1.1 Approximation Methods.

In developing theories for the electronic properties of binary mixed crystals several important characteristic of these kind of objects have to be taken into consideration. Among them is a loss of lattice periodicity or the 1 ack of crystal symmetry. For computing electronic properties such as the density of states which are assom ciated with the entire system we can not use the standard statistical methods which are hased on the translational symmetry of the crystal, To treat the disoxder, various appoximation methods haye been used, These techniques are based on how we treat potential of electrons in mixed crystals. These methods have been developed for over fifty years,. It should be remembered that each method has its own limitations. Nordheim introduced the method called yirtual crystal approximation in 1931 . This method assumes/that the electrons in a binary systems behave identically, as far` as macroscopic properties are concerned, to the electrons in a hypothetical ordered material in which the crystalline potential is the average of the potentials of the pure materials. This approximation represents the lowest order term in a perturbation expansion of the coherent potential W and is fairly succesṣful in the case of the rigid band limit where the
perturbed wave functions are quite extended in space so that each electron sees nearly the average perturbation.

In 1958, Korringa ${ }^{(2)}$ suggested the average T-matrix approximation, based on the assumption that the electrons in mixed crystals behave as if they were moving in a particular ordered system of localized potentials, the scattering matrix of which is the average of the scattering matrices of the localized potential corresponding to each constituent. This approximation was considered by Soven, who found that it was not a reasonable one for the case where the localized potentials have a strength approaching that found in transition metals. In 1966, Yonezawa and Matsubara, (3) using what they called a 'cumulant expansion', gave a formal perturbation theory analysis leading to a systematic expansion of the coherent perturbation,

The method called the coherent potential approximation (CPA) was proposed by Soven ${ }^{(4)}$ in 1967. The essential physical idea of this approach is to describe the system by an appropriate effective Hamiltonian. This Hamiltonian is defined by the condition that if it Is employed, there is no further scattering from the individuals sites on the average. Off incorporates-a potential such that with its use, a wave will propagate coherently through the material. To deterwine the coherent potential in the originai and simplest form of this approximation, one requires that a single scatterer imbeded in this effective medium should produce no further scattering on the average, The attractive feature of the CPA is that only directly measurable physical quantities are required as input data when calculating the
excited electronic state of the mixed crystals. The pertinent parameters are the experimental density of states of the pure crystal and the difference of the single molecule excitation energies. The major shortcoming of the CPA involves an inadequate description of localized states.

1.2 Methods for Approximating Green's function <G>.

The various methods for calculating <G> differ in the ways that the configuration average is inserted into the calculation. We begin by defining
as

$$
=\frac{1}{G o^{-1}-W}
$$

when
G $=$ and bare propagator of the system I. 1
$W=$ correction due to the perturbation and

1.2. 9 Virtuâ Crystal Approximation (VCA).

As was pointed out in Virtual Crystal Approximation, it is assumed that the electrons inl a binary mixed crystals behave identically, as far as macroscopic properties are concerned, to the electrons in a hypothetical ordered material in which the crystalline potential is the average of the potentials of the pure materials. Therefore the correction W is

$$
\begin{equation*}
W=\sum_{i} V_{1} \tag{I. 2}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{i}=c_{A} V_{i}^{A}+c_{B} V_{i}^{B} \tag{I. 3}
\end{equation*}
$$

when
$v_{i}^{A}=$ potential for particle A at site i $V_{i}^{B}=$ potential for particle B at site i $c_{A}=$ concentration of particle A $c_{B}=$ concentration of particle B

Substituting this equation (I, 1), we get
1.4

This approximation represents the lowest order term in a perturbation represents the lowest order term in a perturbation series of W.
1.2.2 Average t-Matrix Approximation (ATA).

We defined a single-site t-matrix to be

The Resolvent may be expressed by

$$
\begin{aligned}
G \quad= & G_{0}+\sum_{i} G_{0} t_{i} G_{0}+ \\
& =\bar{i} \sum_{j \neq i} G_{0} t_{i} G_{0} t_{j} G_{0}+ \\
& \sum_{i} \sum_{j \neq i} \sum_{k \neq j} G_{o} t_{i} G_{0} t_{j} G_{0} t_{k} G_{0}+\ldots \text { I. } 8 .
\end{aligned}
$$

Then the mean resolvent is

$$
\begin{aligned}
\langle G\rangle,= & G_{0}+\sum_{i} G_{0}<t_{i}>G_{0}+\sum_{i} \sum_{i \neq i} G_{n}\left\langle t_{i} G_{0} t_{i}>G_{0}\right. \\
& \sum_{i} \sum_{j \neq i} \sum_{k \neq j} G_{0}<t_{i} G_{0} t_{j} G_{0} t_{k}>G_{0}+\ldots
\end{aligned}
$$

The restriction on the summation for the successive scatterings is because t contains all the scattering from a single site and further scattering must therefore be from another site. By calculating the t_{i}-matrices t_{i}^{A} and t_{i}^{B} for scattering off the potential v_{i}^{A} and v_{i}^{B} respectively, then associating with each lattice site of the crystal the average t-matrix

$$
\left\langle t_{i}\right\rangle=c_{A} t_{i}^{A}+c_{B} t_{i}^{B}
$$

When on using the replacement of the average of products of t-matrices by the products of the average t-matrix, we get the approximation for <G> as

This approximation is a single-site approximation and not
reasonable for the case where the localized potentials have a strength approaching that found in transition metals.

1.2.3 The Coherent Potential Approximation (CPA).

This method developed by Taylor ${ }^{(6)}$ and Soven (4) in 1967, introduce the concept of an coherent potential. The essential physical idea of this approach is to describe the systen by an appropriate
effective Hamiltonian. This Hamiltonian is defined by the condition that if it is employed, there is no further scattering from the individual sites on the average. If incorporates a potential such that with its use, a wave will propagate coherently through the material. This method is equivalent to viewing the actual scattering potential as an impurity imbeded in an effective medium, whose propagator has a self-energy adjusted so that the t-matrix for scattering by a single site impurity in this medium is zero on the average.

In this approximation, we assume that there is an effective medium characterized by a resulvent C° wnich is related to a coherent potential W through the Dyson equation.
$G_{0}+G_{0} W G^{0}$
I. 10

In the ordinary, or single-site CPA, the coherent potential
is assumed to be site-diagonal, but in general there will be offdiagonal elements. Now we write equation (I.10) for G in terms of G^{0} elimimating G_{o} via equation (I.10) with the result

$$
G=G^{0}+G^{0}(V-W) G
$$

potential is arbitrary. Therefore, for the best improvement of the convergence of equation (I.I2), we choose W to be the exact self-energy of $\langle G\rangle$ in equation (I.10), then we would have $\langle G\rangle=G^{\circ}$ and the scattering terms in equation (I.12) must cancel, that is the average T-matrix for the system must be zero. The CPA method is
to calculate $\langle T\rangle$ in some approximation and set this to zero as a determining equation for W.

In the single-site CPA, one decouples <T> into products of single-site t-matrices which are set to zero on average,

$$
\begin{align*}
\left\langle t_{i}\right\rangle & =\left\langle\left(V_{i}-w\right)\left(1-G^{o}\left(v_{i}-w\right)\right)^{-1}\right\rangle \\
& =0 \tag{I. 13}
\end{align*}
$$

This equation is then solved simultaneously with equation (I.10) to find G° as the approximation for

1.2.4 Cumulant Expansion Method.

From eq. (I.1)

when we replace W by potential V and expand in series we get

$$
\begin{aligned}
\langle G\rangle= & \frac{\mu G_{0}+G_{0}\langle V\rangle G_{0}}{\left\langle+G_{0}\left\langle V G_{0} V G_{0} V\right\rangle G_{0} V\right\rangle}+
\end{aligned}
$$

By using the formulas of products of cumulant average such as

$\langle A B\rangle=\langle A\rangle^{C}\langle B\rangle^{C}+\langle A B\rangle^{C}$
or

$+\left\langle A\langle B\rangle{ }^{C} C\right\rangle^{C}+$

$$
\langle A\rangle^{C}\langle B C\rangle^{C}+\langle A B C\rangle^{C}
$$

or

$$
\begin{aligned}
\langle A B C\rangle^{C}= & \langle A B C\rangle-\langle A\rangle^{C}\langle B\rangle^{C}\langle C\rangle^{C}- \\
& \langle A B\rangle^{C}\langle C\rangle^{C}-\left\langle A\langle B\rangle^{C} C\right\rangle^{C}-\langle A\rangle^{C}\langle B C\rangle^{C} \text { I.14 }
\end{aligned}
$$

and so forth. The suffix c indicates the 'cumulant average'. By use of this kind of average one gets

$$
\begin{align*}
\langle G\rangle= & G_{0}+G_{0}\langle V\rangle^{c} G_{0}+G_{0}\langle V\rangle^{c} G_{0}\langle V\rangle^{c} G_{0}+ \\
& \left.G_{0}<V G_{0} V\right\rangle^{c} G_{0}+G_{0}\langle V\rangle^{c} G_{0}\langle V\rangle^{c} G_{0}\langle V\rangle^{c} G_{0}+ \\
& \left.G_{0}<V G_{0} V\right\rangle^{c} G_{0}\langle V\rangle^{c} G_{0}+ \\
& G_{0}\langle V\rangle^{c} G_{0}\left\langle V G_{0} V\right\rangle^{c} G_{0}+ \\
& G_{0}\left\langle V G_{0}\langle V\rangle^{c} G_{0} V\right\rangle^{c} G_{0} \tag{I. 15}\\
& \left.G_{0}<V G_{0} V G_{0} V\right\rangle^{c} G_{0}+
\end{align*}
$$

This approximation includes all the effects of electron scattering caused by a single impurity, but does not take account of effects such that an electron scattered by an impurity is appreciably influenced by other impurities before the first scattering is completed.

1.2.5 Connection between Perturbation Expansion and Diagram

Approach.

For any system, we can define an operator

6 a
where H_{0} is theptime independent Hamiltonian operator. The expectaLion value $G_{0}(E)$ which is called Green's function is calculated

$$
\begin{equation*}
\left\langle\dot{\psi}_{i}\right| \hat{\hat{G}}_{0}(E)\left|\psi_{i}\right\rangle \quad=\left\langle\psi_{i}\right| \frac{1}{E-H_{0}}\left|\psi_{i}\right\rangle \tag{I. 16}
\end{equation*}
$$

As ψ_{i} are the eigenstates of H_{0}, and from equation (I.16)

$$
\left\langle\psi_{i}\right| \frac{1}{E-E_{0}}\left|\psi_{i}\right\rangle=\cdot\left\langle\psi_{i}\right| \frac{1}{E}\left(\frac{I}{1-\frac{H_{0}}{E}}\right)\left|\psi_{i}\right\rangle
$$

$$
\begin{aligned}
& =\left\langle\psi_{i}\right| \frac{1}{E}\left(1+\frac{H_{0}}{E}+\left(\frac{E_{0}}{E}\right)^{2}+\ldots\right)\left|\psi_{i}\right\rangle I .17 \\
\text { Since }\left(H_{0}\right)^{n} \mid \psi_{i}> & =\left(H_{0}\right)^{n-1} E_{0}\left|\psi_{i}\right\rangle \\
& =E_{i}\left(H_{0}\right)^{n-1}\left|\psi_{i}\right\rangle \\
& =E_{i}^{n}\left|\psi_{i}\right\rangle,
\end{aligned}
$$

equation (I.16) becomes

$$
\left\langle\psi_{i}\right| \frac{1}{E-H_{0}}\left|\psi_{i}\right\rangle\left\langle\left.\left\langle\psi_{i}\right| \frac{1}{E}\left(I+\frac{E_{i}}{E}+\left(\frac{E_{i}}{E}\right)^{2}+\ldots+\left(\frac{E_{i}}{E}\right)^{n}\right) \right\rvert\, \psi_{i}\right\rangle
$$

I. 18

Let us now consider a system with perturbation and which is.. described by the Bamiltonian $H=H O_{0} / \lambda V$, where λ is a real parameter to belset equal to one at a later time, V is a time independent perturbation operator, The eigenvectors of $H O+J$ vare no longer $\mid \psi_{i}>$ and the eigen energies are no longer E_{i} but E_{i}^{\prime}.

$$
\begin{aligned}
E_{i}^{\prime} & =E_{i}+\text { all perturbative corrections to the energy. } \\
& =E_{i}+\Sigma, \text { where } \Sigma \text { is the self energy correction. }
\end{aligned}
$$

Of interest to us now are the two expectation values

1. The expansion $\left.\langle i| \frac{I}{E-H} \right\rvert\, i>$ in terms of perturbation V, and
2. The expansion $\langle i| \frac{1}{\mathrm{E}-\mathrm{H}}|i\rangle$ in terms of the self energy Σ, (Note that in both expansion, |i> are the eigenvectors of H) The expansion $\left\langle\left. i\right|_{E-H}\right| i>$ in terms of perturbation V is obtained as follows:

$$
\langle i| \frac{1}{\mathrm{E}-\mathrm{H}}|i\rangle=\left\lvert\,\langle i| \frac{1}{1-20_{0}-\lambda V}|i\rangle .\right.
$$

Since $\Sigma|j><j|$

The second term in
rewritten as follows.

$$
\text { I. 20. is } \lambda<\left.i\right|_{E-H_{o}} ^{V} \mid \text { i> which can be }
$$

$$
\begin{aligned}
\lambda<i\left|\underset{E-H_{0}}{V}\right| i> & \left.=\lambda \Sigma<i|v| j><j\left|\underset{E-H_{0}}{ }\right| i\right\rangle \\
& =\lambda<i|v| i>G_{0}(E)
\end{aligned}
$$

The third term in equation $(I .20)$ is $\lambda^{2}<i\left|\frac{V^{2}}{\left(E-H_{O}\right)^{2}}\right|_{i}>$
Expanding as before, we have
$\left.\lambda^{2}<i\left|\frac{2}{\left(E-H_{0}\right)^{2}}\right| i\right\rangle=\lambda_{j j^{2} j^{\prime \prime}}^{\Sigma}\langle | V|j\rangle\langle j| V\left|j^{\prime}\right\rangle\langle j| \frac{1}{E-H_{0}}|j\rangle\langle j \eta| \frac{1}{E-K_{0}}|i\rangle$

$j j^{\prime \prime \prime} j^{\prime \prime}$
$=\lambda^{2} \sum_{j} \quad \frac{\langle i| V j^{\prime \prime}}{E-E_{i}}, \frac{1}{E-E_{i}}$

$\left.=\lambda^{2}<i|V| i\right\rangle_{0}^{2} G_{0}^{2}(E)$

The fourth term in equation $(I, 20)$ is

$$
x^{3}\langle i| \xlongequal[v^{3}]{|i\rangle} .
$$

Again expanding as before, we have

$$
\begin{aligned}
& \left.\lambda^{3}\langle i| \frac{v^{3}}{\left(\mathrm{E}-\mathrm{H}_{0}\right)^{3}}|i\rangle=\lambda^{3} \sum^{\varepsilon} \quad<i|v| j_{1}><j_{1}\left|\frac{1}{\mathrm{E}-\mathrm{H}_{0}}\right| j_{2}><j_{2}|v| j_{3}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda^{3} j_{j_{2} j_{2} j_{3} j_{4} j_{5}}^{\sum}\langle i| V\left|j_{1}>\frac{1}{E-E j_{2}} \delta_{j_{1} j_{2}}^{\left\langle j_{2}\right.}\right| V\left|j_{3}\right\rangle \frac{1}{E-E_{j_{4}}} \delta_{j_{3} j_{4}} \\
& \left\langle j_{4}\right| V\left|j_{5}\right\rangle \frac{1}{E-E_{i}} \delta_{j_{5}}{ }^{i} \\
& =\lambda_{j_{1} j_{3}} \frac{\langle i| v \mid j_{1}>\left\langle j_{1}\right| v\left|j_{3}><j_{3}\right| v|i\rangle}{\left(E-E_{j_{1}}\right)\left(E-E_{j_{3}}\right.} G_{0}(E), j_{1} \neq j_{3} \neq i
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda_{j_{1} j_{3}}^{3} \frac{\langle i| V \mid j_{1}>\left\langle j_{1}\right| V \mid j_{3}>\left\langle j_{3}\right| V|i\rangle}{\left(E-E_{j_{1}}\right)\left(E-E_{j_{3}}\right)} G_{0}(E), j_{1} \neq j_{3} \neq i \\
& =\lambda^{3}{ }_{i}|V| i>G_{0}(E) \sum_{j_{1}} \frac{\langle i| V\left|j_{1}><j_{1}\right| V|i\rangle}{E-E_{j_{1}}} G_{0}(E), j_{1} \neq i, j_{3}=i \\
& =\lambda^{3}<i|v|_{i>G_{0}}(E) \sum_{j_{3}} \frac{\langle i| V\left|j_{3}><j_{3}\right| V \mid i>}{E-E j_{3}} G_{0}(E) \\
& =\lambda^{3} \sum_{j} \frac{\left.L\langle i| v|j\rangle\right|^{2}\langle j| V|\hat{E}\rangle}{E-E_{j}} G_{0}(E) \\
& =\lambda^{3}<i|\nabla| i>G_{0}^{3}(E)
\end{aligned}
$$

The other terms in equation (I.20) can be expanded in a similar manner. We add these terms together and now set λ equal to one. Thus equation (I.20) becomes

$$
=G_{0}(E)[1]+\langle i| v|i\rangle
$$

$$
+\sum_{j} \frac{\langle i| v|j\rangle\langle j| v|2\rangle}{E-E_{j}}
$$

$$
+\sum_{j_{1} j_{3}}^{\sum} \frac{\langle i| v\left|j_{1}><j_{1}\right| v\left|j_{3}><j_{3}\right| v \mid i>}{\left(E-E_{j_{1}}\right)\left(E-E_{j_{3}}\right)}
$$

Now consider the the expansion $\left\langle i \frac{1}{\mathrm{~F}-\mathrm{H}}\right| i>$ in terms of the
self energy

$$
\begin{aligned}
G_{0}(E)= & \left\langle G(E\rangle-G_{0}(E) \Sigma\langle G(E)\rangle\right. \\
\langle G(E)\rangle= & G_{0}(E)+G_{0}(E) \Sigma\langle G(E)\rangle \\
= & G_{0}(E)+G_{0}(E) \Sigma G_{0}(E)+G_{0}(E) \Sigma G_{0}(E) \Sigma\langle G(E)\rangle \\
= & G_{0}(E)+G_{0}(E) \Sigma G_{0}(E)+G_{0}(E) \Sigma G_{0}(E) \Sigma G_{0}(E) \\
& +G_{0}(E) \Sigma G_{0}(E) \Sigma G_{0}(E) \Sigma G_{0}(E)+\ldots \ldots \\
= & G_{0}(E)\left[1+\Sigma G_{0}(E)+\Sigma G_{0}(E) \Sigma G_{0}(E)\right. \\
& \left.+G_{0}(E) \Sigma G_{0}(E) \Sigma G_{0}(E)+\ldots \ldots\right] \\
= & G_{0}(E)\left[1+\Sigma \Sigma+\Sigma G_{0}(E) \Sigma+\Sigma G_{0}(E) \Sigma G_{0}(E) \Sigma\right.
\end{aligned}
$$

Comparing equation (I.21) and equation (I.24), we find the self-energy to be

$\rho+$ teems coming from the higher offer perturbative

$$
\text { correction I. } 25
$$

Oe shall poco look at the graphic interpretation of the perturbative series. We can represent the free propagator $\frac{1}{E-E_{j}}$ by a horizontal line. Each vertex is associated with a polynomial $P_{n}(c)$ where n equals the nagger of interaction lines (represented
by a dash line) connecting the impurity (represented by a cross) and the exciton propagator line. Each interaction line is associated with a momentum transfer p, Of course the net momentum transfer to a single impurity must be zero. An example of graphical representation of few terms in the expansion are

$$
G_{0}(B)\langle i| V\left(\frac{1}{E-H_{0}}\right)|i\rangle \text { is }
$$

Graphs which represent the second order correction

$$
\left.G_{0}(E)<i\left|V^{2}\left(\frac{1}{E-H_{0}}\right)^{2}\right| i\right\rangle \quad \text { are }
$$

 are

Graphs which represent the fourth order correction
are

$$
G_{0}(E)\langle i| v^{4}\left(\frac{1}{E-H_{0}}\right)^{4}|i\rangle
$$

The generalization to nth order correction which has ' n '

lines is
as follows
The total number of terms arising in the $n^{\text {th }}$ order perturbative series is the total numer of distinct pictures having ' n ' interaction lines and the correspondence is one-to-one, The $n{ }^{\text {th }}$ order correction is obtained when we write dow the analytic expressions for all the distinct graphs we can draw with the n interaction lines,

$$
\text { If we now represent }\langle i| \frac{1}{E-H_{0}}|i\rangle \text { by } \longrightarrow \text { and }\langle i| \frac{1}{E-\mathrm{H}}|i\rangle
$$

by \Longrightarrow, the perturbative sexies becomes graphically

These graphs can be divided into two groups.

1. Reducible graphs
2. Irreducible graphs

Reducible graphs are the graph which can be separated into two parts by cutting one propagation line (horizontal line).

Irreducible graphs are the graph which cannot be cut into two parts by cutting propagation line.

The self-energy Σ are the sumation of all irreducible graphs in equation (I, 26)

Thus

The self-energy $\Sigma=$ one vertex series + two vertex series + three vertex series $+\ldots . . .$.
where the one vertex series are Σ_{1}, the two vertex series are Σ_{2}. Thus

