CHAPTER V
RESULTS AND DISCUSSION

5.1.  Preparation and characterization of polymer-supported titanocene

catalysts
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The infrared spectroseopyis an' effeetivesmethod to follow each step in
preparation of polymer-supporie ' ent to characterize the functional

group in the wave number of 4
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5.1.1. Preparation of polymer-supported catalyst using boron

compound as cocatalyst

Preparation of polymer-supported catalyst using boron compound as cocatalyst

shown in Figure 5.1.
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Figure 5.1. Preparation of polymer-supported catalyst using boron compound as

\7 RY' |
Compound A: :|

The absﬁ%ﬁf}mﬁ%wqiﬁ@aﬁm
ARIRINIFANTING 1A Y

The absorption at 1255 cm™ results from C-N bending and stretching vibrations

port: polystyrene-co-DVB

from C-H absorption appear at 2765 and 2817 cm™.
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Compound C: PS-CH;,[NMe,H][B(CeFs)4]

The absorption around 3303 cm™ results from N-H stretching and absorption from

perfluorophenylborate bending incorporation appear at 1644, 1516, 1086 and 973 cm™.

The infrared spectra of compounds A, B and C are shown in Figure 5.2 [73].
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Figure 5.2. FTIR spectra of compounds A, B and C.
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5.1.2. Preparation of polymer-supported catalyst using MAO as

cocatalyst

Two methods for preparation of polymer-supported catalyst using MAO as

cocatalyst were used.

Method A is shown in Figure 5.3.
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726 cm’ results ﬁl)m Al-N [71]. Thg infrared spect trum of compoun d C is shown in
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Figure 5.5. Preparation of polymer-supported catalyst using MAO as cocatalyst
(method B).
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5.2.  Homogeneous catalyst
5.2.1. CpTiCl3/MAO system

The effects of AI/Ti molar ratio and polymerization temperature were
investigated: molar ratio of Al/Ti 300 and 1000, polymerization temperature 30 and
50°C. The polymerization of styrene

: erformed for 4 h with 0.0100 mmol of
catalyst. The results are shown in T | 7/}/

Table 5.1. Polymerization of styrene prTiCIJMAO system

Al/Ti Tp(° C ity(x107) %SPS

300 50 I/;%ﬁk\h\\ 76.5

1000 ll P, [;G \\\\ 50 97.0
Activity = (kg of bulk polymer)/(nio e of Ti & cne o h)
Styrene 10.00 mL (87.00 mméol) ‘ \ \

p f; i
From Table 5.1, the act1v1 . p, : h in reasing Al/Ti molar ratio. The role

of MAO is to alkylate ,_,f,!  catalyst and to generate active.species, in addition, it acts

X |

5.2.2. ﬂ*’ﬂ'ﬂh{T IBA/boron ¢ompound system

H’JVIW]‘? g1n3

The three es of boron compound as coca st were investigated; [PhNMe,H]

[B(CJQAQ’W@@B@@@% u%&}’}%@@ﬂaﬂonducted for 1

h at 70°C, atlAl/Ti molar ratio of 200. The results are shown in Table 5.2.

as an impurity scaveng i
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Table 5.2. Polymerization of styrene catalyzed by Cp*TiCl;/TIBA/boron

compound system

[Ti] Cocatalyst Yield(g) Activity(x107) %SPS
mmol
0.0050 [PhNMe,H][B(C4Fs)4] 6.3500 14,597 92.1
0.0050 [Ph3C][B(C6Fs)4] 16,873 94.0
0.0050 675 79.6
Activity = (kg of bulk polym ene e h)

From Table 5.2, thr (s;-[RhNMe,H 5)4], [Ph3C][B(CsFs)s] and B
(CgFs); have efficiency in s / nerization. 0 mmol of catalyst, [Ph3;C][B
(C6Fs)s] cocatalyst ex Lactivi er two cocatalysts. Borate
cocatalyst exhibits higher acti than borane cocata n pairing of borate cocatalyst

ey YR
as noncoordinating anion can be as% ;&ﬂ aeed by the olefin monomer [80].
e PR
4 ks 12y

5.3. Heterogeneous catalysi
o <

5.3.1. Bolymerizat rou compound as cocatalyst

y 2

The effects of amount.of catalyst, polymerization temperature and molar ratio of

i were invedield B SIS RS of potymer-suppores

titanocene catalyst‘l"rom 0.0050 to 0. 1°000 mmol, polymerlzatlon teﬂ’oerature 30°C and
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Table 5.3. Polymerization of styrene by polymer-supported titanocene

catalyst using various polymerization conditions

Entry Catalyst [Ti] Al/Ti Tp Yield | Activity | %SPS
mmol molar ) (2) (x107)
ratio

1 P-Cp*TiCl; 0.0050 | . 70 0.1000 17 96.8

2 P-Cp*TiCl; 0.01 70 0.1597 25 89.9

3 P-Cp*TiCls ‘ 20 03558 | 16 83.2

4 P-Cp*TiCl; 200 == 0.5154 12 79.5

5 P-Cp*TiCls . 200N 0.0805 0.6 91.3

6 P-Cp*TiCls . 70| 0.1036 | 0.9 86.6

7 | P-Cp*TiCl; after [#0. 723000 | 00 03198 | 14 80.1

leaching L_,J o H‘a

8 P-CpTiCl; 0 :"i-"“f* 1 ‘ 0.2331 9 79.1
Polymerization time (tp) 4 yrene10:00mL (8 mol)
Activity = (kg of bulk polymer)/(mple 6f 17 o1 f styrene o h)

. -‘mf’*?'w
The results from-€ntries 1-4 show | mount of catalyst is 0.0100

mmol. When the amotnt of cataly : mol, activity apparently

decreases. The high actimy at the low amount of catalyst could be attributed to the

increasing of activ ecie§. Fhe decreasing of %jy ﬁﬁflh amount of catalyst
might be caused bﬁh EL’}fw g m §d ’1 of active species into
inactive species [81

ARANIUUMINYA Y

The fesults from entries 3 and 5 show that activity increases with temperature. At

low temperature, the n-olefin complex of titanium and styrene is more stable [82].

The results from entries 4 and 6 show that the activity is enhanced with increasing
Al/Ti molar ratio. The function of TIBA is to alkylate the titanocene catalyst. The excess

amount is needed because some is used to scavenge impurity in the system.
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The results from entries 3 and 8 show that the activity of polymer-supported
Cp*TiCl; is higher than that of polymer-supported CpTiCls catalyst. The catalytic activity
is enhanced by electron-releasing substituents on Cp* ligand. This result suggests

stabilization of the active site by electron releasing substituents [60].

The results from entries 3 and 7 show that the activity of P-Cp*TiCl; before

leaching and after leaching are comparable. This result confirms that titanocene does not

Iy,

5.3.2. Poly of & wAO as cocatalyst
/ prog \\\ merization of styrene using

There are two poly \

drop into solution.

MAO as cocatalyst.

Table 5.4. Two polymerization pro¢
e

2

1

Polymer-suppo rted i pported titanocene catalyst

catalys MAO'S 7 | system

o | |
1. P-titanocene catalyst_m -tita@cene catalyst

2. Styrene - ¢ a % Styrene
> Mo PleedY B‘VIID'WH 1P

In‘a) eﬁg ﬂ%)ﬁ%f}?ﬂ cErle catalyst were
used. For procedure 1, additiona mmol, 0.6 was ad d in the system.

5.3.2.1. Polymer-supported titanocene catalyst (method A)

The effects of amount of catalyst and polymerization temperature were

investigated: amount of titanium for preparation of polymer-supported titanocene catalyst
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from 0.0100 to 0.1000 mmol and polymerization temperature 30°C and 70°C. The

experimental results are shown in Table 5.5.

Table S5.5. Polymerization of styrene by polymer-supported titanocene
catalyst (method A)

Al/Ti

Tp Yield | Activity | %SPS

Entry Catalyst [Ti]
| °0)| (@ | (x107)

N %

9 P-CpTiCls/MAO | 0.0100 ""ﬁ' 0.1221 6 98.6
i ..-?]iﬂ\

10 P-CpTiCly/MAQ ' j / ﬂl‘\\%\ 0.1751 4 96.3

11 P-CpTiCl3/MA r .B\*&\‘\ 1.0901 28 94.5

12 P-CpTiCl/MAO ‘”lﬁi ﬂ\m 1.4756 39 96.7

13 P-CpTiCl ‘,l JQ\‘\\ 0.1168 0.4 98.3

14 | P-Cp*TiCly/MAG l ooo:‘g“- 'ﬂi\\‘ 7.6805 217 98.5

Polymerization time (tp) 4 ran tyre 1610 00mL ( )\ 00 mmol)
Activity = (kg of bulk polymer)/(mble 7 of Tive. of styrene o h)

The results fron¥ entries 9-11 show that the eatalytie activity increase markedly

W

with increasing amou

The result ﬁ?Tlﬁom enfries 11 and 12 sh(i# thatglgher ﬁ %erature results in higher

activity ot caratyf®] 1 £) 4 V] E]
1f) Wq ﬁ“ﬂ ﬂi m aé] 18 o "a H&]ﬂ.@ ipported CpTiCl;

catalyst/MAO system exhibits a higher catalytic activity than polymer-supported CpTiCl;
system. It can be concluded that MAO added to the system can enhance the catalytic

activity, probably in impurity scavenge.
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The results from entries 12 and 14 show that polymer-supported Cp*TiCls
catalyst system exhibits a higher catalytic activity than polymer-supported CpTiCls

catalyst system. This can be explained as that in the homogeneous catalytic system.

5.3.2.2. Comparison of polymer-supported CpTiCl; catalyst

(method A) and polymer-supported CpTiCl; catalyst (method B)
ization of styrene, compared between
a ‘sxperimental results are shown in

Procedure 1 in 5.3.2 was
supported catalyst prepared b A ;
Table 5.6. | =

d
tﬁ. ”~

Table S5.6. C(M € plym ported CpTiCl; catalysts
prepared by (method A) a =B\

Entry Catalyst 4 Yield | Activity | %SPS
' (x107)
12 P-CpTiCl;/MAO 0 | 1.4756 39 96.7
(method A R |
15 P-CpTiCly/MAC 110 97.4
(method B)m

Polymerization time (tp) 4 land styrene 10.00:mL (87.00 mmol)

Acivity=(kg of@l%ﬂ@(ﬂl&fﬂoﬁoﬂ&%ﬂ h
50 TR TS T AT B i

catalytic activity than method A. This can be explained that the coordinaiton of CI-Al in

method B is stronger than the coordination of N-Al in method A.
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Method A Method B
5.4.
pectroscopy (NMR)
The tacticity of po : ' ed by "C NMR spectroscopy. Tacticity in
NMR is represented by th ative figuration o 1se units. A typical °C NMR

spectrum of an atactic erous relatively sharp lines,

that are assigned to the vafioug se ‘meso (1 \ acemic (r) dyads.

. ' 1 m m m
—— ] .
syndiotat m isotactic

e BC ﬁqﬁﬁﬂ %: ,jﬁ TiCls and P-Cp*TiCls
using MAO as ﬁr res ﬁge he phenyl C; carbons
resonate at 145 31 while the remalrﬁ'rﬁjromatlcarbon resonandes appear at 128-133

;ﬂne

pom. Tl b o gk honbichi b [ 5 fistyine caros

exhibit sharp singlet at 41 ppm. Figure 5.8 shows BC NMR spectrum of the phenyl C,

carbon of the three types of polystyrene [83], the spectrum of atactic polystyrene (Figure
5.8-(1)) shows five peaks in the range 145-146 ppm, corresponding to its various
configurational sequences. The spectrum of isotactic polystyrene (Figure 5.8-(2)) shows
the phenyl C; carbon as a single sharp peak at lower magnetic field (8 = 146)

corresponding to the mmmm pentad configuration. In contrast, a peak in syndiotactic
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polystyrene (Figure 5.8-(3)) was observed at higher magnetic field (5 = 145). The
obtained °C NMR spectrum corresponds with the result reported for SPS. Therefore, it is

concluded that the produced polymer is syndiotactic polystyrene.
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Figure 5.6. °C NMR spectru
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5.4.2. Scanning electron microscopy (SEM)

The morphological properties of polystyrene-co-DVB bead and polystyrene

products obtained by different catalytic systems were shown in Figures 5.9-5.12.

Figure 5.9 shows the SEM micrograph of a smooth surface of polystyrene-co-
DVB bead. Figure 5.10 shows the SEM micrograph of homogeneous Cp*TiCl;
/TIBA/boron compound. Figures 5:11-5.12 _sil}pw SEM micrographs of polystyrene
product by polymer-supported eatalyst using .bozen” compound and polymer-supported
catalyst using MAO as “¢cocatalyst, reffpectively. The morphology of polystyrene
synthesized from polymig;suppprtcd catalysts is spherical. The shape of polymer
particles is a replica of that gf thg'carrier p%ﬁicle.

i F
F ¥ v

n R 15kU _IBEJMr?; AR J :

Figure 5.9. SEM micrograph of polystyrene-co-DVB bead.
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: \ 4

; v,
Figure 5.10. SEM.micgograph of polystyrene produced with homogeneous
Qﬁ*T“iC'l; /TJBA/E;J i compound.

Figure 5.11. SEM micrograph of polystyrene produced with polymer-supported catalyst

using boron compound as cocatalyst.
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Figure 5.12. SEM microgtaph ofpolyst)rerilg produced with polymer-supported catalyst

dsifig MAO as cocatalyst:
.-7'_1-.._-
5.4.3. Molecular weight (MJ},) and molecular weight distribution

(MWD)

The molecular weight and molecular weight distribution of polystyrene produced
by P-CpTiCl;/MAO and P-Cp*TiCls/MAO systems are presented in Table 5.7. The GPC

curves are shownlin Figures 5.13-5.14.

Tablet5:7 M5 and<MWDcof the obtaifted polystyrene k3 P2Cp*TiClyyMAO
and P-CpTiCl;/MAQO systems

Catalyst system My M, Myw/ M,

P-Cp*TiCls/MAO 40,304 17,098 23

P-CpTiCls/MAO 190,349 52,564 3.6
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From Table 5.7, molecular weight (Mw) and molecular weight distribution
(Mw/M,) of polystyrene produced with P-Cp*TiCl3/MAO system are 40,304 and 2.3
respectively. For P-CpTiCl3/MAO system molecular weight (Mw) and molecular weight
distribution of polystyrene produced are 190,349 and 3.6 respectively. The polymer
supported system (PSOH/CpTiCl;-MAO system) was reported to have molecular weight
(Myw) and molecular weight distribution of 44,500 and 2.2 respectively [67]. Therefore it

seems that the polymerization condition t on the Mw.

SFRIBE | Mo | Mo MP | e [zt [ My | SR
1| Ps—o 52504 | 190349 | 20 31376 | 513089 | 175073 | 3821 |

B

-
>

8 B
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- N W v o N ©
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3 using MAO as cocatalyst.
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SFRIWE | Mn | Mw i MP | Mz [ Mzt [ wv [ ]
1| PSCos | 1708 [ 40304 | 32846 | 77035 | 120855 | 36744 | 22357 |

dwt/d(logM)
o
-

0.104
0,003
2. 8.00
Figure 5.14. GPC curye ofpolystyr N 7 ed with polystyrene obtained with
ik )

5.4.4. Melting te P “,‘-“,f":' =

diiced by Cp*TiCls/boron,
are presﬁted in Table 5.8. The DSC

The melting 9_
P-Cp*TiCls-boron and Pﬁa* i
curves are shown in Figures §.15-5.16.

ﬂ‘lJEl’J‘VIEWlﬁWEI'm‘i

Table 5.8. Ty, of the obtained g,olystyrene by Cp*TlCh/bOl‘Oll, P-Cp*TiCl;-

RN UANINYA Y

Catalyst system Ta (®C)

Cp*TiCls/boron 270.8
P-Cp*TiCls-boron 250.1
P-Cp*TiCl3-MAO 270.6
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From Table 5.8, melting temperature (Tn) of polystyrene produced with
Cp*TiCls/boron, P-Cp*TiCls-boron and P-Cp*TiCl;-MAO is 270.8, 250.1 and 270.6
respectively. It can be confirmed that the polystyrene product is syndiotactic polystyrene
[67].
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Figure 5.15. DSC curv; of polystyrene produced with Cp*TiCls/boron system.
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Figure 5.17. DSC curve of polystyrene produced with P-Cp*TiCl3-MAO system.
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