic $C\underline{H}$); ${}^{13}C-NMR$ (50 MHz, $CDCl_3$) δ 17.3, 19.1 [($\underline{C}H_3$) $_2CH$], 28.3 [($\underline{C}H_3$) $_3CO$], 31.2 [($\underline{C}H_3$) $_2\underline{C}HCH$], 36.6 ($\underline{C}H_2$ allyl), 53.9 [($\underline{C}H_3$) $_2CH\underline{C}H$], 60.0 (Phegly $\underline{C}_{\alpha}H$), 80.0 [($\underline{C}H_3$) $_3\underline{C}O$], 117.5 ($\underline{C}H=\underline{C}H_2$), 127.1, 128.3, 128.9, 134.6 ($\underline{C}H=CH_2$), 138.9, 155.1 (Boc $\underline{C}O$), 169.6 (Phegly $\underline{C}ONH$); LRMS (ESI+) m/z 369.1 (M·Na)⁺

2.6.6 N-[1-N'-(tert-butoxycarbonyl)-(S)-phenylglycyl]-(R)-1-isopropylbut-3-enamine

(S,R)-XI-2

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a yellow oil 0.23 g, 68 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 0.86 [6H, 2×d J=7.0 Hz, (C $_{13}$)₂CH], 1.37 [9H, m, (C $_{13}$)₃CO], 1.67 [1H, m, (CH₃)₂C $_{11}$], 1.99 (2H, m, C $_{12}$ allyl), 3.76 (1H, m, i PrC $_{12}$ allyl), 4.65 (1H, d $_{13}$ =18.4 Hz, CH=C $_{14}$ H_b), 4.72 (1H, d $_{13}$ =10.1 Hz, CH=CH_aH_b), 5.05 (1H, m, Phegly C_aH), 5.41 (2H, m, C $_{13}$ =CH=CH₂ and N $_{13}$ CHCH₂ allyl), 5.85 (1H, m, N $_{13}$ Phegly), 7.29 (5H, m, aromatic C $_{13}$); 13 C-NMR (50 MHz, CDCl₃) δ 18.2, 19.2 [($_{13}$)₂CH], 28.3 [($_{13}$)₃CO], 31.3 [(CH₃)₂CHCH], 36.3 ($_{13}$ 0 allyl), 54.1 i PrC $_{13}$ 1 allyl), 58.8 (Phegly $_{13}$ 2 (CH₃)₃CO], 117.7 (CH= $_{13}$ 2 llyl), 54.1 i PrC $_{13}$ 3 (2B.9, 133.7 (CH=CH₂), 138.9, 155.2 (Boc $_{13}$ 2 (Boc $_{13}$ 2 (CONH); LRMS (ESI+) $_{13}$ 3 (GN-Na)⁺

2.6.7 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(R)-1-(2'-methoxyphenyl) but-3-enamine

(R,R)-XI-3

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a white solid 0.21 g, 51 % yield (1 mmol scale); (inseparable mixture of diastereomer; ds = 85:15 as determined by 1 H-NMR); Major isomer (R,R): 1 H-NMR (200 MHz, CDCl₃) δ 1.36 [9H, m, (C_{13})₃CO], 2.48 (2H, m, C_{12} allyl), 3.60 (3H, s, OC $_{13}$), 5.05 (4H, m, CH=C $_{12}$), ArCHCH₂ allyl and Phegly C₀H), 5.60 (1H, m, CH=CH₂), 5.85 (1H, m, NHCHCH₂ allyl) 6.55 (1H, m, NH Phegly), 6.84 (3H, m, aromatic CH), 7.10-7.34 (6H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 39.4 (CH₂ allyl), 51.5 (ArCHCH₂ allyl), 55.0 (OCH₃), 58.7 (Phegly C₀H), 79.9 [(CH₃)₃CO], 117.6 (CH=CH₂), 120.5 (R), 127.3, 128.1, 128.3, 128.4, 128.9, 134.5 (CH=CH₂), 138.7, 155.1 (COMe) 156.7 (BocCO), 168.9 (Phegly CONH).

Minor isomer (R,S): ¹H-NMR (200 MHz, CDCl₃) δ 1.36 [9H, m, (CH₃)₃CO], 2.35 (2H, m, CH₂ allyl), 3.75 (3H, s, OCH₃), 4.77 (4H, m, CH=CH₂, ArCHCH₂ allyl and Phegly C_αH), 5.42 (1H, m, CH=CH₂), 5.85 (1H, m, NHCHCH₂ allyl) 6.55 (1H, m, NH Phegly), 6.73 (3H, m, aromatic CH), 7.10-7.34 (6H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 39.4 (CH₂ allyl), 51.5 (ArCHCH₂ allyl), 55.0 (OCH₃), 58.7 (Phegly C_αH), 79.9 [(CH₃)₃CO], 117.6 (CH=CH₂), 120.8, 127.3, 128.1, 128.3, 128.4, 128.9, 134.1, 138.7 (CH=CH₂), 155.2 (COMe) 156.7 (BocCO), 168.9 (Phegly CONH); LRMS (ESI+) m/z 433.2 (M·Na)⁺

2.6.8 N-[1-N'-(tert-butoxycarbonyl)-(S)-phenylglycyl]-(R)-1-(2'-methoxyphenyl) but-3-enamine

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a white solid 0.16 g, 40 % yield (1 mmol scale); (inseparable mixture of diastereomer; ds = 89:11 as determined by 1 H-NMR); Major isomer (S,R): 1 H-NMR (200 MHz, CDCl₃) δ 1.36 (9H, m, (C_{13})₃CO), 2.34 (2H, m, C_{12} allyl), 3.76 (3H, s, OC $_{13}$), 4.78 (2H, m, CH=CH₂), 5.06 (1H, m, ArCHCH₂ allyl and Phegly C₀H), 5.44 (1H, m, CH=CH₂), 5.95 (1H, m, NHCHCH₂ allyl), 6.70 (1H, m, NH Phegly), 6.91 (2H, m, aromatic CH), 7.07-7.35 (8H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃); δ 28.3 [(C_{13})₃CO], 39.5 (C_{12} allyl), 51.6 (C_{12} allyl), 55.2 (C_{13}), 58.8 (Phegly C_{01}), 79.8 [(C_{13})₃CO], 117.6 (C_{12}), 120.8, 127.3, 128.2, 128.4, 128.7, 128.9, 134.1 (C_{11})–CH=CH₂), 139.1, 155.2 (C_{11}) 156.8 (BocCO), 168.8 (Phegly C_{11})

Minor isomer (*S*,*S*): ¹H-NMR (200 MHz, CDCl₃) δ 1.36 (9H, m, (C<u>H</u>₃)₃CO), 2.45 (2H, m, C<u>H</u>₂ allyl), 3.59 (3H, s, OC<u>H</u>₃), 4.78 (2H, m, CH=C<u>H</u>₂), 5.06 (1H, m, ArC<u>H</u>CH₂ allyl and Phegly C_α<u>H</u>), 5.44 (1H, m, C<u>H</u>=CH₂), 5.95 (1H, m, N<u>H</u>CHCH₂ allyl), 6.70 (1H, m, N<u>H</u> Phegly), 6.91 (2H, m, aromatic C<u>H</u>), 7.07-7.35 (8H, m, aromatic C<u>H</u>); ¹³C-NMR (50 MHz, CDCl₃); δ 28.3 [(<u>C</u>H₃)₃CO], 39.5 (<u>C</u>H₂ allyl), 51.7 (<u>C</u>H₂ allyl), 55.2 (<u>OC</u>H₃), 58.8 (Phegly <u>C</u>_αH), 79.8 [(CH₃)₃<u>C</u>O], 117.5 (<u>C</u>H=<u>C</u>H₂), 120.5, 127.3, 128.2, 128.4, 128.7, 128.9, 134.5 (<u>C</u>H=CH₂), 139.0, 155.1 (<u>C</u>OMe) 156.9 (Boc<u>C</u>O), 168.8 (Phegly <u>C</u>ONH); LRMS (ESI+) *m/z* 433.2 (M·Na)⁺

2.6.9 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(R)-1-(2'-pyridyl)but-3-enamine

(R,R)-XI-4

Purified by flash column chromatography (20 % ethyl acetate-hexane) to give a white solid 0.21 g, 56 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.22 (9H, m, (CH₃)₃CO), 2.56 (2H, m, CH₂ allyl), 4.93 (4H, m, CH=CH₂, CH-Py and Phegly C_{α}H), 5.56 (1H, m, CH=CH₂), 5.82 (1H, m, NH Phegly), 6.97-7.51 (9H, m, C₆H₅ and C₅H₄), 8.36 (1H, m, Py-C₆H); 13 C-NMR (50 MHz, CDCl₃) δ 28.2 [(CH₃) 3 CO], 40.3 (CH₂ allyl), 53.6 (ArCHCH₂ allyl), 58.8 (Phegly C $_{\alpha}$ H), 79.9 [(CH₃) $_{3}$ CO], 118.3 (CH=CH₂), 121.7, 122.3, 127.2, 128.1, 128.8, 133.4 (CH=CH₂), 136.5, 138.3, 148.9, 155.0, 158.7 (BocCO), 169.5 (Phegly CONH); HRMS (ESI+) calcd for C₂₂H₂₇N₃O₃·H⁺ 382.2131, found *m/z* 382.2125 (M·H)⁺

$2.6.10\ N\hbox{-}[1\hbox{-}N'\hbox{-}(tert\hbox{-}butoxycarbonyl)\hbox{-}(S)\hbox{-}phenylglycyl]\hbox{-}(R)\hbox{-}1\hbox{-}(2'\hbox{-}pyridyl)but\hbox{-}3-enamine}$

Purified by flash column chromatography (20 % ethyl acetate-hexane) to give a white solid 0.19 g, 50 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 1.24 [9H, m, (CH₃)₃CO], 2.41 (2H, m, CH₂ allyl), 4.70 (2H, m, CH=CH₂), 5.09 (1H, m, CH-Py), 5.20 (1H, m, Phegly C_αH), 5.36 (1H, m, CH=CH₂), 5.95 (1H, m, NH Phegly), 7.08-7.40 (9H, m, aromatic CH), 7.55 (1H, t, *J*=7.7 Hz, Py-C₂H), 8.45 (1H, d *J*=4.8 Hz, Py-CH); ¹³C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 40.2 (CH₂ allyl), 53.4 (PyCHCH₂ allyl), 58.6 (Phegly C_αH), 79.8 [(CH₃)₃CO], 118.3 (CH=CH₂), 122.0, 122.4, 127.2, 128.1, 128.8, 132.8 (CH=CH₂), 136.6, 138.7, 149.0, 155.0, 158.8 (BocCO), 169.5 (Phegly CONH); HRMS (ESI+) calcd for C₂₂H₂₇N₃O₃·H⁺ 382.2131, found *m/z* 382.2052 (M·H)⁺

2.6.11 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(R)-1-cyclohexylbut-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.23 g, 59 % yield (1 mmol scale); ¹H-NMR (200 MHz, CDCl₃) δ 0.66-1.16 [8H, m, (CH₂)₄CH₂CH], 1.43 [9H, m, (CH₃)₃OCO], 1.60 [2H, m, CH₂(CH₂)₄CH], 2.20 (2H, m, CH₂ allyl), 3.85 (1H, m, RCHCH₂ allyl), 5.09 (3H, m, CH=CH₂, Phegly C_αH), 5.54 (1H, m, NHCHCH₂ allyl), 5.74 (1H, m, CH=CH₂), 5.84 (1H, m, NH Phegly), 7.33 (5H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 25.9, 26.0, 26.2 [(CH₂)₃C₃H₅], 27.7 [(CH₃)₃CO], 28.3, 29.6, 36.4 [(C₃H₅)CHCH₂], 41.2 (CH₂ allyl), 53.2 [(C₆H₁₁)CHCH₂], 58.9 (Phegly C_αH), 80.0 [(CH₃)₃CO], 117.5 (CH=CH₂), 127.2, 128.2, 128.9, 134.6, 138.9 (CH=CH₂), 155.1 (BocCO), 169.5 (Phegly CONH); LRMS (ESI+) *m/z* 409.2 (M·Na)⁺

2.6.12 N-[1-N'-(tert-butoxycarbonyl)-(S)-phenylglycyl]-(R)-1-cyclohexylbut-3-enamine

(S,R)-XI-5

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.24 g, 62 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 0.80-1.41 [9H, m, (C $\underline{\text{H}}_{3}$)₃CO], 1.66 [8H, m, CH₂(C $\underline{\text{H}}_{2}$)₄CH], 2.00 [4H, m, C $\underline{\text{H}}_{2}$ allyl and C $\underline{\text{H}}_{2}$ (CH₂)₅], 3.75 (1H, m, C $\underline{\text{H}}$ CH₂ allyl), 4.70 (1H, d J=15.0 Hz, CH=C $\underline{\text{H}}_{a}$ H_b), 4.75 (1H, d J=10.0 Hz, CH=CH_a $\underline{\text{H}}_{b}$), 5.05 (1H, m, Phegly C₀ $\underline{\text{H}}$), 5.44 (2H, m, C $\underline{\text{H}}$ =CH₂ and N $\underline{\text{H}}$ CHCH₂ allyl) 5.90 (1H, m, N $\underline{\text{H}}$ Phegly), 7.28 (5H, m, aromatic C $\underline{\text{H}}$); 13 C-NMR (50 MHz, CDCl₃) δ 26.0, 26.3 (($\underline{\text{CH}}_{2}$)₂C₄H₇), 28.3 [($\underline{\text{CH}}_{3}$)₃CO], 28.8, 29.6,

36.0 [(\underline{C}_3H_5)CHCH₂]1, 41.0 ($\underline{C}H_2$ allyl), 53.4 ((\underline{C}_6H_{11}) $\underline{C}HCH_2$), 58.7 (Phegly $\underline{C}_\alpha H$), 79.9 [(CH₃)₃ $\underline{C}O$], 117.7 (CH= $\underline{C}H_2$), 127.2, 128.2, 128.9, 133.7 ($\underline{C}H$ =CH₂), 138.9, 155.2 (Boc $\underline{C}O$), 169.6 (Phegly $\underline{C}ONH$); LRMS (ESI+) m/z 409.2 (M·Na)⁺

2.6.13 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(R)-1-n-propylbut-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a colourless oil 0.21 g, 61 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 0.73 [3H, m, (CH₂)₂CH₃], 1.15 [4H, m, (CH₂)₂CH₃], 1.42 [9H, m, (CH₃)₃CO], 2.15 (2H, m, CH₂ allyl), 3.91 (1H, m, RCHCH₂ allyl), 5.00 (2H, m, CH=CH₂), 5.68 (4H, m, CH=CH₂, Phegly C_{α}H, and NH×2), 7.30 (5H, m, aromatic CH), 13 C-NMR (50 MHz, CDCl₃) δ 13.7 (CH₂)₂CH₃), 18.7 [(CH₂)₂CH₃], 28.3 [(CH₃)₃CO], 36.2 [(CH₂)₂CH₃], 39.2 (CH₂ allyl), 48.8 (C₃H₇CH), 58.7 (Phegly C_{α}H), 80.0 [(CH₃)₃CO], 117.9 (CH=CH₂), 127.1, 128.2, 128.9, 134.2 (CH=CH₂), 138.7, 155.1 (BocNH), 169.6 (Phegly CONH); HRMS (ESI+) calcd for C₂₀H₂₃N₂O₃·Na⁺ 369.2154, found m/z 369.2152 (M·Na)⁺

2.6.14 N-[1-N'-(tert-butoxycarbonyl)-(S)-phenylglycyl]-(R)-1-n-propylbut-3-

(S,R)-XI-6

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a colourless oil 63 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 0.87 [3H, m, (CH₂)₂CH₃], 1.31 [13H, m, (CH₃)₃CO and (CH₂)₂CH₃], 2.05 (2H, m, CH₂ allyl), 3.95

(1H, m, RC $\underline{\text{H}}\text{CH}_2$ allyl), 4.69 (1H, d J=17.2 Hz, CH=C $\underline{\text{H}}_a\text{H}_b$), 4.76 (1H, d J=10.2 Hz, CH=CH $_a\underline{\text{H}}_b$), 5.05 (1H, m, Phegly $\underline{\text{C}}_\alpha\text{H}$), 5.50 (2H, m, C $\underline{\text{H}}$ =CH $_2$ and N $\underline{\text{H}}\text{CHCH}_2$ allyl), 5.85 (1H, m, N $\underline{\text{H}}$ Phegly), 7.27 (5H, m, aromatic C $\underline{\text{H}}$), ^{13}C -NMR (50 MHz, CDCl $_3$) δ 13.9 ($\underline{\text{CH}}_3\text{CH}_2\text{CH}_2$), 19.2 (CH $_3\underline{\text{C}}\text{H}_2\text{CH}_2$), 28.3 [($\underline{\text{CH}}_3$) $_3\text{CO}$], 36.4 (CH $_3\text{CH}_2\underline{\text{C}}\text{H}_2$), 38.8 ($\underline{\text{CH}}_2$ allyl), 48.7 (R $\underline{\text{C}}\text{H}$), 58.6 (Phegly $\underline{\text{C}}_\alpha\text{H}$), 79.9 [(CH $_3$) $_3\underline{\text{CO}}$], 118.0 (CH= $\underline{\text{C}}\text{H}_2$), 127.2, 128.2, 128.9, 133.4 ($\underline{\text{C}}\text{H}$ =CH $_2$), 138.8, 155.1 (Boc $\underline{\text{C}}\text{O}$), 169.5 ($\underline{\text{C}}\text{ONH}$); HRMS (ESI+) calcd for C $_{20}\text{H}_{23}\text{N}_2\text{O}_3\cdot\text{Na}^+$ 369.2154, found m/z 369.2159 (M·Na) $^+$

2.6.15 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(R)-1-(2'-phenylethenyl)

but-3-enamine

(R,R)-XI-7

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a white solid 87 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.39 (9H, s, (CH₃)₃CO), 2.36 (2H, m, CH₂ allyl), 3.21 (1H, m, RCHCH₂ allyl), 4.70 (1H, m, CH=CH_aH_b), 5.07 (2H, m, CH=CH_aH_b, Phegly C_{\alpha}H), 5.75 (1H, m, CH=CH₂), 5.99 (3H, m, NH Phegly, PhCH=CH and PhCH=CH), 7.12-7.39 (10H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 39.3 (CH₂ allyl), 50.0 (Phegly C_{\alpha}H), 58.6 (Phegly C_{\alpha}H), 80.0 [(CH₃)₃CO], 118.6 (CH=CH₂), 126.3, 127.2, 127.5, 128.4, 129.9, 133.6, 136.4, 138.7 (CH=CH₂), 155.2 (BocCO), 169.5 (CONH); LRMS (ESI+) m/z 429.2 (M·Na)⁺

$2.6.16\ N\hbox{-}[1\hbox{-}N'\hbox{-}(tert\hbox{-}butoxycarbonyl)\hbox{-}(S)\hbox{-}phenylglycyl]\hbox{-}(R)\hbox{-}1\hbox{-}(2'\hbox{-}phenylethenyl)$

but-3-enamine

Purified by flash column chromatography (15 % ethyl acetate-hexane) to give a white solid 0.22 g, 55 % yield (1 mmol scale); 1 H-NMR (200 MHz, CDCl₃) δ 1.41 [9H, s, (CH₃)₃CO], 2.23 (2H, m, CH₂ allyl), 4.70 (2H, m, CH=CH_aH_b and RCHCH₂ allyl), 4.85 (1H, m, CH=CH_aH_b), 5.28 (1H, s, Phegly C_αH), 5.50 (1H, m, CH₂CH=CH₂), 6.07 (2H, m, PhCH=CH and NHCHCH₂ allyl), 6.44 (2H, m, PhCH=CH and NH Phegly), 7.29 (10H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 39.2 (CH₂ allyl), 50.3 (Phegly C_αH), 58.7 (Phegly C_αH), 80.0 [(CH₃)₃CO], 118.6 (CH=CH₂), 126.4, 127.2, 127.7, 128.3, 130.8, 133.0 (CH=CH₂), 136.5, 138.6, 155.2 (BocCO), 169.5 (Phegly CONH); LRMS (ESI+) m/z 429.2 (M·Na)⁺

2.7 Oxidative cleavage of phenylglycinol auxiliary followed by Boc-protection⁴

To a solution of the amino alcohol in CH₂Cl₂/MeOH (2:1) at 0 °C was added, in one portion, 1 eq of lead tetraacetate [Pb(OAc)₄]. The reaction mixture was stirred for 2-20 min, whereupon 5 mL of 15 % NaOH was added. The phases were separated, and the aqueous phase was extracted with CH₂Cl₂. The combined organic phase were evaporated *in vacuo*. The crude product was then dissolved in ether and stirred for 4-16 h with an equal volume of 3 N aqueous HCl solution and extracted with ether. The aqueous phase was devaporated *in vacuo* to give the hydrocholride salt of the homoallylic amine which is hygroscopic. The crude amine salt was protected by *t*-butoxycarbonyl (Boc) group as follows: to a solution of the amine in CH₂Cl₂ was added 2 equiv of triethylamine (Et₃N) and 1.1 eq of Boc₂O. The reaction mixture was stirred for 2 h and then evaporated *in vacuo*. The crude Boc-protected amine was purified by flash column chromatography.

2.7.1 N-tert-butoxycarbonyl-(R)-1-phenylbut-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.09 g, 38 % yield (1 mmol scale); $[\alpha]^{24}_{D} = -9.8$ (c = 0.626, CHCl₃) (40 % ee determined by ¹H-NMR from the coupling of Boc-phenylglycine section 2.8); ¹H-NMR (200 MHz, CHCl₃) δ 1.41 [9H, s, (CH₃)₃CO], 2.50 (2H, t, CH₂ allyl), 4.72 (1H, br s, CHNH), 4.84 (1H, br s, CHNH), 5.08 (2H, dd J=8.8, 17.9 Hz, CH=CH₂), 5.64 (1H, m, CH=CH₂), 7.26 (5H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 28.3 [(CH₃)₃CO], 40.5 (CH₂ allyl), 54.1 (CHNH), 79.5 [(CH₃)₃CO], 118.2 (CH=CH₂), 126.2, 127.1, 128.5, 134.0 (CH=CH₂), 155.2 (BocCO)

2.7.2 N-tert-butoxycarbonyl-(R)-1-isopropylbut-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.03 g, 13 % yield (1 mmol scale); $[\alpha]^{24}_D = -7.9$ (c = 1.004, CHCl₃) (60 % *ee* determined by ¹H-NMR from the coupling of Boc-phenylglycine **section 2.8**); ¹H-NMR (200 MHz, CHCl₃) δ 0.87 [6H, 2×d, CH(CH₃)₂], 1.40 [9H, s, (CH₃)₃CO], 1.69 [2H, m, CH(CH₃)₂], 2.14 (1H, m, CH₂ allyl), 3.45 (1H, m, CHNH), 4.27 (1H, m, CHNH), 5.05 (2H, m, CH=CH₂), 5.73 (1H, m, CH=CH₂); ¹³C-NMR (50 MHz, CDCl₃) δ 18.2, 19.2 [(CH₃)₂CH], 27.5, 28.3 [(CH₃)₃CO], 31.5 [(CH₃)₂CH], 37.8 (CH₂ allyl), 54.1 (CHNH), 79.5 [(CH₃)₃CO], 118.2 (CH=CH₂), 134.0 (CH=CH₂), 147.0 (BocCO)

2.7.3 N-tert-butoxycarbonyl-(R)-1-(2'-methoxyphenyl)but-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid. 0.07 g, 0.31 % yield (1 mmol scale); 1 H-NMR (200 MHz, CHCl₃) δ 1.39 [9H, s, (CH₃)₃CO], 2.50 (2H, t, CH₂ allyl), 3.82 (3H, s, OCH₃), 4.96 (1H, br s, CHNH), 5.01 (2H, m, CH=CH₂), 5.64 (1H, m, CH=CH₂), 6.82-7.24 (4H, m, aromatic CH); 13 C-NMR (50 MHz, CDCl₃) δ 28.4 [(CH₃)₃CO], 39.9 (CH₂ allyl), 52.0 (CHNH), 55.3 (OCH₃), 79.5 [(CH₃)₃CO], 110.7 (CH=CH₂), 117.2, 120.5, 128.2, 134.9 (CH=CH₂)

2.7.4 N-tert-butoxycarbonyl-(R)-1-(2'-phenylethenyl)but-3-enamine

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.04 g, 14 % yield (1 mmol scale); ¹H-NMR (200 MHz, CHCl₃) δ 1.42 [9H, s, (CH₃)₃CO], 2.37 (2H, t, CH₂ allyl), 4.35 (1H, br s, CHNH), 4.65 (1H, br s, CHNH), 5.14 (2H, dd *J*=7.9, 18.6 Hz, CH=CH₂), 5.73 (1H, m, CH=CH₂), 6.11 (1H, dd *J*=5.9, 15.9 Hz, PhCH=CH), 6.50 (1H, d *J*=15.9 Hz, PhCH=CH), 7.28 (5H, m, aromatic CH); ¹³C-NMR (50 MHz, CDCl₃) δ 28.4 [(CH₃)₃CO], 39.8 (CH₂ allyl), 51.7 (CHNH), 79.5 [(CH₃)₃CO], 118.3 (CH=CH₂), 126.2, 126.4, 127.1, 127.5, 128.5, 129.9, 130.1, 133.8, 136.8 (CH=CH₂), 155.3 (BocCO)

2.7.5 N-tert-butoxycarbonyl-1-but-3-enamine

$$\rightarrow$$
 $\stackrel{O}{\longrightarrow}$ $\stackrel{N}{\longrightarrow}$

Inseparable from the reaction mixture; 1 H-NMR (200 MHz, CHCl₃) δ 1.35 [9H, s, (C $\underline{\text{H}}_{3}$)₃CO], 2.22 (2H, m, C $\underline{\text{H}}_{2}$ allyl), 3.15 (2H, m, NHC $\underline{\text{H}}_{2}$), 5.01 (2H, m, CH=C $\underline{\text{H}}_{2}$), 5.63 (1H, m, C $\underline{\text{H}}$ =CH₂)

2.8 The coupling of Boc-phenylglycine to the homoallyl amine derived from the oxidative cleavage by Pb(OAc)₄ and HCl.

$2.8.1\ N-[1-N'-(tert-but oxy carbonyl)-(R)-phenylgly cyl]-(R)-1-phenylbut-3-enamine$ (from acid hydrolysis)

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.17 g, 44 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds = 70:30 as determined by ¹H-NMR). Characterization by ¹H-NMR indicated that the major isomer is the same as 2.6.2 and the minor isomer is 2.6.1.

2.8.2 N-[1-N'-(tert-butoxycarbonyl)-(R)-phenylglycyl]-(R)-1-isopropylbut-3enamine (from acid hydrolysis)

XI-2

Purified by flash column chromatography (5 % ethyl acetate-hexane) to give a white solid 0.19 g, 54 % yield (1 mmol scale) (inseparable mixture of diastereomer; ds = 80:20 as determined by ¹H-NMR). Characterization by ¹H-NMR indicated that the major isomer is the same as 2.6.5 and the minor isomer is 2.6.6.