CHAPTER IV

RESULTS AND DISCUSSION

A. Formulation of ketoprofen in liquid vehicle

Hard gelatin capsule is suitable for dispensing liquid such as oil, paraffins, silicones or thickening agents. These activities concentrated on the formulation of the capsule contents into paste having a consistency which sufficient to withstand leakage from the unseal capsule. The disadvantage of pastes is the viscous which affect to weight uniformity and bioavailability problems. Thus, in this study the formulation of the content for capsule filling was conformed in solution by using cosolvents which was alternative way to minimize these problems.

Selection of liquid venicle: PEGs are widely used in a variety of pharmaceutical formulations including parenteral, topical, opthalmic, oral and rectal preparations. All grades of PEG are soluble in water tiduia PEG may cause hardening of capsule shell by preferential absorption of moisture from gelatin in the shell. They are very hygroscopic although hygroscopicity decreases with increasing moleculan weight. However, solid grades, e.g. PEG 4000 and those with higher molegular weight are not hygroscopic (Kibbe, 2000). Additionally, PEG with higher molegular weight is also having high melting point, which affect to prepare the formulation. In this study, PEG 1500 (melting point 44 $48^{\circ} \mathrm{C}$) was usedias a high component of cosolvent beeause of ts suitable melting point for preparing theformulation. PG has also been widely used as a solvent in parenteral and nonparenteral pharmaceutica formelationss. It is used to dissolve water insoluble drugs, suc̣h as corticosteroids.

Surfactant is a common substance that is used to enhance drug dissolution from solid, liquid and semi-solid dosage form including suppositories. Surfactants are classified into various groups based on their structures. In this experiment, some of them were selected to incorporate as liquid base. Group of polyoxyethylene sorbitan fatty acid
ester (Tween) is the most widely used surfactant in liquid preparations as well as in suppository formulations in order to enhance drug release from suppository dosage form (Babar et al, 1999). DMI is a solvent with low hemolytic potential (Reed and Yalkowsky, 1985) and is used as cosolvent for several nonpolar drugs.

From preliminary study, for solubilization of ketoprofen 100 mg by using the combination of two cosolvents PEG 1500 and PG, Tween 60^{\circledR} or Tween 80^{\circledR} as cosolvent, ketoprofen was precipitated in all proportions of 150 mg and 200 mg of cosolvent. But 100 mg of ketoprofen was solubilized when using PEG 1500 in combination with DMI in proportion of $1: 9$ and $9: 1$ for 150 mg and 200 mg of cosolvent, respectively.

In this study, the combination of three cosolvents (PEG 1500, PG and A*) and physical appearance of liquid formulas of ketoprofen are shown in Tables 3 to 5 . It was found that the precipitation of ketoprofen was seen in every proportions of 100 mg cosolvent (Table 2). The solubility of the drug was increased by using 150 and 200 mg of cosolvent (Tables 3-4). Various proportions of solvent system with Tween $60{ }^{\circledR}$ or Tween 80^{\circledR} were not able to dissolve the crug when temperature was changed. However, the precipitation was decreased by using DMI in solvent system. Because DMI could improve drug solubility with decreasing dielectric constant_of solvent system (Zia et al, 1991).

Nine formulations were selected for further in vittol studies according to the criteria specified earlier. Formulations 1 to 3 were those with Tween 60^{\circledR}, formulations 4 to 6 were those withotween 80^{\circledR} cand the cormulations 7 to 9 were those with DMI .

All liquid formulas were prepared on the weight by weight (WNW) basis, by varying the ratio of cosolvent. The amount of ingredients used in each formula is present in Table 5. The liquid of each formula equivalent to 300 mg was transferred into each capsule body No.O and its individual cap was then secured.

Table 2. Physical appearance of liquid formula of 100 mg . ketoprofen in 100 mg . of cosolvent

The amount of cosolvent (mg) (PEG1500 : PG : A*)	$A^{*}=$ Tween $60{ }^{\circledR}$				$A^{*}=$ Tween $80{ }^{(®}$				$\mathrm{A}^{*}=\mathrm{DMI}$			
	1	11	III	IV	1	11	III	IV	1	11	III	IV
80:10:10	-	-	-	-	-	-	-	-	-	-	-	-
70:10:20	-	-	-	-	-	-	-	-	-	-	-	-
70:20:10	-	-	-	-	-	-	-	-	-	-	-	-
60:10:30	-	-	-	-	-	-	-	-	-	-	-	-
60:20:20	-	-	-	-	-	-	-	-	-	-	-	-
60:30:10	-	-				-	-	-	-	-	-	-
50:10:40	-						-	-	-	-	-	-
50:20:30	-			-			-	-	-	-	-	-
50:30:20	-							-	-	-	-	-
50:40:10							-	-	-	-	-	-
40:10:50				-				-	-	-	-	-
40:20:40				-				-	-	-	-	-
40:30:30								-	-	-	-	-
40:40:20								-	-	-	-	-
40:50:10								-	-	-	-	-
30:10:60					-			-	-	-	-	-
30:20:50	-					-	-	-	-	-	-	-
30:30:40	-						-	-	-	-	-	-
30:40:30	-	-					-	-	-	-	-	-
30:50:20				-		-			-	-	-	-
30:60:10		-						2	-	-	-	-
20:10:70		-	-	-	-	-		-	-	-	-	-
20:60:60		-				-		-	-	-	-	-
20:30:50		-	-	-		-	-	-	-	-	-	-
20:40:40 0	P		-	(1)	\bigcirc		\ldots		-	-	-	-
20:50:30				.	0		-	1	-	-	-	-
20:60:20	-	-	-	-	-	-	-	-		-	-	-
$20: 70: 10$			$\%$	9	8	-	f		-	9	-	-
10:10:80			$\underline{1}$		-		_		0	${ }_{-}$	-	-
10:20:70	-	-	-	-	-	-	-	-	-	-	-	-
10:30:60	-	-	-	-	-	-	-	-	-	-	-	-
10:40:50	-	-	-	-	-	-	-	-	-	-	-	-
10:50:40	-	-	-	-	-	-	-	-	-	-	-	-
10:60:30	-	-	-	-	-	-	-	-	-	-	-	-
10:70:20	-	-	-	-	-	-	-	-	-	-	-	-
10:80:10	-	-	-	-	-	-	-	-	-	-	-	-

Table 3. Physical appearance of liquid formula of 100 mg . Ketoprofen in 150 mg . of cosolvent

Table 4. Physical appearance of liquid formula of 100 mg . Ketoprofen in 200 mg . of cosolvent

The amount of cosolvent (mg) (PEG1500 : PG : A*)	$A^{*}=$ Tween $60{ }^{(8)}$				$A^{*}=$ Tween $80{ }^{\circledR}$				$A^{*}=\mathrm{DMI}$			
	1	II	III	IV	1	II	III	IV	1	11	III	IV
160:20:20	+	$+$	$+$	$+$	$+$	+	+	$+$	$+$	$+$	$+$	$+$
140:20:40	+	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	+
140:40:20	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	+	-	-	-
120:20:60	$+$	+	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	+	$+$
120:40:40	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	+	$+$	$+$	$+$
120:60:20	$+$	+	+	+		$+$	+	$+$	+	$+$	+	$+$
100:20:80	$+$	+	$+$	+			+	+	+	$+$	+	$+$
100:40:60	+		+	+			+	+	$+$	$+$	+	+
100:60:40	+		-			+	$+$	+	+	+	+	+
100:80:20	$+$					+	+	+	$+$	$+$	$+$	+
80:20:100				+	+	+	+	$+$	$+$	$+$	$+$	$+$
80:40:80					+	+		+	+	+	+	$+$
80:60:60					+			$+$	+	+	+	$+$
80:80:40			+		+	+		+	$+$	+	$+$	$+$
80:100:20				-		+	-	-	+	+	+	$+$
60:20:120				$+$		+	+	+	+	+	+	+
60:40:100	+			-		+	+	$+$	$+$	+	+	+
60:60:80	+			\pm	$+$		+	+	+	+	+	+
60:80:60	+	-			$+$	+	+	+	+	+	+	+
60:100:40	+		为		$+$	+	$+$	+	+	+	+	$+$
60:120:20		+	$+$	$+$	+	$+$		7	+	+	+	+
40:20:140		+	$+$	+	+	+			+	+	+	+
40:40:120		+	$+$	$+$	+	+	+	+	$+$	+	$+$	+
40:60:100	+	+	$+$	+	+	$+$	+	+	$+$	$+$	$+$	$+$
40:80:80	5			c		${ }^{-}$	\bigcirc		+	+	+	+
40:100:60	$+$			T	${ }^{+}$		+		$+$	+	+	$+$
40:120:40	+	+	$+$	+	+	$+$	-	-	+	+	+	$+$
$40: 140: 20 \cap$	+			9		4	9	-	+	$2+$	+	$+$
20:20:160		$+$	4		$+$		-	-	4	\square	+	+
20:40:140	+	+	$+$	+	+	-	-	-	+	+	+	$+$
20:60:120	$+$	$+$	$+$	+	+	-	-	-	+	+	+	+
20:80:100	$+$	+	+	+	+	+	-	-	+	+	+	+
20:100:80	+	-	-	-	+	$+$	-	-	+	+	+	$+$
20:120:60	$+$	$+$	$+$	+	+	+	+	-	+	+	+	+
20:140:40	+	-	-	-	+	-	-	-	+	-	-	-
20:160:20	+	-	-	-	+	-	-	-	+	-	-	-

I = after mixing liquid by vortexing for 5 minutes
II = after storage at room temperature for 24 hours
III = after storage in refrigerator for 24 hours
IV = after storage at room temperature for 24 hours

+ = clear soiution
- = precipitate

Table 5. The formulation of ketoprofen fiquid-filled hard gelatin capsule

8. nvo uศศูนย์วิทยทรัพยากร

1. Releasencharacteristios of ketoprofenn fromm hara gelatingapsule 6

Effect of Tween 60^{\circledR}, Tween 80^{\circledR} and DMI on release profiles: Tween 60^{\circledR}, Tween 80^{\circledR} and DMI provided the same release pattern of the drug. The release profiles were shown in Figures 6 to 8. Drug released was increased when the concentration of Tween 60^{\circledR}, Tween 80^{\circledR} and DMI were increased. Within 30 minutes percent release of ketoprofen with $10 \%, 20 \%$ and 30% Tween 60^{\circledR} were $43.44 \%, 56.45 \%$ and 57.82%
whereas those with the same concentration of Tween $80{ }^{\circledR}$ were $53.82 \%, 57.20 \%$ and 59.48%, respectively (Tables $6-7$). The percent ketoprofen released was increased with increasing concentration of surfactant. This effect arise from surfactant could improve the drug release by increasing wettability and reducing interfacial tension of the system following increase of surfactant concentration. These results were consistent to the previous report (Dredan et al., 1985). The percent release of ketoprofen at 30 minutes from all formulations with DMI were found to be less than 50% as displayed in Table 8. The effect of dimethyl isosorbide on release profile was to increase drug release with undergoes complexation with water through hydrogen bonding interaction. The solvent complex exhibited a major effect on the solubility of drug (Zia et al., 1991).

The release characteristics of ketoprofen from hard gelatin capsules in the present study appeared to be the same with respect to the pattern of dissolution profile from ketoprofen tablet in the previous study. Percent release of ketoprofen from tablet was approximately 67% at 30 minutes under the same conditions (Maffione et al., 1993).

2. Selection of the best formulation

According to the criteria specified earlier the formula with 10% of Tween $80{ }^{\circledR}$ and that with 10% of DML should be selected for further study but those with 20% of Tween 80^{\circledR} and 20% of DMI were easier to prepare than the formulae mentioned above. Thus, the formula with 20% of ${ }^{4}$ wween 80^{\circledR} and another was that with 20% of DMI were

9

Bothyormulations were freshly prepared again and then these capsules were sealed and coated, respectively. To seal the hard gelatin capsule after filling with liquid was to eliminate the risk of leakage during storage at elevated temperatures. The coated capsule using HPMC showed good gliding excellent slip when contacted to water. These coated hard gelatin capsules were suitable for rectal application.

Table 6. Percent released of ketoprofen (Mean \pm S.D.) from three formulations of ketoprofen rectal capsule with Tween 60^{\circledR}

Table 7. Percent released of ketoprofen (Mean \pm S.D.) from three formulations of ketoprofen rectal capsule with Tween $80{ }^{(®)}$

Time(\min)	\% Released (Mean \pm S.D.)		
	$10 \% \text { Tween } 80^{\circledR}$	$20 \% \text { Tween } 80{ }^{\circledR}$	$30 \% \text { Tween } 80^{\circledR}$
5	12.426 ± 1.994	15.787 ± 5.588	17.058 ± 8.874
10	23.816 ± 3.287	796 ± 6.149	29.309 ± 6.550
15	33.517 ± 4.679	± 6.318	39.000 ± 6.000
20	40.821 ± 4.327	46.009 ± 5.939	46.435 ± 5.681
30	53.822 ± 3.032	199 ± 6.044	59.480 ± 5.464
45	$66.646+3.2$	31 ± 5.9	74.400 ± 5.121
60	77.289 ± 2.8	59	84.609 ± 4.601
80	86.675 ± 2.021	90.409 ± 3.890	92.968 ± 3.761
100	$93.182 \pm$	589	96.502 ± 2.664
120	95.694 ± 1.1	98.396 ± 2.244	97.667 ± 1.851
$N=12$			
		$\eta \stackrel{c}{2} 9 N 2$	
	าลงกร		

Table 8. Percent released of ketoprofen (Mean \pm S.D.) from three formulations of ketoprofen rectal capsule with DMI

Time(\min)	\% Released (Mean \pm S.D.)		
	10\% DMI	20\% DMI	30\% DMI
5	4.145 ± 0.812	5.336 ± 1.345	5.940 ± 1.414
10	10.797 ± 1.121	13.548 ± 2.541	14.910 ± 3.742
15	17.114 ± 1.921	. $040+3.457$	22.685 ± 5.848
20	23.152 ± 2.633	7.457 ± 4.174	29.068 ± 6.817
30	33.352 ± 3.47	163 ± 5.431	40.610 ± 8.514
45	47.315 ± 4.57	89 ± 7.13	53.395 ± 10.611
60	59.384 ± 5		66.797 ± 12.568
80	74.905 ± 7	209 ± 1	77.498 ± 10.214
100	34.080	. 314	84.168 ± 7.982
120	89.655 ± 6	.996 ± 7.174	89.315 ± 5.844
$N=12$			
าลงกรณ์มหาวิทยาลัย			

Figure 6. Dissolution profile of ketoprofen from three formulations of ketoprofen rectal

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 7. Dissolution profile of ketoprofén from three formulations of ketoprofen rectal

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 8. Dissolution profile of ketoprofen from three formulations of ketoprofen rectal

 จุฬาลงกรณ์มหาวิทยาลัย

However, liquid-filled hard gelatin capsule containing high concentration of surfactant might cause removal of water from the protein structure of capsule with resulting in loss of mechanical strength (Cole et al., 1992). DMI was miscible in all proportion with water thus DMI might cause to affect the integrity of the gelatin shell. Hence, the amount of surfactant and DMI employed to improve release of drug in each preparation should be used at lowest concentration.
C. Evaluation of physical and chemical properties of coated ketoprofen rectal capsule
1.Dissolution profile of coated capsule

Comparative release characteristics of ketoprofen between uncoated and coated capsule were shown in Figures 9 to :10. The release profile of all coated capsules exhibited a characteristic lag time. This was seen by drug release began after 15 minutes (Tables 9-10). The capsules coated with HPMC (Methocel ${ }^{\left({ }^{(1)}\right.}$ E5), when contacted with dissolution medium, the polymeric coating layer swelled to form a viscous barrier and spent some times before allowing drug release. However, dissolution profile of coated capsule after lag time was similar to that of uncoated capsules. These results agree with previous report (Maffione et al., 1993). It was reported that the release profile of coated ketoprofen tablets showed a characteristic lag time, the lag time increased as a function of amount of HPMC in coating layer. Additionally, the high viscosity of HPMC retard drug release with slightly changing in the pattern of dissolution profile.

ศนย้วิทยทรัพยากร
2. Disintegration time

The results of disintegration of uncoated and coated rectal capsule from 20% Tween $80{ }^{(®)}$ formulation and 20% DMI formulation were shown in Tables 11 to 12 , respectively. It was found that the disintegration time of hard gelatin capsule uncoated and coated with HPMC were between 3-5 minutes. The gelatin shell ruptures allowing release of the contents within 30 minutes. The comparative disintegration of uncoated and coated rectal capsule from both preparations is slightly different.

3. Content uniformity

The uniformity of content of ketoprofen in each coated rectal capsule preparation stated as percent labeled amount (\% L.A.) was shown in Table13. They were 101.95 ± 1.38 percent for 20% Tween 80^{\circledR} formulation and 101.72 ± 1.14 percent for 20\% DMI formulation. Each of them met the BP 1993 specification within the range of 92.5-107.5\% of the labeled claim. The BP specifies the content uniformity standard for suppositories, each of 10 dosage unit as determined from the content uniformity method lies within the range of $85-115 \%$ of the label claim.

D. Stability of coated ketoprofen rectal capsule

1. Physical appearance (7) 3

The coated capsules were stored at $40^{\circ} \mathrm{C}$ with $75 \% \mathrm{RH}$ for three months. All coated capsules were still in good physicat appearance. Cracking, wrinkling or tearing of capsule shell was not visually observed but color of coated film and liquid system became darken (Figure11). The color-बf/iquid system from 20% Tween $80^{\left({ }^{\circledR}\right.}$ formula was darken than that with 20% DMI. This could be due to Tween 80^{\circledR} was sensitive to oxidation. Additionally, PEG 1500 exposure to heat might induce oxidation (Kibbe, 2000). There was no visually observable physical interaction between liquid content and the

2. Content of ketoprofen (\% L.A.)

จุหาลงกกรณณมหาวิทยาลัย
The method of analysis was validated by determining the accuracy, the within run and between run precision. Results are shown in Appendix C. The accuracy in term of percent recovery for all concentrations was between $97.59-99.28 \%$. The within run and between run precision expressed as percent coefficient of variations were 0.66 0.85% and $0.87-1.63 \%$, respectively. The calibration curve of PAR of ketoprofen to

Table 9. Percent released of ketoprofen (Mean \pm S.D.) from 20% Tween $80{ }^{\circledR}$ formulation

Table 10. Percent released of ketoprofen (Mean \pm S.D.) from 20\% DMI formulation

Figure 9. Dissolution profile of ketoprofen from uncoated and coated capsules with

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 10. Dissolution profile of ketoprofen from uncoated and coated capsules with 20\% DMI formulation

 จุพาลงกรณ์มหาวิทยาลัย

Table 11. Disintegration time of uncoated and coated rectal capsule in water at $37 \pm 2^{\circ} \mathrm{C}$ from 20% Tween $80{ }^{\circledR}$ formulation

Sample no.	Disintegration time (min)	
	Uncoated capsule	Coated capsule
1	3.73	3.95
2	3.08	4.37
3	3.72	
4	2.88	4.87
5	3.37	5.08
6	4.00	4.20
Mean	3.40	4.16
S.D.	0.43	4.43
		0.44

Table 12. Disintegration time of uncoated and coated rectal capsule in water at $37 \pm 2^{\circ} \mathrm{C}$ from 20% DMI formulation

Table 13. Uniformity of content of ketoprofen (\% L.A.) from 20% Tween $80{ }^{\circledR}$ formulation and 20\% DMI formulation

diclofenac sodium versus ketoprofen concentrations was linear covering all concentrations determined with the coefficient of determination of 1.0.

The result of assay of ketoprofen content in coated capsules prior to and after storage in the condition specified above showed that percent drug content remained in the range of $92.5-107.5 \%$, which still met the BP 1993 specifications. The average contents from time zero up to three months were shown in Tables 14-15.

The content of ketoprofen was changed, This could be due to hight temperature and moisture in storage condition ($75 \% \mathrm{RH}$). Additionally, the carbonyl and ester groups in ketoprofen structure were sensitive to hydrolysis. All of these were waiting to be proven in the future.
 ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 11. Physical appearance of coated ketoprofen rectal capsule at $40^{\circ} \mathrm{C}$ with 75%
RH; (left) 20\% DMI formulation, (right) 20\% Tween $80{ }^{\circledR}$ formulation,
(a) 0 month, (b) 0.5 month, (c) 1 month, (d) 1.5 month, (e) 2 month,
(f) 2.5 month, (g) 3 month

Table 14. Content of ketoprofen (\% L.A.) from 20% Tween 80^{\circledR} formulation at $40^{\circ} \mathrm{C}$ with 75% RH, for three months

Capsule	Time (month)						
No.	0	0.5	1	1.5	2	2.5	3
1	99.554	100.638	97.753	95.375	95.161	93.556	92.379
2	99.782	98.733	98.154	95.056	94.279	94.208	93.359
3	100.811	99.948	98.316	95.215	95.220	93.630	92.546
4	98.335	98.755	97.294	95.336	94.225	93.010	91.956
5	100.612	97.820	98.853	96.248	95.649	93.063	93.035
6	100.15	97.585	97.879	95.792	96.562	93.121	91.896
Mean	99.784	98.913	98.041	95.503	95.183	93.431	92.529
S.D.	0.892	1.189	0.532	0.439	0.878	0.462	0.583

Table 15. Content of ketoprofen (\% L.A.) from 20\% DMI formulation at $40^{\circ} \mathrm{C}$ with 75% RH, for three months

Capsule	Time (month) 5							
No.	0	0.5	1	1.5		2.5	3	
1	100.437	-100.408	97.295	96.595	96.0	95.479	93.487	
2						95.271 95.787	92.197	
3						93.802		
4	101.101	$\begin{array}{rr} 100.421 & 98.970 \\ 99.652 & 99.290 \end{array}$		$\begin{aligned} & 97.009 \\ & 98.048 \end{aligned}$	$\begin{gathered} 96.796 \\ 96.125 \\ 93.56411 \end{gathered}$		91.652	
59	100.457			93.724				
6	101.612	99.860	98.251		97.528	95.883	94.965	93.577
Mean	100.771	99.969	98.195	96.903	96.009	94.796	93.073	
S.D.	0.497	0.424	0.828	0.786	0.146	0.938	0.913	

E. In Vivo studies

One hundred milligram of ketoprofen in coated rectal capsules with 20% Tween $80^{(8)}$ and with 20\% DMI were prepared to be used for in vivo studies. They were tested and found to conform for uniformity of content of BP 1993.

1. Analysis of ketoprofen concentrations in rabbit plasma

Figure 12 showed chromatograms of blank rabbit plasmá, rabbit plasma spiked with ketoprofen and internal standard, and plasma sample taken at 1 hours post dose from a rabbit following administration of 100 mg ketoprofen in coated rectal capsule. Ketoprofen and dielofenac/sodium were well separated from endogenous substance peak with the retention times of about 6.31 and 9.58 min , respectively.

The method of analysis was validated by determining the accuracy, the within run and between run precision. Resulls were accessible in Appendix D. Accuracy in term of percent recovery for all concentrations was between $102.50-108.94 \%$. Within run and between run precision expressed as percent coefficient of variations were 2.01 4.73% and $2.59-3.76 \%$, respectively. Calibration curve of PAR of ketoprofen to diclofenac sodium versus plasma ketoprofen concentrations was linear cover all concentration tested with the coefficient of determination of 0.9999 .

alasma ketoprofen concentrationsfat any sampling time ${ }^{2}$ integal up to 12
from 12 rabbits after rectal administration of two formulations of ketoprofen in coated rectal capsule and an Oruvail ${ }^{(3)}$ were presented in Tables 16 to 18. Comparisons of the plasma ketoprofen concentration-time profiles of each rabbit were illustrated in Figures 13 to 24 and all profiles were summarized for 12 rabbits graphically in Figure 25. As seen, from individual plot, some profiles exhibited irregular post absorption phase and more than one peak were demonstrated. This was probably predominant due to
subject variations since it was very difficult to administer the formulation into individual rectally. However, this was not observed from average profiles because all data were taken into accounted resulted in reducing of variability.

3. Pharmacokinetics analysis

Generally, pharmacokinetic study is the most recommended method for measuring product quality bioavailability and establish bioequivalence. This may be viewed as a bioassay that assesses release of the drug substance from the formulation into the systemic circulation. In pharmacokinetic study, physiological variables are assumed to have less interoccasion yariability compared to the variability arising from formulation performance. Thus, differences between two products due to formulation factors can be determined.
3.1 Comparison of pharmacokinetic parameters

All relevant pharmacokinetic parameters were obtained and only the corresponding parameters of the two formulations of 100 mg ketoprofen coated rectal capsule were compareg. They were summarized as follows:

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

Rabbit plasma taken at 1 hour post dose (ketoprofen observed conc. $149.45 \mu \mathrm{~g} / \mathrm{mL}$).

Figure 12. High performance liquid chromatographic peaks of ketoprofen (A) and diclofenac sodium (B)
Table 16. Plasma ketoprofen concentration ($\mu \mathrm{g} / \mathrm{mL}$) of twelve rabbits after administration of 100 mg ketoprofen in coated rectal capsule with 20% Tween $80{ }^{\circledR}$

Table 17. Plasma ketoprofen concentration ($\mu \mathrm{g} / \mathrm{mL}$) of twelve rabbits after administration of 100 mg ketoprofen in coated rectal capsule with 20%

Rabbit	Time (hr)										
No.	0.5	1	- 5	2	2.5	3	4	6	8	10	12
1	139.864	132.792	108.414	90.191	88.547	98.193	56.	48.806	19.063	15.005	20.053
2	98.520	17	137.541 a	45	5.413	86.7	5.0		16.740	8.952	4.328
3	135.863	79.330	61.657	. 850	9.028	34.0	7.6		12.030	7.619	4.272
4	215.472	256.093	220:960	191.754	2	81	24.93		65.282	54.554	40.192
5	207.536	237.603	153.964	97.641	6.19	130.29	81.472	39.654	27.921	13.702	9.843
6	153.657	180.1440	146.53	108.381	100.006	59.34	8.717	38.568	8.257	13.950	9.958
7	169.112	286.025	246.602	108.773	1	43.	55		1.313	12.970	7.951
8	225.091	227.073	191:033	155.159	0.062	41.100	74	8. 0	39.981	34.413	25.918
9	133.734	72.129	74,301)	497	78			. 072	7.202	5.560	3.265
10	166.987	212.183	165.669	170.744	136.644	137.446	98.704	65.673	40.211	15.407	8.667
11	145.271	B	118.706	110.029	91.408	97.169	75.540	35.702	17.927	8.300	3.457
12	164.678	170.0280	91.784	72.139	64.548	50.553	39.508	27.516	18.679	10.386	5.053
Mean	162.982	178.720	143.097	113.875	98.445	100.478	71.716	42.512	26.217	16.735	11.913
S.D.	37.338	69.380	56.841	50.344	35.666	48.396	33.544	19.462	15.874	14.009	11.304

Table 18. Plasma ketoprofen concentration ($\mu \mathrm{g} / \mathrm{mL}$) of twelve rabbits after intramuscular administration of 50 mg ketoprofen (Oruvail ${ }^{\left({ }^{\mathbb{B}}\right)}$)

Rabbit		-2)	Time (hr)								
No.	0.5	$1 \geq 2$	1.5	2	2.5	3	4	6	8	10	12
1	53.273	50.154	46.019	41.374	40.228	37.102	35.795	28.017	21.085	14.958	11.782
2	70.684	79.737	72.:50	63.48	62.052	47.02	39.332	26.171	9.455	4.157	2.938
3	56.561	50.526	44.754	38.464	8.395	4.9	34		21.277	14.243	8.871
4	64.604	67.894)	64.340	59.504	. 11	37	26.		4.017	2.952	2.370
5	79.688	84.754	$60 . \stackrel{666}{ }$	58.848	4.336	40.708	33.671	1.59	11.976	10.917	7.244
6	68.938	65.964응	68.648	62.833	8.756	49.98	44.010	31.200	19,907	17.799	11.273
7	79.172	74.725°	64.628	57.021	. 690		28.030		4.220	2.971	2.384
8	52.412	66.733)	58.644	49.994	.			28.953	19.383	18.546	12.782
9	49.083	70.019	62518	44.635	8.67			9.258	13.177	7.506	5.260
10	84.534	90.640	87.872	77	63.698			21.740	13.507	7.735	5.391
11	45.142	56.147	48.703	46.984	39.195	33.138	24.945	7.338	2.941	2.835	2.595
12	71.724	87.938)	70.818	51.346	50.424	31.446	24.779	5.489	3.366	2.044	2.405
Mean	64.651	70.436	62.479	54.601	48.546	40.733	34.074	20.019	12.026	8.889	6.275
S.D.	13.159	13.740	12.236	11.690	9.453	6.173	8.596	8.984	7.240	6.946	5.401

Figure 13. Plasma ketoprofen concentration-time curve of rabbit No. 1 after rectal administration of two formulations of 100 mg ketoprofen (20\%Tween $80{ }^{(8)}$ formulation and 20\%DMI formulation) and intramuscular administration of 50 mg Oruvail

จุหาลงกรณ์มีหัาวาวิทยาลัย

Figure 14. Plasma ketoprofen concentration-time curve of rabbit No. 2 after rectal administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$ formulation and 20\%DMI formulation) and intramuscular administration of 50 mg Oruvail ${ }^{\circledR}$

Figure 15. Plasma ketoprofen concentration-time curve of rabbit No. 3 after rectal administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$ formulation and 20\% DMI formulation) and intramuscular administration of 50 mg Oruvail

Figure 16. Plasma ketoprofen concentration-time curve of rabbit No. 4 after rectal administration of two formulations of 100 mg ketoprofen (20% Tween $80{ }^{\circledR}$ formulation and 20\%DMI formulation) and intramuscular administration of 50 mg Oruvail ${ }^{\text {¹ }}$

Figure 17. Plasma ketoprofen concentration-time curve of rabbit No. 5 after rectal administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$ formulation and 20\%DMI formutation) and intramuscular administration of 50

Figure 18. Plasma ketoprofen concentration-time curve of rabbit No. 6 after rectal administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$ formulation and 20\%DMI formulation) and intramuscular administration of 50 mg Oruvail ${ }^{\circledR}$

Figure 19. Plasma ketoprofen concentration-time curve of rabbit No. 7 after rectal administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$ formulation and 20\%DMI formulation) and intramuscular administration of 50

Figure 20. Plasma ketoprofen concentration-time curve of rabbit No. 8 after rectal administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$ formulation and 20\%DMI formulation) and intramuscular administration of 50 mg Oruvail ${ }^{\text {¹ }}$

Figure 21. Plasma ketoprofen concentration-time curve of rabbit No. 9 after rectal administration of two formulations of 100 mg ketoprofen (20\%Tween $80{ }^{\circledR}$ formulation and 20\%DM1 formulation) and intramuscular administration of 50

Figure 22. Plasma ketoprofen concentration-time curve of rabbit No. 10 after rectal
administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$
formulation and 20\%DMI formulation) and intramuscular administration of 50 mg Oruvail ${ }^{\text {® }}$

Figure 23. Plasma ketoprofen concentration-time curve of rabbit No. 11 after rectal administration of two formulations of 100 mg ketoprofen $\left(20 \%\right.$ Tween $80{ }^{\circledR}$ formulation and 20\%DMI formulation) and intramuscular administration of 50

จุหาลงกรณ์มหาวิทยาลัย
Figure 24. Plasma ketoprofen concentration-time curve of rabbit No. 12 after rectal administration of two formulations of 100 mg ketoprofen (20\%Tween 80^{\circledR} formulation and $20 \% \mathrm{DMI}$ formulation) and intramuscular administration of 50 mg Oruvail ${ }^{\text {® }}$

Figure 25. Comparison of Plasma ketopfofen concentration-time curve (mean \pm S.D.) of twelve rabbits after 白ectaradministration of two formulations of 100 mg ketoprofen (20\% Tween 80 formulation and 20\% DMI formulation) and intramuscular administration of 50 mg Oruvail ${ }^{(8)}$

Peak plasma ketoprofen concentration $\left(\mathrm{C}_{\max }\right)$

The $\mathrm{C}_{\max }$ (Mean \pm S.D.) of ketoprofen obtained from the two formulations of coated rectal capsules with 20% Tween $80^{\circledR}, 20 \%$ DMI and Oruvail ${ }^{\circledR}$ were $238.562 \pm$ $37.163,193.958 \pm 49.764$ and $71.817 \pm 12.697 \mu \mathrm{~g} / \mathrm{mL}$ (Table 19), respectively. As observed, this parameter was more variable than others which was anticipated although crossover study was employed. The $\mathrm{C}_{\max }$ value from the formula with 20% Tween $80{ }^{\circledR}$ appeared to be higher than that with 20% DM1. This was expected since Tween 80^{\circledR} could improve drug absorption by reducing interfacial tension of the system (Ken et al., 1993). Result in Tables 20 showed that there were statistically significant difference ($\mathrm{p}<$ 0.05) between the $\mathrm{C}_{\text {max }}$ values of the two test formulations for formulation effect. This indicated intra-subject variability. This difference could be due to small number of subjects participating in the experiment.

Time to peak plasma ketoprofen concentration $\left(\mathrm{t}_{\text {max }}\right)$

The onset of drug was,indicated by this parameter. Both test formulations as well as Oruvail ${ }^{\circledR}$ were rapidly absorbed as seen by the peak plasma concentration was reached to a maximum value within a short period of time apparently from $0.5-1 \mathrm{hr}$, as shown in Table 21 indicating the drug from all formulations were regularly and steadily absorbed. The $t_{\max }$ (Mean \pm S.D.) of ketoprofen from coated rectal capsules with 20% Tween $80{ }^{\circledR}, 20 \% \mathrm{DM}$ and oruvai ${ }^{\circledR}$ were $0.79 \pm 0.33,0.83 \pm 0.25$ and 0.83 ± 0.25 hour, respectively. These values were approximately the same as those reported previously Q
(Barba et al., 1999; Nilufer and Ermis, 1996). There were no statistically significant differences $(\mathrm{p}>0.050$ betwee twax yalues of the two cest formulations (Table 22). This referred that the time required to attain the peak plasma concentration for all formulations were markedly the same.

Table 19. Peak plasma concentrations ($\mathrm{C}_{\max }$) of ketoprofen of twelve rabbits after rectal administration of two formulations of 100 mg ketoprofen and intramuscular administration of 50 mg Oruvail ${ }^{\left({ }^{\circledR}\right)}$

Table 21. The time to peak plasma concentrations $\left(t_{\max }\right)$ of ketoprofen of twelve rabbits after rectal administration of two formulations of 100 mg ketoprofen and intramuscular administration of 50 mg Oruvail ${ }^{(8)}$

Area under the plasma ketoprofen concentration-time curve (AUC)

This parameter represents the extent or total amount of ketoprofen absorption into the systemic circulation and becomes available at the site of action. The AUC (Mean \pm S.D.) from coated rectal capsule with 20% Tween $80^{\circledR}, 20 \%$ DMI and intramuscular injection formulation $\left(\right.$ Oruvail ${ }^{\circledR}$) were $917.814 \pm 173.044,778.639 \pm$ 360.958 and $361.959 \pm 99.844 \mu \mathrm{~g} . \mathrm{hr} / \mathrm{mL}$ (Table 23), respectively. Statistical comparison in Table 24 showed that the AUC of both test formulations were not statistically significant differences $(p>0.05)$, referring that the drug from the two formulations were equal in the extent of drug absorption.

Factor affecting this equal might be due to ketoprofen in the formulation with 20% Tween 80^{\circledR} and that with $20 \% \overrightarrow{\text { DMI were already formed in clear solution. }}$ Additionally, ketoprofen, a lipophilic drug is classified as a drug with high permeability (US FDA, 1999) referring absorption process of this drug is not rate-limiting step. Absorption of the drug was taken place immediately and steadily from site of administration without any lag times providing equal amount of the drug in the systemic circulation. The extent of drug absorption this finding based on the dose given were approximately 50% of those reported by Barba et al. This was probably due to differences in the formulation, amount of subjects or renal function of subjects. The major pathway of ketoprofen elimination was formation and subsequent urinary excretion of acyl-glucoronide conjugates and these ester conjugates were unstable and might readily hydrolyse to release parent drug./The excretion of conjugates was closely tied to renal function (Jamali ahd Dion, 1990; Kenneth et al., 1993)

The average (Mean 士 S.D.) elimination half-lives of coated rectal capsule with 20% Tween 80^{\circledR}, 20% DMI and from Oruvail ${ }^{\circledR}$ were $2.999 \pm 0.894,2.960 \pm 1.050$ and 3.321 ± 1.747 hour, respectively (Table 25). Statistical comparison in Table 26

Table 23. Area under the plasma concentration time curve (AUC) of ketoprofen of twelve rabbits after rectal administration of two formulations of 100 mg ketoprofen and intramuscular administration of 50 mg Oruvail ${ }^{\circledR}$

Rabbit No.	AUC ($\mu \mathrm{g} . \mathrm{hr} / \mathrm{mL}$)						
	20\% Tween $80{ }^{\text {® }}$ *		20\% DMI*		Oruvail ${ }^{\left(8_{* *}\right.}$		
1		862.423	714.926		458.466		
2		$\begin{gathered} 497.239 \\ 1002.493 \end{gathered}$	589.271		350.833		
3					419.065		
4		-1203.456	≥ 1551.953		249.900		
5		1032.554	836.051		384.111		
6		806.716			505.742		
7		22.17			270.412		
8		7.608	- 123		488.608		
9		03.024	i2 322		316.013		
10		320.305	-7 95		427.755		
11		7.37 6.6	N/39.64		216.340		
12		908.399	T/4. 48		256.265		
MeanS.D.		917.814	778.639		361.959		
		173.044		3	99.844		
Table 24. Analysis of variancefor Auc after rectal administration of two formulations o 							
Source of variation		SS		F ratio	F table	Sig.level	
Total	23	1878794.76	-		-		
Block	11	1164855.01	105895.91	1.95	2.82	NS	
Formulation	1	116216.47	116216.47	2.14	4.84	NS	
Error	11	597723.28	54338.48	-	-		

Table 25. Elimination half-lives ($\mathrm{t}_{1 / 2}$) of ketoprofen of twelve rabbits after rectal administration of two formulations of 100 mg ketoprofen and intramuscular administration of 50 mg Oruvail ${ }^{(3)}$

indicated that the $t_{1 / 2}$ of the two test formulations were not statistically significant differences $(p>0.05)$.

Ali estimated pharmacokinetic parameters of ketoprofen from twelve rabbits after rectal administration of two formulations of coated ketoprofen rectal capsule as well as its relative bioavailability were summarized and shown in Table 27.

3.2 Evaluation of relative bioavailability

As mentioned earlier, bioequivalence between each of the test formulations relative to the intramuscular injection formulation (Oruvail ${ }^{(®)}$) could not be assessed due to unequal doses among these formulations were given. Thus, relative bioavailability was established instead. This was accomplished by comparing the area under the curve normalized by the dose administered. Results indicated that in comparison with intramuscular administration, the relative bioavailabilities of ketoprofen following rectal administration of formulation with 20% Tween 80^{\circledR} and that with 20% DMI were remarkably found to be 127 and 107%, respectively. It was surprised that the bioavailability of ketoprofen from both rectal formulations were superior to that from intramuscular injection formulation. This was probably due to the absorbed ketoprofen from rectal capsules bypass the liver.

Although the bioequivalence of individual coated ketoprofen rectal capsule relative too the intramyscular ketoprofen injection could not be established as anticipated, results of this study, was still useful in terms of

Q 981 . A 7 altenative dosage formpof ketoppofen? in addition fo oral and intramuscullar injection formulations was accomplished.
2. The extent of drug absorption from these alternatives were superior to that from the intramuscular injection form.

However, further studies in human subjects are needed in order to summarize final conclusion regarding to its availability.

Table 27. Estimated pharmacokinetic parameters of ketoprofen (Mean \pm S.D.) from twelve rabbits after rectal administration of formulation with
coated rectal capsule and formulation of 20% DMI coated rectal capsule and its relative bioavailability ${ }^{(8)}$
\qquad -ర 3
\square
20% Tween 80^{\circledR}
$\mathrm{C}_{\text {max }}(\mu \mathrm{g} / \mathrm{mL})$
AUC ($\mu \mathrm{g} . \mathrm{hr} / \mathrm{mL}$)
$\mathrm{t}_{\text {max }}(\mathrm{hr})$
$\mathrm{t}_{1 / 2}$ (hr)
$\mathrm{F}_{\text {fel }}$ (\%)

