CHAPTER II

PRELIMINARIES

Let S be a semigroup. If S contains an element 1 with the property that for all x in S,

$$
1 x=x,
$$

then S is called a monoid and 1 is said to be the identity element of S.
An element e of S is an idempotent of S if $e^{2}=e$. The set of all idempotents of S is denoted by $E(S)$

A nonempty subset T of S is called a subsemigroup of S if it is closed with respect to the operation on S.

Let X be a set. A partial transformation of X is a map of a subset of X into X. The empty partiaif transformation is the map with empty domain.

The set $\mathcal{P}(X)$ consisting of all partial transformations of X is a semigroup
under composition acting on the right. Notethat, for any $\alpha, \beta \in \mathcal{P}(X)$,
and

$$
\chi(\alpha \beta)=(\chi \alpha) \beta \quad \text { for all } \chi \in \operatorname{Dom}(\alpha \beta) .
$$

The set $\mathcal{I}(X)$ consisting of all 1-1 partial transformations of X is a subsemigroup of $\mathcal{P}(X)$. It can be shown that

$$
E(\mathcal{I}(X))=\left\{1_{Y} \mid Y \subseteq X\right\}
$$

where 1_{Y} denotes the identity map on Y.
An idea of great importance in semigroup theory is that of an inverse of an element. If a is an element of a semigroup, then we say that a^{\prime} is an inverse of a if

$$
a a^{\prime} a=a \quad \text { and } \quad a^{\prime} a a^{\prime}=a^{\prime}
$$

In general, an element a may have more than one inverse. For example, let $X=\{1,2,3\}$. Considering
$\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 3 & 3\end{array}\right), \beta=\binom{3}{1}$ and $\gamma=\binom{3}{3}$
which are elements in $\mathcal{P}(X)$, we have

$$
\alpha \beta \alpha=\alpha, \quad \beta \alpha \beta=\beta, \beta, \alpha \gamma=\alpha \text { and } \gamma \alpha \gamma=\gamma .
$$

This implies that β and γ are inverses of α.
For a semigroup S, if each element a of S has a unique inverse, then we say that S is an inverse semigroup. The unique inverse of a is denoted by a^{-1}. Note here that, if a has an inverse, then $a a^{-1}, a^{-1} a \in E(S)$.

A typical example of an inverse semigroup is $\mathcal{I}(X)$, the semigroup of all $1-1$ partial transformations. of X mentioned beforen \& ? \mathcal{T}

Letos and T be semigroups 6 A map $9 \phi: S \rightarrow T$ is said tobe alhomomorphism if $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in S$. An isomorphism from S to T is a homomorphism which is both surjective and injective.

A homomorphism ϕ from a monoid M to a monoid M^{\prime} is a semigroup homomorphism ϕ from M to M^{\prime} such that $\phi(1)=1^{\prime}$.

A congruence ρ on a semigroup S is an equivalence on S which is both left and right compatible; that is, for every $x, y, z \in S, x \rho y$ implies $z x \rho z y$ and $x z \rho y z$.

Let ρ be a congruence on a semigroup S. Then the set $S / \rho=\{x \rho \mid x \in S\}$ is a semigroup under the operation defined by $(x \rho)(y \rho)=*(x y) \rho$ for every $x, y \in S$ and it is called a quotient of S by ρ. Moreover, if S is a monoid, then so is S / ρ.

Let S and T be semigroups and $\phi: S \rightarrow T$ a homomorphism. Then the relation on S defined by $\rho=\phi \circ \phi^{-1}$; that is,
is a congruence on S and $S / \rho \cong$ im ϕ by $x \rho \mapsto x \phi$.
The relation ρ defined above is called the kernel of ϕ and it may be written by Ker ϕ.
J.A. Green introduced five equivalences which have played a fundamental role in the development of semigroup theory

In an arbitrary semigroup g and let $a, b \in S$,

where S^{1} is the semigroupd S with an identity adjoined if 9 necessary. It follows

We define \mathcal{H} as the intersection of \mathcal{L} and \mathcal{R}, and \mathcal{D} as the join of \mathcal{L} and \mathcal{R}; that is, the smallest equivalence containing both \mathcal{L} and \mathcal{R}. Hence $\mathcal{D} \subseteq \mathcal{J}$. For $a \in S$, we denote the equivalence classes of a with respect to $\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}$ and \mathcal{D} by $L_{a}, R_{a}, J_{a}, H_{a}$ and D_{a}, respectively.

There is a natural partial ordering on the sets of classes of the relations $\mathcal{L}, \mathcal{R}, \mathcal{J}$
and \mathcal{H}. For example, $R_{a} \leq R_{b}$ if and only if $a S^{1} \subseteq b S^{1}$, defines a partial ordering on the set of \mathcal{R} - classes. For the global description of S, the partial ordering on the set of \mathcal{J} - classes defined by $J_{a} \leq J_{b}$ if and only if $S^{1} a S^{1} \subseteq S^{1} b S^{1}$ is the most important. We call the partially ordered set of \mathcal{J} - classes of S the frame of S. It is well-known that in a finite semigroup, $\mathcal{D}=\mathcal{J}$. Thus finite semigroups can be described in terms of their frame and of the local structure of the various \mathcal{D} - classes.

However, by the definition of D.

$$
a \mathcal{D b} \Leftrightarrow R_{a} \cap L_{b} \neq \varnothing \Leftrightarrow L_{a} \cap R_{b} \neq \varnothing .
$$

Consequently, a \mathcal{D}-class D of S can be represented by the following egg-box diagram, in which each row represents an \mathcal{R}-class, each column represents an \mathcal{L} - class, and each cell represents an \mathcal{H}-class.

In this research, we focus on \mathcal{D} - classes of a finite subsemigroup of $\mathcal{I}(X)$. For this purpose, we characterize \mathcal{L} and \mathcal{R} equivalences on such a semigroup in term of domains and images of elements.

Theorem 2.1. Let T be a finite inverse subsemigroup of $\mathcal{I}(X)$ and $\alpha, \beta \in T$. Then
(i) $\alpha \mathcal{L} \beta$ if and only if $\operatorname{Im} \alpha=\operatorname{Im} \beta$
(ii) $\alpha \mathcal{R} \beta$ if and only if $\operatorname{Dom} \alpha=\operatorname{Dom} \beta$.

Proof. Before proving the theorem, we will show that

$$
\beta^{-1} \beta=1_{\operatorname{Im} \beta} \quad \text { and } \quad \beta \beta^{-1}=1_{\operatorname{Dom} \beta} .
$$

Since $\beta^{-1} \beta$ and $\beta \beta^{-1}$ are idempotents, they are identity maps on their domains (which are the same as images).

Thus it remains to show that

Since $\beta \beta^{-1} \beta=\beta$ Im $\beta \subseteq \operatorname{Dom} \beta{ }^{1} \beta$ and $\operatorname{Im} \beta^{-1} \beta \subseteq \operatorname{Im} \beta$. Hence
$|\operatorname{Im} \beta| \leq\left|\operatorname{Dom} ; \beta^{-1} \beta\right|=\left|\operatorname{Im} \beta^{-1} \beta\right| \leq|\operatorname{Im} \beta|$.
Thus $\left|\operatorname{Im} \beta^{-1} \beta\right|=|\operatorname{Im} \beta|$. Since $\operatorname{Im} \beta^{-1} \beta \subseteq \operatorname{Im} \beta$ and $\left|\operatorname{Im} \beta^{-1} \beta\right|=|\operatorname{Im} \beta|$, we have $\operatorname{Im} \beta^{-1} \beta=\operatorname{Im} \beta$. It follows from $\left(\beta \beta^{-1}\right) \beta=\beta$ that $\operatorname{Dom} \beta \beta^{-1}=\operatorname{Dom} \beta$.
(i) : It suffices to show that $\operatorname{Im} \alpha \in \operatorname{Im} \beta$ if and only if there is $\gamma \in T$ such that $\alpha=\gamma \beta$.

Assume that $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$.
Set $\gamma=\alpha \beta^{-1}$. Then $\gamma \in T$ and

Conversely, assume that there exists $\gamma \in T$ sueh that $\gamma \beta=\alpha$. Dhen
(ii) : It suffices to show that $\operatorname{Dom} \alpha \subseteq \operatorname{Dom} \beta$ if and only if there is $\gamma \in T$ such that $\alpha=\beta \gamma$.

Assume that $\operatorname{Dom} \alpha \subseteq \operatorname{Dom} \beta$.
Set $\gamma=\beta^{-1} \alpha$. Then $\gamma \in T$ and

$$
\beta \gamma=\beta\left(\beta^{-1}\right) \alpha=\left(\beta \beta^{-1}\right) \alpha=1_{\text {Dom } \beta} \alpha=\alpha .
$$

Conversely, assume that there exists $\gamma \in T$ such that $\beta \gamma=\alpha$. Then

$$
\operatorname{Dom} \alpha=\operatorname{Dom} \beta \gamma \subseteq \operatorname{Dom} \beta
$$

As a consequence of Theorem 2.1, if we denote the common cardinality of Dom α and $\operatorname{Im} \alpha$ for any α in $\mathcal{I}(X)$ by rank α, then the next corollary follows immediately.

Corollary 2.2. Let T be a finite inverse subsemigroup of $\mathcal{I}(X)$ and $\alpha, \beta \in T$. If $\alpha \mathcal{D} \beta$, then rank $\alpha=$ rank β.

An alphabet A is a nonempty set whose elements are called letters. For each n, let A^{n} be the set of all sequentes, called words, of length n; that is

$$
\left.A^{n}=\left\{a_{1} a_{2} \ldots a_{n}\right\} a_{1}, a_{2}, \ldots, a_{n} \in A\right\}
$$

Let $A^{+}=\bigcup_{n=1}^{\infty} A^{n}$ and $A^{*}=A^{+} \bigcup\{\varepsilon\}$ where ε denotes the empty sequence. Define an operation (concatenation) on A^{*} by

$$
\text { คि } q\left(a_{1} a_{2} \ldots, a_{n}\right)\left(b_{1} b_{2} \cdot . \mid b_{m}\right)=\stackrel{a_{1}}{a_{1}} a_{2} \| \cdot a_{n} b_{1} b_{2} \cdot \cdot b_{m} \cdot \tilde{\partial}
$$

Then A^{*} becomes a monoid (with identity), called the free-monoid on the set A. A non-empty subset of A^{*} is called a language of A^{*}. Let $u, v \in A^{+}$. Then u is called a left (resp.right) factor of the word w in A^{+}if $w=u v$ (resp. $w=v u$).

Let M be a moniod with identity 1. An M - automaton \mathfrak{A} is a pair (S, f), where S is a non-empty set whose elements are called states and $f: S \times M \longrightarrow S$ is a mapping satisfying:
(a) $f(s, 1)=s$ for every $s \in S$ and
(b) $f\left(f(s, m), m^{\prime}\right)=f\left(s, m m^{\prime}\right)$ for every $s \in S$ and $m, m^{\prime} \in M$.
f is called the transition function of \mathfrak{A}. We usually denote $f(s, u)$ by $s u$.
Let $\mathfrak{A}=(S, f)$ be an M - automaton. The mapping $\tau_{\mathfrak{A}}: M \rightarrow T(S)$ from M into the monoid of all transformations on S defined by

$$
s \tau_{\mathfrak{R}}(u)=f(s, u) \text { for all } s \in S \text { and } u \in M
$$

is a monoid homomorphism. We denote ta by τ when there is no chance of ambiguity. $M / \operatorname{Ker} \tau$ is a monoid, called the transition monoid of \mathfrak{A} where

$$
\operatorname{Ker} \tau=\{(x, y) \in M \propto M \nmid s \tau(x)=s \tau(y) \text { for all } s \in S\} .
$$

We denote $M / \operatorname{Ker} \tau$ by $T(\mathfrak{A})$. Note that $T(\mathfrak{A})$ is isomorphic to $\tau(M)$.
For A^{*}-automaton $\mathfrak{A}=(S, f)$ with A^{*} being the free monoid on the alphabet A, the transition function f is entirely known when f is defined on $S \times A$.

An A^{*} - automaton $\mathfrak{A}=(S, f)$ is called monogenic if there exists $s_{0} \in S$ such that $f\left(s_{0}, A^{*}\right)=S\left(s_{0}\right.$ is calleda generator of $\left.\mathfrak{A}\right)$.

Monogenic A^{*}-automata are directly related to night congruence on A^{*}. If $\mathfrak{A}=(S, f)$ is an A^{*}-automaton generated by $s_{0} \in S$, we define $\gamma(\mathfrak{A})$ as follows :

It is clear that $\mathcal{H}(\mathfrak{A})$ is a right congruence on A^{*}. Conversely, if ρ is a right congruence on $A *$, denting by wo the class of w modulo ρ, we define $\alpha(\rho)$, the automaton of ρ, by:

$$
\alpha(\rho)=\left(A^{*} / \rho, f\right) \quad \text { with } f(\bar{w}, a)=\overline{w a} \text { for all } w, a \in A^{*}
$$

A language $L \subseteq A^{*}$ is called recognizable if there exists an A^{*}-automaton $\mathfrak{A}=(S, f)$, witì S finite, a state $s_{0} \in S$ and a subset T of S such that

$$
L=\left\{w \in A^{*} \mid f\left(s_{0}, w\right) \in T\right\} .
$$

We also say that the finite A^{*}-automaton \mathfrak{A} recognize L, or that L is recognized by \mathfrak{A}. We can show that L is recognizable if and only if L is a union of classes of a right congruence on A^{*} of finite index.

Given any subset L of A^{*}, there is a largest right congruence $P_{L}^{(r)}$ for which L is a union of classes. It is defined by

$$
P_{L}^{(r)}=\left\{(u, v) \in A^{*} \times A^{*} \mid u w \in L \text { aw } \in L \text { for every } w \in A^{*}\right\} .
$$

Thus the A^{*}-automaton $\alpha\left(P_{\mathbb{L}}^{(r)}\right)=\mathfrak{A}$ is a minimal automaton recognizing L. It is called the minimal automaton of L.

Let L be language of A^{*}. The syntactic congruence P_{L} is defined by

$$
\left.P_{L}=\left\{(u, v) \in A^{*} \times A^{*}\right\} x u y \in \bar{L} \Leftrightarrow x v y \in L \text { for all } x, y \in A^{*}\right\} \text {. }
$$

The quotient monoid A^{*} / P_{L} is catled the syntactic monoid of L, denoted by $M(L)$.
In addition, $M(L)$ is isomofphic to the transition monoid of the minimal automaton $\alpha\left(P_{L}^{(r)}\right)$ of Thus we can consider $M(L)$ as the transition monoid of the minimal automaton of L.

In this thesis, we are interested in a special type of language, a prefix code.
คभยวMยMรMยワTร

A subset C of the monoid A^{*} is Called a code if, for every $m, n \geq 1$

$$
c_{1} c_{2} \ldots c_{m}=c_{1}^{\prime} c_{2}^{\prime} \ldots c_{n}^{\prime} \Rightarrow m=n \text { and } c_{i}=c_{i}^{\prime} \text { for all } i=1,2, \ldots, m .
$$

A code C over the alphabet A is called a prefix code (resp. suffix code) if for every $u, v \in A^{*}, u v$ and $u \in C$ implies $v=\varepsilon$ (resp. $u, v \in A^{*}, u v$ and $v \in C$ implies $u=\varepsilon$); that is, a code C is a prefix code if no word in C is a proper left factor of other word of $C . C$ is a biprefix code if it is both prefix and suffix.

In [5], P. Udomkavanich studied a prefix code whose syntactic monoid is an inverse semigroup. Such a code was proved to be biprefix. Thus it is called an inverse biprefix code.

The code $\left\{a^{2}, a b, b^{2}\right\}$ is an example of biprefix code on the alphabet $\{a, b\}$. The code $\left\{a^{2}, a b a, a b^{2}, b\right\}$ is prefix which is not suffix.

Defining the relation \leq_{l} on A^{*} by $u \leq_{v}$ if v is a left factor of u, we see that \leq_{l} is a partial ordering on A* Hence $C \subseteq A^{*}$ is a prefix code if and only if for every $c \in C, u \in A^{*} ; u \leq c$ cand $u \neq c$ implies $u \in C$. Thus to obtain a prefix code, it suffices to select a subset C of A^{*} that will be endpoints for the relation \leq_{l}. For example the falling tree below:

gives the prefix code $a=\left\{a^{2}, a b a, a b^{2}, b\right\}$ oyer $\{a, b\}, \approx$
 $u A^{*} \cap C^{*} \neq \varnothing$, there exists a unique $c \in C^{*}$ and $z \in A^{*}$ such that $u=c z$ and z is a proper left factor of a word in C (eventually $z=\varepsilon$). The prefix property of C implies $(u, z) \in P_{C^{*}}^{(r)}$ and for any two proper left factor z_{1}, z_{2} of words in C we have $(u, z) \in P_{C^{*}}^{(r)}$ if and only if $(u, z) \in P_{C}^{(r)}$. Finally, for every $c \in C,(c, \varepsilon) \in P_{C^{*}}^{(r)}$. It follows that the minimal automaton of C^{*} is obtained by drawing the tree rep-
resenting words in C. Then we label the top of the tree and the end points with 1, and intermediate points using the same name, if they have identical subtrees.

Example 2.1. Let $A=\{a, b, c\}$ and $C=\left\{a b c a b, b a, b c, c a, c^{2}\right\}$ be a prefix code. The tree representing C is as shown:

The minimal automaton of C^{*} has six states, denoted by $1,2,3,4,5$ and 6 . We have
$f(1, a)=4, \quad f(1, b)=3, \quad f(1, c)=3$,

The corresponding syntactic monoid $M\left(C^{*}\right)$ is generated by

$$
\tau(a)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 1
\end{array}\right) \quad \tau(b)=\left(\begin{array}{ccc}
1 & 4 & 5 \\
3 & 6 & 1
\end{array}\right) \quad \text { and } \tau(c)=\left(\begin{array}{ccc}
1 & 3 & 6 \\
3 & 1 & 2
\end{array}\right)
$$

In the tree representation of C^{*}, a node labelled s is called the node associated with a left factor x of a word in C, if x is a path joining the top of the tree and the
nodes s. Thus the nodes associated with x and x^{\prime} are labelled with the same name if $x^{-1} C=\left(x^{\prime}\right)^{-1} C$, where $u^{-1} C=\left\{w \in A^{*} \mid u w \in C\right\}$.

