CHAPTER III

A FINITE INVERSE BIPREFIX CODE WHOSE SYNTACTIC MONOID HAS TWO $\mathcal D$ - CLASSES

M.P. Schützenberger (see [4]) has studied a prefix code C whose syntactic monoid $M(C^*)$ is a group. It is obvious that $M(C^*)$ has only one \mathcal{D} - class.

In this chapter, the existence of a finite inverse biprefix code whose syntactic moniod has exactly two nonzero \mathcal{D} - classes is given.

Now, we refer to the inverse biperfix code constructed by K. Jantarakhajorn (see [2]):

For a given $n \geq 3$, let $A = \{a_1, a_2, \ldots, a_n\}$ be an alphabet and let

$$C_1 = \{ a_i a_{i+1} \dots a_{n-1} a_1 a_2 \dots a_i \mid i = 1, 2, \dots, n-1 \},$$

$$C_2 = \{ a_i a_{i+1} \dots a_n a_2 a_3 \dots a_{i-1} \mid i = 3, 4, \dots, n-1 \},$$

and
$$C_3 = \{ a_1 a_2 \dots a_n a_2 a_3 \dots a_{n-1}, a_n a_2 a_3 \dots a_n a_2 a_3 \dots a_{n-1}, a_n a_2 a_3 \dots a_{n-1} a_1, a_2 a_3 \dots a_n \}.$$

Theorem 3.1. The code $C = C_1 \cup C_2 \cup C_3$ is a finite inverse biprefix code.

Proof. See [2].

In [2], K. Jantarakhajorn labelled the tree representation of C^* as follows:

The top and the end points of the tree are labelled 1.

For each $i \in \{1, 2, \dots, n-1\}$, $j \in \{1, 2, \dots, n-1\}$ with $i \leq j$,

the node associated with $a_i a_{i+1} \dots a_j$ is labelled

$$(n-2)i + j - (n-3).$$

For each $i \in \{2, 3, ..., n-1\}$, $j \in \{1, 2, ..., i-1\}$, the node associated with $a_i a_{i+1} ... a_{n-1} a_1 a_2 ... a_j$ is labelled

$$(n-2)i + j + 2.$$

Since each of the remaining unlabelled nodes has the same subtree as one of the above labelled nodes, they have the same name. Hence $P_{C^*}^{(r)}$ has been constructed.

The corresponding syntactic monoid $M(C^*)$ is generated by

$$\{ \tau(a_i) \mid i = 1, 2, \dots, n \}.$$

Notations:

- (i) For each i, let \triangle_i denote the domain of $\tau(a_i)$ and ∇_i denote the image of $\tau(a_i)$.
- (ii) For each $i \in \{2, 3, ..., n\}$, let

$$A(i) = \{ (n-2)(k-1) + i \mid k = 1, 2, \dots, i-1 \},$$

$$B(i) = \{ (n-2)k + i + 1 \mid k = i, i+1, \dots, n-1 \},$$
 and
$$A(1) = \{ (n-2)k + 2 \mid k = 1, 2, \dots, n-1 \}.$$

We have a few remarks on the code defined above.

Remark 3.2. (i)
$$\triangle_1 = \triangle_n = \{ \ 1 \ \} \cup A(1).$$

$$\triangle_i = \{ \ 1 \ \} \cup A(i) \cup B(i) \quad \textit{for all} \quad i \geq 2.$$
 (ii)
$$\nabla_1 = \nabla_n = \triangle_2.$$

$$abla_i = \triangle_{i+1} \quad \textit{for all} \ \ i \in \{\ 2, 3, \dots, n-1\ \}.$$

It follows that

$$Dom \ \tau(a_i a_{i+1} \dots a_j) = \triangle_i \quad and \quad Im \ \tau(a_i a_{i+1} \dots a_j) = \nabla_j$$
 for all $i, j \in \{1, 2 \dots, n-1\}$ and $i \leq j$.

(iii) $\tau(a_i)$'s are defined as follows:

$$s au(a_1) = \begin{cases} 2 & \text{if } s = 1 \\ 1 & \text{if } s = n \\ s+1 & \text{otherwise,} \end{cases}$$

$$s\tau(a_n) = \begin{cases} 2 & \text{if } s = 1 \\ 1 & \text{if } s = 2n - 2 \\ (n-2)(n-1) + 3 & \text{if } s = n \\ s - (n-3) & \text{otherwise,} \end{cases}$$

$$s\tau(a_i) = \begin{cases} (n-1)i - (n-3) & \text{if } s = 1\\ 1 & \text{if } s = (n-1)i + 1\\ s+1 & \text{otherwise.} \end{cases}$$

Before proving the next proposition, we need the following lemmas.

Lemma 3.3. For each $i \in \{2, 3, ..., n-1\}$, $A(1) \cap [A(i) \cup B(i)] = \emptyset$.

Proof. Let $i \in \{2, 3, ..., n-1\}$.

Suppose $A(1) \cap [A(i) \cup B(i)] \neq \emptyset$.

Let $s \in A(1) \cap [A(i) \cup B(i)]$. There are two cases to be considered :

Case $1: s \in A(1) \cap A(i)$. Then

$$s = (n-2)k_1 + 2$$
 and $s = (n-2)(k_2 - 1) + i$

for some $k_1 \in \{1, 2, \dots, n-1\}, k_2 \in \{1, 2, \dots, i-1\}.$

This yields

$$i = (n-2)(k_1 - k_2 + 1) + 2.$$

By considering all possibilities of k_1 and k_2 , we get a contradiction.

Case 2: $s \in A(1) \cap B(i)$.

If i = n-1, then $B(i) = \{ (n-1)(n-2) + n \}$. Since $s \in A(1)$, $s = (n-2)k_1 + 2$ for some $k_1 \in \{ 1, 2, ..., n-1 \}$. Then

$$(n-2)k_1 + 2 = (n-1)(n-2) + n,$$

and so $k_1 = n$, which is a contradiction.

Assume that $i \neq n-1$. Since $s \in B(i)$,

$$s = (n-2)k_2 + i + 1$$

for some $k_2 \in \{i, i+1, \ldots, n-1\}$. Thus

$$i = (n-2)(k_1 - k_2) + 1,$$

which is a contradiction.

Lemma 3.4. Let $i, j \in \{2, 3, ..., n-1\}$ be such that $i \neq j$. Then the following statements hold:

- (i) $A(i) \cap A(j) = \varnothing$.
- (ii) $B(i) \cap B(j) = \emptyset$.
- (iii) $A(i) \cap B(j) = \emptyset$.

Moreover, $[A(i) \cup B(i)] \cap [A(j) \cup B(j)] = \emptyset$.

Proof. Let $i, j \in \{2, 3, ..., n-1\}$ be such that $i \neq j$. Without loss of generality, we may assume that i < j and let j = i + l for some $l \in \mathbb{N}$.

To prove (i), assume on the contrary that $s \in A(i) \cap A(j)$.

Then

$$s = (n-2)k_1 + (i-1) - (n-3)$$
 and $s = (n-2)k_2 + (j-1) - (n-3)$

for some $k_1 \in \{1, 2, \dots, i-1\}, k_2 \in \{1, 2, \dots, j-1\}.$

This yields

$$l = j - i = (k_1 - k_2)(n - 2).$$

This contradicts to the condition on l that 0 < l < n - 3.

Hence $A(i) \cap A(j) = \emptyset$.

(ii) Similar to the statement (i).

To prove (iii), assume on the contrary that $s \in A(i) \cap B(j) = A(i) \cap B(i+l)$. Then

$$s = (n-2)k_1 + (i-1) - (n-3)$$
 and $s = (n-2)k_2 + i + l + 1$

for some $k_1 \in \{1, 2, ..., i-1\}, k_2 \in \{i+l, i+l+1, ..., n-1\}.$

Consider

$$s = (n-2)k_2 + i + l + 1$$

$$> (n-2)k_2 + i$$

$$> (n-2)k_1 + i$$

$$> (n-2)k_1 + i - (n-2)$$

$$= s.$$

This is a contradiction.

From (i)-(iii), we get
$$[A(i) \cup B(i)] \cap [A(j) \cup B(j)] = \emptyset$$
.

Proposition 3.5. (i) For each $j \in \{1, 2, ..., n\}$,

$$\nabla_{n-1} \cap \triangle_j = \begin{cases} \triangle_j & \text{if } j = n \text{ or } j = 1, \\ \{1\} & \text{otherwise.} \end{cases}$$

(ii) For each $i, j \in \{1, 2, ..., n\}$ and $i \neq n-1$,

$$\nabla_i \cap \triangle_j = \begin{cases} \triangle_j & \text{if } j = i+1 *, \\ \{ 1 \} & \text{otherwise.} \end{cases}$$

Proof. (i) It follows from Remark 3.2 and Lemma 3.3.

(ii) Let $i, j \in \{1, 2, ..., n\}$ and $i \neq n - 1$.

Since $\nabla_n = \nabla_1$, $\nabla_n \cap \triangle_j = \nabla_1 \cap \triangle_j$. It suffices to prove only the case $i \neq n$.

If j = i + 1, then by Remark 3.2(ii), $\nabla_i = \triangle_j$ and so $\nabla_i \cap \triangle_j = \triangle_j$.

Assume that $j \neq i + 1$. It is clear that $1 \in \nabla_i \cap \Delta_j$.

But by Lemma 3.3 and Lemma 3.4, $(\nabla_i \cap \Delta_j) - \{1\} = \emptyset$, thus $\nabla_i \cap \Delta_j = \{1\}$.

Proposition 3.6. For each $\alpha \in M(C^*)$, rank $\alpha = n$ or rank $\alpha = 1$. Moreover, if rank $\alpha = n$, then Dom $\alpha = \Delta_i$ and Im $\alpha = \nabla_j$ for some $i, j \in \{1, 2, ..., n\}$.

Proof. Let $\alpha = \tau(a_i a_{i_1} a_{i_2} \dots a_{i_k})$ for some $i \in \{1, 2, \dots, n\}$, and $k \in \mathbb{N}$. Assume that rank $\alpha = r \neq 1$. Then

$$\operatorname{rank}\, \tau(a_ia_{i_1}) \neq 1 \quad \text{and} \quad \operatorname{rank}\, \tau(a_{i_l}a_{i_{l+1}}) \neq 1$$

for all $l \in \{1, 2, ..., k-1\}$.

Thus

$$\mid \nabla_i \cap \triangle_{i_1} \mid > 1 \quad \text{and} \quad \mid \nabla_{i_l} \cap \triangle_{i_{l+1}} \mid > 1$$

^{*}If i = n, then i + 1 = 2.

for all $l \in \{1, 2, ..., k-1\}$ (since rank $\alpha\beta = (\text{Im } \alpha \cap \text{Dom } \beta)\alpha^{-1}$). By Proposition 3.5,

$$\nabla_i \cap \triangle_{i_1} = \triangle_{i_1}, \quad \nabla_{i_l} \cap \triangle_{i_{l+1}} = \triangle_{i_{l+1}}$$

for all $l \in \{1, 2, ..., k-1\}$, and $a_i a_{i_1} a_{i_2} ... a_{i_k}$ is one of these forms:

- (i) $a_i a_{i+1} \dots a_j$ for some $j, 1 \le i \le j \le n-1$.
- (ii) $a_i a_{i+1} \dots a_{n-1} u_1 a_2 a_3 \dots a_{n-1} u_2 a_2 \dots u_s a_2 a_3 \dots a_j$ for some $s \in \mathbb{N}$, for some $j \in \{2, 3, \dots, n-1\}$, and $u_t \in \{a_1, a_n\}$.

In any cases, we have

Dom
$$\alpha = \triangle_i$$
 and Im $\alpha = \nabla_j$

for some $i, j \in \{1, 2, ..., n\}$.

Therefore, rank $\alpha = n$.

Before proving the next proposition, we need the following lemma.

Lemma 3.7. (i) For each $i \in \{1, 2, ..., n\}$, if $s \in \Delta_i$, then there exists $\eta \in M(C^*)$ such that $1\eta = s$.

(ii) There exists $\iota \in M(C^*)$,

$$\iota = \left(\begin{array}{c} 1 \\ 1 \end{array}\right).$$

Proof. (i) Let $i \in \{1, 2, ..., n\}$ and assume that $s \in \Delta_i$. There are two cases to be considered:

Case 1: i = 1.

Set
$$\delta = \tau(a_1 a_2 \dots a_{n-1})$$
.

By Remark 3.2, Dom $\delta = \Delta_1$ and Im $\delta = \nabla_{n-1} = \Delta_1$.

In [2], δ is a cycle of rank n. Since $1 \in \Delta_1 = \text{Dom } \delta$ and $s \in \Delta_1 = \text{Im } \delta$, there exists $l \in \mathbb{N}$ such that $1\delta^l = s$.

Case 2 : $i \neq 1$.

Set $\theta_i = \tau(a_1 a_2 \dots a_{i-1})$.

By Remark 3.2, Dom $\theta_i = \Delta_1$ and Im $\theta_i = \nabla_{i-1} = \Delta_i$.

Since $s \in \Delta_i = \text{Im } \theta_i$, there exists $s_1 \in \text{Dom } \theta_i = \Delta_1$ such that $s_1\theta_i = s$.

By Case 1, there exists $\eta_1 \in M(C^*)$ such that $1\eta_1 = s_1$.

Let $\eta = \eta_1 \theta_i$. Then $\eta \in M(C^*)$.

Hence

$$1\eta = (1\eta_1)\theta_i = s_1\theta_i = s.$$

(ii) Let $\iota = \tau(a_1 a_1) \tau(a_1)^{-1}$. Then

$$\iota = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

It is known that, in general, if α, β are in a proper subsemigroup of $\mathcal{I}(X)$ with rank $\alpha = \operatorname{rank} \beta$, then α and β may not be $\mathcal{D}-$ related. However, the next proposition shows that this is true in the proper subsemigroup $M(C^*)$ of $\mathcal{I}(X)$.

Proposition 3.8. Let $\alpha, \beta \in M(C^*)$.

$$\alpha \mathcal{D}\beta$$
 if and only if $rank \alpha = rank \beta$.

Proof. The sufficient part follows from Corollary 2.2.

For the necessary part, assume that rank $\alpha = \text{rank } \beta = r$. Then, by Proposition 3.5, there are two cases to be considered:

Case 1 : r = n.

Let Im $\alpha = \Delta_i$ and Dom $\beta = \Delta_j$ for some $i, j \in \{1, \tilde{2}, \dots, n\}$.

By Remark 3.2, Dom $\tau(a_i a_{i+1} \dots a_{n-1}) = \Delta_i$, $\text{Im} \tau(a_i a_{i+1} \dots a_{n-1}) = \nabla_{n-1} = \Delta_1$,

Dom
$$\tau(a_1 a_2 \dots a_{j-1}) = \triangle_1$$
 and Im $\tau(a_1 a_2 \dots a_{j-1}) = \nabla_{j-1} = \triangle_j$.

Hence

Dom
$$\tau(a_i a_{i+1} \dots a_{n-1} a_1 a_2 \dots a_{j-1}) = \triangle_i$$

and

Im
$$\tau(a_i a_{i+1} \dots a_{n-1} a_1 a_2 \dots a_{j-1}) = \nabla_{j-1}$$
.

Set $\gamma = \alpha \tau (a_i a_{i+1} \dots a_{n-1} a_1 a_2 \dots a_{j-1}) \beta$. Then Dom $\gamma = \text{Dom } \alpha$ and Im $\gamma = \text{Im } \beta$. By Theorem 2.1, $\alpha \mathcal{R} \gamma$ and $\gamma \mathcal{L} \beta$. Therefore, $\alpha \mathcal{D} \beta$.

Case 2: r = 1.

Let
$$\alpha = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}$ for some $s_1 \in \Delta_i, s_2 \in \Delta_j, t_1 \in \Delta_k, t_2 \in \Delta_l$.
By Lemma 3.7, there exist $\eta_{s_1}, \eta_{t_2} \in M(C^*)$ such that $1\eta_{s_1} = s_1$ and $1\eta_{t_2} = t_2$.
Again ,by Lemma 3.7, let $\iota = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Set $\gamma = \eta_{s_1}^{-1} \iota \eta_{t_2}$. Then $\gamma \in M(C^*)$. Since rank $\iota = 1$, so is γ .

It is clear that $\gamma = \begin{pmatrix} s_1 \\ t_2 \end{pmatrix}$.

By Theorem 2.1, $\alpha \mathcal{R} \gamma$ and $\gamma \mathcal{L} \beta$. Therefore, $\alpha \mathcal{D} \beta$.

Theorem 3.9. The syntactic monoid of C^* , $M(C^*)$, has exactly two nonzero \mathcal{D} - classes.

Proof. The theorem is obtained directly from Proposition 3.6 and Proposition 3.8.

