CHAPTER III

EXPERIMENTAL

The objective of this research was to produce the microcrystalline waxes from bright stock. The production was established by sweating process and improved the properties of wax by oxidation process. These waxes were analyzed to determine the oil content, acid number, and some physical properties as follows:

1. Physical properties of microcrystalline waxes

Some physical properties of the microcrystalline waxes were determined such as drop melting point according to ASTM D 127-93 [15], kinematic viscosity at 100 °C according to the ASTM D 445-94 [21], penetration at 25 °C according to ASTM D 1321- [20], microscopic study and appearance.

2. Other components

- 3.1 The determination of oil content in microcrystalline wax followed ASTM D 721-93 [16].
- 3.2 The determination of acid number in oxidized microcrystalline wax followed ASTM D 1386-83 [17].

3.1 Materials and Chemicals

- 1. Bright Stock was obtained from BP Oil.
- 2. Stearic acid and sodium hydroxide were obtained from BDH.
- 3. Cobalt nitrate and xylene were obtained from Merck.

4. MEK (Methyl Ethyl Ketone) was obtained locally.

3.2 Apparatus and Instruments

1. Air pump	New Lion model NL12p
2. Analytical Balance	Mettler model PJ 3600, readability
	to 0.01 mg
3. Automatic Flash Point Tester	ISL model CFP 92
4. Automatic Viscometer and Viscosity Index	Cannon CAV-4
5. Filter Bottle	100 ml capacity, with fine sintered
	glass disk
6. Hotplate	Corning Stirrer/Hotplate
7. Microscope	Olympus
8. Oven	Memmert model UM 400
9. Penetrometer	Stanhope-Seta
10. Pycnometer	Kimax model 15113-25,
	25 ml capacity
11. Reactor	PARR model 4842
12. Temp. Controlled Bath for oil content	Thomas Kagaku model TRL 115
13. Temp. Controlled Bath for specific gravity	Advantec model LCH 100
14. Thermometer	Temperature range from 0°C to
	100 °C

3.3 Procedure

3.3.1 Wax Sweating Process

Bright Stock which was laid on the sieve had sweater pan supported under the waxes. Then, it was brought into the oven, which was set at sweating temperature. The solid wax was slowly heated in a sweating oven. During sweating, the temperature of the wax in the oven was slowly raised to liquefy part of the wax. The wax began to melt and the first liquid fraction drained from the bed through into the oven pan. The liquid drippings was collected in the bottom of the oven and drained into pan. The waxes were investigated for the optimum temperature and time for wax sweating. As each range of temperature, the wax on the sieve was tested for its drop melting point (ASTM D 127), oil content (ASTM D 721), and the percent yield.

3.3.2 Method of Wax Oxidation

3.3.2.1 Preparation of Cobalt stearate

Stearic acid (14 g) was melted and added to a solution of sodium hydroxide (4.4 g NaOH in 100 ml distilled water). The reaction mixture was heated and stirred with a mechanical stirring at over 100 °C. Then, the solution of cobalt nitrate (7.13 g Co(NO₃)₂ in 30 ml distilled water) was added into the mixture slowly and water was removed over 30 min to give pink solid (10 g, 65.3% yield).

3.3.2.2 Oxidation Procedure

The 300g of sweated wax were placed in a reactor with 1%, 2%, and 5% of cobalt stearate for each batch. The mixture was heater and stirred (speed 600 r.p.m.) at 110 °C and bubbled with air. When the reaction was finished, the mixture was then cooled to about 85-90 °C and the catalysts were filtered. This reaction was studied for the optimum percent catalyst and time for oxidation. The quality of oxidized wax was monitored by drop melting point (ASTM D127) and acid number (ASTM D1386).

3.4 Investigation of wax properties

Properties of wax were measured by the following test method as shown in Table 3.1.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table 3.1 The properties of wax

Testing Method	Standard			
Drop Melting Point	ASTM D 127			
Oil Content	ASTM D 721			
Acid number	ASTM D 1386			
Congealing Point	ASTM D 938			
Specific gravity & Density @ 25 °C	ASTM D 70			
Penetration @ 25 °C	ASTM D 1321			
Kinematic Viscosity @ 100 °C	ASTM D 445			
Flash Point	ASTM D 92			
Estimate Molecular Weight	ASTM D 2502			
Characteristic & Microscopy	#((6)9)/) <u>=</u> (/)			

3.4.1 Determination of Drop Melting Point (ASTM D127) [15]

Melting point of petroleum waxes in this research was studied by following ASTM D 127-3. The waxes were deposited on two thermometer bulbs by dipping chilled thermometers into melted waxes. The thermometers bearing the waxes were placed in test tubes and heated by means of water bath until the waxes melted and first drop fell from each thermometer bulb. Average of temperatures at which these drops fall was the drop melting point of the wax.

3.4.2 Determination of Oil Content in Wax (ASTM D127) [16]

The oil content of a wax may have significant effects on several of its properties, such as strength, hardness, flexibility, scuff resistance, coefficient of friction, coefficient of expansion, melting point and oil straining.

The oil content of petroleum waxes was determined by following ASTM D 721-93. A portion of 1 g of wax was dissolved in 15 ml of MEK into a test tube; and this solution was homogenized by stirring in a heating bath. The solution was cooled by a cooling bath, wiped dry on outside test tube with a cloth and weigh to the nearest 0.1 g. The solution was cooled to -32 °C to precipitate the wax, immersed in the mixture with filter stick which had previously been cooled by placing it in the test tube and holding at -32 °C in the cooling bath for 10 min, and filtered by applying air pressure with flow rate approximately 500 ml/min to the filtration assembly. A 4 ml of filtrate was collected in a weighing bottle, and weighed it to the nearest 10 mg. The oil content of the filtrate was determined by evaporating the MEK at 35 °C with the air for 30 min, and weighing the residue at nearest 0.1 mg.

Calculate the amount of oil in the wax as follow

Oil in wax, weight
$$\% = (100.A.B/C.D) -0.15 \dots$$
Equation 3.1

Where: A is weight of oil residue, g,

B is weight of wax, g,

C is weight of solvent, g, obtained by subtracting weight of test tube plus wax from weight of test tube and contents,

- D is weight of solvent evaporated, g, obtained by subtracting weight of weighing bottle plus oil residue from weight of weighing bottle plus filtrate, and
- 0.15 is average factor correcting for the solubility of wax in the solvent at -32 °C

3.4.3 Determination of Acid Number of oxidized microcrystalline waxes (ASTM D 1386-98) [17]

This test method was used to determine the property of acid functionality. The acid number was the number of milligrams of KOH required to neutralize 1 g of the wax or waxy material.

The standard practice was determined the acid number by warming 1 to 2 g of the wax with 40 ml of xylene in a 250 ml erlenmeyer flask. The 3 to 5 drops of phenolphthalein were added and the titration was made with vigorous shaking against a solution of approximately 0.1 N ethanolic KOH until a semi-pink color appears. Record the number of ml of standard alkali solution used.

Calculate the acid number of oxidized microcrystallne was as follows:

Acid number =
$$(AN \times 56.1) / B \dots Equation (3.2)$$

Where: A is milliliters of alkali solution required for titration of the sample,

N is normality of the alkali solution,

B is weight of wax, g, and

56.1 is molecular weight of KOH

3.4.4 Determination of Congealing Point of Petroleum Waxes, Including Petrolatum (ASTM D 938) [18]

Congealing point was a wax property that was of interest to many petroleum wax consumers. This procedure described here measures the temperature at which a sample being cooled develops a "set" or resistance to flow. At that temperature, the wax may be at or close to the solid state, or it may semisolid and quite unctuous, depending on the composition of the wax or petrolatum begins tested. In the case of petrolatum, congealing property was associated with the formation of gel structure as the sample cools. The procedure in this research was determined by following ASTM D 938-92.

A sample of wax was melted and a droplet was made to adhere to the bulb of a thermometer. Using a prewarmed flask as an air jacket, the droplet on the bulb was allowed to cool at a fixed rate until it congeals. The congealing point was observed as the temperature at which the droplet ceases to flow as the thermometer was turned.

3.4.5 Determination of Specific Gravity (ASTM D 70) [19]

Specific gravity of petroleum waxes in this research was determined by following ASTM D 70. This value was measure by using a Pycnometer Specific-Gravity bottle, capacity 10 ml, having a ground glass stopper with small hole in center.

Wax was melted at 90 °C and poured into the Pycnometer Specific-Gravity bottle. The bottle was filled with water stopper and wiped dry, weight at 25 °C, submerged the bottle in the water slowly so that no air bubbles binding to surface of wax and weight the whole. The wax in the bottle was weighted accurately to 0.0001 g at 25 °C.

The specific gravity, at 25/25 °C, of the wax was calculated as follows:

Sp Gr =
$$[C - A] / [(B-A) - (D-C)]$$
....equation 3.4

Where A is weight of bottle plus stopper, g,

B is weight of bottle plus stopper filled with water, g,

C is weight of bottle plus stopper filled with wax, g, and

D is weight of bottle plus stopper filled with wax and water, g.

The density, at 25/25 °C, of the wax was calculated as follows:

Density =
$$(Sp Gr) \times (0.9971)$$
.....equation 3.5

Where Sp Gr is specific gravity at 25/25 °C 0.9971 is a constant.

3.4.6 Determination of Needle Penetration of Petroleum Waxes (ASTM D 1321) [20]

Petroleum waxes differ in hardness. This test method was used to measure hardness of waxes and this method was determined by following ASTM D 1321-97.

The sample was melted, heated to 17 °C above its congealing point, purred into a container, and then air cooled under controlled conditions. The sample was conditioned at test temperature in a water bath. Penetration is measured with a

penetrometer, which applies a standard needle to the sample for 5 s under a load of 100 g. The apparatus is shown in figure 3.1.

Figure 3.1 Penetrometer

3.4.7 Determination of Kinematic Viscosity (ASTM D 445) [21]

Kinematic viscosity (v) of petroleum waxes was determined by following ASTM D 445-94.

The wax was heated at 70 °C to flow freely and fill the fixed volume of calibrated glass capillary viscometer (in range 7 to 35 cSt). The viscometer with liquided-wax was immersed in temperature-controlled bath at 80 °C. The volume of liquided-wax was adjusted to coincide with the filling mark of viscometer. Time was measured in seconds from the first timing mark to the second mark. The kinematic viscosity was product of the measured flow time and calibration constant of the viscometer.

Calculate the kinematic viscosity, v, from the measured flow time, t, and the viscosity constant, C, by means of the following equation:

v = C.t....equation 3.3

Where v is kinematic viscosity, mm²/s or cSt,

C is calibration constant of the viscometer, (mm²/s)/s and

t is mean flow time, s.

3.4.8 Determination of Flash Point Cleveland Open Cup (ASTM D 92) [22]

The flash point was a measurement of tendency of the test specimen to form a flammable mixture with air under controlled laboratory conditions. It was only one of a number of properties that should be considered in assessing the overall flammability hazard of a material. This method was determined by following ASTM D 92-98a.

Approximately 70 ml of test specimen was filled into a test cup. The temperature of the test specimen was increased rapidly at first and then at a slower constant rate as the flash point was approached. At specified intervals a test flame was passed across the cup. The flash point was the lowest liquid temperature at which application of the test flame causes the vapors of the test specimen of the sample to ignite.

3.4.9 Estimation of Molecular Weight (Relative Molecular Mass) of
Petroleum waxes From Viscosity Measurements (ASTM D 2502)
[23]

This test method provides a means of calculating the mean molecular weigh (Relative molecular mass) of petroleum waxes from another physical measurement. Molecular weight (relative molecular mass) was a fundamental physical constant that can be used in conjunction with other physical properties to characterize hydrocarbon mixtures. The method was applied from ASTM D 2502-92.

The kinematic viscosity of the waxes was determined at 100 and $210^{\circ}F$ (37.78 and $98.89^{\circ}C$). A function "H" of the $100^{\circ}F$ viscosity was established by reference to a tabulation of H function versus $100^{\circ}F$ viscosity as show in Table 3.2. The H value and the $210^{\circ}F$ viscosity are then used to estimate the molecular weight from a correlation chart, shown in Figure 3.2.

ศูนย์วิทยุทรัพยาก็ร จุฬาลงกรณ์มหาวิทยุวลัย

Table 3.2 Tabulation of H function

		Tebulation of H Function	
TARIE	•	Tabulation of M Punction	

(inematic Viscosity,			TA	BLE 1	Tabulation of H	Function	1					
inematic viscosity,						н						
cSt, at 100°F - (37.78°C)		0		0.2		0.4		0.6		0.8		
		178	_	-151		126		-104		-85		
2		67		-52		-38		-25		-13		
3		-1		9		19		28		36		
4 5 6				52		59		66		73		
5		44		85		90		96	. 101			
6		79				116		120		124		
7		06		111		136		140		144		
8		28		132				157		160		
9		47		151		154		172		175		
10	1	63		166		169		185	188			
11		78		180		183			199			
12		190		192		195		197				
13		201		203		206		208		210		
		211		213		215		217		219		
14		221		222		224	*	226		227		
15				231		232		234		235		
16		229				240		241		243		
17		237		238		247		248		249		
18		244		245				255		256		
19		251		252		253		261		262		
20		257		258		259		266		267		
21		263		264		265						
22		269		270		271		272	273			
		274		275		276		277		278		
23		279		280		281		281		282		
24				284		285		286		287		
25		283		289		289		290		291		
26		288				294		294	295			
27		292		293		298		298		299		
28		296		297		301		302		303		
29		300		301				306		306		
30		304		304		305		309		310		
31		307		308		308			313			
32		310		311	312		312		316			
33		314		314	315		316					
		317		317	318			319	319			
34				320	321			322	322			
35		320	•	323		324		325		325		
36		323		326		327		327		328		
37		326				329		330		331		
38		328		329		332		333				
39		331		332				333				
-						Н		7	8			
	0	1	2	3	4	5	6			9		
	004	205	339	341	343	345	347	349	352	35		
40	334	336	359	361	363	364	366	368	369	3		
50	355	357			378	380	381	382	384	3		
60	372	374	375	377	391	392	393	394	395	3		
70	386	387	388	390		403	404	· 405	406	4		
80	398	399	400	401	402	412	413	414	415	4		
90	408	409	410	410	411		421	422	423	4		
100	416	417	418	419	420	420		429	430	4		
110	424	425	425	426	427	428	428			4		
	431	432	432	433	433	434	435	435	436			
420	407	438	438	439	439	440	441	441	442	4		
130	437		444	444	445	446	446	447	447	4		
140	443	443	449	450	450	450	451	451	452	4		
150	448	449		454	455	455	456	456	456	4		
	453	453	454		459	460	460	460	461	4		
160	457	458	458	459		463	464	464	465	4		
160 170	461	462	462	463	463	463	468	468	468			
	465	466	466	466	467	407	400	+00	400			

Table 3.2 Tabulation of H function (continued)

				TABLE	1 Continued	1					
Kinematic Viscosity,	Н										
cSt at 100°F - (37.78°C)	0	10	20	30	40	50	60	70	80	90	
200	469	473	476	479	482	485	487	490	492	495	
300	497	499	501	503	505	507	509	511	512	514	
400	515	517	518	520	521	523	524	525	527	528	
500	529	530	531	533	534	535	536	537	538	539	
600	540	541	542	543	544	545	546	547	547	548	
700	549	550	551	551	552	553	554	554	555	556	
800	557	557	558	559	559	560	561	562	562	563	
900	563	564	565	565	566	566	567	567	568	569	
_	0	100	200	300	400	500	600	700	800	900	
1 000	569	574	578	583	587	591	594	597	600	603	
2 000	605	608	610	612	614	616	618	620	621	623	
3 000	625	626	628	629	631	632	633	634	636	637	
4 000	638	639	640	641	642	643	644	645	646	647	
5 000	648	649	650	651	652	652	653	654	655	656	
6 000	656	657	658	658	659	660	660	661	662	662	
7 000	663	664	664	665	665	666	666	667	667	668	
8 000	668	669	670	670	671	671	671	672	672	673	
9 000	673	674	674	675	675	676	676	677	677	677	
_	0	1000	2000	3000	4000	5000	6000	7000	8000	900	
10 000	678	681	684	688	691	694	696	699	701	703	
20 000	705	707	709	711	712	714	715	717	718	719	
30 000	720	722	723	724	725	726	727	728	729	730	
40 000	731	732	732	733	734	735	736	736	737	73	
50 000	739	739	740	741	741	742	743	743	744	74	
60 000	745	746	746	747	747	748	748	749	749	75	
70 000	750	751	751	752	752	753	753	753	754	75	
80 000	755	755	756	756	756	757	757	758	758	75	
90 000	759	759	759	760	760	760	761	761	761	76	
100 000	762	762	763	763	763	764	764	764	764	76	

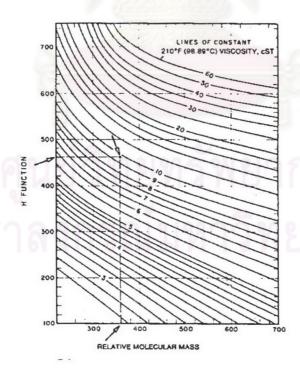


Figure 3.2 Viscosity molecular weight chart

3.4.10 Determination of microscopy of waxes

The appearance of the wax crystals in this research was performed by using microscopic study. The waxes were heated by electrical controller and cooled down from high temperature at a set rate. Photomicrographs were made of the crystal during the process of development by using magnification of 250x.

