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In a deconfined phase, quarks, anti-quarks and gluons are not necessary to

be in a colorless bound state. They can form various color non-singlet (or exotic

for short) nuclear bound states as well as color singlet bound states in the strongly

coupled quark-gluon plasma (sQGP) given that baryon number density is sufficiently

large. We study the matter of sQGP mainly occupied by these nuclear states via

the so-called Sakai-Sugimoto model, which is a gravity dual model of large Nc QCD.

Note that Nc denotes the number of colours. We propose the gravity dual models of

exotic nuclear states in the deconfining background of the Sakai-Sugimoto model with

flavour degrees of freedom turned off. Moreover, we calculate and compare binding

energies and screening lengths of these nuclear states as an analysis of their stabilities.

The results indicate that these nuclear states are less stable than normal hadrons.

Then, turning on the flavour degrees of freedom, we explore the possibilities of the

existence of the multiquark matter, which is a thermodynamic phase representing

sQGP mainly filled with exotic nuclear states, to be present in a certain region of

phase diagram. This matter is found to be more stable thermodynamically than the

vacuum and chiral-symmetric quark-gluon plasma phases (χS-QGP) in the region in

phase diagram of high chemical potential and low temperature, although it is less

stable than the normal nuclear matter. The thermodynamic relations of this matter

are also determined. The relations of pressure versus baryon number density are

found to be P ∼ d2 for small number density, and P ∼ d7/5 for large number density.

The entropy density is found to be proportional to the temperature as s ∼ T 5 for the

normal nuclear matter, but s ∼ T for the exotic nuclear matter.
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Chapter I

INTRODUCTION

String theory is supposed to be the best candidate on the quantum theory of

gravity nowadays. Its developments provide the hopes of unifying all fundamental

interactions of nature. Since the string scale is very far from accessible by terrestrial

accelerators and astrophysical sources, the theory cannot be applied to any phenom-

ena, and as a result it is likely impossible that the theory could be directly verified

by any future accelerators. This would have been the case if there had been no suf-

ficient progress of the studies of D-branes, the extended object in superstring theory

on which open strings can end. Namely, it turned out that the explorations of the

physics of D-branes in superstring theory lead to a new tool, so-called gauge-gravity

correspondence, for studying the phenomena in our real world.

Since its discovery by Juan Maldacena in the last decade of the twentieth cen-

tury [1], the conjectured equivalence between a superstring theory in the Anti-de

Sitter (AdS) space and a supersymmetric conformal gauge field theory (CFT), so-

called AdS/CFT correspondence, and other following gauge-gravity dualities have

been widely applied to describe the nuclear phenomena in the strong coupling regime

of the Quantum Chromodynamics (QCD). These strongly coupled phenomena are, for

example, in the areas of the hadronic physics and the strongly coupled quark-gluon

plasma (sQGP).

Remarkably, the viewpoints on this topic of research are different between the

string theorists and the particle phenomenologists. On the string theorists’ view, the

application of the dualities to the strongly coupled phenomena is the challenges leading

to the theories’ developments. The phenomenologists, however, tries to employ these

dualities, and also engineering, as important tools for obtaining the physical insights of

the nature of QCD. So far, these correspondence theories have succeeded in predicting

the physical properties consistent with the experimental results. Among them, the

prediction using AdS/CFT that the shear viscosity-to-entropy density ratio in sQGP

surprisingly agreed with the experimental results of the collider at the Brookheaven
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National Laboratory (BNL) [2]. This was just as a milestone of the gauge-gravity

dualities which brought the astonishing interests to the physics community at the

beginning of the 21st century.

In this thesis, we explore about the properties of nuclear states in the sQGP

via gauge/gravity duality as in the phenomenologists’ way. Some gravity dual models

of the colour non-singlet nuclear bound states which might be possible in the sQGP

are proposed. We investigate the stability of these bound states by calculating in the

framework of the gravity side of the duality. Moreover, we look into thermodynamical

properties of these exotic nuclear matter. These involve several areas of study in both

sides of the duality. Therefore, it is worth to survey some subjects and to introduce

definitions of a number of terms in this introductory Chapter. By selection, we start

to introduce gauge/gravity duality in section 1.1, and then quark-gluon plasma and

QCD phase transition in section 1.2. We move on giving an introduction on colour

non-singlet nuclear bound states in section 1.3. In this section, we do not only discuss

how we are interested in this kind of nuclear states, but we also emphasize our research

questions and statement of the problem. Lastly, we close this Chapter with outline

of the remaining content of this thesis.

1.1 Gauge/gravity duality

Guided by black hole physics in string theory, Maldacena conjectured that there are

two equivalent descriptions of a stack of superimposed large Nc D3-branes in 9+1

dimensional spacetime. This equivalence is between type IIB superstring theory in

AdS5 × S5 space and N = 4 supersymmetric Yang-Mills theory with gauge group

SU(Nc). This is so-called the Anti-de Sitter/Conformal Field Theory (AdS/CFT)

correspondence [1].

Remarkably, the AdS/CFT correspondence is the first successful realization

of the holographic principle [3, 4], which is a speculative idea that the information

of quantum gravity in a higher dimensional spacetime could be completely encoded

into its “hologram”, the theory living in the boundary of that spacetime; the super

Yang-Mills theory is the superconformal field theory living in the 3+1 dimensional

Minkowski spacetime which is the boundary of five dimensional anti-de Sitter space,

in which the superstring theory lives. Even though this holographic duality between

these two theories is just a conjecture, the matching of symmetry groups between

them supports their equivalence. The global symmetry SO(4, 2) of the superconformal
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theory matches with the isometry group SO(4, 2) of the AdS5 space. And the SU(4)

R-symmetry on the gauge theory side is isomorphic to the isometry group SO(6) of

the space S5. Moreover, the duality is supported with the holographic dictionary.

This dictionary is the map between the observable quantities of two theory sides.

For example, the AdS/CFT correspondence owns a field-operator map which can

relate gauge-invariant operators of the N = 4 super Yang-Mills theory in a particular

irreducible representation of SU(4) to supergravity fields in the same representation [5,

6].

The AdS/CFT correspondence was found very useful in dealing with the non-

perturbative non-Abelian gauge theories. This results from the observation that a

stack of Nc D3-branes could be described equivalently by the superstring theory in

small curvature limit (R/ls)
−1 ≪ 1 and the super Yang-Mills gauge theory in large

’t Hooft coupling limit g2YMNc ≫ 1, where R, ls and gYM denote curvature radius,

string length and Yang-Mills coupling, respectively. Also, the equivalence should hold

for vice versa. This illustrates that the intractable stronlgly coupled supersymmet-

ric non-Abelian gauge theory could be described by the straightforward decoupled

supergravity theory.

In this thesis, we exploit this advantage of the gauge/gravity duality to study

the strongly interacting matter in QCD. We are interested in the holographic nuclear

states in the strongly coupled quark-gluon plasma whose many aspects need to be

explored. As will be mentioned in section 1.3, both colour singlet and non-singlet

nuclear bound states could exist in the sQGP at the temperature just above the

Tdeconf. In this regime, the chiral symmetry could still not be restored, but broken,

and could contribute the extra generated mass of quarks in nuclear bound states.

Consequently, it is the mass spectra of the nuclear bound states in the hadronic and

exotic (colour non-singlet) forms that are interesting to be explored. Furthermore,

the thermodynamic and hydrodynamic properties of sQGP are possible to be affected

by the existence of these nuclear states. Once the knowledge of these properties is

established, we can have better predictions of the probe for signature of the occurrence

of the quark-gluon plasma in the relativistic heavy ion experiments.

However, the AdS/CFT correspondence needs to be modified in many ways in

order to be suitable tool in studying the nonperturbative QCD phenomena in our

real world. This is due to the incompatibilities between this kind of gauge/gravity

duality and QCD. For example, QCD cannot be in the same fashion as the N = 4 su-

per Yang-Mills theory which is the conformal and supersymmetric field theory. QCD
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owns the energy scale called the QCD scale of about 200 MeV due to the dimensional

transmutation, therefore it is not conformal. Additionally, it cannot be the super-

symmetric theory; there is no superpartner found in the strong interaction in our

real world. Furthermore, AdS/CFT lacks the flavor degrees of freedom corresponding

to that of dynamical quarks. Actually, the efforts in engineering the duality theo-

ries to support the aim of studying nonperturbative QCD have been progressing so

much since the Maldacena’s discovery. The holographic models from these efforts are

so-called AdS/QCD.

There are two complementary classes of AdS/QCD models: top-down models

and bottom-up models.

• Top-down models are the gauge/gravity duality models rooted from engi-

neering D-branes and strings in ten dimensional spacetime of string theory.

The advantage of this kind of models is that two sides of theories are often

well understood. In top-down approach, string theorists have engineered a D-

branes configuration in such a way that low-energy spectrum of open string

fluctuations has the field theoretic interpretations corresponding to the QCD-

like theory. These models of confining gauge theories with known supergravity

duals includes, for instance, the N = 1∗ theory of Polchinski and Strassler [7],

the Klebanov-Strassler cascading gauge theory [8], the Nc D3-branes intersect-

ing with the Nf flavor D7-branes of Kruczenski et al. [9], and the Nc D4-branes

intersecting with the Nf flavor D8-branes and Nf anti-D8-branes of Sakai and

Sugimoto [10, 11]. Among these, Sakai-Sugimoto model is so far the example of

the gauge/string duality which is most closely related to QCD.

• Bottom-up models are obtained from constructing the gravity models with

an extra dimension whose properties are consistent with the phenomenological

features. This approach has the benefit that there is more freedom to build in

properties of QCD. The bottom-up AdS/QCD models are often been applied

for light hadronic resonances in QCD. This originates from the observation that

the Kaluza-Klein modes of fields in an extra dimension can be identified with

the radial excitations of hadrons in a confining gauge theory. Some examples of

the bottom-up AdS/QCD models includes the hard wall model [12, 13] and the

soft wall model [14].

In the present thesis, we will choose to use the Sakai-Sugimoto model. Apart

from the behavior of confinement, the Sakai-Sugimoto model owns the chiral symme-
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try breaking/restoration mechanism governed by the dynamics of Nf flavor D8-branes

and Nf anti-D8-branes. This transition can occur at a particular finite temperature

above the gluon-deconfining temperature by the finite temperature Sakai-Sugimoto

model [10, 11]. Using this model, we will explore the properties of hadrons and exotic

bound states in the sQGP.

1.2 Quark-gluon plasma and QCD phase transi-

tion

At low energy, only hadrons can be observed. Due to the large coupling of the strong

interaction on large distance scale, the genuine constituents of the nuclear matter are

confined within the baryons and mesons. They can be explored only with a high

energy probe, e.g. in the Deep Inelastic Scattering (DIS) experiments. When the

energy scale involved is sufficiently large, roughly few hundred GeVs, the interaction

among quarks and gluons become perturbatively weak, the phenomenon known as

the asymptotic freedom. The quarks and gluons subsequently become “deconfined”

from the confinement of the strong interaction.

It was expected that there exists a hot and dense stage at a few 10−5 seconds

after the Big Bang which is occupied mostly by quarks and gluons. This phase of

matter could also be produced in the “little bang” immediately after the collisions of

relativistic heavy ions. The collisions took place in colliders such as the Super Proton

Synchrotron (SPS) of CERN, the Relativistic Heavy Ion Collider (RHIC) of BNL, and

the latest Large Hadron Collider (LHC) of CERN. These experiments exhibited some

signatures of the appearances of the so-called quark-gluon plasma (QGP). Intriguingly,

series of experimental results from RHIC suggests that the produced QGP is strongly

coupled (sQGP) [15, 16, 17, 18]. This has been confirmed recently by the results of

ALICE and ATLAS, at CERN [19, 20]

Additionally, the quark-gluon plasma could be generated in the cold and ex-

tremely dense situation such as at the core of a compact star, e.g. the neutron star.

Also, the quark-gluon plasma with high baryon density is planned to be explored at

the proposed Facility for Antiproton and Ion Research (FAIR) of the GSI Helmholtz

Centre for Heavy Ion Research GmbH.

The quark-gluon plasma is the phase in which the majority of the constituents

becomes effectively free quarks and gluons. To describe this kind of plasma, the
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characteristics of the theory governing the interactions among quarks and gluons and

some critical phenomena need to be discussed beforehand.

Quantum Chromodynamics (QCD) was established to be the theory that de-

scribes the strong nuclear interactions. This renormalizable non-Abelian gauge field

theory with SU(3) gauge symmetry possesses a number of noteworthy features.

At zero temperature, the strength of interactions among quarks and gluons,

determined by the effective coupling constant αs, varies with the distance scales or

the transferred momenta q. The theory predicts that αs(q
2) decreases logarithmically.

As a result, quarks and gluons appear to be weakly coupled at short distances or

large momenta q while there exist quark confinement and chiral symmetry breaking

at large distances or small momenta. Additionally, the QCD vacuum at low energies

is characterized by the so-called vacuum condensates such as the quark condensate

⟨ψ̄ψ⟩ (responsible for the breaking of chiral and conformal symmetry) and the gluon

condensate ⟨αsGµνG
µν⟩ (responsible for the breaking of scale invariance of QCD by

quantum effects).

At finite temperature, the effective coupling constant αs(T ) falls logarithmically

with increasing temperature. Consequently, quarks and gluons can only feel weak-

coupling interactions from others in shorter ranges as the temperature increases. The

long-range interactions are dynamically screened. This portrays the two extreme

situations of very low temperatures and very high temperatures such that there should

be a transition from the strongly coupled nuclear matter at low temperatures to the

QCD phase so-called the quark-gluon plasma (QGP) at high temperatures. The latter,

described by finite temperature perturbative QCD, exhibits neither confinement nor

chiral symmetry breaking.

It is speculated that there are two kinds of phase transitions occurring: the

(gluon) confinement/deconfinement phase transition, and the chiral symmetry break-

ing/chiral symmetry restoration phase transition (χSB/χS). Nevertheless, these crit-

ical behaviors are not well-established nowadays. Particularly, while the χSB/χS

phase transition is considered based on the SU(Nf )L × SU(Nf )R chiral symmetry

with discontinuity of the quark condensate, serving as the order parameter, the con-

finement/deconfinement transition has yet to be known whether it is continuous or

discontinuous. Actually, the expectation value of the Polyakov loop can serve as

the order parameter for deconfinement phase transition, associated with the break-

ing of the center group Z(Nc) symmetry, in the pure gauge theories, i.e. without

the light flavor degrees of freedom, so that there can exist the phase transition with
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discontinuity in the spirit of Landau theory of phase transition. In the theories with

dynamical quarks like QCD, such an order parameter is however ambiguous. [21]. In

spite of these, there are several attempts to explore the properties and the critical

temperatures of both kinds of phase transitions based on various models through the

numerical simulations of lattice gauge theory. Those models are different depending

on, for example, the number of colours and flavor degrees of freedom.

There may be a question whether these two QCD phase transitions have one or

two critical points. In other words, the critical temperatures are the same or different.

Indeed, based on the studies by the numerical lattice QCD, both scenarios occurs

depending on models. For example, lattice results for quarks in the fundamental

representation of the gauge group exhibit that the chiral phase transition temperature

Tchiral is approximately the same as the deconfining phase transition temperature

Tdeconf [22]. However, lattice results for quarks in the adjoint representation show

that Tchiral is about eight times of Tdeconf [23]. If this is the case, we can have the

intermediate phase of gluon deconfinement but chiral-symmetry breaking, hence the

strongly coupled quark-gluon plasma with the chiral symmetry broken. As this critical

puzzle still remains, it is interesting to explore the structure of QCD phases around

the boundary between the strongly interacting nuclear matter and strongly coupled

QGP. In this region of QCD phase diagram, a very rich structure appears.

A general picture of the deconfinement process of quarks and gluons within

hadrons is currently incomplete at the most. Naively, from argument of the RGE (Renor-

malization Group Equation) running of the beta function, effectively free quarks and

gluons are expected to appear at high energies and/or temperatures. Transition from

non-perturbative phase of nuclear matter to the perturbative regime where the pertur-

bative QCD is reliable is explored most successfully in the lattice approach. Lattice

studies of the QCD predicts the deconfinement temperature around 175 MeV [24].

Nuclear matter at such temperature would undergo a phase transition into a decon-

fined phase. Most bound states of light quarks would melt down at this temperature

leaving free quarks and gluons in the sQGP. Remarkably, the mesonic states of heavy

quarks (e.g. charmonium) in the nuclear matter at such high temperature tend to

persist melting at least until 1.5Tdeconf [25, 26, 27] due to the remaining screened

Coulomb-type binding potential between quark and antiquark. Multiquark states

such as baryons can also exist in the QGP up to certain temperatures provided that

the baryonic charge density is sufficiently large.
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1.3 Colour non-singlet multiquark bound states

In addition to baryons and mesons, the possibility of multiquark states were recognized

by Gell-Mann since the proposal of the quark model. QmQ̄n-multiquark (n+m > 3)

such as the tetraquark and dibaryon were proposed since 1977 by Jaffe [28, 29, 30]

using the MIT bag model. There are theoretical models of colour-singlet multiquarks

using interactions of various origins, e.g. chromomagnetism, flux tube confinement,

hadronic molecules. Recently, there were some positive results on searches for mul-

tiquark states. For example, the four-quark state called Z(4430) was reported to be

found at KEKB by the Belle collaboration [31]. Moreover, the discovery of three

exotic sub-atomic particles, labeled by Z1(4051), Z2(4248), and Yb(10890), was an-

nounced by the same team. Remark that the signal of finding Yb(10890) might be

the first clear example of an exotic hybrid particle. It contains a bottom quark, an

anti-bottom quark, and an excited gluon.

In the confined phase, only colour singlet states can exist as free particle due

to the confinement. Above the deconfinement temperature, quarks and gluons with

colour charges can propagate with more freedom in the plasma. It is therefore pos-

sible that the coloured multiquark states such as diquarks could also exist in the

deconfined nuclear medium. Similar to the mesonic states of the heavy quarks, these

multiquarks could persist melting up to relatively high temperature above the decon-

finement temperature. We can expect the multiquarks to be abundant in the nuclear

matter when the density is large up to temperature well above the deconfinement

temperature. Consequently, it is interesting to investigate the physical properties of

the multiquarks as well as their thermodynamical phase diagram in details. Unfor-

tunately, perturbative QCD based on quarks and gluons is not reliable during the

deconfinement phase transition. Lattice QCD is applicable only when the baryon

density is small.

The fact that the QGP is strongly coupled near-and-above the deconfinement

temperature Tc suggests the possibility of the existence of exotic bound states with

colour degrees of freedom in the deconfined QGP1. Recall that an interaction between

two heavy quarks in the confined phase at 0 < T < Tc, can be described empirically

by the screened Cornell potential2

1For convenience, we use Tc as the deconfinement temperature, instead of Tdeconf, later on.
2The potential between quark and anti-quark in a quarkonium had been studied in Lattice and
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VQQ̄(r, T ) = σr

[
1− e−MD(T )r

MD(T )r

]
− α

r

[
e−MD(T )r

]
, (I.2)

where MD is the Debye screening mass (or the inverse of length) depending on T and

α is the effective coupling. The first part represents the (colour-screened) confining

force due to QCD string with the effective string tension σ; it is around 0.20 (GeV)2

as suggested by the lattice studies. The second part represents the effective (colour-

screened) Coulomb potential due to transverse string oscillation. By definition, the

effective string tension σ vanishes at T > Tc. As a result, only the screened Coulomb

part contributes to the interaction between quarks but within the range of screening

length M−1
D . Yet, as suggested by [34], a short string-like configuration of colour

fields at low T becomes longer strings at-and-near Tc which contribute to the binding

between quarks and gluons. Therefore, the bound states of gluons and quarks can

exist in both colour singlet and colour non-singlet forms in the sQGP.

The studies of the multibody bound states in the sQGP were initiated by

Shuryak and colleagues [35, 36, 34]. Based on the studies in [34], three proposed

multibody bound states: (i) diquark or “polymer-chain” (q̄gg . . . gq) (ii) baryons (qqq)

(iii) closed (3-)chains of gluons (ggg) seem to exist only for T = (1−1.5)Tc (or T is in

the temperature range from Tc to 1.5Tc). Importantly, the existence of these bound

states could affect the thermodynamical and hydrodynamical properties of the sQGP.

This indicates that the knowledge of these bound states might be a key to understand

the quark-gluon plasma in the strongly coupled regime, i.e. at the temperature not

far from the deconfinement temperature.

It is challenging to apply gauge/gravity duality to study this issue of strongly

coupled QCD. On the one hand, it might give us some insights about this matter.

On the other hand, this can be a test on how powerful the gauge/gravity duality

is for exploring this strongly coupled QCD phenomena. Actually, there are several

applications of gauge/gravity duality to study this area and they have been found to

succeed in providing the results consistent with the experimental results.

The holographic models of colour singlet baryon was originally investigated by

Witten, Gross and Ooguri [37, 38]. In the AdS5×S5 background, a D5-brane wrapped

spectroscopic studies [32, 33]. These results suggest that the potential can take the form

V (r) = σr − α

r
, (I.1)

where the first term exhibits the confining force between quark and anti-quark, and the second term

exhibits an effective Coulomb potential. This is generally known as the “Cornell potential”.
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around the subspace S5 withNc strings attached is proposed to be a dual description of

a baryon. A holographic dual of a k-quark (k < Nc) with colour degrees of freedom is

discussed in [39] (see also [40]) for the supersymmetric background. There is a number

of interesting articles investigating various possibilities of the multiquarks in both

confined and deconfined medium, some of them consider deformed baryon vertex [41,

42, 43, 44, 45, 46, 47, 48, 49]. In this thesis, we use a simplified configuration with

only one point-like baryon vertex to describe a variety of classes of the multiquarks

with and without the colour degrees of freedom. Note that these configurations of

holographic multiquarks are based on our work in [41].

With the proposal of these multiquarks, we attempt to address several issues

of the properties of the matter. Firstly, we try to investigate the stability of their

holographic configurations. This can be done for an individual bound state by com-

paring energies; the bound states with lowest energy tend to be more stable than

others. In addition, we can examine the stability, in macroscopic point of view, of

the quark-gluon plasma mostly occupied by these bound states, rather than a single

multiquark. For this purpose, the stability in thermodynamical aspect have to be

studied. We can also raise a question about how these bound states affect the sQGP.

This is the same question as what the equations of state and the thermodynamic

relations of this matter are.

The present thesis is organized as follows. In Chapter II, we give the theoretical

background necessary for understanding our issues. We start with introducing the

AdS/CFT correspondence and discussing its general aspects. Then we describe how

we can reach to the holographic QCD. The AdS/CFT correspondence is different

from the real QCD in many aspects: it has the field theory side which is conformal

and supersymmetric, it has zero temperature, and there is no fundamental degree of

freedom corresponding to that of dynamical quarks. We will discuss the attempts

of modifying this original version of the duality to obtain holographic large Nc QCD

with confining feature, supersymmetry broken, finite temperature, and the presence

of fundamental matter. We move on introducing the Sakai-Sugimoto model which is

one of the gauge/gravity duality mostly close to the real world QCD at low enough

energies. Apart from the features as mentioned above, this holographic model of

large Nc QCD has the additional transition between the phase of chiral symmetry

broken and that of chiral symmetry restoration which can be realized by a geometric

mechanism of the embedding of its flavour branes. It is this framework in which we

study the properties of the colour non-singlet multiquark matter for the hope that we

obtain the results closely fit with the real world phenomena.
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Chapter III is devoted to the holographic model of colour non-singlet multiquark

states in the deconfined phase and the analysis of their stability. For simplicity, we

explore their properties in the absence of the flavour degrees of freedom. We will turn

on these in the studies of Chapter IV. In Chapter III, we start with reviewing the

gravity dual model of a baryon vertex in the original AdS/CFT correspondence and

then discuss how the object can be constructed in the background fields of the Sakai-

Sugimoto model but, as mentined above, with the flavour degrees of freedom turned

off. Next, we discuss about the proposed holographic multiquark bound states and

argue why these exotic multiquarks can be present only in the deconfining background

in which there exists the horizon at a small value of the radial direction. For investi-

gating about their stabilities, we discuss the calculations of the binding energies and

the screening lengths of these bound states. Finally, the calculations for investigating

the dependence of these bound states on the free quark mass are reported.

In Chapter IV, we explore the possibilities of the existence of the multiquark

matter in a certain region in phase diagram of the holographic QCD, and determine

its thermodynamical properties. In this Chapter, the setup of the holographic model

of multiquark is different from that in Chapter III because the fundamental degrees

of freedom are turned on, and, importantly, our consideration are macroscopic, or

equivalently the multiquark matter represents a thermodynamic phase, rather than

an individual bound state. Precisely, the multiquark matter is the strongly coupled

quark gluon plasma mainly filled with the multiquark bound states. We start Chap-

ter IV with an introduction of baryons in the Sakai-Sugimoto model in many aspects,

and phase transitions in the deconfining background. Then, we introduce the config-

uration of the multquark matter phase in which the embedding of the flavour D8- and

D8- branes needs to be carefully considered. We also comment on the approach to ob-

tain the quantity in this holographic model corresponding to baryon number density

and baryon chemical potential. Next, we continue to compare the grand canonical po-

tential among different matter phases and determine the phase diagram. The presence

of the multiquark matter phase in the phase diagram will shed light on how thermo-

dynamic stable this matter is, relative to other phases. Furthermore, we determine

thermodynamical properties. For this purpose, the calculations for thermodynamic

relations are done in both analytical and numerical way.

In Chapter V, we summarise the results presented in this thesis. Some comments

on the results and prospects for further researches are also discussed. We also include

Appendix A which describes briefly how to determine the embedding of the flavour

D8- and D8-branes at the cusp for multiquark configuration. This will be helpful in
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the calculations in Chapter IV.



Chapter II

THEORETICAL BACKGROUND

In this thesis, we explore properties of nuclear states in holographic descrip-

tion. Because of this, our real world phenomena under consideration are interpreted

in “holographic language”. In this Chapter, we present some arguments to illustrate

general aspects of gauge/gravity duality. Even though we do not work in holographic

description of the original AdS/CFT correspondence, it is very helpful to discuss sev-

eral features in this mostly well-known framework to understand the “holographic

language”. For this purpose, we discuss several aspects of the AdS/CFT correspon-

dence in Section 2.1. However, this is not presented as a review. Instead, we give

only the basic concepts relevant to this thesis.

In addition, the approaches to reach a holographic dual of our real world QCD

are discussed in Section 2.2. These are the modifications of the AdS/CFT correspon-

dence in various ways to get the features of QCD, including the confining behaviour,

the finite temperature of field theory, the absence of supersymmetry, and dynamical

quarks represented by fundamental representation of the flavour group. Lastly, we

introduce the Sakai-Sugimoto model in Section 2.3. This is the gauge/string duality

in which we study gravity dual model of the colour non-singlet nuclear states. The

Sakai-Sugimoto model adopts the above mentioned features of QCD as well as the

feature of chiral symmetry. the flavour branes.

2.1 Aspects of the AdS/CFT correspondence

As introduced in Section 1.1, the AdS/CFT correspondence is the duality between

“the N = 4 supersymmetric Yang-Mills (SYM) gauge theory with gauge group

SU(Nc)” and “the type IIB superstring theory in AdS5×S5 spacetime.” The former is

the supersymmetric gauge theory in (1+3) dimensional spacetime, whereas the latter

is the quantum gravity theory living in (1 + 9) dimensional spacetime. Although this

equivalence between two theories of different number of dimensions has been merely
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the conjecture, there are several evidences, sometimes just clues, to support it. Here,

we would like to give the arguments involving these in order to emphasize a number

of important and nice aspects of this duality, rather than review the whole story of

the AdS/CFT correspondence. Note that there are many good reviews on this topic,

for example [50, 51, 52, 53, 54, 55, 56, 57].

2.1.1 Two descriptions of a stack of Nc D3-branes

In non-perturbative level, string theory does not possess only closed strings, but it

also has a new sector of open strings due to the presence of a solitonic object so-called

Dp-brane. The letter ‘D’ in Dp-brane stands for the Dirichlet boundary condition

of open strings; open strings must satisfy this boundary condition such that their

endpoints lie on Dp-branes. Moreover, a Dp-brane is an extended object sweeps out

(p+1)-dimensional worldvolume in spacetime. Suppose that a Dp-brane extend in the

Xµ = (X0, X1, . . . , Xp), the transverse directions are labelled as Y i = (Xp+1, . . . , X9).

By quantization, closed strings lying in all directions of ten dimensions of spacetime

has the spectrum corresponding to dynamical fluctuations of the spacetime, while

open strings lying in (p + 1)-dimensional world-volume has the quantized modes as

the spectrum corresponding to fluctuations of the Dp-branes.

The massless open string spectrum along a stack of N coincident Dp-branes

gives rise to a non-Abelian gauge theory of the gauge group U(N). This can be seen

by considering what is so-called Chan-Paton degrees of freedom on the endpoints of

strings. Each of the two endpoints of an open string has N possibilities depending on

which two branes they end on. Consequently, a vector mode of open strings contains

two indices of Chan-Paton degrees of freedom. This is a gauge field transforming

as the adjoint in the gauge group U(N). Note that the gauge group turns out to

Abelian, i.e. U(1), in the case of single Dp-brane. Moreover, the open string modes

are massless because there is no separation between D-branes. In the case of a set of

Dp-branes with a separation between some of them, the gauge fields can have a mass

given by the tension of the string linking between separated branes multiples with the

distance between these branes, i.e. m = r/2πα′.

The equivalence as stated in the AdS/CFT correspondence between type IIB

superstring in anti-de Sitter spacetime and N = 4 supersymmetric non-Abelian gauge

field theory with conformal symmetry indeed originates from matching two different

descriptions of the system of a stack of Nc D3-branes. The AdS/CFT correspondence
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has been found very useful in dealing with nonperturbative QCD. This results from

the observation that a stack of Nc D3-branes could be described equivalently by the

supergravity theory in small curvature limit and the super Yang-Mills gauge theory

in large ’t Hooft coupling limit. And the equivalence should hold for vice versa.

This relation between gauge and gravitational theory could be said as a strong-weak

coupling duality, although this kind of duality is usually used for two theories of

the same number of dimensions. In the AdS/CFT, the strong-weak coupling duality

is as follows: λ → 1/λ, where λ is so-called ’t Hooft coupling. Importantly, this

transformation is not just to inverse the coupling but also interchange between closed

and open string descriptions of the system of D-branes, as will be seen below.

Before discussing about these two descriptions of a system of D-branes, let us

spend a space for introducing the controlling parameters on each side of the AdS/CFT

correspondence. The gauge theory,N = 4 super Yang-Mills gauge theory, is controlled

by ’t Hooft coupling λ ≡ g2YMNc and the number of gauge group Nc. Initiated by ’t

Hooft [58], a large Nc Yang-Mills theory is obtained by treating the number Nc of

the colour gauge group SU(Nc) as a paremeter and to be large. Expanding physical

quantities in 1/N2
c and λ, the theory has some natures in common with string theory.

This might be a clue of the connection between string theory and QCD before the

epoch of gauge/gravity duality. The reason for rearranging the amplitude in term

of the ’t Hooft coupling λ, instead of the original Yang-Mills coupling gYM, in this

large Nc non-Abelian gauge theory is that the theory is much more simple and the

mathematical formula of its scattering amplitude is more systematic. By drawing the

Feynman diagram in double-line notation and keeping the ’t Hooft coupling fixed, the

diagrams are organized by their topology. The vacuum-to-vacuum amplitude of this

pure gauge theory can be expanded in 1/N2
c and λ as

A =
∞∑
g=0

N2−2g
c

∞∑
n=0

cg,nλ
n = N2

c f0(λ) + f1(λ) +
1

N2
c

f2(λ) + · · · , (2.1)

where g denotes the genus of the diagram, cg,n is a constant at a fixed g and n, and fg,

g = 0, 1, . . . are functions of the ’t Hooft coupling at fixed order of 1/N2
c expansion.

Note that the diagram is planar for g = 0; there is no double-line crossing over

another and the corresponding compact Riemann surface has the topology of sphere

of genus zero. The diagram becomes non-planar for g = 1, 2, . . .; the corresponding

compact surface has the topology of genus 1, 2, . . . In the limit Nc → ∞, the N2
c

term (g = 0) dominates in the the formula (2.1) such that the amplitude can written

as a combination of all possible planar diagrams. In other words, the amplitude is
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mainly contributed by N2
c f0(λ), where f0(λ) = c0,0 + c0,1λ

1 + c0,2λ
2 + · · · . We would

like to emphasize here that a large Nc non-Abelian gauge theory is tractable as long

as λ ≪ 1, because it is in a weak coupling regime. On the contrary, the theory is

non-perturbative in the opposite limit. These are the same for the case of the N = 4

super Yang-Mills gauge theory.

On the other hand, the gravity side of the AdS/CFT correspondence, which

is a maximally symmetric spacetime, is controlled by the (ten-dimensional) Newton

constant G and the string scale ls in units of the curvature radius R. As will be

discussed in detail later, these relate to the parameter on the gauge theory side, λ

and Nc, as follows:

G ∼ 1

N2
c

, l2s ∼
1√
λ
, (2.2)

where the curvature radius R is set to be one here. Interestingly, the Nc → ∞
limit implies that all string loop effects are neglected due to the fact that G ∝ g2s ,

i.e. gs ∼ 1/Nc, such that any quantum effects are suppressed. Hence, the theory is

classical supergravity. Moreover, closed strings on the gravity side can have higher

modes of fluctuations corresponding to the terms in α′-expansion in string theory.

Note that α′ = l2s . From (2.2), the λ ≫ 1 limit means that any effects of string

fluctuations are suppressed, hence only massless fields survive. Noting that the α′-

expansion corresponds to the expansion in 1/
√
λ, we can see that the theory on the

gravity side is tractable in the λ → ∞ limit, since the curvature radius R is much

greater than the string scale. On the contrary, it turns out to be uncontrollable in

the opposite limit.

On the gauge theory side

The gauge theory side of the AdS/CFT correspondence arises from the open string

description of Nc D3-branes in type IIB superstring theory1. The gauge theory arising

from this open string description is tractable once ’t Hooft coupling λ≪ 1 such that

the D3-branes is just a defect of spacetime, i.e. a zero-thickness hyperplane in 10-

dimensional flat Minkowski spacetime. The open string degrees of freedom on these

branes are described by a Dirac-Born-Infeld (DBI) action in four-dimensional world-

1Dp-branes in type IIA superstring theory are stable for p = 0, 2, 4, 6, 8, while Dp-branes in type

IIB superstring theory are stable for p = 1, 3, 5, 7 [59]. Note that D9-branes can also exit in type IIB

superstring theory once additional consistency conditions are imposed.
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volume of D3-branes2

SD3 = −TD3

∫
d4x
√

− det(ηµν + α′2Fµν), (2.4)

where the D3-brane tension, or its mass per unit spatial volume, can be written as

TD3 =
1

(2π)3gsl4s
. (2.5)

Note that we have used the fact that the D3-branes are embedded in 10 dimensional

Minkowski spacetime such that the induced metric describing the embedding of D3-

branes is simply ηµν , µ, ν = 0, 1, 2, 3. At the lowest order in derivatives, this action

reduces to N = 4 super Yang-Mills action in which all fields are nothing but the

quantized modes of open strings on the D3-branes world-volume.

The massless field content filling in the (1+3) dimensional supermultiplet con-

sists of a gauge field Aµ, µ = 0, 1, 2, 3, which is a singlet of SU(4) global R-symmetry

group, six scalar fields ϕi, i = 1, 2, 3, . . . , 6, in the 6 of SU(4), and four Weyl fermions

ψa, a = 1, 2, 3, 4, in the 4 of SU(4). These fields are in the adjoint representation

of the gauge group SU(Nc). For illustration, we show here the bosonic part of the

Lagrangian density of N = 4 super Yang-Mills theory as

L ∼ − 1

g2YM

tr

(
1

4
F µνFµν +

1

2
DµϕiDµϕ

j +
[
ϕi, ϕj

])
. (2.6)

Note that the Yang-Mills coupling gYM can be identified with string coupling gs as

follows:

g2YM = 4πgs, (2.7)

since g−1
s from TD3 is indeed the prefactor of (2.6) as obtained by expanding (2.4) in

α′. Recall that λ is define by g2YM, the above relation implies that we can also write

the ’t Hooft coupling in term of the string coupling as

λ = 4πgs. (2.8)

Moreover, as mentioned above, Aµ, ϕ
i, (and also ψa) transform in the adjoint rep-

resentation of SU(Nc), thus they are the SU(Nc) matrix valued fields in (2.6). As a

result, the trace operator acts on SU(Nc) matrices of these fields. Remarkably, the

2Here, the form of the tension of Dp-brane TDp in the DBI action

SDBI = −TDp

∫
dp+1xe−Φ

√
−det(gµν + 2πα′Fµν), (2.3)

has incorporate e−Φ0 = g−1
s , where Φ0 is the vacuum expectation value of dilaton field, whereas

fluctuation of the dilaton field Φ = 0 for the present case.
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beta function of this N = 4 super Yang-Mills theory vanishes exactly, due to the large

number of supersymmetries. Hence, it is a conformal field theory.

At the low energy limit, the interactions between open string degrees of freedom

are suppressed by α′E2. Furthermore, the coupling between closed string modes with

each other is suppressed by GE8, hence gravity is infrared-free. This is also hold

for the coupling between closed and open strings. Consequently, open strings on the

D3-branes world-volume decouple from closed string in the background, and we can

summarize that a system of Nc coincident D3-branes with λ = gsNc ≪ 1 and at low

energies is well described by N = 4 super Yang-Mills theory with gauge group SU(Nc)

in (1+3) dimensional Minkowski spacetime, which decouples from ten dimensional free

gravity. The only interacting sector of this description is the former.

On the gravity side

In large ’t Hooft limit, λ ≫ 1, the backreaction of a stack of Nc D3-branes cannot

be neglected. Recall that λ = R4/l4s , this limit implies that the characteristic scale of

the spacetime, i.e. the curvature radius, is much larger than the scale of closed string.

In other words, the spacetime is weakly curved. Since the source of gravity is Nc

coincident D3-branes, it acts as a point mass of M ∼ NcTD3 in six transverse direc-

tions. This spacetime metric can be obtained by solving the supergravity equations

of motion. Its line-element takes the form

ds2 = H−1/2
(
−dt2 + dx21 + dx22 + dx23

)
+H1/2

(
dr2 + r2dΩ2

5

)
, (2.9)

where the first term consists of coordinates in the directions parallel to the world-

volume of D3-branes, whereas coordinates in the second term are in six transverse

directions whose the coordinate r represents the separation in radial direction, trans-

verse to D3-branes, from the horizon of spacetime. Remark that the spatial dimen-

sions at a certain value of radial coordinate r should have topology of R3 × S5. For

an extremal 3-branes solution, the function H(r) and the radius of curvature R are

given by

H(r) = 1 +
R4

r4
, (2.10)

R4 = 4πgsNcl
4
s . (2.11)

Note that the parameter Nc appears in the background of type IIB supergravity as

the flux of the five-form Ramond-Ramond field strength on the S5,∫
S5

F5 = Nc. (2.12)
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The geometry described by (2.9) depends on only the radial coordinate r of the

transverse directions. To get some insights, it is useful to consider the case of r ≫ R.

At this asymptotic point, the gravity is weak such that the warp factor H(r) ≃ 1

with the small correction
R4

r4
=

4πNcgsl
4
s

r4
∼ GM

r4
, (2.13)

where we have used (2.11) for the first equality, and we have used the fact that

the gravitational effect of Nc D3-branes is similar to a point particle with the mass

M ∼ NcTD3 and using (2.5), and the Newton’s gravitational constant in 10 dimensions

is given by

G = (2π)7g2s l
8
s , (2.14)

for the second proportionality. Manifestly, the term R4/l4s can be interpreted as the

gravitational potential due to a point mass M in six spatial dimensions.

Now, let us consider the situation of strong gravity r ≪ R. In this limit, the

warp factor H(r) is approximately R4/r4. As a result, the metric (2.9) becomes

ds2 =
r2

R2

(
−dt2 + dx21 + dx22 + dx23

)
+
R2

r2
(
dr2 + r2dΩ2

5

)
(2.15)

= ds2AdS5
+R2dΩ2

5, (2.16)

where

ds2AdS5
=

r2

R2

(
−dt2 + dx21 + dx22 + dx23

)
+
R2

r2
dr2. (2.17)

The last expression describe the geometry of the five dimensional anti-de Sitter space-

time, which is a maximally symmetric spacetime with the negative cosmological con-

stant Λ = −6/R2 and negative curvature, i.e. −12/R2. The AdS5 spacetime can be

written in another form by substituting r = R2/z, such that

ds2AdS5
=
R2

z2
(
−dt2 + dx21 + dx22 + dx23 + dz2

)
. (2.18)

This is the anti-de Sitter geometry in the Poincaré patch coordinate which manifests

conformal symmetry of the geometry. This is also useful to consider holographic

renormalization group flow, as will be seen below.

As a summary, the near-horizon spacetime (r → 0) of the extremal 3-branes

solution has ‘throat’ geometry of the form AdS5×S5, while the spacetime becomes flat,

ten dimensional Minkowski spacetime, near the boundary of spacetime (r → ∞). This

is the closed string description of Nc D3-branes which corresponds to the spacetime

geometry in which only closed strings propagate. There is no open strings in this

description.
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Importantly, the formula (2.8), (2.11), and (2.14) lead to two relations:

G

R8
=

π4

2N2
c

,
R4

l4s
= λ = g2YMNc, (2.19)

which are the full formula of (2.2) that we used to discuss earlier. Since G ∼ l8p, with

lp the Planck length, these relations imply

l8p
R8

∝ 1

N2
c

,
l2s
R2

∝ 1√
λ
. (2.20)

In general, type IIB superstring theory on AdS5 × S5 is complicated, and there is no

systematic treatment available in the present. As mentioned earlier in this Section,

the limit Nc → ∞ and λ→ ∞ renders drastically simplified. It can be approximated

by classical supergravity since, as implied by the first relation of (2.20), the Planck

length is much smaller than the characteristic scale R of the space AdS5 and S5.

Furthermore, as implied by the second relation of (2.20), ls ≪ R in this limit resulting

in a weakly curved spacetime.

At low energy limit, there are two distinct sets of closed string excitations which

include those propagating in the asymptotic region, called here as the Minkowski

region, and those propagating in the throat region. These are focused in the viewpoint

of an observer at the asymptotic region in order to shed light on how these closed string

modes in two regions are decoupled. The closed strings propagating in the Minkowski

region itself are massless at low energies. Moreover, closed string modes are decoupled

to each other because their interactions depends on the coupling proportional to GE8.

On the other hand, the closed strings in the throat region have to propagates from

that region to the Minkowski region so that they get a great amount of redshift. They

need to climb up the gravitational potential. The deeper in the throat a closed string

excitation is , the more redshifted it get. As a result, closed strings of an arbitrarily

high proper energy in the throat have a very low energy as seen by an observer in

the Minkowski region. This indicates that closed string modes in the near-horizon

geometry, both massless and massive, decouple from the modes in the asymptotic flat

region. Hence, type IIB string theory in AdS5 × S5 is only the interacting sector of

this description, and it decouples from ten dimensional free gravity. Note although

the closed string modes in AdS5 × S5 can be both massless and massive, massive

modes are suppressed as the power of 1/
√
λ in α′-expansion. In large ’t Hooft limit,

λ→ ∞, any stringy effects associated with string fluctuations can be neglected, hence

only massless string modes survive.

We can compare this closed string description with what we discussed in the

above part on the gauge theory side. By matching the interacting sector of each of
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these description, we may deduce from this what is stated in the AdS/CFT corre-

spondence: the equivalence between the N = 4 supersymmetric Yang-Mills (SYM)

gauge theory with gauge group SU(Nc) and the type IIB supergravity theory in

AdS5×S5 spacetime. Inferred from the arguments in both the closed string and open

string descriptions of the system of D3-branes, the strongly coupled (equivalently,

λ ≫ 1) N = 4 super Yang-Mills theory is dual to the weakly curved (equivalently,

λ = R4/l4s ≫ 1) type IIB supergravity in AdS5 × S5. And vice versa in the opposite

limit.

Before closing this Section, it is worth to discuss about another aspect of the

AdS/CFT correspondence. This is the matching of symmetries between two sides of

the correspondence, which is an evidence that support this equivalence. As mentioned

above, the beta function of the coupling gYM in the gauge theory side vanishes to all

orders in perturbation theory, i.e. β(gYM) = 0. The conformal symmetry of theN = 4

super Yang-Mills gauge theory is represented as the global group SO(4,2). Nicely, this

matches with the isometry group SO(4,2) of the AdS5 space. Furthermore, the global

R-symmetry of the super Yang-MIlls theory here is described by the SU(4) group.

This is isomorphic to the isometry group SO(6) of the S5. Therefore, the SO(4,2)

spacetime symmetry group and the global SU(4) R-symmetry group of this conformal

field theory is identical to the isometry group of the AdS5 × S5 spacetime. However,

these are the symmetry groups in bosonic part of either side. Considering the full

supersymmetric theories, the global symmetry SU(2, 2| 4) matches on both sides of

the correspondence (see, for example, [50, 51]).

In addition, the two theories on both sides of the AdS/CFT correspondence have

the discrete symmetry SL(2,Z) [60, 61, 62]. Apart from the matching between the

gYM and gs as shown in (2.7), the theta angle coupling θ in N = 4 super Yang-Mills

theory can be matched with the expectation value of the Ramond-Ramond scalar (or

axion) χ. Therefore, we can write a complex parameter

τ ≡ 4πi

g2YM

+
θ

2π
=

i

gs
+

χ

2π
. (2.21)

Precisely, the first term of the above expression is the matching between the dilaton

expectation value eΦ0 = 1/gs on the gravity side and 1/g2YM in the gauge theory

side, whereas the second term is the matching between the axion expectation value

χ on the gravity side and the θ angle coupling on the gauge theory side. N = 4

super Yang-Mills theory has Montonen-Olive or S-duality symmetry under which the

conplex constant τ transforms as τ → (aτ + b)/(cτ + d), where a, b, c, d are integers
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with ad − bc = 1, the Möbius transformations in SL(2,Z). On the closed string

description of Nc D3-branes, this symmetry is a global discrete symmetry of type IIB

string theory, under which the constant τ in term the dilaton and axion expectation

values transforms in the same fashion as in the super Yang-Mills theory. Therefore, the

SU(2,Z) duality symmetry is present in both sides of the AdS/CFT correspondence.

2.1.2 Geometrizing the RG flow and UV/IR connection

It is quite mysterious at first glance when one knows that these two different theories

are equivalent. However, there might be some clues about this before the discovery

of Maldacena in 1997 [1]. The discussions about these might render the statement

of the AdS/CFT correspondence more sensible. One of them may be the subject of

renormalization group (RG) flow3. As pioneered by Kadanoff, Wilson and others in

1960’s (see e.g. [63, 64]), a good description of a system of many-body or a quantum

field theory is to express it in the scale picture. Namely, the equations governing

physics of the system are organized in term of length (or energy) scales. We will

denote the length scale of the system as z. The capability to describe the system in

this way results from the fact that degrees of freedom at widely separated scales are

largely decoupled from each other.

Consider a quantum field theory in d-dimensional Minkowski spacetime (t, x⃗)

and assume that it is defined with a short-distance cutoff, let us say z = ϵ. At a par-

ticular low energy scale, or equivalently z ≫ ϵ, we can involve just an effective theory

at length scale z, which can be obtained by integrating out all degrees of freedom

at the scales smaller than z. Importantly, physical quantities under consideration of

this length scale z is obtained by using renormalization scheme on the bare theory

defined at the scale ϵ. This procedure provides a renormalization group (RG) flow

through the differential equation which is so-called the renormalization group equa-

tion (RGE). This equation informs us how the running of coupling behaves as the

energy scale change. Note that the flow from low to high energy scales corresponds

to the change of z from large to small value. The RG flow gives rise to a continuous

family of effective theories in d-dimensional Minkowski spacetime, each defined by the

length scale z. Because of the continuity of z, this might be realized as a (d + 1)-

dimensional theory in which the RG scale z is treated as a spatial coordinate and a

slice of a certain value of z is the quantum field theory in d-dimensional Minkowski

3Note that we mainly follow [57] for the content in this subsection.
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As discussed in last subsection, the radial coordinate of the spacetime back-

ground can be interpreted as the RG scale. Because of this, the cutoff of the flavour

branes at r = L means that the open string degrees of freedom on the flavour branes

have the lower bound in energy. This is indeed the mass gap for the degrees of free-

dom of the fundamental matter. Since the cutoff r = L is proportional to quark mass

mq as shown in (2.29), it is natural to guess that this mass gap is linear in mq. How-

ever, this mass gap is not exactly the quark mass but the low-lying mode of meson

spectrum which could be obtained from the fluctuations of the fields, which are the

normalizable modes, on the probe D7-branes. By analysis of meson spectrum, the

mass gap is found to be in the order of mq/
√
gsNc. This indicates that the mesons

are much lighter than the quarks in the limit λ≫ 1. It is important to note that the

presence of the mass gap here does not mean this theory is confining.

As will be seen later, the confining gauge theory can be realized as the spacetime

with a smooth cutoff at a particular value of radial coordinate near the origin of

spacetime, and it gives rise to the mass gap of the adjoint field.

2.2 The confining theory and nonzero temperature

In recent years, the AdS/CFT correspondence has attracted interests in its applica-

bility to the phenomenological studies of non-perturbative QCD. However, this corre-

spondence cannot provide the gravity dual of the large Nc QCD. As its name suggests,

the AdS/CFT have the gauge theory side which is conformal, differing from the con-

fining behaviour of the real-world QCD. There has been many attempts to engineer

the holographic model whose the confining feature is taken into account [68, 7, 8, 69].

One natural way is to consider a stack of Nc D4-branes, in Type IIA string the-

ory, whose the world-volume possesses one compact spatial direction [68]. In the near-

horizon metric of a near-extremal D4-brane, the compactified spatial circle shrinks to

zero size at some finite value of the radial direction representing a smooth cut-off of

the spacetime. This feature can provide us with the confining spacetime background

in which the potential between a holographic quark-antiquark bound state is mainly

contributed by the tension of string lying along the smooth cutoff of the spacetime,

or the “hard-wall”. Consequently, the potential is linearly proportional to the sepa-

ration between two ends of the string. This corresponds to the confining potential of

interactions between quark and antiquark in the dual gauge theory. In other words,

this spacetime background with smooth cutoff is dual to the confining gauge theory.
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To consider finite temperature, the time coordinate is Wick-rotated, and the

asymptotic circumference of the Euclidean time circle equals to the inverse of the

temperature, T−1. Consequently, the confining spacetime background at finite tem-

perature has two compact directions. The metric of the geometry then can be written

as

ds2 =

(
u

RD4

) 3
2 [
δijdx

idxj + dθ21 + f(u)dθ22
]
+

(
RD4

u

) 3
2
[
du2

f(u)
+ u2dΩ4

]
, (2.32)

where θ1 is the Euclidean time with temperature dependent period δθ1 = β ≡ T−1, θ2

is the compact spatial circle with period δθ2 ≡ 4π
3

R3/2

u
1/2
Λ

, and f(u) ≡ 1−
(
uΛ

u

)3
. Notice

that f(u) equals to zero for u = uΛ but equals to one as u approaches infinity. This

f(u) factor renders the θ2−u subspace a cigar-like shape, while the θ1−u subspace has

a cylindrical shape. However, there is an alternative supergravity solution whose the

time and the compact spatial coordinates exchange the role. That is, θ1 is the compact

spatial coordinate with fixed circumference, θ2 is the Euclidean time with period δθ2 =

β = 4π
3

R3/2

u
1/2
T

, and f(u) ≡ 1−
(
uT

u

)3
. In other words, there are two geometries which can

be the supergravity solution. The comparison of the free energy between these two

competing geometries tells us about the deconfinement phase transition in the gauge

theory side. It is important to emphasize that the asymptotic circumference of the

time-circle can be variable depending on the temperature, namely δθ1 = T−1, while

the θ2-circle has a fixed circumference. As a result, the phase transition occurs once

the asymptotic circumferences of the two circles become the same in both geometries

such that they have the same value of free energy. This gives rise to the deconfinement

transition line in the T − µ phase diagram of the holographic nuclear matter [68, 70].

For a concise review, see [54].

2.3 The Sakai-Sugimoto Model

More realistic holographic dual of the large Nc QCD is the Sakai-Sugimoto (SS)

model [10, 11]. The brane construction of the SS model is a stack of Nc D4 branes

intersecting with Nf D8- and Nf anti-D8- branes, where Nf ≪ Nc such that the

presence of the probe branes D8/anti-D8-branes does not affect the D4-background.

This probe limit corresponds to the quenched approximation in the lattice QCD.

Stack of Nf D8 and D8 branes are introduced as the flavour branes. They are

located at separation distance L0 along the compactified x4 direction at the boundary

u → ∞. Open-string excitation with one end on the flavour branes behave like a
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0 1 2 3 4 5 6 7 8 9

Nc D4 o x x x o

Nf D8(D8) o x x x x x x x x

Table 2.3: The brane construction of the Sakai-Sugimoto model is composed of Nc D4-

branes and Nf D8-branes. The ‘x’ sign denotes the coordinates in infinitely extending

directions of the D-brane world-volume, and the ‘o’ sign denotes the coordinates in

compact directions of the D-brane world-volume.

chiral “quark”. In the setup where D8 and D8 are parallel in the (x4, u) projection,

each chiral excitation on each stack of branes transform independently, therefore the

theory has a chiral symmetry. For the setup where D8 and D8 connect, forming

a U-shape or a V-shape configuration in the (x4, u) projection, chiral symmetry is

broken.

To obtain a SUSY broken QCD at low energy, the boundary conditions of the

superpartners in the x4 direction are chosen so that the zeroth modes vanish (Scherk-

Schwarz mechanism). For energies below the first KK modes, the gauge theory there-

fore contains only gluons and chiral quarks. If the number of the stack of D4-branes

source Nc is chosen to be 3, this low-energy gauge theory will look exactly like QCD.

The brane construction of the SS model is shown in Table 2.3. Note that the ‘x’

sign signifies that the coordinate is occupied by an infinite extending direction of

the D-brane world-volume and the ‘o’ sign means that the coordinate is occupied

by a compact direction of the D-brane world-volume. This holographic model is a

QCD-like theory in many aspects, which are listed below.

1. It is non-supersymmetric resulting from the anti-periodicity for superpartners

around the x4 circle.

2. It has the confining behaviour and the deconfinement phase transition in the

same way as mentioned above. In the confined phase, the x4 coordinate is

the cigar-like compact direction and x0 (the Euclidean time) is the cylindrical

compact direction. In the deconfined phase the two coordinates exchange their

roles. To summarize, the coordinates θ1 and θ2 in Eqn. (2.32) can be specified

in the confined and deconfined phase as shown in Table 2.4.

3. It has dynamical quarks, though only massless, resulting from the presence of

the flavour branes.
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confined phase (T < Tdeconf) deconfined phase (T > Tdeconf)

θ1 x0 x4

θ2 x4 x0

f(u) 1−
(
uΛ

u

)3
1−

(
uT

u

)3
Table 2.4: Geometric assignment of the compactified bulk coordinates in the Sakai-

Sugimoto model

4. The phases of chiral symmetry breaking and chiral symmetric quark-gluon

plasma (χS-QGP) can be realized. There exist two configurations of the flavour

D8- and anti-D8-branes, both satisfy the equation of motion. One is the con-

nected configuration of the D8- and anti-D8-branes representing the chiral sym-

metry breaking phase. Another is the parallel configuration of the D8- and

anti-D8-branes lying along the radial direction of the bulk spacetime represent-

ing the chiral symmetric phase. Note that Tchiral = Tdeconf when the separation

between the D8- and anti-D8-branes L0 & 0.97R; R ≡ the radius of the x4

circle, while Tdeconf < Tchiral when L0 . 0.97R [70].

Since the SS model is the holographic model which gives exactly the particle

content of the QCD at low energy, we will consider the holographic multiquarks in

the deconfined SS model. The idea is to construct a gravity dual of the 5-dimensional

gauge theory with chiral fermions which gives approximately the 4-dimensional QCD

at low energy. The supersymmetry of the dual gauge theory in the string construction

is broken at the position of the flavour branes used to introduce the chiral fermions.

To construct the SS model, stack of D4-branes is used as the source to generate a

curved background of the type IIA string theory. After taking the near-horizon limit

and adding a black hole horizon, we arrive at the following background metric

ds2 =

(
u

RD4

)3/2(
f(u)dt2 + δijdx

idxj + dx4
2
)
+

(
RD4

u

)3/2(
u2dΩ2

4 +
du2

f(u)

)
(2.33)

F(4) =
2πNc

V4
ϵ4, eϕ = gs

(
u

RD4

)3/4

, R3
D4 ≡ πgsNcl

3
s ,

where f(u) ≡ 1 − u3T/u
3, uT = 16π2R3

D4T
2/9. Note that the compact x4 coordinate

(x4 transverse to the probe D8 branes), with arbitrary periodicity 2πR, never shrinks

to zero. The volume of the unit four-sphere Ω4 is denoted by V4 and the corresponding

volume 4-form by ϵ4. F(4) is the 4-form field strength, ls is the string length and gs is

the string coupling. The dilaton in this background has u-dependence and its value
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changes along the radial direction u. This is a crucial difference in comparison to the

AdS-Schwarzschild metric case where dilaton contribution is constant.

In the Sakai-Sugimoto model of D4-D8 branes construction, the D4-brane wrap-

ping the S4 is used as the baryon vertex. Remarkably, it was found that the baryon

can also be realized as an instanton in the bulk of Nc D4-brane induced background

spacetime, corresponding to baryon in the Skyrme model on the gauge theory side.

This instanton can be described in term of the Chern-Simons action in the bulk.

Therefore, these two pictures of baryon are equivalent.

Before closing this Section, we would like to point out a weak point of the

Sakai-Sugimoto model for a holographic model of QCD. As shown in Table 2.3, there

is no direction that transverse to both the D4-branes and the D8 (D8)-branes. This

indicates that the separation between these two stacks of branes on the open string

description is zero, hence quark fields are massless, in contrast to those in the setup

of D3/D7. Consequently, we can have only massless quarks in the Sakai-Sugimoto

model. However, there are many attempts to introduce mass to the quarks in the

models such as those discussed in [71, 72, 73, 74, 75, 76, 77, 78, 79, 80].



Chapter III

HOLOGRAPHIC MULTIQUARKS

This Chapter devotes to the extensions of the gravity dual model of colour-

singlet baryons. We propose these models in the absence of flavour degrees of free-

dom. These are the models of coloured states without dynamical quarks. In other

words, we are interested in the multiquark vertex in this Chapter. In section 3.1,

we introduce the previous works on the attempts to construct a gravity dual model

of the baryon vertex in the AdS/CFT correspondence. Next, we discuss basic con-

cepts of colour non-singlet nuclear states in section 3.2. Then, gravity dual models

of non-singlet multiquark vertex in the deconfined phase are proposed and discussed

in section 3.3. Possible classes of holographic multiquark bound states are explored

with the restriction that the configurations satisfy the force balance conditions. As

a result, the conditions for stable configurations of holographic multiquarks are cal-

culated. In section 3.4, we calculate the binding energies and the screening lengths

in order to compare the relative stability among these different classes of multiquark

bound states. Finally, in section 3.5, we explore about the dependence of the binding

energy of the multiquark bound state on the free quark mass corresponding to the

position of of the probe D-branes at which the strings end in near-boundary region.

3.1 Introduction

As discussed in Chapter II, gauge/gravity duality gives a powerful tool to study

strongly coupled quark-gluon plasma due to the fact that it can be an embodiment of

the so-called strong-weak coupling duality [81]. Namely, the strongly coupled gauge

theories could be described by a weakly coupled gravitational theory. This allows us

to perform analytic calculations in the strong coupling regimes which are very difficult

to implement for the real QCD even for lattice calculations.

There has been many attempts to construct model to explore the hadronic

physics through this new holographic tool. Despite describing only QCD-like the-
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ory, the gauge/gravity duality tends to give the results of analytic calculations which

show that the hadrons predicted by the duality behaving in many ways similarly to

the hadrons in QCD (see [10, 82, 83, 84], for example). One of the simplest construc-

tions of hadronic states is that of mesons. The heavy quark sources, massive objects

in the fundamental representation of SU(Nc), were introduced into the AdS/CFT

correspondence as the elementary strings stretched from a probe (i.e. non-back re-

acting) D3-brane at large radii in anti-de Sitter space to the Nc D3-branes at the

origin [85, 86]. Note that the term “probe” in any probe Dp-brane means that this

extended object does not affect the spacetime background. The endpoint of the string

at the boundary carries fundamental charge. Two such strings with different orien-

tations, going up to and going down from the boundary, can represent a quark and

an anti-quark of which the interaction energy is related to the area law of a Wilson

loop in the field theory [85]. Considering the expectation value of the Wilson loop

operator, the mesonic state can be realized as a string hanging from the boundary of

spacetime to the bulk. In this picture, the static potential between quark-anti-quark

pair is proportional to the Nambu-Goto action of this hanging string subtracted by

the Nambu-Goto action of the free strings, up to the integration over time direction.

It is worth to remark that these particles are in a pure gauge theory without

dynamical quark fields. The constructions in AdS5 × S5 corresponds to the bound

states composed of only the adjoint matter and the external quarks. An elementary

string added to the gravity dual model give rise to a heavy charged particle, represent-

ing external quark which is static. Even though this transforms fundamentally in the

gauge group SU(Nc), it cannot have any dynamics; hence it cannot contribute as the

dynamical quark field appearing in QCD. In other words, the supergravity picture of

the AdS/CFT correspondence have, comparing with QCD, only gluon dynamics but

no dynamics from the fundamental quark fields. Consequently, we can sometimes call

the mesonic state, mentioned above, as the mesonic vertex due to the fact that it is

the same as the QCD meson in the adjoint matter sector, but not in the fundamental

sector.

As mentioned in Chapter II, the fundamental degrees of freedom can be simply

added into the supergravity picture through introducing the flavour branes [67]. In a

gauge theory with fundamental matter, light mesons can be realized in gravity picture

as the quantized modes of the fluctuations of the flavour D-branes [82], whereas the

heavy-light mesons and heavy mesons are the strings hanging from flavour branes (see

a review, [87]). The quark matter is represented by the strings extending from the

flavour branes to the horizon of the space-time.
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Baryonic states can also be realized in gravity picture as a combination of strings

and a probe D-brane. Without the fundamental degrees of freedom, this can however

be called the baryon vertex. In the presence of the fundamental degrees of freedom,

the corresponding configuration is developed to be the baryon vertex attached with

strings extending to the flavour branes. Actually, the strings tend to shrink to zero

length, hence the vertex become a probe D-brane embedded within the flavour D-

branes behaving as an instanton. We will discuss these in detail in the following

section.

3.1.1 Baryon vertex in gauge-gravity correspondence

The string/brane realization of baryons was firstly addressed by Witten [37] and Gross

and Ooguri [38]. In QCD, the baryon is a colour singlet bound state of three quarks

which form the totally antisymmetric representation of the colour gauge group SU(3).

This should be the case in gauge/gravity duality but with the gauge group SU(Nc),

where the number of colours Nc is large, instead. In the gravity picture, we expect

that there are Nc elementary type IIB superstrings in the bulk with their ends go to

the boundary of the space-time background in a similar way as the case of meson.

These endpoints of elementary strings on the boundary possess the external charges.

Equivalently, the corresponding particles are in the fundamental representation of

the gauge group SU(Nc). These endpoints therefore represent the external quarks in

N = 4 super Yang-Mills theory.

Nevertheless, one difficulty arise relating to where another end of each string

should end. How does the combination of these strings end naturally in the bulk?

Witten proposed that there should be a probe D5-brane wrapped around five-sphere

at which the endpoints of these strings locate in the bulk [37]. We describe here the

reason for introducing a wrapped D5-brane, as the key in the construction of a baryon

vertex in string theory.

It has been known that the Ramond-Ramond self-dual form fields, five-form

for AdS5 × S5 (but four-form for the space-time background of the Sakai-Sugimoto

model which we will discuss in the next subsection) integrating around the compact

dimensions of the spacetime background provide us with Nc units of five-form flux on

S5: ∫
S5

G5

2π
= Nc, (3.1)
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where G5 is the five-form. A probe D5-brane has a U(1) gauge field Â on its world-

volume. This gauge field couples to the five-form flux as follows,∫
S5×R

a ∧ G5

2π
(3.2)

Consequently, this Ramond-Ramond five-form field G5 contributes Nc units of U(1)

charge in the bulk.

One more point that should be emphasized is that the total charge of a U(1)

gauge field must vanish in a closed space [37], like the S5 space. As a result, there

must be some sources to cancel completely Nc units of U(1) charge of the wrapped

D5-brane. It is coincident that the collection of endpoints of Nc strings oriented up

to the boundary contribute −Nc units of charge. Because of these, we can claim

that the wrapped D5-brane is the place in the bulk at which these string should end.

Remarkably, this is also a natural way to have the stable combination of these strings

since U(1) charges vanish in the bulk.

In addition, the baryonic states in SU(Nc) gauge theory are gauge-invariant

combination of Nc quarks which are totally anti-symmetric under permutations. This

reflects that each of quark sources should behave as fermions. In other words, the

complete anti-symmetricity results from the fact that all constituents of the bound

state are fermionic. This suggests that all of Nc fundamental strings linking the probe

D5-brane wrapped around the S5 to the boundary necessarily behave as fermions.

How could we admit of this feature intoNc strings? Fortunately, it was found [88,

89] that the ground state of a string stretching between linked D-branes is fermionic

and nondegenerate. It is also pointed out in [37] that one can obtain the same result,

i.e. the ground state of the strings behave as fermions, locally as long as the strings

connect any transverse D-branes whose total dimensions add up to eight. Consider-

ing a string connecting these two branes, given the boundary conditions at the two

ends, its ground state energy is positive in the Neveu-Schwarz (NS) sector while it

is zero in the Ramond (R) sector. These cause the ground state of a string connect-

ing these branes is fermionic. Moreover, the ground state of each of these strings is

nondegenerate since there is no fermion zero mode in the Ramond sector.

To be precise, it is better to identify the world-volume of the transverse D-branes

connecting by the strings. The world-volume of a wrapped D5-brane is R×S5, where

R is a timelike curve in AdS5. Obviously, we require a probe D3-brane locating near

the boundary of AdS5 space as another brane transverse to a wrapped five-brane so

that total dimensions of these two branes add up to eight. Instead of the boundary of



36

the AdS5 space, the probe D3-brane become a boundary condition of Nc strings. For

convenience, we consider the Euclidean version of the AdS5 space whose the boundary

is R×S3, where R is the “time” direction. The probe D3-brane located around there

have the world-volume of the same topology. Remarkably, a probe D3-brane near

the boundary of the spacetime as a boundary condition of strings has been used in

[85, 86].

The (3-5) fundamental strings connecting these two transverse branes have to-

tally eight coordinates with Neumann-Dirichlet (ND) and Dirichlet-Neumann (DN)

types of boundary conditions, i.e. in the X1, X2, X3 and X5, X6, X7, X8, X9 direc-

tions, respectively. Later on, we denote the total number of DN and ND directions

by #ND, hence #ND = 8 here. There are also one Dirichlet-Dirichlet (DD) coordinate

X4, and one Neumann-Neumann (NN) coordinate X0 (see Table 3.1.1). The oscillator

excitations of X0 and X4 and their fermionic partner can be eliminated by the super

Virasoro constraints [89]. The ground state energies are different between Ramond

and Neveu-Schwarz sectors. Note that these two sectors of open strings correspond

to two periodicity for world-sheet fermions. Importantly, the ND (DN) boundary

condition interchanges between the mode expansion in NS sector and R sector in that

DN direction. Namely, it changes the NS sector from expanding in half-integer modes

to integer modes, whereas it changes the R sector from expanding in integer modes

to half-integer modes. The string excitations in these eight directions (DN and ND)

have vanishing zero-point energy in the Ramond sector as in the case of DD and NN

boundary conditions, since bosons and fermions with the same periodicity cancel. In

the NS sector, the ground state energy is (see e.g. [90])

(8−#ND)

(
− 1

24
− 1

48

)
+#ND

(
1

24
+

1

48

)
= −1

2
+

#ND

8
. (3.3)

Substituting #ND = 8, the ground state energy of strings in DN and ND directions in

the NS sector is 1/2. Consequently, an open string with these boundary conditions

behaves as a fermion.

Therefore, the gravity dual model of the baryon vertex in AdS/CFT correspon-

dence can be represented by the probe D5-brane wrapped around the five-sphere

attached with Nc strings extending to the probe D3-brane near the boundary of the

spacetime, where these strings are totally antisymmetric under permutations. This

construction represents the gauge invariant combination of Nc external quarks which

is the totally antisymmetric representation of the gauge group SU(Nc). It is impor-

tant to emphasize that this construction is based on the assumption that the baryon
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0 1 2 3 4 5 6 7 8 9

a wrapped D5 x x x x x x

(N) (D) (D) (D) (D) (N) (N) (N) (N) (N)

a probe D3 x x x x

(N) (N) (N) (N) (D) (D) (D) (D) (D) (D)

Table 3.1: Two transverse branes at which the elementary strings end are a probe

D5-brane wrapped around five-sphere and a probe D3-brane located near the AdS

boundary. The world-volume of the wrapped D5-brane, R × S5, occupies in the

directions 0th and 5th to 9th, while the world-volume of the probe D3-brane, R×S3,

occupies in the directions 0th-3rd. Note that we also specify the types of the string

boundary condition for each spacetime direction. (D) denotes the Dirichlet type of

boundary condition and (N) denotes the Neumann type.

 

2x

 

1x

 

3x

 

N
x

 

3
S

 

4
∂R

a probe D3-brane

Figure 3.1: A construction of the baryon vertex in AdS/CFT correspondence is com-

posed of a probe D5-brane wrapped five-sphere located in the bulk, a probe D3-brane,

transverse to the D5-brane, near the AdS boundary, and Nc strings connecting these

two branes which behave as fermions such that the baryon vertex is completely anti-

symmetric under permutations among these strings.



38

vertex configuration have the point-like shape. Some non-trivial configurations of the

baryon vertex have been investigated in [91, 92, 93].

Note that all of the Nc strings have the orientation going out from the wrapped

D5-brane to the D3-brane around the boundary. Each of them contributes the U(1)

charge of -1 at the wrapped D5-brane in the bulk. Combination of Nc strings therefore

give the −Nc unit of charge and cancel with +Nc unit of U(1) charge of the wrapping

brane. In the same way, if we choose that the orientations of all string is in the

direction of going from the D3-brane near the boundary into the wrapped D5-brane,

they would contribute +Nc unit of U(1) charge. To cancel the charges, we need the

anti-D5-brane wrapped around S5 such that we have −Nc unit of the charge.

Generally, the supergravity solutions of a stack of Nc Dp-branes includes the

presence of the (8−p)-form field strength, and the baryon vertex has to be constructed

from a probe D(8 − p)-brane wrapped around the subspace S8−p of the background

spacetime. The U(1) gauge field on the world-volume of the D(8 − p)-brane couples

with the antisymmetric (8 − p)-form field strength G(8−p) and induce Nc units of

U(1) charge upon the wrapped D(8− p)-brane, canceled completely with the charges

brought about by Nc strings. Obviously, the above discussed construction of the

baryon vertex in AdS/CFT correspondence can be obtained by substituting p = 3

since the background fields are induced from the presence of a stack of Nc Dp-branes

where p = 3.

In the theory with fundamental degrees of freedom, it is natural to replace the

probe D3 branes as boundary conditions of Nc strings, in the model of baryon vertex,

with the flavour branes. As introduced in Chapter II, it is the probe D8-branes and

anti-D8-branes in the Sakai-Sugimoto model. These branes do not only give rise to

the fundamental degrees of freedom, but also the phase structure of the fundamental

matter. We are interested in exploring the properties of holographic hadronic states

in this model because it is one of the closest cousin of our real-world QCD, and some

results obtained from the model have been found to be notable for comparing with

the low-energy QCD.

In the rest of this Chapter, we will explore about the stability of the baryon

vertex and the multiquark vertex in the background fields corresponding to the Sakai-

Sugimoto model except that we ignore the effects of the presence of the flavour branes.

Namely, these are the background fields induced by a stack of coincident Nc D4-branes

with one spatial world-volume direction compactified in S1. The considerations in

this simplified version of the Sakai-Sugimoto model can, at least, provide us with
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a clarified picture of baryons and multiquarks, though just as vertex with only the

external quarks, in the supergravity description.

In the supergravity description of a stack of Nc D4-branes, there is a Ramond-

Ramond 4-form field strength. Since the four-sphere is a subspace of thisNc D4-branes

induced spacetime background, the baryon vertex can be given by a probe D4-brane

wrapped around S4 attached with Nc strings extending to a probe brane near the

boundary of spacetime. As to be discussed in the next Chapter, in the Sakai-Sugimoto

model, the wrapped D4-brane imbedded in D8-brane, whose Nc strings tends to have

zero length, give rise to the instanton number which corresponds to the baryon number

obtained from the Skyrme model in the gauge theory side.

3.2 Multiquarks in the deconfined phase

In the deconfined phase, coloured states of a number of quarks and antiquarks can

exist in the medium as long as it is more energetically favoured than free quarks and

antiquarks. However, this is not the case in the confined phase; the only allowed

bound states are those with colour singlet combinations of quarks. We will see later

in this section whether a colour non-singlet bound state of quarks can exist or not

in the supergravity picture depend on the presence of the horizon in the spacetime

background.

Remarkably, the orientation of strings plays the important role in the considera-

tion. In a conventional baryon vertex in the gravity picture, we choose the orientation

of all strings going up to the boundary to represent the baryon within which each va-

lence quark contributing one of different positive colour charges. This should not

be confused with flavor charges and electric charges of which each quark contribute

different values. In the real world baryons such as proton and neutron, the colour

charges are red, green, and blue which are three different colour charges of each quarks

in the SU(3) invariant bound state. Obviously, each quark contribute equally one unit

of colour charge but different to each other. They are not anti-colour such as anti-red

(or cyan), anti-green (or magenta) and anti-blue (or yellow). In the gravity picture,

these all have the orientation going out to the boundary.

In the gravity dual models of multiquarks, we will discuss coloured bound states

of quarks with not only colour but also anti-colour. As mentioned above, the bound

states in the deconfined phase can have colour and thus can have more varieties than
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the situation in the confined phase. In the gravity picture, the spacetime background

corresponding to the deconfined phase has the horizon into which one end of “quark”

strings can hide. For example, a string can either start from the baryon vertex and go

radially to the horizon of the background spacetime or it can come from the horizon

and end at the baryon vertex. We will call this string configuration which is allowed

in the deconfined phase as the “radial string”. A free radial string configuration

lying along the radial coordinate, given by the classical solution of the Nambu-Goto

action [94], can represent a free (anti)quark state in the QGP medium.

In N = 4 supersymmetric Yang-Mills theory, baryon configurations can be

stable in the confining background [39]. The binding energy of a baryon is found

to be linear in Nc and in the size of the baryon on the boundary. Remarkably, it

is possible to have stable configurations for baryons which are made of k quarks, or

“k-baryon”, if 5Nc/8 < k ≤ N in the finite temperature NSUSY = 4 Super Yang-Mills

theory [39]. Such a configuration is made of baryon vertex with k strings extending

up to the boundary and the rest Nc − k strings stretched down to the horizon. With

the presence of these radial strings, the baryonic states are not colour singlet and

transform as Nc!
k!(Nc−k)!

representation under SU(Nc) gauge group. In a confining theory

we do not expect to find such a bound state. It was also proposed in [43, 42] that the

k < Nc bound states can only exist in a deconfined phase. Note that we will include

baryons as a special case of the multiquark states in this thesis.

Some attempts have been made in constructing holographic description of these

exotic multi-quarks bound states [43, 42, 47, 46]. The author in [46] considered exotic

multi-quark configurations in holographic picture formed by combining two or more

baryon vertices together. Nevertheless, the gravity dual model of an exotic baryon can

be constructed from a single baryon vertex. This is expected to be more energetically

preferred.

In general, there are infinite ways of combining strings with the probe D-brane

vertex such that the U(1) charges vanish at the vertex. Hence, the total number of

strings attached to the baryon vertex need not to be equal to Nc. In the following

section, some possible classes of multi-quark bound states are introduced. The com-

binations of strings are not arbitrary, but they are restricted by the force balance

conditions at the vertex. As mentioned above, these constructions are proposed in

the background of the black Nc D4-branes corresponding to the flavour-less version

of the Sakai-Sugimoto model.
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Figure 3.2: The gravity dual configurations of the hypothetical exotic states (a) k-

baryon with the number of hanging strings kh = k < Nc and the number of radial

strings kr = Nc−k. (b) (Nc+ k̄)-baryon with kh = Nc+ k̄ and kr = k̄. (c) j-mesonance

with kh = 2j and kr = Nc.

3.3 Some classes of multi-quark states

Based on the assumption of string charge cancelation at the vertex, three classes of

exotic multiquarks are proposed in [41]. Namely, they are k-baryons, (Nc+ k̄) -baryon

and j-mesonance (strongly coupled bunch of mesons), corresponding to diquark, some

exotic baryons such as pentaquark, and a bunch of mesons, respectively. We param-

eterize kh as the number of hanging strings which extends from the vertex to the

boundary, and kr as the number of radial strings extending from the vertex to the

horizon. Figure 3.2 shows three classes of the holographic multiquarks.

In the deconfined phase of QGP, it is possible to have kh strings hanging from

the spacetime boundary down to the baryon vertex and another kr strings stretching

radially from the baryon vertex down to the horizon. The total number kh+kr = Nc is

the charge conservation constraint on the configuration. This configuration is known

as “k-baryon” [39].

Another possible configuration is composed of Nc strings with the going-up

orientation and k̄ strings with the going-down orientation hanging down to the vertex

from the probe branes at the boundary of the spacetime. To conserve the charge in

the bulk, k̄ strings with the going-down orientation need to be added at the vertex and

extend from the vertex down to the horizon of spacetime. We call this configuration

“(Nc + k̄)-baryon”.
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An even more interesting configuration allowed in the deconfined phase is when

there are j pairs of quark and antiquark strings hanging from the probe branes at

the boundary of spacetime down to the vertex. Again, to conserve the charge, we

need Nc radial strings stretching from the vertex down to the horizon. Obviously, this

configuration can decay into j mesons when it is less energetically favoured. Therefore

we will call this state, a “j-mesonance”, representing a binding state of j mesons in

the QGP.

In summary, the charge conservation constraint for each case can be expressed

as the following.

For k-baryon,

kh + kr = Nc; kh = k. (3.4)

For (Nc + k̄)-baryon,

kh − kr = Nc; kh = Nc + k̄. (3.5)

For j-mesonance,

kh = 2j; kr = Nc. (3.6)

Note that kh is the number of strings hanging from the boundary down to the baryon

vertex and kr is the number of radial strings extending from the vertex down to the

horizon. Note that the value of k̄ and j can be as large as Nc × Nf in the case

with Nf flavour degrees of freedom. However, we will simply take this number to be

large, ignoring the upper bound on k̄ and j. Each configuration of exotic baryons is

illustrated in Fig. 3.2.

3.3.1 Force balance conditions

We will consider the force balance condition for each string-brane realization of exotic

configuration of multi-quarks in the deconfined phase. As will be seen later, this is the

equilibrium condition for the existence of the multiquark states. Assume the vertex

to be a point at the cusp position uc that does not receive any distortion from the

attached strings. The distortion of the baryon vertex due to the attached strings is

discussed in detail in [92, 93].

Again, the calculation will be performed in the gravity background similar to

the Sakai-Sugimoto model [10]. Even though the chiral symmetry restoration can
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be addressed within this model, the consideration of this chiral-transition aspect is

postponed to the next Chapter. Here, we focus on the high temperature phase where

quarks and antiquarks are effectively free in the absence of the linear confining poten-

tial. The positions of D8/D8 will be taken to be large and we will approximate it to

be infinity in this section as well as in the discussion of binding energy and screening

length in Section 3.4. Analysis in this heavy-quark limit provides us with valuable

physical understanding of certain essential features of the exotic states.

Generalized results for a near-horizon background metric of the Dp-branes solu-

tion and its dependence on positions of the probe branes will be given in section 3.5.

Even in the deconfined phase, quarks and antiquarks feel effective (screened)

potential from other constituents. Therefore, a number of population of them will

exist in various forms of bound states, some of which are exotic in the sense that they

cannot be formed in the confined phase at low temperature.

As shown in Chapter II, the deconfining background of fields in the Sakai-

Sugimoto model take the form

ds2 =

(
u

RD4

)3/2 (
f(u)dt2 + δijdx

idxj + dx4
2
)
+

(
RD4

u

)3/2(
u2dΩ2

4 +
du2

f(u)

)

F(4) =
2πN

V4
ϵ4, eϕ = gs

(
u

RD4

)3/4

, R3
D4 ≡ πgsNl

3
s ,

where f(u) ≡ 1 − u3T/u
3, uT = 16π2R3

D4T
2/9. Note that the compactified x4 coor-

dinate, transverse to the probe D8 branes), with arbitrary periodicity 2πR. It never

shrinks to zero in the deconfined phase. The volume of the unit four-sphere Ω4 is

denoted by V4 and the corresponding volume 4-form by ϵ4. F(4) is the 4-form field

strength, ls is the string length and gs is the string coupling.

Remark that the deconfining temperature Tc is the value at which the circum-

ferences of time-circle and x4-circle have the same value, i.e. β = 2πR. As a result,

we have Tc = 1/2πR. For convenience, we set here

Tc = 0.025, (3.7)

which implies that the x4-circle has radius R = 6.3662. Moreover, we set RD4 = 1, so

that the horizon is at uT ≃ 0.011.

The action of the baryon configuration is given by

S = SD4 + khSF1 + krS̃F1, (3.8)
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where SD4 represents the action of the D4-brane. SF1 is the action of a stretched

string from the boundary down to the baryon vertex and S̃F1 is the action of a radial

string hanging from the baryon vertex down to the horizon. Recall that SD4 can be

obtained from the Dirac-Born-Infeld action which is

SDBI =

∫
dx0dξpTp

where the Dp-brane tension is

Tp =
(
e−ϕ(2π)pα′(p+1)/2

)−1√
−det(g)

By integrating out, these actions take the form

SD4 =
τNuc

√
f(uc)

6πα′ , (3.9)

SF1 =
τ

2πα′

∫ L

0

dσ

√
u′2 + f(u)

( u
R

)3
(3.10)

S̃F1 =
τ

2πα′ (uc − uT), (3.11)

where τ is the total time over which we evaluate the action and uc is the position

where the D4-brane vertex is located.

Because of spherical symmetry of the configuration in the (x1, x2, x3) subspace,

the action is sensitive to only the variation in the holographic direction u. The

variation of the action gives the volume term as well as the surface term. The equation

of motion is obtained by requiring that the volume term and surface term vanishes

separately. The volume term gives the Euler-Lagrange equation which determines

the shape of the hanging strings. On the other hand, the surface term provides the

equilibrium condition of the configuration at the tip uc under the variation in the u

direction, i.e. the force balance condition at the cusp.

As an approximation, we assume the baryon vertex to be a point (not being

distorted by the connecting strings) located at a fixed value of u = uc as in [39].

Under this assumption, the surface terms provide additional zero-force condition on

the configuration,

N

3
G0(x)− khB + kr = 0 (3.12)

where

G0(x) ≡
1 + x3

2√
1− x3

, x ≡ uT
uc

< 1, and B ≡ u′c√
u′c

2 + f(uc)(
uc

RD4
)3
. (3.13)
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Notice that these conditions occur at the location of the vertex at u = uc, at which

there exists the balance between the pull-up force (toward the direction of increasing

u) due to the tension of hanging strings and the pull-down force due to the “weight”

of D4-brane plus the tension of radial strings.

Actually, this is not exactly the weight in the usual sense since the direct gravi-

tational force on D-brane is already balanced by the force from the RR-flux, but it is

the force originated from minimization of self-energy due to the brane tension caused

by the background metric and the gauge interaction. This is very similar to the self-

energy of a spring under gravity where the spring potential energy changes with the

tidal force from gravity in the background. The DBI action of the D4∼ uc
√
f(uc)

which is positive for uc > uT and becomes zero (minimum) at uc = uT and thus it

represents the “weight” on D4 towards the horizon.

Since B is always less than one, we obtain the equilibrium condition

kh ≥ N

3
G0(x) + kr, (3.14)

which expresses the lower bound of the number of hanging strings. In other words,

the number of hanging strings cannot be less than this critical value, otherwise the

no-force condition is not satisfied. The equality of (3.14) is held only when all hanging

strings are stretched straight, otherwise we require more hanging strings to balance

the pull-down force. Let us now consider each class of the multi-quark states.

In the case of k-baryon, plugging the condition (3.4) into (3.14), we obtain

kh = k ≥ N

6
(G0(x) + 3) . (3.15)

Apart from the lower bound, we also have the upper bound, k ≤ N , therefore G0(x)

cannot be larger than 3, resulting in

x . 0.922. (3.16)

Notice that this restriction on x is a result from the conditions of the force balance

and conservation of string charges. This shows that there is an upper-bound on the

temperature, over which the horizon is too near to the point vertex that the pull-down

force always overcomes the pull-up one.

In the case of (Nc+ k̄)-baryon, in the same way as the preceding case, plugging

the condition of charge conservation (3.5) into (3.14), we have the following condition,

kh = Nc + k̄ ≥ Nc

3
G0(x) + k̄.
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Unlike the case of k-baryon, the upper-bound of the number of hanging strings does

not exist. However, we still obtain the same condition G0(x) ≤ 3, hence x . 0.922.

Finally, in the case of j-mesonance, similarly, Eqn. (3.6) results in

j ≥ N

6
(G0(x) + 3) . (3.17)

The lower-bound of the value of j is 2N/3 at zero temperature (x = 0) and it will

be larger as the temperature grows. Nevertheless, the upper-bound of the limit on j

does not exist.

Finally, we would like to comment on the limits on the value of k, k̄, j when the

temperature is zero. In terms of m ≡ 7 − p (of the spacetime background generated

by Dp-branes), the condition (3.14) becomes

kh ≥ Nc

m
+ kr (3.18)

which leads to
k

Nc

,
j

Nc

≥ m+ 1

2m
, (3.19)

and no conditions on k̄. This critical numbers are 5/8, 2/3 for m = 4, 3 (the AdS-

Schwarzschild and Sakai-Sugimoto model) respectively. It is an interesting coincidence

that the critical numbers are the same for both k-baryon and j-mesonance. Remark-

ably, it turns out that the condition (3.18) does not give any constraint on the (Nc+k̄)

configuration.

3.4 Binding energy and the screening length

Theoretically, all of these bound states are allowed to exist. However, a question

arises which multiquark state is more stable than another. This can be addressed

by considering the binding energies of each class of the multiquarks. Naturally, the

binding energy of each of these holographic bound states is the total energy of the

configuration subtracted by the energy of the free quarks. Similar to the calculation

of Wilson loop in [85], the binding energy in the large Nc limit could be estimated to

be the total classical action divided by τ .

In this section we will calculate the binding energies of the k-baryon, (Nc + k̄)-

baryon, and j-mesonance in the deconfined phase. These binding energies are taken to

be the differences between the total energies of each configuration and the correspond-

ing energies of the free strings configuration which represents the free quarks and/or
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antiquarks state. The number of free strings in the free quarks state is determined

solely by the total number of strings hanging from the boundary, kh.

The total energy is given by E = S/τ of the corresponding action S for each

configuration. The solution or the shape of the hanging strings can be obtained by

using the Nambu-Goto action from Eqn. (3.11), the regulated energy of the hanging

strings (subtracted by energy of the free quarks) is

EF1 =
1

2π

∫ L

0

dσ

√
u′2 +

(
u

RD4

)3

f(u)− 1

2π

∫ ∞

uT

du. (3.20)

Due to the no-force condition in the surface term, we impose Eqn. (3.12) and Eqn. (3.13),

or

u′c
2
=
f(uc)B

2

1−B2

(
uc
RD4

)3

(3.21)

where the tension of each hanging string at uc is constrained by

B = B(kh, kr, x) =
N

3kh
G0(x) +

kr
kh
. (3.22)

Since the Lagrangian L does not depend on σ explicitly, the conserved Hamil-

tonian can be defined to be

H ≡ L− u′
∂L
∂u′

= const, (3.23)

leading to
f(uc)(

uc

RD4
)3√

u′c
2 + f(uc)(

uc

RD4
)3

=
f(u)( u

RD4
)3√

u′2 + f(u)( u
RD4

)3
. (3.24)

Then substituting Eqn. (3.21) into this equation, we obtain

u′
2
=

f(u)2( u
RD4

)6

f(uc)(
uc

RD4
)3(1−B2)

− f(u)

(
u

RD4

)3

. (3.25)

This gives the size (radius) of the baryon as seen on the gauge theory side,

L =
R

3/2
D4

u
1/2
c

∫ ∞

1

dy

√
(1− x3)(1−B2)

(y3 − x3)(y3 − x3 − (1− x3)(1−B2))
. (3.26)

Note that uc ≈
R3

D4

L2 at the leading order.

Using Eqn. (3.25) and let y ≡ u/uc, the regulated binding energy now becomes

EF1 =
uc
2π

{∫ ∞

1

dy

[√
y3 − x3

(y3 − x3)− (1− x3)(1−B2)
− 1

]
− (1− x)

}
. (3.27)
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Figure 3.3: Comparison of the potential per Nc between Nc-baryon, k-baryon, and

(Nc + k̄)-baryon for k/Nc = 0.8, k̄1/Nc = 2/3, k̄2/Nc = 2 at temperature T = 0.25 (or

T = 10Tc, see (3.7)).

Hence, we obtain the total energy of the configurations as

E =
NuT
2π

(√
1− x3

3x
+

(
kh
N

)
E
x
+

(
kr
N

)
1− x

x

)
(3.28)

∼
N2

L2
(3.29)

where E represents the terms within the brace of (3.27).

To obtain the relations between the total energy of the configurations E(x) and

L(x), we eliminate the parameter x = uT/uc. By numerical calculations, the results

are shown in Fig. 3.3 and Fig. 3.4. The binding energy of Nc-baryon is the deepest,

suggesting that it is the most tightly bound state. For (Nc + k̄)-baryon, increasing k̄

makes the binding energy smaller and the bound state is less tightly bound. The case

of j-mesonance is quite similar. Generically, a j-mesonance has shallower binding

potential than the total energy of j mesons. However, as j grows, the difference gets

smaller and smaller.

The screening radius or screening length of exotic multi-quark states is defined

to be the value of radius L∗ at which the binding energy becomes zero from negative

values at smaller distances. This screening radius is therefore one-half of the usual
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Figure 3.4: Comparison of the potential per Nc between j-mesonance and j mesons

for j1/Nc = 0.8, j2/Nc = 3 at temperature T = 0.25 (or T = 10Tc).

definition of screening length in the discussion of mesonic state where it is defined as

the zero-potential distance between quark and antiquark.

Numerical results suggest that the screening length of baryons and mesonance

decrease as the temperature increases, i.e. L∗ ∼ 1/T for a fixed value of k, k̄, j as is

shown in Fig. 3.5-3.7. This is the generic form for the screening length in both the

AdS-Schwarzschild and Sakai-Sugimoto models because it is the quantity which does

not depend on the ’t Hooft coupling at the leading order [95]. It is also an increasing

function of k and j. Interestingly, (Nc + k̄)-baryon has the opposite tendency with

the screening length decreases as k̄ grows. On the other hand, the screening length

of j-mesonance has a saturation value L∗
j−mesonance → L∗

meson as j → ∞.

3.5 Dependence on the free quark mass

In this section, we will study dependence of the binding potential on the position

of the probe branes. This is useful when position of the probe branes are at finite

distance from the black hole horizon and the corresponding quarks have finite mass.

For example, the probe branes are D8 and D8 flavour branes in the Sakai-Sugimoto

model.
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Figure 3.5: Screening length with respect to k for the temperatures in 0.15 − 0.35

range (or 6Tc − 14Tc).
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Figure 3.6: Screening length with respect to k̄ for the temperatures in 0.15 − 0.35

range (or 6Tc − 14Tc).
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Figure 3.7: Screening length with respect to j for the temperatures in 0.15 − 0.35

range (or 6Tc − 14Tc).

The calculation of binding energy as a function of the radius L of the multi-quark

states in the previous sections can be generalized to the case where the background

metric is generated by a stack of Dp-branes as the following. Start with the energy

of a hanging fundamental string with n = 7− p,

EF1 =
uc
2π

{∫ ∞

1

dy

[√
yn − xn

(yn − xn)− (1− xn)(1− A(n)2)
− 1

]
− (1− x)

}
(3.30)

and the radius,

L =
Rn/2

uc(n−2)/2

∫ ∞

1

dy

√
(1− xn)(1− A(n)2)

(yn − xn)(yn − xn − (1− xn)(1− A(n)2))
. (3.31)

The total regulated binding energy of the configuration then becomes

Etot =
Ncuh
2π

{√
1− xn

nx
+

(
kh
Nc

)
E
x
+

(
kr
Nc

)
1− x

x

}
(3.32)

where

E =

∫ ∞

1

dy

[√
yn − xn

(yn − xn)− (1− xn)(1− A(n)2)
− 1

]
− (1− x), (3.33)
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and

A(n) =
u′c√

u′c
2 + f(uc)(

uc

RDp
)n

=
Nc

nkh

(
1 + n−2

2
xn

√
1− xn

)
+
kr
kh
. (3.34)

The parameter x is again given by

x =
uT (n)

uc
, uT (n = 3, 4) =

16

9
π2T 2, πT. (3.35)

Note that the case n = 3 and n = 4 corresponds to the case of Sakai-Sugimoto and

AdS-Schwarzschild gravity dual model respectively. As mentioned before, we have set

the curvature radius to be unity for both the Sakai-Sugimoto model (i.e RD4 = 1)

and the AdS-Schwarzschild model (i.e. RD3 = 1).

Introduction of quark masses into the configuration can be done by terminating

hanging strings at certain radial distance umax <∞. In other words, the total binding

energy of the bound state of finite mass EF1(finite mass) can be obtained by taking

the integration of hang strings, see (3.30), from uc to umax, rather than from uc to ∞
as before. Recall that the universal behaviour of heavy-quark potential comes from

the limit umax → ∞, i.e. EF1(umax → ∞). This is the binding potential of a bound

state whose its constituents have infinite mass. Here, we are interested in the mass

dependent part of the binding potential which is the difference of EF1(finite mass)

from EF1(umax → ∞). Because of this, we split the total binding potential of the

string, EF1(finite mass), into two parts. The first part is the binding potential in the

umax → ∞ limit and the second part is the mass dependent potential, i.e.

EF1(finite mass) = EF1(umax → ∞) + EF1(umax), (3.36)

where EF1(umax) is the mass dependent part of the binding potential. Note that the

relation between free quark mass and umax is m = umax/2π.

The mass dependent part of the binding potential can be expressed as

EF1(umax) = − uc
2π

∫ ∞

umax/uc

dy[√
yn − xn

(yn − xn)− (1− xn)(1− A(n)2)
− 1

]
(3.37)

= −umax(1− A(n)2)

4π(n− 1)

(
unc − unT
unmax

)
+O(u1−2n

max ). (3.38)

Eliminate uc by using

L =
Rn/2

uc(n−2)/2

∫ umax/uc

1

dy

√
(1− xn)(1− A(n)2)

(yn − xn)(yn − xn − (1− xn)(1− A(n)2))
. (3.39)
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The result involves complicated functions of A which can be cast in the following

form,

EF1(umax) ∼ −u1−n
max

(
Rn2/(n−2)f1(A) + unTf2(A)

)
, (3.40)

where f1,2(A) are some functions of A.

Interestingly, the mass dependence of multiquark potentials has the form similar

to the mass dependence of mesonic state ∼ m1−n in [94]. This is natural due to the

fact that most of the mass of constituent quarks come from the tail part of strings

which extend to the large-u region. The mass dependence of the binding potential

at the leading order is therefore determined only by the contribution of the hanging

strings from the large-u region. As long as the background spacetime of the gravity

dual is asymptotically similar to the background considered here in the large-u limit,

we would expect the same mass dependence as the form we have obtained in this

section.



Chapter IV

MULTIQUARK MATTER AND ITS

THERMODYNAMICAL PROPERTIES

In this Chapter, we explore properties of the multiquark matter phase, espe-

cially its existence in phase diagram. After the Introduction in section 4.1, we describe

the holographic setup of (exotic) nuclear matter, and determine the embedding of the

flavour branes satisfying the force-balance condition at the cusp. Then, we comment

about baryon number density and baryon chemical potential. As mentioned above,

the former relates to the instanton number in a subspace of the D8-D8-branes world-

volume. On the other hand, the latter needs to be introduced once using the grand

canonical ensemble. These are in the section 4.2. Then, in section 4.3, we investigate

the possibility that the (exotic) nuclear matter can be thermodynamically preferred

than others. The comparison between colour non-singlet multiquark matter and nor-

mal baryon matter is also done. As a result, we obtain phase diagram in the same

way as [96] except that the colour non-singlet multiquark matter is taken into account

here. The results and discussions of these issues are brought from our works in [41]

and [97].

We end this Chapter with delving into the thermodynamic relations in the

multiquark matter phase, in section 4.4. We work out for this purpose with both

analytic and numerical calculations. Note that these are based on our work in [98].

4.1 Introduction

4.1.1 5-dimensional YM-CS theory from D8-branes action

The construction in supergravity picture of the Sakai-Sugimoto model is composed of

Nf flavour D8-branes and Nf D8-branes in the background of a stack of Nc D4-branes

with one spatial direction, x4, compactifying on S1 of radius R = M−1
KK . Note that
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Nf ≪ Nc such that there is no back reaction due to the flavour D8- and D8-branes on

the Nc D4-branes induced background. As discussed in Chapter II, the holographic

dual of this D4-D8 model is the four-dimensional U(Nc) QCD with Nf massless quarks

at low energies, E .MKK , hence in a strong coupling regime.

Interestingly, the relevant phase transitions inherent in this holographic model

of QCD includes the confinement/deconfinement phase transition and the chiral sym-

metry breaking/restoration transition. The latter can be realized as the transition

between the connected configuration of Nf D8- and D8-branes and the parallel con-

figuration of Nf D8- and D8-branes at a certain temperature greater than that of the

former1 and at a certain baryon chemical potential2. This results from that the gauge

symmetry on the world-volume of parallel D8-D8 pairs, U(Nf )D8×U(Nf )D8, can be

interpreted as the global symmetry U(Nf )L×U(Nf )R under which massless quarks

of each chirality (either left or right) transform separately. Remarkably, left (right)

quark fields correspond to the modes of open strings connecting D4-branes and D8

(D8)-branes, namely 4-8 (4-8̄) strings and 8-4 (8̄-4) strings. This chiral symmetry

turns out to be broken once a U(Nf )L×U(Nf )R chiral symmetry is spontaneously

broken to a diagonal U(Nf )V through the transition from a parallel configuration to

a connected one of D8- and D8-branes. Consequently, the open string modes rep-

resenting quark fields transform under U(Nf )V gauge group in the world-volume of

connected D8-D8-branes.

The 8-8 open string modes in D4-D8 model can be interpreted as the mesons.

While a heavy meson has, as introduced in last Chapter, the construction of an open

string hanging from the connected D8-D8-branes, a light meson have the gravity dual

as a quantized mode of vector fields or scalar fields (that is a fluctuation from the

embedding of probe D8-branes) on the D8-branes world-volume3. The tower of these

open string modes provides us with the spectrum of mesons. This is in a similar

manner as the glueball spectrum represented by the tower of quantized modes of

closed string (or graviton) in the bulk [103]. There are an infinite number of mesons

1Note that the temperature of the chiral symmetry breaking/restoration phase transition is

greater than the deconfinement temperature as long as L & 0.97 × R, where L is the asymptotic

separation between D8-branes and D8-branes and R the radius of the compactified-x4 circle at the

spacetime boundary [70].
2In this thesis, we work in the grand canonical ensemble so that the thermodynamic variable

involving baryonic degrees of freedom is the baryon chemical potential, rather than the baryon

number density.
3A heavy-light meson can also be realized. But we need two branes at which two ends of the

string locate are in different values in the holographic radial direction [99, 100, 101, 102].
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lying in the spectrum, which includes, for example, pseudo-scalar meson (pion or π),

vector meson (ρ meson), axial vector meson (a1 meson), etc. These mesons can be

written in the chiral Lagragian by considering the effective theory on the world-volume

of D8(and D8)-branes. Noticeably, a pion field, represented by a pseudo-scalar mode

of 8-8 strings, appears to be the Numbu-Goldstone mode when the chiral symmetry

is broken, indicating that the breaking of chiral symmetry is spontaneous [10].

A theory of mesons can be obtained from the low energy effective theory of

the open strings on the D8-branes which is the holographic description of a nine-

dimensional U(Nf ) gauge theory. The fields (or fluctuations) on the world-volume

of D8-branes are supposed to be small such that we obtain the Yang-Mills action

by expanding the DBI action of the D8-branes up to the second-order of the fields.

Higher-order terms of this expansion include couplings between mesons. Since the

nine-dimensional D8-branes world-volume includes S4 as its subspace, there is an

SO(5) isometry corresponding to the rotations on this subspace. The field contents in

QCD, gluons and quarks, should be invariant under SO(5) transformation, therefore

our considerations are restricted to the SO(5) invariant sector. The U(Nf ) gauge

field A on the D8-branes world-volume has thus components in 0, 1, 2, 3, z directions,

where z is the coordinate in the direction along which the connected D8-D8-branes

lie. Remark that the flavour D8-D8-branes end at the boundary with z → ±∞.

Namely, A = Aαdx
α = Aµdx

µ + Azdz, (α = 0, 1, 2, 3, z), and its field strength is

F = 1
2
Fαβdx

α ∧ dxβ = dA + iA ∧ A. Note that the U(Nf ) gauge field A can be

decomposed into SU(Nf ) gauge field A and U(1) vector Â as

A = A+
1√
2Nf

Â = AaT a +
1√
2Nf

Â, (4.1)

where T a(a = 1, 2, . . . , N2
f − 1) are the generators of SU(Nf ) with

tr(T aT b) =
1

2
δab. (4.2)

Considering only the SO(5) invariant sector, the D8-branes action placed in the

D4-branes induced background can be integrated out of the coordinates of S4. The

effective theory thus becomes 5-dimensional. Namely, it is a five-dimensional U(Nf )
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Yang-Mills theory (YM) with Chern-Simons (CS) coupling as described in4 [10]

S5d ≃ SYM + SCS, (4.3)

SYM = −κ
∫
d4xdz tr

[
1

2
h(z)F2

µν + k(z)F2
µz

]
, (4.4)

SCS =
Nc

24π2

∫
M4×R

ω5(A). (4.5)

Note that the warp factors h(z) and k(z) in the Yang-Mills action are given by h(z) =

(1 + z2)−1/3 and k(z) = 1 + z2. The constant κ = aλNc, where a ≡ 1/216π3, and the

CS 5-form ω5(A) is defined by

ω5(A) = tr

(
AF2 − i

2
A3F − 1

10
A5

)
. (4.6)

This five-dimensional action is supposed to describe an effective theory of mesons as

mentioned above. An infinite number of vector mesons and axial-vector mesons as

well as the massless pion made of the Kaluza-Klein (KK) modes around a circle in the

direction x4. The mass scale of the model is given by the Kaluza-Klein mass parameter

MKK . It is the only dimensionful parameter of the model. However, it is not explicitly

shown in the above action because MKK is set to be one for convenience5.

4.1.2 Baryon in different aspects

In the same way as the pion effective theory, the pseudo-scalar mode of gauge field

on the D8-branes world-volume, representing pion field Π(xµ), can be written in the

form of U(Nf )-valued field

U(xµ) ≡ e2iΠ(xµ)/fπ . (4.7)

We can choose an appropriate gauge choice, namelyAz = 0 gauge, such that the gauge

field in the component µ = 0, 1, 2, 3 takes the form at the boundary as Aµ(x
µ, z →

∞) = iU−1∂µU and Aµ(x
µ, z → −∞) = 0. As shown in [10], this leads to the

Yang-Mills action in the form of the Skyrme model [106, 107]

SYM =

∫
d4x

(
f 2
π

4
tr(U−1∂µU)

2 +
1

32e2S
tr
[
U−1∂µU,U

−1∂νU
]2

+ · · ·
)
, (4.8)

4Here, we follow the notation in [104]. It is also helpful to see Chapter 15 of [105] for a review.
5In [10, 11], the parameters MKK and κ are chosen as MKK = 949 MeV and κ = 0.00745, by

fitting the model with the experimental values of the ρ meson mass and the pion decay constant

fπ ≃ 92.4 MeV.
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where ‘· · · ’ are terms including the vector mesons and axial-vector mesons. Here, the

pion decay constant fπ and a dimensionless parameter eS takes the form

f 2
π =

4

π
κM2

KK ,

e2S = κ

∫
dzh(z)(1− ψ2

0)
2 ≃ 2.51κ.

Remarkably, we obtain the action (4.8) describing the Skyrme model from the

effective theory on the the D8-branes world-volume. The Skyrme model is the model

in the effective theory in which pions act as the mean field [106, 107]. The pion field

configuration described by the Skyrme model has the solitonic behaviour, and thus a

Skyrmion can be interpreted as a baryon. An interesting point is that the Skyrmion

emerge as a fermion in the background of bosonic fields, i.e. pseudo-scalar pions.

Atiyah and Manton [108] have found that computing the holonomy of Yang-

Mills instantons gives good approximation to static Skyrmion solutions of the Skyrme

model. This indicates that Skyrmions have something in common with Yang-Mills

instantons. Surprisingly, this is also the case in the holographic description. In

addition to the Skyrmion emerged from the consideration of the low-energy effective

action of the D8-branes, baryons can also be considered as instanton in the Sakai-

Sugimoto model. As an instanton, the holographic baryon can also be given by a D4-

brane, wrapped around the S4, located within D8 branes. This relates to the baryon

vertex in the case of no flavour branes shown in Chaper III. In the Sakai-Sugimoto

model with the presence of flavour branes, the baryon is realized by the probe D4-

brane wrapped around the S4 attached with Nc strings extending to the flavour D8-

and D8-branes. This D4-brane turns out to be embedded into D8-branes since the

equation of motion determine that the hanging Nc strings tend to have zero length.

Consequently, the D4-brane is embedded within the connected D8-D8-branes. Since

Dp-brane embedded within D(p+4)-branes are equivalent to the gauge configurations

in the D(p + 4)-brane world-volume gauge theory with non-trivial instanton number

in the 4-dimensional space transverse to the Dp-brane [109]. Therefore, a wrapped

D4-brane within D8-branes act as an instanton in five-dimensional Yang-MIlls theory

which is localized in spatial four dimensions parametrized by (x1, x2, x3, z).

These instantons localize in spatial four dimensions and has instanton num-

ber equal to the number of wrapped D4-branes, that is conserved in time direction.

Therefore, it behaves as point-like particles which can be interpreted as baryons.

Baryon number charge in Skyrme model can be shown to be equivalent with

instanton number from wrapped D4-brane embedded within the flavour D8-branes.
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Let’s consider a static configuration of the gauge field on the flavour D8-branes. The

number n of the wrapped D4-branes is related to the instanton number on B ≃ R4,

parameterized by (x1, x2, x3, z), as follows

n =
1

8π2

∫
B

tr(F ∧ F). (4.9)

Note that this expression is present within the Chern-Simons term of D8-brane action.

Let us consider in the aspect of a Skyrmion. The pion field U(xµ) determines

a map from the ∂R4 ≃ S3
∞ into U(Nf ), classified by the winding number in the third

homotopy group π3(U(Nf )) ≃ Z. This integral number, which is in Z, is interpreted
as the baryon number in the Skyrme model. By using tr(F ∧ F) = dω3(A), where

ω3(A) is the Chern-Simons 3-form, we write the above expression (4.9) of the instanton

number as

1

8π2

∫
B

trF2 =
1

8π2

∫
∂B≃S3

ω3(A)
∣∣∣
z=∞

= − 1

24π2

∫
S3

tr(U−1dU)3 (4.10)

Note that Stoke’s theorem has been used for the first equality and we have used the

gauge choice Az, as mentioned above, such that Aµ(x
µ, z → ∞) = iU−1∂µU while

Aµ(x
µ, z → −∞) = 0 [10]. Remarkably, the last expression coincide with the baryon

number charge in the Skyrme model. Intriguingly, two seemingly different pictures

of baryons, i.e. (1) the Skyrmion in the pion effective theory and (2) the bound

state of quarks corresponding to the wrapped D4-brane attached with Nc strings, are

connected in the holographic description.

4.1.3 Phase transitions in the deconfining background

In the non-antipodal Sakai-Sugimoto model, the holographic plasma can have two dis-

tinctive phase transitions; a deconfinement and the chiral symmetry restoration [70].

The deconfinement could occur at lower temperature than the chiral symmetry restora-

tion. For the temperature in-between the two transitions, quarks and gluons are de-

confined from the confining flux tube but still interact strongly among each other

through the remaining screened Coulomb-type SU(Nc) potential. Therefore it is

possible to have the multiquark phase in the temperature range between that of the

deconfinement and the chiral phase transition. This is consistent, at least in a qualita-

tive way, with the studies of the multibody bound states in the sQCD in the framework

of the real QCD [34].

To actually understand the physics of deconfined QGP, it is thus crucial to

investigate the thermodynamical properties of the holographic multiquark phase. In
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order to extract the thermodynamic potential from the gravity dual model, the path

integral approach in quantum gravity [110] has been used. In this technique, the time

direction is circled with period β = 1/T in the same manner as the thermal circle in

the finite temperature quantum field theory. As discussed in [111] based on the early

works [112, 113], the grand canonical potential, or the Gibbs free energy, Ω(T, µ) has

the leading contribution from the classical Euclidean action of the bulk theory in the

grand canonical ensemble, i.e. Ω(T, µ) ∼ Son-shell
bulk . Similarly, the Helmholtz free energy

F (T, nb) has the leading contribution from the Legendre transform with respect to

the baryonic charge of the classical Euclidean action, i.e. F (T, nb) ∼ S̃on-shell
bulk in the

canonical ensemble. If we are interested in the situation of non-fixed baryon number

density but fixed chemical potential, the relevant thermodynamic potential is the

grand canonical potential. Holographic phase transition at finite chemical potential

is firstly studied in [114].

The deconfinement phase transition can be realized as the Hawking-Page tran-

sition due to the competition between the action of the background geometry corre-

sponding to the confined phase and the action of the background corresponding to

the deconfined phase [68]. Intriguingly, whereas the deconfining spacetime geometry

action (scales as N2
c ) dominates the action of the fundamental matter sector (scales

as NcNf ), the dominating part can be ignored in the consideration of the holographic

phase transition in the deconfined phase. Above the deconfinement, the multiquarks

phase competes with the vacuum phase and the chiral-symmetric quark-gluon plasma.

It is interesting to study colour non-singlet multiquark bound states which are

possible to exist in a deconfined phase as discussed in Chapter III. In the Sakai-

Sugimoto model, the configuration representing a multiquark should be the modifica-

tion of holographic baryon. One possibility corresponding to the multiquark bound

state in the case of no flavour branes, discussed in last Chapter, is that there are a

number of radial strings attached to a D4-brane within D8-D8-branes and extending

to the horizon of the spacetime.

Note that the radial strings can have orientation either going down to the horizon

or going up from the horizon. The configuration with the going-down radial strings

correspond to k-baryon, discussed in last Chapter, since the end of each of these

strings yields a unit of negative string charge resulting in the net U(1) charge of the

configuration on the flavour D8-branes world-volume less than Nc. Obviously, this

corresponds to a colour non-singlet bound state with the number of quarks less than

Nc. On the other hand, the configuration of the going-up radial strings corresponds to
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(Nc+k)-baryon, i.e. the multiquark bound state with the number of quarks more than

that of a normal colour-singlet baryon by the number k. Remarkably, this is not the

same, though similar, as (Nc + k̄)-baryon, shown in last Chapter. Unfortunately, the

configuration corresponding to the j-mesonance cannot exist, as we will see later that

it is unstable under density fluctuations. Recall that a j-mesonance has the number

of radial string as Nc. The analysis of the instability issue under density fluctuations

indicate that we cannot have the number of radial strings more than about 0.3Nc.

Since the colour non-singlet multiquark matter can exist only in the decon-

fined phase, its grand canonical potential in the Sakai-Sugimoto model is β times the

combination of the classical action of the deconfining spacetime geometry and the

configuration of flavour sector, which includes Nf D8-D8-branes, the probe D4-brane

vertex and the radial strings. Note that the part of hanging strings, extending from

the baryon vertex to the flavour branes, is neglected and we assume that there is no

distortion of the vertex due to the connecting strings (such distortion is discussed in

[92, 93]). As a result, the baryon vertex is embedded into the flavour branes and

becomes an instanton on them.

This configuration of the multiquark matter phase was proposed in our work [41]

to address the issue of its existence in thermodynamical point of view. This can be

done by exploring about which region in the phase diagram that the multiquark could

exist. Since the colour non-singlet multiquark bound states can exist only in the

deconfining background, we will consider the phase transition line between different

matter phases in the deconfined phase.

The Sakai-Sugimoto model has an interesting phase structure, especially in the

deconfined phase. Finite baryon density in the Sakai-Sugimoto model has been studied

in [115, 116] and extended to the full parameter space in [96]. There are several kind

of matter in the deconfined phase considered in [96]. These matter phases can be

listed in the following.

• Vacuum phase This phase is the phase of matter with zero baryon number

density. Consequently, the vacuum matter is occupied with only mesons, which

all of them have zero baryon number charge. The configuration of this matter

is the connected Nf D8-D8-branes on which there is nothing as a source. The

gauge fields on the world-volume of this configuration have the discrete modes

corresponding to mesons.

• Nuclear matter phase Unlike the vacuum phase, this phase has finite value
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of baryon number density. This is due to the presence of colour singlet bound

states, namely baryons. Certainly, the nuclear matter is also occupied with

mesons. This phase can be represented by the configuration of connected D8-

D8-branes sourced by the D4-brane wrapped around the four-sphere, or the

Chern-Simons term of the D8-branes action.

• Quark matter phase The phase of quark matter can be represented by strings

stretched from the flavour D8-branes down to the horizon without the presence

of the D4-brane, i.e. the Chern-Simons term is turned off, on the world-volume

of the D8-branes.

• Chiral-symmetric quark-gluon plasma phase All of the above mentioned

phases, i.e. vacuum, nuclear matter and quark matter, has the connected con-

figuration of D8-branes and D8-branes, indicating that they are the phases with

broken chiral symmetry. It is worth to remark that the embedding of the flavour

branes in these phases play a role of a “thin air” of flavour degrees of freedom

in the projection on the coordinates in radial direction and xµ, µ = 0, 1, 2, 3.

This “thin air” is equipped with the fields transforming under the gauge group

U(Nf ). As so-called in the area of gauge/string duality, this is the Minkowski

embedding. The chiral-symmetric quark-gluon plasma (χS-QGP) is another

kind from these. Instead of the Minkowski embedding, its configuration is com-

posed of the parallel D8-branes and D8-branes lying along the radial direction

of spacetime into the horizon. This kind of embedding is so-called the black hole

embedding. While the modes of gauge fields in the Minkowski embedding of

flavour branes are in the discrete spectrum indicating the existence of mesons,

the spectrum turns out to be continuous in the black hole embedding indicating

that all mesons are completely melted [117]. As a consequence, the configura-

tion of χS-QGP can has no any bound states, even mesons6, and we can say that

quarks and gluons are completely free in this phase. Moreover, this phase exist

in the range of temperature that is high enough such that the chiral symmetry

is restored.

These phases of matter of the Sakai-Sugimoto model are compared in the grand

canonical ensemble. Thus, the baryon chemical potential µ has to be introduced in

the holographic description. This will be discussed in next Section. The authors

6Currently, there is no consensus on whether some mesons can remain at the temperature above

that of the chiral symmetry restoration in our real world QCD.
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of [96] have shown that the phase diagram in the (T − µ)-plane consists of three

regions including vacuum phase, nuclear matter phase and χS-QGP with first-order

and second-order phase transition lines between these phases.

A matter phase can be the ground state of QCD as long as its grand canonical

potential is less than all others under consideration. The first-order phase transition

can be found when there is a change of the phase of the least value of the grand canon-

ical potential Ω. By comparing this quantity, the first derivative of Ω with respect to

µ is discontinuous at the transition point, hence a first-order phase transition. This

kind of transition from one matter to another is in an abrupt way. Given that the

baryon number density n4 = ∂Ω
∂µ
, it thus changes discontinuously at the moment of

a phase change of this type. At the transition, two phases cannot be in the same

state of matter even though they are in equilibrium. This is also found in the transi-

tion between vacuum and χS-QGP phases, and between nuclear matter and χS-QGP

phases [96]. On the other hand, the first-order derivative ∂Ω
∂µ

is not discontinuous in

a second-order phase transition, but it is so for the second-order derivative ∂2Ω
∂µ2 . The

baryon number density n4, relating to Ω as defined above, is an order parameter for the

present investigation which is continuous across the transition point at a certain value

of µ. It has zero value in one phase for the state of disorder, and becomes nonzero

representing the onset of order in another phase at a particular value of baryon chem-

ical potential µonset. This occurs in the holographic set-up of [96] for the transition

from the vacuum phase to the nuclear matter phase. However, the vacuum-nuclear

matter phase transition might be of first-order when one includes the interactions

between instatons on the D8-branes world-volume, corresponding to baryons. In a

second-order phase transition, the phase matter changes in a smooth way, in the same

way as the phase transition between liquid and vapour, and two phases can have the

same state of matter at the transition point as well as an equilibrium.

Additionally, quark matter has been found [96] to be unstable to baryon num-

ber density fluctuations. The stability issue in thermodynamics can be considered

through entropy of the system. In equilibrium, the entropy tends to be maximum

and cannot increase further. However, once there is a fluctuation perturbing the sys-

tem in equilibrium, this can either increase or decrease the entropy of the system

whereas the entropy of the system combined with that of the environment increases,

or at least not change, following the second law of thermodynamics. Basically, a sys-

tem can be said to be stable under any perturbation if that does not change state of

the system away from (and not go back again to) the stable point where the entropy

is already maximum and cannot increase further. In other words, the condition for
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stable equilibrium is that any change of the state of the system due to a fluctuation

should lead to a decrease in entropy [118]. Consequently, one of the stability condi-

tions is that the isothermal compressibility κT > 0 [119]. Since κT is proportional to
∂n4

∂µ
, a thermodynamic system is stable under number density fluctuations as long as

∂n4

∂µ
is more than zero. Nevertheless, the quark matter phase has

∂n4

∂µ
< 0, (4.11)

indicating that the quark matter cannot exist because it is unstable under baryon

number density fluctuations δn4.

Interestingly, the multiquark phase is found that it cannot have too many radial

strings. If the number of radial strings is more than a certain value, about 0.3Nc, the

multiquark matter tends to be unstable under density fluctuations in some regions

in phase diagram [41]. When the number of radial strings increase, the multiquark

matter deviates more from the colour-singlet being, and it tends to become the matter

which is close to being the quark matter. This implies that the multiquark configu-

ration appear as the state of matter between the nuclear matter phase and the quark

matter phase.

The multiquark matter can be thought of as a generalization of the nuclear

phase; the nuclear matter is the multiquark matter with zero number of radial string.

In this thesis, we use the term the “(exotic) nuclear phase” for the matter occupied

with colour singlet baryons and, also, the matter occupied with the non-singlet bound

states. However, we do not consider the matter occupied with the mixing between

these nuclear states in this thesis. The configurations of flavour branes and strings of

different phases which is compared in the phase diagram are shown in the Fig. 4.1 [41].

4.2 Multiquark matter phase

A natural question to ask is whether we have a phase where exotic multiquark states

are preferred over normal nuclear matter, vacuum, and chiral-symmetric quark-gluon

plasma phases. To calculate the phase diagram involving multiquark matter, it is

necessary to consider the contribution from D8- and D8-branes in the Sakai-Sugimoto

model attached with radial strings and D4-branes. We will assume that the charac-

teristic distance between D8 and D8 in x4 direction at the boundary of spacetime,
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Figure 4.1: Configurations of χS-QGP (a), vacuum (b), and exotic nuclear phase (c)

in x4 − u projection. The red lines represent the embedding of the flavour D8- and

D8-branes. The black straight lines is the radial strings attached to the D4-brane

wrapped around S4 (shown as a black dot) embedded within the connected D8-D8-

branes at the value of radius coordinate uc extending to the horizon of spacetime at

uT .

u → ∞, is L0. The relevant scales of the model therefore depend on the horizon uT

as well as L0.

When there is no radial string pulling the vertex down towards the horizon,

it was demonstrated in [92, 93] by numerical method that the vertex is pulled all

the way up to the position of the flavour branes if the temperature is not very high.

Addition of radial strings to the vertex would pull the vertex and the flavour branes

towards the horizon. As temperature rises, the radial strings pull the vertex down

with stronger force since they are closer to the horizon. It is possible that the vertex

then starts to separate from the flavour branes and we might need to consider the

configuration where the vertex and flavour branes are separated. However, we can see

that the difference between the two configurations should be relatively small, namely,

only the force conditions will be slightly different. As a result, we can approximate the

situation by considering the configuration where the vertex is not separated from the

flavour branes. It will be assumed that the D4-brane vertex is always in the flavour

branes for the discussion in this section. Moreover, the vertex will be treated as a

static configuration and any distortion caused by the strings attached to it will be

ignored.

The calculations presented in this section are adapted from [96] except that we

add radial strings hanging from the vertex down to the horizon for the consideration

of (exotic) nuclear phase. We also use position of the D4, uc, instead of u0 (where
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x′4(u0) → ∞) in our calculation concerning the exotics. This approach allows us to

deal with the contribution from radial strings more conveniently. As shown in Fig. 4.1,

the vacuum phase with broken chiral symmetry corresponds to the configuration where

D8 and D8 are connected into a curve in the x4−u projection. The chiral-symmetric

phase of quark-gluon plasma (χS-QGP) corresponds to the configuration with the

parallel D8 and D8 stretching from the spacetime boundary down to the horizon.

Finally, the nuclear (including exotic) phase corresponds to the configuration where

the D4 vertex is located at the D8-D8 curve, pulling it down towards the horizon by

its “weight” in the background. Each vertex has radial strings attached to it, pulling

it further towards the horizon. Remark that the chiral symmetry is broken in this

phase.

4.2.1 The embedding of the flavour D8-branes

Under above assumptions, the contribution from the strings hanging down from the

spacetime boundary to the vertex is negligible. The only contribution of strings is

from the radial strings extending from the vertex to the horizon. The total action of

the configuration is given by

Stotal = SD8 + SD4 + S̃F1, (4.12)

where SD8 is the Dirac-Born-Infeld (DBI) action of the Nf connected D8-D8-branes,

SD4 the action of the D4-brane wrapped around S4, and S̃F1 the action of radial

strings.

Firstly, we introduce the action of sources on the flavour D8-branes, i.e. SD4

and S̃F1. Assume that there are the number of the D4-branes, localized around the

connected point between D8-branes and D8-branes, in a unit volume of subspace

(x1, x2, x3) as n4. In other words, n4 represents the number density of D4-branes. As

will be seen in next subsection, the parameter n4 is the instanton number density,

hence the baryon number density. Then, in the deconfining background

ds2 =

(
u

RD4

)3/2 (
f(u)dt2 + δijdx

idxj + dx4
2
)
+

(
RD4

u

)3/2(
u2dΩ2

4 +
du2

f(u)

)
,

(4.13)

the DBI action of the D4-branes of the number density n4 is given by [96]

SD4 =
n4V3µ4

R3

∫
dΩ4dτ e

−Φ
√
detgMN (4.14)

=
1

3
Nuc

√
f(uc)d. (4.15)
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where d can be thought of as the rescaled baryon number density, relating to n4 as will

be seen in (4.53), even though it is actually the constant of motion which describe the

electric displacement7 in the direction u in the D8-branes world-volume. In addition,

the constant N is a constant which will be defined following (4.20). Now, we comes

to the action of radial strings. Let us define the number of radial strings in unit of Nc

per unit volume of subspace (x1, x2, x3) as ns. We can write the Numbu-Goto action

of the radial strings of the fractional number density ns as

S̃F1 = Nns(uc − uT )d. (4.16)

The number of radial strings ns represents the number of strings extending down from

D4-branes to the horizon in unit of Nc. For k, (N + k)-baryon and j-mesonance, the

values of ns are 1 − k/N, k/N, 1 respectively. For a given value of the asymptotic

separation of the D8- and D8-branes L0, increasing the number of strings ns results

in D4-D8 configuration being pulled down more towards the horizon.

Generically, the DBI action of D8-branes with the presence of U(Nf ) gauge

fields A is given by

SD8 = −µ8

∫
d 9Xe−Φtr

√
−det(gMN + 2πα′FMN) (4.17)

where the field strength

F = dA+ iA ∧A. (4.18)

is of the gauge group U(Nf ) which corresponds to the global flavour group U(Nf ) [10],

µ8 is the tension of D8-branes, and Φ is the dilaton field. Note that gMN denotes the

induced metric of the D8-branes world-volume which is the pullback of the metric of

the deconfining background, as shown in (4.13), and FMN denotes the field strength

tensor of the gauge group U(Nf ) living in the Nf flavour D8-branes.

The U(Nf ) gauge field A can be decomposed into the SU(Nf ) part A and the

diagonal U(1)V part Â as shown in (4.1). For our setup, we turn on only the time

component of the diagonal U(1)V part in order to introduce finite baryon number

density, or equivalently finite baryon chemical potential, into the model. From these

together with the deconfining spacetime metric (4.13), the D8-branes action (4.17)

takes the form

SD8 = N
∫
du u4

√
f(u)(x′4(u))

2 +
1− (â′0(u))

2

u3
(4.19)

7We use the term ‘electric’ here and later on in the sense that it involves a U(1) gauge field living

in the D-branes world-volume.
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where the constant N scales linearly with Nf as

N =
µ8τNfΩ4V3R

5

gs
, (4.20)

and the gauge field of the U(1) diagonal subgroup Â has been rescaled to â as follows,

â =
2πα′Â

R
√

2Nf

. (4.21)

Since the D8-branes action of the form (4.19) does not depend on both â0(u) and

x′4(u) explicitly, we can obtain the constants of motion by varying the action with

respect to either of them. Precisely, given that LD8 is the Lagrangian density of the

action, we obtain
∂LD8

∂â′0(u)
= const. and

∂LD8

∂x′4(u)
= const. (4.22)

That is, they do not depend on the radial coordinate u. Varying the action with

respect to â0(u) therefore leads to a constant of motion

d = d(u) (4.23)

≡ uâ′0(u)√
f(u)(x′4(u))

2 + u−3(1− (â′0(u))
2)
, (4.24)

where the function d(u) has been defined as follows

d(u) ≡ − 1

N
∂LD8

∂â′0(u)
∼ δSD8

δF̂0u

, (4.25)

where F̂ is the field strength tensor of the diagonal U(1) part due to turning on

Â0. The quantity d(u) is thus the (rescaled) electric displacement field along the

holographic direction u. We will see in next subsection that the constant d can be

interpreted as the baryon number density sourced by D4-branes once we introduce

the Chern-Simon action of the gauge field. In the confined phase, the only possible

source for d is D4-branes, each wrapped on S4, in D8-branes would-volume. In the

deconfined phase, either D4-branes or strings extending from D8-branes down to the

horizon can serve as the source for d. Here, in the study of exotic multiquark matter,

we consider the case where both D4-brane and strings are present as the sources. This

possibility was not investigated in [96].

On the other hand, varying the D8-branes action with respect to x′4(u) leads to

the constant of motion

C = C(u) (4.26)

≡ u4f(u)x′4(u)√
f(u)(x′4(u))

2 +
1−(â′0(u))

2

u3

. (4.27)
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Rearranging (4.24), we can write

(â′0(u))
2 =

d2

u2

[
f(u)(x′4(u))

2 + 1
u3

1 + d2

u5

]
. (4.28)

Substituting this into (4.27), we obtain

C =
u4f(u)x′4(u)

√
1 + d2

u5√
f(u)(x′4(u))

2 + 1
u3

, (4.29)

such that the function x4(u) which describes the shape of embedding of D8-branes

obeys the following equation

(x′4(u))
2 =

1

u3f(u)

[f(u)(u8 + u3d2)

C2
− 1
]−1

. (4.30)

At large u, we can approximate that

x4(u) ≈
L0

2
− 2

9

C

u9/2
, (4.31)

where L0 is the separation between D8 and D8 branes at u→ ∞ defined by

L0 ≡ 2

∫ ∞

uc

x′4(u)du. (4.32)

Note that we set L0 = 1 to allow the possibility of the chiral symmetry restoration as

separate phase transition from the deconfinement; these two kinds of phase transition

are separated once L0 . 0.97×R; where R is the radius of the circle x4 at u→ ∞ [70].

The parameter C can be thought of as the curvature of the D8-D8 branes around

the cusp. It becomes zero when the flavour embedding is in the parallel configuration

representing the chiral-symmetric QGP. According to [120], this means that it can be

used as an order parameter of the nuclear matter/χS-QGP phase transition.

So far, we have left the constant C to be an unknown. Recall from (4.29) that

C is constant for arbitrary u in the range uc ≤ u <∞. We can have the condition at

the cusp uc:

C =
u4cf(uc)x

′
4(uc)

√
1 + d2

u5
c√

f(uc)(x′4(uc))
2 + 1

u3
c

. (4.33)

We need to determine x′4(uc) in order to obtain C written in term of uc explicitly.

For this purpose, we consider the force condition at the cusp uc, since x
′
4(uc) is the

quantity which relates to how much the cusp of the flavour branes at uc are pulled
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up by the flavour branes and pulled down by the D4-brane vertex and radial strings,

whereas the net force at that point is zero.

By fixing values of d, T, L0, we can obtain the force balance condition at the

cusp uc by extermize the total action

S̃total = S̃D8 + Ssource(uc, d, T ) (4.34)

with respect to uc [96], namely

∂S̃total

∂uc
=
∂(S̃D8 + SD4 + S̃F1)

∂uc
= 0, (4.35)

where the source term in the multiquark configuration is the combination of the D4-

brane vertex and radial strings, i.e. Ssource = SD4+ S̃F1. As shown in Appendix A and

firstly presented by [96], the force balance condition balance condition at the cusp uc

is

L̃D8(uc)− x′4(uc)
δS̃D8

δx′4

∣∣∣∣∣
uc

=
∂Ssource

∂uc
, (4.36)

or

x′4(uc) =

(
L̃D8(uc)−

∂Ssource

∂uc

)/
δS̃D8

δx′4

∣∣∣∣
uc

, (4.37)

We have to clarify the formula of the Legendre transformed action of D8-branes

S̃D8 for obtaining the explicit dependence of x4 on uc, whereas the action of the D4-

brane wrapped around the four-sphere SD4 is given by (4.15), and the action of the

radial strings S̃F1 by (4.16). The Legendre transform of the D8-branes action from

the dependence on â′0 to the dependence on d is given by

S̃D8 = SD8 +N
∫ ∞

uc

du d(u)â′0(u). (4.38)

Using (4.28) and (4.19) into (4.38), we obtain

S̃D8 = N
∫ ∞

uc

du u4

[√
f(u)(x′4(u))

2 + 1
u3

1 + d2

u5

+
d2

u5

√
f(u)(x′4(u))

2 + 1
u3

1 + d2

u5

]
(4.39)

= N
∫ ∞

uc

du u4

√(
f(u)(x′4(u))

2 +
1

u3

)(
1 +

d2

u5

)
. (4.40)

Remarkably, it can be shown that SD8 can be written in the form of the electric

displacement d as follows,

SD8 = N
∫ ∞

uc

du u4

√
f(u)(x′4(u))

2 + 1
u3

1 + d2

u5

, (4.41)
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whose the Lagrangian density is different from that of S̃D8 by the factor
(
1 + d2

u5

)−1

.

This form of action (4.41) will used to determine the grand canonical potential later.

Substituting (4.15), (4.16), and (4.40) into (4.37), we obtain

(x′4(uc))
2
=

1

f(uc)u3c

 9

d2
f(uc)(u

5
c + d2)(

1 + 1
2

(
uT

uc

)3
+ 3ns

√
f(uc)

)2 − 1

 , (4.42)

and, substituting this into (4.37), the constant C thus takes the form

C = uc
3f(uc)

[(
uc

5 + d2
)
− d2η2c (T, ns)

9f(uc)

]
, (4.43)

where

ηc(T, ns) ≡ 1 +
1

2

(
uT
uc

)3

+ 3ns

√
f(uc). (4.44)

Therefore, the embedding of the flavour branes in the (exotic) nuclear matter is de-

scribed by (4.30) and (4.43), given that the separation between D8-branes and D8-

branes at the boundary (u→ ∞) L0 is set to one.

4.2.2 A comment on baryon number density and baryon chem-

ical potential

Before going further to determine the phase diagram, let us comment about the

electric displacement d. It has been shown in [96] that d is related to the baryon

number density. The baryon number density corresponds to the number density of

instantons, n4, on the D8-branes. It also contributes to the Chern-Simons (CS) action

of the flavour branes [10].

Beginning with the D8-brane CS term [90]

SCS
D8 =

µ8

3!

∫
R4×R+×S4

C3 ∧ Tr(2πα′F)3. (4.45)

By following Appendix A of [10], it is convenient to rescale the Ramond-Ramond (RR)

field such that

SCS
D8 =

1

48π3

∫
R4×R+×S4

C3 ∧ TrF3 (4.46)

=
1

48π3

∫
R4×R+×S4

F4 ω5(A), (4.47)
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where the last expression is obtained through integration by parts. F4 = dC3 is the

RR 4-form field strength and ω5(A) is the CS 5-form:

ω5(A) = Tr

(
AF2 − 1

2
A3F +

1

10
A5

)
, (4.48)

satisfying dω5 = TrF3. Using the fact that integrating the F4 flux over the S4 in the

Nc D4-branes background gives

1

2π

∫
S4

F4 = Nc, (4.49)

and the relevant term is only the first term in the CS 5-form, Eqn. (4.48), once turning

on only the time-component of the diagonal U(1)V field, we obtain

SCS
D8 =

Nc

24π2

∫
R4×R+

1√
2Nf

Â0 ∧ Tr(F ∧ F). (4.50)

Assuming a uniform distribution of D4-branes in R3 at u = uc, we have [109]

1

8π2
Tr(F ∧ F) = R−3n4δ(u− uc)d

3x du, (4.51)

where n4 is defined to be the (dimensionless) number density of the wrapped D4-

branes, or equivalently the number density of instantons, at u = uc. From the

viewpoint that the low-energy effective theory on the D8-brane includes the Skyrme

model [10], it is natural to interpret n4 as the baryon number density.

Using (4.21), (4.50) and (4.51), we obtain

SCS
D8 =

n4NcβV3
2πα′R2

∫ ∞

uc

du â0(u) δ(u− uc). (4.52)

From both the DBI and CS parts of D8-branes action, the equation of motion with

respect to the U(1) gauge field gives [96]

n4 =
2πα′R2N
βV3Nc

d. (4.53)

Note that this reflects the one-dimensional electrostatic effect in which the electric

point charges are put at uc, generating constant electric field in the holographic di-

rection.

Let’s introduce the chemical potential. It is the non-normalizable modes of the

U(1)V gauge field in the bulk. It can be thought of as the conjugate of the source

corresponding to the value of bulk field (in non-normalizable mode) at the boundary

of the spacetime background.



73

Phase transition for a system where the number of particles varies is most

conveniently described by the grand canonical ensemble. As discussed in Chapter

II, the normalized grand canonical potential per unit volume of subspace (x1, x2, x3),

or grand canonical potential density, of each phase can be defined using the on-shell

action of the D8-branes as [112, 113]

Ω(µ) =
1

N
SD8[x4(u), â0(u)]cl. (4.54)

Since the D8-brane action diverges from the limit u → ∞ of the integration, the

grand canonical potential density needs to be regulated by subtracting with the grand

canonical potential density of the vacuum phase at the same temperature.

Apart from the grand canonical potential density, the chemical potential also

needs to be holographically identified in the dual bulk theory. To this end, the time

component of the U(1)V gauge field Â0 is taken into account. From the field/operator

matching scheme, a bulk field evaluated at u→ ∞, i.e. the boundary of the spacetime

background, plays a role as the source of the dual operator in the generating function of

correlation functions in quantum field theory. In other words, this non-normalizable

mode of the bulk field is dual to the coefficient of the field operator. Since the

chemical potential is the coefficient of the charge density operator term, it can be

holographically identified as Â0(∞). By rescaling for convenience, we can write the

dimensionless chemical potential as

µ = â0(∞), (4.55)

Similarly, the baryon number density in our normalization is given by

nb = −∂Ω(T, µ)
∂µ

= d, (4.56)

even though the true baryon number density is n4 defined in (4.53). Consequently, d

can then be used to denote the baryon number density.

Since the free energy in the canonical ensemble is the combination of the on-

shell Legendre-transformed D8-brane action and the source-term, it is convenient to

obtain µ through

µ =
∂FE(T, d)

∂d
, (4.57)

where the free energy density is holographically defined as the Legendre-transformed

D8-branes action plus the source terms [112, 113],

FE(T, d) =
1

N

(
S̃D8[T, x4(u), d(u)]on-shell + Ssource(T, d, uc)

)
. (4.58)
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Recall that the Legendre-transformed action S̃D8|on-shell is in the form of (4.40). The

chemical potential can then be written as

µ =
1

N

{∫ ∞

uc

du

(
δS̃D8

δd(u)
+
δS̃D8

δx′4

∂x′4
∂d

)∣∣∣∣∣
on-shell

T,L0,uc

(4.59)

+
∂uc
∂d

∣∣∣∣
T,L0

(
∂S̃D8

∂uc
+
∂Ssource

∂uc

)∣∣∣∣∣
on-shell

d,T,L0

+
∂Ssource

∂d

∣∣∣∣
T,L0,uc

}
.

The second, third and forth terms drop out. It is clear from (4.35) corresponding to

the equilibrium at the cusp that the third and fourth terms vanish. For the second

term, it is because δS̃D8/δx
′
4(u) is constant as can be seen from (4.40) that S̃D8 depends

only on x′4. Integrating over the remaining gives ∂L0/∂d which is zero due to the scale

fixing condition L0 = 1. Hence we obtain

µ =

∫ ∞

uc

du â′0(u) +
1

N
∂Ssource

∂d

∣∣∣∣
T,L0,uc

, (4.60)

where the second term on the RHS of the equation can be called as µsource. The

chemical potential due to the source terms can be obtained by using (4.15) and (4.16)

such that

µsource =
1

3
uc
√
f(uc) + ns(uc − uT ). (4.61)

4.3 Phase Diagram

Now, we are ready to express the grand canonical potential density for the multiquark

(baryon corresponds to ns = 0) phase. Using (4.54), (4.19), (4.24), (4.30), we obtain

the formulae of the grand canonical potential density for the multiquark matter. The

chemical potential can be calculated from (4.60) by eliminating â′0 via (4.24) and

substituting (4.30). The grand canonical potential density and the baryon chemical

potential of the phases can be expressed as in the following,

nuclear (including exotics) phase :

Ωnuc =

∫ ∞

uc

du
[
1− C2

f(u)(u8 + u3d2)

]−1/2 u5√
u5 + d2

, (4.62)

µnuc =

∫ ∞

uc

du
[
1− C2

f(u)(u8 + u3d2)

]−1/2 d√
u5 + d2

+
1

3
uc
√
f(uc) + ns(uc − uT ). (4.63)
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Recall that C depends on uc, d, T and ns according to the (4.43) and (4.44). The

last two terms in the (4.63) come from the derivative of the source-term action with

respect to d.

There are at least other two phases that compete with the multiquark phase:

the vacuum phase and the chiral-symmetric QGP phase. From the above formula of

Ωnuc and µnuc, we can obtain the grand canonical potential density and the chemical

potential of the vacuum simply by (i.) setting d = 0, (ii.) dropping the source terms

in (4.63), (iii.) changing the lower bound of integration from uc to u0, and (iv.)

replacing C by the constant of motion in the vacuum configuration, from δSD8/δx
′
4,

C0 = f(u0)u
8
0. Thus we obtain

vacuum phase, d = 0:

Ωvac =

∫ ∞

u0

du

[
1− C2

0

f(u)u8

]−1/2

u5/2, (4.64)

and we can notice that the baryon chemical potential is absent in this case since the

density d = 0 corresponding to µ < µonset. Similarly, the grand canonical potential

density and the chemical potential of the χS-QGP phase can be obtained by setting

x′4(u) = 0, reflecting its parallel configuration, and turning off the source terms. That

is, setting C = 0 in (4.62) and (4.63), changing lower bound of integration to uT and

dropping the source terms in (4.63) give

χS-QGP phase, x′4(u) = 0:

Ωqgp =

∫ ∞

uT

du
u5√

u5 + d2
, (4.65)

µqgp =

∫ ∞

uT

du
d√

u5 + d2
, (4.66)

At fixed temperature T and chemical potential µ, a first order phase transition

line between phase 1 and 2 is obtained when Ω1 = Ω2, µ1 = µ2 = µ. Transitions

between vacuum ↔ χS-QGP and χS-QGP ↔ nuclear phases are of this kind. On the

other hand, phase transition between nuclear ↔ vacuum is second order in nature, at

least for this case when there is no interaction between each D4. The second order

phase transition line occurs when

∂µ

∂d
=

∂2FE

∂d2
(4.67)

has discontinuity at d = 0.
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Figure 4.2: The phase diagram of exotic nuclear matters above the deconfinement

temperature. Nuclear phase including exotics is shown as the region on the lower right

corner where it is divided into 3 parts for representative purpose. A,B,C represents

the region where exotic baryon phase with ns = 0 (Nc-baryon), 0.1, 0.3 is preferred

over vacuum and χS-QGP respectively.
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In the Sakai-Sugimoto model, there is a phase transition temperature above

which gluons become deconfined. However, it does not necessarily imply that quarks

and antiquarks are totally free. When the baryon chemical potential is sufficiently

high, baryons can exist even when the temperature is higher than the deconfinement

temperature [96]. Only when the temperature increases further to another critical

temperature, all bound states are completely dissolved and it remains only free quarks

and gluons. In the phase above this critical temperature, the chiral symmetry is also

restored. We also see this behavior in the phase diagram in Figure 4.2 where we ignore

the confined region at low temperature and present only the deconfined part of the

phase diagram.

The phase diagram of vacuum with broken chiral symmetry, χS-QGP and phase

of nuclear including exotic multiquark states is shown in Figure 4.2. The phase

diagram involving vacuum and χS-QGP phases was first obtained in [116] and the full

phase diagram without the exotics was obtained in [96]. Since the strings pull down

the D4-D8 configuration towards the horizon, the configuration with ns > 0 is less

stable than the normal Nc-baryon (ns = 0). This is shown in Fig. 4.2 where the region

of ns > 0 nuclear phase (B,C) is smaller than the region of Nc-baryon phase (A).

They are actually less stable than the Nc-baryon since the grand canonical potential

density Ωns>0(T, µ) > Ωns=0(T, µ) for 0 < ns < 0.5. Above ns > 0.3, the exotic phase

becomes unstable to density fluctuations (∂µ
∂d

< 0) at high temperatures in certain

range of d but still remains stable in a region of parameter space [41]. Numerical

studies reveal that for approximately ns > 0.5, the multiquark states become unstable

thermodynamically with respect to density fluctuations for most of the temperatures.

Addition of radial strings introduces extra source of the baryonic chemical po-

tential. We can see from Fig. 4.2 that the value of µonset for the exotic nuclear phase

increases with the value of ns. Nevertheless, once emerged (i.e. µ > µonset), the exotic

phases are more stable than the vacuum at any temperature, but less stable than

χS-QGP at sufficiently high temperatures above which chiral symmetry is restored.

4.4 Thermodynamical properties

From last section, the multiquark matter tends to exist in a region of intermediate

temperature between Tdeconf. and TχSB/χS and of high enough baryon chemical po-

tential µ > µonset in the phase diagram even though it seems to coexist with the

normal baryon matter. It is interesting to explore the thermodynamical properties of
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this exotic phase and investigate how the deviation of the colour-singlet being, rep-

resented by ns, affects thermodynamic relations. In this section, we will determine

some thermodynamic relations of the matter which can tell us about thermodynam-

ical properties. Since the formula of the grand canonical potential and the baryon

chemical potential from last section are quite complicated, in order to analytically

calculate the thermodynamic relations, we need to do some approximations. How-

ever, this gives us some insight on the thermodynamical properties of the multiquark

matter. The results of these analytic calculations are also confirmed by our numerical

studies. We found that there are phase transition at a certain value of density and

the dependence of thermodynamic relations on the number density of radial strings

ns. The results and discussions of this section are based on our works in [98] and [97].

4.4.1 Analytical studies of thermodynamic relations with some

approximations

Thermodynamical properties of the nuclear/exotic matter phase can be described by

the equation of state. First, we will investigate the relations between the pressure

and the number density. From previous section, the grand potential density and

the chemical potential of the nuclear/exotic matters are given by (4.62) and (4.63),

respectively.

Since the differential of the grand potential GΩ can be written as

dGΩ = −PdV − SdT −Ndµ (4.68)

where the state parameters describing the system P , V , S, T , N are the pressure,

volume, entropy, temperature, and the total number of particles of the system respec-

tively. Since the change in volume is not our concern, we define the volume density

of GΩ, S and N to be Ω, s and d, respectively. Therefore, we have, at a particular T

and µ,

P = −GΩ/V ≡ −Ω(T, µ). (4.69)

By assuming that the multi-quark states are spatially uniform, we obtain

d =
∂P

∂µ
(T, µ). (4.70)

Using the chain rule, we obatin

∂P

∂d

∣∣∣∣∣
T

=
∂µ

∂d

∣∣∣∣∣
T

d, (4.71)
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so that

P (d, T, ns) = µ(d, T, ns) d−
∫ d

0

µ(d′, T, ns) d(d
′), (4.72)

where we have assumed that the regulated pressure is zero when there is no nuclear

matter, i.e. d = 0.

For convenience, we will write a function at u = uc (u = u0) as that function

with the subscript ‘c’ (‘0’) in the following calculations. For example, the function

fc ≡ f(uc), f0 ≡ f(u0), ηc = η(uc), and η0 = η(u0).

In the limit of very small d, uc approaches u0, ηc becomes η0 +O(d), where η0

is defined to be ηc with uc replaced by u0. From (4.63), the baryon chemical potential

can then be approximated to be

µ−µsource ≃ d

{∫ ∞

uc

du

1− u80f0
fu8

−
f0u

3
0

(
1− η20

9f0
− u5

0

u5

)
d2

fu8

−1/2

u−5/2

(
1− d2

2u5

)}
,

(4.73)

where µsource = 1
3
uc
√
f(uc) + ns(uc − uT ), and we have neglected the higher order

terms of d. By using the binomial expansion, the above equation becomes

µ− µsource ≃ d

{∫ ∞

u0

du
u−5/2√
1− f0u8

0

fu8

[
1 +

(
f0u

3
0

fu8 − f0u80

(
1− η20

9f0
− u50
u5

)
− 1

u5

)
d2

2

]}
= α0d− β0(ns)d

3, (4.74)

where we have defined

α0 ≡
∫ ∞

u0

du
u−5/2

1− f0u8
0

fu8

, (4.75)

β0(ns) ≡
∫ ∞

u0

du
u−5/2

2
√
1− f0u8

0

fu8

(
f0u

3
0

fu8 − f0u80

(
1− η20

9f0
− u50
u5

)
+

1

u5

)
. (4.76)

By substituting (4.74) into (4.72), we can determine the pressure in the limit of very

small d as

P ≃ α0

2
d2 − 3β0(ns)

4
d4. (4.77)
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In the limit of very large d and relatively small T ,

µ− µsource =

∫ ∞

uc

du

[
1− fcu

3
c

fu3

(
u5c + d2 − d2η2c

9fc

u5 + d2

)]−1/2

d√
u5 + d2

(4.78)

≈
∫ ∞

uc

du
d√

u5 + d2

+
1

2
u3cfcd

2

(
1− η2c

9fc

)∫ ∞

uc

du
d

fu3(u5 + d2)3/2
(4.79)

≈ d2/5

5

Γ
(
1
5

)
Γ
(

3
10

)
Γ
(
1
2

) +
u3cfc
10

(
1− η2c

9fc

)
d−4/5Γ

(
−2

5

)
Γ
(
19
10

)
Γ
(
3
2

) (4.80)

where we have used the fact that the lower limit of integration u5c/d
2 is approximately

zero as d is very large. Again by using (4.72), we obtain

P ≃ 2

35

(
Γ
(
1
5

)
Γ
(

3
10

)
Γ
(
1
2

) )
d7/5. (4.81)

Next we consider the entropy of the multiquarks phase. From the differential

of the free energy,

dFE = −PdV − SdT + µdN, (4.82)

the entropy is given by

S = −∂FE

∂T
. (4.83)

The entropy density can then be written as

s = −∂FE

∂T
, (4.84)

where FE is the free energy density which relates to the grand potential density as

FE = Ω+ µd. Since we have the pressure P = −Ω, we can write

s =
∂P

∂T
−
(
∂µ

∂T

)
d. (4.85)

By using our approximations and noting that α0, β0 is insensitive to tempera-

ture, the formula of the pressure ((4.77) for small d, and (4.81) for large d) and that

of baryon chemical potential contributed only by D8-branes ((4.74) for small d, (4.80)

for large d) are nearly independent on the temperature. As a result, the dominant

contribution for the entropy density, in the form (4.85), comes only from µsource, thus

s ≃ −
(
∂µsource

∂T

)
d. (4.86)
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Figure 4.3: The graphs show the relations between uc and T at small density (left)

and at large density (right).

The baryon chemical potential from D8-branes is insensitive to the changes of tem-

perature. This implies that the main contribution to the entropy density of the

multiquark nuclear phase comes from the source term, namely vertices and strings.

Recall that µsource is given by (4.61), we have

∂µsource

∂T
=

∂

∂T

(
1

3
uc
√
f(uc) + ns(uc − uT )

)
. (4.87)

Using the fact that uc is approximately constant with respect to the temperature in

the range between the gluon deconfinement and the chiral symmetry restoration (see

Fig. 4.3) and uT = 16π2R3
D4T

2/9 = 16π2T 2/9 (setting RD4 = 1), the entropy density

of the form (4.86) becomes

s ≈

(
16π2

9

)3
T 5d

u20

√
1−

(
uT

u0

)3 + ns
32π2Td

9
. (4.88)

Intriguingly, the above formula indicates that the entropy density is proportional

to T 5 for small ns. When ns gets larger (carrying colour charge), the entropy density

becomes dominated by the colour term s ∝ nsT . This is confirmed numerically in

section 4.4.2. It has been found that the entropy density of the χS-QGP scales as
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T 6 [96] corresponding to the fluid of mostly free quarks and gluons. We can see that

the effect of the colour charge of the multiquarks as quasi-particles is to make them

less like free particles with the temperature dependence ∼ nsT , i.e. much less sensitive

to the temperature.

It is interesting to compare the dependence of pressure on the number density,

(4.77) and (4.81), to the confined case at zero temperature studied in [121]. The

power-law relations for both small and large density of the confined and deconfined

multiquark phases are in the same form (for ns = 0). The reason is that the main

contributions to the pressure for both phases are given by the D8-branes parts and

they have similar dependence on the density for both phases. For the deconfined

multiquark phase, the additional contributions from the source terms in (4.63), µsource,

are mostly constant with respect to the density since µsource, following (4.61), depends

implicitly on d through uc, which appears to be approximately independent of d for

both small and large d limit. Consequently, when we substitute µsource of the form

(4.61) into (4.72), the source-term contributions cancel out and affect nothing on the

pressure.

On the contrary, the entropy density for the deconfined phase is dominated by

the contributions from the sources namely the vertex and strings. The contribution

of the D8-branes is insensitive to the change of temperature and therefore does not

affect the entropy density significantly. The additional source terms, however, depend

on the temperature and thus contribute dominantly to the entropy density. Once the

temperature rises beyond the gluon-deconfined temperature, entropy density will rise

abruptly (for sufficiently large density d) and become sensitive to the temperature

according to (4.88), due to the release of quarks from colourless confinement appearing

as the sources. However, we will see later on using the numerical study in Section 4

that for low densities and for small ns, the numerical value of the entropy density is

yet relatively small.

4.4.2 Numerical studies of thermodynamic relations

From the analytic approximations in the previous subsection, we expect the pressure

to appear as straight line in the logarithmic scale for small and large d with the slope

approximately 2 and 7/5 respectively. The relation between pressure and density of

the multiquark from the full expressions can be plotted numerically as are shown in

Fig. 4.4-4.6. The pressure is not really sensitive to any change of temperature and
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we therefore present only the plots at T = 0.03. Remarkably, the transition from

small to large d is clearly visible in the logarithmic-scale plots. The transition occurs

around dc ≃ 0.072. Interestingly, as shown in Fig. 4.6, the multiquark with larger ns

has lower pressure than one with smaller ns for d < dc whereas the opposite occurs

for d > dc. The dependence on ns remains to be seen for small d as we can see from

(4.77). For large d, the ns-dependence is highly suppressed as predicted by (4.81).

The entropy density as a function of the temperature for various ranges of

density is shown in Fig. 4.7. The temperature dependence for both small and large d

are the same, ≃ T 5 at the leading order. The d-dependence is linear and thus appears

as separation of straight lines in the logarithmic-scale plot. For ns > 0, we can see

from (4.88) that the linear term in T should become increasingly important. This

is confirmed numerically as is shown in Fig. 4.7. The slope of the graph between

the entropy density s and T in the double-log scale for ns = 0 (the left plot) and

ns = 0.3 (the right plot) is approximately 5 and 1 respectively. Regardless of the

temperature dependence, it should be noted that the numerical value of the entropy

density for small densities and low ns in Fig. 4.7 is quite small.

Lastly, the relations between baryon number density and chemical potential are

shown in Fig. 4.8. Temperature has very small effect on these curves and negligible for

the range of temperature between the gluon deconfinement and the chiral-symmetry
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restoration. The baryon chemical potential depends linearly on the number density

for small d. For large d, the relation between the chemical potential and number

density becomes µ ∼ d2/5. The relation between µ and d indicates that the majority

of multiquark quasi-particles behave as fermions. This is due to the electric response of

the DBI action [96]. Therefore, we can conclude that a strongly coupled quark-gluon

plasma might be mainly occupied by multiquarks with each behaving as fermion, and

the remainder with each behaving as boson.



Chapter V

CONCLUSION

Throughout this thesis, we have studied the stability of holographic colour non-

singlet multiquark states in many aspects. Even though the background of the theory

is gluon-deconfined, an amount of quarks remains to be in a bound state as a con-

sequence of the interaction between quarks themselves appearing as in a Coulomb

potential. It is important to emphasize that the colourless condition is not required

in the deconfined phase. We propose the gravity dual models of the exotic multi-

quark in the absence of the flavour degrees of freedom. These include three classes

of configurations, k-baryon, (Nc + k̄)-baryon, and j-mesonance. As expected, these

configurations are found to be less energetically fovoured than the normal Nc-baryon.

Despite this, these exotic bound states can in principle coexist with normal nuclear

states, although they might be less abundant following to suppression by the Boltz-

mann factor exp (−|E|/kBT ) due to their shallower binding potential relative to the

colour singlet bound states1. Namely, the shallower (deeper) binding potential means

the higher (lower) energy of the bound states. Therefore, the deeper the binding

potential is, the harder the multiquark will melt in the thermal bath.

Moreover, we investigate their screening lengths. The dependence of the screen-

ing lengths of different kinds of exotic nuclear state on the parameters k, k̄, j are found

following to the results shown in Fig. 3.5, 3.6, 3.7, respectively. The screening lengths

of k-baryon and j-mesonance increase with the values of k and j, whereas the screen-

ing length of (Nc + k̄)-baryon decreases as k̄ increases. Interestingly, j-mesonance

saturates the value of screening length, equal to the screening length of mesons, as

j → ∞. We also explore the dependence on the free quark mass m of the binding

potential of these exotic bound states. At the leading order, this is derived and found

to scale as m−2 for the multiquark configuration in the background corresponding to

the Sakai-Sugimoto model with the absence of the flavour branes.

1More realistic statistical consideration for this system is more sophisticated. Here, we use the

simple statistical consideration which treats these bound states as classical non-interacting objects.

However, this should give a qualitative picture of relative amounts of these bound states.
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Then, we move on studying the thermodynamical stability of the multiquark

matter relative to other matter phases in the background of the Sakai-Sugimoto model

equipped with the flavour degrees of freedom from the presence of the probe D8-

D8-branes. For this purpose, we explore about the possibility of its existence in

phase diagram. In the background of the Sakai-Sugimoto model corresponding to the

gluon deconfined phase, i.e. at temperature T > Tdeconf., the multiquark matter is

proposed to be the configuration of connected flavour D8- and D8-branes attached

with D4-branes wrapped around the four-sphere and radial strings. Note that we

assume here that the D4-vertex is pulled up away to embed within the flavour D8-

branes. The number density of D4-branes n4 in the flavour branes corresponds to the

baryon number density, whereas the number density of radial strings ns contributes

the number density of colour charges appearing in the gluon deconfined plasma in the

field theory picture.

To obtain phase diagram, the grand canonical potential density is identified

with the on-shell action of D8-branes. In the phase diagram, the multiquark matter is

found to be more thermodynamically favoured than the χS-QGP and vacuum phases

in a certain region of high baryon chemical potential and of the temperature range

Tdeconf. < T < TχSB/χS). Nevertheless, the colour non-singlet nuclear matter phase of

the radial string number density ns > 0 are found to be less stable than the normal

baryon phase of ns = 0 in that region of the state parameters. The phase diagram

is shown in Fig. 4.3. This results from that it costs more energy contributed by

the configuration of the larger world-volume of the embedding of the flavour Nf D8-

branes. The reason of this is that the radial strings attached to the D4-branes pull

the D4-D8 configuration down closer to the horizon, such that the D8-branes world-

volume get larger. Consequently, the colour singlet nuclear matter is the ground state

of (holographic) QCD in that region in phase diagram, rather than the multiquark

matter. In this region of phase diagram, the nuclear matter is however possible to

be the mixing between the colour singlet and colour non-singlet nuclear states. The

coexistence of these should affect the thermodynamical properties, hence the existence

of the colour non-singlet nuclear states might be inferred from some experimental

results of heavy-ion collisions in the future.

Our consideration in the grand canonical ensemble suggests that we cannot

have the multiquark configuration with too large value of the number of radial strings

ns. The stability issue under the fluctuations of density can be addressed by the

quantity ∂µ/∂d. As we discussed in section 4.1, the quark matter is found to be

unstable under density fluctuations due to ∂µ/∂d < 0 [96]. This is also the case
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for the exotic multiquark matter of the number density of colour charges (in the

unit of Nc) ns > 0.5. More precisely, the multiquark matter starts to be unstable

under density fluctuations in some regions of phase diagram when ns > 0.3. This

result also suggests that the configuration corresponding to j-mesonance is unstable

in this way. Moreover, this result is natural if we think that the configuration of the

multiquark matter is intermediate between the colour-singlet nuclear matter and the

quark matter. This can be seen from the construction of the gravity dual model of

these matter.

In theoretical aspect, it is interesting to explore further the solitonic configura-

tion of the gauge fields living in the world-volume of D8-branes corresponding to the

multiquark configuration, whereas the solitonic gauge field configuration in the form

of Skyrmion have been connected to the holographic baryon, equivalently a wrapped

D4-brane within D8-branes. We expect it to be a soliton which is a modification of

Skyrmion. Moreover, the studies can be extended to the multiquark configuration

with the D4-vertex allowed to be distorted. This possibility has been explored for the

bound states both in confined phase and in defonfined phase [92, 93, 42, 43]. Fur-

thermore, the multiquark matter phase can be studied in the situation that there is

an interaction between exotic baryons, equivalently an interaction between instatons.

The author in [122, 123] has studied the nuclear force among baryon states through

the analysis of closely separated instantons.

In Chapter IV, we demonstrate that the equation of state of the multiquark

nuclear matter can be approximated by two different power-laws in the small and

large density region. The calculations to determine these thermodynamic relations

are done in both analytical and numerical ways. Both ways of calculations provides

us the results which are consistent with each other. The relations of pressure versus

baryon number density are found to be P ∼ d2 for small number density, and P ∼ d7/5

for large number density. The effect of colour charges is to reduce the pressure for

small baryon number density, while to increase the pressure for large baryon number

density. There is a transition between small density and large density at the value of

the baryon number density d = 0.072. The entropy density is found to proportional to

the temperature as s ∼ T 5 for the normal nuclear matter with no colour charges, but

s ∼ nsT for the exotic nuclear matter with the number density of colour charges ns >

0. The multiquark matter with colour charges has the entropy larger than that of the

colour singlet nuclear matter but it depends less sensitively on the temperature. This

indicates that the multiquark bound states in the deconfined phase tend to behave

like quasi-particles with the entropy density s being less sensitive to the temperature
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Table 5.1: Summary table of the phases in the deconfined Sakai-Sugimoto model.

The phase vacuum multiquark χS-QGP

region in d = 0 (i.e. µ < µsource) d > 0 (i.e. µ ≥ µsource) d > 0

parameter space 0 ≤ ns . 0.3

preferred at low µ, low T high µ, low T high T

important occupied mixing of different free quarks

properties by mesons ns-multiquarks and gluons

than the gas of mostly free glons and quarks in the chiral-symmetric quark-gluon

plasma phase.

As a summary, the main results of this thesis, namely the properties of the

(exotic) nuclear matter, in comparison with other phases are shown in Table 5.1.

Even though it is not shown in the present thesis, our work of [98] applies the

thermodynamic relations, derived from our model in the framework of gauge/string

duality, to study further on the gravitational stabilities of the hypothetical multiquark

star. Assuming that the star is spherical symmetric with the content of the multi-

quark matter, we solve the Tolman-Oppenheimer-Volkoff equation with the equations

of state derived from the thermodynamic relations presented in this thesis. The dif-

ference between two power-law relations of pressure versus baryon number density

has been found to be apparent in separate part of the star, namely the power-law

relation P ∼ d2 for small density is responsible for the crust region of the star, while

the power-law relation P ∼ d7/5 for large density is responsible for the region of the

core of the star. The gravitational stabilities are explored as shown in the results of

[98].
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Appendix A

Force condition at the D8-branes

There are three forces acting on a D4-brane locating inside the D8-branes, one

from the D8, another from the radial strings pulling down towards horizon and lastly

the force from its own “weight” in the background. The equilibrium can be sustained

only when these three forces are balanced. As is shown in [96], variation of the total

action with respect to uc and the constant of motion with respect to x4(u) lead to

x′4(uc) =

(
L̃(uc)−

∂Ssource

∂uc

)/
∂S̃D8

∂x′4

∣∣∣∣
uc

, (A.1)

=
1

d

√√√√ 9u2c(1 +
d2

u5
c
)

1 + 1
2
(uT

uc
)3 + 3ns

√
f(uc)

− d2u−3
c

f(uc)
(A.2)

where the Legendre transformed action is

S̃D8 =

∫ ∞

uc

L̃(x′4(u), d) du, (A.3)

= N
∫ ∞

uc

du u4
√
f(u)(x′4(u))

2 + u−3

√
1 +

d2

u5
, (A.4)

and the source term is given by

Ssource = Nd
[1
3
uc
√
f(uc) + ns(uc − uT )

]
. (A.5)

There are two contributions from the D-branes and strings as the sources for the

baryon chemical potential. Additional strings increase the baryonic chemical potential

of the exotic multiquark states. Since the number of total charge on each D4 is Nc

which is absorbed into N , the number of radial strings stretched down to the horizon,

ns, is thus given in unit of Nc.
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