CHAPTER IV

A FINITE INVERSE BIPREFIX CODE WHOSE SYNTACTIC MONOID HAS n $\mathcal{D}\text{-}$ CLASSES

In this chapter, we shall construct for any given positive integer $n \geq 3$, a finite inverse biprefix code C whose syntactic monoid $M(C^*)$ has n nonzero \mathcal{D} - classes.

We begin the construction with an alphabet set $A = \{a_1, a_2, \dots, a_n\}$.

For each $i \in \{2, 3, \ldots, n\}$, let

$$A_i = \{ a_i, a_{i+1}, \dots, a_n \}.$$

For each $j \in \{2, 3, ..., n-2\}$, let

$$C_j = A_2 A_3 \dots A_j a_1 a_2 \dots a_{n-j},$$

$$C_{n-1} = A_2 A_3 \dots A_{n-1} a_1 \cup A_2 A_3 \dots A_{n-1} a_n.$$

Let
$$C = \{ a_1 a_2 \dots a_n a_1 a_2 \dots a_{n-1} \} \bigcup (\bigcup_{j=2}^{n-1} C_j)$$
.
Then C is a finite prefix code.

Observe that the code C defined above has the following properties :

- (i) For each $u_k, v_k \in A_2 A_3 \dots A_k$, $u_k^{-1} C = v_k^{-1} C$ $(k = 2, 3, \dots, n-1)$.
- (ii) For each $u_{k,l}, v_{k,l} \in A_2 A_3 \dots A_k a_1 a_2 \dots a_l$, $(u_{k,l})^{-1} C = (v_{k,l})^{-1} C$ $(k = 2, 3, \dots, n-2 \text{ and } l = 1, 2, \dots, n-k-1).$

Now, we will label the tree representation of C^* .

By (i), for each $u_k, v_k \in A_2A_3...A_k$ (k = 2, 3, ..., n - 1), the node associated

with u_k and v_k are labelled with the same name.

By (ii), for each $u_{k,l}, v_{k,l} \in A_2A_3 \dots A_ka_1a_2 \dots a_l$ $(k = 2, 3, \dots, n-2)$ and $l = 1, 2, \dots, n-k-1$, the node associated with $u_{k,l}$ and $v_{k,l}$ are labelled with the same name.

From the above observation, it suffices to label only the nodes associated with a_1w and a_2w' where $w, w' \in A^*$.

We label the tree representation of C^* as follows:

The top and the end points of the tree are labelled 1.

The node associated with $a_1 a_2 \dots a_n$ is labelled 2.

For each $j \in \{1, 2, ..., n-1\}$, the node associated with $a_1 a_2 ... a_j$ is labelled

$$1 + \sum_{l=0}^{j-1} (n-l).$$

For each $k \in \{1, 2, ..., n-2\}$, the node associated with $a_1 a_2 ... a_n a_1 a_2 ... a_k$ is labelled

$$2 + \sum_{l=0}^{k-1} (n-l).$$

For each $j \in \{2, 3, ..., n-1\}$, the node associated with $a_2 a_3 ... a_j$ is labelled

$$i + 1$$
.

For each $k \in \{2, 3, ..., n-2\}, l \in \{1, 2, ..., n-k\}$, the node associated with $a_2 a_3 ... a_k a_1 a_2 ... a_l$ is labelled

$$(k+1) + \sum_{s=0}^{l-1} (n-s).$$

Since each of the remaining unlabelled nodes has the same subtree as one of the above labelled nodes, they must have the same name. Hence $P_{C^*}^{(r)}$ has been constructed.

The corresponding syntactic monoid $M(C^*)$ is generated by

$$\{ \tau(a_i) \mid i = 1, 2, \ldots, n \}.$$

Notations:

- (i) For each i, let \triangle_i denote the domain of $\tau(a_i)$ and ∇_i denote the image of $\tau(a_i)$.
- (ii) Let

$$A(1) = \{1, 2, \dots, n \},$$

$$A(i) = \begin{cases} \emptyset & \text{if } i = 2 \\ \{3, 4, \dots, i \} & \text{otherwise,} \end{cases}$$

$$B(i) = \{k + \sum_{l=0}^{i-2} (n-l) \mid k = 1, 2, \dots, n-i+1 \}$$

for all $i \geq 2$.

A few remarks on $\tau(a_i)$'s are given here :

Remark 4.1. (i) $\triangle_1 = A(1)$.

$$\triangle_i = \{ 1 \} \cup A(i) \cup B(i) \quad \text{for all } i \geq 2.$$

Since $\max A(i) \le i$ and $\min B(i) \ge n+1$ for all i,

$$A(i) \cap B(j) = \emptyset$$

Thus

$$\triangle_i \cap \triangle_j = \{ 1 \} \cup A(i)$$

 $\triangle_i \cap \triangle_j = \{ \ 1 \ \} \cup A(i)$ for all i, j with i < j. $\nabla_i = \triangle_{i+1}$ for all $i \ge 1$. (ii)

It follows that

Dom
$$\tau(a_i a_{i+1} \dots a_j) = \triangle_i$$
 and Im $\tau(a_i a_{i+1} \dots a_j) = \nabla_j$

for all $i, j \in \mathbb{N}$ (the indices are integers modulo n).

(iii) $\tau(a_i)$'s are defined as follows:

$$s\tau(a_1) = \begin{cases} 1 & \text{if } s = n \\ s + n & \text{otherwise,} \end{cases}$$

$$s+n$$
 otherwise,
$$s\tau(a_n) = \begin{cases} 3 & \text{if } s=1 \\ 1 & \text{if } s=n \end{cases}$$

$$s+1 & \text{if } s \in A(n)-\{\ n\ \}$$

$$2 & \text{if } s \in B(n),$$

$$s\tau(a_i) = \begin{cases} 3 & if \ s = 1 \\ s+1 & if \ s \in A(i) \\ 1 & if \ s = (n-i+1) + \sum_{l=0}^{i-2} (n-l) \\ s+n-i+1 & if \ s \in B(i) - \{(n-i+1) + \sum_{l=0}^{i-2} (n-l)\}. \end{cases}$$

Hence

$$A(1)\tau(a_1) = \{ 1 \} \cup B(2).$$

For each $i \in \{2, 3, ..., n\}$,

$$(\{1\} \cup A(i))\tau(a_i) = \begin{cases} A(1) - \{2\} & \text{if } i = n \\ A(i+1) & \text{otherwise,} \end{cases}$$

$$B(i)\tau(a_i) = \begin{cases} \{ 2 \} & \text{if } i = n \\ B(i+1) \cup \{ 1 \} & \text{otherwise.} \end{cases}$$

Lemma 4.2. For each $i \in \{1, 2, ..., n\}$,

Dom
$$\tau(a_i a_{i+1} \dots a_n a_1 a_2 \dots a_{i-1}) = Im \ \tau(a_i a_{i+1} \dots a_n a_1 a_2 \dots a_{i-1}) = \triangle_i.$$

Moreover, there exists $l \in \mathbb{N}$ such that

$$\tau(a_i a_{i+1} \dots a_n a_1 a_2 \dots a_{i-1})^l = 1_{\triangle_i}.$$

Proof. It follows from Remark 4.1 (ii).

Theorem 4.3. The code $C = \{a_1 a_2 \dots a_n a_1 a_2 \dots a_{n-1}\} \bigcup (\bigcup_{j=2}^{n-1} C_j)$ is a finite inverse biprefix code.

Proof. To show that $M(C^*)$ is an inverse semigroup, it suffices to show that for each $i \in \{1, 2, ..., n\}, \tau(a_i)$ has an inverse in $M(C^*)$.

By Lemma 4.2, for each $i \in \{1, 2, ..., n\}$, there exists $l \in \mathbb{N}$ such that

$$\tau(a_i a_{i+1} a_{i+2} \dots a_n a_1 a_2 \dots a_{i-1})^l = 1_{\Delta_i}.$$

Let

$$\alpha_i = \tau(a_{i+1}a_{i+2}\dots a_n a_1 a_2 \dots a_{i-1}) \tau(a_i a_{i+1}\dots a_n a_1 a_2 \dots a_{i-1})^{l-1}.$$

Then $\alpha_i \in M(C^*)$ and

$$\tau(a_i)\alpha_i = \tau(a_i a_{i+1} \dots a_n a_1 a_2 \dots a_{i-1})^l = 1_{\mathrm{Dom}\alpha_i}.$$

This yields

$$\tau(a_i)\alpha_i\tau(a_i) = 1_{\triangle_i}\tau(a_i) = \tau(a_i)$$

and

$$\alpha_i \tau(a_i) \alpha_i = \alpha_i 1_{\Delta_i} = \alpha_i$$
.

Therefore, $M(C^*)$ is an inverse semigroup.

Corollary 4.4. The syntactic monoid of C^* , $M(C^*)$, contains 1_{\triangle_i} for all i.

Lemma 4.5. $\tau(a_1a_2...a_n)$ is a cycle of length n on Δ_1 .

Moreover, $s\tau(a_1a_2...a_n)^l = s+l$ for all l, and $s \in \Delta_1$.

Proof. By Remark 4.1 (ii), Dom $\tau(a_1 a_2 \dots a_n) = \Delta_1 = \nabla_n = \text{Im } \tau(a_1 a_2 \dots a_n)$. To prove $\tau(a_1 a_2 \dots a_n)$ is a cycle, let $s \in \Delta_1$. We divide the proof into three cases

Case 1 : s = n.

depending on s.

$$n\tau(a_1 a_2 \dots a_n) = (1\tau(a_2 a_3 \dots a_n))$$
$$= n\tau(a_n)$$
$$= 1.$$

Case 2: s = 1.

$$s\tau(a_1 a_2 \dots a_n) = (3\tau(a_2 a_3 \dots a_{n-1}))\tau(a_n)$$

= $(1 + \sum_{l=0}^{n-2} (n-l)))\tau(a_n)$
= 2.

Case $3: 2 \le s \le n-1$.

$$s\tau(a_1 a_2 \dots a_n) = (s\tau(a_1 a_2 \dots a_{n-s}))\tau(a_{n-s+1} \dots a_n)$$

$$= (s + \sum_{l=0}^{n-s-1} (n-l))\tau(a_{n-s+1} \dots a_n)$$

$$= 1\tau(a_{n-s+2} \dots a_n)$$

$$= \begin{cases} 3 & \text{if } s = 2\\ 3\tau(a_{n-s+3} \dots a_n) & \text{otherwise} \end{cases}$$

$$= s+1.$$

The next theorem shows, for any $i \in \{1, 2, ..., n\}$, the existence of a cycle of length i. This theorem is a key to prove Lemma 4.9.

Theorem 4.6. The syntactic monoid of C^* , $M(C^*)$, contains a cycle of length i on $\{1\} \cup A(i+1)$ for all $i \leq n$.

Proof. One can choose

$$\theta_1 = \tau(a_2)\tau(a_2)^{-1} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$\theta_n = \tau(a_1 a_2 \dots a_n) = \begin{pmatrix} 1\\2 & 3 & \dots & n \end{pmatrix}.$$

For each i, $2 \le i \le n-1$, let

$$\theta_i = (1 \ 3 \ 4 \ 5 \dots i \ i+1).$$

We will show that $\theta_i \in M(C^*)$.

In order to obtain θ_i , we first verify the following statements :

(a)
$$1_{\nabla_{i+2}}\tau(a_{i+1})$$
,

(b) $(\tau(a_n a_n)\theta^{n-2})^k$ for all $k, 1 \le k \le n-3$.

(a): Dom
$$1_{\nabla_{i+2}}\tau(a_{i+1}) = \Delta_{i+3} \cup \Delta_{i+1} = \{1\} \cup A(i+1).$$

Observe that

$$(\{1\} \cup A(i+1)) 1_{\nabla_{i+2}} \tau(a_{i+1}) = \tau(a_{i+1})|_{\{1\} \cup A(i+1)}.$$

This yields

$$s1_{\nabla_{i+2}}\tau(a_{i+1}) = \begin{cases} 3 & \text{if } s=1\\ s+1 & \text{otherwise.} \end{cases}$$

(b): Dom $\tau(a_n)\theta^{n-2} = \triangle_n = \{1\} \cup A(n) \cup B(n) \text{ and Im } \tau(a_n)\theta^{n-2} = \triangle_1.$ By Lemma 4.5 and Remark 4.1 (iii),

$$s\tau(a_n)\theta^{n-2} = \begin{cases} 1 & \text{if } s = 1\\ s - 1 & \text{if } s \in A(n)\\ n & \text{if } s \in B(n). \end{cases}$$

Dom $(\tau(a_n)\theta^{n-2})^2 = \Delta_n - \{3\}.$

Observe that

$$(\triangle_n - \{3\})(\tau(a_n)\theta^{n-2})^2 = [(\tau(a_n)\theta^{n-2})|_{(\triangle_n - \{3\})}]\tau(a_n)\theta^{n-2}.$$

Consequently,

$$(\tau(a_n)\theta^{n-2})^2 = \begin{cases} 1 & \text{if } s = 1\\ s - 2 & \text{if } s \in A(n)\\ n - 1 & \text{if } s \in B(n). \end{cases}$$

It can be shown by induction on k that

Dom
$$(\tau(a_n)\theta^{n-2})^k = (\Delta_1 \cap \Delta_n)(\tau(a_n)\theta^{n-2})^{-1} = \Delta_n - \{3, 4, \dots, k+1\},$$

and

$$(\tau(a_n)\theta^{n-2})^k = \begin{cases} 1 & \text{if } s = 1\\ s - k & \text{if } s \in A(n) - \{3, 4, \dots, k+1\} \\ n - (k-1) & \text{if } s \in B(n). \end{cases}$$

for all k, $1 \le k \le n-3$.

Since

Dom
$$1_{\nabla_{i+2}} \tau(a_{i+1}) \theta^{n-i-1} (\tau(a_n) \theta^{n-2})^{n-i-1} = \{ 1 \} \cup A(i+1),$$

it follows from (a) and (b) and Lemma 4.5 that

$$1_{\nabla_{i+2}}\tau(a_{i+1})\theta^{n-i-1}(\tau(a_n)\theta^{n-2})^{n-i-1} = (1 \ 3 \ 4 \ 5 \dots i \ i+1) = \theta_i.$$

Therefore, $\theta_i \in M(C^*)$.

Remark 4.7. For any $\alpha \in M(C^*)$, α^0 means the identity map on Dom α .

Lemma 4.8. There is a subset A_1 of \triangle_1 such that for any subset A of \triangle_1 of cardinality n-1, there is $\alpha_A \in M(C^*)$ such that $Dom \ \alpha_A = A_1$ and $Im \ \alpha_A = A$.

Proof. In order to obtain A_1 , we first investigate the domain of $\tau(a_n a_n)$.

Dom
$$\tau(a_n a_n) = \text{Im } \tau(a_n a_n) = \triangle_1 - \{ 2 \}.$$

Let $A_1 = \triangle_1 - \{ 2 \}.$

Writing $A = \triangle_1 - \{k\}$ for some $k \in \triangle_1$,

we choose $\alpha_A = \tau(a_n a_n) \theta^{k-2}$ where $\theta = \tau(a_1 a_2 \dots a_n)$. Then $\alpha_A \in M(C^*)$.

To prove that Dom $\alpha_A = A_1$, observe that

Im
$$\tau(a_n a_n) \subseteq \text{Dom } \theta^{k-2}$$
.

Consequently, Dom $\alpha_A = A_1$.

Note that

Im
$$\alpha_A = A_1 \tau(a_n a_n) \theta^{k-2} = A_1 \theta^{k-2}$$
.

By Lemma 4.5,

$$A_1 \theta^{k-2} = \Delta_1 - \{ 2\theta^{k-2} \}$$

$$= \Delta_1 - \{ 2 + (k-2) \}$$

$$= A.$$

Lemma 4.9. If A and B are subsets of \triangle_1 of the same cardinality, then there exists η in $M(C^*)$ with the domain A and image B.

Proof. Let A and B be subsets of \triangle_1 of cardinality n-k for some $1 \le k \le n-1$. We will prove the lemma by induction on k.

For k=1, there exist by Lemma 4.8, α_A, α_B in $M(C^*)$ such that

Dom
$$\alpha_A = {
m Dom} \ \alpha_B = A_1$$
, Im $\alpha_A = A$ and Im $\alpha_B = B$

for some subset A_1 of Δ_1 .

Set $\eta = \alpha_A^{-1} \alpha_B$. Then $\eta \in M(C^*)$. It can be shown that Dom $\eta = A$ and Im $\eta = B$.

Suppose $k \geq 1$ and assume that the statement of the lemma is true for all $A', B' \subseteq \Delta_1$ such that |A'| = |B'| = n - k.

Let $A, B \subseteq \Delta_1$ be such that |A| = |B| = n - (k+1).

Choose $s \in \Delta_1 - A$, $t \in \Delta_1 - B$ with $s \neq t$.

Let
$$A_1 = A \cup \{s\}, B_1 = B \cup \{t\} \text{ and } B_2 = B \cup \{s\}.$$

Then $|A_1| = |B_1| = |B_2| = n - k$.

By Theorem 4.6 , there exists a cycle θ_{n-k} in $M(C^*)$ of length n-k such that

| Dom θ_{n-k} | = | Im θ_{n-k} | = n-k. By induction hypothesis, there exist α_1, α_2 such that Dom $\alpha_1 = A_1$, Im $\alpha_1 = \text{Dom } \theta_{n-k}$, Dom $\alpha_2 = \text{Im } \theta_{n-k}$ and Im $\alpha_2 = B_1$. Since θ_{n-k} is a cycle, there is $l \in \mathbb{N}$ such that $s\alpha_1\theta_{n-k}^l = t\alpha_2^{-1}$.

Set $\phi = \alpha_1 \theta_{n-k}^l \alpha_2$. Then $\phi \in M(C^*)$. It can be shown that Dom $\phi = A_1$, Im $\phi = B_1$ and $s\phi = t$.

Set $\eta = \phi 1_{B_2}$. Then $\eta \in M(C^*)$. Since $s \neq t$, Dom $\eta = A$ and Im $\eta = B$.

Proposition 4.10. Let A and B be subsets of \triangle_i and \triangle_j , respectively.

If A and B have the same cardinality, then there exists η in $M(C^*)$ with the domain A and image B.

Proof. Let $A \subseteq \triangle_i$, $B \subseteq \triangle_j$ be such that |A| = |B|.

Let $\alpha_i = \tau(a_i a_{i+1} \dots a_n)|_A$ and $\alpha_j = \tau(a_j a_{j+1} \dots a_n)|_B$.

Then Dom $\alpha_i = A$, Dom $\alpha_j = B$ and Im α_i , Im $\alpha_j \subseteq \Delta_1$.

We have $|\operatorname{Im} \alpha_i| = |\operatorname{Im} \alpha_j|$.

By Lemma 4.9 , there exists $\eta_{(i,j)} \in M(C^*)$ such that

Dom $\eta_{(i,j)} = \operatorname{Im} \alpha_i$ and $\operatorname{Im} \eta_{(i,j)} = \operatorname{Im} \alpha_j$.

Set $\eta = \alpha_i \eta_{(i,j)} \alpha_j^{-1}$. Then $\eta \in M(C^*)$ and rank $\eta = |A|$.

It can be shown that Dom $\eta = A$ and Im $\eta = B$.

Theorem 4.11. Let $\alpha, \beta \in M(C^*)$.

 $\alpha \mathcal{D}\beta$ if and only if $rank \alpha = rank \beta$.

Proof. The sufficient part follows from Corollary 2.2.

For the necessary part , assume that rank $\alpha={\rm rank}\ \beta=m$ for some $m\leq n$. Then $|\operatorname{Im}\ \alpha|=|\operatorname{Im}\ \beta|=|\operatorname{Dom}\ \beta|$. By Theorem 4.10 , there exists $\eta\in M(C^*)$

such that $\operatorname{Dom} n = \operatorname{Im} \alpha$ and $\operatorname{Im} \eta = \operatorname{Dom} \beta$. Set $\gamma = \alpha \eta \beta$. Then $\gamma \in M(C^*)$ om $\gamma \subseteq \operatorname{Dom} \alpha$ and $\operatorname{rank} \gamma = \operatorname{rank} \alpha$, $\operatorname{Dom} \gamma = \operatorname{Dom} \alpha$. and $\gamma = \operatorname{rank} \beta$, $\operatorname{Im} \gamma = \operatorname{Im} \beta$. By Theorem 2.1, $\alpha \mathcal{R} \gamma \in \mathcal{A}$.

ch n, there is a finite inverse biprefix code C whose synclasses.

s from the result of Schuzenberger.

Theorem 3.9.

em is obtained directly from Theorem 4.3, Theorem 4.6,

สูนย์วิทยทรัพยากร าลงกรณ์มหาวิทยาลัย