CHAPTER IV

RESULTS AND DISCUSSION

Five extracts prepared from *O. integerrima*, including the ethyl acetate extract of the dried leaves, and the methanol extracts of the stem bark, the stem wood, the root bark and the root wood, were investigated, using several chromatographic techniques. A total of nineteen compounds were obtained. The structures of these compounds were determined based on their UV, IR, MS and NMR data. The DPPH radical scavenging activities of nine compounds were evaluated.

1. Structure Determination of Isolated Compounds

1.1 Structure Determination of Compound 47

Compound 47 was obtained as yellow crystals. The FABMS (Figure 5) showed a quasimolecular ion $[M+H]^+$ at m/z 553, consistent with the molecular formula $C_{31}H_{21}O_{10}$. The UV spectrum (Figure 6) exhibited absorption bands at 332, 287, 270, 246 and 211 nm. The 1H NMR spectrum (Figure 7) displayed two singlet proton signals at δ 6.81 and 6.88 ppm due to H-3 and H-3", two sets of meta coupling type protons at δ 6.16 and 6.45 ppm (J=2.1, each), and at δ 6.33 and 6.65 ppm (J=2.0, each), corresponding to H-6 and H-8, and H-6" and H-8". These proton signals hinted that compound 47 was composed of two flavone moieties. The 13 C NMR spectrum (Figure 8) displayed 31 carbon signals, including two flavone carbonyl carbons, twenty-eight sp^2 carbons, supporting the biflavone structure of compound 47. Compound 47 was identified as 7"-O-methyl ochnaflavone (47) by comparing its 1H and ^{13}C NMR data with reported values (Kamil *et al.*, 1983). All of the 1H and ^{13}C NMR data (Table 21) were completely assigned for the first time, using $^1H^{-1}H$ COSY

(Figure 9), HMQC (Figure10), HMBC (Figures 11-12) and NOE difference (Figure 13) experiments.

Table 21 The ¹H and ¹³C NMR data of compound 47 in DMSO-d₆

Position	1 H δ (ppm), J (Hz)	¹³ C δ (ppm)	Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2		163.1	2"		163.8
3	6.81 (1H, s)	104.0	3"	6.88 (1H, s)	104.7
4		182.2	4"		182.4
4a		104.3	4a"		105.3
5		161.9	5"	26)	161.7
6	6.16 (1H, d, 2.1)	99.4	6"	6.33 (1H, d, 2.0)	98.6
7	J.	164.8	7"	U.	165.7
8	6.45 (1H, d, 2.1)	94.6	8"	6.65 (1H, d, 2.0)	93.2
8a	MILE	157.8	8a"	1113	157.7
1'	W.	122.7	1‴	i v	124.8
2'	7.85 (1H, d, 5.8)	125.8	2"', 6"'	8.03 (1H, d, 7.9)	128.9
3′		142.1	3"', 5"'	7.02 (1H, <i>d</i> , 8.8)	116.6
4′		153.9	4'''		161.4
5'	7.14 (1H, d, 8.2)	118.5	5-OH	12.87 (1H, s)	
6'	7.86 (1H, d, 5.8)	121.7	5"-OH	12.83 (1H, s)	
			7"-OCH ₃	3.95 (1H, s)	56.5

1.2 Structure Determination of Compound 4

Compound 4 was obtained as a yellow solid. The FABMS (Figure 14) exhibited an $[M+H]^+$ ion at m/z 539, corresponding to $C_{30}H_{19}O_{10}$. The UV absorptions appeared (Figure 15) at λ_{max} 332, 284, 270, 246 and 211 nm. This compound was determined as ochnaflavone (4) (Okigawa and Kuwano, 1973). The 1H NMR (Figure 16) and ^{13}C NMR (Figure 17) data showed close similarity to those of compound 47 except for the absence of the methoxy group. The present work completely assigned the 1H and ^{13}C NMR data of this compound (Table 22) by HMQC (Figure 18) and HMBC (Figures 19-20) experiments.

ศูนยวิทยทรพยากร กลงกรณ์มหาวิทยาลั

Table 22 The ¹H and ¹³C NMR data of compound 4 in DMSO-d₆

Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)	Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2		163.2	2"		163.6
3	6.85 (1H, s)	104.1	3"	6.85 (1H, s)	104.3
4		182.2	4"		182.3
4a		104.3	4a"		104.3
5		161.9	5"		162.0
6	6.17 (1H, d, 1.8)	99.5	6"	6.18 (1H, d, 1.8)	99.4
7		164.8	7"		164.9
8	6.48 (1H, d, 1.8)	94.7	8"	6.48 (1H, d, 1.8)	94.6
8a		157.9	8a"		157.8
1'		122.7	1'''		124.9
2'	7.89 (1H, m)	125.8	2"', 6"'	8.03 (1H, d, 7.0)	128.9
3′		142.2	3"', 5"'	7.02 (1H, d, 8.8)	116.6
4'		154.1	4'''		161.3
5'	7.15 (1H, d, 8.2)	118.5			
6'	7.88 (1H, m)	121.8			

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

1.3 Structure Determination of Compound 170

Compound 170 was obtained as a yellow solid. The UV absorption bands (Figure 21) appeared at λ_{max} 295, 254 and 204 nm. The IR spectrum displayed (Figure 22) absorption bands at 3337 (OH stretching), 1632 (conjugated C=O stretching) and 1112 (C-O stretching) cm⁻¹. The FABMS spectrum (Figure 23) exhibited a quasimolecular ion peak [M+H]⁺ at m/z 373, consistent to the molecular formula $C_{20}H_{21}O_7$. This compound was identified as 3,3',4',5,7-pentahydroxy-6-prenylflavanone (Buckingham, 2001). The ¹H NMR spectrum (Figure 24) showed the typical AB coupled protons at δ 4.87 and 4.48 (J=11.5 Hz, each) due to H-2 and H-3 of a dihydroflavonol, respectively. The olefinic proton at δ 5.18, methylene protons at δ 3.20, two methyl group protons at δ 1.74 and δ 1.64 were assigned to H-10, CH₂-9, CH₃-12 and CH₃-13, respectively. The ¹³C NMR spectrum (Figure 25) showed twenty carbon signals, corresponding to a dihydroflavonol with a prenyl moiety. The ¹H and ¹³C NMR assignments were studied using ¹H-¹H COSY (Figure 26), HMQC (Figures 27-28) and HMBC (Figures 29-30) experiments as shown in Table 23.

Table 23 The 1 H and 13 C NMR data of compound 170 in MeOH- d_4

Position	1 H δ (ppm), J (Hz)	¹³ C δ (ppm)
2	4.87 (1H, d, 11.5)	85.9
3	4.48 (1H, d, 11.5)	74.6
4		199.2
4a		102.4
5		110.8
6	9 =	163.0
7		167.1
8	5.90 (1H, s)	96.3
8a		163.0
9	3.20 (2H, d, 11.5)	22.7
10	5.18 (1H, t, 0.9, 0.9)	124.5
11		132.5
1'	Walder Committee	130.8
2'	6.95 (1H, d, 2.0)	116.7
3'		147.1
4'		147.9
5'	6.79 (1H, d, 12.0)	116.9
6'	6.83 (1H, d, 12.0)	121.7
12-CH ₃	1.74 (3H, d, 1.3)	18.6
13-CH ₃	1.64 (3H, d, 1.3)	26.7

1.4 Structure Determination of Compound 1

Compound 1 was obtained as a yellow solid. The UV spectrum (Figure 31) displayed absorptions at 370, 391, 286, 254 and 203 nm. The FABMS spectrum (Figure 32) showed a quasimolecular ion peak at m/z 511, suggesting a molecular formula of C₃₀H₂₃O₈. The ¹³C NMR spectrum (Figure 34) provided thirty carbon signals, including two carbonyl carbons, twenty-six sp² carbons and two aliphatic carbons. Compound 1 was identified as lophirone C (1) (Ghogomu Tih, et al., 1989). The ¹H NMR spectrum (Figure 33) showed a pair of doublet signals (J=15.5 Hz, each) at δ 7.71 and 7.80 ppm assignable to the trans olefinic protons H- α and H- β . The aromatic ring protons showed an ABX coupling system at δ 6.35 (J=2.3 Hz), 6.49 (J=2.3, 8.9 Hz) and 8.00 (J=8.9 Hz) which were assigned to H-3', H-5' and H-6', respectively. The other ABX coupled aromatic signals at δ 7.63 (J=1.6 Hz), 7.00 (J=8.6 Hz) and 7.83 (J=1.6, 8.6 Hz) were assigned to H-2, H-5 and H-6. The proton signals at δ 6.42 (J=2.6 Hz), 6.56 (J=2.6, 8.9 Hz) and 7.98 (J=8.9 Hz) ppm were assigned to H-3", H-5" and H-6", respectively. The H-2"(6") and H-3"(5") aromatic protons were observed at δ 7.32 (J=2.0, 6.6 Hz) and 6.87 (J=2.0, 6.6 Hz). The complete ¹H and ¹³C NMR assignments of compound 1 were obtained by ¹H-¹H COSY (Figure 35), HMQC (Figures 36-37) and HMBC (Figures 38-41) experiments.

Table 24 The 1 H and 13 C NMR data of compound 1 in acetone- d_6

Position	1 H δ (ppm), J (Hz)	¹³ C δ (ppm)	Position	1 H δ (ppm), J (Hz)	¹³ C δ (ppm)
1		128.3	1"		131.1
2	7.63 (1H, d, 1.6)	126.2	2", 6"	7.32	127.9
				(2H, dd, 2.0, 6.6)	
3		128.3	3", 5"	6.87	115.5
				(2H, dd, 2.0, 6.6)	
4		162.3	4"		157.9
5	7.00 (1H, d, 8.6)	110.1	1‴		113.0
6	7.83	131.2	2""		166.0
	(1H, dd, 8.6, 1.6)	1/// 6.20			
α	7.71 (1H, d, 15.5)	118.6	3‴	6.42 (1H, d, 2.6)	103.0
β	7.80 (1H, d, 15.5)	143.9	4'''		162.3
CO(c)		191.8	5'''	6.56	108.8
		MAGICA		(1H, d, 2.6, 8.9)	
1'		113.6	6'''	7.98 (1H, d, 8.9)	133.9
2'		166.4			
3′	6.35 (1H, d, 2.3)	102.8			
4'		164.8			
5'	6.49	107.9	0		
	(1H, dd, 2.3, 8.9)	าทยท	5 W 8	ากร	
6′	8.00 (1H, d, 8.9)	132.4			
α΄	undetected	undetected	หาว	ทยาลัย	
β′	6.20 (1H, s)	87.7			
CO (c')		200.4			

1.5 Structure Determination of Compound 171

Compound 171 was obtained as an orange amorphous solid. The UV spectrum (Figure 42) showed absorptions at 359, 342, 299, 259 and 201 nm. The IR spectrum (Figure 43) exhibited absorption bands at 2926 (CH-stretching), 1741 (C=O stretching) and 807 (aromatic out of plane bending) cm⁻¹. The FABMS spectrum (Figure 44) revealed the $[M+H]^+$ at m/z 525, corresponding to the molecular formula $C_{30}H_{21}O_9$. The ¹³C NMR spectrum (Figure 46) exhibited thirty carbon signals: two carbonyl carbons, twenty-eight sp^2 carbons. Compound 171 were identified as 3-(2,4-dihydroxybenzoyl)-4,6-dihydroxy-2-(4-hydroxyphenyl)-1-benzofuran-7-yl 2-(4-hydroxyphenyl) ethenyl ketone (171) (Marston, *et al.*, 1988). The ¹H NMR spectrum (Figure 45) showed the *trans* coupled olefinic H-1' and H-2' protons at δ 7.91 and 8.26 ppm (J=15.2 Hz). The AABB' type doublets (J=8.8 Hz, each) at δ 7.72 and 6.97 belonged to H-2", 6" and H-3", 5". The other AABB' type protons (J=8.4 Hz, each) at δ 7.61 and 6.91 were assigned to H-4', 8' and H-5', 7'. The aromatic protons showing an ABX coupling system at δ 6.35 (J=2.4 Hz), 6.21 (J=2.4, 9.2 Hz) and 7.43 (J=9.2 Hz) ppm, were assigned to H-3", 5" and H-6".

Table 25 The ¹H and ¹³C NMR data of compound 171 in acetone-d₆

Position	Compo	und171	3-(2,4-dihydroxybenzo 2-(4-hydroxyphenyl)-1 (4-hydroxyphenyl) eth	-benzofuran-7-yl 2-
	¹ H δ (ppm), <i>J</i> (Hz)	¹³ C δ (ppm)	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2		153.0		150.0
3		113.8		112.1
3a		112.1		111.2
4		166.6		165.6
5	6.23 (1H, s)	99.8	6.25 (1H, s)	98.4
6		159.5		153.7
7		102.3		101.0
7a		154.9		153.7
1'	7.91 (1H, d, 15.2)	123.0	7.85 (1H, d, 15.1)	121.6
2'	8.26 (1H, d, 15.2)	144.9	8.15 (1H, d, 15.1)	144.1
3'		127.8		125.8
4′, 8′	7.61 (2H, d, 8.4)	131.5	7.69 (2H, d, 8.0)	130.7
5', 7'	6.91 (2H, d, 8.4)	117.0	6.89 (2H, d, 8.5)	116.4
6'		161.2		160.4
CO (c')	60	190.3		188.9
1"	9223	121.7	WETTIE	119.7
2", 6"	7.72 (2H, d, 8.8)	129.2	7.50 (2H, d, 8.0)	127.2
3", 5"	6.97 (2H, d, 8.8)	116.8	6.85 (2H, d, 8.0)	116.0
4"	9	159.5		158.4

Table 25 The ¹H and ¹³C NMR data of compound 171 in acetone-d₆ (continued)

Position	Compo	Compound171		2-(4-hydroxypho		benzoyl)-4,6-dihydroxy- nyl)-1-benzofuran-7-yl nyl) ethenyl ketone *	
	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)			
1‴		115.4		114.2			
2'''		166.6		165.6			
3‴	6.35 (1H, d, 2.4)	103.4	6.33 (1H, d, 2.4)	102.4			
4'''		167.7		164.5			
5'''	6.21 (1H, dd, 2.4, 9.2)	109.3	6.26 (1H, dd, 2.4, 8.8)	108.8			
6'''	7.43 (1H, d, 9.2)	136.7	7.32 (1H, d, 8.8)	135.3			
CO (c"')		196.8		195.0			

^{*} DMSO-d₆

1.6 Structure Determination of Compound 172

Compound 172 was obtained as a yellow solid. The UV spectrum (Figure 47) showed absorption bands at 368, 285, 261 and 202 nm. The IR spectrum (Figure 48) displayed absorption bands at 3647 (OH-stretching), 3110 (CH-stretching), 1625 (C=O stretching) and 979 (aromatic out of plane bending) cm⁻¹. The FABMS (Figure 49) exhibited the quasimolecular ion peak [M+H] at m/z 527, consistent with The ¹³C NMR spectrum (Figure 51) included thirty carbon signals, $C_{20}H_{22}O_{01}$ comprising two carbonyl carbons, two methine carbons and twenty six sp^2 carbons. The ¹H (Figure 50) and ¹³C NMR (Figure 51) spectra resembled those of compound 171, except that a pair of the trans coupling methine protons (J=5.6 Hz) at δ 6.07 and 5.32 ppm, C-2 (δ 90.1 ppm) and C-3 (δ 54.3 ppm) were aliphatic. These data suggested that compound 172 was a dihydro derivative of compound 171. Compound 172 was characterized as 3-(2,4-dihydroxybenzoyl)-2,3-dihydro-4,6-dihydroxy-2-(4hydroxyphenyl)-1-benzofuran-7-yl 2-(4-hydroxyphenyl) ethenyl ketone (172) (Marston, et al., 1988). The ¹H and ¹³C assignments of this compound were studied using ¹H-¹H COSY (Figure 52), HMQC (Figures 53-54) and HMBC (Figures 55-57) techniques as shown in Table 26.

Table 26 The 1 H and 13 C NMR data of compound 172 in acetone– d_{6}

Position	1 H δ (ppm), J (Hz)	¹³ C δ (ppm)	Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2	6.07 (1H, d, 5.6)	90.1	1"		131.4
3	5.32 (1H, d, 5.6)	54.3	2", 6"	7.37 (2H, d, 8.2)	127.5
3a		105.1	3", 5"	6.90 (2H, d, 6.6)	115.7
4		167.3	4"		158.0
5	5.96 (1H, s)	96.4	1'''		113.1
6		167.8	2"'		166.4
7		101.4	3‴	6.37 (1H, d, 2.3)	103.2
7a		163.3	4'''		165.5
1'	8.02 (1H, d, 15.5)	122.6	5'''	6.38	108.0
		/ a (G) /		(1H, dd, 2.3, 8.7)	
2'	7.80 (1H, d, 15.5)	143.4	6'''	7.77 (1H, d, 8.7)	133.4
3'		127.0	CO (c"')		202.1
4′, 8′	7.49 (2H, d, 8.2)	130.5	9/1		
5′, 7′	6.85 (2H, d, 8.6)	116.0			
6′		160.0		(6)	
CO (c')	V _A	190.6		NO.	

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

1.7 Structure Determination of Compound 173

Compound 173 was obtained as a yellow solid. The HRFABMS showed the [M+H]⁺ at m/z 527.1362 (calcd 527.1342) consistent with the molecular formula, $C_{30}H_{23}O_9$. The UV spectrum (Figure 58) showed absorption bands at 374, 292 and 203 nm. The IR spectrum (Figure 59) exhibited absorption bands at 3330 (OH stretching), 1628 (C=O stretching), 1161 (C-O stretching) and 825 (aromatic out of plane bending) cm⁻¹. Its ¹³ C NMR spectrum (Figure 61) exhibited 30 signals which were comprised by two carbonyls, two aliphatic methines, and twenty six olefinic and aromatic carbons, suggesting a biflavonoid structure. In the ¹H NMR spectrum (Figures 62-63) of 173, the typical olefinic protons of a chalcone structure at δ 7.67 and 7.72 (J=15.2) Hz, each) and the characteristic aliphatic protons of a flavanone skeleton at δ 4.66 and 5.90 (J=12.0 Hz, each) indicated a biflavonoid skeleton of the chalcone-flavanone type for 173. Examination of the ¹H NMR properties of 173 in comparison with those of known biflavonoids containing a chalcone-flavanone structure revealed some similarities between 173 and lophirone B, a biflavonoid obtained from Lophira lanceolata (Ghogomu Tih, et al., 1989), except that in 173 the H-5" signal appeared as a doublet at δ 6.01 (J = 2.0 Hz), and the H-6" resonance was not evident, being replaced by a chelated phenolic proton at δ 12.27 (Table 27). In support of this, the ¹³C NMR spectrum of 173 displayed a significant downfield shift for C-6" (δ 34.7 ppm) and expected upfield shifts for C-1" (δ 13.0 ppm) and C-5" (δ 15.2 ppm), as compared with their counterparts in lophirone B. The presence of an OH-6" substituent was confirmed by the long-range couplings with C-1" and C-5", and the C-3 to C- α' interflavonoid linkage was ascertained by the correlations of H-2 to C- α' , and H- β ' to C-3 in the HMBC spectrum (Figures 66-70). Thus, 173 is the OH-6" derivative of lophirone B. With regard to the stereochemistry of C- α' and C- β' carbons on the pyrone ring of the flavanone unit, the large vicinal coupling constant (J=12.0 Hz) between H- α' and H- β' was suggestive of a trans relative configuration. The absolute configuration was then determined by comparing the CD spectrum

(Figure 71) of 173 with that of (2S,3R)-4',5,7-tri-O- methylnaringenin $(3\beta,3')$ - α , 2',4,4',6'-pentamethoxychalcone (Bekker, Brandt and Ferreira, 1996). It was observed that the CD data of 173 resembled those of (2S,3R)-4',5,7-tri-O-methylnaringenin- $(3\beta,3')$ - α ,2',4,4',6'-pentamethoxychalcone ($[\theta]_{326.1} = +3.2 \times 10^3$, ($[\theta]_{275} = -3.6 \times 10^{-3}$), exhibiting a positive Cotton effect at 323.1 nm ($[\theta]_{323.1} = +5.5 \times 10^3$) and a negative sign at 288.2 nm ($[\theta]_{288.2} = -3.7 \times 10^4$). Therefore, the absolute configuration of compound 173 was assigned $\alpha'R$, $\beta'S$. Compound 173 was characterized as 6'''-hydroxylophirone B (173). Its structure was hitherto unknown. The 1 H and 13 C assignments are shown in Table 27.

คูนยวทยทรพยากร เาลงกรณ์มหาวิทยาลัเ

Table 27 The ¹H and ¹³C NMR data of compound 173 in acetone-d₆

Position	¹ H δ (ppm), <i>J</i> (Hz)	¹³ C δ (ppm)	Position	¹ H δ (ppm), <i>J</i> (Hz)	¹³ C δ (ppm)
1		126.8	α΄	4.66 (1H, d, 12.0)	54.3
2	7.55 (1H, <i>br s</i>)	133.4	β΄	5.90 (1H, d, 12.0)	82.5
3		123.1	CO (c')		197.0
4		157.9	1"		129.1
5	6.86 (1H, d, 8.9)	115.8	2", 6"	7.29	129.2
				(2H, dd, 2.0, 6.6)	
6	7.56 (1H, m)	129.8	3", 5"	6.74	115.0
				(2H, dd, 2.0, 6.6)	
α	7.67 (1H, d, 15.2)	117.6	4"		157.7
β	7.72 (1H, d, 15.2)	144.2	1'''		102.2
CO(c)		191.9	2'''		163.5
1'		113.7	3‴	6.00 (1H, d, 2.0)	95.0
2'		166.8	4‴		166.4
3'	6.36 (1H, d, 2.3)	103.0	5‴	6.01 (1H, d, 2.0)	96.2
4'		164.8	6'''		164.8
5'	6.45	107.9	OH-2'	13.60 (1H, s)	
	(1H, dd, 2.3, 8.9)				
6'	8.01 (1H, d, 8.9)	132.4	OH-6"	12.27 (1H, s)	

The proposed biogenetic pathway of 6"-hydroxylophirone B (173)

The starter units are 4-hydroxy cinnamoyl CoA (182) from the shikimate pathway and the chain extension unit, using three molecules of malonyl CoA from the polyketide pathway. The poly β keto chain could be folded using chalcone synthase enzyme by claisen-like reaction and generated naringenin chalcones (183). In the other way, the action of a reductase enzyme concomitant with the chalcone synthase gives isoliquiritigenin (184) (Dewick, 2002). One electron oxidation of chalcones 183 and 184 yields intermediates 185 and 186. Then subsequent regioselective dimerization

gives 187. Structure 187 cyclizes to form a chromanone ring of compound 173 (Shimamura, et al., 1996).

Scheme 2 The proposed biogenetic pathway of 6"'-hydroxylophirone B (173)

1.8 Structure Determination of Compound 27

Compound 27 was obtained as a white solid. The UV absorption spectrum (Figure 72) showed absorption bands at 286, 263, 234, 227 and 202 nm. The IR spectrum (Figure 73) exhibited OH stretching at 3170 cm⁻¹, C=O stretching at 1627 cm⁻¹ and C-O stertching at 1199 cm⁻¹. The FABMS (Figure 74) displayed the [M+H]⁺ at m/z 511, suggesting the molecular formula $C_{30}H_{23}O_8$. The ¹H and ¹³C NMR data of compound were in agreement with the known compound lophirone A (27) (Ghogomu, et al., 1987). The ¹³C NMR spectrum (Figure 77) exhibited thirty carbon signals, including two carbonyl carbons, two methine carbons and twenty six sp² carbons. The ¹H NMR spectrum (Figures 75-76) exhibited the trans coupled protons H-11 and H-19 (J= 12.4) Hz, each) at δ 6.09 and 4.75 ppm. The AA'BB' coupling type protons at δ 6.61 (J= 8.4 Hz) and 7.21 (J= 8.4 Hz) ppm were assigned to H-22, H-24 and H-21, H-25. The other AA'BB' coupling aromatic ring protons at δ 6.66 (J= 8.8 Hz, each) and 7.21 (J= 8.4 Hz, each) ppm were assigned to H-28, 30 and H-27, 31. The ABX coupling type protons at δ 7.89 (J= 9.2 Hz), 6.84 (J= 9.2, 2.4 Hz) and 6.73 (J= 2.4 Hz) ppm were assigned to H-5, H-6 and H-8. The trisubstitued aromatic ring protons at δ 6.15 (J= 2.4 Hz), 6.40 (J=8.8, 2.4 Hz) and 8.30 (J=8.8 Hz) ppm belonged to H-15, H-17 and H-18, respectively.

Table 28 The ¹H and ¹³C NMR data of compound 27 in acetone-d₆

Position	Compour	nd 27	Lophirone A	,
	¹ H δ (ppm), <i>J</i> (Hz)	¹³ C δ (ppm)	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2	8.22 (1H, s)	156.2	8.27 (1H, s)	156.3
3		122.2		122.1
4		175.1		175.4
5	7.89 (1H, d, 9.2)	128.3	7.94 (1H, d, 8.8)	128.1
6	6.84 (1H, dd, 2.4, 9.2)	115.9	6.91 (1H, dd, 2.3, 8.8)	115.9
7		163.3		163.4
8	6.73 (1H, d, 2.4)	103.2	6.77 (1H, d, 2.3)	103.1
9		158.5		158.5
10		117.3		117.2
11	6.09 (1H, d, 12.4)	43.9	6.14 (1H, d, 12.3)	43.9
12		204.6		204.5
13		114.1		114.0
14		166.8		166.8
15	6.15 (1H, d, 2.4)	103.4	6.20 (1H, d, 2.4)	103.3
16		166.0		166.1
17	6.40 (1H, dd, 2.4, 8.8)	109.0	6.44 (1H, dd, 2.4, 9.0)	108.9
18	8.30 (1H, d, 8.8)	134.5	8.34 (1H, d, 9.0)	134.3
19	4.75 (1H, d, 12.4)	53.3	4.80 (1H, d, 12.3)	53.4
20	al Lo	134.7		134.5
21	7.21 (1H, d, 8.4)	130.1	7.26 m	130.0
22	6.61 (1H, d, 8.4)	115.8	6.61 m	115.7
23		156.5		156.4
24	6.61 (1H, d, 8.4)	115.8	6.61 m	115.7
25	7.21 (1H, d, 8.4)	130.1	7.25 m	130.0

Table 28 The ¹H and ¹³C NMR data of compound 27 in acetone-d₆ (continued)

Position	Compound 27		Lophirone A ,		
	¹ H δ (ppm), <i>J</i> (Hz)	¹³ C δ (ppm)	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)	
26		135.7		135.6	
27	7.21 (1H, <i>d</i> , 8.4)	129.5	7.25 m	129.4	
28	6.66 (1H, d, 8.8)	115.9	6.65 m	115.9	
29		156.5		156.4	
30	6.66 (1H, d, 8.8)	115.9	6.65 m	115.9	
31	7.21 (1H, d 8.4)	129.5	7.26 m	129.4	

1.9 Structure Determination of Compound 21

Compound 21 was obtained as a white solid. The UV spectrum (Figure 78) displayed absorption bands at 284, 262, 233, 227 and 202 nm. The IR spectrum (Figure 79) exhibited OH stretching at 3141 cm⁻¹, CH stretching at 2922 cm⁻¹, C=O stretching at 1628 cm⁻¹, C-O stertching at 1199 cm⁻¹ and aromatic out of plane bending at 956 cm⁻¹. The FABMS (Figure 80) revealed the [M+H]⁺ at m/z 525, consistent with the molecular formula $C_{31}H_{25}O_8$. The ¹H and ¹³C NMR spectra (Figures 81-83) were similar to those of compound 27, except that a methoxy group was observed at δ_C 56.0 and δ_H 3.78 ppm. The ¹H NMR (Figure 84) exhibited *trans* aliphatic coupled protons, H-11 and H-19 (J= 12.0 Hz, each) at δ 6.10 and 4.75 ppm. The chemical shifts of C-15 (δ 101.4 ppm) was more upfield than those of compound 27, suggesting that the electron donating methoxy group was located at C-16. Compound 21 was identified as calodenone (21). The ¹H and ¹³C NMR data of compound 21 were in agreement with previously reported values (Messanga, *et al.*, 1992).

Table 29 The ¹H and ¹³C NMR data of compound 21 in acetone-d₆

Position	Compound 21		Calodenone	
	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)	¹ H δ (ppm), <i>J</i> (Hz)	
2	8.23 (1H, s)	156.2	8.26 (1H, s)	
3		122.0		
4		175.1		
5	7.87 (1H, d, 8.8)	128.2	7.91 (1H, d, 8.8)	
6	6.87 (1H, dd, 2.3, 8.8)	115.9	6.88 (1H, dd, 2.3, 8.8)	
7		163.4		
8	6.72 (1H, d, 2.4)	103.1	6.74 (1H, d, 2.3)	
9		158.5		
10		117.2		
11	6.10 (1H, d, 12.0)	44.1	6.14 (1H, d, 12.3)	
12		205.0		
13	V // _	114.5		
14	/ V	167.5		
15	6.25 (1H, d, 2.8)	101.4	6.28(1H, d, 2.4)	
16	8	166.8		
17	6.46 (1H, dd, 2.8, 9.0)	108.2	6.48(1H, dd, 2.4, 8.1)	
18	8.34 (1H, d, 9.2)	133.9	8.37 (1H, d, 8.1)	
19	4.75 (1H, d, 12.0)	53.3	4.78 (1H, d, 12.3)	
20	J POL OFFI	134.5	D 11110	
21	7.21 (1H, <i>d</i> , 8.4)	130.4	7.24 m	
22	6.56 (1H, d, 8.4)	115.8	6.59 m	
23		156.5		
24	6.56 (1H, d, 8.8)	115.8	6.59 m	
25	7.21 (1H, d, 8.4)	130.0	7.24 m	

Table 29 The ¹H and ¹³C NMR data of compound 21 in acetone-d₆ (continued)

Position	Compour	Compound 21		
	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)	¹ H δ (ppm), J (Hz)	
26		135.6		
27	7.21 (1H, d, 8.4)	129.4	7.24 m	
28	6.60 (1H, d, 8.8)	115.9	6.63 m	
29		156.5		
30	6.60 (1H, d, 8.8)	115.9	6.63 m	
31	7.21 (1H, d, 8.4)	129.4	7.24 m	
OCH ₃	3.78 (3H, s)	56.0	3.77 (3H, s)	
ОН	12.66 (1H, s)		12.69 (1H, s)	

1.10 Structure Determination of Compound 174

Compound 174 was isolated as a yellow solid. The UV spectrum (Figure 84) showed absorption bands at 369, 285 and 205 nm. The IR spectrum (Figure 85) exhibited OH stretching at 3343 cm⁻¹, C=O stretching at 1632 cm⁻¹ and C-O stertching at 1172 cm $^{-1}$. The molecular formula was determined to be $C_{36}H_{33}O_{14}$ by the $[M+H]^{+}$ at m/z 689.1837 (calcd 689.1870) in the HRFABMS. The ¹H NMR (Figure 87) and ¹³C NMR (Figures 88-89) spectra of 174 were reminiscent of those of 173, with additional signals for a sugar moiety. The 1 H NMR signals at δ 5.11 (H-1""), 3.47 (H-2""), 3.47 (H-3""), 3.55 (H-4""), 3.62 (H-5""), 3.70 and 3.88 (H₃-6""), together with the coupling constant between H-1" and H-2" (J=7.6 Hz), indicated a glucopyranosyl unit with β -configuration. This was also corroborated by the ¹³C NMR resonances at δ 100.3 (C-1""), 73.6 (C-2""), 70.2 (C-3""), 76.8 (C-4""), 77.1 (C-5"") and 61.6 (C-6""). The sugar unit was connected to the aglycon via an ether bridge linking its anomeric carbon to C-4" of the flavanone part, as evidenced by the NOEs of H-1" with H-3" and H-5" (Figure 92), and the HMBC coupling between H-1"" and C-4" (Figure 93). From the above spectral data, it could be concluded that 174 is 6"-hydroxylophirone B 4"'-O-βglucoside. Compound 174 showed positive and negative CD Cotton effects (Figure 95) at wavelengths similar to those of 173 and (2S,3R)-4',5,7-tri-O-methylnaringenin- $(3\beta,3')$ - $\alpha,2',4,4',6'$ -pentamethoxy-chalcone (Bekker, Brandt and Ferreira, 1996) $([\theta]_{352.6 \text{ nm}} + 3.8 \times 10^3 \text{ and } [\theta]_{287.0 \text{ nm}} - 2 \times 10^4)$. This indicated that 174 also possessed the $\alpha'R$, $\beta'S'$ absolute configuration. The ¹H and ¹³C assignments were shown in Table 30.

Table 30 The ¹H and ¹³C NMR data of compound 174 in acetone-d₆

Position	1 H δ (ppm), J (Hz)	¹³ C δ (ppm)	Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
1		126.8	3'	6.36 (1H, d, 2.3)	103.5
2	7.55 (1H, <i>br s</i>)	133.4	4'		164.7
3		122.8	5'	6.45	107.9
		CHENNY)		(1H, dd, 2.3, 9.0)	
4		157.8	6'	8.00 (1H, d, 9.0)	132.4
5	6.88 (1H, d, 8.2)	115.8	α΄	4.70 (1H, d, 12.0)	53.5
6	7.56	129.8	β΄	5.93 (1H, d, 12.0)	82.7
	(1H, dd, 2.3, 8.2)		0		
α	7.65 (1H, d, 15.2)	117.7	CO (c')	BITTE	197.6
β	7.71 (1H, d, 15.2)	144.1	1"		128.9
CO(c)	ลหาลง <i>า</i>	191.8	2", 6"	7.30	129.2
	9			(2H, dd, 2.0, 6.6)	
1'		113.6	3", 5"	6.75	115.0
				(2H, dd, 2.0, 6.6)	
2'		166.9	4"		157.8

Table 30 The ¹H and ¹³C NMR data of compound 174 in acetone–d₆ (continued)

Position	1 H δ (ppm), J (Hz)	¹³ C δ (ppm)	Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
1′′′		102.8	1""	5.11 (1H, d, 7.6)	100.3
2""		163.2	2''''	3.47	73.6
				(1H, dd, 7.6, 7.9)	
3‴	6.20 (1H, d, 2.3)	95.6	3""	3.47	70.2
				(1H, dd, 7.9, 8.9)	
4‴		166.4	4""	3.55	76.8
				(1H, dd, 8.9, 8.9)	
5'''	6.22 (1H, d, 2.3)	97.0	5""	3.62 (1H, m)	77.1
6'''		165.8	6""	3.70	61.6
				(1H, dd, 5.3, 11.9)	
				3.88	
		1 9.444(0)	44	(1H, dd, 2.6, 11.9)	

ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย

1.11 Structure Determination of Compound 26

Compound 26 was obtained as a white solid. The UV spectrum (Figure 96) showed absorption bands at 271, 236 and 201 nm. The IR spectrum (Figure 97) exhibited absorption bands at 2930 (OH stretching), 1783 (C=O stretching), 1187 (C-O stretching) and 942 (aromatic out of plane bending) cm⁻¹. The FABMS (Figure 98) revealed the $[M+H]^+$ at m/z 313, suggesting that the molecular formula was $C_{17}H_{13}O_6$. Compound 26 was identified as 5-hydroxy-4'-methoxy-6,7-methylenedioxy isoflavone, which was previously isolated from *O. calodendron* (Messanga *et al.*, 1998). The ¹H NMR spectrum (Figure 99) showed a singlet (2H) at δ 6.11 ppm due to the methylenedioxy protons. The characteristic H-2 of isoflavone was observed at δ 7.90 ppm. The singlet proton at δ 7.90 ppm belonged to H-8. The AA'BB' coupling protons at δ 7.47 and 6.99 ppm (J=8.4 Hz, each) were assigned to H-2', δ ' and H-3', δ '. The intermolecular hydrogen bonding protons was observed at δ 12.80 ppm. Comparison the ¹H NMR pattern of this compound with those of compound 175 indicated that methoxy group was substituted at C-4'.

Table 31 The ¹H NMR data of compound 26 in CDCl₃

	Compound 26	Compound 175
	1 H δ (ppm), J (Hz)	¹ H δ (ppm), <i>J</i> (Hz
2	7.90 (1H, s)	7.77 (1H, s)
3		
4	SX(11)/	
4a		
5		
6.		
7		
8	6.51 (1H, s)	6.63 (1H, s)
8a		
1'		
2', 6'	7.47 (2H, d, 8.4)	7.47 (2H, d, 6.6)
3', 5'	6.99 (2H, d, 8.4)	6.94 (2H, d, 6.6)
4'	72222	
-OCH ₂ O-	6.11 (2H, s)	6.06 (2H, s)
5-OH	12.80 (1H, s)	N.
5-OCH ₃		4.08 (3H, s)
	3.84 (3H, s)	3.83 (3H, s)

1.12 Structure Determination of Compound 58

Compound 58 was obtained as a white solid. The UV spectrum (Figure 100) exhibited absorption bands at 273, 241, 219, 212 and 202 nm. The IR spectrum (Figure 101) showed absorption bands at 2970 (OH stretching), 2355 (CH stretching), 1679 (C=O stretching) and 930 (aromatic out of plane bending) cm⁻¹. The FABMS (Figure 102) revealed the $[M+H]^+$ at m/z 343, suggesting the molecular formula $C_{18}H_{15}O_7$. The ¹H NMR spectrum (Figure 103) displayed the characteristic H-2 singlet proton peak at δ 7.90 ppm. The ABX type protons at δ 7.10, 6.92 (J=8.1 Hz) and 7.07 (J=8.1 Hz) ppm were assigned to H-2', H-5' and H-6'. A methoxy group at δ_H 3.91 ppm was considered to be located at C-3', as suggested by the HMBC correlation between these methoxy protons and C-3' (δ_C 149.4 ppm). The other methoxy group at δ_H 3.90 ppm was placed at C-4', as indicated by the HMBC correlation between these methoxy protons and C-4' (δ_C 149.9 ppm) (Figures 106-107). The methylenedioxy protons were present at δ 6.10 ppm. Compound 58 was identified as squarrosin (Rao and Gunasekar, 1989). The ¹³C NMR assignments have been reported for the first time in this study.

Table 32 The ¹H and ¹³C NMR data of compound 58 in CDCl₃

Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2	7.90 (1H, s)	153.3
3		123.9
4		181.7
4a		108.8
5		143.1
6		130.0
.7		154.6
8	6.49 (1H, s)	89.7
8a		154.0
1'	1 1 1 1 (G) 1 (G)	123.6
2'	7.10 (1H, s)	112.9
3'	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	149.4
4'		149.9
5'	6.92 (1H, d, 8.1)	111.8
6'	7.07 (1H, d, 8.1)	121.7
-OCH ₂ O-	6.10 (2H, s)	103.1
5-OH	12.78 (1H, s)	
3'-OCH ₃	3.91 (3H, s)	56.4
4'-OCH ₃	3.90 (3H, s)	56.4

1.13 Structure Determination of Compound 175

Compound 175 was obtained as a white solid. The UV spectrum (Figure 108) showed absorption bands at 323, 307, 264, 235 and 203 nm. The FABMS (Figure 109) displayed the $[M+H]^+$ at m/z 327, corresponding to $C_{18}H_{15}O_6$. The ^{13}C NMR spectrum (Figure 111) displayed eighteen carbon signals: a carbonyl carbon, two methoxy carbons, a methylene carbon and fourteen sp^2 carbons. The ^{1}H NMR (Figure 110) spectrum of compound 175 was similar to that of compound 26. The presence of a methoxy group at δ 4.08 ppm and the absence of perihydroxy at δ 12.80 ppm was observed, indicating that the methoxy group was located at C-5. This was confirmed by the HMBC spectrum (Figures 113-114), showing the correlation between 5-OCH₃ (δ_H 4.08 ppm) with C-5 (δ_C 141.8 ppm). From the above data, compound 175 was identified as 5,4'-dimethoxy-6,7-methylenedioxy isoflavone (El-Emary *et al.*, 1980). This study provided the first ^{13}C NMR report for this compound.

(175)

Table 33 The ¹H and ¹³C NMR data of compound 175 in CDCl₃

Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2	7.77 (1H, s)	150.3
3		125.4
4		175.5
4a	NAMI///	113.9
5		141.8
6	9	152.9
7		135.6
8	6.63 (1H, s)	93.3
8a	///////////////////////////////////////	154.8
1'	// / (6)	124.2
2', 6'	7.47 (2H, d, 6.6)	130.4
3', 5'	6.94 (2H, d, 6.6)	114.0
4'	ANGLING III	159.6
-OCH ₂ O-	6.06 (2H, s)	102.2
5-OCH ₃	4.08 (3H, s)	61.3
4'-OCH ₃	3.83 (3H, s)	55.4

1.14 Structure Determination of Compound 60

Compound **60** was obtained as a white solid. The UV spectrum (Figure 115) showed absorption bands at 266, 240 and 203 nm. The FABMS (Figure 116) exhibited the $[M+H]^+$ at m/z 357, consistent to $C_{19}H_{17}O_7$. Compound **60** was identified as 5,3',4'-trimethoxy-6,7-methylenedioxy isoflavone (Rao and Gunasekar, 1989). The 13 C NMR spectrum (Figure 117) displayed nineteen carbon signals: a carbonyl carbon, three methoxy carbons, a methylene carbon and fourteen sp^2 carbons. The 1 H NMR spectrum (Figure 118) was similar to that of compound **58**. This compound showed a methoxy group at δ 4.08 ppm, suggesting that the methoxy group was positioned at C-5. This was confirmed by the HMBC correlation (Figures 120-121). The first 13 C NMR data of **60** was obtained in this study.

คูนยวทยทรพยากร กลงกรณ์มหาวิทยาลัย

Table 34 The ¹H and ¹³C NMR data of compound 60 in CDCl₃

Position	¹ H δ (ppm), <i>J</i> (Hz)	¹³ C δ (ppm)
2	7.80 (1H, s)	150.5
3		125.5
4		175.5
4a		113.9
5		141.8
6		135.6
7.		152.9
8	6.63 (1H, s)	93.3
8a	////b. @ A\\	154.8
1'	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	124.7
2'	7.20 (1H, d, 1.9)	112.9
3'	2), (1)(((((()))))) ((()))	148.8
4'		149.1
5'	6.90 (1H, d, 8.2)	111.1
6'	7.00 (1H, d, 1.9, 8.2)	121.4
-OCH ₂ O-	6.10 (2H, s)	102.3
5-OCH ₃	4.08 (3H, s)	61.3
3'-OCH ₃	3.90 (3H, s)	56.0
4'-OCH ₃	3.92 (3H, s)	56.1

1.15 Structure Determination of Compound 176

Compound 176 was obtained as a white solid. The UV spectrum (Figure 122) showed absorption bands at 257, 232 and 203 nm. The FABMS (Figure 123) revealed the $[M+H]^+$ at m/z 315, corresponding to $C_{17}H_{15}O_6$. The ^{13}C NMR spectrum (Figure 125) displayed seventeen carbons, including a carbonyl carbon, two methoxy carbons and fourteen sp^2 carbons. The 1H NMR spectrum (Figure 124) showed a characteristic H-2 of isoflavone at δ 8.06 ppm. The meta coupled protons at δ 6.36 and 6.37, (J=2 Hz, each) were assigned to H-6 and H-8, respectively. The ABX coupling type protons at δ 7.07 (J=2 Hz), 6.76 (J=8.2 Hz) and 7.00 (J=2, 8.2 Hz) belonged to H-2', H-5' and H-6'. From the NOE difference spectrum (Figure 129), 3'-OCH₃ (δ_H 3.77 ppm) showed NOE enhancements with H-2' (δ_H 7.07 ppm). This compound was identified as gerontoisoflavone A (176), (Chang *et al.*, 1995).

ศูนยวทยทรพยากร ซาลงกรณ์มหาวิทยาลัย

Table 35 The 1 H and 13 C NMR data of compound 176 in DMSO- d_{6}

Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2	8.06 (1H, s)	150.7
3		124.7
4		173.8
4a	SAMMA	107.8
5		161.2
6	6.36 (1H, d, 2.0)	96.5
7		162.5
8	6.37 (1H, d, 2.0)	94.8
8a	///baa	159.1
1'		123.3
2'	7.07 (1H, d, 2.0)	113.5
3'	7,445,300	147.0
4'	ANGLESO III	146.3
5'	6.76 (1H, d, 8.2)	115.1
6'	7.00 (1H, dd, 8.2, 2.0)	121.6
5-OCH ₃	3.78 (3H, s)	55.9
3'-OCH ₃	3.77 (3H, s)	55.7

1.16 Structure Determination of Compound 177

Compound 177 was obtained as a white solid. The UV spectrum (Figure 130) exhibited absorption bands at 256, 227 and 202 nm. The FABMS (Figure 131) displayed the $[M+H]^+$ at m/z 285, corresponding to $C_{16}H_{13}O_5$. The ^{13}C NMR spectrum (Figure 133) showed sixteen carbons, including a carbonyl carbon, a methoxy carbon and fourteen sp^2 carbons. The ^{1}H NMR spectrum (Figure 132) revealed a characteristic H-2 of isoflavone at δ 8.03 ppm. The AA'BB' coupled protons at δ 7.29 and 6.77, (J=6.6 Hz, each) belonged to H-2', 6' and H-3', 5'. The meta coupled protons at δ 6.36 and 6.38, (J=2 Hz, each) were assigned to H-6 and H-8, respectively. The perihydroxy proton was absent, suggesting that a OCH₃ group was present at C-5 (δ_C 161.7 ppm). All protons and carbons were assigned by analysis of the HMQC (Figure 134) and HMBC spectra (Figures 135-136). Compound 177 was identified as the known compound 4',7-dihydroxy 5-methoxy isoflavone (177), (Sekizaki *et al.*, 1988).

(177)

Table 36 The 1 H and 13 C NMR data of compound 177 in DMSO- d_{6}

Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
2	8.03 (1H, s)	150.8
3		125.2
4		174.3
4a		108.2
5		161.7
6	6.36 (1H, d, 2.0)	97.2
7 .		163.9
8	6.38 (1H, d, 2.0)	95.4
8a		159.7
1'		123.4
2', 6'	7.29 (2H, d, 6.6)	130.7
3', 5'	6.77 (1H, d, 6.6)	115.3
4'	ANG (GNG) (IA	157.5
5-OCH ₃	3.78 (3H, s)	56.4

ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย

1.17 Structure Determination of Compound 178

Compound 178 was obtained as a white powder. The FABMS (Figure 137) showed the $[M+H]^+$ at m/z 531, suggesting the molecular formula $C_{34}H_{59}O_4$. The UV spectrum (Figure 138) exhibited absorption bands at 218, 234 and 324 nm. Compound 178 was identified as *trans* tetracocyl ferulate (178) (Tezuka, Ueda and Kikuchi, 1989). The 1H and ^{13}C NMR assignments were summarized in Table 37.

$$H_3CO^{3/3}$$
 $H_3CO^{3/3}$
 $H_3CO^{3/3}$

Table 37 The ¹H and ¹³C NMR data of compound 178 in CDCl₃

Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
1	136643.23000	167.1
2	6.27 (1H, d, 15.9)	114.6
3	7.59 (1H, d, 15.9)	144.4
1'		127.0
2'	7.02 (1H, s)	109.2
3'	วิขายเขารั	146.6
4'	9 LIDLI9	147.7
5'	6.90 (1H, d, 8.1)	115.6
6'	7.05 (1H, d, 8.1)	122.9
1"	4.17 (2H, d, 6.9)	64.6
2"-23"	1.64 (2H, <i>d</i> , 6.9)	26.1, 27.3, 28.9, 29.4
	0.84-0.88 (42H, m)	29.7, 29.8, 32.0
24"	0.85 (3H, t, 6.9,)	14.3
3'-OCH ₃	3.90 (3H, s)	55.9
4'-OH	5.82 (1H, s)	

1.18 Structure Determination of Compound 179

Compound 179 was obtained as a white solid. The UV spectrum showed absorptions (Figure 145) at λ_{max} 220, 258 and 295 nm. The FABMS: (Figure 146) exhibited the $[M+H]^+$ at m/z 273, consistent to the molecular formula $C_{15}H_{13}O_5$. This compound was identified as 2,7,4'-trihydroxy isoflavone which is an intermediate in daidzein biosynthesis (Hashim *et al.*, 1990). The 1 H NMR spectrum (Figure 147) exhibited the dihydroisoflavonol protons H-2 and H-3 at δ 4.70 and 5.42 (J=5.1 Hz, each). The protons at δ 7.55 (J=9.0 Hz), 6.01 (J=9.0, 1.5 Hz) and 6.10 (J=1.5 Hz) were assigned to H-5, H-6 and H-8, respectively. The protons at δ 7.40 (J=8.1 Hz) and 6.82 (J=7.8 Hz) were assigned to H-2', 6' and H-3', 5', respectively. The 13 C NMR spectrum (Figure 148) showed fifteen carbon signals, including a pair of methine carbons, a carbonyl carbon and twelve sp^2 carbons. The present work provided complete 13 C NMR assisgnment by analysis of the HMQC (Figure 149) and HMBC spectra (Figures 150-151). The 14 H and 13 C assignments are shown in Table 38.

(179)

Table 38 The 1 H and 13 C NMR data of compound 179 in acetone- d_{6}

Position	¹ H δ (ppm), <i>J</i> (Hz)	¹³ C δ (ppm)
2	4.70 (1H, d, 5.1)	60.2
3	5.42 (1H, d, 5.1)	85.5
4		203.4
4a	SAM11/1/1	115.4
5	7.55 (1H, d, 9.0)	134.6
6	6.01 (1H, d, 9.0, 1.5)	109.5
7		166.7
8	6.10 (1H, d, 1.5)	104.3
8a	////b 76. A\\	104.3
1'		133.1
2', 6'	7.40 (2H, d, 8.1)	129.9
3', 5'	6.82 (1H, d, 7.8)	116.9
4'	AMORENO	159.1

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

1.19 Structure Determination of Compound 180

Compound 180 was obtained as a white solid. The EIMS (Figure 152) exhibited an $[M]^+$ ion at m/z 154, corresponding to $C_7H_6O_4$. The UV absorption bands (Figure 153) were found at λ_{max} 220, 258 and 295 nm. This compound was identified as protocatechuic acid (Torssell, 1997). Complete 1H and ^{13}C assignments of this compound were obtained by HMQC (Figure 156) and HMBC (Figures 157-158) experiments, as summarized in Table 39.

Table 39 The ¹H and ¹³C NMR data of compound 180 in acetone-d₆

Position	¹ H δ (ppm), J (Hz)	¹³ C δ (ppm)
1		167.4
2		122.9
3	7.46 (1H, <i>dd</i> , 8.3, 1.5)	123.3
4	6.88 (1H, d, 8.3)	115.4
5	- CO (01000	150.4
6	36137IN I	145.3
7	7.52 (1H, d, 1.5)	117.2

2. DPPH Free Radical Scavenging activity

Nine compounds, i. e. 1, 21, 27, 60, 171, 173, 175, 177 and 179, from O. integerrima were subjected to DPPH radical scavenging activity test. Compounds 171, 177 and 179 exhibited moderate activity when compared with the positive control quercetin (83) (Table 20).

2.1 Biflavonoids

Compound 171 showed moderate activity while compound 1 exhibited weak activity. Compounds 173, 27 and 21 showed very weak activity. Compound 171 had a very rigid planar structure, suggesting that a planar structure might be important for the activity.

2.2 Isoflavonoids

Compound 179 showed moderate activity whereas compound 177 was slightly less active. The isoflavonoids with 6,7 methylenedioxy group such as compounds 60 and 175 displayed weak activity.

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 4 Structures of flavonoids with DPPH radical scavenging activity from

O. integerrima